
2D and 3D Models for Object and Scene
Understanding

by

Min Sun

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering- Systems)
in The University of Michigan

2012

Doctoral Committee:

Assistant Professor Silvio Savarese, Chair
Professor Alfred O. Hero III
Professor Benjamin Kuipers
Associate Professor Fei-Fei Li, Stanford University

c© Min Sun 2012

All Rights Reserved

DEDICATION

This doctoral dissertation is dedicated to my ever supportive parents, loving wife

and daughter.

ii

ACKNOWLEDGEMENTS

I am very fortunate to work closely with both Professor Silvio Savarese and Pro-

fessor Fei-Fei Li. They are both brilliant scientists and incredibly knowledgeable

mentors. Through the course of my PhD, they have helped me evolve from a clueless

student to a confident researcher. I truly appreciate their guidances and encour-

agements. They have also taught my a lot on how to effectively communicate with

other researchers: polishing research papers, and making presentation crystal clear

and intuitive to follow. Most importantly, I kept on being amazed by their insights

on high-impact future research directions, even after 5 years of study with them.

I am also very lucky to study in both Princeton university and university of Michi-

gan. At Princeton university, I have met many great professors. I want to thank

them for teaching me the fundamental knowledge of machine learning and computer

algorithms that has become essential for my thesis work: professor David Blei, for

introducing me the probabilistic graphical models and Bayesian nonparametric meth-

ods; professor Robert Schapire, for showing me the power of boosting algorithms and

many potential applications; professor Robert Tarjan, for helping me appreciate the

beauty of computer algorithms. I also would like to thank my colleagues who I en-

joyed hanging out and learned from: Chong Wang, for being a great neighbour and

always being able to answer my questions in all fields; Jia Li, for being my role model

of an outstanding graduate student and sharing her favorite Sichuan food; Juan Car-

los Niebles, for burning the midnight oil with me during my first CVPR deadline and

sharing his favorite columbia food; Hao Su, for teaching me how to organize research

iii

codes and working hard with me on my first project; Barry Chai, for helping design

the user interface on Amazon Mechanical Turk and always cheer me up with his funny

jokes.

At university of Michigan, I have the great honor to have professor Alfred Hero and

Benjamin Kuipers on my thesis committee. I want to thank them for being very sup-

portive and giving me insightful suggestions from the perspective of signal progressing

and robotics. I also want to thank professor Honglak Lee for sharing his experience

on writing machining learning papers and encouraging me to develop general algo-

rithms that could create impacts in many fields. My transition from Princeton to

Michigan cannot be smoother thanks to our wonderful student coordinator, Becky

Turanski, who gave me tremendous supports and the warmest welcome to me and my

family. I also treasure the fellowship with my colleagues who consider me as a true

wolverine the day when I arrived. I especially appreciate all the helps and great times

spent with all the members in the vision lab. In particular, I would like to thank:

Wongun Choi, for sharing his knowledge on processing video and designing sampling

algorithms; Byung-soo Kim, for working hard with me on my last project and always

answering my questions on how to be a good father and husband; Yingze Bao, for

being the best collaborator ever who helped me achieve a very productive first year;

Shyam Kumar, for working hard with me on the mobile computing project; Murali

Telaprolu, for all the good times working on the branch-and-bound project together.

During my PhD, I was really blessed to have many opportunities to interact with

outstanding researchers outside my immediate academic group. I want to thank Dr.

Gary Bradski for showing me how influential a person can be by dedicating on open

source projects. I also appreciate Dr. Pushmeet Kohli and Jamie Shotton for getting

me involved with a fascinating project which has high potential to be used in a future

product.

There are many more people I would like to thank who are outside my research

iv

community but gave me significant supports. In particular, I would like to thank my

brothers and sisters in the church at Princeton and Ann Arbor. Almost every Friday

night, I was looking forward to the fellowship meeting which helps me truly escape

from the up and down in school and research. I also would like to thank my fellow

Taiwanese student couples in Princeton and Ann Arbor. Thanks for making my five

years in the US the best part of my life.

The truth is, I won’t be able to accomplish all these without the supports from

my family. I sincerely thank my wife’s parents for believing in a young man like

me for taking care of their precious daughter in a foreign country. I am also truly

grateful that my parents give me unconditional supports and embrace me whenever I

feel defeated. Most importantly, I want to thank my wife for everything that she has

done to make me a better man in the world. Last but not least, I am grateful for god

giving me a lovely daughter whose cute giggles simply take away all my pressure.

v

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . x

LIST OF TABLES . xii

LIST OF ALGORITHMS . xiii

ABSTRACT . xiv

CHAPTER

I. Introduction . 1

1.1 Challenges . 3
1.2 Previous Work . 4
1.3 Our Contributions . 6

1.3.1 Themes . 8
1.3.2 Models for 3D Object Recognition and View Point

Estimation . 11
1.3.3 Models for 3D Object Shape Inference 12
1.3.4 Models for Articulated Objects 14
1.3.5 Efficient Inference on Loopy Models for Articulated

Objects . 16
1.3.6 Models for Capturing Interplay between Objects and

Scene Layout . 16
1.3.7 Models for Coherent Scene Understanding 18

II. Background . 19

2.1 Object Recognition . 19
2.1.1 Object Instance Recognition 20
2.1.2 Single View Object Category Recognition 21

vi

2.1.3 3D Object Category Recognition 22
2.2 Articulated Object Recognition 24

2.2.1 Human Detection 25
2.2.2 Human Pose Estimation 25
2.2.3 Joint Human Detection and Pose Estimation 28

2.3 Scene Understanding . 28
2.3.1 2D Scene Elements 29
2.3.2 Beyond 2D Scene Elements 30
2.3.3 Object and Scene Elements 32

III. Models for 3D Object Recognition and View Point Estimation 34

3.1 A Dense Multi-view Representation of 3D object Categories . 35
3.1.1 Model . 36
3.1.2 Part-Based Representation 37
3.1.3 View Sphere Parameterizations 38
3.1.4 Part-Based Model over the View Sphere 39
3.1.5 Key View Generation 40
3.1.6 Generative Process 40
3.1.7 3D Geometric Constraints 44

3.2 Learning . 45
3.2.1 Initialization with A Video Clip 45
3.2.2 Incremental learning with Unsorted Images 53
3.2.3 Learning Summary 55
3.2.4 Comparison with previous methods 57

3.3 Applications . 58
3.3.1 Object class detection 59
3.3.2 Object viewpoint classification 64
3.3.3 Viewpoint synthesis 66

3.4 Conclusion . 67

IV. Models for 3D Object Shape Inference 68

4.1 Related Works on 3D Object Modelling 73
4.2 Our Method . 75

4.2.1 Stage 1: Depth-Encoded Hough Voting 75
4.2.2 Stage 2: 3D Modelling 82
4.2.3 3D shape recovery 82
4.2.4 Texture Completion 84

4.3 Experiment . 87
4.3.1 Evaluation of DEHV 87
4.3.2 Evaluation of 3D Modelling 92

4.4 Conclusion . 96

V. Models for Articulated Objects 97

vii

5.1 Articulated Object Representation 100
5.1.1 Recognition . 102
5.1.2 Matching Scores . 104
5.1.3 Model Properties (APM) 107

5.2 Model Learning . 107
5.3 Implementation Details . 110
5.4 Experiments . 110

5.4.1 Evaluation Criteria 112
5.4.2 Comparing with Poselet (Bourdev et al. (2010)) . . 113
5.4.3 ETHZ Stickmen dataset 113

5.5 Conclusion . 115

VI. Efficient Inference on Loopy Models for Articulated Objects 117

6.1 Introduction on MAP-MRF inference 120
6.2 The MAP problem and its LP Relaxation 122

6.2.1 Dual LPRs. 123
6.2.2 MPLP . 125
6.2.3 Time Complexity and Tightness of the Bound . . . 127

6.3 Efficient Branch-and-Bound 128
6.3.1 Branch-and-Bound Basics 128
6.3.2 Efficient Bound . 129
6.3.3 Branching Strategy 136

6.4 Experiments . 138
6.4.1 General Experimental Setting 139
6.4.2 Detailed Experimental Settings 139
6.4.3 Improved Naive Branch-and-Bound Algorithm . . . 140
6.4.4 Experiments with Synthetic Data 142
6.4.5 Human Pose Estimation (HPE) 143
6.4.6 Other Application: Protein Design 151

6.5 Conclusion . 151

VII. Models for Capturing Interplay between Objects and Scene
Layout . 153

7.1 Geometrical Context Feedback Loop 156
7.1.1 Model Representation 159
7.1.2 Model Learning . 168
7.1.3 Model Inference using Context Feedback Loop . . . 171
7.1.4 Implementation details 173

7.2 Experiment . 173
7.2.1 Table-top Object Dataset 174
7.2.2 Label-Me Outdoor Dataset 176
7.2.3 Office Dataset . 178

viii

7.3 Conclusion and Future Work 179

VIII. Models for Coherent Scene Understanding 182

8.1 Augmented CRF . 186
8.1.1 Relating Y and X 191
8.1.2 Indicator CRF . 191

8.2 Inference . 193
8.2.1 Functions of indicator variables Y with only category

property. 194
8.2.2 Functions of indicator variables Y with instance prop-

erties. 194
8.2.3 Functions of Indicators Y 195

8.3 Learning . 198
8.3.1 Loss Function . 199

8.4 Experiments . 200
8.4.1 Relationship Analysis 205

8.5 Conclusion . 206

IX. Conclusion . 209

9.1 Object Recognition . 209
9.2 Articulated Object Recognition 210
9.3 Scene Understanding . 211

BIBLIOGRAPHY . 213

ix

LIST OF FIGURES

Figure

1.1 Illustration of the research goals in this thesis 2
1.2 List of Challenges . 3
1.3 Examples of previous work . 5
1.4 A dense multi-view representation of 3D object categories 12
1.5 Key steps of our DEHV system . 13
1.6 Illustration of the Articulated Part-based Model (APM) 14
1.7 Illustration models for human . 15
1.8 The Context Feedback Loop Model 17
2.1 Illustration of 3D object category models 23
2.2 Examples of properties beyond 2D relationships 30
3.1 Schematic illustration of key concepts of our model 36
3.2 Examples of candidate parts of different object classes 39
3.3 A schematic representation of our 3D object model 43
3.4 Illustration of the updates procedure and learned parts 54
3.5 Example images from the 3D object category dataset 57
3.6 Example images from Pascal VOC 2006 dataset 57
3.7 Example images from household item dataset 58
3.8 Object detection results using the 3D objects dataset 61
3.9 Object detection results using the Pascal VOC06 dataset 61
3.10 Object detection results on 7 household object categories dataset . . 62
3.11 Model analysis . 62
3.12 Viewpoint classification results . 64
3.13 Examples of viewpoint estimation 65
3.14 Synthesized new views . 66
4.1 Key steps of our reconstruction algorithm 69
4.2 Flow chart showing the process of our proposed system 71
4.3 Visualization of the votes . 77
4.4 Illustration of interplay between scale and depth 78
4.5 A typical detection and reconstruction result 81
4.6 Two examples of 3D+2D ICP fitting 84
4.7 Hole filling results . 85
4.8 Object localization results . 87

x

4.9 Pose estimation results . 89
4.10 Example detection and depth recovery results 90
4.11 Performance on the mug category of ETHZ shape dataset 90
4.12 Object localization result using PASCAL VOC07 dataset 92
4.13 Examples of the complete 3D object inference process 93
4.14 Relative depth errors using different number of CAD models 94
4.15 Examples of semi-automatic 3D object modelling 95
5.1 Graphical illustration of APM . 101
5.2 Visualization of a learned APM . 108
5.3 Performance on Poselet and IIP dataset 111
5.4 Performance on stickmen dataset 111
5.5 Typical examples of object detection and pose estimation 116
6.1 Illustration of the Branch-Max-Tree 131
6.2 Motivation for the Opportunistic Branch Max Search 133
6.3 Illustration of synthetic and human pose problems 141
6.4 Comparison between our methods and state-of-the-art methods . . . 141
6.5 Scatter plot for the time comparison 146
6.6 Trade-off between accuracy and efficiency 147
6.7 Quantitative results on VideoPose2.0 dataset 148
6.8 Typical results from Buffy, Pascal Stickmen, and VideoPose2 datasets 150
6.9 Performance on protein design . 152
7.1 List of intuitions . 157
7.2 The notations used in the layout estimator module 162
7.3 Illustration of the concept of multiple segmentation hypotheses . . . 169
7.4 Illustration of the segmentation statistics 171
7.5 Interactions between different modules 172
7.6 Detection performance using precision-recall measurement 174
7.7 Detection performance on labelme dataset 178
7.8 Detection performance using full system on the office dataset 178
7.9 Typical results on images with one plane 180
7.10 Typical results on images with 2 supporting planes 181
7.11 Typical results on office dataset . 181
8.1 Our goal . 183
8.2 Our Augmented CRF model . 187
8.3 Comparison between the original and approximated functions 196
8.4 Illustration of pairwise objects relationships 202
8.5 Typical segmentation results on the Stanford dataset 203
8.6 Detection results on the Stanford dataset 203
8.7 Examples of learned pair-wise objects relationships 204
8.8 Typical results on Stanford and PASCAL datasets 207
8.9 3D pop-up models from Stanford dataset 208

xi

LIST OF TABLES

Table

1.1 Summary of themes and our contributions. 8
4.1 Estimated quantities in Stage 1 . 71
4.2 Required degree of supervision in training for each stage. 71
4.3 Depth recovery error . 89
4.4 Pose estimation performance on 3D object dataset 89
4.5 Relative depth error . 94
5.1 PCP comparison on stickmen dataset 114
6.1 List of variants of our efficient BB algorithm 136
6.2 Pose estimation accuracy comparison on Buffy and Stickmen datasets 144
6.3 Time break-down and number of branches 147
7.1 Estimation errors of surface layout parameters and supporting regions 174
8.1 Segmentation performance comparison on the Stanford dataset . . . 201
8.2 Our segmentation accuracy on PASCAL dataset 202
8.3 Segmentation accuracy comparison on PASCAL dataset 203

xii

LIST OF ALGORITHMS

Algorithm

1 One iteration of the variational EM algorithm 56
2 Efficient Branch and Bound algorithm 128
3 Preprocessing: prep(InitFlag) . 130
4 Opportunistic Branch Max Search:(h∗, v) =OBMS(HN ,i) 133
5 Efficient Update Procedure for BMT: BMT.update(H,h,v) 134
6 Get Bounds: (h∗, UB)=getBound(HN) 135
7 Branching (H1

N ,H
2
N) =split(HN ,h

∗) 137
8 Context Feedback Loop . 172

xiii

ABSTRACT

2D and 3D Models for Object and Scene Understanding

by

Min Sun

Chair: Silvio Savarese

In this thesis, we propose novel 2D and 3D models for object and scene understanding

from images. This is an extremely challenging problem in computer vision. Objects

change their appearance because of intra-class variability, view point transforma-

tions and their inherent deformable nature. Understanding scenes is also challenging.

Scenes may comprise large number of objects whose relationships are class specific

and depend on the view point and 3D scene geometry. First, we propose object mod-

els that are capable of detecting generic rigid objects and simultaneously extracting

their viewpoints and 3D shape. The ability of these models to jointly capture appear-

ance and shape in a truly 3D sense makes them robust to intra-class variability, view

point changes and occlusions. Second, we have focused on designing models that can

effectively capture the appearance and shape variability of deformable objects such

as humans or animals. Most importantly, we propose algorithmic solutions that are

capable of ”taming” the intrinsic complexity of the pose estimation problem while

guaranteeing the optimality of the solution. Finally, we have proposed models that

can effectively capture the interplay among objects and scene elements so as to si-

multaneously recognize the scene, detect objects and segment regions accurately and

xiv

efficiently.

xv

CHAPTER I

Introduction

One of the key problems in computer vision is to automatically interpret the

world from images. Humans do this effortlessly and robustly. By looking at the

image in Fig. 1.1(a), we can recognize that there are objects such as cars, scooters,

and people; there are generic scene elements such as the road surface and the buildings

(Fig. 1.1(b)). Critically, we can do this regardless of: i) whether it is the first time

we see a specific car model (e.g., the sedan manufactured by Mitsubishi); ii) whether

a scene element is occluded by other objects or not (the buildings are occluded by

cars and scooters); iii) which view point an object is observed from; iv) the pose of a

person is holding (e.g., sitting on scooter);

Moreover, we can easily determine the key geometrical properties of the scene

even when a single image is provided. These include the 3D pose of the objects (the

car is observed from a back view; the person is facing front and is holding a ”sit”

pose); the 3D orientation of the scene elements (the buildings are observed from a 45

degrees view); we can estimate the depth ordering of the objects in the scene (the

human outlined by the green polygon is closer to the camera than the car outlined by

the red polygon) (Fig. 1.1(c)). Finally, we do not perceive objects as isolated entities

in the scene but we rather account of the semantic and geometrical interplay between

objects and scene elements (a scooter is roaming on a street) or between humans

1

Figure 1.1: Illustration of the research goals in this thesis. We would like to recognize
all of the objects from an image of a scene such as the one illustrated in panel (a).
Examples of objects of interest are indicated by color-coded regions (Panel (b)). They
include rigid objects (e.g., cars and scooters), articulated objects (e.g., people), and
generic scene elements (e.g., a street and buildings). Moreover, we would like to
determine the properties associated to each element (Panel (c)) as well as typical
relationships between objects and generic scene elements observed in the real-world
(Panel (d)). All of these together enable methods for coherent interpretation of the
scene.

and objects (a person is riding a scooter) (Fig. 1.1(d)); Eventually we integrate all

these pieces of semantic and geometrical evidence into a coherent interpretation of

the scene which can tell us what this image is about: an urban street scene with

scooters roaming around.

2

(a) Intra-class Variability

(b) View Point Variability

(c) Pose Variability

Figure 1.2: Panel (a,b,c) illustrate the intra-class variability, view point variability,
and pose variability, respectively.

1.1 Challenges

Unfortunately, designing a computer vision system that is capable of achieving all

the goals above is extremely challenging. We summarize the key challenges below.

Objects change their appearance because of intra-class variability – difference

instances that belong to the same object category may present different photometric

and shape properties as illustrated in Fig. 1.2(a). Moreover, even when a single

object instance is considered, the object appearance is subject to dramatic changes

because of view point transformations (Fig. 1.2(b)). Thus, a key challenge in object

recognition is to design object models that account for both types of variability –

3

that is, are capable of: i) generalizing across specific object instances and recognizing

object instances that may have not been seen in training before; ii) enabling view-

invariant representations and recognizing object instances observed from generic view

points.

Recognizing articulated objects such as humans or animals is even more chal-

lenging because of the deformable nature of their shape. Humans can change their

appearance properties as they hold different poses (e.g., standing, sitting, jumping).

Modelling such variability is difficult since the number of possible body part config-

urations can be extremely large. A model for articulated object should be ideally

capable of compactly summarizing such pose variability and enable the recognition

of object instances from poses that may have not been seen in training before.

Finally, understanding a scene from an image is also challenging. On top of all

the challenges described above, one should also account for the fact that the interplay

between objects and scene elements is difficult to model. A scene typically comprises

of a large number of elements (humans, cars, side walk, pavement, as illustrated in

Fig. 1.1(a)) whose relationships (e.g. ”on-top” , ”next-to”, ”behind”) vary as function

of the scene class and the objects class (i.e., cars lie on top of the street pavement).

The interplay between objects can be complex and view dependent (i.e. the depth

ordering of objects is typically ambiguous as the 3D-to-2D mapping is not reversible

in general) and the number of types of relationships is in general very large. It

is desirable to design models for scene understanding that are generic and capable

of capturing a hypothetically exponentially large number of configurations of scene

elements.

1.2 Previous Work

Unfortunately, after five decades of computer vision research and numerous very

successful stories in recognition and reconstruction, most of these challenges are still

4

Figure 1.3: Panel (a,b) show methods recognizing object instances (Lowe, 1999) and
single view objects (Fergus et al., 2003), respectively. Panel (c,d) show methods rec-
ognizing pedestrians (Dalal and Triggs , 2005) and body parts configurations (Felzen-
szwalb and Huttenlocher , 2005), respectively. Panel (e,f) show methods incorporate
2D (Gupta and Davis , 2008a) and 2.5D (Hoiem et al., 2008) relationships for scene
understanding, respectively.

unsolved.

Most of the models for object recognition are either intrinsically view point invari-

ant but cannot be generalized so as to recognize categories (object instances that are

never seen in training) (Lowe, 1999; Obdrzalek and Matas , 2002; Rothganger et al.,

2003; Brown and Lowe, 2005; Gordon and Lowe, 2006) (Fig. 1.3(a)), or capture prop-

erties of an object category from a handful of viewpoints and cannot generalize well

for any generic view point (Weber et al., 2000b; Borenstein and Ullman, 2002; Fer-

gus et al., 2003; Felzenszwalb and Huttenlocher , 2005; Grauman and Darrell , 2005;

Lazebnik et al., 2006; Felzenszwalb et al., 2008) (Fig. 1.3(b)).

Most of the models for recognizing articulated objects such as humans either focus

5

on recognizing a fix number of poses without aiming to localize body parts (Dalal and

Triggs , 2005; Felzenszwalb et al., 2008) (Fig. 1.3(c)) or assume that object location is

given and seek to localize the body parts (Felzenszwalb and Huttenlocher , 2005; Ra-

manan, 2006; Eichner and Ferrari , 2009; Sapp et al., 2010b) (Fig. 1.3(d)). Moreover,

in order to reduce intrinsic complexity of the problem (explore an hypothesis space

that is exponentially large) approximations on the inference procedure are typically

made (Jiang and Martin, 2008; Tran and Forsyth, 2010; Ren et al., 2005; Wang et al.,

2011).

Most of the models for scene understanding describe the interplay between objects

and scene elements by only considering 2D spatial relationships in the image plane

(e.g., nearby elements in the pixel domain should share the same class and property)

(Shotton et al., 2006; Heitz and Koller , 2008; Gupta and Davis , 2008a; Desai et al.,

2009; Ladicky et al., 2010b; Kohli et al., 2008; Yao and Fei-Fei , 2010; Yao et al., 2011)

(Fig. 1.3(e)). A few models capture more sophisticated relationships by assuming the

a 2D and half reconstruction of the layout of the scene is available (Hoiem et al., 2008;

Gould et al., 2009b,a). This is typically obtained by estimating the vanishing lines

of the scene. However, these models make assumptions on camera and scene layout

(e.g., only one supporting plane and no camera in-plane rotation) (Fig. 1.3(f)).

1.3 Our Contributions

In this thesis we propose a number of novel 2D and 3D models for object and

scene understanding that seek to meet the challenges discussed above and address

some of the key limitations of previous work.

First, we propose object models that are capable of detecting generic rigid objects

and simultaneously extracting their locations and viewpoints (models for 3D object

recognition and view point estimation; Sec. 1.3.2 and Chapter III). Our proposed

models capture the intrinsic 3D nature of the object category by linking object parts

6

across views using probabilistic relationships. We introduce a new learning procedure

based on variational Expectation Maximization (EM) that learns part configurations

within or across view in a semi-supervised fashion. Moreover, we propose a novel

probabilistic formulation that allows learning the distribution of object features in

3D automatically and infer the 3D object shape from a single query image (Models

for 3D object shape inference; Sec. 1.3.3 and Chapter IV) – an inherently ill posed

problem. The ability of these models to jointly capture appearance and shape in a

truly 3D sense makes them robust to intra-class variability, view point changes and

occlusions.

Second, we have focused on designing models that can effectively capture the ap-

pearance and shape variability of articulated objects such as humans or animals. A

premium has been put on models that can handle arbitrary object part configura-

tions (poses) and simultaneously detect and estimate the object poses from a single

image (Models for articulated objects; Sec. 1.3.4 and Chapter V). Moreover, a key

contribution has been to propose algorithmic solutions that are capable of taming the

intrinsic complexity of the pose estimation problem (i.e., explore an hypothesis space

that is exponentially huge) while guaranteeing the optimality of the solution (efficient

inference on loopy models for articulated objects; Sec. 1.3.5 and Chapter VI).

Finally, we have proposed models that can effectively capture the interplay among

objects and scene layout (location and orientation of supporting surfaces in 3D) us-

ing less restrictive hypotheses than state-of-the-art approaches (Models for capturing

interplay between objects and scene layout; Sec. 1.3.6 and Chapter VII). By jointly

reasoning about objects, their geometrical properties (pose, shape) and scene elements

(e.g., supporting surfaces and background regions) we have introduced probabilistic

models that enable coherent scene understanding as well as more accurate object de-

tection and segmentations results than existing methods (Models for coherent scene

understanding; Sec. 1.3.7; chapter VIII).

7

Goals Inference Supervision Learning Dataset Chapter
Models for Detect objects Hough Object Variational EM and 3D object III
3D Objects and estimate voting bounding Discriminative (extended) and

viewpoints. boxes learning Pascal dataset
Detect objects, Hough Object Maximum Table-Top, IV

estimate viewpoints, voting bounding likelihood ETHZ Shape,
and recover boxes and Pascal
3D shapes. dataset.

Models for Detect humans and Dynamic Body part Discriminative Poselet, Stickmen, V
Humans estimate poses. programming labels learning and Human

Parsing dataset.
Estimate poses on Branch and Body part Discriminative Stickmen, VI

loopy models. Bound labels learning Buffy, and
Video Pose
dataset.

Models for Detect objects, Iterative Segment Independent Table-top, VII
Scene segment supporting procedure labels learning Labelme, and
Under- regions, estimate Office dataset.
standing layout.

Detect objects, Graph Segment Discriminative Stanford and VIII
segment regions, cut labels learning Pascal dataset
estimate layout.

Table 1.1: Summary of themes and our contributions.

1.3.1 Themes

In this thesis, the following themes appear throughout many chapters (see Ta-

ble 1.1 for summary).

Level of supervision: we present methods requiring different level of supervision.

For example, models for 3D object recognition require minimal supervision (no object

pose or parts; only object location and category labels), whereas models for human

pose require a larger degree of supervision (object location, body part, and category

labels); Less supervision allows to easily collect more training data so that the learned

models can generalize well on unseen testing images. However, without an appropri-

ate level of supervision, it is harder to train models that are capable of capturing

detailed properties such as object pose and parts. In Chapter III, we overcome this

challenge and propose a semi-supervised model to automatically align object pose and

find object parts that consistently appear across viewpoint for rigid objects. Notice

that when detailed properties are difficult to infer automatically (e.g., body parts of

articulated objects), larger degree of supervision becomes necessary (Chapter V and

VI).

8

Discriminative vs generative models: The advantages of generative models are

its flexibily and modeling power. Moreover, there exist standard mathematical tools

to learn models with hierarchy of latent variables. However, generative models are

typically less discriminative than discriminative models which can be used to learn

the optimal conditional probability distribution such as the decision boundary be-

tween positive and negative samples for classification tasks. In Chapter III, we use a

generative model to describe the generative process of parts location and appearance

under different view points. Using variational inference, we automatically learn latent

parts that consistently appeared across viewpoints. During recognition, a discrim-

inative model (i.e., random forest) is used to localize the parts in order to achieve

high object detection accuracy. In general, we observed that it is critical to use dis-

criminative models (e.g., random forest (Chapter IV) and Conditional Random Fielf

(CRF) (Chapter VIII)) to handle large appearance variation from background clutter.

Therefore, in most of our work, discriminative models are used as the fundamental

building blocks of our system.

Learning strategies. Mainly two learning strategies are used in this thesis. Firstly,

maximum likelihood is used to learn the model parameters and latent variables in

Chapter III and IV by maximizing the log probability with different forms. In Chap-

ter III, Sec. 3.2.1.2, all model parameters are jointly learned by maximizing the log

marginal probability. In Chapter IV, Sec. 4.2.1.1, the model parameters associated

to discriminative tools such as random forest are separately estimated. Finally, max-

margin is also used to learn models parameters in Chapter V, VI, and VIII by maxi-

mizing the normalized distance between training instances and the separation hyper-

plane. In general, we found models learned with max-margin objective function tend

to achieve higher accuracy.

Model complexity. Many of our models seek to capture interactions between ele-

ments (Chapter V and VI). Among them, a tree model is proposed in Chapter V and

9

a loopy model is proposed in Chapter VI. On the one hand, tree models are more

compact (fewer number of parameters) and there exist efficient inference algorithms

to find Maximum A Posteriori (MAP) estimation of the tree models compared to

loopy models. However, tree models are less descriptive compared to loopy models,

and lead to lower accuracy. On the other hand, loopy models have larger number

of parameters and they lead to inference problems that are known to be NP-hard.

In Chapter VI, we demonstrate inference algorithm for loopy models that are both

tractable and lead to more accurate estimation results.

We have also proposed models that captures high order interactions (relations

among more than 2 elements) and proposed an efficient inference algorithm to esti-

mate complex interactions such as interactions among an object and multiple regions

in chapter VIII. Notice that the high order interactions cannot be trivially decom-

posed to pair-wise interactions. However, the key for the development of the efficient

inference algorithm is to show that, by conditioning on a subspace of variables, the

high order interactions can be approximately decomposed into pair-wise interactions.

Optimization strategies. We use different optimization strategies to solve our

learning and inference problems. Variational inference is used to approximately solve

the learning problem in Chapter III. Dynamic programming is used to solve the MAP

inference problem on tree models (Chapter V). A novel branch-and-bound algorithm

is proposed to solve MAP inference on loopy models efficiently. A novel iterative in-

ference procedure is applied to approximately solve the scene understanding problem

in Chapter VII. An efficient graph-cut algorithm is used to approximately solve the

MAP inference problem for coherent understanding of objects and scene elements in

Chapter VIII. A general strategy that is shared among most of the above methods

is to decompose our learning and inference problems into smaller problems that can

be solved by existing optimization strategies very efficiently (e.g., variational infer-

ence, dynamic programming, and graph-cut). In some cases, such decomposition is

10

not possible. For the problem in Chapter VI, we propose a novel branch-and-bound

algorithm to solve the MAP inference problem on a loopy model which is known to

be NP-hard.

Experimental evaluation. In order to evaluate our models and compare them

with state-of-the-art baseline methods, we conduct experiments on public available

datasets such as 3D object dataset (Savarese and Fei-Fei , 2007), PASCAL dataset

(Everingham et al., 2006, 2007), ETHZ Shape dataset (Ferrari et al., 2008a), PASCAL

Stickmen dataset (Eichner and Ferrari , 2009), Buffy dataset (Ferrari et al., 2008b),

Poselet dataset (Bourdev and Malik , 2009), Stanford dataset (Gould et al., 2009a),

Office scene dataset (Sudderth et al., 2008), and Label-me dataset (Hoiem et al.,

2006). When necessary, we collected a number of in-house datasets to demonstrate

specific properties or capabilities of our models. For example, in Chapter III, we

extended the dataset in (Savarese and Fei-Fei , 2007) with several additional object

categories to demonstrate that our method can generalize well on a variety of object

categories. Moreover, in Chapter IV, we collect one of the first dataset for object

categories where images are associated with depth maps.

In the following sections, we describe our contributions in details.

1.3.2 Models for 3D Object Recognition and View Point Estimation

Recognizing object categories and their 3D viewpoints is an important problem

in computer vision. In Chapter III, we propose a new 3D object categorical model

that is capable of recognizing unseen views, estimating poses, and synthesis new

views (Fig. 1.4). We achieve this by using a dense, multi-view representation of

the viewing sphere parameterized by a triangular mesh of viewpoints. Each triangle

of viewpoints can be morphed to synthesize new viewpoints. By incorporating 3D

geometrical constraints, our model establishes explicit correspondences among object

parts across viewpoints. We propose an incremental learning algorithm to train the

11

Learnt alignment of training images

Learnt alignment of training images

Query image

Query image

Segment of the
view sphere

Figure 1.4: In Chapter III, we propose a dense multi-view representation of 3D object
categories. Consider a car category as an example. The red circles on the viewsphere
indicate the viewpoints of the object category learned by our model. Some sample
training images are shown for two of the viewpoints, demonstrating our models ability
to automatically align unlabelled poses at training time. Given a query image (dark
blue circle) our model is capable of simultaneously categorize the object in the image
and estimate its correct viewpoint by synthesizing a novel pose at recognition time.

generative model. After a suitable initialization step, the model is updated by a set of

unsorted training images without viewpoint labels. We demonstrate the robustness of

our model on object detection, viewpoint classification and synthesis tasks. Our model

performs superiorly to and on par with state-of-the-art algorithms on the 3D object

dataset (Savarese and Fei-Fei , 2007) and PASCAL’06 datasets (Everingham et al.,

2006) in object detection. It outperforms all previous work in viewpoint classification

and offers promising results in viewpoint synthesis.

1.3.3 Models for 3D Object Shape Inference

Other than detecting objects and estimating their poses, recovering 3D shape in-

formation is also a critical problem in many vision and robotics applications. In Chap-

12

(a) (b)

(c) (d)

Figure 1.5: Key steps of our Depth-Encoded
Hough Voting (DEHV) system (Chapter IV):
(a) Detected object (red and green bounding
boxes indicate the ground truth and estimated
object location); (b) estimated object 3D pose
(light blue cube); (c) reconstructed partial sur-
face elements (3D points); (d) reconstructed
3D model.

ter IV, we address the above needs using a two stages approach. In the first stage, we

propose a new method called DEHV - Depth-Encoded Hough Voting. DEHV jointly

detects objects, infers their categories, estimates their poses, and infers/decodes ob-

jects depth maps from either a single image (when no depth maps are available in

testing) or a single image augmented with depth map (when this is available in test-

ing) (Fig. 1.5(a,b,c)). Inspired by the generalized Hough voting scheme introduced in

Leibe et al. (2004), DEHV incorporates depth information into the process of learn-

ing distributions of image features (patches) representing an object category. DEHV

takes advantage of the interplay between the scale of each object patch in the image

and its distance (depth) from the corresponding physical patch attached to the 3D

object. Once the depthmap is given, a full reconstruction is achieved in a second (3D

modelling) stage, where modified or state-of-the-art 3D shape and texture comple-

tion techniques are used to recover the complete 3D model (Fig. 1.5(d)). Extensive

quantitative and qualitative experimental analysis on existing datasets (Everingham

et al., 2007; Ferrari et al., 2008a; Savarese and Fei-Fei , 2007) and a newly proposed

3D table-top object category dataset shows that our DEHV scheme obtains com-

petitive detection and pose estimation results. Finally, the quality of 3D modelling

in terms of both shape completion and texture completion is evaluated on a newly

proposed 3D modelling dataset containing both in-door and out-door object cate-

gories. We demonstrate that our overall algorithm can obtain convincing 3D shape

reconstruction from just one single uncalibrated image.

13

(a)

Arm
Akimbo

Self-
occlusion

Severe
Deformation

(b) COARSE FINE

T
Y

P
ES

Marr. 1982

OPEN PALM

CLOSED PALM

OPEN PALM

CLOSED PALM

STRETCHED

FORE-SHORTENED

STRETCHED

BENDED-DOWN

STRETCHED
STRETCHED

BENDED-UP
FORE-SHORTENED

LEVEL

Figure 1.6: Panel (a) shows the ideal human pose estimation results indicated by
the white bounding boxes and highlights the challenges including large appearance
variation, part deformation, and self-occlusion. In Chapter V, we propose a new
model for jointly detecting objects and estimating their pose (Panel (b)). Inspired
by Marr (Marr , 1982), our model recursively represents the object as a collection of
parts from a coarse-to-fine level (e.g., see horizontal dimension) using a parent-child
relationship with multiple part-types (e.g., see vertical dimension). We argue that
our representation is suitable for “taming” large pose and appearance variability.

1.3.4 Models for Articulated Objects

Despite recent successes in generic object detection, articulated objects are still

very difficult to detect (Fig. 1.6(a)). Knowledge about the articulated nature of these

objects, however, can substantially contribute to the task of finding them in an image.

It is somewhat surprising, that these two tasks are usually treated entirely separately.

In Chapter V, we propose an Articulated Part-based Model (APM) for jointly de-

tecting objects and estimating their poses. APM recursively represents an object

as a collection of parts at multiple levels of detail, from coarse-to-fine, where parts

at every level are connected to a coarser level through a parent-child relationship

14

(a) Tree Model (b) Full Model

Inferred

Hypothsis

Variables

Tree Edges

Non-Tree

Edges

Figure 1.7: Panel (a,b) show the graphical representation of human model for six
body parts. Here, circles denote parts, and blue and red edges denote the relationships
between pairs of parts in the tree and full model respectively. The best configuration
are shown in green arrows, where each arrow indicates the location and orientation
of the body part. As we discussed in Chapter VI, the full model allows to detect the
correct pose (b), whereas the tree model produces the wrong right-lower-arm (a).

(Fig. 1.6(b)-Horizontal). Parts are further grouped into part-types (e.g., left-facing

head, long stretching arm, etc) so as to model appearance variations (Fig. 1.6(b)-

Vertical). By having the ability to share appearance models of part types and by

decomposing complex poses into parent-child pairwise relationships, APM strikes a

good balance between model complexity and model richness by having the relation-

ships between parts to form a tree-structure. Extensive quantitative and qualitative

experiment results on public datasets (e.g., Poselet (Bourdev and Malik , 2009), Buffy

(Ferrari et al., 2008b) and Stickmen (Eichner and Ferrari , 2009) datasets) show that

APM outperforms state-of-the-art methods. We also show results on PASCAL’07

(Everingham et al., 2007) - cats and dogs - two highly challenging articulated object

categories.

15

1.3.5 Efficient Inference on Loopy Models for Articulated Objects

The ability to capture the human pose with tree models is limited since many

informative relationships between parts, such as symmetric relationships between

left and right limbs, cannot be captured using such models (Fig. 1.7(a)). A natural

extension are loopy models (parts are more densely connected and the model captures

the dependency among most of the parts (Fig. 1.7(b))). However, since loopy models

make inference intractable, approximated inference methods are usually used. In

Chapter VI, we propose a novel Branch-and-Bound (BB) algorithm to solve human

pose estimation problem on loopy models. Our analysis of the proposed algorithm on

synthetic data shows that, given a limited time budget, our method solves problems

that are characterized by a much larger number of hypotheses per part when compared

to state-of-the-art exact inference algorithms (e.g., Marinescu and Dechter (2007);

Sontag et al. (2008a)) and other baseline BB methods. We show that our method

is theoretically and empirically much faster (about two orders of magnitude) than

the state-of-the-art exact inference algorithm (Sontag et al., 2008b). By extending

a state-of-the-art tree model (Sapp et al., 2010b) to a loopy model, the estimation

accuracy can be consistently improved across all parts, especially for lower arms (up

to ∼ 5% improvement) on Buffy (Ferrari et al., 2008b) and Stickmen (Eichner and

Ferrari , 2009) datasets. We further demonstrate that our method is well suited for

other problems, such as protein design in Yanover et al. (2006), that incorporate

pair-wise relationships between elements where the hypothesis space per element is

large. In particular, given a time budget of up to 20 minutes, our method consistently

solves more protein design problems than Sontag et al. (2008b) does.

1.3.6 Models for Capturing Interplay between Objects and Scene Layout

By utilizing the geometrical properties extracted from objects as discussed in

Chapter III and IV, we propose a new model, called ”Context Feedback Loop Model”,

16

Init
Iteration1

iteration2

Init

Iteration1

iteration2

Init

Iteration1

iteration2

Object Detector

Layout Estimator
Plane Region Segmentor

Figure 1.8: The Context Feedback Loop Model. In Chapter VII, we demonstrate
that scene layout estimation and object detection can be part of a joint inference
process. In this process a supporting region segmentation module (RS) and a scene
layout estimation module (LE) provides evidence so as to improve the accuracy of
an object detector module (OD). In turn, the object detector module enables a more
robust estimation of the scene layout (supporting planes orientation, camera viewing
angle) and improves the localization of the supporting regions.

for capturing the interplay between objects, 3D layout, and object supporting regions

from a single image (Fig. 1.8) in Chapter IV. Specifically, we study the interaction

between three modules: i) object detector; ii) scene 3D layout estimator; iii) ob-

ject supporting region segmenter. The interactions between such modules capture

the contextual geometrical relationship between objects, the physical space including

these objects, and the observer. An important property of our algorithm is that the

object detector module is capable of adaptively changing its confidence in establish-

ing whether a certain region of interest contains an object (or not) as new evidence

is gathered about the scene layout. This enables an iterative estimation procedure

where the detector becomes more and more accurate as additional evidence about a

specific scene becomes available. Extensive quantitative and qualitative experiments

are conducted on the newly proposed table-top dataset (Sun et al., 2010b) and two

publicly available datasets (Sudderth et al., 2008; Hoiem et al., 2006), and demon-

17

strate competitive object detection, 3D layout estimation, and segmentation results.

1.3.7 Models for Coherent Scene Understanding

As opposed to Chapter VII, where only a special class of scene elements is con-

sidered (i.e., supporting regions), in Chapter VIII, we propose a framework for scene

understanding that models both objects and scene elements (e.g., glass, buildings,

etc.) using a common representation while preserving their distinctive nature. This

representation allows us to enforce sophisticated geometric and semantic relationships

between objects and scene elements in a single graphical model using a list of shared

properties (e.g., category, depth, 2D location, etc.). We use the latest advances in

the field of discrete optimization to efficiently perform maximum a posteriori (MAP)

inference using this model. We evaluate our method on the Stanford dataset (Gould

et al., 2009a) by comparing it against state-of-the-art methods for object segmenta-

tion and detection. We also show that our method achieves competitive performances

on the challenging PASCAL’09 (Everingham et al., 2009) segmentation dataset.

Finally, we conclude in Chapter IX with proposals for future directions in object

and scene understanding.

18

CHAPTER II

Background

In this chapter, we give an overview of the main literature on object recogni-

tion (Sec. 2.1), articulated object recognition (Sec. 2.2), and scene understanding

(Sec. 2.3).

2.1 Object Recognition

In object recognition, an object model is typically defined so as to capture objects

geometrical and appearance properties at the appropriate level of specificity. For

instance, an object model can be designed to recognize a generic ”car” as opposed

to ”a specific car model”, or vice versa. In the former case, which is often referred

as the object categorization problem, the main challenge is to design models that are

capable of retaining key visual properties for representing an object category, such

as a ”car”, at the appropriate level of abstraction. Such models can be then used to

recognize novel object instances from a query image. Moreover, a model must be able

to generalize across variations in the objects visual characteristics due to view point

and illuminations changes as well as due to occlusions or deformations. Meeting all of

these desiderata can be extremely challenging. Researchers have proposed to reduce

the complexity of the representation by making assumptions on the type of object

specificity or the degree of view point, occlusions and deformation variability. Ulti-

19

mately, the strategy in designing an object model depends on the relevant application

scenario.

2.1.1 Object Instance Recognition

Object models that are designed to recognize an object instance – e.g., ”a spe-

cific car model” as opposed to ”all cars” – are often referred to as single instance

object models. These models are capable of recognizing a specific object instance

while guaranteeing the ability to handle occlusions and a large degree of view point

variability (Fig. 1.2(b)). Research on object instance recognition, from early con-

tributions (Biederman, 1985; Binford , 1971; Marr , 1978; Palmer , 1975; P.Winston,

1975; Palmer et al., 1981; Tarr and Pinker , 1989; Poggio and Edelman, 1990; Ullman

and Basri , 1991; Koenderink and Doorn, 1979; Huttenlocher and Ullman, 1987; Lowe

and Binford , 1985) to the most recent ones (Jacobs and Basri , 1999; Lowe, 1999;

Obdrzalek and Matas , 2002; Rothganger et al., 2003; Brown and Lowe, 2005; Gordon

and Lowe, 2006; Romea et al., 2009; Ferrari et al., 2006; Hsiao et al., 2010; Xu et al.,

2009) follows these assumptions. Since single instance object models do not need

to accommodate any intra-class variations, they often consist of a rigid collection of

visual features associated to a number of 2D or 3D templates. In recognition, by

matching features of the query image with those associated to the models, it is pos-

sible to identify the object of interest and determine its 3D pose with respect to a

common reference system. This matching process is usually subject to a geometri-

cal validation phase that helps verify that the appearance and geometric properties

of the query object are consistent with the estimated pose transformation between

observation and object model. While critical for ensuring sufficient discrimination

power for recognizing single instance objects as well as for enabling large view point

variability, tight geometrical constraints become inadequate when shape and appear-

ance intra-class variability must be accounted for. Therefore, these methods are best

20

suitable for applications where the object instances are known and an accurate 3D

pose of the object is required.

2.1.2 Single View Object Category Recognition

Object models that are designed to recognize objects category - e.g., ”all cars” as

opposed to ”a specific car model” are often referred to as categorical object models.

In early works on object categorization, researchers assume that objects are viewed

from a limited number of poses and learn object models that are specialized to iden-

tify the object from a specific view point. The ability to generalize across instances in

the same category (Fig. 1.2(a)) is critical and is typically achieved by characterizing

the object as a collection of features whose appearance and geometrical properties

tend to systematically occur in the category of interest. For instance, if the goal is to

recognize a car, appearance properties such as the ”color of the body” is not adequate

to help obtain the right level of generalization (abstraction), whereas the orientation

of edges associated to a wheel can capture more general appearance cues across in-

stances. Appearance properties are typically captured by image descriptors such as

SIFT (Lowe, 1999) or SURF (Bay et al., 2008) associated to interest points that are

detected at different locations and scales of the image (Lowe, 1999; Mikolajczyk and

Schmid , 2002). A popular design choice is to describe the object appearance by his-

tograms of vector quantized descriptors (Csurka et al., 2004; Grauman and Darrell ,

2005; Fei-Fei et al., 2004). The ability of image descriptors such as SIFT (Lowe, 1999)

to be invariant to affine illumination transformations makes the appearance models

robust to variability in illumination conditions. Geometrical properties are captured

by retaining the spatial organization of features in the image and including simple

characterizations based on the 2D location of either feature points or aggregation of

features (e.g. edges, parts, fragments) with respect to a given object reference point

(Fergus et al., 2003; Felzenszwalb and Huttenlocher , 2005; Leibe et al., 2004; Lazebnik

21

et al., 2006; Savarese et al., 2006b). Object models constructed upon constellation

of parts (Fergus et al., 2003; Felzenszwalb and Huttenlocher , 2005; Leibe et al., 2004)

are suitable to accommodate object variations due to occlusions and simple 2D pla-

nar geometrical deformations (isometries or affinities). Suitable machine learning and

probabilistic inference techniques such as Expectation Maximization (EM) (Demp-

ster et al., 1977), Structured Support Vector Machine (SSVM) (Tsochantaridis et al.,

2004), Markov Random Field (MRF) (Koller and Friedman, 2009; Wainwright and

Jordan, 2008), Conditional Random Field (CRF) (Lafferty et al., 2001), generalized

Hough voting (Ballard , 1981), and RANdom SAmple Consensus (RANSAC) (Fis-

chler and Bolles , 1981) are used to automatically select appearance and geometrical

properties so as to reach the appropriate level of generalization and discrimination

power.

2.1.3 3D Object Category Recognition

Most of the object models for object categorization (Sec. 2.1.2) mitigate the com-

plexity of the representation by assuming that objects are viewed from a limited

number of poses and learn an object model that is specialized to identify the object

from a specific view point. These are often referred as view-dependent object models.

If similar views in the training set are available, the recognition problem is reduced

to match the new query object to one, or a mixture, of the learnt view-dependent

object models. This is the approach taken by most of the existing literature (Li et al.,

2009b; Ng and Gong , 1999; Schneiderman and Kanade, 2000; Weber et al., 2000a;

Zhang , 2004). The drawback of view-dependent object models is that: i) they can ac-

commodate very limited view point variability, mostly changes in scale or 2D rotation

transformations; ii) different poses of the same object category results in completely

independent models, where neither features or parts are shared across views. Because

each single-view models are independent, these methods are often costly to train and

22

pi

pj Aij

tij

(a) Implicit 3D Model (a) Explicit 3D Model

Figure 2.1: Panel (a) shows an example of implicit 3D models as introduced in
Savarese and Fei-Fei (2007). In the model, object parts are connected to form a
graph structure. Each node Pi captures diagnostic appearance of the object part
which is assumed to be locally planar. Each edge describes an homographic trans-
formation that captures the view point transformation between parts. The homo-
graphic transformation is illustrated by showing that some parts are slanted with
respected to others. Panel (b) shows an example of explicit 3D models as introduced
in Pingkun Yan and Shah (2007). In the model, object elements (interest points) are
organized in a common 3D reference frame and form a compact 3D representation of
the object category.

prone to false alarms, if several views need to be encoded.

Object models that can accommodate both large view point changes and large

intra-class variability (low degree of specificity) overcome the above limitations by

introducing a representation that effectively captures the intrinsic three-dimensional

nature of the object category. These models are typically divided into two types: im-

plicit 3D models and explicit 3D models. In the implicit 3D models (Thomas et al.,

2006; Kushal et al., 2007; Savarese and Fei-Fei , 2007; Farhadi et al., 2009b), object

diagnostic elements (features, parts, contours) are connected across views to form an

unique and coherent implicit 3D model for the object category (Fig. 2.1(a)). Relation-

ships between features or parts capture the way that such elements are transformed

as the viewpoint changes. Notice that our own models described in Chapter III are

the first that describe such relationships using probabilistic functions and learn part

configurations in a semi-supervised fashion. These methods share some key ideas with

23

pioneering works in 3D object recognition (Biederman, 1985; Binford , 1971; Marr ,

1978; Palmer , 1975; P.Winston, 1975; Palmer et al., 1981; Tarr and Pinker , 1989;

Poggio and Edelman, 1990; Ullman and Basri , 1991; Huttenlocher and Ullman, 1987;

Lowe and Binford , 1985) as well as with the theory of aspect graphs (Koenderink

and Doorn, 1979; Bowyer and Dyer , 1990). In the explicit 3D models (Sun et al.,

2010b; Hoeim et al., 2007; Chiu et al., 2007; Pingkun Yan and Shah, 2007; Liebelt

and Schmid , 2010; Stark et al., 2010; Arie-Nachimson and Basri , 2009; Xiang and

Savarese, 2012; Payet and Todorovic, 2011a) object elements are organized in a com-

mon 3D reference frame and form a compact 3D representation of the object category

(Fig. 2.1(b)). Such 3D structures of features (parts, edges) can give rise, for instance,

to either a 3D generalization of 2D pictorial structures or constellation models or to

hybrid models where features (parts or edges) lie on top of 3D object reconstruc-

tions or CAD volumes. A comprehensive survey of 3D object detection methods is

presented in Hoeim and Savarese (2011).

In Chap. III and IV, we introduce a novel dense multi-view representation of 3D

object categories and the Depth-Encoded Hough Voting (DEHV) detector to extract

3D object geometrical attributes (e.g., location, pose, and shape) from a single 2D

image, respectively.

2.2 Articulated Object Recognition

Recognizing articulated objects (such as humans or animals) is more challenging

than recognizing generic rigid objects (such as cars or cups). Not only a model for

articulated objects should accommodate appearance variability (people wear different

cloths), shape variability (some people are short, other are slim), viewpoint variability

(people can be observed from any arbitrary view point), but also pose variability: the

configuration of body parts change as the person performs different activities (walk,

sit, jump) (Fig. 1.2(c)). This makes existing techniques for rigid object recognition

24

inadequate. It is important to notice that the problem of estimating the pose of

articulated objects – in particular humans – it is tightly related to the one of activity

recognition and plays a critical role in modelling the interplay between humans and

objects (human-object interaction recognition) (Yao and Fei-Fei , 2010; Yang et al.,

2010) or among humans (collective activity recognition (Choi et al., 2011; Lan et al.,

2010)). In the remainder of the this thesis we will mostly refer to the literature

on human detection and body parts estimation since humans are, by far, the most

interesting articulated ”object” in real world applications.

2.2.1 Human Detection

Most of the early works on human detection focused on recognizing humans as

a whole, without attempting to extracting the body part configuration. Dalal and

Triggs (2005) propose a novel feature called ”Histogram of Oriented Gradients” for

detecting pedestrians. When the feature is combined with a linear SVM classifier,

efficient and accurate detection performance is achieved on pedestrians where the pose

variability is very limited (e.g., standing and walking). Felzenszwalb et al. (2008)

propose a Deformable Part-based Model (DPM) to detect objects and it achieves

state-of-the-art performances on the challenging PASCAL dataset. In order to handle

deformations, the model consists of a mixture of templates, where each template

corresponds to a specific human pose such as standing, sitting, etc. Bourdev and

Malik (2009) further propose a ”Poselet” representation for capturing local human

body parts configurations. It achieves better performance than DPM by incorporating

a larger number of unique poses compared to the DPM.

2.2.2 Human Pose Estimation

Unlike human detection, the focus of human pose estimation is to correctly es-

timate the body parts configurations. Pictorial Structure (PS) (Felzenszwalb and

25

Huttenlocher , 2005) is the most common approach for human pose estimation. The

PS method essentially represents each part as a variable with a large number of pos-

sible locations and each part is related to its connected parts following the kinematic

constraints of the human body to form a tree structure. This simple tree struc-

ture model can be efficiently learned and have been successfully applied for human

pose estimation. Researchers have proposed extensions and generalized the above

model following two main directions: i) Improving the robustness of part detectors

(Andriluka et al., 2009; Ramanan, 2006; Eichner and Ferrari , 2009). In particular,

Andriluka et al. (2009) show that classifiers based on boosting learning strategies

can detect parts very robustly, and the detections can be used by the tree models to

improve the overall pose estimation accuracy. ii) Improving the discriminative power

of the pair-wise relations (Sapp et al., 2010b; Ramanan, 2006; Yang and Ramanan,

2011; Sun and Savarese, 2011). Sapp et al. (2010b) propose to use a pair-wise feature

that depends on the image appearance (e.g., color, contour, segmentation, etc) to

enhance the model discriminative power. Yang and Ramanan (2011) and our own

method described in Chapter V use the concept of part-type (i.e., parts with specific

orientation or foreshortening) to model pair-wise relations of among parts. This way,

the pair-wise relations can capture co-occurrence of parts with specific orientation or

foreshortening, and can increase the expressiveness and flexibility of the model.

Without making the assumption of restricting the model structure to a tree, many

models based on loopy structures have been successfully employed to solve human

pose estimation problem. Interactions between pairs of parts have been incorporated

by Jiang and Martin (2008); Tran and Forsyth (2010); Ren et al. (2005) in order

to encode longer range kinematic constraints as well as encode information such as

self-occlusion and color similarity of symmetric parts. Wang et al. (2011) propose

hierarchical models of parts across multiple scales. In these models, parts at a lower

level of the hierarchy are grouped into parts at a higher level of the hierarchy. In

26

particular, Wang et al. (2011) show that parts at a higher level of hierarchy are easier

to detect in isolation since they possess very distinctive appearance features (e.g., the

whole human body is easier to detect than the hands).

A few works have been proposed to solve the pose estimation problem on loopy

models using inference methods based on maximium a posteriory (MAP) maximiza-

tion. Tian and Sclaroff (2010) propose an efficient branch-and-bound algorithm for

a tree model augmented with two additional pair-wise relations between left-right

legs. The BB search is efficient since it only takes constant time to evaluate the

bounds, thus enabling the solution of problems with a large number of states. Notice,

however, that the tightness of such bound guarantees efficient search only when the

energy originated from the additional pair-wise relations is small (Fig.7 in Tian and

Sclaroff (2010)). This makes it hard for Tian and Sclaroff (2010) to solve a model

with a large number of pair-wise interactions. Bergtholdt et al. (2010) convert the

inference problem over a fully connected model into a shortest path problem and

propose an efficient A∗ search method for solving it. The main drawback of the A∗

search is that the branching factor of the search tree equals the number of states per

variable (i.e., number of part location hypothesis). As a result, the method relies on

a greedy procedure for pruning part hypotheses to ensure that the search problem

is tractable. Cluster pursuit (Sontag et al., 2008b) is an alternative exact inference

algorithm which searches for higher-order constraints to tighten the gap between ap-

proximated solution and optimal solution. However, since the time complexity of the

algorithm is proportional to the number of part hypotheses to the power of the order

of the constraints (i.e., number of variables involved in the constraints), the algorithm

becomes prohibitively slow for problems with a large number of part hypotheses. In

Chapter VI, we introduce a novel and efficient branch-and-bound inference algorithm

(Sun et al., 2012c,b) to estimate the optimal configuration of body parts.

27

2.2.3 Joint Human Detection and Pose Estimation

Recall that most of the existing literature treats object detection and pose esti-

mation as two separate problems. We argue that these two problems are two faces

of the same coin and must be solved jointly. The ability to model parts and their

relationship allows to identify objects in arbitrary configurations (e.g., jumping and

sitting, see Fig. 1.6) as opposed to canonical ones (e.g., walking and standing). In

turn, the ability to identify the object in the scene provide strong contextual cues for

localizing object parts.

Andriluka et al. (2009) are the first to emphasize the importance of joint detec-

tion and pose estimation by demonstrating superior accuracy on both tasks. Yang

and Ramanan (2011) propose a Flexible Mixtures of Parts (FMP) model for joint

detection and pose estimation which achieves improved performance on both tasks.

The FMP model demonstrates that a large number (e.g., ∼ 26) of small body parts

corresponding to human body joints (e.g., elbows, shoulders, etc.) with typical ori-

entation (e.g., 5 or 6 orientations) can be combined to build more discriminative

models. Similarly, in Chapter V, we introduce a novel model for joint detection and

pose estimation called the Articulated Part-based Model (Sun and Savarese, 2011).

The model achieves superior performance on both tasks by exploring a coarse-to-fine

and multiple part-types representation to handle the pose variability.

2.3 Scene Understanding

As discussed in Chapter I, given a 2D image, we, humans, can easily interpret

the underlying 3D scene that generates the image. For instance, we can describe

the geometric and semantic properties of the objects within the scene. We can also

explain the properties of the scene elements generating the specific 2D patterns in

the image. Many theories have been proposed to explain how we do it. These in-

28

clude Gestalt emergence, Helmholtzian data-driven unconscious inference, etc (Flock ,

1964). Similarly, a fundamental problem in computer vision is to achieve human-level

interpretation of the 3D scene from a 2D image and being able to interpret the 2D im-

ages in terms of the various objects and scene elements, and estimating their semantic

and geometrical properties.

Early works on scene understanding propose to infer the 3D scene of simple objects

or scenes from line drawings. For example, Kanade (1981); Barrow and Tenenbaum

(1981) demonstrate that strong constraints between objects and scene elements de-

signed specifically for the particular setting can be used to achieve this goal. However,

generalizing these methods to real world environments has been proven to be prob-

lematic. A comprehensive survey of early scene understanding models is presented in

Hoeim and Savarese (2011).

2.3.1 2D Scene Elements

As a way to simplify the problem, researchers have proposed to model a scene

as a collections of 2D image patterns which are used to characterize scene elements.

Most methods (Torralba et al., 2003; Li and Fei-Fei , 2007; Li et al., 2009a; Ladicky

et al., 2010a; Gonfaus et al., 2010; Rabinovich et al., 2007) aim at parsing or segment-

ing the image into semantically consistent regions and assigning them to categorical

labels (e.g., road, building, foreground objects, etc.). Thanks to the recent advance

in statistical modelling, pattern recognition, and machine learning, breakthrough in

scene understanding has been achieved. In particular, Ladicky et al. (2010a); Gonfaus

et al. (2010); Rabinovich et al. (2007) leverage semantic context to capture the typical

relationship among object categories co-occurring within each image (e.g., cars and

roads are likely to co-occur). Torralba et al. (2003); Li and Fei-Fei (2007); Li et al.

(2009a) leverage semantic context between object and scene categories (e.g., cars are

likely to occur within an urban scene).

29

(a) Surface Orientation (b) Region Density

Figure 2.2: Panel (a) shows the surface orientation extracted by Hoiem et al. (2005a),
where horizontal surface (green), sky (blue), vertical surfaces (red) subdivided into
planar orientations (arrows) and non-planar solid (x) and porous (o). Panel (b) shows
the region density (e.g., light, medium, and heavy) extracted by Gupta et al. (2010).

Other than exploring semantic contexts, methods have leveraged the typical 2D

geometrical relationships between objects and scene elements to describe complex

scene. These relationships are often referred to as ”geometrical context”. In partic-

ular, Gupta and Davis (2008b); Sudderth et al. (2008) propose to model 2D spatial

relationships among scene elements in the 2D image plane. For example, a car is

not only likely to co-occur with a street, but also likely to be ”on-top” of the street

(Fig. 1.3(e)).

2.3.2 Beyond 2D Scene Elements

While models based on 2D spatial relationships are suitable for scene categoriza-

tion and for parsing the 2D elements, they cannot account for interplay of objects

in the 3D space. Hoiem et al. (2006) investigate the possibility of integrating cues

from the 3D scene such as vertical and horizontal surfaces (Hoiem et al., 2005a) into

the process of jointly detecting objects and estimating the scene layout. Moreover,

Hoiem et al. (2006) model the interactions between objects and the scene elements

30

by assuming that objects are supported by ground planes. By further assuming that

there is a single ground plane, objects’ 2D scales can be used as a critical cue for mod-

elling the interaction between objects as well as determining the distance (depth) of

the objects from the camera. Hoiem et al. (2008); Gould et al. (2009a) further pro-

pose an iterative approach wherein additional cues such as the occluding boundaries

between objects and the background scene elements in the image are injected into

the inference procedure.

Hedau et al. (2009) model the explicit relationships between the scene layout and

objects in 3D using a box representation (i.e. a representation that approximates

the scene physical space as a 3D box). The 3D box representation provides a good

approximation for 3D structures of many indoor scenes, with the floor, walls, and

ceiling forming the sides of the box. Most importantly, it provides a more powerful

reference frame than the ground plane, since orientation and position of objects can

be defined with respect to the walls as well.

Models with grammar-based structures have also been proposed to capture more

complex 3D structure of the scene. In Gupta et al. (2010), the scene is represented

with a series of 3D blocks and planes. In order to establish the relationships be-

tween blocks, different region densities such as light density (e.g. trees and bushes),

medium density (e.g. humans), and high density (e.g. buildings) (Fig. 2.2(a)) are

considered. Han and Zhu (2005) parse a scene into rectangles, cubes, and other line-

based structures that reflect the underlying 3D structure. Generalization to indoor

scenes observed from video sequence have been proposed (Tsai et al., 2011).

Other methods leverage the ability to infer the scene depth maps via probabilistic

inference to model spatial relationships among scene elements in 2.5D (Heitz et al.,

2008; Li et al., 2010; Saxena et al., 2009; Payet and Todorovic, 2011b). On the one

hand, depth map is a flexible representation for the 3D structure of the scene so

that it is also suitable for outdoor rural scenes like mountains. On the other hand,

31

it provides less constraints on regularizing the possible 3D structure for indoor and

outdoor urban scenes.

Finally, Bao et al. (2010b) capture the interaction between the object poses and

the 3D supporting surfaces to estimate the 3D layout even when cues from the un-

derlying scene (e.g., vanishing lines or scene surface orientations) are not available.

Most importantly, the model is able to handle scene with multiple ground planes.

In Chapter VII, we generalize this concept by introducing the ability to identify and

segment supporting planes.

2.3.3 Object and Scene Elements

The ability to parse scene elements (Sec. 2.3.1) and the one to reason in 3D

(Sec. 2.3.2) are very different to combined in an unique framework. Recently, re-

searchers have proposed methods to jointly detect objects and segment out the scene

elements as semantically coherent regions. Many of such methods are very com-

plex and leverage iterative and approximated inference procedures for solving specific

tasks such as detection, segmentation, and occlusion reasoning (Heitz et al., 2008;

Hoiem et al., 2008; Sun et al., 2010a) (Fig. 1.3(f)). The drawback of these inference

procedures is that different objective functions are optimized independently without

guaranteeing that a joint solution is reached.

Yao et al. (2012b); Ladicky et al. (2010c) and the method described in Chapter

VIII utilize Random Field (RF) models to jointly characterize the scene elements,

objects, and their 2D relationships. Principled inference algorithms such as mes-

sage passing and graph-cut algorithms with guaranteed convergence properties are

used to solve such complex recognition problems. In Chapter VIII, we present a

generalization of such models called Augmented Conditional Random Field (ACRF)

model (Sun et al., 2012a), which incorporates scene element-object, object-object,

and object-layout 3D relationships within a coherent formulation. Similar to our pro-

32

posed method, Ladicky et al. (2010c) incorporate object-scene element relationships

and demonstrate that the information from object detection can be used to improve

the segmentation performance consistently across all object categories. However,

their model can be considered as a special case of our model when no object-object

relationship is incorporated. It is also worthwhile to mention that Desai et al. (2009)

propose a CRF model capturing object-object relationships and show that object

detection performance can be consistently improved for multiple object categories.

Their model, however, can also be considered as a special case of our model when no

object-scene element and scene element-scene element relationships are incorporated.

33

CHAPTER III

Models for 3D Object Recognition and View Point

Estimation

Visual recognition is a cornerstone task for an artificial intelligence system. In

computer vision, object recognition, particularly object categorization, has been one

of the most widely researched areas in recent years. Tremendous progress has been

made especially in image-level object classification under limited geometric transfor-

mations, such as classification of side-view cars, or frontal view faces (e.g., Ullman and

Basri (1991); Fergus et al. (2003). Also relevant is the line of work in object detection

in cluttered real-world scenes, such as pedestrian detection, or car detection (Felzen-

szwalb et al., 2008; Dalal and Triggs , 2005). But most of the previous approaches

can only handle up to a small degree of viewpoint variations of the 3D objects. As a

result, they can hardly be used for robust pose understanding, a crucial functional-

ity for real-world applications where accurate recognition of objects under arbitrary

view points and 3D poses are needed. A small but growing number of recent studies

have begun to address the problem of object classification in a true multi-view setting

(Thomas et al., 2006; Kushal and Ponce, 2006; Hoeim et al., 2007; Pingkun Yan and

Shah, 2007; Chiu et al., 2007; Savarese and Fei-Fei , 2008, 2007; Liebelt et al., 2008).

While this is an important step forward, the focus is still on object detection with-

out extensive quantitative analysis of 3D viewpoint estimation (the exceptions being

34

Savarese and Fei-Fei (2008, 2007); Liebelt et al. (2008)). In this chapter, we propose

a new framework for learning a probabilistic 3D object model that can be used to cat-

egorize and detect an object in a cluttered scene, estimate its viewpoints accurately,

or synthesize a new viewpoint given a single test image. We focus on overcoming two

major challenges in representing and modelling 3D object classes. Firstly, we develop

a dense multi-view representation of object classes through an incremental learning

algorithm (Sec. 3.1). The probabilistic model construction process is initialized from

a video sequence of a single object instance. Our algorithm then builds the object

class model from unsorted images without any viewpoint supervision by automati-

cally aligning arbitrary poses at training time (Fig. 1.4). Secondly, our 3D object

recognition algorithm is able to recognize objects under arbitrary viewpoints, even

if the object instances were not observed during training. If we define the viewing

sphere as a collection of viewpoints from which an object can be observed, our algo-

rithm accurately estimates the pose of the object on it (Fig. 1.4). To our knowledge,

this is the first probabilistic model that is capable of representing and recognizing

unseen object views.

The rest of the chapter is organized as follows. We introduce the model in Sec. 3.1

and describe how it is learned in Sec. 3.2. Finally, we show application of our model

in Sec. 3.3 and conclude in Sec. 7.3.

3.1 A Dense Multi-view Representation of 3D object Cate-

gories

Given a number of training images of an object category, our goal is to learn a

dense, multi-view generative part-based model with minimal supervision. Then, we

utilize the learned model to detect objects, estimate their poses, and synthesize new

views from a test image. In the training stage, we assume that object bounding boxes

35

view

key-view

tracked feature

view sphere key-view V1

 V2

V3

morphed-view

part

A

 s

 V2

 V3

 V1

T

key-view V1

V2

V3
Hi j

part

 V’5 V’4

 V’3

Ti

Tj

(a) (b) (c)

Figure 3.1: Schematic illustration of key concepts of our model. (a) View sphere,
key views and tracked video frames. Using a cellphone video clip of a single object,
we obtain a dense sample of viewpoints (black and red circles) on the view sphere.
Features (dots on the car images) are tracked between consecutive video frames using
the Lucas-Kanade algorithm (Lucas and Kanade, 1981). Some of the tracks are shown
in red dotted lines between two pictures. A subset of the viewpoints are selected
as key views (red circles) (Sec. 3.1.3. (b) The view sphere and all the key views
are parameterized as a triangle mesh (Sec. 3.1.3). We formulate the view synthesis
problem based on the view morphing technique. A morphing parameter S interpolates
and extrapolates the triplet of viewpoints Vi in a given viewpoint triangle T . The
post-warping transformation of viewpoint alignment is denoted by A. (c) Illustration
of a 3D geometrical constraint across triangles on the view sphere. Given any key
view on the view sphere, it is shared by two connected triangles on the view sphere.
An affine transformation constraint Hi→j is then enforced to ensure consistent part
estimate on viewpoints across different triangles on the view sphere.

of training images are given. This assumption is removed during the testing stage,

as we would like the recognition scheme to handle not only intra-class and viewpoint

variations, but also severe background clutter and occlusion.

In the following sections, we first describe our multi-view generative part-based

model for object categories along with our proposed parameterization of the view

sphere. Then, we describe our method for incrementally learning such models with

weak supervision.

3.1.1 Model

Given a viewpoint, we propose to model an object category as a mixture of parts

(Sec 3.1.2). Viewpoints are selected from the view sphere. The view sphere is param-

eterized as a triangular mesh of viewing regions (Sec 3.1.3). This parameterization

36

allows to generate (synthesize) the object part distribution at ”any” location on the

view sphere.

3.1.2 Part-Based Representation

The building blocks of our model are elliptically adapted local image patches.

These are found using Hessian-Affine feature detector (Mikolajczyk and Schmid ,

2002), Speeded Up Robust Features (SURF) detector (Bay et al., 2008), and Maxi-

mally Stable Extremal Regions (MSER) (Matas et al., 2002). A codebook obtained

using a kmeans algorithm maps the Scale-invariant feature transform (SIFT) descrip-

tors (Lowe, 1999) computed over these image patches into discrete codewords. After

the pre-processing, each image patch is characterized by its appearance (codeword)

Y and location (pixel coordinate) X .

In order to capture intra-class variation and mitigate viewpoint variation, we

model the typical distribution of image patches appearance and location across object

instances and nearby viewpoints by introducing the concept of part. We define parts

as regions within an object that:

• Enclose discriminative features that are frequently observed across different

instances of the object category.

• Form a more-or-less planar region on the physical object such that affine trans-

formation becomes a good approximation when the part undergoes viewpoint

changes (similarly to Savarese and Fei-Fei (2007)).

Similar to Sudderth et al. (2008), we propose to model the object as a mixture of

parts. However, Sudderth et al. (2008) only model images captured from a single

viewpoint. On the contrary, our approach models a 3D object category from a set of

single viewpoint part-based models which can be combined so as to synthesize object

parts at any location on the view sphere as we shall see next.

37

3.1.3 View Sphere Parameterizations

In most of the previous work, 3D object categorization assumed that a small

number of discrete viewpoints for learning the object category (Thomas et al., 2006;

Kushal et al., 2007; Yan et al., 2007) were available. The reason for this mostly relies

on the difficulty of providing dense viewpoint labels. We argue that a dense parame-

terization of view sphere yields a more accurate estimation of the object categorical

model (Fig. 3.11-Center). Our goal is to learn a dense representation without view-

point labels, as such human supervision is not only laborious and expensive to obtain,

but also prone to errors because humans are not good at quantifying 3D viewpoints

(Palmer , 1999).

Triangulating the view sphere and defined viewpoint parameters {T, S, A}.

Let’s define the set of key views as a finite set of view points on the view sphere. We

shall explain later in detail how to obtain such key views (Sec. 3.1.5). Each adjacent

triplet of key views defines triangle T inducing a triangular mesh parameterization

on the view sphere. This parameterization enables the synthesis of new views within

each triangle. Under the assumption that three key views are lying on the same

plane (i.e. the views are parallel or rectified), where we denote such a plane as a

view plane, a new view within T can be synthesized by introducing an interpolating

(morphing) parameter S and a homography A (Seitz and Dyer , 1996; Xiao and Shah,

2004), called post-warping transformation (Sec. 3.1.5). Morphing parameter S is a 3D

vector in the 3D simplex space that regulates the synthesis of the new view from the

three key views. Homography A enables the correct alignment (registration) between

the synthesized view and a query view. If the assumption of parallel views does not

hold (e.g. the key views forming the triangle are not close enough) we can use feature

correspondences across the key views to align the key views to the plane formed

by the triangle (Xiao and Shah, 2004) (Sec. 3.1.5). Note that different triangles may

correspond to view planes that are not mutually parallel (Fig. 3.1(c)). In this case, key

38

Figure 3.2: Examples of candidate parts of dif-
ferent object classes. Image patch features are
denoted by “x”. x’s of the same color indicate
that they belong to the same candidate part.

views may need to be re-aligned and their viewpoints adjusted through a homographic

transformation H (pre-warping transformation). In conclusion, any viewpoint on the

view sphere can be parameterized by a triangle T , interpolating parameter S within

T , and post-warping transformation parameter A.

3.1.4 Part-Based Model over the View Sphere

We seek to integrate the part-based model with our parameterization of the views

sphere. We propose to follow a probabilistic generative process as described in

Sec. 3.1.6 to generate the parts. A key ingredient toward that goal is to automati-

cally establish part correspondences across key views within each triangle T as well

as across key views belonging to different triangles (Sec. 3.1.7). This allows us to

generate (synthesize) geometrically consistent mixture of object parts within T using

S and A. Notice that this mechanism allows us to generate infinite (dense) mixture

of parts for all viewpoints on the view sphere from a finite set of G key views. Thus,

limiting the complexity of our representation to O(G). In other words, even if we only

explicitly model a small set of G views (key views) among all possible views, a dense,

multi-view 3D object category model is equivalently established. Notice that, unlike

Hoeim et al. (2007); Yan et al. (2007); Liebelt et al. (2008), our model generalizes

over the geometrical relationship of parts (the information related to the implicit 3D

shape of the object category) across instances.

39

3.1.5 Key View Generation

The distribution of key views on the view sphere is a function of the object cate-

gory. Such key views are extracted by acquiring a video sequence of one instance of

the object category (Fig. 3.1(a)) using a hand held device such as a cellphone. We use

the cellphone camera to take a short video clip by having a camera person walking

around the object (while looking inward toward the object) and continuously lifting

and lowering the camera. This created a zigzag (sinusoidal) trajectory on the view

sphere that was roughly approximating a curve parameterized as [a z] = k [a sin(a)],

where a = azimuth; z = zenith angles on the view sphere; and k is a constant de-

pends on the moving speed. Clearly this trajectory did not cover all angular locations

on the view sphere but was sufficient to initialize the algorithm properly.

Given the short clip, we apply a Lucas-Kanade tracker (Lucas and Kanade, 1981)

to obtain feature-level correspondences between every consecutive frames (Fig. 3.1(a)).

Key views are selected sequentially given the feature-level correspondences. At the

beginning, the first frame is selected as the initial key view. Then a new key view is

selected once the ratio of the number of feature correspondences on the current frame

to the number of feature correspondences on the previously selected key views falls

below an empirical threshold (in this case 20%). The key view selection is a sequen-

tial procedure. The idea is that when this ratio drops below the given threshold, new

elements of the object become visible so as to justify the introduction of a new key

view. Given a typical video clip, we obtain ∼ 100 key views.

3.1.6 Generative Process

In this section, we first describe the generative process of our proposed model,

given the viewpoint parameters {T,S,A} (Fig. 8.2). Then we highlight the 3D ge-

ometrical constraints encoded in the model. In our approach, the appearance and

location of each part K are modeled as a multinomial distribution over codeword Y

40

with parameter η, and Gaussian distribution over image coordinateX with parameter

θ. The part proportion π is generated from a Dirichlet distribution with parameter

α. The part-based representation is viewpoint dependent; hence, it is related to the

way the view sphere is parameterized.

Generate part parameters (θ, η, π). There are three sets of parameters governing

the distribution of each object part K under a specific viewpoint: part position (θ),

part appearance (η) and part proportion (π), where each of them depends on the

view triangle T and morphing parameter S.

Given a specific viewpoint parameters, {T, S}, we explore two alternative methods

to generate part appearance η and location θ parameters from a set of the part

parameters {η̂, θ̂} of key views in triangle T

• Nearest Neighbor Method:

For each part, we set the parameters to be the same as the most similar key

view g∗ = argmax
g

sg such that

η = ηT (S) = η̂g
∗

T (3.1)

Σ = ΣT (S) = Σ̂g∗

T (3.2)

m = mT (S) = m̂g∗

T (3.3)

where θ = {m,Σ} contains the mean (part center) and covariance (part shape)

of a 2D Gaussian distribution, and {η̂g
∗

T , Σ̂
g∗

T , m̂
g∗

T } are the set of part parameters

in key view g∗ of the triangle T . A model using nearest neighbor method

is referred as nearest neighbor model. A preliminary version of the nearest

neighbor model is presented in Sun et al. (2009).

• View Morphing Method:

The appearance parameter η and part shape parameter Σ are set in the same

41

way as in the nearest neighbor method. The part center m is instead generated

as

m = mT (S) =

3∑

g=1

m̂g
T · S

g (3.4)

where m is set to be equivalent to the linear interpolation of part centers

{m̂1
T , m̂

2
T , m̂

3
T} in the key views of triangle T .

According to view morphing technique (Seitz and Dyer , 1996; Xiao and Shah,

2004), the generated part center m is a valid synthesis of a new view, under

the assumption that three key views are lying on the same plane (i.e. the views

are parallel or rectified). Notice that different triangles may correspond to view

planes that are not mutually parallel (Fig. 3.1(c)). In this case the key views

may need to be re-aligned and their viewpoints adjusted approximately through

a affine transformation H (pre-warping transformation) (in Sec. 3.1.7). A model

using view morphing method is referred as view morphing model.

The part proportion parameter π is generated from a Dirichlet distributionDir(αT).

π governs the likelihood of the different parts that will appear under this view, such

that object part assignments Ks are sampled according to the distribution Mult(π).

For example, for a car model, π should be large for the wheel part in the side view

but small in a frontal view.

Generate image features Given m,Σ, the position of each image feature X̂ on the

view plane is generated according to the Gaussian distribution N (m,Σ), where m

and Σ denote the mean and covariance respectively. Recall the post-warping affine

transformation A is introduced to align (register) the image plane and the view plane.

The position of each image feature X̂ on the view plane is equivalent to AX , where

X is the position of each image feature on the image plane. The appearance of each

image feature Y is generated from the Multinomial distribution Mult(η), where η is

42

Segment of the
viewing sphere Part proportion

prior

Part con!guraiton K K K...
π

1 2 |K|

AXn,Yn

α
|T|

η

|T|
|K|

θ

S

T

Figure 3.3: A schematic representation of our 3D object model. Each circular node
represents a random variable, whereas each rectangular node represents a parameter.
Solid arrows indicate conditional probability relationship between a pair of variables.
Dashed arrows indicate the influence of the viewpoint triangle T and morphing pa-
rameter S on the variables. {Xn, Yn} indicate the position and appearance of an image
patch feature. K1, K2, · · · are part types assigned to image features. π is the part
proportion parameter governed by the Dirichlet parameter α. θ and η are the part
position and part appearance parameters describing each image feature {Xn, Yn}. Fi-
nally A is the post-warping affine transformation parameter. Note that the graphical
model does not depict the 3D geometrical constraints used by this model (Sec. 3.1.7).

the multinomial distribution parameter that governs the proportion of the codewords.

Putting all the observable variables (X, Y, T, S) and latent variables (K, π) to-

gether with their corresponding parameters, we write down the joint probability of

the model.

p(X, Y, T, S,K, π) = p(T)p(π|αT)p(S)

∏N

n {p(Xn|θ̂, Kn, T, S, A)p(Yn|η̂, Kn, T, S)p(Kn|π)} (3.5)

whereXn, Yn, Kn are the position, appearance, and part assignment of the nth feature,

and N is the number of features.

43

3.1.7 3D Geometric Constraints

A fundamental difference between our model and a typical mixture of parts model

is the explicit correspondence among parts across different views. This correspondence

guarantees that the synthesis (morphing) of parts at any view within triangle T is

consistent under viewpoint transformation. To that end, we apply two types of 3D

geometric constraints on the model.

A. Within triangle T constraints. Part configurations of key views within

triangle T should be consistent with each other by an affine transformation MT
i→j ,

such that MT
i→jm̂

i
T = m̂j

T . This information is encoded as a penalty term (C in

Eq.3.26) in our Variational EM algorithm described in Sec. 3.2.1.2. Thus, our prob-

abilistic model learning process favors those part configurations that have consistent

geometrical relationships across different views. In practice, we use the tracks (fea-

ture correspondences) obtained by Lucas-Kanade algorithm between key views (in

Sec. 3.1.5) Vi and Vj in a triangle T to estimate the affine transformation M .

B. Across triangle T constraints. As is shown in Fig. 3.1(c), each key view

is shared by neighboring triangles {Ti, Tj , . . .} . It is therefore important to make

the correct correspondences between parts across the triangles. We estimate a trans-

formation from Ti to Tj using an affine transformation operation Hi→j and enforce

that Hi→jm̂
gi
Ti

= m̂
gj
Tj

for a specific part, where m̂gi
Ti

is the part center of the key view

gi in triangle Ti. Intuitively, this means that we can establish part correspondences

by enforcing the centers of the same part in different planes defined by neighboring

triangles to share the same topological configuration in the coordinate system of the

key view. Similarly, this constraint is encoded as a hard constraint (F in Eq.3.28) in

the variational EM algorithm described in Sec. 3.2.1.2.

44

3.2 Learning

We have described the model in detail and can now describe how to learn its

parameters and infer the latent variables. In detail, the learning procedure is set up

as follows. Given images with object category labels and object bounding boxes, and

a short video clip, the goal is to predict the viewpoint parameters {T, S, A}, infer the

latent parts assignments Ks for features on each training image, and learn the part

parameters {η̂, θ̂} for the model. In order to learn such a complex model, a good

initialization is desirable. Thus, it ensures the learning algorithm to be effective.

We use the video clip as a set of images (Sec. 3.2.1) to initialize the model. After

initialization, the model is incrementally updated by sequentially applying variational

EM algorithm on each training image of different object instances.

3.2.1 Initialization with A Video Clip

We initialize the learning process using a video sequence portraying a single in-

stance of an object category from different viewpoints. We use the same video se-

quence as introduced in Sec. 3.1.5. We see two advantages. First it enables us to

obtain a robust initial model of parts and viewpoints by using a single object in-

stance, making it easier for the model to learn and adjust to the intra-class variations

in the training stage as more training images become available. Second this method

allows the algorithm to learn a 3D object categorical model with little human super-

vision, compared to all existing methods.

45

3.2.1.1 View Matching Exemplars:

As a first step of learning, we initialize viewpoint parameters {T, S, A} of each

frame by solving the following optimization problem

{T, S, A} = argmax
T,S,A

∑

i∈(tracks in T)

‖AXi −X iTS‖
2 (3.6)

where X iT ∈ R2×3 is the ith feature correspondences shared among the three key

views in triangle T , and X i ∈ R2 is the corresponding feature in the frame. By

solving the problem, the system finds the best parameters to synthesize the features

in the frame using feature correspondences on the key views. Hence, in the following

section, the viewpoint parameters {T, S, A} of each frame are treated as observed

variables in Fig.8.2. And all frames act like the exemplars in our view matching

algorithm described in Sec. 3.2.2.1.

3.2.1.2 Part-Based Model:

We are now ready to estimate the hidden variables {K, π} and part parameters

{θ, η, α} by maximizing the log marginal probability ln p(X, Y, T, S). Notice that

ln p(X, Y, T, S) can be decomposed into

ln p(X, Y, T, S) = Lq +KL(q||p) (3.7)

where Lq is the lower bound of log marginal probability ln p(X, Y, T, S) (Eq. 3.8), q(.)

is an arbitrary distribution over {K, π}. Notice that when q(K, π) = p(K, π|X, Y, T, S),

46

KL(q||p) = 0 and ln p(X, Y, T, S) = Lq. The lower bound Lq can be written as

Lq =
∑

K

∫ ∫
q(K, π)

ln{
p(X, Y, T, S,K, π)

q(K, π)
} dπ

= E[ln p(X, Y, T, S,K, π)]

−E[ln q(K, π)]

= E[ln p(X|T, S,K)] + E[ln p(Y |T, S,K)] +

E[ln p(K|π)] + E[ln p(π)]−

E[ln q(K)]− E[ln q(π)] + const. (3.8)

We use a mean-field variational distribution to approximate the true posterior

p(K, π|X, Y, T, S) as follows:

q(K, π) = q(π|γ)
∏N

n q(Kn|ρn) (3.9)

where γ denote the variational parameter of the Dirichlet distribution which governs

part proportion π, and ρn ∈ R|K| denotes the variational parameter for the part

assignment variable Kn, which represents the probability that the nth feature belongs

to different parts.

Combing the lower bound Lq of the log marginal probability objective with the 3D

geometric constraints introduced in Sec. 3.1.7, we formulate the learning problem as

an optimization problem and solve it using a variational EM algorithm (Blei , 2004).

maximizeu λLq(u)− (1− λ)C (u) s.t. F (u) = 0, (3.10)

where C is the within triangle constraint function (Sec. 3.1.7(A)), F is the across

triangle constraint function (Sec. 3.1.7(B)), u denotes all the model and variational

47

parameters {η̂, θ̂, γ, ρn}, and λ is the weight to balance the importance of the within T

constraints C vs the lower bound Lq. This optimal problem approximately finds the

parameters which maximize the log marginal probability ln p(X, Y, T, S) and satisfy

the constraints C, F .

The problem is solved using a variational EM algorithm (Blei , 2004) by iterating

between the following M- and E-steps for model parameter and variational parameter

updates, respectively.

M-Step: 1. Part appearance parameter η̂ update.

η̂gwTK =
N

gw
TK

N
g
TK

(3.11)

Ngw
TK =

∑
j∈(Tj=T, g∗=g)

∑
n∈(ynj=w) ρ

K
nj (3.12)

g∗ = argmax
g

(sg) (3.13)

Ng
TK =

∑
wN

gw
TK (3.14)

where η̂gwTK is the probability that codeword w appears for part K on key view g in

triangle T , Ngw
TK is the sufficient statistics of the Multinomial distributionMult(η̂gTK),

and ρKnj is the probability that the feature n in image j belongs to part K.

2. Part center parameter m̂ updates. The terms related to m̂ in Eq. 3.10

are the expectation of the part location term E[ln p(X|T, S,K)], the within triangle

constraints C(u), and the across triangle constraints F (u). We describe each term in

detail below.

The expectation of ln p(X|T, S,K) taken over part assignment variation distribu-

48

tion q(K|ρ) can be written as:

E[ln p(X|T, S,K)] =
1

2

∑

K,j

NKj{− ln(ΣTjK(Sj))

−(AjxKj − bj −mTjK(Sj))
T

(ΣTjK(Sj))
−1(AjxKj − bj −mTjK(Sj))

−tr((ΣTjK(Sj))
−1AjUKjA

T
j)}+ const (3.15)

where {mTjK(Sj),ΣTjK(Sj)} are the generate part center (mean) and shape (covari-

ance matrix) of the K path in the jth object respectively, {Aj , bj} is the alignment

transformation, NKj, xKj, and UKj are the soft count of features belonging to part K

in image j, the expected mean, and the expected covariance of image patches from

part K in image j, which are defined as the following respectively:

NKj =
∑Nj

n=1 ρ
K
nj (3.16)

xKj =
1

NKj

∑Nj

n=1 ρ
K
njxnj (3.17)

UKj =
1

NKj

∑Nj

n=1 ρ
K
nj (Xnj − xKj) (Xnj − xKj)

T (3.18)

E[ln p(X|T, S,K)] could be rewritten as the following:

E[ln p(X|T, S,K)] =
1

2

∑

K,j

NKj{− ln(Σ̂g∗

TjK
)−

tr((Σ̂g∗

TjK
)−1[Aj bj m̂TjK]BKj[Aj bj m̂TjK]

T)

−tr((Σ̂g∗

TjK
)−1AjUKjA

T
j)}+ const (3.19)

g∗ = argmax
g

(sg) (3.20)

BKj = [xKj;−1;−Sj][xKj;−1;−Sj]
T (3.21)

where m̂TK = [m̂1
TKm̂

2
TKm̂

3
TK], m̂

g
TK and Σ̂g

TK are the mean and covariance of part

K in key view g of the triangle T , respectively.

49

Finally, E[ln p(X|T, S,K)] can be rewritten as the following form using a set of

compact statistics Ng
TK , B̂

g
TK , Û

g
TK .

E[ln p(X|T, S,K)] =
1

2

∑

T,K,g

Ng
TK

(
− ln(Σ̂g

TK)
)

−tr((Σ̂g
TK)

−1[I 0 m̂TK]B̂
g
TK [I 0 m̂TK]

T)

−tr((Σ̂g
TK)

−1Ûg
TK) + const (3.22)

where Σ̂g
TK are the mean (part center) and covariance (part shape) of part K in key

view g of the triangle T , and {Ng
TK , B̂

g
T,K , Û

g
T,K} are a set of compact statistics, which

are described below.

Ng
TK =

∑

j∈{j|Tj=T, g∗=g}

∑

n

ρKnj (3.23)

B̂g
TK =

∑

j∈{j|Tj=T, g∗=g}

NKjZjBKjZ
T
j (3.24)

Ûg
TK =

∑

j∈{j|Tj=T, g∗=g}

NKjAjUKjA
T
j (3.25)

where

Zj =




Aj −bj 0

0 I 0

0 0 I



.

{NKj, BKj, UKj} are the statistics related to empirical part weight, part center and

part shape defined in Eq. 3.16, 3.21, and 3.18, respectively.

Notice that, given the part location parameters {m̂, Σ̂}, having the compact statis-

tics {Ng
TK , B̂

g
TK , Û

g
TK} are sufficient to evaluate E[ln p(X|T, S,K)].

As is described in Sec. 3.1.7 (A), C(u) is only related to the part center m̂. And

50

the within triangle constraints contribute to the objective function as the following:

C(m̂) =
∑

T,K

∑

(i,j)∈Q(T)

‖MT
i→jm̂

i
TK − m̂

j
TK‖ (3.26)

where Q(T) is a set of pair of key views in triangle T

As described in Sec. 3.1.7 (B), F (u) is also only related to the part center m̂.

And the across triangle constraints contribute to the constraints of the optimization

problem as the following:

F (m̂) =
∑

K

∑

(Ti,Tj)∈O

∑

(gi,gj)∈V (Ti,Tj)

(3.27)

‖Hi→jm̂
gi
TiK
− m̂

gj
TjK
‖ (3.28)

where O is a set of pairs of neighboring triangles, and V (Ti, Tj) contains pairs of local

index of key views in triangle Ti and Tj which share the same key view.

As a result, part center m̂s are updated by solving the following optimization

problem.

maximize
1

2
λ
∑

K,T,g

{−tr(Σ̂g
TK)

−1

[I 0 m̂TK] B̂
g
T,K [I 0 m̂TK]

T}+ (λ− 1)

∑

T,K

∑

(i,j)∈Q(T)

‖MT
i→jm̂

i
TK − m̂

j
TK‖

s.t. F (m̂) = 0 (3.29)

Since the objective is in a quadratic form of m̂ and the constraint F (m̂) is a linear

equality constraint of m̂, m̂ could be estimated by solving a quadratic programming

(QP) problem with linear equality constraints. In our implementation, we solve the

QP problem using OOQP Gertz and Wright (2001) efficiently.

3. Part shape Σ̂ updates Part shape parameter Σ̂ is updated as follow. The

51

terms in Eq. 3.10 related to Σ̂g
TK are

−Ng
TK ln(Σ̂g

TK) (3.30)

−tr((Σ̂g
TK)

−1[I 0 m̂TK]B̂
g
TK [I 0 m̂TK]

T) (3.31)

−tr((Σ̂g
TK)

−1Ûg
TK) (3.32)

This objective function could be formulated as a semi-definite programming problem

over the precision matrix W g
TK = (Σ̂g

TK)
−1. A closed form solution exists as below:

Σ̂g
TK =

(
[I 0 m̂TK]B̂

g
TK [I 0 m̂TK]

T + Ûg
TK

)
/Ng

TK (3.33)

where {Ng
TK , B̂

g
TK , Û

g
TK} are compact sufficient statistics as define in Eq. 3.23-3.25.

E-Step: 1. Part proportion π update. For image j, we update the variational

distribution q(πj|γj) of part proportion πj by

γj = αTj
+Nj (3.34)

where Nj = [N1jN2j . . . NKj . . . N|K|j]. Note Nj ∈ R|K| is the sufficient statistics of

the Dirichlet distribution Dir(γ), where |K| is the number of parts in our model.

2. Part assignment K update. We approximately model the distribution of the

hidden variable Kn of each image feature using the variational distribution q(Kn|ρn).

In each step of the variational EM, we update ρn by maximizes Lq. The terms in

Eq. 3.10 related to ρn are E[ln p(X|T, S,K)], E[ln p(Y |T, S,K)], E[ln p(K|π)], and

52

E[ln q(K)]. We have

ln ρKnj ∝
1

2
{−D ln(2π)− ln(ΣTjK(Sj))

−(AjXnj − bj −mTjK(Sj))
T

(ΣTjK(Sj))
−1(AjXnj − bj −mTjK(Sj))}

+ ln η
Ynj

TjK
+ (ψ(γKj)− ψ(

K∑

l=1

γlj)) (3.35)

where ηTjK ∈ R
|W | is the part appearance parameter of p(Y |ηTjK), γj ∈ R

|K| is the

variational parameter of q(πj |γj),
∑|K|

K=1 ρ
K
nj = 1, |W | is the codebook size, and |K|

is the number of parts.

3.2.1.3 Obtaining Candidate Parts:

Since variational EM is an approximate inference algorithm, its solution is sensi-

tive to the initial values of the parameters. We use a modified J-Linkage clustering

algorithm (Toldo and Fusiello, 2008) to obtain candidate parts to initialize the varia-

tional parameter ρK of part assignment K. In Toldo and Fusiello (2008), given feature

correspondences, the algorithm segments them into a number of planar regions so that

the corresponding regions can be fitted by an unique affine transformation. Notice

that tracks between every pair of views are equivalent to feature correspondences.

We can therefore apply the J-Linkage algorithm to segment the tracks into planar

regions for each pair of several neighboring key views. We then apply an agglomera-

tive clustering algorithm to finalize the grouping of tracks to planar regions. Fig. 3.2

shows some sample results of this step.

3.2.2 Incremental learning with Unsorted Images

Having initialized our 3D object categorical model with a video clip of a single

object instance, we can now complete model learning using a set of unsorted images

53

key-view V1

key-view V3

key-view V2

new training image

model
parameters
updates

Figure 3.4: Left. Illustration of the updates for position parameter θ during incre-
mental learning. As a new training image is assigned to the triangle T , new evidence
on the sufficient statistics is produced which results in updating relevant model pa-
rameters of the key-views. Right. Examples of object parts are collected by auto-
matically cropped image regions from different training images. Three examples are
shown at each row for each part.

downloaded from the Internet. We propose an incremental learning procedure in the

following two steps.

3.2.2.1 Viewpoint Estimation

Treating the video frames of the initial object instances as well as all the training

images seen so far as view matching exemplars, we obtain the viewpoint {T, S, A} of

a new training image j by matching it to the closest exemplar according to a spatial

pyramid matching algorithm. This is done in a similar image re-ranking scheme as

proposed by Li et al. (2007)1.

3.2.2.2 Part-Based Model Incremental Update

Given {Tj, Aj, Sj} of the new training image j, we can now run the updates

of part {η,m,Σ} and variational {π,K} parameters by applying variational EM

(Sec. 3.2.1.2).

1Instead of the classification model used in Li et al. (2007), we use a KNN classifier with parzen
window to do the matching.

54

• The part appearance parameter η̂g
∗w

TK can be updated according to Eq.3.11 by

using the updated sufficient statistics Ng∗w
TjK
← Ng∗w

TjK
+
∑

n∈(ynj=w) ρ
K
nj , where w

is the codeword index.

• The part center parameter m̂g
TK and part shape parameter ˆΣg∗

TK can be updated

by solving Eq. 3.29 and Eq. 3.33, respectively using the updated sufficient statis-

tics

Ng∗

TjK
← Ng∗

TjK
+NKj (3.36)

B̂g∗

TjK
← B̂g∗

TjK
+NKjZjBKjZ

T
j (3.37)

Ûg∗

TjK
← Ûg∗

TjK
+NKjAjUKjA

T
j (3.38)

Where NKj, BKj, and UKj are calculated using Eq. 3.16,3.21, and 3.18 respec-

tively. Notice that the part centers of three key views in triangle Tj will be

affected by the updated NKj, BKj.

• The variational part proportion parameter γ and variational part assignment

parameter ρ are updated according to Eq. 3.34 and 3.35 respectively.

As a result, object parts for training images are extracted sequentially (some

examples are shown in Fig.3.4-Right), and the part-based model is incrementally

updated. Fig. 3.4-Left is a schematic illustration of how this is done.

3.2.3 Learning Summary

The overall learning algorithm combing variational EM algorithm with an incre-

mental learning framework is described in Alg. 1

55

Algorithm 1 One iteration of the variational EM algorithm are shown below. The
algorithm infers the part assignment and part proportion variational parameter ρ, γ
of image j. Meanwhile, the model parameters η,m,Σ are updated given the new
evidence from image j. The algorithm ends, when the lower bound of the likelihood
(in Eq. 3.8) converges.

Given a new image j with matched viewpoint parameter {Tj, Aj , Sj}, feature location
and appearance {Xnj, Ynj|n ∈ 1 ∼ Nj}, variational part assignment {ρnj|n ∈ 1 ∼ Nj}
and proportion {γj} parameters. We apply the following variational EM algorithm.

• Update statistics.

(Ng∗w
TjK

)j ← (Ng∗w
TjK

)(j−1) +
∑

n∈(ynj=w)

ρKnj (3.39)

(Ng∗

TjK
)j ← (Ng∗

TjK
)(j−1) +NKj (3.40)

(B̂g∗
TjK

)j ← (B̂g∗

TjK
)(j−1) +NKjZjBKjZ

T
j (3.41)

(Ûg∗

TjK
)j ← (Ûg∗

TjK
)(j−1) +NKjAjUKjA

T
j (3.42)

• M-step:

η̂gwTK ∼ Eq. 3.11 (3.43)

m̂g
TK ∼ Eq. 3.29 (3.44)

Σ̂g
TK ∼ Eq. 3.33 (3.45)

• E-step

γj ∼ Eq. 3.34 (3.46)

ρKnj ∼ Eq. 3.35 (3.47)

56

3.2.4 Comparison with previous methods

Our proposed method requires only object category labels and object bounding

boxes supervision for the training images, where the degree of supervision is lower

than most of the previous work (Thomas et al., 2006; Kushal et al., 2007; Yan et al.,

2007; Chiu et al., 2007). Moreover, our model incorporates the view morphing tech-

nique so that it could represent theoretically an infinite number of viewpoints using

a small set of key views. Therefore, our model could cover the view sphere more

densely comparing to other 2D linkage-based methods (Thomas et al., 2006; Kushal

et al., 2007; Savarese and Fei-Fei , 2007, 2008). Finally, the proposed incremental

learning framework enables efficient model learning, where the time complexity is

linear proportion to the number of training images.

(a) Car (b) Bicycle

Figure 3.5: Example images of car and bicycle categories from the 3D object category
dataset. For each category, 8 images from different angles with randomly selected
heights and scales are shown.

(a) Car (b) Bicycle

Figure 3.6: Example images of car and bicycle categories from the challenging Pascal
VOC 2006 dataset. In each image, a yellow bounding box with object category
annotation indicates the existence of the object.

57

(a)Binocular (b) Watch (c) Sewing (d) Calcu- (e) Swivel (f) Teapot (g) Flash-

Microscope Machine lator Chair light

Figure 3.7: Example images from household item dataset. Each row shows a different
object category.

3.3 Applications

We have introduced a new probabilistic multi-view representation for 3D object

categories. With minimal supervision, our algorithm is capable of learning the 3D

structures of this part-based model across viewpoints. We test now how our model can

be used to perform three challenging recognition tasks: object detection in cluttered

background, viewpoint classification upon detection, and new viewpoint synthesis

given a single test image.

Imagery from the real-world contains a mixture of both viewpoint and intra-class

variation, unlike Caltech 101 and 256 where objects categories are captured from

limited number of viewpoints. Recently proposed datasets are designed to capture

both types of the variation. The 3D objects dataset (Savarese and Fei-Fei , 2007)

contains 10 object instances for each object categories. Each object instance consists

of images observed from 8 angles, 3 or 2 heights, and 3 scales. The dataset focuses

on addressing viewpoint and intra-class variation. Hence, each image typically con-

tains one object instance without occlusion (Fig 3.5). The pascal VOC 2006 dataset

(Everingham et al., 2006) not only captures viewpoints and intra-class variation, but

also contains severe background clutter and object-object occlusion (Fig 3.6). In our

experiments, we follow the experiment setting in Savarese and Fei-Fei (2007) and

use 5 object instances from the 3D objects dataset to train the model and evaluate

on the remaining object instances. For Pascal VOC 2006 dataset, we use the official

58

training and validation set to train the model and evaluate on the official testing set.

Furthermore, we collect a set of images of 7 household object categories (e.g., watch,

swing machine, microscope, swivel chair, calculator, flashlight, and teapot) from the

ImageNet (Deng et al., 2009) in order to evaluate our method on more diverse ob-

ject categories. We use 5 object instances from such dataset to train the model and

evaluate on the remaining object instances. All three datasets are used to evaluate

object detection, viewpoint classification, and new viewpoint synthesis performance

of our method.

3.3.1 Object class detection

A robust visual recognition system needs to detect and categorize real-world ob-

jects under arbitrary viewpoints. Having trained a part-based 3D object categorical

model, we could now use this model to build a robust object category detector.

Three datasets are used for evaluating this task: 8 object categories in the 3D Object

dataset (Savarese and Fei-Fei , 2007), the car and bicycle categories in Pascal VOC

2006 dataset (Everingham et al., 2006), and 7 categories in the household object

dataset. We first describe briefly an object detector based on the learned object parts

and 3D structure.

• Pre-processing Training data: Given all training images, we first obtain

the image regions of the corresponding parts and viewpoint by the method

described in Sec. 3.2.2. Each object bounding box is then re-scaled to have the

same width. Within the bounding box, a set of patches are densely sampled

with equal spacing, each of which has labels of the part and viewpoint that it

belongs to. We also sample patches in regions outside the bounding box, each

of which is assigned a background label.

• Training Random Forest: Given the patches with labels, we are able to

train a random forest classifier, which discriminatively clusters patches having

59

similar labels into the same leaf node. In other words, each leaf node contains

mostly patches from the same part observed from similar viewpoint, or mostly

patches from background regions. Since leaf nodes correspond to different parts

observed from different viewpoints, we use the learned model to lookup the

relative position of the parts with respect to the object center. Notice these

relative position information is used to vote for object center in the detection

stage.

• Fast Detection by a Generalized Hough Voting: At the detection stage,

patches are uniformly sampled from each image, and then passes down all the

trees of the forest to find the codewords. Similar to the ISM (Leibe et al.,

2004), the saved relative position information for all codewords are use to cast

votes for candidate object centers. Recall that the saved relative position is

looked up from our learned generative model. Hence, Generalized Hough Voting

technique is a fast way to evaluate the learned Gaussian part location model.

To handle scale invariance, we also scale the test image to form a pyramid.

The voting space is parameterized by object center location, object scale, and

a coarse discretization of the view sphere (i.e., 8 different azimuth angles are

used in our experiment). Finally, we obtain local maximum in the voting space

as candidate object detections and apply non-maximum suppression using the

50% overlapping ratio criteria to remove redundant detections.

• Verification Classifier: In order to fuse evidences of part level together with

object level information, an object verification classifier is trained using a linear

SVM. An object is represented as a spatial pyramid of codewords (Schmid ,

2006). The candidate object detections obtained from the part-based detector

is reclassified by assigning the detection score as a linear combination of the

original voting score and the object verification score.

60

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

D
e

te
ct

io
n

 R
a

te

False Alarm Rate

Savarese et al.

Morphing Model

NN model

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

D
e

te
ct

io
n

 R
a

te

False Alarm Rate

0

Savarese et al.

Morphing Model

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

D
e

te
ct

io
n

 R
a

te

False Alarm Rate

0

Savarese et al.

Morphing Model

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

D
e

te
ct

io
n

 R
a

te

False Alarm Rate

0

Savarese et al.

Morphing Model

(a) Car (b) Bicycle (c) Toaster (d) Mouse

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

D
e

te
ct

io
n

 R
a

te

False Alarm Rate

0

Savarese et al.

Morphing Model

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

D
e

te
ct

io
n

 R
a

te

False Alarm Rate

0

Savarese et al.

Morphing Model

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

D
e

te
ct

io
n

 R
a

te

False Alarm Rate

0

Savarese et al.

Morphing Model

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

D
e

te
ct

io
n

 R
a

te

False Alarm Rate

0

Savarese et al.

Morphing Model

(e) Iron (f) cellphone (g) Stapler (h) Shoe

Figure 3.8: Object detection results using the 3D objects dataset (Savarese and Fei-
Fei , 2007). We use ROC curves to show the detection results. In each panel, view
morphing model (red line) shows a performance of 82.3% measured by area under
the curve (AUC), compared to 73.7% by using Savarese and Fei-Fei (2007) (green
line), and 78.1% by using the nearest neighbor model (NN model)(Sun et al., 2009)
(blue line). The AUC of other 7 object classes are compared between view morphing
model (red line) and Savarese and Fei-Fei (2007) (green line).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Morphing Model (0.350)
Liebelt CVPR08 (0.363)
ENSMP (0.398)
INRIA_Douze (0.444)
Cambridge (0.254)
TKK (0.222)

P
re

c
is

io
n

Morhing Model (0.347)
INRIA_Douze (0.414)
INRIA_Laptev (0.440)
TKK (0.303)
Cambridge (0.249)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

Figure 3.9: Object detection results using the Pascal VOC06 dataset (Everingham
et al., 2006). Left. Object detection using the Pascal VOC06 car dataset. Right.
Object detection using the Pascal VOC06 bicycle dataset. We follow the protocol
of Pascal VOC object detection challenge (50% overlap criteria) and use precision-
recall curves to show the results of our view morphing model (red line) compared
with Liebelt et al. (2008) and the detection result of the 2006 challenges (Everingham
et al., 2006)-INRIA Douze , (Everingham et al., 2006)-INRIA Laptev, (Everingham
et al., 2006)-TKK, (Everingham et al., 2006)-Cambridge, and (Everingham et al.,
2006)-ENSMP. Average precision (AP) scores are shown in the legends.

61

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
et

ec
ti

o
n

 R
at

e

False Alarm Rate

Object Category AUC
Watch 84.9

Sewing Machine 98.1
Microscope 87.9
Swivel Chair 91.2
Calculator 97.2
Flashlight 87.1
Teapot 86.4

Figure 3.10: Left. Object detection results using the 7 household object categories
dataset. The thick red line shows the average ROC curve, whereas the thin red lines
show the standard deviation over 7 classes. Average Area Under the Curve (AUC)
score is 90.1%. Right. AUC score for each of the household object category is shown
at the 2nd column of each row.

0 0.2 0.4 0.6 0.8
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AP = 0.553

AP = 0.287

P
re

c
is

io
n

Recall

10 20 30 40 50 60 70 80 90

0.75

0.80

0.85

key views

D
e

te
c
ti
o

n
 P

e
rf

 (
A

U
C

)

View Morphing

Nearest Neighbor

80 100 120 140 160 180 200

0.25

0.35

0.45

0.55

0.191

0.245

0.525

Number of training images
A

v
e

ra
g

e
 P

re
c

is
io

n

Figure 3.11: Left. Object detection with or without using the object parts. We use
a car detection task (3D objects dataset (Savarese and Fei-Fei , 2007)) to show the
performance difference between an object detector using the object parts learned by
the 3D model (red line) and an object detector built without the object parts (blue
line). Center. Effect of view synthesis on improving detection accuracy at different
number of key views via learning with the morphing parameter S. We demonstrate
this by showing a binary detection task result (measured by AUC) versus the number
of key views used by the model. View morphing model (red solid line) is compared
with a nearest neighbor model (blue dashed line). Right. Effect of incremental
learning on improving detection accuracy at different number of training images.

Fig. 3.8 compares the Receiver Operating Characteristic (ROC) detection re-

sults of our method with other state-of-the-art algorithms on the 3D objects dataset

(Savarese and Fei-Fei , 2007). View morphing model consistently outperforms Savarese

and Fei-Fei (2007) on all 8 object categories of the 3D objects dataset. Fig. 3.9 com-

pares the precision-recall detection results of our view morphing model with other

state-of-the-art algorithms on car and bicycle of Pascal VOC06 dataset (Everingham

62

et al., 2006). View morphing model shows comparable results to most of the state-

of-the-art methods on the Pascal VOC06 dataset. Fig. 3.10 shows detection results

on the new 7 household object categories dataset. These items have significantly

different image features compared to the often used car and bicycle datasets. We

show very promising detection results in all seven object categories. Some example

detection results are shown in Fig. 3.13.

An important contribution of our work is to propose a method that is able to

learn parts and associate viewpoint on the view sphere automatically and in turn use

them for building an object category detector. In an object detection experiment

using the 3D objects dataset (car category), we show that an object detector built by

using these proposed object parts and viewpoint significantly outperforms an object

detector that does not use the parts and viewpoint information (Fig. 3.11-Left).

In a separate experiment, we examine the effect of using dense viewpoint represen-

tation and view morphing framework for building 3D object models. Fig. 3.11-Center

shows a detection experiment on car category of the 3D object dataset measured by

Area Under the ROC Curve (AUC). View morphing model (red curve) is compared

with a nearest neighbor model (blue curve). We observe two trends. For both of

these models, as the number of viewpoints increases during training, the detection

performance increases. But view morphing model performs consistently better than

nearest neighbor model even given the same number of viewpoints. Since the view

morphing model can better capture the relative part location observed under arbi-

trary viewpoint on the view sphere using the morphing parameter S than the nearest

neighbor model. In other words, even if the view morphing model maintains a limited

number of key-views, it is capable of representing intermediate views to mitigate the

unavoidable discrepancies existing in the discretized representation.

Finally, we evaluate the effect of incremental learning by using detection of car in

the 3D objects dataset. Fig.3.11-Right shows that as the number of training images

63

B
ac

k
Le

ft
Fr

o
n

t
R

ig
h

t

Object Category Avg. Acc
Watch 61.9

Sewing Machine 71.4
Microscope 63.9
Swivel Chair 58.6
Calculator 69.2
Flashlight 68.4
Teapot 60

Figure 3.12: Viewpoint classification results: Left. 8-view classification of the 3D
objects car dataset. We compare our view morphing model (red bar) with (Savarese
and Fei-Fei , 2008) (green bar). Center. 4-view classification of the Pascal VOC06 car
dataset. Our view morphing model (red bar) is compared with Sun et al. (2009) (blue
bar). Right. Viewpoint classification accuracy for the household objects dataset.

increases, our view morphing model is capable of taking advantage of the additional

data and continues to achieve higher performances.

3.3.2 Object viewpoint classification

After the detection stage, the candidate object detections are associated with a

coarse location on the view sphere. Our view morphing model is capable of predicting

a more precise viewpoint of a query object by estimating {T, S, A} using the viewpoint

estimation method described in Sec. 3.2.2. We evaluate our view morphing model

using three datasets: car category in the 3D objects dataset (Savarese and Fei-Fei ,

2007), car category in Pascal VOC06 dataset (Everingham et al., 2006) and seven

categories in the household objects dataset.

The results of the first two are shown in Fig. 3.12-Left&Center. Whereas results of

household objects are shown in Fig.3.12-Right. Notice that the numbers of viewpoints

that we evaluated are dataset dependent. For 3D objects, the ground truth labels

provide 8 viewing angles, 3 scales and 2 heights, and the number of images is evenly

distributed on the view sphere. For 7 household object categories dataset, the number

of images is also evenly distributed on the view sphere. For Pascal VOC06, there are

more diverse viewpoints, but the number of images is not evenly distributed on the

64

(a) Bicycle (b) Swivel Chair (c) microscope

(d) Car (e) Watch (f) Iron

(g) Teapot (h) Flashlight (i) Calculator

Figure 3.13: Examples of viewpoint estimation for bicycle (Savarese and Fei-Fei ,
2007; Everingham et al., 2006), swivel chair, microscope, car (Savarese and Fei-Fei ,
2007; Everingham et al., 2006), watch, iron, teapot, flashlight, and calculator. Blue
arrows indicate the viewpoint T for the detected object (in red bounding box). Green
bounding box indicates correct detections of the objects, but in a different viewpoint.

view sphere and the ground truth labels only contain 4 (i.e., front, back, left, and

right.) viewpoints. For evaluation convenience, we discretize all views into 8 canonical

views when evaluating the performances on 3D object and household object dataset,

and all views into 4 canonical views when evaluating the performances on Pascal VOC

2006 dataset. On the 3D objects dataset, our view morphing model significantly

outperforms Savarese and Fei-Fei (2008), largely due to its richer representation

65

Figure 3.14: New views can be synthesized given a single test image. The right
column of each row indicates the original test image. The left two columns are two
synthesized views.

(Fig. 3.12-Right). On the Pascal dataset, our view morphing model also achieves

better classification accuracy than the nearest neighbor model (Fig. 3.12-Center).

Finally, we obtain reasonably accuracy classification accuracy on the household object

dataset (Fig. 3.12-Right). We show examples of the viewpoint classification results

in Fig.3.13.

3.3.3 Viewpoint synthesis

After both detection and viewpoint classification stage, a candidate object detec-

tion is associated with the part locations and viewpoint parameters {T, S, A}. Recall

that the view morphing model can generate the part configuration of any view speci-

fied by the viewpoint parameters {T, S, A}. Therefore, given the extracted parts and

estimated viewpoint parameters {T, S, A}, we are able to synthesize any new view by

calculating the part configuration of a specific viewpoint parameters {T, S, A}. We

show in Fig. 3.14 several synthesized views of test images. Notice, the model can not

generate detail appearance of unobserved parts. Therefore, all examples in Fig. 3.14

are views which contain only the observed parts in the original testing images.

66

3.4 Conclusion

In this chapter, we have proposed a 3D object categorical model based on a dense,

multi-view representation of the view sphere. A morphing parameter S is introduced

to allow our model to recognize and synthesize unseen views. Our experiments show

promising results in object detection, viewpoint classification and synthesis tasks. For

future work, we would like to incorporate a more discriminative learning process into

the model building step, as well as to combine viewpoint synthesis into incremental

learning framework to generate virtual training images so as to maximize the usage

of the data.

67

CHAPTER IV

Models for 3D Object Shape Inference

Detecting objects and estimating their geometric properties are crucial problems in

many application domains such as robotics, autonomous navigation, high-level visual

scene understanding, surveillance, gaming, object modelling, and augmented reality.

For instance, if one wants to design a robotic system for grasping and manipulating

objects, it is of paramount importance to encode the ability to accurately estimate

object orientation (pose) from the camera view point as well as recover structural

properties such as its 3D shape. This information will help the robotic arm grasp

the object at the right location and successfully interact with it. Moreover, if one

wants to augment the observation of an environment with virtual objects, the ability

to reconstruct visually pleasing 3D models for object categories is very important.

This chapter addresses the above needs, and tackles the following challenges: i)

Learn models of object categories by combining view specific depth maps along with

the associated 2D image of object instances of the same class from different vantage

points. Depth maps with registered RGB images can be easily collected using sensors

such as Kinect Sensor (Microsoft Corp. Redmond WA, 2010). We demonstrate that

combining imagery with 3D information helps build richer models of object categories

that can in turn make detection and pose estimation more accurate. ii) Design a

coherent and principled scheme for detecting objects and estimating their poses from

68

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.9

0.95

1

1.05

1.1

1.15

1.2

−0.1

−0.05

0

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.9

0.95

1

1.05

1.1

1.15

1.2

−0.1

−0.05

0

(d) Shape Recovery(a) Query Image (b) Detection (c) Rough 3D (e) Incomp. Text. (f) Symm. Text. (g) Comp. Text.

Stage 1 Stage 2

Figure 4.1: Key steps of our reconstruction algorithm: (a) Single query 2D image; (b)
Detected object; the bounding box indicates the location where the object has been
estimated in the image; Our proposed Depth Encoded Hough Voting (DEHV) detec-
tor can be used to recognize object class label, roughly estimate the object pose (i.e.,
object orientation in the camera reference system), and automatically reconstructs
surface elements (3D points) in the camera reference system (c). As figure shows,
the reconstruction is clearly partial and incomplete; (d) Shape recovery: by using the
estimated object class label and pose, we propose a novel 2D+3D ICP algorithm to
register the reconstructed surface elements with one of the 3D models that is available
in training; this allows to infer the object 3D structure in regions that are not visible
from the query image. (e) Texture mapping: after performing 3D shape registration,
we texture map image texture to the 3D shape model; again, the object texture is
incomplete as we cannot map image texture to occluded surface elements; (f) Texture
completion: we use the fact that some object categories are symmetric to transfer
image texture to the occluded regions; (g) Remaining un-textured surfaces elements
are completed using image compositing methods inspired by Tao et al. (2010).

either just a single image (when no depth maps are available in testing) (Fig. 4.1(b)),

or a single image augmented with depth maps (when these are available in testing).

In the latter case, 3D information can be conveniently used by the detection scheme

to make detection and pose estimation more robust than in the single image case. iii)

Have our detection scheme reconstruct the 3D model of the object from just a single

uncalibrated image (when no 3D depth maps are available in testing) (Fig. 4.1(c-g))

and without having seen the object instance during training.

In this chapter, we propose a two stages approach to address the above challenges

(Fig. 4.2). In the first stage, our approach seeks to i) detect the object in the image,

ii) estimate its pose, and iii) recover a rough estimate of the object 3D structure

(if no depth maps are available in testing). This is achieved by introducing a new

formulation of the Implicit Shape Model (ISM) (Leibe et al., 2004) and generalized

Hough voting scheme (Ballard , 1981). In our formulation, depth information is in-

69

corporated into the process of learning distributions of object image patches that are

compatible with the underlying object location (shape) in the image plane. We call

our scheme DEHV - Depth-Encoded Hough Voting scheme (Sec. 4.2.1). DEHV ad-

dresses the intrinsic weaknesses of existing Hough voting schemes (Leibe et al., 2004;

Gall and Lempitsky , 2009; Maji and Malik , 2009; Ommer and Malik , 2009) where

errors in estimating the scale of each image object patch directly affects the ability

of the algorithm to cast consistent votes for the object existence. To resolve this

ambiguity, we take advantage of the interplay between the scale of each object patch

in the image and its distance (depth) from the corresponding physical patch attached

to the 3D object, and specifically use the fact that objects (or object parts) that are

closer to the camera result in image patches with larger scales. Depth is encoded in

training by using available depth maps of the object from a number of view points. At

recognition time, DEHV is applied to detect objects (Fig. 4.1(b)), estimate their pose,

and simultaneously infer the their 3D structure given hypotheses of detected objects

(Fig. 4.1(c)). The object 3D structure is inferred at recognition time by estimating

(decoding) the depth (distance) of each image patch involved in the voting from the

camera center. Critically, depth decoding can be achieved even if just a single test

image is provided. If depth maps are available in testing, the additional information

can be used to further validate if a given detection hypothesis is correct or not. We

summarize the inferred quantities in Table 4.1 and the required supervision in Table

4.2. Notice that the inferred object 3D structure from stage one is partial (it does

not account for the portions of the object that are not visible from the query image)

and sparse (it only recovers depth for each voting patch).

The goal of the second stage is to obtain a full 3D object model where both 3D

structure and albedo properties (texture) are also recovered. In the second stage, the

information inferred from stage one (object location in the image, scale, pose, and

rough 3D structure) is used to obtain a full 3D model of the object. Specifically,

70

Single

image

DEHV

Inference

Class, pose,

bbox, rough 3D

3D registra!on

Texture 3D model

Comple!on

Stage one Stage two

Figure 4.2: Flow chart showing the process of our proposed system.

Single Image
Depth in testing No depth in testing

Inferred object class, object class,
quantities location, location,

scale, scale,
pose pose,

depth map

Table 4.1: Estimated quantities in Stage 1.

Stage 1 Stage 2
-Images of object -List of CAD Models

from multiple views
-Depth maps of object
from multiple views
-Bounding boxes and
pose annotation

Table 4.2: Required degree of supervision in training for each stage.

we consider an 3D modelling stage where a full 3D model of the object is obtained

by 3D shape recovery and texture completion (Sec. 4.2.2). We carry out 3D shape

recovery (i.e., infer shape from the unseen regions) by: i) utilizing 3D shape exemplars

from a database of 3D CAD models which can be collected from Shilane et al. (2004)

and other online 3D warehouses, or obtained by shape from silhouette (Laurentini ,

1994); ii) applying a novel 2D+3D iterative closest point (ICP) matching algorithm

which jointly registers the best 3D CAD model to the inferred 3D shape and the

occlusion boundaries of back projected 3D CAD model to object contours in the

image. By choosing the best fit, our system obtains a plausible full reconstruction

71

of the object 3D shape (Sec. 4.2.3) (Fig. 4.1(d)). Object appearance is rendered

by texture mapping the object image into the 3D shape. Such texture is clearly

incomplete as non-visible object surface areas cannot be texture mapped (Fig. 4.1(e)).

Thus, we perform texture completion by: i) transferring texture to such non-visible

object surface areas by taking advantage of the fact that some object categories are

symmetric (when possible) (Fig. 4.1(f)); ii) using an error-tolerant image compositing

technique inspired by Tao et al. (2010) to fill the un-textured regions (i.e., holes)

(Sec. 4.2.4) (Fig. 4.1(g)). We summarize the required supervision in Table 4.2.

Extensive experimental analysis on a number of public datasets (including car

Pascal VOC07 (Everingham et al., 2007), mug ETHZ Shape (Ferrari et al., 2008a),

mouse and stapler 3D object dataset (Savarese and Fei-Fei , 2007)), an two in-house

datasets (comprising at most 5 object categories), where ground truth 3D informa-

tion is available, are used to validate our claims (Sec. 6.4). Experiments with the

in-house datasets demonstrate that our DEHV scheme: i) achieves better detection

rates (compared to the traditional Hough voting scheme); further improvement is

observed when depth maps are available in testing; ii) produces convincing 3D re-

constructions from single images; the accuracy of such reconstructions have been

qualitatively assessed with respect to ground truth depth maps; iii) achieves accu-

rate 3D shape recovery and visually pleasing texture completion results. Experiments

with public datasets demonstrate that our DEHV successfully scales to different types

of categories and works in challenging conditions (severe background clutter, occlu-

sions). DEHV achieves state of the art detection results on several categories in

ETHZ Shape dataset (Ferrari et al., 2008a), and competitive pose estimation results

on 3D object dataset (Savarese and Fei-Fei , 2007). We also evaluate the accuracy of

shape completion and quality of the texture completion on the 3D modelling dataset

(Sec. 4.2.2). Finally, we show typical results demonstrating that DEHV is capable

to produce convincing 3D reconstructions from single uncalibrated images using Pas-

72

cal VOC07 dataset (Everingham et al., 2007), ETHZ Shape dataset (Ferrari et al.,

2008a), and 3D object dataset (Savarese and Fei-Fei , 2007) in Fig. 4.15 and 4.13.

The rest of the chapter is organized as follows. We first give brief overview of

works on 3D object modelling in Sec. 4.1. Then, we introduce our method in Sec. 4.2.

Finally, we report experimental results in Sec. 6.4.

4.1 Related Works on 3D Object Modelling

In this section, we give a brief overview of recent research on 3D object and

scene modelling from images. For an overview of methods for object detection and

view point estimation, please refer to Chapter II, Sec. 2.1. Approaches for 3D ob-

ject or scene modelling are often referred to as image-based modelling techniques

(IBM). Starting from early work by Debevec et al. (1996); Pollefeys et al. (2004),

IBM techniques have been recently employed for successfully modelling large scale

environments such as city environments from large collection of images on the inter-

net (Snavely et al., 2006; Agarwal et al., 2009). IBM techniques often require different

degrees of human intervention (Debevec et al., 1996) or the assumptions that special

equipments are available and/or cameras are calibrated (Dick et al., 2004; Teller et al.,

2003).

Even if outstanding results have been produced, many of these methods make

the basic assumption that several images (portraying the object in the scene from

different view points) are available. However, this is not always the case. Recovering

scene geometry from a single view has been initially explored under the assumption

of having users guiding the reconstruction (Horry et al., 1997; Liebowitz et al., 1999)

or augmenting the photograph with additional 3D data (Kopf et al., 2008). Recently,

researchers have proposed to apply machine learning methodologies for resolving the

3D-2D mapping ambiguity and obtaining convincing reconstructions of outdoor (Sax-

ena et al., 2009; Hoiem et al., 2005b) and indoor scenes (Lee et al., 2009; Wang et al.,

73

2010; Hedau et al., 2010; Schwing et al., 2012) from just one single image.

Alternative techniques have been proposed for modelling specific 3D objects (rather

than scenes or environments). Again, depending on the application and the level of

accuracy that one aims to achieve, researchers have proposed methods employing

either external lighting sources such as lamps (Bouguet and Perona, 1995; Savarese

et al., 2006a), projectors (Rusinkiewicz et al., 2002), lasers (Levoy et al., 2000), or a

number of calibrated (Kutulakos and Seitz , 2000) or uncalibrated views obtained us-

ing external devices such as turntables (Mendonça et al., 2000). A recent survey nicely

summarizes most relevant works (Seitz et al., 2006) from an almost endless literature

on this topic. Recently, Prasad et al. (2010) have proposed a method to reconstruct

deformable object classes from multiple and unordered images. Due to the absence of

reliable point correspondences across deformable object instances, class-specific curve

correspondences need to be manually selected.

The reconstruction of an underlying 3D shape model is not always a necessary step

if one wants to render the environment appearance from just images. These methods

fall under the name of image based rendering approaches (IBR). Works by McMillan

and Bishop (1995); Levoy and Hanrahan (1996); Aliaga et al. (2003); Zitnick et al.

(2004) are among the most notable examples. The lack of the underlying 3D shape

model, however, makes it harder for these techniques to be used in applications where

virtual worlds are to be augmented with the reconstructed models.

As opposed to indoor or outdoor scenes where cues such as vanishing lines or tex-

ture foreshortening are available, fewer methods have been proposed for recovering

3D models of objects from a single image. Researchers mostly focused on recovering

3D shape models from object contours (silhouettes) extracted or identified on a sin-

gle image either automatically (Prasad and Fitzgibbon, 2006; Colombo et al., 2005)

or through some level of user intervention (Chen et al., 2008; Karpenko and Hughes ,

2006; Jiang et al., 2009). These methods, however, often assume topological proper-

74

ties of objects such as smoothness, convexity, or cylindrical symmetry or heavily relies

on user intervention. In our work, we do not want our query objects to be subject to

these constraints. Rather, similar to Saxena et al. (2009); Hoiem et al. (2005b), we

advocate the usage of machine learning for solving the daunting task of single view

object reconstruction with arbitrary topology and minimal user intervention. Very

recently, Thomas et al. (2007); Sun et al. (2010b); Arie-Nachimson and Basri (2009);

Oswald et al. (2009) have shown the ability to reconstruct sparse/partial 3D object

points from a single image. However, none of these methods have been extensively

tested so as to demonstrate that realistic 3D models of objects can be obtained.

4.2 Our Method

To summarize, our method can be roughly decomposed in a recognition/reconstruction

stage and a 3D modelling stage.

In the recognition/reconstruction stage, Depth-Encoded-Hough-Voting detectors

(DEHV) (Sun et al., 2010b), trained with both object 3D shape and local diagnostic

appearance information, identifies object’ locations and classes, and recovers approx-

imate and partial 3D structure information from a single query image (Sec. 4.2.1)

(Fig. 4.1(a-c)).

Because we obtain only a partial reconstruction - object surface that is not visible

from the query image cannot be reconstructed at this stage. Thus, we consider a 3D

modelling stage where a full 3D model of the object is obtained by 3D shape recovery

and texture completion (Sec. 4.2.2) (Fig. 4.1(d-g)).

4.2.1 Stage 1: Depth-Encoded Hough Voting

In recognition techniques based on hough voting (Ballard , 1981) the main idea

is to represented the object as a collection of parts (patches) and have each part to

cast votes in a discrete voting-space. Each vote corresponds to a hypothesis of object

75

location x and class O. The object is identified by the conglomeration of votes in the

voting space V (O, x). V (O, x) is typically defined as the sum of independent votes

p(O, x, bj, sj, lj) from each part j, where lj is the location of the part, sj is the scale

of the part, and bj is the part appearance.

Previously proposed methods (Leibe et al., 2004; Gall and Lempitsky , 2009; Maji

and Malik , 2009; Ommer and Malik , 2009) differ mainly by the mechanism for se-

lecting good parts. For example, parts may be either selected by an interest point

detector (Leibe et al., 2004; Maji and Malik , 2009), or densely sampled across many

scales and locations (Gall and Lempitsky , 2009); and the quality of the part can be

learned by estimating the probability (Leibe et al., 2004) that the part is good or dis-

criminatively trained using different types of classifiers (Maji and Malik , 2009; Gall

and Lempitsky , 2009). In this chapter, we propose a novel method that uses 3D depth

information to guide the part selection process. As a result, our constructed voting

space V (O, x|D), which accumulates votes for different object classes O at location

x, depends on the corresponding depth information D of the image. Intuitively, any

part that is selected at a wrong scale can be pruned out by using depth information.

This allows us to select parts which are consistent with the object physical scale. It

is clear that depending on whether object is closer or further, or depending on the

actual 3D object shape, the way how each patch votes will change (Fig. 4.3).

In detail, we define V (O, x|D) as the sum of individual probabilities over all ob-

served images patches at location lj and for all possible scales sj, i.e,

V (O, x|D) =
∑

j

∫
p(O, x, bj, sj, lj |dj) dsj

=
∑

j

∫
p(O, x|bj, sj, lj , dj)p(bj|sj , lj, dj)

p(sj |lj, dj)P (lj|dj) dsj (4.1)

where the summation over j aggregates the evidence from individual patch location,

76

Voting Space

True
Positive False

Positive

Foreground
Patches

Background
Patches

Foreground
Patches

Pruned by
Depth

Voting Space

True
Positive False

Positive

Figure 4.3: Top panel shows that patches associated to the actual object parts (red
boxes) will vote for the correct object hypothesis (red dots) in the voting space on
the right. However, parts from the background or other instances (cyan boxes) will
cast votes that may create a false object hypothesis (green dots) in the voting space.
Bottom panel shows that given depth information, the patches selected at a wrong
scale can be easily pruned. As a result, the false positive hypothesis will be supported
by less votes.

and the integral over sj marginalizes out the uncertainty in scale for each image patch.

Since bj is calculated deterministically from observation at location lj with scale sj ,

and we assume p(lj |dj) is uniformly distributed given depth, we obtain:

V (O, x|D) ∝
∑

j

∫
p(O, x|bj, sj, lj, dj)p(sj|lj.dj)dsj

=
∑

j,i

∫
p(O, x|Ci, sj, lj, dj)p(Ci|bj)

p(sj|lj, dj)dsj (4.2)

Here we introduce codebook entry Cj, matched by feature bj , into the framework,

so that the quality of a patch selected will be related to which codeword it is matched

to. Noting that Cj is calculated only using bj and not the location lj, scale sj ,

and depth dj , we simplify p(Cj |bj, sj , lj, dj) into p(Cj |bj). And by assuming that

p(O, x|.) does not depend on bj given Cj, we simplify p(O, x|Cj, bj , sj, lj, dj) into

p(O, x|Cj, sj, lj , dj).

Finally, we decompose p(O, x|.) into p(O|.) and p(x|.) as follows:

V (O, x|D) ∝
∑

j,i

∫
p(x|O,Ci, sj, lj, dj)p(O|Ci, sj, lj, dj)

p(Ci|bj)p(sj |lj, dj) dsj (4.3)

77

3D point clouds

Camera Coordinate 3D Coordinate

Sampled Image Patch

Corresponding Physical Part

S
d

f

θ
φ

Camera

Coordinate

Image

Plane

dd

Image

Patch

Y

Z

X

s

v
u

^
^

(u, v)
_ _

(u, v)

Figure 4.4: Illustration of interplay between scale and depth (depth to scale mapping).
Top panel illustrates the interplay between scale and depth. We make the assumption
that an image patch (green box) tightly encloses the physical 3D part with a fix
size. During training, our method deterministically selects patches given the patch
center l, 3D information of the image, and focal length f . During testing, given the
selected image patches on the object, our method directly infers the location of the
corresponding physical parts and obtains the 3D shape of the object. Bottom Panel
illustrates the physical interpretation of Eq. 4.4. Under the assumption that image
patch (red bounding box) tightly encloses the 3D sphere with radius r, the patch
scale s is directly related to the depth d given camera focal length f and the center
l = (u, v) of the image patch. Notice that this is a simplified illustration where the
patch center is on the yz plane. This figure is best viewed in color.

Interplay between scale and depth. We design our method so as to specifically

selects image patches that tightly enclose a sphere with a fix radius r in 3D during

training. As a result, our model enforces a 1-to-1 mapping m between scale s and

depth d. This way, given the 3D information, our method deterministically select the

scale of the patch at each location l, and given the selected patches, our method can

infer the underlying 3D information (Fig.4.4). In detail, given the camera focal length

f , the corresponding scale s at location l = (u, v) can be computed as s = m(d, l) and

the depth d can be inferred from d = m−1(s, l). The mapping m obeys the following

relations:

s = 2(v − v); v = tan(θ + φ)f

θ = arcsin(
r

dyz
); φ = arctan(

v

f
)

dyz =
d
√
f 2 + v2√

u2 + v2 + f 2
: d projected onto yz plane (4.4)

78

Hence, p(s|l, d) = δ(s − m(d, l)). Moreover, using the fact that there is a 1-to-1

mapping between s and d, probabilities p(x|.) and p(O|.) are independent to d given

s. As a result, only scale s is directly influenced by depth.

In the case when depth is unknown, p(s|l, d) becomes a uniform distribution over

all possible scales. Our model needs to search through the scale space to find patches

with correct scales. This will be used to detect the object and simultaneously infer the

depth d = m−1(s, l). Hence, the underlying 3D shape of the object will be recovered.

Random forest codebook. In order to utilize dense depth map or infer dense

reconstruction of an object, we use random forest to efficiently map features b into

codeword C (similar to Gall and Lempitsky (2009)) so that we can evaluate patches

densely distributed over the object. Moreover, random forest is discriminatively

trained to select salient parts. Since feature b deterministically maps to C i given

the ith random tree, the voting score V (O.x|D) becomes:

V (O, x|D) ∝
∑

j,i

∫
p(x|O,C i(bj), sj, lj)p(O|C

i(bj))

p(sj |lj, dj) dsj (4.5)

where the summation over i aggregates the discriminative strength of different trees.

In section 4.2.1.1, we describe how the distributions of p(x|O,C i(bj), sj, lj) and p(O|C i(bj))

are learned given training data, so that each patch j knows where to vast votes during

recognition.

4.2.1.1 Training the model

We assume that for a number of training object instances, the 3D reconstruction

D of the object is available. This corresponds to having available the distance (depth)

of each image object patch from its physical location in 3D. Our goal is to learn the

distributions of location p(x|.) and object class p(O|.), and the mapping of C i(b).

79

Here we define location x of an object as a bounding box with center position q,

height h, and aspect ratio a. We sample each image patch centered at location l and

select the scale s = m(l, d). Then the feature b is extracted from the patch (l, s).

When the image patch comes from a foreground object, we cache: 1) the information

of the relative voting direction b as q−l

s
; 2) the relative object-height/patch-scale ratio

w as h
s
; 3) the object aspect ratio a. Then, we use both the foreground patches

(positive examples) and background patches (negative examples) to train a random

forest to obtain the mapping C i(b). p(O|C) is estimated by counting the frequency

that patches of O falls in the codebook entry C. p(x|O,C, s, l) can be evaluated given

the cached information {v, w, a} as follows:

p(x|O,C, s, l) ∝
∑

j∈g(O,C)

δ(q − bj · s+ l, h− wj · s, a− aj)

where g(O,C) is a set of patches from O mapped to codebook entry C.

4.2.1.2 Recognition and 3D reconstruction

Recognition when depth is available. It is straightforward to use the model

when 3D information is observed during recognition. Since the uncertainty of scale

is removed, Eq. 4.5 becomes

V (O, x|D) ∝
∑

j,i

p(x|O,C i(bj), m(lj , dj), lj)p(O|C
i(bj))

Since sj = m(lj , dj) is a single value at each location j, the system can detect ob-

jects more efficiently by computing less features and counting less votes. Moreover,

patches selected using local appearance at a wrong scale can be pruned out to reduce

hallucination of objects (Fig. 4.3).

Recognition when depth is not available. When no 3D information is avail-

able during recognition, p(sj |lj, dj) becomes a uniform distribution over the entire

80

(a) Detection Result

Figure 4.5: A typical detection result in (a) shows object hypothesis bounding box
(green box) and patches (red crosses) vote for the hypothesis. A naive reconstruction
suffers from quantization error (b) and phantom objects (c). Our algorithm overcomes
these issues and obtains (d)

scale space. Since there is no closed form solution of integral over sj , we propose to

discretize the space into a finite number of scales S so that Eq. 4.5 can be approxi-

mated by

V (O, x|D) ∝
∑

j,i

∑

sj∈S

p(x|O,C i(bj), sj, lj)p(O|C
i(bj)) .

Decoding 3D information. Once we obtain a detection hypothesis (x,O) (green

box in Fig. 4.5(a)) corresponding to a peak in the voting space V , the patches that

have cast votes for a given hypothesis can be identified (red cross in Fig. 4.5(a)).

Since the depth information is encoded by the scale s and position l of each image

patch, we apply Eq. 4.4 in a reverse fashion to infer/decode depths from scales. The

reconstruction, however, is affected by a number of issues: i) Quantization error:

The fact that scale space is discretized into a finite set of scales, implies that the depths

d that we obtained are also discretized. As a result, we observe the reconstructed

point clouds as slices of the true object (See Fig. 4.5(b)). We propose to use the

height of the object hypothesis h and the specific object-height/patch-scale ratio w

to recover the continuous scale ŝ = h/w. Notice that since w is not discretized,

ŝ is also not discretized. Hence, we recover the reconstruction of an object as a

continuum of 3D points (See Fig. 4.5(c)). ii) Phantom objects: The strength and

81

robustness of our voting-based method comes from the ability to aggregate pieces of

information from different training instances. As a result, the reconstruction may

contain multiple phantom objects since image patches could resemble those coming

from different training instances with slightly different intrinsic scales. Notice that the

phantom objects phenomenon reflects the uncertainty of the scale of the object in an

object categorical model. In order to construct a unique shape of the detected object

instance, we calculate the relative object height in 3D with respect to a selected

reference instance to normalize the inferred depth. Using this method, we infer a

unique 3D structure of the visible surface of the detected object.

4.2.2 Stage 2: 3D Modelling

The goal of 3D modelling is to obtain the full 3D shape and texture of an (un-

known) object from a single images portraying the object observed from an (un-

known) viewpoint. We can achieve this by using the inferred depths from the image

(Sec. 4.2.1), which is a partial (view point limited) 3D point cloud (Partial Shape)

of the object (Fig. 4.1(c)). Here we discuss details on how to complete the partial

reconstruction.

4.2.3 3D shape recovery

We adopt the idea of using 3D shape exemplars to help recover the missing portions

of object 3D surface. The idea (similar to Pauly et al. (2005)) is to find a 3D shape

exemplar from a given database of 3D shape that can be aligned to the existing

incomplete 3D structure. As a result of this alignment, the incomplete elements of the

surface can be filled (replaced) with those of the aligned 3D exemplar. The challenges

are: i) how to search efficiently in the database of 3D shape exemplars until the most

suitable shape is found. ii) perform accurate alignment so as to enable accurate

replacement. The first challenge is addressed by leveraging the DEHV detector’s

82

ability to return object class and pose labels. This greatly reduces the search space

and allows to extract from the dataset a subset of exemplars that are likely to be very

similar to the one we seek to reconstruct.

We carry out accurate alignment between the reconstructed 3D shape and the

exemplar 3D shape using a novel ICP algorithm. This novel ICP performs alignment

jointly in 3D shape as well as in image space. The alignment in 3D shape is carried

out between vertices of a 3D exemplar model and the reconstructed 3D points. The

alignment in image space is carried out between the projected occluding boundaries

of the 3D exemplar model and object 2D contour. In the image, 2D contours are

obtained by applying grabcut foreground segmentation algorithm (Rother et al., 2004)

within the detection window. This joint alignment process is obtained by minimizing

the following cost function,

C(T) =
∑

i

C3(qi, T (vi)) + λ
∑

j

C2(ej, P roj(T (voj))) (4.6)

The first term, C3(qi, T (vi)) evaluates the 3D distance between an inferred 3D point

qi and the transformed corresponding vertex T (vi), where T (.) applies a 3D affine

transform on a vertex vi. The second term,

C2(ej , P roj(T (voj))) ,

evaluates the 2D distance between a pixel at the object’s 2D contour ej and the

2D projection of the transformed corresponding vertex at the occlusion boundary

(Proj(T (voj))). The parameter λ strikes the balance between two terms and it is

chosen empirically. Since the ground truth 3D and 2D correspondences are unknown,

the ICP algorithm alternates between 1) finding the transformation T which mini-

mizes the cost C(T) and 2) finding the correspondences which are the closest 3D point

T (vi) to qi and the closest 2D point Proj(T (voj)) to ej, till convergence. By choos-

83

−0.2

−0.15

−0.1

0.95

1

1.05

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

−0.06 −0.04 −0.02 0 0.02 0.04 0.06
0.35

0.4
0.45

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

(a) (b)
2D Alignment 2D Alignment3D Alignment 3D Alignment

Figure 4.6: Two examples of 3D+2D ICP fitting. In (a,b) (Left), the 2D contour
alignment results are shown, where a subset of points on the 2D object contour are
indicated by red crosses, and projected vertices lying on the occluding boundary of the
3D CAD model are indicated by green dots. In (a,b) (Right), the 3D points alignment
results are shown, where the partial/sparse inferred point clouds (by DEHV) are
indicated by red crosses, and the vertices of the 3D CAD model are indicated by
green dots. Notice that these two alignments are jointly enforced by Eq. 4.6.

ing the model corresponding to the smallest cost, we automatically complete the 3D

shape which best represents the query object in both 2D and 3D (See Fig. 4.6). Notice

that both terms in Eq. 4.6 are critical for achieving robust alignment. For instance,

the alignment of projected 3D CAD model with the 2D object contour (second term

of Eq. 4.6) can give rise to erroneous solutions that can be easily fixed if the first term

of Eq. 4.6 is also considered. On the other hand, second term of Eq. 4.6 is useful to

fix small registration errors in 3D which may correspond to large retrojection errors.

4.2.4 Texture Completion

After shape alignment (Fig. 4.1 (d)), we can directly map the texture from the

image inside the 2D object contour onto the 3D model. This simple approach gives

us a model with incomplete texture (See Fig. 4.1 (e)), where occluded object regions

will not be assigned to any texture. In order to obtain a model with complete texture,

we propose the following two approaches to infer the texture of the occluded regions

of the 3D model.

84

Figure 4.7: Hole filling results using (Left) classic Poisson compositing, and (Right)
our error-tolerant compositing technique. Notice that red circles highlight regions
where the bleeding artifact is fixed by the error-tolerant technique.

.

4.2.4.1 Symmetric Property

We use the property that object categories have often symmetric topology to

transfer the texture from the visible regions to the invisible ones (See Fig. 4.1 (f)).

Specifically, we assume that the object shape of the categories of interest are approx-

imately bilateral symmetric (that is, they are symmetric with respect to a plane of

reflection). Most common man-made objects satisfy this property. The identification

of the bilateral symmetry is carried automatically by applying the symmetry detec-

tion algorithm by Mitra et al. (2006) to the registered CAD model. This algorithm

allows to detect the plane of reflection. After the plane of reflection is detected, we

identify the pairs of faces which are in symmetric correspondence across the plane

of reflection. By knowing symmetric pairs of faces, we transfer the texture from the

visible surface areas (group of faces) to the invisible ones as follows: i) Since faces are

either on the left or right side of the plane of reflection, we decide which group (left

or right of the plane of reflection) are most visible. The texture coordinates of the

vertices composing the faces in the less visible group are removed. ii) The remaining

texture coordinates are transferred to their symmetric correspondences.

85

4.2.4.2 Hole Filling

The property of symmetry discussed above does not guarantee that all surface

elements are filled or assigned to object texture. Typically, the resulting models will

still have small holes on the surface (See Fig. 4.1 (f)). A rich line of work (Criminisi

et al., 2003; Shamir and Avidan, 2009; Hays and Efros , 2007; Efros and Leung , 1999)

have studied the problem of image completion or hole filling only on the 2D domain.

In this chapter, we apply an error-tolerant image compositing technique (inspired by

Tao et al. (2010)) to the un-textured region (holes in Fig. 4.1 (f)). Instead of solving

the classic poisson equation (Pérez et al., 2003), we solve the following weighted

equation:

div(W (∇I − v)) = 0 (4.7)

where I is the unknown image, v is the gradient field to guide the texture completion

process, and W is the weight capturing the importance of the gradient field. W

is introduced in Tao et al. (2010) so that the error between the image ∇I and the

gradient field v is not evenly distributed which causes the typical bleeding artifacts

(Fig. 4.7). In our implementation, we extract the boundary RGB value from the image

and simply assume a uniform gradient field v within region (hole). Most importantly,

we set W such that all interior pixels correspond to a constant weight, except for

pixels lying on the edges between pairs of faces with very different surface normals

corresponds to zero weights. The weights corresponding to boundary pixels are set

such that if a boundary color is very different from the median color of its neighboring

boundary pixels, its corresponding weight is low, and vice versa. In order to fill all the

holes, we first group the faces without texture to a set of disjoint groups, where faces

in different groups do not share vertices. For each group, we find the hole boundary

which shares vertices with the faces with texture, and extract the RGB value from

86

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re

ci
si

o
n

0. 1

2

4

6

8

1

mouse baseline
mouse nondepth
mouse depth

Title AP

0.807

0.794
0.721

Mouse

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re

ci
si

o
n

Mug

0. 1

2

4

6

8

1

mug baseline
mug nondepth
mug depth

Title AP

0.769

0.734
0.650

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re

ci
si

o
n

Stapler

stapler baseline
stapler nondepth
stapler depth

Title AP

0.540

0.506
0.413

Figure 4.8: Object localization results are shown as precision recall curves evaluated
using PASCAL VOC protocol. (Green curve) Result using standard ISM model
(baseline). (Blue curve) Result using DEHV with no depth information during testing.
(Red curve) Result using DEHV with partial depth information during testing. Notice
the consistent improvement of average precision (AP) compared to the baseline hough
voting.

the faces with texture along the hole boundary. We then project the group of faces

without texture onto an image plane with a most frontal view and solve I in Eq. 4.7

to fill the image RGB value within the projected hole boundary.

4.3 Experiment

We conduct experiments to evaluate the object detection and shape recovery per-

formance of our DEHV algorithm in Sec. 4.3.1, and the quality of 3D modelling in

terms of both shape recovery and texture completion in Sec. 4.3.2.

4.3.1 Evaluation of DEHV

We evaluated our DEHV algorithm on several datasets: ETHZ Shape dataset

(Ferrari et al., 2008a), 3D object dataset (Savarese and Fei-Fei , 2007), and Pascal

VOC07 dataset (Everingham et al., 2007). The training settings were as follows. For

each training image, we randomly sample 100 image patches from object instances

and 500 image patches from background regions. The scale of the patch size from

the corresponding object instance is determined by its (known) depth (Fig. 4.4). At

the end, 10 random trees (Sec. 4.2.1.1) are trained using the sampled foreground and

87

background patches for each dataset. For each experiment, we use a Hog-like feature

introduced in Gall and Lempitsky (2009). During detection, our method treats each

discrete viewpoint as a different class O.

4.3.1.1 Exp.I: System analysis on a novel 3D table-top object dataset

Due to the lack of datasets comprising both images and 3D depth maps of set

of generic object categories, we propose a new 3D table-top object category dataset

collected on a robot platform. The dataset contains three common table-top object

categories: mice, mugs, and staplers, each with 10 object instances. We arrange

these objects in two different sets for the purpose of object localization and pose

estimation evaluation. The object localization dataset (Table-Top-Local) contains

200 images with the number of object ranging from 2 to 6 object instances per image

in a clutter office environment. The object pose estimation dataset (Table-Top-Pose)

contains 480 images where each object instance is captured under 16 different poses

(8 angles and 2 heights). For both settings, each image comes with depth information

collected using a structure-light stereo camera. Please see the author’s project page

(http://www.eecs.umich.edu/~sunmin) for more information about the dataset.

We evaluate our method under 3 different training and testing conditions, which

are 1) standard ISM model trained and tested without depth, 2) DEHV trained

with depth but tested without depth, and 3) DEHV trained and tested with depth.

We show that the knowledge of 3D information helps in terms of object localization

(Fig. 7.6), and pose estimation (Fig. 4.9). Moreover, we evaluate our method’s ability

to infer depth from just a single 2D image. Given the ground truth focal length

of the camera, we evaluate the absolute depth error for the inferred partial point

clouds in Table 4.3-Left Column. Notice that our errors are always lower than the

88

http://www.eecs.umich.edu/~sunmin

Average Perf.=49.4%

.00 .27 .00 .00 .09 .09 .45 .09

.00 .46 .15 .04 .00 .15 .15 .04

.00 .00 .64 .00 .00 .04 .28 .04

.00 .07 .07 .61 .00 .00 .21 .04

.00 .25 .00 .00 .08 .00 .58 .08

.00 .09 .00 .00 .00 .57 .35 .00

.00 .00 .17 .00 .00 .00 .79 .04

.00 .11 .00 .07 .00 .00 .48 .33

front

front-left

left

left-back

back

back-right

right

right-front

f l lb b br r rf

(a) Standard ISM
Average Perf.=61.0%

f

l

lb

b

br

r

rf

f l lb b br r rf

.52 .00 .00 .08 .24 .00 .16 .00

.00 .63 .00 .11 .00 .05 .21 .00

.00 .08 .79 .08 .00 .00 .04 .00

.00 .04 .12 .77 .00 .00 .08 .00

.16 .04 .00 .12 .56 .00 .12 .00

.00 .08 .00 .12 .00 .62 .15 .04

.00 .04 .12 .12 .00 .00 .72 .00

.00 .00 .10 .45 .00 .00 .25 .20

(b) DEHV w/o depth
Average Perf.=63.0%

f

�

l

lb

b

r

rf

f � l lb b br r rf

.52 .00 .00 .05 .43 .00 .00 .00

.11 .42 .11 .00 .32 .05 .00 .00

.00 .04 .77 .00 .12 .00 .08 .00

.00 .00 .08 .73 .12 .00 .00 .08

.09 .00 .05 .05 .82 .00 .00 .00

.04 .04 .04 .00 .19 .65 .04 .00

.00 .00 .14 .07 .14 .00 .61 .04

.04 .00 .00 .25 .21 .00 .04 .46

(c) DEHV w/ depth

Figure 4.9: Pose estimation results averaged across three categories. The average
accuracy increases when more 3D information is available. Notice that, when depth
is available in both training and testing, the best performances are achieved.

Absolute Depth in (m) Relative Depth
(known focal length) (unknown focal length)
Sparse/Baseline Sparse/Baseline

Mouse 0.0145/0.0255 0.0173/0.0308
Mug 0.0176/0.0228 0.0201/0.0263

Stapler 0.0094/0.0240 0.0114/0.0298

Table 4.3: Depth recovery error.

baseline errors1. We also evaluate the relative depth errors2 reported in Table 4.3-

Right Column when the exact focal length is unknown. Object detection examples

and inferred 3D point clouds are shown in Fig. 4.10.

DEHV stapler DEHV mouse Savarese and Fei-Fei (2008) Farhadi et al. (2009b)
75.0% 73.5% 64.78% 78.16%

Table 4.4: Pose estimation performance on 3D object dataset (Savarese and Fei-Fei ,
2007)

4.3.1.2 Exp.II:Comparision on three challenging datasets

In order to demonstrate that DEHV generalizes well on other publicly available

datasets, we compare our results with state-of-the-art object detectors on a subset of

1It is computed assuming each depth is equal to the median of the depths of the inferred partial
point clouds.

2 ‖d−d̂‖
d

where d is the ground truth depth, and d̂ is the estimated depth. d̂ is scaled so that d

and d̂ have the same median.

89

Figure 4.10: Example of object detections (Top) and inferred 3D point clouds (Bot-
tom). The inferred point clouds preserve the detailed structure of the objects, like
the handle of mug. Object contours are overlaid on top of the image to improve
the readers understanding. Please refer to the author’s project page for a better
visualization.

Non-Hough Detector
recall @ 0.3/0.4 FPPI

DEHV KAS

67.8/77.4

Hough Detector
recall @ 1.0 FPPI

M HTDEHV

55.0

2

87.1

77.4/80.6

(a)

PMKrank

74.2

ISM

35.5

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False−positives per image

D
e

te
c
ti
o

n
 r

a
te

mugs(b)

 DEHV

Figure 4.11: Performance on the mug category of ETHZ shape dataset (Ferrari et al.,
2008a). (a-Top) Performance comparison with other pure Hough voting methods:
ISM (Leibe et al., 2004), M2HT (Maji and Malik , 2009), and PMKrank (Ommer
and Malik , 2009). (a-Bottom) Performance comparison between state-of-the-art non-
hough voting methods (KAS (Ferrari et al., 2008a)). (b) Detection Rate vs. FPPI
of DEHV.

object categories from the ETHZ shape dataset, 3D object dataset, and Pascal 2007

dataset. Notice that all of these datasets contain 2D images only. Therefore, train-

ing of DEHV is performed using the 2D images from these public available dataset

and the depth maps available from the 3D table-top dataset and our own set of 3D

reconstruction of cars3.

ETHZ Shape Dataset. We test our method on the Mug category of the ETHZ

Shape dataset. It contains 48 positive images with mugs and 207 negative images with

3Notice that our own dataset is only used to provide depth information.

90

a mixture of apple logos, bottles, giraffes, mugs, and swans. Following the experiment

setup in Ferrari et al. (2008a), we use 24 positive images and an equal number of

negative images for training. We further match the 24 mugs with the mugs in 3D

table-top object dataset to transfer the depth maps to the matched object instances

so that we obtain augmented depth for positive training images. All the remaining

207 images in the ETHZ Shape dataset are used for testing.

The table in Fig. 4.11(a)-top shows the comparison of our method with the stan-

dard ISM and two state-of-the-art pure voting-based methods at 1.0 False-Positive-

Per-Image (FPPI). Our DEHV method (recall 83.0 at 1 FPPI) significantly outper-

forms Max-Margin Hough Voting (M2HT) (Maji and Malik , 2009) (recall 55 at 1

FPPI) and pyramid match kernel ranking (PMK ranking) (Ommer and Malik , 2009)

(recall 74.2 at 1 FPPI). The table in Fig. 4.11(a)-bottom shows that our method is

superior than state-of-the-art non-voting-based method KAS (Ferrari et al., 2008a).

Note that these results are not including a second stage verification step which would

naturally boost up performance. The recall vs (FPPI) curve of our method is shown

in Fig. 4.11(b).

3D object dataset. We test our method on the mouse and stapler categories of

the 3D object dataset (Savarese and Fei-Fei , 2007, 2008), where each category con-

tains 10 object instances observed under 8 angles, 3 heights, and 2 scales. We adapt

the same experimental settings as Savarese and Fei-Fei (2007, 2008) with additional

depth information from the first 5 instances of the 3D table-top object dataset to

train our DEHV models. The pose estimation performance of our method is shown

in Table 4.3.1.1. It is superior than Savarese and Fei-Fei (2008) and comparable to

Farhadi et al. (2009b) (which primarily focuses on pose estimation only).

Pascal VOC 2007 Dataset. We tested our method on the car category of the

Pascal VOC 2007 challenge dataset (Everingham et al., 2007), and report the local-

ization performance. Unfortunately PASCAL does not contain depth maps. Thus,

91

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

p
re

c
is

io
n

Oxford (0.432)

UoCTTI (0.346)

IRISA (0.318)

Darmstadt (0.301)

INRIA_PlusClass (0.294)

INRIA_Normal (0.265)

TKK (0.184)

MPI_Center (0.172)

MPI_ESSOL (0.120)

DEHV (0.218)

Figure 4.12: Object localization result using PASCAL VOC07 dataset. The precision-
recall generated by our method (red) is compared with the results of 2007 challenge
(Everingham et al., 2007)-Oxford, (Everingham et al., 2007)-UoCTTI, (Everingham
et al., 2007)-IRISA, (Everingham et al., 2007)-Darmstadt , (Everingham et al., 2007)-
INRIAPlusClass, (Everingham et al., 2007)-INRIANormal, (Everingham et al., 2007)-
TKK, (Everingham et al., 2007)-MPICenter, (Everingham et al., 2007)-MPIESSOL.

in order to train DEHV with 3D information, we collect a 3D car dataset containing

5 car instances observed from 8 viewpoints, and use Bundler (Snavely et al., 2006)

to obtain its 3D reconstruction. We match 254 car instances 4 in the training set

of Pascal 2007 dataset to the instances in 3D car dataset and associate depth maps

to these 254 Pascal training images. This way the 254 positive images can be as-

sociated to a rough depth value. Finally, both 254 positive Pascal training images

and the remaining 4250 negative images are used to train our DEHV detector. We

obtain reasonably good detection performance (Average Precision 0.218) even though

we trained with fewer positive images (Fig. 4.12). Detection examples and inferred

objects 3D shape are shown in Fig. 4.13.

4.3.2 Evaluation of 3D Modelling

We conduct experiments to evaluate quantitatively and qualitatively the 3D mod-

elling stage of our system (Stage 2 Sec. 4.2.2). At that end, we collect a dataset which

comprises 3D reconstructions of 5 object categories: mice, mugs, staplers, cars, and

4 254 cars is a subset of the 1261 positive images in the PASCAL training set. The subset is
selected if they are easy to match with the 3D car dataset.

92

Figure 4.13: Examples of the complete 3D object inference process using the testing
images from Pascal VOC07 (Everingham et al., 2007), ETHZ Shape (Ferrari et al.,
2008a), and 3D object dataset (Savarese and Fei-Fei , 2007). This figure should be
viewed in color. Row 1 Detection results (green box) overlaid with image patch
centers (red cross) which cast the votes. Row 2 Inferred 3D point clouds (red dots),
given the detection results. Row 3 3D registration results, where red indicates the
inferred partial point clouds and green indicates the visible parts of the 3D CAD
model. Row 4 3D Object modelling using the 3D CAD models and estimated 3D
pose of the objects. Notice that the supporting plane in 3D object modelling are
manually added. Row 5 Visualizations of the estimated 6 DOF poses. (See author’s
project page for 3D visualization.)

bicycles. For each category, the dataset includes about 3 object instances and each

instance contains images of the object from camera poses evenly sampled across mul-

tiple azimuth angles. The corresponding depth information of each image is either

collected from a structured-light stereo camera or a structure from motion method.

We evaluate our method’s ability to recover the full 3D shape from an inferred

rough 3D structure (output of stage 1). Relative depth errors between ground truth

depths and recovered depths (i.e. these obtained after both just 3D ICP (Top-Row)

and joint 2D+3D ICP (Bottom-Row) CAD model alignment) are shown in Table

4.5. Baseline errors are computed assuming the depths are all equal to the median

of the inferred depths. Notice that the errors of 2D+3D ICP are always smaller than

93

Relative Depth Error (Dense/Baseline)
Mouse Mug Stapler Car Bicycle

3D ICP 0.0140/0.0216 0.0287/0.0252 0.0271/0.0283 0.0770/0.1038 0.0630/0.0631
2D+3D ICP 0.0113/0.0209 0.0227/0.0295 0.0260/0.0360 0.0900/0.1189 0.0563/0.0607

Table 4.5: This table shows the median of the relative depth errors for inferred
depths obtained after both just 3D ICP (Top-Row) and joint 2D+3D ICP (Bottom-

Row) CAD model alignment. Notice that relative depth error is defined as ‖d−d̂‖
d

,

where d is the ground truth depth, and d̂ is the estimated depth. Notice that d̂s
for each object instance are scaled so that ds and d̂s have the same median so that
inconsistent differences between median depths will not influence the evaluation of
3D shape reconstruction.

1 2 3 4 5
0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

Baseline

2D+3D ICP

R
e

la
ti
v
e

 D
e

p
th

 E
rr

o
r

#CAD

Figure 4.14: Relative depth errors using different number of CAD models for 2D+3D
ICP.

the baseline errors, and the errors of 2D+3D ICP are always smaller or similar than

the errors of 3D ICP. In our experiments, the inferred 3D and 2D information are

matched with about 5 different 3D CAD models selected from the database with the

correct object category and pose. The database of 3D CAD models is either collected

from Shilane et al. (2004) and other online 3D warehouses, or obtained by shape

from silhouette (Laurentini , 1994). Fig. 4.14 shows a plot of the relative depth errors

of 2D+3D ICP versus the number of CAD models of mouse being used. The plot

suggests that the more CAD models are used in 2D+3D ICP, the smaller the error

in registration is.

We have further used the ETHZ Shape mug dataset (Ferrari et al., 2008a) and

3D object dataset (Savarese and Fei-Fei , 2007) to generate typical examples of 3d

reconstructions from a single view. Figure 4.15 shows qualitative results of our full

94

(a) Recognition (b) Partial Shape (c) Incomplete 3D (d) complete 3D

−0.2
−0.15

−0.1
−0.05

0
0.05

0.1

0.9

0.95

1

1.05

1.1

1.15

1.2

−0.1

−0.05

0

−0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.10.30.35

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
0.35

0.4

0.45

0.5

0.55

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05

0.26

0.28

0.3

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

−0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015
0.214

0.216

0.218

0.22

0.222

0.224

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

−0.4
−0.3

−0.2
−0.1

0
0.1

0.2
0.3

0.7

0.8

0.9

1

1.1

−0.1

0

0.1

0.2

0.3

Figure 4.15: Examples of semi-automatic 3D object modelling process on a number of
query images. This figure is best viewed in color. Col. (a) Sample detection results
(green bounding box). Col. (b) Partial/Sparse reconstruction of the detected object,
where the inferred point clouds in red. Col. (c) Incomplete object 3D models using
only the visible part of the registered 3D CAD model. Col. (d) Complete 3D model
after texture completion using symmetric properties and hole filling.

algorithm on several images from 3D object dataset, ETHZ Shape mug dataset, 3D

table-top object dataset, and 3D modelling dataset.

95

4.4 Conclusion

In this chapter, we proposed a new detection scheme called DEHV which can

successfully detect objects, estimate their pose from either a single 2D image or a 2D

image combined with depth information. Moreover, we demonstrated that DEHV is

capable of recover the 3D shape of object categories from just one single uncalibrated

image. Given such a partial 3D Shape of the object, we show that novel 3D shape

recovery and texture completions techniques can be applied to fully reconstruct the

3D model of the object with both complete shape and texture. As future work,

we envision the possibility of integrating more sophisticated texture or 3D shape

completion techniques for further improving the quality of the overall 3D model on a

large scale of object categories.

96

CHAPTER V

Models for Articulated Objects

Detecting and estimating the pose (i.e., detecting the location of every body parts)

of articulated objects (e.g., people, cats, etc.) has drawn much attention recently.

This is primarily the result of an increasing demand for an automated understanding

of the actions and intentions of objects in images. For example, person detection

and pose estimation algorithms have been applied to the fields of automotive safety,

surveillance, video indexing, and even gaming. Most of the existing literature treats

object detection and pose estimation as two separate problems. On the one hand,

most of the state-of-the-art object detectors (Felzenszwalb et al., 2010; Leibe et al.,

2004; Viola and Jones , 2004; Bouchard and Triggs , 2005) do not focus on localizing

articulated parts (e.g., location of heads, arms, etc.). Such methods have shown

excellent results on rigid vehicle-type objects (e.g., cars, motorbikes, etc) but less

so on the articulated ones (e.g., human or animals) (Everingham et al., 2010). On

the other hand, most pose estimators (Lan and Huttenlocher , 2005; Wang and Mori ,

2008; Felzenszwalb and Huttenlocher , 2005; Eichner and Ferrari , 2009; Sapp et al.,

2010b; Ramanan, 2006; Ionescu et al., 2009) assume that either the object locations,

the object scales, or both are predetermined by either a specific object detector, or

given manually. We argue that these two problems are two faces of the same coin

and must be solved jointly. The ability to model parts and their relationship allows

97

to identify objects in arbitrary configurations (e.g., jumping and sitting, see Fig. 1.6)

as opposed to canonical ones (e.g., walking and standing). In turn, the ability to

identify the object in the scene provide strong contextual cues for localizing object

parts.

Some recent works partially attempt to solve the problems in a joint fashion.

Andriluka et al. (2009) combine a tree-model with discriminative part detectors to

achieve good pose estimation and object detection performance. However, good

detection performance is only demonstrated on the TUD-UprightPeople and TUD-

Pedestrians datasets (Andriluka et al., 2009), which have fairly restricted poses. Al-

ternatively, Bourdev and Malik (2009); Bourdev et al. (2010) propose a holistic repre-

sentation of human body using a large number of overlapping parts, called poselets,

and achieve the best performance on PASCAL 2007∼2010 person category. However,

poselet can only generate a distribution of possible locations for each part’s end points

independently, which make it difficult to infer the best joint configuration of parts for

the entire object.

Our Model. In this chapter, we present a new model for jointly detecting articu-

lated objects and estimating their part configurations (Fig. 1.6(a)). Since the building

blocks of this model are object parts and their spatial relationship in the image, we

call it the Articulated Part-based Model (APM). Our approach based on APM seeks

to satisfy the following properties.

Hierarchical (coarse-to-fine) Representation. Inspired by the articulated body

model in the 1980s (Marr , 1982) which recursively represents objects as generalized

cylinders at different coarse to fine levels (Fig. 1.6(b)), our model jointly models the

2D appearance and relative spatial locations of 2D parts (Fig. 1.6(b)) recursively at

different Coarse-to-Fine (CF) levels. We argue that a coarse-to-fine representation is

valuable because distinctive features at different levels can be used to jointly improve

detection performance. For example, the whole body appearance features are very

98

useful to prune out false positive detection from the background, whereas detail hand

appearance features can be used to further reinforce or lower the confidence of the

detection.

Robustness to Pose Variability by Part Sharing. Articulated objects exhibit

tremendous appearance changes because of variability in: i) view point location (e.g.

frontal view, side view, etc); ii) object part arrangement (e.g. sitting, standing,

jumping, etc); iii) self-occlusions among object parts (Fig. 1.6(a)). We refer to the

combination of these effects as to the pose of the object. Methods such as Felzenszwalb

et al. (2010); Zhu et al. (2010) capture such appearance variations by introducing

a number of fully independent models where each model is specialized to detect

the object observed under a specific pose. Clearly such representation is extremely

redundant as appearance and spatial relationship of parts are likely to be shared

across different poses (e.g., a ”stretched arm” is observed in both a sitting (Top) and

standing (Bottom) person as Fig. 1.6(b) highlights in red). While this representation

may be suitable for rigid objects (for which appearance changes are mostly dictated

by the view point location of the observer), it may be less so for articulated objects.

In order to obtain a more parsimonious representation while keeping the ability to

capture rich pose variability, we introduce the concept of ”part-type”. A part-type

allows to characterize each part with attributes associated to semantic or geometrical

properties of the part. For example a human arm can be characterized by part-

types such as ”stretched” or ”fore-shortened” at a given level of the hierarchy. The

introduction of part-types lets parts be shared across object poses if they can be

associated to the same part-type. By having the APM to share parts, we seeks to

strike a good balance between model richness (i.e., the number of distinct poses) and

model complexity (i.e., the number of part-types) (Sec. 5.1.3).

Efficient Exact Inference & learning Following the recursive structure of an

APM, we use efficient dynamic programming algorithms to jointly (and exactly) infer

99

the best object location and estimate their pose (Sec. 5.1.1, 5.1.2). We learn the

parameters regulating part appearance and their relationships across coarse-to-fine

levels by using a Structured Support Vector Machine (SSVM) (Tsochantaridis et al.,

2004) with a loss function penalizing incorrect pose estimation (Sec. 8.3).

Novel Evaluation metric. Because the detection and pose estimation are of-

ten performed separately, no standard method exists for evaluating algorithms that

address both problems. The popular Percentage of Correctly estimated body Parts

(PCP) metric measures the percentage of correctly detected parts for the objects

that have been correctly detected. This is problematic in that PCP can be high while

detection accuracy is low. To fix this, we propose to directly compare the recall vs

False Positive Per Image (FPPI) curves of the whole object and all parts. Using this

new measure as well as standard evaluation metrics, we show that APM outperforms

state-of-the-art methods. We also show, for the first time, promising pose estimation

results on two very challenging categories of PASCAL: cats and dogs.

The rest of the chapter is organized as follows. Model representation, recogni-

tion, learning, and implementation details are discussed in Sec.5.1, 8.3, and 7.1.4

respectively. Experimental results are given in Sec. 8.4.

5.1 Articulated Object Representation

Given a still image containing many articulated objects (e.g., persons in Fig. 1.6(a)),

our goal is to jointly localize the objects and estimate their poses (i.e., localize artic-

ulated parts such as arms, legs, etc).

We introduce a new model called Articulated Part-based Model (APM) to achieve

this goal. In designing the APMmodel, we seek to meet the desiderata discussed in the

Sec. 5.1.3 and propose a representation that is hierarchical, robust to pose variability

and parsimonious. An APM for an object category (object-APM) is a hierarchical

structure constructed by recursively combining primary elements called atomic APM

100

Coarsest
Level

Finest
Level

Sitting Jumping

Left Right Front Back

Left Right Front Back STRETCHEDBENDED

STRETCHED
FORE-

SHORTENED

Person APM

Head -AAPM Arm -AAPM

Lower-Arm -AAPM

Torso -AAPM

Whole Body -AAPM
C

O
A

R
SE

ST
 L

E
V

EL
IN

TE
R

M
ED

IA
TE

 L
E

V
EL

FI
N

ES
T

LE
V

EL

Model Structure(a) Img Evidence(b)

Arm APM

Figure 5.1: Graphical illustration of the recursive coarse-to-fine structure of APM.
Panel (a)-Top: An APM (blue trapezoid) can be obtained by recursively combining
atomic APMs (AAPM) (black boxes) such as arm-AAPM, lower-arm-AAPM, etc,
into higher-level part-APM such as the arm-APM (green trapezoid). Panel (b) shows
examples of selected part locations (white windows) at the different levels. The
selected part-types are highlighted by red boxes in panel (a).

(AAPM). An AAPM is used to represent an object part at each level of the object

representation (e.g., an AAPM can represent a lower arm, the torso, or the whole

body, etc.). An AAPM just models the appearance of a part and it is characterized

by a number of part types (e.g., an head-AAPM is characterized by types such as left,

front, etc.) (Fig. 5.1). AAPMs can be recursively combined into APMs by following a

parent-child relationship. E.g., an arm-AAPM and a lower-arm-AAPM are subject to

a parent-child relationship (a lower-arm is part of an arm) and are combined into an

APM called arm-APM. As an other example, children APMs such as the arm-APM,

or head-APM can be combined with their parent (the body-AAPM) and form the

person-APM (Fig. 5.1). An APM models the part appearance of both parent and

children as well as the 2D geometrical relationships between parent and children.

101

Since each AAPM can be characterized by several part types, and since AAPM

or APMs can be reused toward constructing new APMs, an object-APM has the nice

property of being able of capturing an exponentially large number of pose configura-

tions by just using a few AAPMs. For instance, suppose that a person is described

by 5 parts (head, torso, arm, lower-arm) (thus 5 AAPMs) and that each part is char-

acterized by 4 types. A person-APM model can then encode up to 45 different poses

in total by only using the 5 AAPMS. This way, the APM allows us to strike a good

balance between model richness (i.e., the number of distinct object poses that the

model can capture) and model complexity (i.e., the number of model parameters)

(See Sec. 5.1.3(i)).

The structure of the APM model (i.e., number of parts, part-types, and parents-

child relationships) may be pre-defined following the kinematic construction of the

object. Given such a structure, the goal of learning is to jointly learn the appear-

ance model for every part-type and parent-child geometric relationships so that the

importance of different part-types and the discriminative power of different parent-

child relationships can be automatically discovered. During recognition (inference),

the goal is to determine the most likely configuration of object parts and part-types

that is compatible with the observation and the learnt APM model. The next section

describes how to utilize the recursive structure of APM to efficiently estimate the

most likely configuration.

5.1.1 Recognition

Finding the best part configuration (i.e., in our case, both the part locations and

types) for arbitrary part-based models corresponding to the highest likelihood or score

is in general computationally intractable since the configuration space grows expo-

nentially with the number of parts. By leveraging the recursive structure of an APM,

we show that an efficient top-down search strategy for exploring pose configuration

102

hypotheses in the image is possible. Then we show how to compute a matching score

for each hypothesis with a time that is at most quadratic with the number of hypothe-

sis per part by using a bottom-up score assignment scheme. This matching scores are

used to guide the top-down search to reach the best pose configuration hypothesis.

The result is an efficient inference algorithm that reaches the optimal solution in at

most quadratic time.

Top-down Search strategy. The image is explored at different levels of decom-

positions (from coarse-to-fine) using a recursive strategy. At each level, the image is

decomposed into regions (windows) and each region is associated with a part type.

Based on the selected part type and the parent-child relationship, each image region

is further processed and the next level of decomposition is initiated. The example

below clarifies this process.

Let us consider an APM for the object person (Fig. 5.1). At the first (coarsest)

level of decomposition only a single part is considered. This corresponds to the whole

object (person). Part types are different human poses (sitting, jumping, standing,

etc). The image is explored at different locations (i.e., a score is assigned at different

locations following a sliding window approach) and a part type (hypothesis) is asso-

ciated to each window location. E.g., the white window in Fig. 5.1(b) is associated

with the part type jumping. Following the structure of the APM, jumping is a parent

of a number of child parts (head, torso, left arm, etc), and the goal is to identify

each of these child parts within the current working window. Now the next level of

decomposition is initiated. Let us consider the child left-arm part as an APM. The

area within the current working window is explored at different locations and each

of these are associated to a left-arm part type (hypothesis). At this level, part types

are, for instance, stretched or foreshortened. E.g., the white window in Fig. 5.1(b)

is associated with the part type stretched. Following the structure of the APM, left-

arm is a parent of a number of child parts (upper-arm, lower arm), and the goal is to

103

identify each of these child parts within the current working window. This initiates

the next level of decomposition. The process terminates when all the image windows

are explored, all parts are processed and no additional decompositions are allowed.

In the Fig. 5.1, the active part types across levels are highlighted by red edges. Notice

that the levels of recursion depends on the structure design of the model.

Bottom-up matching score assignment. While the best hypothesis is found us-

ing a top-down strategy, the process of assigning a matching score to each hypothesis

follows a bottom-up procedure. The benefit of such procedure is that all the scores

can be computed in time at most quadratic to the number of hypothesis per part.

Notice that special forms of geometric relationship can even be computed in linear

time as in Felzenszwalb and Huttenlocher (2004b). In details, each matching score is

computed by combining an appearance score and a deformation score. The appear-

ance score is obtained by matching the evidence within the working image window

against the learned part type appearance model. The deformation score is obtained

by: i) computing the parent-child geometrical configuration - that is, the location

and orientation (angle) of a part within its parent reference frame; ii) matching this

configuration with the learnt parent-child geometrical configuration. These scores

are collected and combined bottom-up so as to obtain a final score that indicates

the confidence that an image window (at the coarsest level) contains a person with a

certain pose and part configuration. Details are explained in Sec. 5.1.2.

5.1.2 Matching Scores

Let us first introduce the parameterization of a part hypothesis in an APM. A

part hypothesis is described by the location h = (x, y, l, θ) and type s of the part,

where (x, y) is the part reference position (e.g.,the top-left corner of the part), (l, θ)

are the part scale (coarse-to-fine) and 2D orientation, respectively. The task of joint

object detection and pose estimation is equivalent to finding a set of part hypotheses

104

H = {(h0, s0), . . . , (hk, sk), . . . } such that the location h = (x, y, l, θ) and type s is

specified for all parts.

As previously introduced, the matching scores can be divided into two classes:

appearance and deformation scores. The appearance score of a specific part-type

is obtained by matching the feature ψa(h, I) extracted from the image within the

window specified by the part location h against the learned appearance model A, and

the score is defined as

fA(h; I) = ATψa(h, I) (5.1)

The deformation score is obtained by: i) computing the parent-child geometrical

relationship - that is, the difference ψd(h, ĥ) = (∆x,∆y,∆θ) of position and orienta-

tion between the expected child hypothesis ĥ and the actually child hypothesis h at

the child reference scale; ii) matching this relationship with the learnt parent-child

deformation model d. The score is defined as,

fD(h, ĥ) = −dTψd(h, ĥ) = −(d1 · (∆x)
2 + d2 · (∆x)

+d3 · (∆y)
2 + d4 · (∆y) + d5 · (∆θ)

2 + d6 · (∆θ)) (5.2)

where d = (d1, d2, d3, d4, d5, d6) is the model parameter for parent-child deformation.

The final score for each person hypothesis is recursively calculated by collecting

and combining scores associated to AAPMs into scores associated to APMs from

bottom to upper levels. In details, the score fi,si(hi, I) for an APM with index i

and type si, is obtained by aggregating: i) its own appearance score fA
i,si

(h, I); ii)

the scores from each child APM fc,sc(hc, I); iii) the deformation score fD(hc, ĥc)

calculated with respect to its child APM as defined in Eq. 5.2.

This process of estimating the score fi,si(hi, I) by aggregating the scores from its

child APMs is achieved by performing the following three steps: i) Child Location

105

Selection step. Given an expected child part hypothesis ĥc with index c and part type

sc, we select among all the location hypotheses hc for this part the one associated

to the largest score. The score associated to part c of type sc is then: fc,sc(ĥc, I) =

maxhc

(
fc,sc(hc, I) + fD(hc, ĥc)

)
.

ii) Child Alignment step: we need to align score contributed from each part child.

Let us indicate by sc the type of c
th child part. Then, the expected location of the child

part c is given by T (hi, t
si,sc
i,c), such that T (h, t) = h− t = (x− tx, y− ty , l− tl, θ− tθ),

where tsi,sci,c is the expected displacement between type si of part i and type sc of part

c. iii) Child Type Selection step: For each child part, we need to select the part type

corresponding to the highest score as follows:

fc(hi, I) = max
sc∈Sc

(
fc,sc(T (hi, t

si,sc
i,c), I) + bsi,sci,c

)
(5.3)

where Sc is the set of types for part c, bsi,sci,c is the bias between type si of i
th part

and type sc of cth part. Such biases capture the property that some types may be

more descriptive than other and therefore they can affect the relevant score function

differently. We learn such biases during the learning procedure (Sec. 8.3).

Finally, the score fi,si(hi, I) is obtained as fi,si(hi, I) = fA
i,si

(hi, I)+
∑

c∈Ci fc(hi; I),

where C i is the set of child APMs. Notice that the score fi,si(hi, I) for an atomic

APM (AAPM) is simply given by its own appearance score fA
i,si

(hi, I). These are

computed first as they are the primary elements of the overall object APM structure.

Using this way of aggregating the scores, the matching scores for all the parts in the

APM structure can be calculated once the scores of its child APMs are computed.

Notice that the time required to compute the scores is linearly related to the total

number of part-types in the APM.

106

5.1.3 Model Properties (APM)

In the following, we discuss the important properties of our APM: i) Sublinear-

ity. As illustrated in Fig. 5.1, a complex APM is constructed by reusing all APMs at

finer levels. If an APM contains M parts and each part contains N types, such APM

can represent NM unique combination of part-types (poses) with the cost of storing

N ×M appearance and deformation parameters, respectively (i.e., in Eq. 5.4, A, d

are indexed by part i and type si). As a result, the number of parameters in APM

grows sublinearly with respect to the number of distinct poses; ii) Efficient Exact

Inference. Despite the complex structure of APM, the “bottom-up” process is ef-

ficient, since the scores of different part-types are reused by parent APMs at higher

levels. Once the matching scores are assigned, the “top-down“ process is efficient as

the search for the best part configuration can be done in linear time. Compared to

most of the other grammar models which only find the best configuration among a

smaller subset of the full configuration space, our method can efficiently explore the

full configuration space (e.g., inference on a 640× 480 image across ∼ 30 scales and

24 orientation in about 2 minutes) making exact inference tractable.

5.2 Model Learning

The overall model parameter w = (A, . . . , d, . . . , b . . .) is the collection of appear-

ance parameters As, deformation parameters ds, and biases bs. In this section, we

illustrate how to learn the model parameters w. Since all the model parameters are

linearly related to the matching score (Eq. 5.1, 5.2, 5.3), the score of a specific set

of part hypotheses H can be computed as wTΨ(H ; I), where Ψ(H ; I) contains all

the appearance features ψa(.), geometric features ψd(.). The matching score can be

107

HEAD UPPER ARM LOWER ARM

head

lower-arms

torso

upper-arms

Ty
p

e
s

Part Appearance ModelCoarse Fine

Parent-Child Relationship

Object Poses

Full Body Head Lower-Arm

Back Left Right Bent Stretched

Si
tt

in
g

St
an

d
in

g

R
ig

h
t

Fr
o

n
t

Le
ft

Fo
re

-s
h

o
rt

e
n

e
d

St
re

tc
h

e
d

WHOLE BODY TORSOWHOLE BODY
Left Right Front

St
re

tc
h

e
d

B
e

n
d

e
d

ARM

a)

b)

c) Arms Akimbo

HOG
template

Example
image

HOG
template

Example
image

HOG
template

Example
image

HOG
template

Example
image

Figure 5.2: Visualization of a learned APM. Panel (a) shows the learned Histogram of
Oriented-Gradient (HOG) templates with the corresponding example images for each
part-type. Panel (b) shows the parent-child geometric relationships in our model,
where different parts are represented as color coded sticks. Panel (c) shows samples
of object poses obtained by selecting different combinations of part-types from the
APM.

decomposed into

wTΨ(H ; I) =
∑

i∈V

AT
(i,si)

ψa(hi; I) +

∑

(i,j)∈ε

(
b
(si,sj)
i,j − dT(j,sj)ψd(hj, T (hi, t

(si,sj)
ij))

)
(5.4)

where V is the set of part indices, ε is the set of parent-child parts, A(i,si) specify the

appearance parameter for type si of part i, d(i,si) specify the deformation parameter

for type si of part i, and b
(si,sj)
i,j and t

(si,sj)
ij specify bias and expected displacement of

selecting part j with type sj as the child of part i with type si.

108

Consider that we are given a set of example images and part annotations {In, Hn}n.

We can cast the parameter learning problem into the following SSVM (Tsochantaridis

et al., 2004) problem,

minw, ξn≥0 wTw + C
∑

n

ξn(H)

s.t. ξn(H) = max
H

(4(H ;Hn) +

wTΨ(H ; In)− wTΨ(Hn; In))

, ∀n , ∀H ∈ H (5.5)

where 4(H ;Hn) is a loss function measuring incorrectness of the estimated part

configuration H , while the true part configuration is Hn, and C controls the relative

weight of the sum of the violation term with respect to the regularization term. The

loss is defined to improve the pose estimation accuracy as follows,

4(H ;Hn) =
1

M

M∑

i=1

4((hm, sm); (h
n
m, s

n
m))

=
1

M

M∑

i=1

(1− overlap((hm, sm); (h
n
m, s

n
m))) (5.6)

where overlap((hm, sm); (h
n
m, s

n
m)) is the intersection area divided by union area of

two windows specified by the part locations and types. Here we use a stochastic

subgradient descent method within the SSVM framework to solve Eq. 8.18. The

subgradient of ∂wξ
n(H) can be calculated as Ψ(H∗; In) − Ψ(Hn; In), where H∗ =

argmaxH(4(H ;Hn) +wTΨ(H ; In)). Since the loss function can be decomposed into

a sum over local losses for each individual part i, H∗ can be solved similarly to the

recognition problem in Sec. 5.1.1.

Analysis of our learned model. Fig. 5.2(a) shows learned part appearance models

from a person APM with 3 levels of recursion with typical part-type examples. Since

all the part-type appearance models are jointly trained by minimizing the same objec-

109

tive function (Eq. 8.18), the appearance model captures the shapes of the part-type

examples as well as the strength of the HOG weights reflecting the importance of

each part-type (See Fig. 5.2 for learned HOG templates). Fig. 5.2(b) illustrates a few

parent-child geometric relationships in the APM. For example, our model learns that

a head appears on the upper-body of a person with different orientations (Fig. 5.2(b)-

Left), and learn the stretched and bent configurations for the left-arm (Fig. 5.2(b)-

Middle). Notice that these parent-child geometric relationships indeed capture com-

mon gestures that appear in daily person activities, like ”arms akimbo” (Fig. 5.2(c)

red box). Fig. 5.2(c) shows more object poses by selecting different combinations of

part-types.

5.3 Implementation Details

Feature representation: We use the projected Histogram of Oriented-Gradient

(HOG) feature implemented in Felzenszwalb et al. (2010) to describe part-type ap-

pearance. Manual supervision: In order to train an APM, a set of articulated

part annotations is required. For people, we use the 19 keypoints provided in the

poselet dataset (Bourdev and Malik , 2009) as the part supervision. Type discov-

ery: We use the keypoints configuration and part length to object height ratio to

initially group parts into different types. After this initial grouping, each example

can be discriminatively assigned into different groups according to the appearance

similarity. Discretized part orientation: We follow the common convention to

divide the part orientation space into 24 discrete values (15◦ each).

5.4 Experiments

We evaluate our method on three main datasets, all of which contain objects in

a variety of poses in cluttered scenes. Object detection datasets that contain objects

110

(a) Poselet (Bourdev and Malik , 2009) (b) IIP (Ramanan, 2006)

0 1 2 3 4 5

FPPI

re
ca

ll
0.8

0.6

1

0.4

0.2

torso
upper-arms

obj_APM
head
lower-arms obj_poselet

0 1 2 3 4 5

FPPI

re
ca

ll

0.8

0.6

1

0.4

0.2

torso
upper-arms

obj_APM
head
lower-arms obj_poselet

Figure 5.3: Panel (a) shows that our detector applied on Poselet dataset (Bourdev and
Malik , 2009) slightly outperforms the state-of-the-art person detector (Bourdev et al.,
2010) (dashed curves). Panel (b) shows that APM significantly outperforms Bourdev
et al. (2010) on challenging Iterative Image Parsing dataset (Ramanan, 2006). Recall-
vs-FPPI curves are shown for each human part (with different color codes) by using
our method (solid curves).

with very restricted poses (e.g., TUD-UprightPeople, TUD-Pedestrians (Andriluka

et al., 2009)) are not suitable for evaluation here, since we are interested in datasets

that make the detection and pose estimation equally challenging. First, we com-

pare our object detection performance on the poselet (Bourdev and Malik , 2009) and

Iterative Image Parsing (Ramanan, 2006) datasets with the state-of-the-art person

(a) APM (b) Eichner et. al. (c) CPS (Sapp et al.)

0 1 2 3 4 5

lower-arms

FPPI

re
ca

ll

upper-arms
head object&torso

CPS

0.8

0.6

1

0.4

0.2

obj_APM
head
lower-arms
torso
upper-arms

0 1 2 3 4 5

FPPI

re
ca

ll

0.8

0.6

1

0.4

0.2

torso
upper-arms

head
lower-arms

0 1 2 3 4 5

FPPI

re
ca

ll

0.8

0.6

1

0.4

0.2

torso
upper-arms

head
lower-arms

Figure 5.4: Joint object detection and pose estimation performance comparison be-
tween our method (a), Eichner and Ferrari (2009) (b), and CPS (Sapp et al., 2010b)
(c) using recall vs. FPPI for 4 upper-body parts on stickmen dataset. ”obj” indicates
the detection performance of our object detector.

111

detector (Bourdev et al., 2010) and demonstrate superior performance, especially on

Ramanan (2006) which contains challenging sport images with unknown object scale.

We introduce a new evaluation metric called recall-vs-False Positive Per Image (FPPI)

to show joint object detection and pose estimation performance (Sec. 5.4.1). Second,

on the ETHZ stickmen dataset (Eichner and Ferrari , 2009), we show APM outper-

forms state-of-the-art pose estimators (Sapp et al., 2010b; Eichner and Ferrari , 2009)

using detection results provided by APM.

5.4.1 Evaluation Criteria

Recall v.s. False Positive Per Image (FPPI). We use recall v.s. False Positive

Per Image (FPPI) curves to show the joint object detection and pose estimation

(i.e.,parts localization) performance. The criteria for a correct object detection is

the same as Everingham et al. (2009), where the intersection divided by the union

between a candidate bounding box and the closest ground truth bounding box needs

to be bigger than 50%. A part detection is considered to be correct if both the object

corresponding to the part is detected and the Percentage of Correctly estimated body

Parts (PCP) matching criteria for the part is satisfied. For person category, we used

the same PCP0.5 criteria as Ferrari et al. (2008b). For cats and dogs categories, we

use PCP0.7 criteria. When plotting the recall v.s. FPPI curves, we first collect all the

candidate object instances (including object bounding boxes and part locations), then

we sort the candidate instances in a descend order according to the overall matching

score (Eq. 5.4). Finally, we calculate the recalls and FPPIs using different thresholds

of the matching score to generate the curves.

Percentage of Correct estimated body Parts (PCP). The typical measure of

performance on the buffy dataset (Ferrari et al., 2008b) is a matching criteria based

on both endpoints of each part (e.g., matching the elbow and the wrist correctly): the

state of a body part is correct if the endpoints corresponding to the state (u, v, l, φ) are,

112

on average, within r of the corresponding ground truth segments, where r is a fraction

of the ground truth part length. By varying r, a performance curve is produced where

the performance is measured in the percentage of correct parts (PCP) matched with

respect to r. In our experiment, we set r = 0.5 which is commonly used for evaluation.

5.4.2 Comparing with Poselet (Bourdev et al. (2010))

The Poselet dataset (Bourdev and Malik , 2009) contains people annotated with

19 types of keypoints, which include joints, eyes, nose, etc. We use the keypoints to

define 6 body parts at 3 levels: at the coarsest level, the whole body has 6 types; at

the middle level, head has 4 types, torso has 4 types, left&right-arms both has 7 types;

at the finest level, left&right-lower-arms both has 2 types. By assuming that body

parts and object bounding boxes annotations are available, we train our APM on the

same positive images used in Bourdev and Malik (2009) and negative images from

PASCAL’07 (Everingham et al., 2007). Fig. 5.3(a,b) shows that our object detection

performance is slightly better than Bourdev et al. (2010) (which achieves the best

performance on PASCAL 2010 - human category) on poselet dataset (Bourdev and

Malik , 2009) but significantly outperforms Bourdev et al. (2010) on Ramanan (2006),

respectively. We observed that Bourdev et al. (2010) tends to fail when the aspect

ratios of the object bounding boxes vary due to severe articulated parts deformations.

Fig. 5.3(a,b) also show our joint object detection and pose estimation performance

using part recall vs FPPI curves on these challenging datasets. Typical examples are

shown in the 1 ∼ 2 rows of Fig. 5.5.

5.4.3 ETHZ Stickmen dataset

The original ETHZ stickmen dataset (Eichner and Ferrari , 2009) contains 549

images, and it is partially annotated with 6 upper-body parts for each person. In order

to evaluate the joint object detection and pose estimation performance, we complete

113

torso objhead upper arm lower arm

Table 5.1: Comparison with other methods ((Eichner and Ferrari , 2009) and CPS
(Sapp et al., 2010b)) for recall/PCP0.5 @ 4 FPPI. Red figures indicate the highest
recall for each part. We perform better than the state-of-the-art in term of recalls for
every part except lower arms.

the annotation for all 1283 people. Previous algorithms evaluated on this dataset are

just pose estimators, which rely on an upper body detector to first localize the person.

Because of this, the PCP performance is only evaluated on the 360 detected people

that were found by the upper body detector. In order to obtain a fair comparison

of the joint object detection and pose estimation performance, we use recall/PCP0.5

(same as Eichner and Ferrari (2009)) vs. FPPI curves for all parts. We believe this

is a better performance measure than PCP at a specific FPPI. Indeed PCP ignores

to what degree the pose estimation performance is affected by the accuracy of object

detectors. Notice that PCP at different FPPI can be easily calculated from the part

recall v.s. FPPI curves by dividing the recall of each part by the recall of the object.

As an example, the latest PCP from Sapp et al. (2010b) is equivalent to the sample

points (indicated by dots) at 4 FPPI shown in Fig. 5.4(a). Notice that our method

significantly outperforms Sapp et al. (2010b) for each body part (except for lower arm

where Sapp et al. (2010b) and ours are on par).

We apply our APM learned from the Poselet dataset (Bourdev and Malik , 2009) to

jointly detect objects and estimate their poses on the stickmen dataset (Fig. 5.4(a)).

For a more fair comparison, since APM detects 846 people which is much more than

the 360 people detected by the upper body detector (Eichner and Ferrari , 2009), we

show the performance of Sapp et al. (2010b); Eichner and Ferrari (2009) by using

APM’s detection results (Fig. 5.4(b)(c)) Even though Sapp et al. (2010b); Eichner

114

and Ferrari (2009) incorporate additional segmentation information and color cues,

our method shows superior performance for almost all parts. We believe that the

main reason is because that Sapp et al. (2010b); Eichner and Ferrari (2009) assume

accurate person bounding boxes are given both in training and testing. Our method

overcomes such limitation by performing joint object detection and pose estimation.

A recall/PCP0.5@4FPPI table comparison is also shown in Table 5.1 with the winning

scores highlighted in red. We also found that our detector detects 92.5% of the 360

people detected by the upper-body detector. Among them, without knowing the

object location and scale, our PCPs for torso, head, upper-arm, and lower-arm are

91.9%, 73.0%, 60.7%, and 31.1%, respectively. Typical examples are shown in the

3 ∼ 5 rows of Fig. 5.5.

5.5 Conclusion

In this chapter, we proposed the Articulated Part Model (APM) which is a recur-

sive coarse-to-fine and multiple part-type representation for joint object detection and

pose estimation of articulated objects. We demonstrated on four publicly available

datasets that our method obtains superior object detection performances. Using a

novel performance measure (the part recall vs. FPPI curve) we showed that our part

recall at all FPPI are better than the state-of-the-art methods for almost all parts.

115

1.9396

(a) (b) (c) (d)
Head

torso

Rupper-arm

Rlower-arm

Lupper-arm
Llower-arm

(e)

(a) (b) (c) (d) (e) (f)

O
u

r
R

e
su

lt
Ei

ch
n

e
r

e
t.

 a
l.

C
P

S
St

ic
km

e
n

 D
at

as
e

t
D

at
as

e
t

P
o

se
le

t

4.978 2.492 4.5117

−0.96797

1.6621

3.2522

(a) (b) (c) (d) (e) (f) (g) (h)

IIP
 D

at
as

e
t

3.6716

2.3973 1.9919

(i)

1.9758

1.2973 0.82016 1.8855

0.74253 2.5328

2.926

0.65531

4.0272 1.7391

2.2726

3.74051.2237

0.92715

0.62979

(f)

0.67783

0.20864

1.816 1.9376

3.3021

0.65606
−0.8138

0.67783

0.20864

1.816 1.9376

3.3021

0.65606
−0.8138

0.67783

0.20864

1.816 1.9376

3.3021

0.65606
−0.8138

2.7074 0.23238

2.7074 0.23238

2.7074 0.23238

0.80816

2.24

0.80816

2.24

0.80816

2.24

Figure 5.5: Typical examples of object detection and pose estimation. Sticks with
different colors indicate different parts for different object categories. Blue bounding
boxes are our prediction and green ones indicate missed ground truth objects. The
first 2 rows show the results on Poselet dataset (Bourdev and Malik , 2009) and It-
erative Image Parsing dataset (Ramanan, 2006). Rows 3 ∼ 5 show the comparison
between our method, Eichner and Ferrari (2009), and CPS (Sapp et al., 2010b) on
the stickmen dataset (Eichner and Ferrari , 2009).

116

CHAPTER VI

Efficient Inference on Loopy Models for

Articulated Objects

Estimating the pose of humans (e.g., determining body part locations) from images

and videos is a core problem in computer vision and it is critical in many applica-

tions such as robotics, human computer interaction, video surveillance and gaming.

Because speed is an important requirement in most of these applications, researchers

have focused on approaches that put a premium on efficiency. Among them, tree-

structured models (Felzenszwalb and Huttenlocher , 2005; Ramanan, 2006; Eichner

and Ferrari , 2009; Andriluka et al., 2009; Sapp et al., 2010a,b; Sun and Savarese,

2011; Yang and Ramanan, 2011) (Fig. 1.7(a)) are commonly used. A tree structure

typically captures only the most informative spatial relationships (i.e., kinematic con-

straints) between pairs of parts since the location of one part is well constrained by

the location of its connected parts (e.g., the hand location is constrained by the arm

location). Inference in tree models can be done efficiently using dynamic program-

ming. As a result, such models can strike a good balance between efficiency and

estimation accuracy.

Despite their success, tree models are prone to some common misclassification er-

rors. For example, left and right limbs are often misclassified because their appearance

is typically very similar and their estimated locations tend to overlap in the image

117

(over-counting evidence). To overcome these types of misclassification errors, more

structured models such as the loopy graphical models (later referred as loopy model)

have been proposed (Jiang and Martin, 2008; Sigal and Black , 2006; Zhu et al., 2008;

Ren et al., 2005; Tran and Forsyth, 2010; Wang et al., 2011) (Fig. 1.7(b)). By captur-

ing interactions between a large number of pairs of parts, these methods are effective

at improving pose estimation results at the expense of a significantly increased com-

putational cost (Sontag et al., 2008b; Marinescu and Dechter , 2007). For instance,

methods based on cluster pursuit (Sontag et al., 2008b) become prohibitively slow

when the number of states (i.e., number of part location hypothesis) is large since its

time complexity is proportional to the number of states to the power of the cluster size

(typically ≥ 3). Methods based on Branch-and-Bound (BB) (Land and Doig , 1960)

search are used in Bayesian networks with a large number of random variables (Mari-

nescu and Dechter , 2007), but they become extremely inefficient when the number of

states becomes larger (as in the human pose estimation problem). This is because the

search proceeds by instantiating each state of every random variable sequentially so

that both time and memory usages increase dramatically when the number of states

increases. To improve efficiency, i) greedy methods are used to reduce the part lo-

cation hypothesis (e.g., selecting sparse interest points) (Ren et al., 2005; Zhu et al.,

2008; Tran and Forsyth, 2010) and/or ii) approximate inference approaches are ap-

plied (Jiang and Martin, 2008; Zhu et al., 2008; Ren et al., 2005; Tran and Forsyth,

2010; Wang et al., 2011).

In this chapter, we propose an efficient and exact inference algorithm based on BB

to solve the human pose estimation problem on loopy models, where the number of

part location hypotheses is large. Our contribution is two-fold: i) similarly to linear

programming relaxation, a novel bound is obtained by relaxing the loopy model into

a mixture of star-models; ii) a special data structure (BMT) and an efficient search

routine (OBMS) (see Sec. 6.3.2) are used to significantly reduce the time complexity

118

for calculating the bound in each branch of the BB search. Notice that it is possible

to relax the loopy model into other forms (e.g., mixture of trees) as later mentioned

in Sec.6.2.1. In this chapter we focus on ”mixture of star-models” since we have

developed a way to efficiently compute the bound of mixture of star-models. We

empirically show that when the number of hypotheses per part is large, our new

BB algorithm is an order of magnitude faster than state-of-the-art Cluster Pursuit

(CP) method (Sontag et al., 2008b) in solving the exact MAP inference problem. By

extending a state-of-the-art tree model (Sapp et al., 2010b) to a loopy model, the

estimation accuracy can be significantly improved (up to 5% for lower arm) on Buffy

(Ferrari et al., 2008b) and Stickmen (Eichner and Ferrari , 2009) datasets. Moreover,

our method can exactly solve the MAP inference problem on the Stretchable Models

(Sapp et al., 2011) (which contains a few hundreds of variables) in just a few minutes,

and achieves superior performance on a number of video sequences best represented

by the pre-trained model (see Sec. 6.4.5.2). Finally, since our proposed method can

solve the MAP inference problem over any pair-wise MRF, we demonstrated that our

method can be helpful in domains beyond computer vision such as molecular biology

(Sec. 6.4.6).

The problem of finding the best human body part configuration in a human model

is equivalent to finding the Maximum a Posteriori (MAP) assignment over a Markov

Random Field (MRF) model, since each body part can be treated as a variable in

the MRF and each part hypothesis is equivalent to an assignment of the variable (See

details in Sec. 6.2). In the remainder of this chapter, we first review basic concepts

on the MAP-MRF inference and its edge-consistent Linear Programming Relaxation

(LPR) in Sec. 6.1 and 6.2, respectively. Our novel contribution – the efficient BB

algorithm – is introduced in Sec. 6.3. The performance evaluation of our algorithm

is presented in Sec. 6.4.

119

6.1 Introduction on MAP-MRF inference

Markov Random Fields (MRFs) (Wainwright and Jordan, 2008; Koller and Fried-

man, 2009) provide a principled framework for modeling problems in computer vision,

computational biology, and machine learning where interactions between discrete ran-

dom variables are involved. However, solving the Maximum a Posteriori (MAP) infer-

ence problem in general MRFs is known to be NP-hard (Shimony , 1994). Researchers

have shown that MAP inference can be approximated by a Linear Programming Re-

laxation (LPR) problem (Shlezinger , 1976; Koster et al., 1998; Wainwright et al.,

2005) (see Werner (2007) for a review), and such LPR can be solved more efficiently

using its dual form (Kolmogorov , 2006; Werner , 2007; Globerson and Jaakkola, 2008;

Komodakis and Paragios , 2008) (see Sontag and Jaakkola (2009) for a review).

When MRFs are characterized only by unary and pairwise potentials, the MAP

inference problem can be approximated by an edge-consistent LPR (Sec. 6.2). Unfor-

tunately, it has been shown that edge-consistent LPR cannot exactly solve the MAP

inference problem in many real-world problems (Meltzer et al., 2005; Kolmogorov ,

2006; Yanover et al., 2006; Sontag et al., 2008b; Komodakis and Paragios , 2008;

Werner , 2008). Instead, researchers have proposed the following two deterministic

approaches to solve the MAP inference problem exactly:

1. Cluster Pursuit (CP) (Sontag et al., 2008b): The upper bound of the

edge-consistent LPR can be tightened by adding clusters of variables to form

a cluster-based LPR. Cluster Pursuit methods aim to find a set of clusters to

tighten the bound incrementally to achieve exact MAP inference.

2. Branch-and-Bound (BB) (Land and Doig , 1960): Given the upper and

lower bounds from the edge-consistent LPR, BB methods systematically search

for the exact solution by iteratively applying the branching and bounding strate-

gies (Sec. 6.3.1).

120

Both approaches are applied to further tighten the upper bound of the edge-consistent

LPR, which is obtained by solving for the optimal dual potentials (Eq. 6.4). Hence,

the total time to solve the MAP inference problems for both approaches is the sum of

the initial time to solve the edge-consistent LPR (TInit) and the time to tighten the

upper bound (TTighten)
1 We give more details of the computational time for each of

the methods below.

Cluster Pursuit. As shown by Sontag et al. (2008b), the time complexity of TTighten

for the CP method is O(PHq), where q is the maximum cluster size and P is the

number of Message Passing (MP) iterations accumulated while pursuing clusters.

Theoretically, as clusters across all sizes are explored (i.e., q equals the number of

variables), finding an exact solution is guaranteed. However, such exploration is

intractable. In practice, CP methods explore clusters with small size (e.g., q =

3 or 4) only. By exploring small clusters only, researchers (Sontag et al., 2008b;

Werner , 2008; Komodakis and Paragios , 2008) have shown that exact solutions can

be found (albeit without guarantee) in many practical cases. However, CP methods

are still prohibitively slow when the number of hypotheses H is large, since the time

complexity is proportional to O(Hq).

Näıve Branch-and-Bound Method. A näıve BB approach (Sec. 6.3.1 for an

overview of BB) can be designed by using the dual LPR (Eq. 6.4) to obtain bounds

at each branch, assuming the dual potentials are fixed (once the initial edge-consistent

LPR is solved). The time complexity for evaluating the bound is O(H2). Hence, the

time complexity of TTighten becomes O(BH2), where B is the number of BB branches.

Notice that the näıve BB is also slow for problems with a large H due to the quadratic

dependency on H .

To summarize, one can attempt to use näıve BB or CP to solve MAP inference

1The computation complexity of all methods reported in this chapter omits the dependency of
number of variables N and edges E is the MRF since the same MRF structure is given to all methods
for performing MAP inference.

121

exactly. However, it is challenging to find the exact solution efficiently, especially

when the number of hypotheses is large. This condition is common in computer vi-

sion problems (e.g., human pose estimation) and computational biology (e.g., protein

design). As a result, approximate inference algorithms or simplified representations

(e.g., MRFs with only tree structure) are often used to obtain inferior but efficient

solutions.In this chapter, we propose an efficient BB algorithm that can exactly solve

MAP-MRF inference problems with a large number of hypotheses more efficiently

than state-of-the-art methods (Sontag et al., 2008b; Marinescu and Dechter , 2007)

and other baseline BB methods as shown in Sec. 6.4.

Proposed Efficient Branch-and-Bound Method. We start by proposing in

Sec. 6.3 an efficient branch-and-bound method to speed-up the näıve BB method.

We utilize a data structure to calculate the bound for each branch in time linear

to the number of hypotheses H (Sec. 6.3.2). Moreover, we introduce a novel op-

portunistic search routine to further speed up the time complexity of the bound

calculation to O(Q log2(H)) for a subset of branches, where Q is a number typically

much smaller than H (Sec. 6.3.2). As a result, the time complexity of TTighten becomes

O(B1H + B2Q log2(H)) instead of O(BH2) for the näıve BB, where B = B1 + B2.

Most importantly, we empirically show that, when H is large, the proposed efficient

BB is much faster than CP (Sontag et al., 2008b) (Sec. 6.4).

6.2 The MAP problem and its LP Relaxation

Before discussing our proposed BB methods, we first introduce some preliminary

concepts, following Sontag and Jaakkola (2009). For simplicity, we consider pairwise

MRFs (specified by a graph G = (N , E) with a set of vertices N and a set of edges E)

where each edge is associated with a potential function θij(hi, hj). The goal of MAP

inference is to find an assignment hMAP ∈ HN (HN denotes the joint hypothesis

space
∏

i∈N Hi, where Hi is the hypothesis space for the i-th variable; i.e., hi ∈ Hi)

122

that maximizes

θ(h) =
∑

ij∈E

θij(hi, hj). (6.1)

Edge-consistent LPR. Since the problem is in general NP-hard, researchers have

proposed to approximate it as a linear programming relaxation problem through

pairwise relaxation. For each edge and assignment to the variables on the edge, a

marginal µij(hi, hj) ≥ 0 is introduced and
∑

hi,hj
µij(hi, hj) = 1 is enforced. The edge

consistent LPR is given by

max
h

θ(h) ≤ max
µ∈ML

{
∑

ij∈E

∑

hi,hj

θij(hi, hj)µij(hi, hj)}, (6.2)

where ML is the local marginal polytope enforcing that edge marginals are consistent

with each other, i.e.,

∑

hi

µij(hi, hj) =
∑

hk

µjk(hj , hk), ∀hj . (6.3)

The inequality holds since any discrete assignment (including MAP solution) should

satisfy the constraints.

6.2.1 Dual LPRs.

Many LPR problems have been proposed and demonstrated to be efficiently solv-

able in its dual form. Sontag and Jaakkola (2009) propose a common framework

wherein several dual LPRs can be viewed as minimizing the following functional of

dual potentials

J(f) =
∑

i∈N

max
hi

fi(hi) +
∑

ij∈E

max
hi,hj

fij(hi, hj). (6.4)

123

Here, fi(hi) are single node potentials, and fij(hi, hj) are pairwise potentials; these

dual potentials satisfy

F (θ) =




f :

∀h,
∑

i∈N fi(hi) +
∑

ij∈E fij(hi, hj)

≥
∑

ij∈E θij(hi, hj)




. (6.5)

It has also been shown in Sontag and Jaakkola (2009) that without any other con-

straints on F (θ), the optimum of this LPR problem would give the MAP value, i.e.

θ(hMAP) = min
f∈F (θ)

J(f). (6.6)

Notice that Sontag and Jaakkola (2009) emphasize that solving Eq. 6.6 is NP-hard,

and many LPR methods can be viewed as adding additional constraints to the F

space.

LPR naturally provides upper and lower bounds of the MAP-MRF inference prob-

lem that can be used by a branch-and-bound algorithm as follows:

Proposition VI.1. J(f) is an upper bound of θ(hMAP) for any f ∈ F (θ) (used as

the UB in Algorithm 1).

Proof. The proposition can be easily proved in two steps. First, J(f) ≥ minf∈F (θ) J(f)

is true for any f ∈ F (θ). Then, from Eq. 6.6, we deduce that J(f) ≥ minf∈F (θ) J(f) =

θ(hMAP) for any f ∈ F (θ).

Proposition VI.2. Given any h∗ ∈ HN , θ(h∗) is a lower bound of θ(hMAP) for any

f ∈ F (θ) (used as the LB(h∗) in Algorithm 1).

Proof. It is directly evident from the definition of θ(hMAP).

We will introduce a method to select h∗ in Sec. 6.2.2.

Notice that we have ignored the dependency of the hypothesis space HN on θ(h)

and J(f) for conciseness. In the following sections, we will highlight such dependency

124

of the hypothesis space only when necessary.

As we will discuss in Sec. 6.3.1, a valid upper bound, that is required to guarantee

the convergence of the BB algorithm, must satisfy J(f) =LB(h∗) when the hypothesis

space HN is a singleton (i.e., a set with exactly one hypothesis). It can be shown

that many dual LPRs (Shlezinger , 1976; Globerson and Jaakkola, 2008) satisfy such

a requirement. In the following section, we proceed with the dual LPR proposed by

Globerson and Jaakkola (2008), which can be solved by an efficient message passing

(MP) algorithm (later referred to as MPLP).

6.2.2 MPLP

The dual LPR proposed by Globerson and Jaakkola (2008) can be viewed as

minf∈FMPLP (θ) J(f), where the constraint set FMPLP (θ) is given by




f :

fi(hi) =
∑

j∈N (i)maxĥj
βji(ĥj, hi)

fij(hi, hj) = 0

βji(hj, hi) + βij(hi, hj) = θij(hi, hj)





(6.7)

where each edge potential θij(hi, hj) is divided into βji(hj, hi) and βij(hi, hj), and

N (i) is the set of variables connected to variable i according to the graph G. Notice

that FMPLP (θ) ⊂ F (θ) since

∑

i∈N

∑

j∈N (i)

max
ĥj

βji(ĥj , hi) ≥
∑

i∈N

∑

j∈N (i)

βji(hj, hi) (6.8)

=
∑

ij∈E

(βji(hj , hi) + βij(hi, hj)) =
∑

ij∈E

θij(hi, hj); ∀hi . (6.9)

For convenience, we follow Eq. 6.4 and 6.7 and transform the dual LPR J(f) to

125

sum of node-wise potentials fi as follows:

J(β) = J(f(β)) =
∑

i∈N

max
hi

fi(hi)

=
∑

i∈N

max
hi

∑

j∈N (i)

max
ĥj

βji(ĥj , hi), (6.10)

where the dual potentials βji(hj, hi) satisfy

B(θ) = {β : βji(hj, hi) + βij(hi, hj) = θij(hi, hj)} . (6.11)

As shown in Proposition VI.1, J(β) provides the upper bound. Most importantly,

J(β) is a valid upper bound as demonstrated in the following proposition.

Proposition VI.3. J(β) = LB(h), ∀β ∈ B(θ) when the hypothesis space HN = {h}

is a singleton.

Proof. The proposition is true since

J(β) =
∑

i∈N maxh̆i∈{hi}

∑
j∈N (i)maxĥj∈{hj}

βji(ĥj , h̆i)

=
∑

i∈N

∑
j∈N (i) βji(hj, hi)

=
∑

ij∈E (βji(hj, hi) + βij(hi, hj)) = θ(h) = LB(h).

The lower bound can be obtained by defining h∗ = argmaxh
∑

i∈N fi(hi). Simi-

larly, following Eq. 6.7 and Proposition VI.2, the lower bound LB(h∗) can be defined

126

as sum of node-wise potentials f̆i as follows:

LB(h∗) =
∑

i∈N

f̆i(h
∗) =

∑

i∈N

∑

j∈N (i)

βji(h
∗
j , h

∗
i)

=
∑

ij∈E

(βji(h
∗
j , h

∗
i) + βij(h

∗
i , h

∗
j))

=
∑

ij∈E

θij(h
∗
i , h

∗
j) = θ(h∗) , (6.12)

where f̆i(h
∗) is defined as

∑
j∈N (i) βji(h

∗
j , h

∗
i).

The upper bound can be tightened by finding the best dual potentials β using the

Message Passing (MP) algorithm introduced in Globerson and Jaakkola (2008). The

time complexity for the MP algorithm is O(PH2), where P is the number of message

passing operations. The time used to obtain β is included in TInit.

6.2.3 Time Complexity and Tightness of the Bound

Time Complexity. From Eq. 6.10, it is clear that it takes O(H2) operations to

calculate the bound, where H is the number of hypotheses per variables. Note that

the bound calculation becomes very slow when H is large. In Sec. 6.3, we describe

how to utilize a data structure and a search routine to speed-up the bound calculation

to O(B1H +B2Q log2(H)).

Tightness of the Bound. The tightness of the bounds can be controlled by selecting

the dual potentials β (or f in general). As mentioned later in Sec. 6.3.1, the tightness

of the bound will affect the number of branches evaluated in the BB algorithm.

Hence, the tighter the bound, the smaller the number of branches evaluated. Since

the MP algorithm ensures that the bound J(β) is decreasing after each MP operation,

the tightness of the bound is related to the number of MP operations (P). However,

since the cost of each MP operation is quadratic to H , there is a trade-off between the

tightness of the bound and the efficiency of the BB search. We explore the trade-off

127

Algorithm 2 Efficient Branch and Bound algorithm

1: Do prep(True) (Algorithm 3).
2: Set HN as initial solution space and set a priority queue Q to empty.
3: Do (h∗,UB)=getBound(HN) (use Algorithm 6 to efficiently evaluate

Eq. 6.10).
4: Set GLB = LB(h∗) (Eq. 6.12).
5: Insert (HN ,UB,h

∗) into Q.
6: while true do
7: (ĤN ,GUB,h∗) = pop(Q) (get the branch with the global upper bound

(GUB)).
8: if ĤN 6⊂ HN then
9: Do prep(False) .
10: end if
11: Set HN = ĤN .
12: if |GUB−GLB| ≤ ε then
13: Return h∗.
14: else
15: Do (H1

N ,H
2
N) = split(HN ,h

∗) (branching strategy (Algorithm 7)).
16: Do (h∗

1,UB1)=getBound(H1
N).

17: Do (h∗
2,UB2)=getBound(H2

N).
18: GLB = max(LB(h∗

1),LB(h
∗
2),GLB) (get global lower bound (GLB)).

19: Insert (H1
N ,UB1,h

∗
1) and (H2

N ,UB2,h
∗
2) into Q.

20: end if
21: end while

in Sec. 6.4.

6.3 Efficient Branch-and-Bound

In this section, we first briefly introduce the basics of the BB technique. Then,

we propose an efficient BB method. The efficiency is achieved by leveraging a data

structure and a search routine to reduce the time complexity (Sec. 6.3.2) and exploring

different branching strategies (Sec. 6.3.3).

6.3.1 Branch-and-Bound Basics

Suppose we want to maximize a function g over the hypothesis space H, where H

is usually discrete. A branch-and-bound algorithm has two main steps:

128

Branching: The space H is recursively split into two smaller disjoint partition H1

and H2 guided by some rules (Sec. 6.3.3) such that H = H1 ∪ H2 and H1 ∩ H2 = ∅.

This yields a tree structure where each node corresponds to a subspace that contains

the space of all its descendant nodes.

Bounding: Consider two (disjoint) subspaces H1 and H2 ⊂ H. Suppose that a lower

bound LB(H1) of maxh∈H1 g(h) is known, an upper bound UB(H2) of maxh∈H2 g(h)

is known, and that LB(H1) > UB(H2). Then, there always exists at least one element

in the subspace H1 that is better than all elements of H2. So, when searching for the

global maximizer, one can safely discard such elements of H2 from the search, and

prune the subtree corresponding to H2. This implies that the search will terminate

when a partition H∗ is found such that |LB(H∗) − UB(H∗)| = 0 (zero gap) and

UB(H∗) is the global upper bound among remaining disjoint hypothesis spaces (i.e.,

UB(H∗) > UB(Ĥ), ∀{Ĥ|Ĥ ∩ H∗ = ∅}). Under this condition, every other disjoint

partition Ĥ will be pruned out, since LB(H∗) > UB(Ĥ).

Valid Bound. In order to guarantee the convergence of the algorithm, UB(H∗) =

LB(H∗) must be satisfied when the hypothesis space H∗ is a singleton.

Many BB algorithms (de Givry et al., 2005; Marinescu and Dechter , 2007; Hong

and Lozano-Perez , 2006) have been proposed to solve combinatorial optimization

problems. Most of them explore different methods to obtain upper/lower bounds and

different branching strategies to split the hypothesis space H to improve the empirical

running time. In the next section, we first present the efficient BB algorithm to speed-

up the näıve BB method (Sec. 6.3.2), and then describe our newly proposed branching

strategy (Sec. 6.3.3).

6.3.2 Efficient Bound

We observed that finding the maximum value over a branch of a 1D array is the

most common operation in the MAP assignment process in Eq. 6.10. In particular,

129

this operation appears when:

• maxĥj∈Hj
βji(ĥj, hi) needs to be calculated for all hypotheses hi ∈ Hi. Hence,

the overall time complexity is O(H2), where H is the number of hypotheses per

variable. Notice that the values of function β are constant.

• h∗i = argmaxhi∈Hi
fi(hi;HN) needs to be calculated for all nodes i ∈ N . Hence,

the overall time complexity is O(H). Notice that fi(hi;HN) is a function of the

hypothesis space (HN) in the branch (i.e., not a constant value).

Since both computations will be repeatedly used for all branches, it is critical that they

are implemented efficiently. In the following, we propose a data structure (Sec. 6.3.2.1)

and a novel search routine (Sec. 6.3.2.2) to efficiently find the maximum over a branch

of a 1D array.

6.3.2.1 Branch-Max-Tree (BMT)

The key idea of the BMT is to utilize a one-time preprocessing step to speed up

the querying operation which is supposed to be repeated multiple times. Given an

Array A[1 . . .H], a Branch-Max-Tree (BMT) (denoted by BMT.Set(A) in Fig. 6.1)

is set up in order to efficiently answer queries of the form maxk∈HA[k] (denoted by

BMT.max(H) in Fig. 6.1). As illustrated in Fig. 6.1, all nodes keep the pointer to

the maximum value of its children nodes in the BMT. The tree is set up such that

Algorithm 3 Preprocessing: prep(InitFlag)

1: for i ∈ N do
2: Set BMTi.set({fi(hi) : hi ∈ Hi}).
3: if InitFlag then
4: for hi ∈ Hi do
5: for j ∈ N (i) do
6: Set BMTji(hi).set({βji(hj , hi) : hj ∈ Hj}).
7: end for
8: end for
9: end if
10: end for

130

A=[10 8 -1 5]

BMT.set (A)

BMT.max({0…3})* = N(0).v*=10

BMT.max({2…3}) *= N(2).v*=5

Queries: 10 8 -1 5

10 5

10
N(b) ; b=0…6 - nodes

 accessed by branch index b

N.p - Parent Pointer

N.lc - Le! Child Pointer

N.rc - Right Child Pointer

N.v - pointer to the max value

N.b - branch index

Node Structure:
b=0

b=1 b=2

b=3 b=4 b=5 b=6

v*

lc rc

p

Figure 6.1: Illustration of the Branch-Max-Tree (BMT). The left panel shows an
example of a BMT set up from a simple Array A with only 4 elements. Notice that
each node in the tree caches a pointer to the max value of its child nodes, and the max
value is shown for illustration purposes. The top-right panel shows the data structure
of a node used to construct BMT. The bottom-right panel shows that once BMT is
built, each branch max query can be converted to a constant lookup time from the
corresponding node. Notice that the superscript ∗ denotes pointer dereferencing.

both its time and memory usage are linearly proportional to the size of the array.

Once the tree is set up, the maximum value of a branch H can be simply looked up

(in constant time) from a node in the BMT, where all its succeeding leaf-nodes fully

cover H. The requirement of using BMT is that the values of the array A must be

fixed.

Now we show the computation of maxĥj∈Hj
βji(ĥj , hi) can be sped up by using the

BMT. Since βji(ĥj, hi) for a specific hi is a constant 1D array, maxĥj∈Hj
βji(ĥj , hi)

can be obtained in O(1) time, once the BMT (denoted by BMTji(hi)) is set up at the

beginning of the BB algorithm in O(H) time. Thus, as shown in line 1 of Algorithm

1, a set of pair-wise BMTs (i.e., {BMTji(hi); hi ∈ Hi, (j, i) ∈ E}) are set up in O(H2)

time to speed up the query time computation. Notice that, the data structure for

Range Maximum Query (RMQ) problems (Berkman and Vishkin, 1993) can also be

used for speed-up. In this chapter, a simpler BMT data structure is used since the

ranges (branches) are predefined according to the branching strategy in Algorithm 7.

Most importantly, the second computation (argmaxhi∈Hi
fi(hi;HN)) cannot be sped

up by RMQ, but can be handled by BMT as described below.

131

6.3.2.2 Opportunistic Branch Max Search (OBMS)

In this section, we present a novel search routine called Opportunistic Branch Max

Search (OBMS) for speeding up the computation of argmaxhi∈Hi
fi(hi;HN). Similar

to our previous discussion, fi(hi;HN) can be treated as an 1D array. At the first

glance, the computation of argmaxhi∈Hi
fi(hi;HN) can be sped up by constructing a

BMT associated to the 1D array before the branching and bound search. However,

the values of the 1D array is constantly changing since fi(hi;HN) is a function of

the problem space HN , and the problem space is constantly changing during the

branch and bound search. In this case, the BMT needs to be reset from scratch so

that no further speed-up can be achieved for computing argmaxhi∈Hi
fi(hi;HN) using

BMT. However, we observed that the value of fi(hi;HN) for different hypotheses are

distributed in a large range (Fig. 6.2(a)). Moreover, if we compare fi(hi;HN) in one

branch with its child branch, we find that the maximal few hypotheses do not change

much (Fig. 6.2(b)). This suggests that the maximal few hypotheses of one branch

are likely to be the maximal few hypotheses of its child branch as well. Intuitively,

we can try to find the maximum hypothesis among these few hypotheses. Most

importantly, fi(hi;HN) and fi(hi; ĤN) are related to each other as described in the

following proposition when ĤN is a sub-space of HN .

Proposition VI.4. fi(hi;HN) is the element-wise upper bound of fi(hi; ĤN) when

ĤN is a subset of HN .

Proof. The proposition is true since

max
ĥj∈Ĥj

βji(ĥj , hi) ≤ max
ĥj∈Hj

βji(ĥj, hi); Ĥj ⊂ Hj ; j ∈ N .

Next, we propose an Opportunistic Branch Max Search (OBMS) routine to speed

132

More Likely

Less Likely

(a)Parent Branch

1000

2000

3000

4000

5000

6000

Order
0 2000 4000 6000−

0
.3
5

−
0
.2
5

−
0
.1
5

−
0
.0
5

V
al

u
e

s

Sorted Hypotheses
0 2000 4000 6000−

0
.3
5

−
0
.2
5

−
0
.1
5

−
0
.0
5

Sorted Hypotheses

0 10 20 30 40 50 60 70 80 90 100

Top 100

(b)Child Branch

ZOOM IN

Figure 6.2: Motivation for the Opportunistic Branch Max Search (OBMS). Panel
(a) shows the sorted fi(hi) value (y axis) for each hypothesis (x-axis) of the parent
branch, where colors from blue to red represent the order from large to small values.
Panel (b) shows the sorted fi(hi) value (y axis) for each hypothesis (x-axis) of the
child branch, where the same color-code according to the order obtained in its parent
branch is used. We clearly see that the top few hypotheses are mostly all blue. This
implies that the top few hypotheses are very similar across parent and child branches.

Algorithm 4 Opportunistic Branch Max Search:(h∗, v) =OBMS(HN ,i)

1: Input: HN specifies the branch, i specify the node index.
2: Set h∗=NULL .
3: while true do
4: Set ĥ = BMTi.max(Hi) (get maximizer of the upper bound).
5: if h∗ 6= ĥ then
6: Set v = 0 .
7: for j ∈ N (i) do
8: Set v = v + BMTji(ĥ).max(Hj) .
9: end for
10: Set BMTi.update(Hi, ĥ, v) (update the upper bound).
11: h∗ = ĥ .
12: else
13: break.
14: end if
15: end while
16: Return v.

up the computation without approximation by utilizing our intuition and the relation

(Proposition VI.4).

Let us define fi(hi; ĤN) as the 1D Array A[1 . . .H] and its element-wise up-

per bound fi(hi;HN) as AU [1 . . .H] (i.e., A[h] ≤ AU [h]; ∀h). Both A[1 . . .H]

and AU [1 . . .H] are given. The opportunistic search strategy (Algorithm 4) tests

133

if the maximizer of AU (i.e., hU∗ = argmaxh∈HA
U [h] in line 4 of Algorithm 4)

is also the maximizer of A. This can be done by first updating the upper bound

AU [hU∗] = A[hU∗] (line 10 of Algorithm 4) and checking whether hU∗ is still the

maximizer (i.e., hU∗ == argmaxh∈HA
U [h] in line 5 of Algorithm 4). If the condition

hU∗ == argmaxh∈HA
U [h] is satisfied, A[hU∗] ≥ AU [h]∀h ∈ H\hU∗ and the maximizer

of A is guaranteed to be found thanks to the following proposition.

Proposition VI.5. A[hU∗] ≥ AU [h]; ∀h ∈ H \ hU∗ implies that hU∗ is also the

maximizer of A.

Proof. Since AU [h] ≥ A[h]; ∀h ∈ H \ hU∗, A[hU∗] ≥ A[h]; ∀h ∈ H \ hU∗ is true.

If the condition is not satisfied, we set hU∗ = argmaxh∈HA
U [h] again and redo the

update and check until the condition is satisfied. As a result, the complexity of the

opportunistic search routine is linearly proportional to the number of trials Q < |H|

and we avoid evaluating all elements in H whose cost is O(|H|).

In the OBMS routine, it is critical to obtain hU∗ = argmaxh∈HA
U [h] and update

AU [h] very efficiently. As shown in Algorithm 4, a BMT data structure (BMTi) is

used to efficiently find the maximizer, and an efficient routine updating the value in

Algorithm 5 Efficient Update Procedure for BMT: BMT.update(H,h,v)

1: Input: H specifies the branch to be updated; h specifies the leaf-node where the
update starts; v is the new updated value.

2: Set br = b(H) to be the branch index for the whole branch; bl = b({h}) to be the
branch index of the leaf-node; the working node Nw = N(bl).p to be the parent
of the leaf-node.

3: Update N(bl).v
∗ = v .

4: while Nw.b 6= br do
5: if Nw.lc.v

∗ > Nw.rc.v
∗ then

6: Update Nw.v = Nw.lc.v .
7: else
8: Update Nw.v = Nw.rc.v .
9: end if
10: Set Nw = Nw.p .
11: end while

134

Algorithm 6 Get Bounds: (h∗, UB)=getBound(HN)

1: Set UB = 0.
2: Define h∗ = {h∗1, . . . , h

∗
i , . . . }.

3: for i ∈ N do
4: Get (h∗i , vi) = OBMS(HN ,i).
5: Set UB = UB + vi.
6: end for
7: Return (h∗,UB).

the BMT is described below.

Efficient BMT Update. We assume a BMT associated to AU [h] is already built. A

bottom-up procedure (Algorithm 5) efficiently updates the nodes in BMT along the

path from the leaf-node corresponding to the updated element to the node correspond-

ing to the branch (denoted by BMT.update(H, hU∗, A[hU∗])). The time complexity is

O(log2 |H|) since the update follows a single path in the BMT. The same BMT can

be used for any query with branch Ĥ which is the sub-space of H. However, for other

queries, the BMT needs to be reset from scratch with complexity O(|Ĥ|) (line 9 in

Algorithm 1).

The OBMS routine takes O(Q log2 |Ĥ|) ≤ O(Q log2H) instead of O(|Ĥi|) ≤

O(H), where Q is the number of trials in the OBMS. Typically Q � H since we

observed that the order of the top few hypotheses are not changing much (Fig. 6.2(b)).

It is worthwhile to mention that, a priority queue seems to be a good data structure

as well. Similar to BMT, it can be set up in O(|H|) time, efficiently queried in

O(1) time, and updated in O(log2 |H|) time. However, since we need to query for

hU∗ = argmaxh∈HA
U [h] multiple times in the BB search for different branches H, a

priority queue needs to be set up from scratch for each branch. Therefore, no speed-

up can be achieved. On the other hand, we can simply use the sub-tree of a BMT

when a sub-branch is visited in the branch and bound search.

In summary, we propose to pre-process the data structure prior to the BB search

in O(H2) time. This allows to reduce the time to calculate the bound from O(H2) to

135

Experiments Method Init. MP GVS VHO OBMS

Synthetic & Ours+GVS+NoOBMS Y Y N N
protein design Ours+NoGVS+NoOBMS Y N N N
problems Ours+GVS+OBMS Y Y N Y

Ours+NoGVS+OBMS Y N N Y
Ours+NoMP N Y N N

Human NoGVS NoVHO NoOBMS N N N N
pose NoGVS VHO NoOBMS N N Y N
estimation GVS NoVHO NoOBMS N Y N N
problem GVS VHO NoOBMS N Y Y N

NoGVS NoVHO OBMS N N N Y
NoGVS VHO OBMS N N Y Y
GVS NoVHO OBMS N Y N Y
GVS VHO OBMS N Y Y Y

Table 6.1: List of different variants of our efficient Branch-and-Bound algorithm.

O(Q log2(H)) when a sub-branch is explored and O(H) otherwise. Notice that the

overall time complexity of the algorithm also depends on the number of BB iterations

B. Hence, the overall average time complexity becomes O(BH) (when only BMT is

used) and O(B1H+B2Q log2(H)) < O(BH) (when both BMT and OBMS are used),

where B1 is the number of times BMT needs to be re-initialized (line 9 of Algorithm

1) and B1 +B2 = B.

6.3.3 Branching Strategy

The number of branches that a BB algorithm evaluates is also closely related to

the branching strategy. Here, we describe different strategies we used for variable

selection and variable hypothesis ordering (Algorithm 7).

6.3.3.1 Guided Variable Selection (GVS)

Inspired by Batra et al. (2011), we propose a novel scoring function that we call

Node-wise Local Primal Dual Gap (NLPDG) as a cue to select which variable to

split. Notice that the dual objective is already the sum of the node-wise local dual

136

objective fi(h
∗
i), where h

∗
i = argmaxhi∈Hi

fi(hi) (Eq. 6.10). Similarly, the node-wise

local primal objective is f̆i(h
∗) =

∑
j∈N (i) βji(h

∗
j , h

∗
i), where h∗ = {h∗i }i∈N (Eq. 6.12).

The NLPDG is defined as δi(h
∗) = fi(x

∗
i) − f̆i(h

∗). More precisely, we show the

following properties of NLPDG:

Proposition VI.6. δi(h
∗) is always non-negative.

Proof. Since fi(h
∗
i) =

∑
j∈N (i)maxĥj∈Hj

βji(ĥj, h
∗
i) ≥

∑
j∈N (i) βji(h

∗
j , h

∗
i) = f̆i(h

∗),

the proposition holds.

Proposition VI.7.
∑

i∈N δi(h
∗) = 0 implies that the upper bound (J(β)) equals the

lower bound (θ(h∗)), which is required to terminate the BB search.

Proof. Since
∑

i∈N fi(h
∗
i) =

∑
i∈N maxhi∈Hi

fi(hi) = J(β) and
∑

i∈N f̆i(h
∗) = θ(h∗),

the proposition holds.

These properties suggest that by splitting the variable with the largest NLPDG,

we can reduce the primal dual gap quickly. Another heuristic for variable selection

is to split the variable with the largest number of hypotheses (later referred to as

NoGVS). This baseline method is an efficient way to select a variable, but it may be

ineffective if one needs to reduce the number of branches that are evaluated.

Algorithm 7 Branching (H1
N ,H

2
N) =split(HN ,h

∗)

1: Input: Hv = H1 × · · · × Hn; h
∗ = (h∗1, . . . , h

∗
n).

2: Select Hs∗ where s
∗ = argmaxs∈V δs(h

∗) (select which variable to split using
NLPDG (Sec. 6.3.3.1)).

3: Suppose Hs∗ = [hi . . . hk] (hypotheses are in a fixed order).
4: Set H1

s∗ = [hi . . . hb0.5(i+k)c];
5: H2

s∗ = [hb0.5(i+k)c+1 . . . hk] (split in half).
6: Set H1

N = H1 × · · · × H1
s∗ · · · × Hn;

7: H2
N = H1 × · · · × H2

s∗ · · · × Hn.
8: Output: H1

N and H2
N .

137

6.3.3.2 Variable Hypothesis Ordering (VHO)

The order of the hypotheses in the space of each variable is fixed during the BB

search as mentioned in line 3 of algorithm 7. On the one hand, the hypothesis space

of each variable is split in a deterministic way so that an efficient bound calculation

approach can be achieved (Sec. 6.3.2). On the other hand, it is important to select

a good order of hypotheses so that the BB search works well. Interestingly, when

some knowledge about the problem domain is available, it is possible to order the

hypotheses (before BB search) so as to achieve a significant speed-up (later referred

to as VHO). For instance, for the human pose estimation problem (Sec. 6.4.5), each

hypothesis corresponds to a part location in the 2D image. It is possible to order

the hypotheses such that hypotheses corresponding to close-by part locations are also

close-by in the ordered list of hypotheses. Notice that CP methods cannot exploit

domain knowledge to improve the run time performance. When no domain knowledge

is available, we simply order the hypotheses using the local (unary) potentials (before

BB search) so that hypotheses with high local potentials are on one side and vice

versa (later referred to as NoVHO). Finally, note that all variants of our BB method

split the search space in half and use a best-first (largest upper bound) search strategy

on a OR search tree.

6.4 Experiments

We first compare different variants of our efficient BB method (see Table 6.1)

with the improved näıve BB approach (defined in Sec. 6.4.3), Sontag et al.’s method

(Sontag et al., 2008b) (later referred to as MPLP-CP), and a state-of-the-art COP

solver (Marinescu and Dechter , 2007) (later referred to as COP) on synthetic prob-

lems with different number of hypotheses H and variables N (see Sec. 6.4.4). Our

analysis clearly shows that our BB methods outperform other methods by solving for

138

a larger number of hypotheses H for almost all values of N (number of variables)

given a 20 minute time budget. Furthermore, we compare our method with MPLP-

CP (the best competing method identified in Sec. 6.4.4) on two real-world problems

in computer vision (human pose estimation in Sec. 6.4.5) and computational biology

(protein design in Sec. 6.4.6), where the number of hypotheses is typically large.

6.4.1 General Experimental Setting

We use the MPLP implementation provided by Sontag et al. (2008b) to obtain

the dual potentials β before further tightening the bound using CP or BB methods in

almost all experiments. This way, the relative performance differences can be directly

attributed to the specific method used to further tighten the upper bound (e.g.,

cluster pursuit or branch-and bound). In the human pose estimation experiment,

since the problem can be solved most of the time by solving the edge-consistent LPR,

we simply select β as 0.5× θ and tighten the bound using our efficient BB algorithm.

We evaluate this variant of our BB method (referred to as “Ours+No MP” in Fig. 6.4)

on the synthetic data as well. All experiments are performed on a 64-bit 8-Core Intel

Xeon 2.40GHz CPU with 48GB RAM; the codes are implemented in single thread

C++, and the timing reported is CPU-time (via the C++ clock() function) including

the actual run time of the algorithms (TTighten) and the initialization times (TInit)

(i.e., the time needed to update dual potentials and building a data structure for

BMTs).

6.4.2 Detailed Experimental Settings

By default, the edge-consistent LPR is solved using Message Passing (MP) al-

gorithm to initialize β until convergence2 or for at most 1000 iterations, whichever

comes first. If the gap between the upper and lower bounds is not smaller than 10−4

2The convergence condition is when the upper bound improvement is smaller than 10−4.

139

(stopping criteria) already, we further apply our BB method or MPLP-CP method

(Sontag et al., 2008b). Both methods stop when the same stopping criteria (gap

< 10−4) is reached. For MPLP-CP method (Sontag et al., 2008b), by default, we

alternate between adding 20 clusters at a time and running MPLP for 100 more

iterations.

In the human pose estimation experiment, since the problems can be solved most

of the time without cluster pursuit, we allow the MP algorithm to try harder to solve

the edge-consistent LPR. We follow the suggestions from the authors of Sontag et al.

(2008b) to allow the MP algorithm to continue running until the difference between

two consecutive upper bounds is smaller than 10−5 (instead of 10−4 by default), and

to add one triplet at a time (instead of 20 clusters by default). In this way, we ensure

that the MPLP-CP method does not slow down by adding unnecessary clusters.

6.4.3 Improved Naive Branch-and-Bound Algorithm

Recall that the dual objective is a functional of dual potentials (in Eq. 6.10),

and the dual potentials are fixed in the naive BB method. The naive BB method

can be improved by further updating the dual potentials at each branch to tighten

the upper bound. In this case, the time spent at each branch becomes the sum

of the time to evaluate the upper bound (O(H2)) and the time Tf to update the

dual potentials. It is easy to show that when the dual potentials are updated using

message passing (Globerson and Jaakkola, 2008), then Tf ≤ O(H2) and that the time

complexity of TTighten becomes O(B̂H2), where B̂ is the number of BB branches.

Notice that the number of branches B and B̂ for the naive and the improved BB,

respectively, are different quantities. The number of branches B is larger than B̂

since the bound at each branch for the naive BB is not tightened by updating better

dual potentials. Hence, the improved naive BB is always faster than the naive BB

(i.e., O(B̂H2) < O(BH2)). To make the improved naive BB a competitive baseline,

140

(a) Main-Band (b) Stripes (c) Tree Model (d) Full Model
Inferred

Hypothsis

Variables

Tree Edges

Non-Tree

Edges

Figure 6.3: Panel (a,b) show the adjacency matrices representing the pairwise inter-
actions in two types of MRFs: a) the main-band (Kb), and b) stripes (Ks) sparsity
patterns respectively, where the blue dots denote that interactions between two vari-
ables are modeled. Panel (c,d) show the graphical representation of MRFs for six
body parts. Here, circles denote variables, and blue and red edges denote the inter-
actions between pairs of variables in the tree and full model respectively. The MAP
assignments are shown in green arrows, where each arrow indicates the location and
orientation of the body part. Notice the full model produces the correct pose (d),
whereas the tree model produces the wrong right-lower-arm (c).

(a) Main-Band (b) Stripes (c) Dense

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

#
h

yp
o

th
e

si
s

(K
)

#variables(N)

Our+GVS+OBMS

Our+NoGVS+OBMS

Imp. Naive BB

MPLP-CP

COP

Our+NoMP

Our+GVS+NoOBMS

Our+NoGVS+NoOBMS

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

#
h

yp
o

th
e

si
s

(K
)

#variables(N)

Our+GVS+OBMS

Our+NoGVS+OBMS

Imp. Naive BB

MPLP-CP

COP

Our+NoMP

Our+GVS+NoOBMS

Our+NoGVS+NoOBMS

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

#
h

yp
o

th
e

si
s

(K
)

#variables(N)

Our+GVS+OBMS

Our+NoGVS+OBMS

Imp. Naive BB

MPLP-CP

COP

Our+NoMP

Our+GVS+NoOBMS

Our+NoGVS+NoOBMS

Figure 6.4: Comparison between variants of our efficient methods (blue, red, and
cyan curves) and the improved näıve BB (green), MPLP-CP (Sontag et al., 2008b)
(yellow), and COP (Marinescu and Dechter , 2007) (black) on the main-band (Kb),
stripes (Ks), and dense (Kd) problems. For each problem, the maximum numbers
of hypotheses (y-axis) solved for problems with different values of N (numbers of
variable) (x-axis) in the unit of 1K are plotted. Notice that our variants with the
opportunistic branch max search (OBMS) (denoted by circle dots) always solve more
hypotheses compared to the variants without OBMS (denoted by square dots).

we initialize the memory for storing the functionals once at the beginning of the

algorithm and update only a subset of functionals in each branch. In this way, our

implementation is not allocating memory for functionals at each branch and the

functionals are not re-initialized from scratch at each branch. The same stopping

criteria mentioned above is used in all the branches.

141

6.4.4 Experiments with Synthetic Data

We synthesize pairwise MRFs with three types of sparsity structures: (i) a spar-

sity structure with a single main band Kb (Fig. 6.3(a)), (ii) a sparsity structure with

many stripes Ks (Fig. 6.3(b)), and (iii) a dense, fully connected model Kd. The

first structure simulates problems where local interactions dominate long range in-

teractions (e.g., chain-model, protein design, etc.). The second structure simulates

the problems in which both local and long range interactions are important but the

interactions are clustered together.

For all experiments, we synthesize problems with different number of variables

N and number of hypotheses H . Unary and pairwise potentials are sampled from

standard normal distribution (i.e., θi(xi) ∼ N (0, 1) and θij(xi, xj) ∼ N (0, 1)). Given

a fixed time budget T (20 min), we explore the maximum value of H (number of

hypotheses per variable) that the algorithms can solve for different values of N (num-

ber of variables). The first two types of problems are 50% sparse (i.e., 50% of the

entries in the adjacency matrix of the pairwise MRFs are zeros.). Fig. 6.4 shows that,

for almost all values of N (x-axis), most variants of our method (except “Ours+No

MP”) can solve problems with more hypotheses (y-axis) than the improved näıve BB,

MPLP-CP (Sontag et al., 2008b), and the COP solver (Marinescu and Dechter , 2007)

can. In some cases, our best BB method can solve problems with a few thousands

more hypotheses than the best competing algorithm (Sontag et al., 2008b). We found

that our BB method (“Ours+GVS+OBMS”) using NLPDG and OBMS achieves the

best performance. Notice that, given the time budget, none of the methods can solve

problems with a large number of hypotheses when the number of variables N be-

comes very large. This is because the problem size (hypothesis space |XV |) increases

exponentially with the number of variables (i.e., HN).

142

6.4.5 Human Pose Estimation (HPE)

The HPE problem consists of estimating the location and orientation of human

body parts, such as head, torso, upper-arm, lower-arm, etc., from a single image

(green arrows in Fig. 6.3(c,d)). Solving this problem is critical in many computer

vision tasks such as human activity understanding (Yang et al., 2010; Yao and Fei-

Fei , 2010) and tracking (Andriluka et al., 2010).

The HPE problem can be modeled as a MRF where each body part is a variable,

each unique location and orientation of a body part is a unique hypothesis, and each

edge between a pair of variables captures the interactions between a pair of body

parts (Fig. 6.3(c,d)). Most state-of-the-art approaches (Ramanan, 2006; Sapp et al.,

2010b; Eichner and Ferrari , 2009; Ferrari et al., 2008b; Yang and Ramanan, 2011;

Sun and Savarese, 2011) follow the kinetic structure of the human body (e.g., lower-

arms are connected to upper-arms, and upper-arms are connected to torso, etc.) to

construct MRFs with a tree structure such that efficient and exact MAP inference

can be achieved by applying dynamic programming techniques. More sophisticated

approaches construct MRFs with non-tree-structures (Lan and Huttenlocher , 2005;

Zhu et al., 2008; Wang et al., 2011). However, due to the large number of hypotheses

per part (∼ 1K), these approaches rely on approximate MAP inference algorithms to

obtain inferior but efficient solutions.

In the following sections, we first model the HPE problem using a fully connected

pairwise MRF (later referred to as the full model) capturing the complete set of

pairwise interactions between pairs of six human body parts. The performance of our

model is evaluated on both Buffy (Ferrari et al., 2008b) and Pascal Stickmen dataset.

Then, we further evaluate the ability of our approach to handle HPE problems given a

video sequence on VideoPose2.0 dataset (Sapp et al., 2010c). For both set of problems,

we compare the computation efficiency of our BB algorithm with MPLP-CP (the best

competing method identified in Sec. 6.4.4), and the accuracy with state-of-the-art

143

Buffy Stickmen
Parts Ours Ours Ours CPS Ours CPS
Parts (full) (13 pairwise interactions) (7 pairwise interactions) (full)
Head 99.15 99.15 99.15 99.15 99.44 99.17
Torso 99.57 99.57 99.57 99.57 99.72 99.72

RUA 95.30 93.59 93.16 95.30 82.50 82.22
LUA 92.31 92.31 92.31 91.88 80.28 81.67

RLA 63.25 59.83 60.26 59.83 56.94 54.44
LLA 64.53 62.39 61.97 59.83 53.89 51.94

Table 6.2: Pose estimation accuracy of different variants of our models compared to
CPS on Buffy and PASCAL Stickmen datasets. Ours F, Ours 13, and Ours 7 denote
our fully connected model, the model with 13 pair-wise relationships (full model
excluding 2 relationships of symmetric arm pairs), and the model with 7 pair-wise
relationships (tree model with 2 additional symmetric arm relationships), respectively.

approaches (e.g., the Cascaded Pictorial Structure model (CPS) (Sapp et al., 2010b)

and Stretchable Model (SM) (Sapp et al., 2011)).

6.4.5.1 HPE Problem Given a Single Image

In order to guarantee a fair comparison with CPS (Sapp et al., 2010b) we extend

CPS (Sapp et al., 2010b) into a fully connected model by capturing pair-wise part re-

lationships other than the kinematic constraints. Notice that the same features, types

of classifiers, and learning procedures are used to build and train the fully connected

model. CPS is an upper body tree model with 6 articulated parts (i.e., head, torso,

left/right-upper-arms, and left/right-lower-arms) which are parametrized by the lo-

cation (x, y) and orientation (µ) of the part (i.e., h = (x, y, µ)). The model achieves

impressive performances by capturing more sophisticated pair-wise relationships than

just geometric relationships using segmentation, contour, shape, and color features.

In the CPS model, 5 decision-tree-based classifiers are trained to predict the strength

of pair-wise relationships given the features. On top of the existing 5 classifiers, we

further train 10 additional decision-tree-based classifiers and extend the model into

a fully connected pair-wise model (i.e., a loopy model). Since now all the classifiers

are trained independently, we treat the responses of the classifiers as the features Ψ

144

and assume all potentials are linearly related to a set of model parameters such that

the overall model is linearly related to the parameters as:

f(h;w, I) =
∑

i∈N

wT
i ψi(hi, I) +

∑

ij∈E

wT
ijψij(hi, hj , I) , (6.13)

wherew = {wi, . . . , wij, . . . } is the set of all model parameters, ψi(hi, I) and ψij(hi, hj , I)

are the unary and pair-wise features, respectively, and I is the image information.

For conciseness, we define f(h;w, I) = wTΨ(h, I), where w,Ψ(.), and h are in the

concatenated vector forms. The model is learned using the max-margin formulation

formulated below,

minw,ξ≥0
1

2
wTw + C

∑

n

ξn

s.t. ∀n, ∀h 6= hn, −w
TΨ(h, In) ≥ 1− ξn

∀n, wTΨ(hn, In) ≥ 1− ξn , (6.14)

where hn and In are the ground truth part configuration and the image evidence of the

nth image, respectively. We use a cutting plane solver (Tsochantaridis et al., 2004) to

solve the above quadratic programming (QP) problem with a large number of negative

constraints (the constraints in the first row). We use the max-margin formulation to

learn weights w such that the ground truth configuration (pose assignment) hn has

the highest score. This is equivalent to having the weights adjusted in such a way

that the MAP estimation becomes as consistent with the ground truth as possible.

We conduct experiments on both Buffy (Ferrari et al., 2008b) and PASCAL Stick-

men (Eichner and Ferrari , 2009) dataset following the same experimental setup in

Sapp et al. (2010b). The pose estimation performance is shown in Percentage of

Correct Parts (PCP) for each part in Table 6.2. PCP is the typical measure of per-

formance on the buffy dataset (Ferrari et al., 2008b). It uses a matching criteria based

145

10 10 10 10 10 10
10

10

10

10

10

10

Ours time(sec)

C
P

 t
im

e
(s

e
c)

-1

0

1

2

3

4

-1 0 1 2 3 4

Hard Problems

Figure 6.5: Scatter plot for the time comparison between the MPLP-CP method
(y axis) and our methods (x axis) on the Buffy dataset. Green indicates re-
sults of our NoGVS VHO NoOBMS approach and red indicates results of our
NoGVS VHO OBMS approach. The two percentages on top indicate how many
times our two approaches are faster than the CP, respectively.

on both endpoints of each part (e.g., matching the elbow and the wrist correctly): the

state of a body part is correct if the endpoints corresponding to the state (u, v, l, φ)

are, on average, within r of the corresponding ground truth segments, where r is a

fraction of the ground truth part length. By varying r, a performance curve is pro-

duced where the performance is measured in the percentage of correct parts (PCP)

matched with respect to r. In our experiment, we set r = 0.5 which is commonly used

for evaluation. We report the CPS performance reproduced by the public available

code released by Sapp et al. (2010b). We also explore the effect of the connectivity

of the model by training two sub-models with 13 and 7 pair-wise interactions on the

Buffy dataset. Our fully connected model (“Ours F” in Table 6.2) outperforms the

sub-models and CPS for most parts on both datasets. Moreover, our method achieves

an average PCP of 85.7% which is significantly better than another fully-connected

model (Tran and Forsyth, 2010) (67.6%) and on par with the state-of-the-art method

(Yang and Ramanan, 2011) (89.1%) on the Buffy dataset.

Computation Efficiency Analysis. We also compare the computation efficiency

146

All/ Hard Problem Avg. BB (sec) Avg. Total (sec) Avg. #branches

NoGVS NoVHO NoOBMS 37.668/ 76.823 38.275/ 77.413 626K/ 1243K
NoGVS VHO NoOBMS 6.637/ 12.242 7.175/ 12.762 148K /267K
GVS NoVHO NoOBMS 37.787/ 55.736 38.259/ 56.193 189K/ 292K
GVS VHO NoOBMS 12.029/ 17.990 12.483/ 18.436 80K/ 122K
NoGVS NoVHO OBMS 22.669/ 47.881 23.317/ 48.511 626K/ 1243K
NoGVS VHO OBMS 4.076/ 7.961 4.721/ 8.585 148K /267K
GVS NoVHO OBMS 8.387/ 13.548 8.890/ 14.036 189K/ 292K
GVS VHO OBMS 2.920/ 4.637 3.408/ 5.109 80K/ 122K
MPLP-CP N.A. 344.539/ 1096.190 N.A.

Table 6.3: Time break-down and number of branches for our methods (first 8 rows)
and MPLP-CP (last row). For each measurement, we show average processing times
over the whole Buffy dataset (left entry) as well as over the set of hard problems
(right entry). BB denotes time to run the BB search algorithm, and Total denotes
the BB search time plus the time to build BMTs.

 1

60

61

62

63

64

65

66

Avg. inference time (sec)

A
cc

u
ra

cy
 %

Lower Arms

 0.1 0.3 0.5 3

Figure 6.6: Trade-off between accuracy (y axis in PCP) and efficiency (x axis in time)
in estimating ”lower arms”.

of different variants of our methods with MPLP-CP method. Notice that we calculate

the bound in Eq. 6.10 by setting β = 0.5θ in this experiment, since it is more costly

to do message passing to search for β at the beginning. The left entries of the first

four rows in Table 6.3 show the average time break-down and number of branches for

four variants of our BB methods. These correspond to : 1) using NLPDG to guide

the variable selection (GVS) or not (NoGVS); 2) using domain knowledge for variable

hypothesis ordering (VHO) or not (NoVHO) (see Sec. 6.3.3 for different branching

147

15 20 25 30 35 40

20

40

60

80

Pixel Error Threshold

A
cc

u
ra

cy
 %

Elbow, Ours
Elbow, SM
Wrist, Ours
Wrist, SM

20

40

60

80

15
Pixel Error Threshold

20 25 30 35 40

A
cc

u
ra

cy
 %

20

40

60

80

Pixel Error Threshold
20 25 30 35 40

A
cc

u
ra

cy
 %

15

Figure 6.7: Quantitative results on three sequences in the VideoPose2.0 testset that
are best represented by the pre-trained model. The predicted joint location is correct if
its distance between the ground truth location is smaller than the specified pixel error
threshold (x-axis). In the first column, both methods (our method and Stretchable
Models (SM) (Sapp et al., 2011)) only detect half of the elbows. In the second sequence
(Center), our method achieves almost consistently ∼ 10% better wrist accuracy than
SM (Sapp et al., 2011) does. In the last sequence (Right), our method obtains better
accuracy when the pixel error threshold is small for both elbow and wrist.

strategies); 3) using Opportunistic Branch Max Search (OBMS) or not (NoOBMS).

The smallest average total time is achieved by our method (“GVS VHO OBMS”)

using NLPDG to guide the variable selection, using the domain knowledge for variable

hypothesis ordering, and using OBMS. Our best method takes 0.222 hours in total to

recognize poses in the whole Buffy dataset which contains 234 testing images. This

is 101 times faster than CP method (22.4 hours). A scatter plot in Fig. 6.5 shows

the time comparison for each example. It shows that our method with OBMS (red

dots in Fig. 6.5) is faster than our method without OBMS (green dots in Fig. 6.5)

(on average about 1.5 times faster). Moreover, we identify two groups of examples.

The group on the top is a set of hard examples since the CP method needs to search

for more complex constraints in order to solve these problems. We observe that our

method is faster than CP in 88% of the images in the dataset. Moreover, our BB

algorithm requires less memory usage (on average 640MB) than the CP method (on

average 7GB).

We also explore the trade-off between the pose estimation accuracy and inference

time by allowing our method to stop early (increasing ε in line 12 of Algorithm 1).

As shown in Fig. 6.6, when we allow approximate inference to run on average for 1.5

148

seconds, the algorithm already reaches the same performance as the exact inference

algorithm which takes more than 3 seconds on average. Typical results of both the

loopy model and the original tree model (Sapp et al., 2010b) on Buffy as well as

Stickmen datasets are shown in Fig. 6.8.

6.4.5.2 HPE Problem Given a Video Sequence

Sapp et al. (2011) propose the Stretchable Model (SM) which models 6 body joint

locations in each frame and captures interactions within frames as well as across con-

secutive frames. Since no existing methods can solve exact inference efficiently on

such a large loopy model (∼200 variables and a few hundred hypotheses per vari-

able), authors in Sapp et al. (2011) propose multiple inference techniques to solve

the joint estimation problem. These includes: A) exact inference on relaxed models,

B) approximate inference on a full model (dual decomposition). Their experimen-

tal results on VideoPose2.0 dataset (Sapp et al., 2010c) show that (A) is both more

efficient and accurate than (B). In this experiment, we first use message passing to

select the best β in order to avoid having a looser upper bound. We show that our

BB algorithm can be directly applied to exactly infer the MAP solution over their

pre-trained model. 13 out of 18 test sequences are solved within 20 minutes (on

average 5.546 minutes). Whereas, a dual decomposition approximate inference algo-

rithm (Globerson and Jaakkola, 2008) can only solve 4 out of 18 problems. Moreover,

the CP method can only solve the same 4 problems within one hour. Interestingly,

although our method solves the MAP estimation exactly, our method achieves sim-

ilar prediction accuracy in estimating the position of the elbow but about 5% lower

accuracy in predicting the position of the wrist. This observation suggests that the

pre-trained model does not appropriately represent the video sequences. Indeed, we

have noticed that the learned model typically assigns much lower values to the ground

truth assignments than it does with the values of the MAP assignments (on average

149

Torso

Upper Arms

Lower Arms

Head

Ours Sapp et al. Ours Sapp et al. Ours Sapp et al.

B
u

�
y

S
ti

ck
m

e
n

V
id

e
o

P
o

se
2

Figure 6.8: Typical results from Buffy, Pascal Stickmen, and VideoPose2 datasets
shown using a Stickmen representation from top to bottom, respectively. In each set
of results, we show our results on the left and the Sapp et al.’s results (Sapp et al.,
2010b, 2011) on the right.

60% smaller). This means that the model often does not agree with the ground

truth assignments. For example, in the first test sequence, the values of the MAP,

Sapp et al. (2011)’s approximate inference, and the ground truth assignments are

20755, 17901, 9257, respectively. The value of the ground truth assignment is closer

to the value of the approximate inference assignment by Sapp et al. (2011) than to

the value of the MAP assignment. We follow this observation and select the top 3

sequences where the value of the ground truth assignment is closer to value of the

MAP assignment with respect to the absolute difference between the values of the

ground truth and the approximate inference assignments by Sapp et al. (2011). In

these cases, exact inference obtained by our method achieves comparable or superior

accuracy (Fig. 6.7). Typical estimated body joint locations are shown in Fig. 6.8. This

suggests that a better set of model parameters must be learned to fully demonstrate

the power of the loopy model.

150

6.4.6 Other Application: Protein Design

Since our proposed method can solve the MAP inference problem over any pair-

wise MRF, we demonstrated that our method can be helpful in domains beyond

computer vision such as protein design problems in molecular biology. The protein

design problem consists of finding a sequence of amino-acids that are as stable as

possible for a given 3D shape of the protein. This is done by finding a set of amino-

acids and rotamer configurations that minimizes an approximate energy. Yanover

et al. (2006) introduce a dataset and model this problem as a MAP-MRF inference

problem. Due to the large combinations of rotamers and amino-acids at each location,

the hypothesis space is large (up to 180 hypotheses per variable for most cases). Thus,

these problems require a significant amount of time to solve (e.g., ranging from several

minutes to several days) (Sontag et al., 2008b). Since computation efficiency is an

important factor in many applications, we show that our method can be used to solve

a number of problems faster than CP method within a limited amount of time. We

show in Fig. 6.9 that given a 20 minute maximum time budget T (the same budget

as used in the synthetic data experiment), our best BB method (“Ours+GVS”) in

synthetic data experiment i) consistently solves more problems than MPLP-CP does

for all T , and ii) is consistently faster than MPLP-CP is when solving the same

number of problems (5.8 times faster in average).

6.5 Conclusion

In this chapter, we have proposed an efficient BB method to solve the MAP-MRF

inference problem by leveraging a data structure and a novel search routine to reduce

the time complexity. Moreover, we have proposed a novel branching strategy that

reduces the number of branches evaluated. Our method is faster than the proposed

improved näıve BB algorithm and state-of-the-art methods (Sontag et al., 2008b;

151

10
−1

10
0

10
1

10
2

10
3

10
4

0

1

2

3

4

5

6

7

time budget (sec)

#
p

ro
b

le
m

s

Our+GVS

MPLP-CP

Figure 6.9: Comparison between our method (“Ours+GVS”) (red) and MPLP-CP
(blue) on protein design problems. Number of problems solved (y-axis) given different
time budgets (x-axis) up to 20 minutes are plotted.

Marinescu and Dechter , 2007) on synthesized data and two problems in computer

vision and computational biology where the number of hypotheses is large. Finally,

we have shown that when domain knowledge is available, a significant speed-up can

be achieved.

152

CHAPTER VII

Models for Capturing Interplay between Objects

and Scene Layout

As more and more reliable and accurate object recognition methodologies become

available, increasing attention has been devoted to the design of algorithms that go

beyond the individual object detection problem and seek to coherently interpret com-

plex scenes such as the one in the center of Fig. 1.8. Coherent scene interpretation

requires the joint identification of object semantic labels (object classification), the

estimation of object 2D/3D location in the physical scene space (2D object localiza-

tion, depth inference) as well as the estimation of the geometrical structure of the

physical space in relationship with the observer. The latter includes the 3D geome-

try of the supporting surfaces (i.e., orientation and location of the surfaces that are

supporting objects in the scene) as well as their 2D extent in the image (supporting

surface segmentation).

Researchers have recognized the value of contextual reasoning as an important

tool for achieving coherent scene understanding. Two main types of contextual in-

formation have been explored: Semantic context and geometrical context. Semantic

context captures the typical semantic relationship among object classes co-occurring

in the same scene category (Torralba et al., 2003; Li and Fei-Fei , 2007; Li et al.,

2009a; Ladicky et al., 2010a; Gonfaus et al., 2010; Rabinovich et al., 2007) (e.g. cars

153

and roads are likely to co-occur within an urban scene). Geometrical context captures

typical spatial and geometrical relationships between object classes and the scene ge-

ometric structure (Gupta and Davis , 2008b; Sudderth et al., 2008; Hoiem et al., 2006,

2008; Gould et al., 2009a; Hedau et al., 2009; Heitz et al., 2008; Li et al., 2010; Saxena

et al., 2009; Bao et al., 2010b) (e.g., a car is likely to be located on top of the road

and unlikely to float in the air).

In this chapter, we present a new way to establish the contextual relationship

between objects and the scene geometric structure. Specifically, we are interested in

modeling the relationship between:

• objects and their supporting surface geometry. Geometrical configura-

tion of objects in space is tightly connected with the geometry (orientation) of

the surfaces holding these objects (Fig. 7.1 - Intuition 1);

• objects and observer’s geometry. Object appearance properties such as the

scale and pose are directly related to the observer’s intrinsic (focal length) and

extrinsic properties (camera pose and location) (Fig. 7.1 - Intuition 2);

• objects and supporting regions. The statistics describing the 2D appear-

ance (features, texture, etc.) of foreground objects are different from those

describing the 2D appearance of the supporting surfaces (Fig. 7.1 - Intuition 3).

Following these intuitions, our main contributions are:

1. A new coherent framework to model contextual reasoning for object detec-

tion, 3D layout estimation, and object supporting region segmentation, which

is based on the mutual interactions among three modules: i) object detector;

ii) scene 3D layout estimator; iii) object supporting region segmenter (Fig. 1.8).

The interactions between such modules capture the contextual relationships

discussed above.

154

2. Our approach leverages the estimations returned by the detector (i.e, class label,

object location, scale, and pose) in order to establish such contextual relation-

ship. Thus, it does not rely on using external holistic or local surface detectors

(Hoiem et al., 2005a; Hedau et al., 2009) or explicit 3D data (Cornelis et al.,

2006; Brostow et al., 2008).

3. Unlike other methods such as Li et al. (2009a); Ladicky et al. (2010a); Gonfaus

et al. (2010); Rabinovich et al. (2007); Li and Fei-Fei (2007); Torralba et al.

(2003) where the typical co-occurrence between objects and background (e.g.,

a car on road) is learnt during a training stage and used to provide semantic

context, our method exploits the local appearance coherency of objects and

supporting surfaces (within a specific image) as well as the typical joint spatial

arrangement of objects and supporting surfaces in order to reinforce (or weaken)

the presence of objects and to segment the object from its supporting surface.

4. The estimation of the scene 3D layout (orientation and location of the sup-

porting planes, location of objects in 3D and camera parameters (focal length))

is carried out from just one un-calibrated single image. Unlike other methods

such as Hoiem et al. (2005a); Hedau et al. (2009) wherein assumptions about

the relationship between the geometry of the ground plane and the camera pa-

rameters are made (e.g, the camera is located at given height from the ground

plane and only one ground plane is allowed), our approach can handle multiple

supporting planes and arbitrary observer viewing directions.

5. Most importantly, we introduce a new paradigm where the object detector mod-

ule is capable of adaptively changing the confidence in establishing whether a

certain region of interest contains an object (or not) as new evidence is gath-

ered from the plane 3D layout estimator and supporting region segmenter. Our

method is conceptually different from other methods such asHoiem et al. (2008);

155

Cornelis et al. (2006) where geometric context only modifies the confidence of

the object detector a posteriori (i.e., the detector always produces the same

confidence output which is subsequently modified by a geometric context mod-

ule). This enables an iterative estimation procedure where the detector itself

becomes more and more accurate as additional evidence about a specific scene

becomes available.

6. We validated our method against an augmented table-top dataset (introduced in

Chapter IV) (so as to test the system level properties of our framework) as well

as on existing databases (viz. labelme (Russell et al., 2008) and Office (Sudderth

et al., 2008) datasets). The experiments demonstrate that our method: i) is

scalable to generic scenes (indoors, outdoors) and generic object categories; ii)

achieves state-of-the-art detection results; iii) can successfully infer scene 3D

layout information and reason about supporting regions from a single image in

challenging and cluttered scenes.

The rest of this chapter is organized as follows. In section 7.1, we first describe

in detail the model representation and learning procedure of our object detector, 3D

layout estimator, and object supporting region segmenter modules; we then sum-

marize the types of interactions we used during inference. In section 7.2, we show

quantitative and qualitative experimental results on three different datasets. Finally,

we draw conclusions in section 7.3.

7.1 Geometrical Context Feedback Loop

In this section we first give an overview of our model which fuses the informa-

tion from the object detector (OD), layout estimator (LE), object supporting region

segmenter (RS) modules in a coherent fashion (Fig. 1.8).

156

(a) Intuition 1 (b) Intuition 2 (c) Intuition 3
n

n1n3

n
2 n1

Figure 7.1: List of intuitions in this chapter and comparison with related works.
(a) Intuition 1: Rigid objects typically lie up-right on the supporting plane. The
coherence between object pose and plane normal is used by our algorithm as well as
our preliminary work (Bao et al. (2010b), Chapter IV), but not in Hoiem et al. (2006);
Gould et al. (2009a); Hoiem et al. (2008). (b) Intuition 2: Under the perspective
camera model, the size of an object in the 2D image is an inversely proportional
function of its distance to the camera when the object pose is fixed. Hoiem et al.
(2006, 2008) use this relationship too. (c) Intuition 3: The statistics describing the
2D appearance (features, texture, etc.) of foreground objects are likely to be different
enough from those describing the 2D appearance of the supporting surfaces (e.g., we
rarely see green hulk playing on grass.). Unlike Rabinovich et al. (2007); Gupta and
Davis (2008b); Li et al. (2009a); Sudderth et al. (2008) where the typical co-occurrence
between objects and background is used to provide semantic context, we exploit
the local appearance coherency of objects and supporting surfaces (within a specific
image) as well as the typical joint spatial arrangement of objects and supporting
surfaces.

7.1.0.1 Model Overview

The critical building block of our system is the object detector as it generates

cues (e.g., object scale, location, and pose) that can be fed to the layout estimator

and the region segmenter modules. We use a novel detector called Depth-Encoded-

Hough-Voting (DEHV) which is based on our own work (Chapter IV). DEHV has the

crucial capability to produce an object detection confidence score which is not just a

function of the image local appearance but also a function of the geometric structure

of the scene (i.e., the 3D layout information L and supporting region information S).

This information restricts the object’s likely scale, pose, and background/foreground

configurations. At the beginning of the inference process (iteration 1 of the loop),

no information about 3D layout information L and supporting region information

S is available so the detector returns a number of detection hypotheses by explor-

157

ing all object categories, the complete scale space, all possible object poses, and all

background/foreground configurations in the image. Each detection hypothesis is as-

sociated to the object class O, location x, scale (1-to-1 mapped to depth do (Eq. 4.4)),

and pose φo (zenith and azimuth angles). This information is fed to both the layout

estimator and region segmenter modules. In turn, the layout estimator module pro-

duces an estimate of the 3D layout of the scene. The layout information L includes

the camera focal length f and a set of supporting planes Li, where Li is parameterized

by camera-to-plane height η and 3D orientation n in the camera reference system. By

following intuitions 1 and 2 (Fig. 7.1), this can be done if at least three objects are

detected in the image (proved by Bao et al. (2010b), see Proposition VII.1). More-

over, as we shall see in the region segmenter module, using the object’s location and

scale provided by the detector, the region segmenter module returns probability of

each pixel belonging to a supporting region S(l), where l specifies the 2D location of

the pixel. This information allows us to identify the extent of the supporting region.

Following intuition 3 (Fig. 7.1), this can be done by using a superpixel representation

to capture local appearance coherency of objects and supporting surfaces, and by ex-

ploiting the typical joint spatial arrangement of objects (whose location and scale are

given by the detector) and supporting regions in the image. In turn, the outputs for

the layout estimator and region segmenter modules are fed back to the object detec-

tor module and are used to help reduce the detector’s search space (i.e., object scale,

location, and pose). Specifically, location and orientation of the supporting planes

in the camera reference system, and camera focal length (returned by the layout es-

timator) simplify the complexity of the scale and pose search space. Moreover, the

estimation of the object supporting surface (returned by the region segmenter) helps

remove spurious patches (features) that are used to build the Hough voting score

in the DEHV. Overall, the detector leverages these additional pieces of evidence to

increase the confidence of true positives and decrease that of false alarms following

158

the iterative inference procedure described in Sec. 7.1.3. An overview of the inference

procedure is shown in Algorithm 8.

7.1.1 Model Representation

We introduce in detail our three modules (object detector, layout estimator, and

supporting region segmenter) in this section.

7.1.1.1 Object Detector Module

We employ a modified version of the Depth-Encoded-Hough-Voting (DEHV) ob-

ject categorical detector (Chapter IV) to obtain an estimate of the object location,

scale, pose, and depth. Similar to Leibe et al. (2004), the DEHV detector constructs

a voting space V (O, x|D) (Eq. 7.1), where O is object class (i.e. an object category

with a unique pose), x is the object’s 2D image location and scale (i.e. a 2D bound-

ing boxes enclosing the object), D is the depth information (i.e, the distance from

the camera to the object), and different poses are encoded as different object classes.

The voting space V is constructed by collecting probabilistic votes cast by the set of

patches describing object class O. Notice that the voting space V (O, x|D) depends

on the geometric structure of the scene since the object hypothesis (O, x) is related

to D. This novel property gives DEHV the ability to detect objects whose locations

and poses are compatible with the underlying layout of the scene.

The DEHV detector. Let {(Cj, d
p
j , lj)} be a set of patch attributes, where Cj

denotes the appearance of image patch j centered at image location lj , and d
p
j denotes

the distance from the camera center to the corresponding 3D location of a patch.

Appearance Cj is a discrete codeword label (Csurka et al., 2004). Notice that each

patch is associated with a physical 3D distance to the camera which affects the size

of the patch in 2D. We define V (O, x|D) as the sum of individual probabilities over

159

all observed images patches at location lj and for all possible depth dpj ∈ D, i.e,

V (O, x|D) =
∑

j

∑

d
p

j
∈D

p(O, x,Cj , d
p
j , lj)

=
∑

j

∑

d
p

j∈D

p(x|O,Cj , d
p
j , lj)p(O|Cj , d

p
j , lj)p(Cj |d

p
j , lj)p(d

p
j |lj)

where the summation over j aggregates the evidence from individual patch location,

and the summation over depth dpj marginalizes out the uncertainty of depth corre-

sponding to each image patch location. Since Cj is calculated deterministically from

lj and d
p
j , and assuming O only depending on Cj , we obtain:

V (O, x|D) ∝
∑

j

∑

d
p
j∈D

p(x|O,Cj, d
p
j , lj)p(O|Cj)p(d

p
j |lj)

We further assign image patches with different depths to different index j. As a

result, we can take only the summation over patch index j and obtain the equation

below.

V (O, x|D) ∝
∑

j

p(x|O,Cj, d
p
j , lj)p(O|Cj)p(d

p
j |lj) (7.1)

The first term p(x|O,Cj, d
p
j , lj) characterizes the distribution of object location x

given the predicted object class O and patch attributes {(Cj, d
p
j , lj)}. The second

term, p(O|Cj) captures the probability that each codeword belongs to an object class

O. Finally, p(dpj |lj) models the uncertainty of the depth information of patch j.

Similar to Chapter IV, our detector enforces a 1-to-1 mapping m between scale

s and depth d for each patch. This way, given the 3D information, our method

deterministically selects the scale of the patch at each location l, and given the selected

patches, our method can infer the underlying 3D information (Fig.4.4). For details,

please see Eq. 4.4 in Chapter 4.2.1.

Generating object hypotheses. After accumulating votes into the Hough voting

160

space V (O, x|D), a set of detection hypotheses {(Oi, xi)} corresponding to peaks in

the voting space can be obtained. Given the object class O and the 2D location x, the

image patches that cast votes for the hypothesis can be retrieved (later referred as

supporting image patches). Hence, the depth to image patch information described

in Eq. 4.4 can be used to calculate the depths of all image patches {dpj}. The depth

of the object do is defined as the median depth of the depths of image patches dpj .

Similarly, we can also retrieve the corresponding zenith angles {φp
j} corresponding

to all supporting image patches, and we use a verification support-vector-machine

(SVM) classifier to find the most likely zenith angle of the object φo among the

candidate zenith angles. Hence, the final output of the detector is a set of hypotheses

{(Oi, xi, φ
o
i , d

o
i)}.

One of the main contributions of this chapter is that the detector can modify

its behavior as knowledge about the scene layout (denoted by L) and the object

supporting regions (denoted by S) are available.

Knowledge of Supporting Region S. The region segmenter module provides

knowledge about the supporting region S and affects p(O|Cj). We replace p(O|Cj)

with p(O|Cj, lj ,S), and we show that it can be decomposed as follows,

p(O|Cj, lj,S) = p(O,O /∈ bg|Cj, lj,S) (7.2)

= p(O|O /∈ bg, Cj)p(O /∈ bg|Cj, lj,S) (7.3)

where O /∈ bg means the object class does not belong to the background class. The

first equality is true since we only need to evaluate object classes that belong to the

foreground object classes during Hough voting. The second equality follows the chain

rule in probability theory and conditional independent assumption between (lj,S)

and O given (O /∈ bg, Cj). As a result, only the second term p(O /∈ bg|Cj, lj,S) is

161

Figure 7.2: The notations used in the layout estimator module. The bold fonts
indicate parameters that are estimated by the layout estimator module. The underline
fonts indicate parameters that are estimated by the object detector module. In this
example, two planes are visualized. The measurements are: x: object’s 2D image
location and scale; d: object-to-camera distance; φ: observed object pose; t: the 3D
object center to supporting place distance; l: observed patch image location. The
unknowns are: f : camera focal length; n: the plane normal; η: the camera-to-plane
distance.

related to the supporting region S. We define p(O /∈ bg|Cj, lj,S) as follows,

p(O /∈ bg|Cj, lj,S) := p(O /∈ bg|Cj)(1− S(lj)) (7.4)

where p(O /∈ bg|Cj) is the probability that the codeword Cj does not belong to the

background class, and it is reweighed by 1 − S(lj). Here, S(lj) is the probability

that a pixel at location lj belongs to a supporting region which is equivalent to

saying that such a pixel belongs to a background region (see the region segmenter

module for details). This probability is estimated by the region segmenter and allows

the algorithm to reduce the importance of patches that are likely to belong to the

supporting region.

Knowledge of Scene Layout L. The layout estimator module provides knowl-

edge about the scene layout L and affects p(dpj |lj). In order to explicitly incorporate

162

knowledge about the scene layout, the term p(dpj |lj) is calculated as follows:

p(dpj |lj,L) ∝
∑

i∈|L|

δ(tij) (7.5)

where tij is the distance from the 3D location of the image patch j to the ith plane

parameterized by its normal direction n and camera height η (See Eq. 7.6 in section

of the layout estimator module for details); and |L| denotes the number of plane

hypotheses. Notice that knowledge of the scene layout L allows the algorithm to

estimate the probability that an image patch j is located at depth dpj from the camera.

Hence, effectively, the search space of object scale in 2D is reduced.

To summarize, modified DEHV takes into account the knowledge of supporting

region S by deemphasizing votes from supporting regions to the space V (O, x|D).

Furthermore, the uncertainty of the corresponding depth dpj of each image patch j is

reduced by the knowledge of surface layout L. Hence, the noise in the voting space

V (O, x|D) is reduced and the number of false detections decreases. Notice that the

detection hypotheses {(O, x)} may also be further pruned by checking if the object

bounding box x is consistent with the underlying layout information L (similarly to

Hoiem et al. (2006)).

7.1.1.2 3D Layout Estimator Module

The goal of the 3D layout estimator is to estimate the 3D layout L associated

with a single image from candidate object detections. Our layout estimator module

is built upon Bao et al. (2010b). However, instead of using the probability inference in

Bao et al. (2010b), we employ Hough voting to efficiently estimate the 3D layout. As

shown in Fig. 7.2, L contains the camera focal length f and a set of supporting planes

{Li} each parameterized by camera-to-plane height η and 3D orientation n. Notice

that the orientation n is a normalized vector such that ‖n‖2 =
√
n2
1 + n2

2 + n2
3 = 1,

163

and (n, η) specifies a unique plane in 3D such that any 3D point q ∈ R3 lying on the

plane satisfies qTn = η. Moreover, the closest distance t from a 3D point q to a plane

parameterized by (n, η) can be calculated as follows,

t = |qTn− η| (7.6)

The 3D point q corresponding to the 2D point l = (u, v) with depth d is equivalent

to the normalized ray from camera center to the 2D point on the image plane times

the depth:

q =
[u v f]T√
u2 + v2 + f 2

× d (7.7)

Following intuitions 1 and 2, we formulate the plane estimation problem as a

Hough-voting problem. A Hough voting space Q is constructed with axes associated

with the plane’s orientation n, the camera height η, and the focal length f . Each can-

didate object detection (Oi, xi, φ
o
i , d

o
i) casts votes in Q for a set of camera focal length

{f} and supporting plane {n, η} following the distribution p(n, η, f |Oi, xi, φ
o
i , d

o
i). We

use geometrical constraints to help compute p(n, η, f |Oi, xi, φ
o
i , d

o
i). The geometrical

relationship relating object detections and the supporting planes is derived in the

same manner as Bao et al. (2010b). As illustrated in Fig 7.2, let (ui, vi) be the center

location of object detection location xi. The zenith angle φi
1 is the angle between

the light ray (ui, vi, f) from the camera to the object and the plane normal n1, n2, n3.

1Here we omit the superscript o to have a concise notation.

164

The layout {f, η, n} and its supporting object satisfies the following equations,





uin1 + vin2 + fn3 = − cos(φi)‖ui vi f‖2

√
(n1)2 + (n2)2 + (n3)3 = 1

η = doi ∗ cos(φi)

(7.8)

Given a candidate object detection (Oi, xi, φ
o
i , d

o
i), we compute p(n, η, f |Oi, xi, φ

o
i , d

o
i)

as the following:

p(n, η, f |Oi, xi, φ
o
i , d

o
i) ∝





1 if (n, η, f) satisfies Eq. 7.8

0 otherwise
(7.9)

The final voting space Q(n, η, f) is defined as the weighted sum over distribution

of each candidate detection as follow,

Q(n, η, f) =
∑

i

p(n, η, f |Oi, xi, φ
o
i , d

o
i)V (Oi, xi) (7.10)

such that the contribution of each candidate detection is weighed by the detection

score V (Oi, xi).

As a result, high values in the layout voting space Q is accumulated by geometri-

cally consistent detection candidates. This model can easily incorporate scene layout

with multiple supporting planes by associating each plane to a peak in the Hough vot-

ing space Q. However, in order to regularize the co-occurrence of multiple supporting

planes, we assume all the supporting planes are parallel to each other similarly to

the assumption in Bao et al. (2010b). This allow us to compress the Hough voting

space to a lower dimension space Q̂(n, f) by summing over the axis of η in Q(n, η, f).

We first find the peak (n∗, f ∗) in Q̂(n, f). Then, we select multiple peaks of {η}

165

in Q(n∗, η, f ∗). As shown in Bao et al. (2010b), it is necessary to have at least 3

non-collinear object supported by parallel planes to have a unique peak in Q̂(n, f)

(see Proposition VII.1. It is important to point out that the 3 non-collinear objects

do not have to be located on the same supporting plane. More specifically, since we

assume that multiple planes are parallel to each other, we only need at least 3 objects

to estimate the plane orientation, and each plane height can be estimated from one

single object. Finally, the estimated layout L = ({n, η}, f) is fed to the detector

to further reduce the uncertainty of the patches’ depth distribution p(dpj |lj,L), as

already described in Eq. 7.5.

In the following proposition, we proof the three objects requirement.

Proposition VII.1. Equation (7.11) admits one or at most two non-trivial solutions

of {f, n1, n2, n3} if at least three non-aligned observations (ui, vi) (i.e. non-collinear in

the image) are available. If the observations are collinear, then Eq.(7.11) has infinite

number of solutions.




u1 v1 f

u2 v2 f

u3 v3 f

...

uN vN f







n1

n2

n3




=




− cosφ1

√
u2

1
+ v2

1
+ f2

− cosφ2

√
u2

2
+ v2

2
+ f2

− cosφ3

√
u2

3
+ v2

3
+ f2

...

− cosφN

√
u2

N + v2N + f2




(7.11)

Proof. Suppose at least three objects are not collinear in a image, then the rank of

the left matrix in the left-hand side of Eq. (7.11) is 3. Therefore Eq. (7.11) provides

3 independent constraints. Recall the unknowns in Eq.(7.11) are n1, n2, n3, f . With

these constraints, each of n1, n2, n3 can be expressed as a function of f , i.e. ni = ni(f).

Because ‖n‖ = 1, we obtain an equation about f :

∑

i=1...3

n2
i (f) = 1

166

In the above equation, f appears in the order of f 2 and f 4. Therefore, there are

at most two real positive solutions of f . Given f , {n1, n2, n3} can be computed as

ni = ni(f).

On the other hand, if all objects are collinear in the image, then infinite number

of solutions of Eq.(7.11) exist. If all objects are collinear, the rank of the left matrix

in the left-hand side of Eq.(7.11) is 2. Without loss of generality, assume (u1, v1) 6= 0.

In such a case, after using Gaussian elimination, Eq.(7.11) will be in the following

form: 


α β f

γ ε 0

0 0 0

...







n1

n2

n3




=

ζ

η

0

...

(7.12)

If f̂ , n̂1, n̂2, n̂3 is solution, then f̂ , n̂1 + km1, n̂2 + km2, n̂3 + km3 is also a solution of

Eq. 7.12, where (m1, m2, m3) is the non-trivial solution the following equation:



α β f

γ ε 0







m1

m2

m3




= 0

Hence, Eq. (7.11) admits infinite solutions.

7.1.1.3 Supporting Region Segmenter Module

Following the observation that the supporting region is likely to have consistent

appearance in the surrounding of the object and following intuition 3, our region

segmenter module is capable of segmenting out the object from its supporting surface.

We use a superpixel decomposition method (Felzenszwalb and Huttenlocher , 2004a)

to identify regions with consistent appearance. Similarly to Hoiem et al. (2005a),

multiple segmentation hypotheses H = {hj} are used to mitigate the problem of

167

segmentation errors. A segmentation hypothesis hj is an ensemble of disjoint set of

superpixels which fully cover the image. Each set of superpixels is a unique region r

(Fig. 7.3).

Given a region r ∈ hj from the jth segmentation hypothesis, we train a logistic

regression classifier to predict the probability P (y|r, {x,O}) which captures how likely

the region r belongs to a supporting region (i.e. y = 1) or not. By averaging out

the contribution of each segmentation hypothesis, we obtain the probability of a

superpixel i belonging to a supporting region as follows,

P (yi|{x,O}, I) =
∑

j

P (yihj(i)|{x,O}, I) (7.13)

=
∑

j

P (yi|hj(i), {x,O})P (hj(i)|I) (7.14)

where I is the image and hj(i) is the image region including the ith superpixel in

the jth segmentation hypothesis hj. Notice that the output of the logistic regression

P (yi|hj(i), {x,O}) is weighed by P (hj(i)|I) which indicates the probability that hj(i)

is a region containing superpixel i given the image evidence. Given the probability

that each superpixel belongs to a supporting region P (yi|{x,O}, I), and the mapping

between pixel index to superpixel index, we obtain the probability (confidence) s that

each pixel belongs to a supporting region. Finally, we denote by S the collection of

probabilities {s1, s2, . . . } for all pixels in the image. This allows the algorithm to

calculate the probability p(O /∈ bg|Cj, lj ,S) in Eq. 7.3 that an image patch does not

belong to the background.

7.1.2 Model Learning

In this section, we describe how the model parameters are learned in the object

detector and supporting region segmenter modules in detail.

168

h1

h2

h3

Figure 7.3: Illustration of the concept of multiple segmentation hypotheses, where
different hypotheses are shown at different layers. Here we show three segmentation
hypotheses, where each color indicates a region corresponding to a set of superpixels,
and the image is partitioned into 9 superpixels separated by the dark boundaries.

7.1.2.1 Object Detector Module

Recall that the Hough voting space V (O, x|D) in Eq. 7.1 aggregates votes from

each unique combination of image patch location lj , codeword label Cj, and depth

dpj . Our goal is to learn the codebook mapping for a codeword C, the distributions of

object class p(O|.) (voting weight) and location p(x|.) (voting direction). Notice that

computation of p(d|.) is already described in Eq. 7.5.

Similar to Chapter IV, we assume that for a number of training object instances,

the 3D reconstruction D of the object is available. This corresponds to having avail-

able the distance (depth) of each object patch from its physical location in 3D.

Here we define location x of an object as a bounding box with center position q,

height h, and aspect ratio a. We sample each image patch centered at location l and

select the scale s = m(l, d) using the 1-to-1 mapping described in Eq. 4.4. Then the

169

appearance I(l, s) is extracted from the patch (l, s). When the image patch comes

from a foreground object, we cache: 1) the information of the relative voting direction

b as q−l

s
; 2) the relative object-height/patch-scale ratio w as h

s
; 3) the object aspect

ratio a.

Random Forest Codebook. We use both the foreground patches (positive exam-

ples) and background patches (negative examples) to train a random forest discrimi-

native codebook. Hence, the mapping C(I(l, s)) is a unique index of the leaf node in

the random forest.

Voting Weight p(O|.). For each codeword entry Cj, we use the training data to

estimate p(O|O /∈ bg, Cj) and p(O /∈ bg|Cj) by counting the frequency that patches of

O falls in the codebook entry C. Then, we can calculate p(O|Cj, lj,S) using Eq. 7.3.

Voting Direction. p(x|O,C, s, l) can be evaluated given the cached information

{(bk, wk, ak)} as follows:

p(x|O,C, s, l) = p((q, h, a)|O,C, s, l)

∝
∑

k∈g(O,C)

δ(q − bk · s+ l, h− wk · s, a− ak)

where g(O,C) is a set of patches from O mapped to codebook entry C. Notice that

p(x|O,C, s, l) is equivalent to p(x|O,C, dp, l) in Eq. 7.1, since s = m(dp, l).

7.1.2.2 Supporting Region Segmenter Module

Here, we describe how to learn the probability P (hj(i)|I) and P (yi|hj(i), {x,O})

in Eq. 7.14.

We model the intuition 3 by introducing the region-based statistics described

below. Such statistics capture the joint typical spatial arrangement of objects (whose

location and bounding box are given by the detector) and the object supporting

regions in the image. Using these statistics, each region can be eventually labeled

170

(a) Ori. Img. (b) Avg. S1 (c) Avg. S2

Figure 7.4: Illustration of the segmentation statistics. Panel (a) shows the original
image overlaid with ground truth supporting region (red) and ground truth object
bounding boxes (green). Panel (b) and (c) show the average statistics over multiple
segmentation hypotheses for S1, S2, respectively. Notice that white indicates higher
value.

as supporting regions or not. Based on the candidate object detections {x,O}, our

statistics are:

• The median detection confidence of those candidate object detections that suf-

ficiently overlap with a candidate supporting region2. Intuitively speaking, the

higher the statistic, the more likely the region belongs to the foreground region

and the less likely belongs to a supporting region (Fig. 7.4 (b)).

• The 95th percentile of the detection confidence of the candidate object detec-

tions supported by the image region. Intuitively, the higher the statistic, the

likelier the region belongs to a supporting region (Fig. 7.4 (c)).

Using the designed statistics for each region r, we train a logistic regression classifier

to estimate the probability P (y|r, {x,O}). Finally, P (hj(i)|I) is trained similarly to

the segment homogeneity classifier described in Hoiem et al. (2007).

7.1.3 Model Inference using Context Feedback Loop

2When the area of the intersection between the foreground region (fg) and the object bounding
box over the area of the object bounding box is bigger than 0.5, the object is considered as sufficient
overlap with the foreground region.

171

Algorithm 8 Context Feedback Loop

S := empty
L := empty
for iter ≤ MaxIter do
{(O, x, do, φo)} = OD(S,L)
L = LE({(O, x, do, φo)})
S = RS({(O, x, do, φo)})
iter = iter + 1

end for

(a) OD (b) OD+LE (c) OD+RS (d) Full sys.

Figure 7.5: Interactions between different modules contribute to improve the detection
performance. Panels show the results of the baseline detection (a), joint detection
and 3D layout estimation (b), joint detection and supporting region segmentation (c),
and our full system (d).

Our inference algorithm (see algorithm 8) starts by applying the object detector

module assuming no prior knowledge about the scene layout L and supporting regions

S is available. Hence, p(dp|.) in Eq. 7.1 is an uniform distribution which implies

image patches can appear at any depth, and p(O|C) in Eq. 7.1 is equal to p(O|O /∈

bg, Cj)p(O /∈ bg|Cj).

The object detector returns the first set of candidate results {(O, x, d, φ)} (Fig. 7.5

(a)). Given the initial, possibly noisy, detections and pose estimations, the layout

estimator generates an estimation of the possible layout parameters L which can be

further used to improve detection (Fig. 7.5 (b)). Similarly, the region segmenter

takes the noisy detection results to estimate the likely location of the supporting

region which can be further used to improve detection (Fig. 7.5 (c)). In practice, the

layout estimator and region segmenter act simultaneously and contribute to obtain

more accurate detections which in turn yields more accurate layout and supporting

172

region estimates (Fig. 7.5 (d)). The system gradually converges into a steady state

where the final object detection, pose estimation, layout estimation, and supporting

region segmentation results are consistent with each other. Although we do not have

a theoretical proof of convergence, experimental results suggest that such a point of

convergence exists in most cases.

7.1.4 Implementation details

For the object detector, we use the following binning in the Hough voting space: i)

60 scales (from the 0.05 of the original scale multiplied by 1.05 to the original scale);

ii) 10 object aspect ratio (from 0.6113 to 2.1611); iii) Each object class is discretized

into 8 object poses corresponding to different azimuth angles; iv) For each scale, the

object hypothesis is shifted in both horizontal and vertical directions by 2 pixels.

For layout estimator, the binning in the Hough voting process is: i) plane normal

has 20 bins for tilt direction from 15◦ to 75◦ and 5 bins for camera-rotation from −10◦

to 10◦, ii) plane height has 20 bins from 30cm to 80cm for office dataset and from

1.5m to 2m for street dataset. iii) camera focal length has 20 bins from 0.8 to 1.25

fraction of an initial camera focal length guess.

7.2 Experiment

We evaluate quantitatively and qualitatively our system on three datasets. The

first dataset is an augmented table-top object dataset (introduced in IV) with ground

truth depth and foreground/background segmentation. We conduct experiments on

object detection, plane layout estimation, and supporting region segmentation. We

also evaluate our system on two publicly available datasets: a subset of label-me

dataset (Russell et al., 2008) (so as to compare our performance with the state-of-

the-art method (Hoiem et al., 2006)) and the office dataset (Sudderth et al., 2008).

Typical results on these 3 datasets are shown in Fig. 7.9,7.10,7.11.

173

Table 7.1: Estimation errors (refer to Sec. 7.2.1 for definition of errors) of surface
layout parameters (n, η, f), and supporting regions. Column 3∼5 show the errors of
the estimated surface normal en, camera height eη, and focal length ef . The least two
columns show the two types of errors of the supporting region segmentation. All five
types of errors are further reduced as the number of iterations increases (the table
reports results for the 1st and 7th iteration).

(a) Seg Only (b) Layout Only (c) Full System (d) Asymptotic Behavior

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Init AP=0.41099

Init + Seg AP=0.47685

P
re

ci
si

o
n

Recall
0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

o
n

Recall

Init AP=0.41099

Iter1 AP=0.45719

Iter2 AP=0.49567

Iter3 AP=0.50778

Iter4 AP=0.49085

Iter5 AP=0.54245

Iter6 AP=0.49534

Iter7 AP=0.54781

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Init AP=0.41099

Iter 1 AP=0.5011

iter 2 AP=0.51551

Iter 3 AP=0.50614

Iter 4 AP=0.51036

Iter 5 AP=0.51535

Iter 6 AP=0.56363

Iter 7 AP=0.5655
P

re
ci

si
o

n

Recall

0.41099

0.5011

0.5655

0.5847

0.4

0.45

0.5

0.55

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

AP

Iterations

0.65

0.5312

0.5603

0.6031 0.6003

two planes

one plane

Figure 7.6: Detection performance using precision-recall measurement. Panel (a)
compares baseline detection results (Chapter IV) with our system using only sup-
porting region segmentation. Notice that joint object detection and supporting re-
gion segmentation lead to an one-time improvement only. Panel (b) shows results
combining detector and layout estimator for 7 iterations. Panel (c) shows the results
when all modules (the object detector, layout estimator, region segmenter) are used
in the loop for 7 iterations. Notice the results in panel (a,b,c) are evaluated in the
testset containing one single plane. Panel (d) shows that the performances of our full
system for the single plane and two planes cases. Notice that the system appear to
asymptotically converge to a steady state on both scenarios (with a single plane and
with 2 planes.)

7.2.1 Table-top Object Dataset

We test our system on an augmented table-top object dataset introduced in Chap-

ter IV which contains three common table-top object categories: computer mice,

mugs, and staplers, where each image is associated to depth range data collected

using a structure-light stereo camera. This allows us to easily estimate the ground

truth 3D layout and supporting plane segmentation. The images are captured in

174

daily office place under generic lighting conditions. Please see the last three rows in

Fig. 7.9 for examples. We follow the training procedure described in Chapter IV to

train the DEHV detector using 200 images with their corresponding 3D information.

The remaining 100 images (some with a single plane (80 images) and some with 2

planes (20 images)) are used for testing. Notice that the original dataset is introduced

in Chapter IV contains 80 images. Each image from either training or testing sets

contains 3 ∼ 8 object instances in random poses and locations3. During the testing

stage, we only use 2D images and all the 3D information is inferred by our algorithm.

Fig. 7.6 shows the overall Precision Recall curve (i.e, combining three classes (com-

puter mice, mugs, and staplers)). We use the same definition of precision-recall as

in Everingham et al. (2007). That is the precision is defined as NumOfTruePositive

NumOfDetection
, the

recall is defined as NumOfTruePositive

NumOfTrueObject
, where a detection is considered to be true if

ao =
area(Bp ∩Bgt)

area(Bp ∪Bgt)
≥ 0.5

where Bp is the predicted bounding box and Bgt is the ground truth bounding box.

Moreover, multiple detections of the same object in an image are considered false

detections. The precision recall curve is calculated by varying the threshold to select

the detections.

To obtain the initial detection result (first iteration of the loop), we apply the

baseline detector (proposed in Chapter IV) with no information provided by the

region segmenter and the layout estimator. Table 7.1 further shows the accuracy

in estimating the layout parameters (n, η, f) and segmenting the supporting regions.

Each of the errors are defined as follows: en = arccos (nestngt), eη = |ηest−ηgt|
ηest

, and

ef = |fest−fgt|
fest

, where subscript labels est and gt indicate estimated and ground truth

values respectively. The last two columns report two types of segmentation errors:

eFA
seg and eMS

seg are the amount to which the segmenter mistakenly predicts a foreground

3The training instances and testing instances are separated.

175

region as supporting region and the segmenter misses the truth supporting region,

respectively. In detail, let IP denotes the supporting region predicted by our model,

ISR denotes the ground-truth supporting regions, and IF denotes the ground truth

foreground objects. We define eFA
seg = |IP

⋂
IF |

|IF |
and eMS

seg = |IP
⋂

ISR|
|ISR|

, where | • | counts

the pixel number. The smaller eFA
seg , the lower the false alarm rate is for confusing

foreground pixels as background. The higher eMS
seg , the larger the area our algorithm

can classify as supporting region.

Both Table 7.1 and Fig. 7.6 (d) validate that the feedback loop is effective in

improving i) object detection, ii) scene layout orientation estimation, iii) focal length

estimation. The improvement of surface height η estimation is less consistent since

the algorithm uses fewer objects to estimate the height of the surface (compared

to the orientation of the surface). The improvement in segmenting the supporting

region is also less significant. We believe that if more object categories are used, larger

evidence about the appearance properties of the supporting regions can be produced,

which in turn should produce more accurate segmentation results.

7.2.2 Label-Me Outdoor Dataset

We compare our system with another state-of-the-art method (Hoiem et al., 2006)

that uses geometrical contextual reasoning for improving object detection rates and

estimating scene geometrical properties such as the horizon line. The experiment is

conducted on ∼ 100 images that include at least 3 cars in any single image from

Label-Me dataset provided by Hoiem et al. (2006) 4. The training images for our

detector are extracted from Pascal 2007 cars training set (Everingham et al., 2007).

Fig. 7.7 (a) compares the detection performance of our full model at different iter-

ations with Hoiem et al. (2006). Although both methods rely on different baseline

detectors, similar to Hoiem et al. (2008), our method shows that geometric context

4As explained in Bao et al. (2010b) and in Sec. 7.1.1.2, at least 3 objects are necessary for
estimating the layout.

176

provides high-level cues to iteratively improve detection performance. Notice that our

algorithm: i) does not require the estimation of horizontal or vertical surfaces as it

extracts spatial contextual information from the object itself (enabling our algorithm

to work even if the ground plane is not visible at all); ii) it works even if objects are

supported by multiple planes located at different heights with respect to the camera.

We further evaluate the object detection performance of our model with support-

ing region information provided by different methods (Fig. 7.7 (b)). The detection

performance of our model with supporting region information provided by our seg-

menter (AP=27.6%) is comparable to the performance (AP=28.8%) of our model with

the ideal supporting region information. We generate the ideal supporting regions by

using the ground truth bounding boxes to remove mistaken supporting regions pre-

dicted by Hoiem et al. (2006). Our proposed segmenter is also flexible in that it can

easily incorporate ground plane segmentation results provided by Hoiem et al. (2006)

as an additional cue. This leads to the best detection performance AP= 28.4%.

We further evaluate the performance of our 3D layout estimation algorithm by com-

paring the estimated vanishing lines (i.e, corresponding to the most confident plane

estimated by our full algorithm) with the ground truth vanishing lines. At the first

iteration, the relative L1 error
5 is 6.6%. And at the final (5th) iteration, the relative

L1 error is 4.2% which is comparable to the 3.8% error of Hoiem et al. (2006). Typical

examples are shown in the first three rows of Fig. 7.9. All results validate that the

feedback loop is effective in improving i) object detection, ii) scene layout orienta-

tion estimation, iii) focal length estimation, in an outdoor environment. Moreover,

our method is flexible enough to incorporate different cues such as the ground plane

segmentation results provided by Hoiem et al. (2006).

5eH = 1

N

∑
i |

Ĥi−Hi

Hi
|, where Ĥi and Hi are the best estimated and ground truth vanishing line.

177

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

o
n

Recall

BaseLineDetector AP=26.8%

Loop Iteration1 AP=30.6%

Loop Iteration5 AP=31.9%

Hoiem Baseline AP=16.6%

Hoiem Final AP=21.4%

(a)

25.5%

26.0%

26.5%

27.0%

27.5%

28.0%

28.5%

29.0%

(1) (2) (3) (4)

(b)

D
e

te
ct

io
n

 A
ve

ra
g

e
 P

re
ci

si
o

n

Figure 7.7: Detection performance on labelme (Russell et al., 2008) dataset. Panel (a)
shows the results after applying the full system from iteration 1 to 5. This figure also
shows the results of Hoiem et al. (2006) and its baseline method (Dalal and Triggs ,
2005). Panel (b) shows average detection precision (at the final iteration) using (1)
the baseline detector (proposed in Chapter IV), (2) our supporting region segmenter
module, (3) supporting regions provided by Hoiem et al. (2005a) as an additional
cue to our region segmenter module, (4) ideal supporting regions provided by Hoiem
et al. (2005a) where mistaken supporting regions are removed by using ground truth
object bounding boxes.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BaseLineDetector AP=64.1%

Loop Iteration1 AP=72.0%

Loop Iteration6 AP=72.1%

P
re

ci
si

o
n

Recall

Figure 7.8: Detection performance using full
system form iteration 1 to 6 on the office
dataset (Sudderth et al., 2008). The baseline
detector proposed in Chapter IV.

7.2.3 Office Dataset

We use the office dataset (Sudderth et al., 2008) for additional evaluation. 150

images are randomly selected for training and the remaining 54 images (which contain

at least 3 objects of interest) are used for testing. Average overall detection perfor-

mances for computer mice, monitors, and keyboards are shown in Fig. 7.8. Notice the

improvement of almost 8%. We validate that our method generalizes well to another

178

indoor environment dataset. Typical examples are shown in Fig. 7.11.

7.3 Conclusion and Future Work

In this chapter, we have presented a framework for jointly detecting objects, esti-

mating the scene layout and segmenting the supporting surfaces holding these objects.

Our approach is built upon an iterative estimation procedure where the object de-

tector becomes more and more accurate as evidence about the scene 3D layout and

the object supporting regions becomes available and vice versa. Quantitative and

qualitative experimental results on both indoor (dataset introduced in Chapter IV,

Sudderth et al. (2008)) and outdoor (Hoiem et al., 2006) datasets support our claims

empirically.

As future work, we would like to develop an estimation procedure which guarantees

convergence and global optimality. Moreover, since, in the current implementation,

the model parameters are all learned separately, we plan to develop a learning algo-

rithm which learns all the model parameters in a joint fashion. The limitation of at

least three objects per image can be overcome if a prior is placed on the focal length

and the support plane parameters. We plane to explore how such prior knowledge

can help improving the overall object detection, layout estimation, and supporting

region segmentation accuracy.

179

Original Det. Final Det. Layout & Seg.

Figure 7.9: Typical results of joint object detection (green), layout estimation (blue),
and original false detections (red). The supporting region is visualized by showing
the confidence that a pixel belongs to a supporting region (white indicate high con-
fidence). Results on labelme (Hoiem et al., 2006), table-top (introduced in Chapter
IV) datasets are shown in row 1 ∼ 3 and 4 ∼ 6, respectively. Notice that the modules
jointly improve the original detection and enable convincing layout estimation and
supporting region segmentation.

180

Original Det. Final Det. Layout & Seg.

Figure 7.10: Typical results of joint object detection (green), layout estimation (blue),
and original false detections (red) on images with 2 planes in table-top dataset (intro-
duced in Chapter IV). The supporting region is visualized by showing the confidence
that a pixel belongs to a supporting region (white indicate high confidence). Notice
that we assume multiple planes must be parallel to each other. Therefore, multiple
planes will share the same vanishing line.

Original Det. Final Det. Layout & Seg.

Figure 7.11: Typical results of joint object detection (green), layout estimation (blue),
and original false detections (red) on office dataset (Sudderth et al., 2008). The
supporting region is visualized by showing the confidence that a pixel belongs to a
supporting region (white indicate high confidence).

181

CHAPTER VIII

Models for Coherent Scene Understanding

The last decade has seen the development of a number of methods for object

detection, segmentation and scene understanding. These methods can be divided

into two broad categories: methods that attempt to model and detect objects that

have distinct shape properties such as cars or humans, and methods that seek to

model and identify scene elements whose internal structure and spatial support are

more heterogeneous such as grass or sky. In the former case, we find that methods

based on pictorial structures (i.e., Felzenszwalb et al. (2008)), pyramid structures

(i.e., Grauman and Darrell (2005)), generalized Hough transform (Leibe et al., 2004;

Gall and Lempitsky , 2009; Maji and Malik , 2009; Barinova et al., 2012; Sun et al.,

2010b), or multi-view model (Sun et al., 2009; Xiang and Savarese, 2012) work best.

These representations are appropriate for capturing shape or structural properties of

objects, and typically identify the object by a bounding box. For the latter case,

methods aiming at segmenting the image into semantically consistent regions (He

et al., 2004; Kohli et al., 2008; Shotton et al., 2008) work well for scene elements, like

sky or road.

In order to coherently interpret the depicted scene, various types of contextual

relationships among objects and scene elements have been explored. For example,

co-occurrence relationships (e.g., cow and grass typically occur in the same image)

182

car

car
car

car car

boat boat
sheep

carcar carcar

(a) Ground Truth (b) Disjoint Model (c) CRF+Det (d) ACRFOriginal Image

car carcar car

D
etectio

n
S

eg
m

en
tatio

n

Object-Scene element (OS) Relationships

Object-Object (OO) Relationships

NA

NA NA

OS

OO Next-to

OO Behind

OO Same plane

Figure 8.1: Our goal is to segment the image into objects (e.g., cars, humans, etc)
and scene elements (e.g., road, sky, etc) by combining segmentation (bottom) with
object detection (top). Results from different variants of our method (capturing
a subset of critical contextual relationships) are shown from left to right columns.
At the top of each column, we show the top 4 probable bounding boxes, where
light and dark boxes denote the confidence ranking from high to low. Instance-
based segmentation are shown in each bottom column, where different colors represent
different object instances. Notice that our final ACRF captures the key relationships
and recovers many missing detections and segmentation labels. Object-scene element
and object-object relationships are indicated by color-coded arrows connecting pairs of
objects/scene elements. Different color codes indicate different types of relationships.

have been captured in Ladicky et al. (2010b); Rabinovich et al. (2007), 2D geometric

relationships (e.g., below, next-to, etc) have been utilized in Gupta and Davis (2008a);

Desai et al. (2009);Heitz and Koller (2008), 2.5D geometry relationships (e.g., horizon

line) have been incorporated by Hoiem et al. (2006) and Bao et al. (2010a). The use of

such contextual relationships have inspired the development of robust algorithms for

various recognition and scene understanding tasks. For instance, many segmentation

methods (Ladicky et al., 2010b; Winn and Shotton, 2006; Gould et al., 2009a) have

been proposed to capture scene element-scene element relationships in a random

field formulation. Similarly, object-object relationships have been incorporated into

a random field for jointly detecting multiple objects (Desai et al., 2009).

Recently, researchers have proposed methods to jointly detect objects and segment

scene elements. Gould et al. (2009b) propose a random field model incorporating both

scene element-scene element, object-scene element, and object-horizon relationships.

One limitation of their approach is that it cannot capture 2D geometric and co-

183

occurrence relationships between objects. Moreover, inference is computationally

very demanding and typically takes around five minutes per image. To overcome this

limitation, some authors have proposed inference procedures which leverage existing

approaches for detection and segmentation and use the output of such approaches as

input features in an iterative fashion (Heitz et al., 2008; Sun et al., 2010a;Hoiem et al.,

2008). Unfortunately, optimality is not guaranteed for most of these approaches.

We propose a novel framework for jointly detecting objects and segmenting scene

elements that, for the first time, can coherently capture many known types of contex-

tual relations between object-object, scene element-scene element, and object-scene

element. Our contributions are three-fold. First, the model infers both geometric

and semantic relationships describing the objects (i.e., object x is behind object y)

via property interactions. Second, the model enables instance base segmentation

(see color coded segments in Fig. 8.1(d)) by associating segments to object instance-

specific labels (e.g., first car, second car, etc.). Finally, the special design of model

potentials allows efficient inference which takes a few seconds per image in average and

is performed using a combination of state-of-the-art discrete optimization techniques.

Hypothesis and property lists. Our framework extends the basic conditional

random field (CRF) formulations for segmentation (i.e., recognizing scene elements)

(Shotton et al., 2006; Kohli et al., 2008) by introducing the concept of hypotheses for

objects and scene elements. Every hypothesis is described by a property list (Fig. 8.2-

Top). This list includes semantic properties, such as the category label l. Further,

if the category label belongs to objects such as car, human, etc., the hypothesis can

also be characterized by some geometric properties, such as the 2D location (u, v),

and the distance from the camera (depth) d.

We augment the above-mentioned CRF formulation with indicator variables which

capture the presence or absence of hypotheses (see Fig. 8.2(a)-Top). We refer to our

model as the augmented CRF, or ACRF, to highlight the newly added indicator vari-

184

ables. The indicator variables can take only two states: 0 or 1 which represents the

absence or presence of an hypothesis, respectively. The key benefit of the indicator

variables is that they allow us to easily encode sophisticated semantic and geometric

relationships between pairs of hypotheses. For instance, simple pairwise potentials

defined over indicator variables can allow to incorporate i) 2D geometric relation-

ships such as ”above” which model the property that one hypothesis lies above the

other (e.g., a person sitting on a bike), ii) depth and occlusion relationships such as

”in-front” which model the property that one hypothesis lies in front of the other

(e.g., a person standing in front of a car), and iii) support relationships which model

the property that one hypothesis is supported by another hypothesis (e.g., pedestri-

ans walking on a road). More sophisticated relationships such as a composition of

these basic 2D or 2.5D relationships can also be supported. Critically, the ACRF

model generalizes Ladicky et al.’s model (Ladicky et al., 2010b) which captures scene

element-scene element co-occurrence contextual relationships only. In contrast, our

model cannot only encode relationships between scene elements that depend on their

geometrical properties such as (orientation, depth) but can also encode geometrical

and semantic properties between scene elements and objects as well as objects and

objects. Our model can also handle multiple instances of objects and, thus, also gen-

eralizes the work of Barinova et al. (2012). We illustrate the efficacy of our approach

in Fig. 8.1. As seen in the figure, detections typically do not agree with the segmen-

tation results (Fig. 8.1(b)) if the detection and segmentation are applied separately.

A model capturing object-scene element relationships ensures consistency between

detection and segmentation results (Fig. 8.1(c)). Finally, when object-object rela-

tionships (e.g., next-to, behind, same plane, etc) are included, even small objects,

that are hard to detect and segment, can be discovered (Fig. 8.1(d)).

Learning. Relationships encoded by our model are regulated by a number of model

parameters that we learn from training data. The relationships can be both attractive

185

(e.g., a person is likely to sit on a motorbike) and repulsive (e.g., car and airplane

are unlikely to co-occur), and are enforced by adding positive or negative costs to the

energy of the model. We formulate the problem of learning these costs as a Structured

SVM (SSVM) (Tsochantaridis et al., 2004) learning problem with two types of loss

functions related to the segmentation loss and detection loss, respectively (see Sec. 8.3

for details).

MAP Inference. Jointly estimating the segmentation variables X and indicator

variables Y (Fig. 8.2(c)) is challenging due to the intrinsic difference of the variable

space and the complex types of pair-wise relationships between object-object, and

object-scene element. We design an efficient graph-cut-based move making algorithm

by combining state-of-the-art discrete optimization techniques. Our method is based

on the α-expansion move making approach (Boykov et al., 2001), which works by

projecting the energy minimization problem of segmentation variablesX into a binary

energy minimization problem over a domain space of indicator variables Y . We use

the “probing” approach similar to the one described by Rother et al. (2007) to handle

the non-submodular function related to pair-wise object relationships (i.e., object-

object). Our MAP inference algorithm takes only a few seconds per image in average

as opposed to five minutes by Gould et al. (2009b).

Outline of the Chapter. The rest of the chapter is organized as follows. We

first describe model representation, inference, learning, and implementation details

in Sec. 8.1, 8.2, and 8.3, respectively. Experimental results are given in Sec. 8.4.

8.1 Augmented CRF

We now explain our Augmented Conditional Random Field (ACRF) model. ACRF

jointly models object detection and segmentation (Fig. 8.2 (a)), and can incorporate

contextual relationships between objects and scene element, and between multiple

objects (Fig. 8.2 (b)).

186

` `

�

�

0 00
1

0 00
1

0 00
1

0 00
1

1 11
0

0 00
1

0 00
1

1 11
0

0 00
1

0 00
1

Figure 8.2: Our Augmented CRF model (ACRF). In panel (a), we show an image and
the indicator variables corresponding to the different object hypotheses present in it.
The instance hypotheses for object categories such as person and bike have geometric
properties (e.g., spatial and depth). These properties are absent for scene element
categories such as building and road. In panel (b), we demonstrate how relationships
(e.g., behind, above, etc) are selected given a pairs of property lists. In panel (c),
the figure shows the label space of the segmentation variables X and the indicator
variables Y and the interaction between them. In panel (d)-Bottom, the figure shows
the pairwise and higher order interactions among segmentation variables X which are
present in standard CRF formulations. In panel (d)-Top, the figure shows the pairwise
interactions among indicator variables Y which can encode different geometric and
semantic relationships. The two edges connected to the scene element indicators
which end in the dashed separator line indicate that scene element indicators are
interacting with indicators with only category property.

Segmentation, like other image labeling problems, is commonly formulated using

Conditional Random Fields (CRF). The conventional CRF model is defined over a set

187

of random variables X = {xi}, i ∈ V where V represents the set of image elements,

which could be pixels, patches, super-pixels, etc (Fig. 8.2 (c)-Bottom). Each random

variable xi is assigned to a label from a discrete label space L, which for the task

of category segmentation, is considered the set L of categories including objects and

scene elements such as cars and grass, respectively.

The energy (or cost) function E(X) of the CRF is the negative logarithm of

the joint posterior distribution of the model and has the following form: E(X) =

− logP (X|E) = − log φeRF (X|E) +K =
∑

c∈CX ψc(Xc) + K, where E is the given evi-

dence from the image and any additional information (e.g., property lists), φeRF (X|E)

takes the form of a higher order CRF model defined over image elements (Fig. 8.2

(d)-Bottom). φeRF (X|E) can be decomposed into potential ψc which is a cost func-

tion defined over a set of element variables Xc (called a clique) indexed by c ∈ CX ;

CX is the set of cliques for image elements, and K is a constant related to the par-

tition function. The problem of finding the most probable or maximum a posteriori

(MAP) assignment of the CRF model is equivalent to solving the following discrete

optimization problem: X∗ = argminX∈L|V| E(X).

The standard CRF model mostly relies on bottom-up information. It is con-

structed using unary potentials based on local classifiers and smoothness potentials

defined over pairs of neighboring pixels. Higher-order potentials such as the ones

used in Kohli et al. (2008) encourage labels of groups of image elements to be the

same. This classic representation for segmentation has led to excellent results for the

scene elements, but has failed to replicate the same level of performance for objects.

The reason for this dichotomy lies in the model’s inability to explicitly encode the

relationship between the shape and relative positions of different parts of structured

objects such as the head and the torso of a person.

Part-based models such as Pictorial Structures (Felzenszwalb and Huttenlocher ,

2005), Latent SVM (LSVM) (Felzenszwalb et al., 2008), and Hough transform based

188

models (Leibe et al., 2004; Barinova et al., 2012) have shown to be much more effective

at detecting objects. One of our contributions is proposing a unified framework to

incorporate all instance hypotheses from these methods as additional object-instance

evidences. In our model, every piece of object-instance evidence is characterized by

the property lists. These properties include the category lj, the spatial location in

the image (uj, vj) at which the object is seen, and the depth or distance dj of the

object instance from the camera.

In addition to the variables representing image elements, our model contains a

set of indicator variables (later referred as indicators) Y = {yj ∈ {0, 1}} for every

possible configuration j ∈ Q̂ of a hypothesis (Fig. 8.2 (c)-Top). The configuration set

Q̂ is a Cartesian product of the space of all possible category labels L, all possible

spatial locations U × V in the image, and all depth or distance values within a range

[0, D]. For example, a configuration j ∈ Q̂ specifies that an instance of the category

lj ∈ L exists at location (uj, vj) in the image at a distance dj away from the observer.

We also associate with each instance a segmentation mask Vj which is the set of

image elements associated with the hypothesis. In order to handle uncertainty in

location and distance from the camera for scene elements (e.g., a grass region may

have a large spatial extent and it may be at a range of distances from the camera) and

objects which are not detected, we allow a configuration j including general hypothesis

specified by lj only (i.e., without specifying the location of the hypothesis).

As mentioned earlier, variables X representing the image elements in the classical

CRF formulation for segmentation take values from the set of categories L only.

In contrast, in our framework, these variables take values from a set of all possible

configuration xi ∈ L = Q̂ (refer as augmented labeling space). On the one hand,

this allows us to obtain segmentations of individual instances of particular categories

which the classical CRF formulations are unable to handle. On the other hand, the

space Q̂ of all possible detections is clearly huge, which makes learning and inference

189

much more challenging. We will come back to this issue later.

The joint posterior distribution of the segmentation X and indicator variables

Y can be written as:P (X, Y |E) ∝ φeRF (X|E) φoRF (Y |E) φcon(X, Y |E). The func-

tions φoRF take the form of a CRF model defined over indicator variables as follows:

φoRF (Y |E) =
∏

c∈CY eϕc(Yc), where the potential ϕc(Yc) is a cost function defined over

a set of indicator variables Yc indexed by c ∈ CY , and CY is the set of cliques of

indicators. The potential function φcon enforces that the segmentation and indicator

variables take values which are consistent with each other (Fig. 8.2 (c)). The term

is formally defined as: φcon(X, Y |E) =
∏

j∈Q̂ e
Φ(yj ,X), where Φ(yj , X) is the potential

relating each indicator yj with a specific set of elements Vj in X . Hence, the model

energy can be written as:

E(X, Y) =
∑

c∈CX

ψc(Xc) +
∑

j∈Q̂

Φ(yj, X) (8.1)

+
∑

c∈CY

ϕc(Yc) . (8.2)

The first term of the energy function is defined in a manner similar to Kohli et al.

(2008). We now describe other terms of the energy function in detail in the following

subsections.

Implicit representation of inactive configurations. It is easy to see that the

space Q̂ of all possible configurations is huge, which would make learning and per-

forming inference in the above model completely infeasible. However, in real world

images, only a few possible configurations are actually present. Thus, most indicator

variables yj, j ∈ Q̂ are inactive (take value 0), and similarly the label set for the

segmentation variables is typically quite small. We use an object detector that has

been trained on achieving high recall rate to generate the set of plausible object con-

figurations Q instances that are likely to be present in any given image. In this way,

we reduce the problem into a manageable size for the inference algorithm.

190

8.1.1 Relating Y and X

The function Φ(yj, X) (Fig. 8.2(c)) is a likelihood term that enforces consistency

in the assignments of the jth indicator variable yj and a set of segmentation variables

X . It is formally defined as:

Φ(yj,X) =





inf if yj 6= δj(X)

γlj · |Vj | if yj = δj(X) = 1

0 if yj = δj(X) = 0

, (8.3)

where j is any possible configuration in Q, the function δj(X) indicates whether the

indicator j shares a consistent category label with image elements in Vj , and is defined

as:

δj(X) =





1 if Rj(X) =
|Vj(X)|
|Vj |

≥ R(lj)

0 otherwise

, (8.4)

where |Vj(X)| = |{i; xi = lj for i ∈ Vj}| is the number of elements in Vj assigned

with label lj , |Vj| is the total number of elements in Vj , Rj(X) is the consistency

percentage, and R(lj) ∈ [0 1] is a category-specific consistency threshold. Hence, the

first condition in the above function ensures that yj = 1 if and only if the detection j

shares a label with at least R(lj) percent of the pixels (or image element) in Vj (i.e.

Rj(X) ≥ R(lj)). The remaining conditions in Eq. 8.3 shows that this potential is an

Occam razor or MDL prior, similar to Ladicky et al. (2010b); Barinova et al. (2012)

so that the model is penalized by γlj · |Vj| when yj = 1.

8.1.2 Indicator CRF

The indicator CRF potential ϕc(Yc) in Eq. 8.2 can be decomposed into two terms

as follows,
∑

c∈CY ϕc(Yc) =
∑

j∈Q1
ϕu(yj)+

∑
(j,k)∈U ϕp(yj, yk), whereQ1 ⊂ Q is the set

191

of object indicators with geometric properties and U is the set of pairs of indicators,

which interact with each other.

The term ϕu(yj) is the unary potential for the object indicator, defined as:

ϕu(yj) =





βj · |Vj |, if yj = 0

0, if yj = 1

, (8.5)

such that the cost of suppressing hypothesis j (i.e., label yj as 0) is βj · |Vj| (propor-

tional to the detection confidence).

The term ϕp(yj, yk) (black edges in Fig. 8.2 (d)-Top) represents the interactions

between any pair of indicator variables. Depending on the types of properties asso-

ciated with the pair of indicator variables, this term can represent a number of rela-

tionships. It can not only model spatial relationship in 2D such as the ones learned

and employed in the approach proposed by Desai et al. (2009), but also model be-

hind and in-front relationships given the depth property. The term can also encode

co-occurrence relationships (Ladicky et al., 2010b) for pairs of indicators with only

category properties.

For any pair of indicators j, k ∈ Q, the term is formally defined as:

ϕp(yj, yk) = w
rjk
lj ,lk

(yj, yk) ·max(|Vj|, |Vk|) , (8.6)

where rjk is the type of relationship that we want to enforce between the pair of

object instances j and k, and is a subset of the overall relationship set R, which is

defined as: R = {co-occur, above, below, next-to, in-front, behind, or the composition

of them}.

The pseudo-boolean function w
rjk
lj ,lk

(yj, yk) : {0, 1}2 → R specifies the cost of all

4 possible joint assignments of yj and yk under the relationship rjk for a pair of

object categories lj , lk. As a result, the potential can capture both attractive (i.e.,

192

w(0, 0)+w(1, 1) ≤ w(0, 1)+w(1, 0)) and repulsive interactions (i.e., w(0, 0)+w(1, 1) ≥

w(0, 1)+w(1, 0)). For example, a person usually is sitting on a motorbike (attractive),

and cars do not overlap with each other in 3D (repulsive).

The relationship rjk is specified by the properties associated with the detection

instances j and k. For instance, if the indicators i and j have only category properties,

the relationship rjk models the co-occurrence cost of the categories. In this case, we

assume

wco
j,k(yj, yk) =





γlj ,lk if yj = yk = 1

0 otherwise

, (8.7)

where γlj ,lk is the co-occurrence cost for categories lj and lk. From the above definition,

it is easy to see that our model generalizes both CRF models proposed in Ladicky

et al. (2010b); Desai et al. (2009).

8.2 Inference

We now show that the MAP inference problem in our ACRF model can be solved

by minimizing the energy function using an efficient graph cut based expansion move

making algorithm (Boykov et al., 2001).

Standard move making algorithms repeatedly project the energy minimization

problem into a smaller subspace in which a sub-problem is efficiently solvable. Solving

this sub-problem produces a change to the solution (referred to as a move) which

results in a solution having lower or equal energy. The optimal move leads to the

largest possible decrease in the energy.

The expansion move algorithm projects the problem into a Boolean label sub-

problem. In an α-expansion move, every segmentation variable X can either retain its

current label or transit to the label α. One iteration of the algorithm involves making

193

moves for all α in L successively. Under the assumption that the projection of the

energy is pairwise and submodular, it can be exactly solved using graph cuts (Boros

and Hammer , 2002; Kolmogorov and Zabih, 2004). We derive graph construction only

for energy terms related to indicator variables Y , for all other terms, the constructions

are introduced in Kohli et al. (2008); Boykov et al. (2001).

8.2.1 Functions of indicator variables Y with only category property.

The energy terms related to the indicator variables, whose only property is a

category label, are Φ(yj, X) in Eq. 8.3 and ϕp(yj, yk) in Eq. 8.6 and 8.7. Observe that

we can represent the combination of these terms as a function, F : L ⊂ L → R as

F(L(Y)) = min
X

∑

j∈Q2

Φ(yj,X) +
∑

(j,k)∈U2

ϕp(yj, yk) , (8.8)

where L(Y) = {lj ; k ∈ Q2, yj = 1} is a set of existing categories (i.e., yj = 1),

Q2 is any subset of the indicator variables, whose only property is a category label,

and U2 is a subset of U such that j, k ∈ Q2. From the definition of the term in

section 8.1.1 and 8.1.2, we can see that F({lj}) = γlj |Vj |. Furthermore, F({lj, lk}) =

F({lj}) + γlk |Vk| + γlj ,lk ; F({lj, lk, lq}) = F({lj, lk}) + γlp|Vp| + γlj ,lp + γlk,lq . It can

be easily seen that the above function satisfies the properties of the co-occurrence

potential:

L1 ⊂ L2 =⇒ F(L1) ≤ F(L2) , (8.9)

proposed by Ladicky et al. (2010b) allowing us to use their graph construction for

minimizing this energy function.

8.2.2 Functions of indicator variables Y with instance properties.

The energy terms related to the instance indicator variables are Φ(yj, X) in Eq. 8.3

and ϕp(yj, yk) in Eq. 8.6. Since ϕp(yj, yk) in Eq. 8.6 captures both repulsive and at-

194

tractive pair-wise relationships, it can not be combined with Φ(yj, X) in Eq. 8.3 to

form a co-occurrence potential satisfying Eq. 8.8. However, Φ(yj , X) can be approx-

imated as:

Φ(yj, X) = γj(yj
1−Rj(X)

1− R(lj)
+ (1− yj)

Rj(X)

R(lj)
) . (8.10)

The detailed derivation and the corresponding α-expansion move energy for this term

is described in the Sec. 8.2.3.

The graph construction of the pair-wise instance indicators in Eq. 8.6 is equiv-

alent to the construction of binary variables which is clearly described in Boykov

et al. (2001). However, since we would like to capture both attractive (i.e., both

indicators having the same labels) and repulsive (i.e., both indicators having different

labels) interactions, some functions could be submodular and some could be non-

submodular in (yj, yk), respectively. Since each indicator only interacts with other

nearby indicators, a simple “probing” approach similar to the one described in Rother

et al. (2007) can effectively handle the non-submodular function related to pair-wise

object-instance interaction. As a result, our inference algorithm does not rely on

sophisticated techniques such as QPBO (Rother et al., 2007) which requires more

memory and computation time.

8.2.3 Functions of Indicators Y

We observe in Eq. 8.3, when yj = 1

Φ(yj , X) =





inf if δj(X) = 0

γj if δj(X) = 1

≈ γj
1− Rj(X)

1−R(lj)
. (8.11)

195

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

y=1

φ
(y

,X
)/

r
R(x)/R

Org.

Approx.

0 0.5 1 1.5
0

0.5

1

1.5

y=0

φ
(y
,X
)/
r

R(x)/R

Org.

Approx.

Figure 8.3: Comparison between the original function Φ(y,X) (blue line) and the
approximated function (red lines) in Eq. 8.12 and 8.11. The left panel shows the case
when y = 1. The right panel shows the case when y = 0. Notice the dash blue lines
indicate the sharp transition from finite values to infinite values.

When yj = 0

Φ(yj , X) =





inf if δj(X) = 1

0 if δj(X) = 0

≈ γj
Rj(X)

R(lj)
. (8.12)

Hence, Φ(yj, X) becomes,

Φ(yj, X) = γj(yj
1−Rj(X)

1− R(lj)
+ (1− yj)

Rj(X)

R(lj)
) . (8.13)

The effect of the approximation in Eq. 8.12 and 8.11 are shown in Fig. 8.3. Instead

of imposing an infinite cost when δ(X) 6= y, our approximation imposes an cost which

is linearly proportional to the consistency percentage R(X). When y = 1, the ratio

between the consistency percentage and the consistency threshold R(X)/R(l) are

encouraged to be large, which means the more elements in X are labeled as l, the

better (Fig. 8.3-Left). On the contrary, when y = 0, the ratio between the consistency

percentage and the consistency threshold R(X)/R(l) is encouraged to be small, which

means the less elements in X are labeled as l, the better (Fig. 8.3-Right).

196

8.2.3.1 α-expansion move energy

We first define the transformation function Tα(xi; ti) for the α-expansion move

which transforms the label of a random variable xi as:

Tα(xi, ti) =





α, if ti = 0

xi, if ti = 1

(8.14)

The corresponding α-expansion move energy for the term in Eq. 8.13 can be

written as: Φ(yj , Tα(X, T)) =





γj(
yj

1−R(lj)
(1−Rj(X) +

∑
i∈Vj(X)

(1−ti)
|Vj|

)

+
1−yj
R(lj)

(
∑

i∈Vj(X)
(ti)
|Vj |

)), if α 6= lj

γj(
1−yj
R(lj)

(Rj(X) +
∑

i∈Vj\Vj(X)
(1−ti)
|Vj |

)

+
yj

1−R(lj)
(
∑

i∈Vj\Vj(X)
(ti)
|Vj |

)), if α = lj

(8.15)

where Vj \ Vj(X) is the remaining set of elements in Vj with labels (i.e.,{xi 6= lj; i ∈

Vj}). Notice that when α 6= lj the function is submodular in (yj, ti), but when α = lj

it is submodular in (yj, ti), where yj = 1− yj is the negation of yj.

After the transformation, the first two terms of the original model energy (Eq. 8.2)

becomes a pairwise and submodular function of T , Y , and Y as follows,

E(T, Y, Y) =
∑

c∈CX

ψc(Tc) +
∑

j∈Q̂1

Φ(yj , T) +
∑

j∈Q̂2

Φ(yj, T) .

where Q̂1 = {yj; lj 6= α} and Q̂1 = {yj; lj = α}. Therefore, we will construct

the graph using T , partially using indicator yj, and partially using the negation of

indicator yj depending on whether lj = α.

197

8.3 Learning

The full CRF model in Eq. 8.2 contains several terms. In order to balance the

importance of different terms, we introduce a set of linear weights for each term as

follows,

W TΨ(X.Y) =
∑

c∈C

wcψc(Xc) +
∑

(j,k)∈U1

w
rjk
lj ,lk

(yj, yk) (8.16)

+
∑

j∈Q1

wu(lj)(Φ(yj, X) + ϕu(yj))

+ wco(
∑

(j,k)∈U2

ϕp(yj, yk) +
∑

j∈Q2

Φ(yj, X)) , (8.17)

where wc models weights for unary, pair-wise, and higher-order terms in X. wu(l) is

the category specific weight for unary term in y, wco is the weight for image element

(X)- indicators (Y), and w
rjk
lj ,lk

is the pair-wise weights for a specific co-occurrence

type rjk related to the pair of categories lj , lk in Eq. 8.6. Recall from Sec. 8.1.2 and

8.2 that Q1 and Q2 are the set of indicator variables for objects and scene elements

respectively. Similarly, U1 and U2 are the subset of U such that j, k ∈ Q1 or j, k ∈ Q2

respectively. Since all these weights are linearly related to the energy function, we

formulate the problem of jointly training these weights as a Structured SVM (SSVM)

learning problem (Tsochantaridis et al., 2004) similar to Desai et al. (2009).

Assume that a set of example images, ground truth segment category labels,

and ground truth object bounding boxes {In, Xn, Y n}n=1,...,N are given. The SSVM

problem is as follows,

minW,ξ≥0 W TW + C
∑

n

ξn(X,Y) (8.18)

s.t. (8.19)

ξn(X,Y) = max
X,Y

(4(X,Y ;Xn, Y n) (8.20)

+W TΨ(Xn, Y n)−W TΨ(X,Y)),∀n ,

198

where W concatenates all the model parameters which are linearly related to the

potentials Ψ(X, Y); C controls the relative weight of the sum of the violated terms

{ξn(X, Y)} with respect to the regularization term; 4(X, Y ;Xn, Y n) is the loss func-

tion that generates large loss when the X or Y is very different from Xn or Y n.

Depending on the performance evaluation metric, we design different loss functions

as described in the Sec. 8.3.1

Following the SSVM formulation, we propose to use a stochastic subgradient

descent method to solve Eq. 8.18. The subgradient of ∂W ξ
n(X, Y) can be cal-

culated as Ψ(Xn, Y n) − Ψ(X∗, Y ∗), where (X∗, Y ∗) = argminX,Y (W
TΨ(X, Y) −

4(X, Y ;Xn, Y n)). When the loss function can be decomposed into a sum of local

losses on individual segments and individual detections, (X∗, Y ∗) can be solved using

graph-cut similar to the inference problem (Sec. 8.2). For other complicated loss func-

tions, we found that it is effective to set (X∗, Y ∗) approximately as argminX,Y W
TΨ(X, Y),

when the loss is bigger than a threshold.

The remaining model parameters are set as follows. The category-specific R(l)

in Eq. 8.3 are estimated using the median values observed in training data. The γ

involved in Eq. 8.8 are estimated from the MSE as described in Ladicky et al. (2010b).

The β in Eq. 8.5 are set to be the detection confidence.

8.3.1 Loss Function

For the experiment on Stanford dataset, since the performance is measured by the

average classification accuracy across different categories, we define the following loss

function. The overall loss function 4(X, Y ;Xn, Y n) is decomposed into sum of the

segmentation loss 4(X ;Xn) and the detection loss 4(Y ; Y n).

The segmentation loss 4(X ;Xn) is defined as

4(X ;Xn) =
1

Q

∑

i∈V

1{xi 6= xni }cx(li) , (8.21)

199

where V captures the indices for the set of segments, 1{STATEMENT} is 1 if the

STATEMENT is true, cx(li) is the category li dependent cost (used to re-weight

the loss contributed from different categories), and Q =
∑

i∈V cx(li). Therefore, the

overall segmentation loss can be decomposed into a sum over local loss for each

segment 1
Q
1{xi 6= xni }cx(li).

The detection loss 4(Y ; Y n) is defined as

4(Y ; Y n) =
1

M

∑

i∈B

1{yi 6= yni }cy(li) , (8.22)

where B captures the indices for the set of detections, M =
∑

i∈B cy(li). Similarly, the

overall detection loss can be decomposed into a sum over local loss for each detection

1
M
1{yi 6= yni }cy(li).

For the experiment on PASCAL dataset, since the segmentation performance is

measured by true positive
true positive+ false positive + false negative

, the overall loss function4(X, Y ;Xn, Y n)

is decomposed into sum of the segmentation loss 4(X ;Xn) and the detection loss

4(Y ; Y n). The segmentation loss is 1-segmentation performance and the detection

loss is the same as before. Since the segmentation loss cannot be decomposed into a

per segment loss, we obtain (X∗, Y ∗) approximately as argminX,Y W
TΨ(X, Y), when

4(X∗, Y ∗;Xn, Y n) is bigger than a threshold.

8.4 Experiments

We compare our full ACRF model with Gould et al. (2009a); Tighe and Lazebnik

(2010);Munoz et al. (2010); Ladicky et al. (2010a,b) on Stanford Background (referred

as to Stanford) dataset (Gould et al., 2009a) as well as with several state-of-the-art

techniques on PASCAL VOC 2009 (referred as to PASCAL) dataset (Everingham

et al., 2009). As opposed to other datasets, such as MSRC (Shotton et al., 2006), the

Stanford dataset contains more cluttered scenes and more object instances per image.

200

(a) Global Accuracy
Tighe and Lazebnik Gould et al. Munoz et al. Ladicky et al. (2010a) Ladicky et al. (2010b) ACRF

77.5 76.4 76.9 80.2 80.0 82.4

(b) Back- Motor- Bi-
ground Car Person bike Bus Boat Cow Sheep cycle Global Avg

CRF 77.4 49.1 39.9 15.3 76.3 18.9 65.0 70.4 17.3 79.9 47.7
C+D 77.1 56.7 61.7 9.3 69.7 36.9 88.1 62.8 64.2 82.0 58.5
ACRF 77.2 74.9 60.1 17.2 79.4 36.9 88.6 58.2 64.7 82.4 61.9

Table 8.1: Segmentation performance comparison on the Stanford dataset. (a) Global
segmentation accuracy of our ACRF model compared with state-of-the-art methods,
where “Global” is the overall percentage of pixels correctly classified. (b) System
analysis of our model. The CRF row shows the results by using only the scene
element-scene element relationship component (first term in Eq. 8.2) of our ACRF
model. The C+D row shows results by adding independent detections indicators to
the CRF model (first two terms in Eq. 8.2). The last row shows results of the full
ACRF model. Notice “Avg.” is the average of the percentage over eight foreground
classes and one background class.

Hence, segmenting and detecting “objects” is particularly challenging. Conversely,

the PASCAL dataset contains larger number of “objects” labels with a single “scene

element” label, with limited number of object instances in each image.

For all the experiments below, we use the same pre-trained LSVM detectors

(Felzenszwalb et al., 2008) to obtain a set of object-instance hypotheses for cate-

gories such as car, person, and bike. The object depths are inferred by combining

both cues from the size and the bottom positions of the object bounding boxes sim-

ilar to Hoiem et al. (2006); Bao et al. (2010a). The responses from off-the-shelf

scene element classifiers are used as the unary scene element potentials in our model.

We model different types of pair-wise scene elements relationships using a codebook

representation similar to Bosch et al. (2010).

The following geometric pair-wise object relationships are used for the experiments

to incorporates geometric spatial relationship between two bounding boxes: next-to,

above, below, in-front, behind . On top of that, we have one additional geometric

relationship based on horizon lines agreement between two detections.

Geometric spatial relationships are determined by following steps. To establish

the geometric relationship given a pair of detection bounding boxes, we firstly set

201

Next-to Next-to

In front

Above

Below

Behind

DepthY

X

Reference

(a) (b)

Reference Next-to

Figure 8.4: (a) Pairwise objects relationships can be determined by drawing an ad-
ditional box with respect to a reference box. (b) In this example, a person (right) is
‘next-to’ a person on the left side.

B
a
ck
g
ro
u
n
d

A
er
o
p
la
n
e

B
ic
y
cl
e

B
ir
d

B
o
a
t

B
o
tt
le

B
u
s

C
a
r

C
a
t

C
h
a
ir

C
ow

D
in
in
g
ta
b
le

D
o
g

H
o
rs
e

M
o
to
r
b
ik
e

P
er
so
n

P
o
tt
ed

p
la
n
t

S
h
ee
p

S
o
fa

T
ra
in

T
V
/
m
o
n
it
o
r

A
v
er
a
g
e

CRF 69.0 19.7 2.4 8.8 6.8 8.8 21.6 17.5 13.1 0.5 8.6 7.1 6.5 6.5 13.8 19.2 5.8 13.6 3.3 21.3 9.5 13.5
CRF+Det 71.0 21.8 14.8 21.1 18.734.848.3 33.3 16.7 12.327.5 10.5 14.1 27.5 35.4 31.2 29.8 28.7 17.5 31.8 27.7 27.3
ACRF 75.529.1 14.7 23.0 18.2 34.0 47.8 40.417.2 11.4 27.0 12.617.530.140.134.930.6 28.2 20.731.030.1 29.4

Table 8.2: The segmentation accuracy of different variants of our model (i.e., CRF,
CRF+Det (denotes CRF+Detection), and full ACRF models) on PASCAL dataset.

one of them as a reference box. Then, we draw an additional box with respect to a

reference bounding box for a certain spatial relationship (i.e. above: draw on top of

a box; next-to: draw on left or right side of a box, etc. See Fig. 8.4 for details). If

a drawn box overlaps more than 50% with the other detection bounding box which

is not selected as a reference box, we can specify a relationship to the given pair of

boxes. This procedure is repeated for all geometric relationships.

The additional geometric spatial relationship is based on whether two horizon

lines from two bounding boxes are in agreement. Specifically, horizon lines for two

boxes are estimated assuming objects’ average heights, similar to Hoiem et al. (2006).

If two lines are close to each other within a certain range, which is a function of the

specific class (i.e. person or car have smaller variance, boat have a larger variance),

they have the same horizon line.

Stanford dataset. The Stanford dataset (Gould et al., 2009a) contains 715 images

202

Ground truth Segmented labels Segmented instancesOriginal image

Figure 8.5: Typical segmentation results on the Stanford dataset. Notice that our
model can obtain instance-based segmentations (last column) due to the ability to
reason in the augmented labeling space Q̂.

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

R
e
ca
ll

FPPI

ACRF (Ours)

LSVM

Figure 8.6: Recall v.s. FPPI curves of our ACRF and LSVM on Stanford dataset.
Our ACRF achieves better recall at different FPPI values.

B
a
ck
g
ro
u
n
d

A
er
o
p
la
n
e

B
ic
y
cl
e

B
ir
d

B
o
a
t

B
o
tt
le

B
u
s

C
a
r

C
a
t

C
h
a
ir

C
ow

D
in
in
g
ta
b
le

D
o
g

H
o
rs
e

M
o
to
r
b
ik
e

P
er
so
n

P
o
tt
ed

p
la
n
t

S
h
ee
p

S
o
fa

T
ra
in

T
V
/
m
o
n
it
o
r

A
v
er
a
g
e

BONN 83.9 64.3 21.8 21.7 32.0 40.2 57.3 49.4 38.8 5.2 28.5 22.0 19.6 33.6 45.5 33.6 27.3 40.4 18.1 33.6 46.1 36.3
CVC 80.2 67.1 26.6 30.3 31.6 30.0 44.5 41.6 25.2 5.9 27.8 11.0 23.1 40.5 53.2 32.0 22.2 37.4 23.6 40.3 30.2 34.5
NECUIUC 81.8 41.9 23.1 22.4 22.0 27.8 43.2 51.8 25.9 4.5 18.5 18.0 23.5 26.9 36.6 34.8 8.8 28.3 14.0 35.5 34.7 29.7
ACRF 75.5 29.1 14.7 23.0 18.2 34.0 47.8 40.4 17.2 11.4 27.0 12.6 17.5 30.1 40.1 34.9 30.6 28.2 20.7 31.0 30.1 29.4
UoCTTI 78.9 35.3 22.5 19.1 23.5 36.2 41.2 50.1 11.7 8.9 28.5 1.4 5.9 24.0 35.3 33.4 35.1 27.7 14.2 34.1 41.8 29.0
NECUIUC 81.5 39.3 20.9 22.6 21.7 26.1 37.1 51.5 25.2 5.7 17.5 15.7 24.2 27.4 35.3 33.0 7.9 23.4 12.5 32.1 33.3 28.3
LEAR 79.1 44.6 15.5 20.5 13.3 28.8 29.3 35.8 25.4 4.4 20.3 1.3 16.4 28.2 30.0 24.5 12.2 31.5 18.3 28.8 31.9 25.7
BROOKES 79.6 48.3 6.7 19.1 10.0 16.6 32.7 38.1 25.3 5.5 9.4 25.1 13.3 12.3 35.5 20.7 13.4 17.1 18.4 37.5 36.4 24.8
UCI 80.7 38.3 30.9 3.4 4.4 31.7 45.5 47.3 10.4 4.8 14.3 8.8 6.1 21.5 25.0 38.9 14.8 14.4 3.0 29.1 45.5 24.7
MPI 70.9 16.4 8.7 8.6 8.3 20.8 21.6 14.4 10.5 0.0 14.2 17.2 7.3 9.3 20.3 18.2 6.9 14.1 0.0 13.2 13.2 15.0

Table 8.3: Segmentation accuracy of our ACRF model compared with other state-of-
the-art methods on PASCAL dataset.

from challenging urban and rural scenes. On top of 8 background (“scene element”)

categories, we annotate 9 foreground (“objects”) categories - car, person, motorbike,

bus, boat, cow, sheep, bicycle, others. We follow the 5-fold cross-validation scheme

which splits the data into different 572 training and 143 test images. We use the

203

(a) Car wrt Bus

Car: In Front

Car: In Front

(b) Car wrt Person

Car: Next-to

Car: Behind

Next-to Next-to
In front

Above

Below

Behind

Next-to Next-to
In front

Above

Below

Behind

(c) Before BL1 BL2 ACRF
next-to 5.4% 25.9% 32.2% 92.5%
above/below 6.1% 51.72% 61.2% 76.2%
in-front/behind 5.7% 50.0% 60.4% 72.3%
different horizon 0.1% 38.5% 15.0% 60.0%

Figure 8.7: Examples of the learned pair-wise objects relationships are visualized
in panel (a,b). The grayscale color code indicates to what degree the relationship
is encouraged (white means it is encouraged, black means it is not encouraged and
suppressed). Our model learned that (a) a car is likely to be in front of a bus, and a car
is unlikely to be below a bus, (b) a car is likely to be behind a person. (c) Prediction
accuracy of the objects co-occurrence for each type of relationship averaged over 5-fold
validations. The first and last columns show the accuracy before and after applying
inference on our full ACRF model, respectively. Notice that there is a consistent
improvement across all types. The performance of two baseline methods are reported
in the middle two columns which are all inferior then our results.

same STAIR Vision Library (Gould et al., 2009c) used in Gould et al. (2009a) to

obtain the scene element unary potentials. Pixel-wise segmentation performance is

shown in Table 8.1. Our ACRF model outperforms all state-of-the-art methods (Tighe

and Lazebnik , 2010; Gould et al., 2009a; Munoz et al., 2010; Ladicky et al., 2010a,b)

1 (Table 8.1(a)). A system analysis of our model (Table 8.1(b)) shows that the

performances of most foreground classes (seven out of eight) are significantly improved

when additional components are added on top of the baseline CRF model, while the

performance of the background classes remain almost unchanged. As a result, the full

ACRF model obtains the best performance for six out of eight foreground classes and

a 14.2% average improvement over the baseline model. Typical results are shown in

Fig. 8.8-Top. We highlight that our model can generate instance-based segmentations

due to the ability to reason in the augmented labeling space Q̂ (Fig. 8.5). Our method

1We implement Ladicky et al. (2010a,b) by ourselves and evaluate the performance.

204

can predict the numbers of instances per image accuractely with an average errors of

0.27.

Another advantage of using our model is to improve detection accuracy. We

measured detection performance in terms of Recall v.s. False Positive Per Image

(FPPI) in Fig. 8.6, where detection results from 5-fold validations are accumulated

and shown in one curve. The performance of the proposed model is compared with

the pre-trained LSVM (Felzenszwalb et al., 2008). Our model achieves consistent

higher recall than the LSVM baseline as shown in Fig. 8.6.

PASCAL dataset. This dataset contains 14, 743 images with 21 categories includ-

ing 20 object categories and 1 scene element category. Only a subset of images have

segmentation labels, and we used the standard split for training (749 images), valida-

tion (750 images), and testing (750 images). A system analysis of our model (Table

8.2) shows that the performances of most classes were improved when additional com-

ponents are added on top of the baseline CRF model. Notice that the baseline CRF

has a fairly low performance, since we use only the pixel-wise unary responses from

the first layer of the hierarchical CRF (Ladicky et al., 2010b). However, our ACRF

model is able to significantly boost up the performance and achieves competitive ac-

curacy compared other teams in the challenge (ranked in 4th in Table 8.3) Moreover,

the average in predicting the error of numbers of instances per image is only 0.06.

Typical results are shown in Fig. 8.8-Bottom.

8.4.1 Relationship Analysis

The learned model parameters for a few typical pair-wise objects relationships are

visualized in Fig. 8.7(a,b). In Fig. 8.7(c), we compare the accuracy of predicting the

correct relationship of objects before (i.e., raw detections from LSVM (Felzenszwalb

et al., 2008)) and after applying inference on our ACRF. A relationship of objects

is considered correct if both their object bounding boxes overlap more than 50%

205

with the ground truth bounding boxes. The accuracy reported in Fig. 8.7(c) is the

percentage of correct pairs of objects for each type of relationship. Notice that a

significant improvement is achieved by our ACRF model over two baseline methods.

Our baseline methods BL1 and BL2 are defined as follows:

BL1 uses only the detection confidence to prune out detections. In specific, for

each pair of bounding boxes with a certain relationship, we assign a score as a sum

of scores for both bounding boxes from LSVM. Then, we sample p% of pairs with

highest scores, where p is the percentage of correct ratios for a certain relationship

from the training set.

BL2 incorporates pairwise object relationships and prune out detections. Again,

for each pair of bounding boxes with a certain relationship, we assign a score as a

sum of detection scores for both bounding boxes. Then, we sample pairs within top

p(c1, c2)%, where p(c1, c2) is a class-pair specific percentage of correct ratios from the

training set, and c1 and c2 is classes corresponding to two bounding boxes.

Using the inferred relationships we can provide high level geometrical description

of the scene and determine properties such as: object x is behind object y. Finally,

we can obtain 3D pop-up models of the scene from a single image as in Fig. 8.9

8.5 Conclusion

In this chapter, we have presented a unified CRF-based framework for jointly

detecting and segmenting “object” and “scene element” categories in natural images.

We have shown that our framework incorporates in a coherent fashion various types of

(geometrical and semantic) contextual relationships by using property list. Our new

formulation generalizes previous results based on CRF where the focus was to capture

the co-occurrence between scene element categories only. We have quantitatively and

qualitatively demonstrated that our method: i) produces better segmentation results

than state-of-the art on the Stanford dataset and competitive results on PASCAL’09

dataset; ii) improves the recall of object instances on Stanford dataset; iii) enables the

206

car personpersonpersonpersonpersonpersonpersonpersonperson person
person

car personcar
person

personcar person personpersonperson

acc: 0.78273

person
person

person
personpersonpersonpersonperson

person

person person

acc: 0.79387

car
person

person
person

personpersonpersonpersonperson
person person

acc: 0.79666

Ground Truth Disjoint Model CRF+Det ACRF

St
an

fo
rd

 D
at

as
e

t

cow
cow

cow cow cow
cow

cow

person
person

acc: 0.82143

cow

boat

acc: 0.84375

cowcow

acc: 0.91071

Ground Truth Disjoint Model CRF+Det ACRF

sky tree road grass water buildingmountainn car person bike bus boat cow sheep cycle etc

Car

e

Person

Person

Motor bikeBottle

Motor bike

Car

Ground Truth Disjoint Model CRF+Det ACRF

Motor bikeMotor bike

Car

Person

acc: 0.7942 acc: 0.8125 acc: 0.8642

PA
SC

A
L

D
at

as
e

t

Person

Person

Person

Person

Person

Person

Chair

Person

Person

Ground Truth Disjoint Model CRF+Det ACRF

acc: 0.6088 acc: 0.8515 acc: 0.8614

Bg Aeroplane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow Dining table Dog Horse Motor bike Person Potted plant Sheep Sofa Train TV/monitor

Figure 8.8: Typical results on Stanford (top 4 rows) and PASCAL datasets (bottom
4 rows). Every set of results compare ground truth annotation, disjointed model
(disjointedly applied object detection and segmentation), CRF+Det, ACRF, from
left to right, respectively. The odd rows show the top K object hypotheses (color-
coded bounding boxes representing the confidence ranking from light to dark), where
K is the number of recalled objects in the ACRF result. The even rows show the
segmentation results (color-code is shown at the bottom).

estimation of contextual relationship among objects and scene elements. Extensions

for future work include incorporating more sophisticated types of properties such as

207

Ground Truth CRF+Det ACRF

Ground Truth CRF+Det ACRF

Ground Truth CRF+Det ACRF

Figure 8.9: 3D pop-up models from Stanford dataset. Videos re-
lated to above 3D pop-up models can be found in the project page:
http://www.eecs.umich.edu/vision/ACRFproj.html

relative appearance, density, etc.

208

CHAPTER IX

Conclusion

In this thesis, we have proposed a number of 2D and 3D models for object and

scene understanding progressively working towards having the ability to interpret the

3D scene as human can easily do. Here we summarize our contributions and the future

work for object recognition, articulated object recognition, and scene understanding,

respectively.

9.1 Object Recognition

In the thesis, we demonstrate that object properties such as location, viewpoint,

3D shape, etc. can be extracted by our proposed generative model (Chapter III)

and depth-encoded hough voting method (Chapter IV). The proposed methods have

also shown the ability to synthesize new view (Sec. 3.3.3) and generate the 3D re-

construction (Sec. 4.2.2) of an object instance during recognition just from a single

image.

Despite these success, state-of-the-art methods are still far from the level of accu-

racy, efficiency and robustness that the human visual system achieves in recognizing,

detecting and categorizing objects from images. Recently, several new paradigms

have been explored to address the above limitations. One major effort involves large

scale object recognition. With the introduction of ultra-large scale datasets such as

209

the ImageNet (Deng et al., 2009) - a collection of millions of images organized into a

hierarchical ontology of thousands of categories - it is now possible to evaluate meth-

ods for object categorization that seek to: i) efficiently process these many images and

categories; ii) understand objects at different level of specificity; this is also referred

as to the fine-grain categorization problem (Yao et al., 2012a; Duan et al., 2012;

Branson et al., 2010; Perona, 2010). Another major effort is related to the intro-

duction of a recent paradigm whereby objects are modeled and recognized by means

of their attributes. As pioneered by Farhadi et al. (2009a); Ferrari and Zisserman

(2007); Lampert et al. (2009), visual attributes such as ”it is metallic”; ”it has wheels”

can be used to obtain more effective and descriptive characterizations of object cat-

egories (i.e., a car or a truck). This has the benefit of: i) making the ”boundaries”

between different categories more fluid than in traditional parameterizations; ii) en-

abling more powerful methods for fine-grained categorization (Duan et al., 2012); iii)

provides critical building blocks for transferring visual properties across categories

(transfer learning; one short learning) (Farhadi et al., 2009a; Lampert et al., 2009).

9.2 Articulated Object Recognition

We also demonstrate the advantage of incorporating rich relationships among

human body parts for human pose estimation. In Chapter V, we have proposed a

compositional model for joint human detection and pose estimation. The method

achieves a good trade-off between efficiency and accuracy by restricting the model

to have a tree structure. Further in Chapter VI, we have proposed a novel efficient

branch-and-bound algorithm for finding the best human body configuration described

by a complex loopy model which incorporates most of the relationships among human

body parts. The proposed branch-and-bound algorithm is very general and we have

applied it to solve computational biology problems such as protein design.

All the methods that we proposed focus on recognizing a single articulated ob-

210

ject. However, people often appear in groups and their body parts interact to each

other which causes occlusion and confusion of the membership of the parts (i.e., this

arm belongs to the first person, that arm belongs to the second person, and so on).

Researchers have identified this problem and proposed methods for jointly recogniz-

ing multiple people and resolving the ambiguity of parts membership and occlusion.

Eichner and Ferrari (2010) present a novel multi-person pose estimation framework,

which extends pictorial structures to explicitly model interactions between people and

to estimate their poses jointly. Yang et al. (2012) present a computational formula-

tion of visual proxemics by attempting to label each pair of people using a set of

physically-based ”touch codes” (e.g., Hand-hand, Elbow-shoulder, etc.). Comparing

to Eichner and Ferrari (2010), Yang et al. (2012) focus on handling more complex

interactions for only a pair of people. In the future, we like to extend our Branch-

and-Bound inference algorithm to jointly recognize multiple human poses capturing

the body part interaction across different individuals.

9.3 Scene Understanding

We propose two models for scene understanding which utilize the object properties

extracted by our methods to improve the object segmentation and detection perfor-

mance (Chapter VII and VIII). Both models incorporate the relationships among

objects and the scene layout established through the extracted properties. As a re-

sult, our methods are able to infer the object category of every image region, the

orientations of the supporting planes, and the location and 3D pose of the object

instances within the scene. In the future, we would like to apply our methods to a

video sequence instead of a single image. We believe that the ability to utilize the

relationships among object and scene layout across the time domain will significantly

improve the object segmentation and detection performance. One of the biggest chal-

lenge of extending our methods to video sequence is to keep the recognition process

211

tractable and efficient for practical usage.

In the future, we also would like to jointly solve general human behavior un-

derstanding problems, such as collective activity recognition (Choi et al., 2011; Lan

et al., 2010), individual action recognition (Yang et al., 2010; Yao et al., 2011), and

human pose estimation. We believe that it is also possible to combine human be-

havior understanding with general scene understanding problems so that a unified

model incorporates human-object, human-human, and human-layout relationships to

improve the understanding of both.

212

BIBLIOGRAPHY

213

BIBLIOGRAPHY

Agarwal, S., N. Snavely, I. Simon, S. M. Seitz, and R. Szeliski (2009), Building rome
in a day, in Proc. of IEEE Intern. Conf. in Computer Vision (ICCV).

Aliaga, D. G., T. Funkhouser, D. Yanovsky, and I. Carlbom (2003), Sea of images: A
dense sampling approach for rendering large indoor environments, IEEE Comput.
Graph. Appl., 23 (6), 22–30.

Andriluka, M., S. Roth, and B. Schiele (2009), Pictorial structures revisited:people
detection and articulated pose estimation, in IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR).

Andriluka, M., S. Roth, and B. Schiele (2010), Monocular 3d pose estimation and
tracking by detection, in IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR).

Arie-Nachimson, M., and R. Basri (2009), Constructing implicit 3d shape models for
pose estimation, in Proc. of IEEE Intern. Conf. in Computer Vision (ICCV).

Ballard, D. H. (1981), Generalizing the hough transform to detect arbitrary shapes,
Pattern Recognition, 13 (2), 111–122.

Bao, S. Y., M. Sun, and S. Savarese (2010a), Toward coherent object detection and
scene layout understanding, in IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR).

Bao, S. Y., M. Sun, and S. Savarese (2010b), Toward coherent object detection and
scenelayout understanding, in IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR).

Barinova, O., V. Lempitsky, and P. Kohli (2012), On detection of multiple object
instances using hough transforms, IEEE Trans. Pattern Analysis and Machine In-
telligence (TPAMI).

Barrow, H. G., and J. M. Tenenbaum (1981), Interpreting line drawings as three-
dimensional surfaces, Artif. Intell., 17 (1-3), 75–116.

Batra, D., S. Nowozin, and P. Kohli (2011), Tighter relaxations for MAP-MRF in-
ference: A local primal-dual gap based separation algorithm, in Intern. Conf. on
Artificial Intelligence and Statistics (AISTATS).

214

Bay, H., A. Ess, T. Tuytelaars, and L. Van Gool (2008), Speeded-up robust features
(surf), Comput. Vis. Image Underst., 110 (3), 346–359.

Bergtholdt, M., J. Kappes, S. Schmidt, and C. Schnrr (2010), A study of parts-based
object class detection using complete graphs, International Journal of Computer
Vision (IJCV), 87, 93–117.

Berkman, O., and U. Vishkin (1993), Recursive star-tree parallel data structure,
SIAM Journal on Computing, 22, 221–242.

Biederman, I. (1985), Human image understanding: Recent research and theory,
Computer Vision, Graphics and Image Understanding, 32, 29–73.

Binford, T. (1971), Visual perception by computer, in IEEE conference on Systems
and Control.

Blei, D. M. (2004), Variational methods for the dirichlet process, in Intl. Conf. on
Machine Learning (ICML).

Borenstein, E., and S. Ullman (2002), Class-specific, top-down segmentation, in Eu-
ropean Conference of Computer Vision (ECCV).

Boros, E., and P. Hammer (2002), Pseudo-boolean optimization., Discrete Applied
Mathematics.

Bosch, X. B., J. M. Gonfaus, J. van de Weijer, A. D. Bagdanov, J. Serrat, and
J. Gonz‘alez (2010), Harmony potentials for joint classification and segmentation,
in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

Bouchard, G., and B. Triggs (2005), Hierarchical part-based visual object categoriza-
tion, in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

Bouguet, J.-Y., and P. Perona (1995), Visual navigation using a single camera, in
Proc. of IEEE Intern. Conf. in Computer Vision (ICCV).

Bourdev, L., and J. Malik (2009), Poselets: Body part detectors trained using 3d hu-
man pose annotations, in Proc. of IEEE Intern. Conf. in Computer Vision (ICCV).

Bourdev, L., S. Maji, T. Brox, and J. Malik (2010), Detecting people using mu-
tually consistent poselet activations, in European Conference of Computer Vision
(ECCV).

Bowyer, K., and C. R. Dyer (1990), Aspect graphs: An introduction and survey of
recent results, International Journal of Imaging Systems and Technology, 2, 315–
328.

Boykov, Y., O. Veksler, and R. Zabih (2001), Fast approximate energy minimization
via graph cuts, IEEE Trans. Pattern Analysis and Machine Intelligence (TPAMI),
23, 1222–1239.

215

Branson, S., C. Wah, B. Babenko, F. Schroff, P. Welinder, P. Perona, and S. Belongie
(2010), Visual recognition with humans in the loop, in ECCV.

Brostow, G. J., J. Shotton, J. Fauqueur, and R. Cipolla (2008), Segmentation and
recognition using structure from motion point clouds, in European Conference of
Computer Vision (ECCV).

Brown, M., and D. G. Lowe (2005), Unsupervised 3d object recognition and recon-
struction in unordered datasets, in Conf. on 3D Imaging Modeling (3DIM).

Chen, X., S. B. Kang, Y.-Q. Xu, J. Dorsey, and H.-Y. Shum (2008), Sketching reality:
Realistic interpretation of architectural designs, ACM Trans. Graph., 27 (2), 1–15.

Chiu, H., L. Kaelbling, and T. Lozano-Perez (2007), Virtual training for multi-view
object class recognition, in Proc. Computer Vision and Pattern Recognition.

Choi, W., K. Shahid, and S. Savarese (2011), Learning context for collective activity
recognition, in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

Colombo, C., A. Del Bimbo, and F. Pernici (2005), Metric 3d reconstruction and
texture acquisition of surfaces of revolution from a single uncalibrated view, IEEE
Trans. Pattern Analysis and Machine Intelligence (TPAMI), 27 (1), 99–114.

Cornelis, N., B. Leibe, K. Cornelis, and L. Van Gool (2006), 3d city modeling using
cognitive loops, in Conf. on 3D Processing Visualization Transmission (3DPVT).

Criminisi, A., P. Perez, and K. Toyama (2003), Object removal by exemplar-based
inpainting, in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

Csurka, G., C. R. Dance, L. Fan, J. Willamowski, and C. Bray (2004), Visual cat-
egorization with bags of keypoints, in European Conference of Computer Vision
(ECCV), Workshop on Statistical Learning in Computer Vision, pp. 1–22.

Dalal, N., and B. Triggs (2005), Histograms of oriented gradients for human detection,
in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

de Givry, S., F. Heras, J. Larrosa, and M. Zytnicki (2005), Existential arc consistenct:
getting closer to full arc consistenct in weighted CSPs, in Intern. Joint Conf. on
Artificial Intelligence (IJCAI).

Debevec, P. E., C. J. Taylor, and J. Malik (1996), Modeling and rendering architecture
from photographs: a hybrid geometry- and image-based approach, in SIGGRAPH:
Proceedings of the 23rd annual conference on Computer graphics and interactive
techniques, pp. 11–20.

Dempster, A., N. Laird, and D. Rubin (1977), Maximum likelihood from incomplete
data via the em algorithm, Journal of the Royal Statistical Society, 39, 1–38.

216

Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei (2009), ImageNet: A
Large-Scale Hierarchical Image Database, in IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR).

Desai, C., D. Ramanan, and C. Fowlkes (2009), Discriminative models for multi-class
object layout, in Proc. of IEEE Intern. Conf. in Computer Vision (ICCV).

Dick, A. R., P. H. S. Torr, and R. Cipolla (2004), Modelling and interpretation of
architecture from several images, Intl. Journal of Computer Vision (IJCV), 60 (2),
111–134.

Duan, K., D. Parikh, D. Crandall, and K. Grauman (2012), Discovering localized
attributes for fine-grained recognition, in CVPR.

Efros, A. A., and T. K. Leung (1999), Texture synthesis by non-parametric sampling,
in Proc. of IEEE Intern. Conf. in Computer Vision (ICCV).

Eichner, M., and V. Ferrari (2009), Better appearance models for pictorial structures,
in British Machine Vision Conference (BMVC).

Eichner, M., and V. Ferrari (2010), We are family: Joint pose estimation of multiple
persons, in European Conference of Computer Vision (ECCV).

Everingham, M., A. Zisserman, C. K. I. Williams, and L. Van Gool (2006), The
PASCAL Visual Object Classes Challenge 2006 (VOC2006) Results.

Everingham, M., L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman (2007),
The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results.

Everingham, M., L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman (2009),
The PASCAL Visual Object Classes Challenge 2009 (VOC2009) Results.

Everingham, M., L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman (2010),
The PASCAL VOC2010 Results.

Farhadi, A., I. Endres, D. Hoiem, and D. Forsyth (2009a), Describing objects by their
attributes, in CVPR.

Farhadi, A., M. K. Tabrizi, I. Endres, and D. Forsyth (2009b), A latent model of
discriminative aspect, in Proc. of IEEE Intern. Conf. in Computer Vision (ICCV).

Fei-Fei, L., R. Fergus, and P. Perona (2004), Learning generative visual models from
few training examples: an incremental bayesian approach tested on 101 object
categories, in CVPR.

Felzenszwalb, P., D. McAllester, and D. Ramanan (2008), A discriminatively trained,
multiscale, deformable part model, in IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR).

217

Felzenszwalb, P. F., and D. P. Huttenlocher (2004a), Efficient graph-based image
segmentation, Intl. Journal of Computer Vision (IJCV), 59 (2), 167–181.

Felzenszwalb, P. F., and D. P. Huttenlocher (2004b), Distance transforms of sampled
functions, Tech. rep., Cornell Computing and Information Science.

Felzenszwalb, P. F., and D. P. Huttenlocher (2005), Pictorial structures for object
recognition, Intl. Journal of Computer Vision (IJCV), 61 (1), 55–79.

Felzenszwalb, P. F., R. B. Girshick, D. McAllester, and D. Ramanan (2010), Object
detection with discriminatively trained part-based models, IEEE Trans. Pattern
Analysis and Machine Intelligence (TPAMI), 32, 1627–1645.

Fergus, R., P. Perona, and A. Zisserman (2003), Object class recognition by unsu-
pervised scale-invariant learning, in IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR).

Ferrari, V., and A. Zisserman (2007), Learning visual attributes, in NIPS.

Ferrari, V., T. Tuytelaars, and L. Gool (2006), Simultaneous object recognition and
segmentation from single or multiple model views, IJCV, 67, 159–188.

Ferrari, V., L. Fevrier, F. Jurie, and C. Schmid (2008a), Groups of adjacent con-
tour segments for object detection, IEEE Trans. Pattern Analysis and Machine
Intelligence (TPAMI), 30 (1), 36–51.

Ferrari, V., M. M. Jimenez, and A. Zisserman (2008b), Progressive search space
reduction for human pose estimation, in IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR).

Fischler, M. A., and R. C. Bolles (1981), Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated cartography,
Comm. of the ACM, 24, 381–395.

Flock, H. R. (1964), Three theoretical views of slant perception, Psychological Bul-
letin, 62 (2), 110–121.

Gall, J., and V. Lempitsky (2009), Class-specific hough forests for object detection,
in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

Gertz, M., and S. Wright (2001), Object-oriented software for quadratic programming,
ACM Transactions on Mathematical Software, 29, 58–81.

Globerson, A., and T. Jaakkola (2008), Fixing max-product: Convergent message
passing algorithms for MAP LP-relaxations, in Advances in Neural Information
Processing Systems (NIPS).

Gonfaus, J. M., X. Boix, J. van de Weijer, A. D. Bagdanov, J. Serrat, and J. Gonz‘alez
(2010), Harmony potentials for joint classification and segmentation, in IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR).

218

Gordon, I., and D. G. Lowe (2006), What and where: 3d object recognition with
accurate pose, in Toward Category-Level Object Recognition.

Gould, S., R. Fulton, and D. Koller (2009a), Decomposing a scene into geometric
and semantically consistent regions, in Proc. of IEEE Intern. Conf. in Computer
Vision (ICCV).

Gould, S., T. Gao, and D. Koller (2009b), Region-based segmentation and object
detection, in Advances in Neural Information Processing Systems (NIPS).

Gould, S., O. Russakovsky, I. Goodfellow, P. Baumstarck, A. Ng, and D. Koller
(2009c), The stair vision library (v2.3).

Grauman, K., and T. Darrell (2005), The pyramid match kernel: discriminative clas-
sification with sets of image features, in Proc. of IEEE Intern. Conf. in Computer
Vision (ICCV).

Gupta, A., and L. Davis (2008a), Beyond nouns: Exploiting prepositions and com-
parators for learning visual classifiers, in European Conference of Computer Vision
(ECCV).

Gupta, A., and L. S. Davis (2008b), Beyond nouns: Exploiting prepositions and
comparative adjectives for learning visual classifiers, in European Conference of
Computer Vision (ECCV).

Gupta, A., A. A. Efros, and M. Hebert (2010), Blocks world revisited: Image un-
derstanding using qualitative geometry and mechanics, in European Conference of
Computer Vision (ECCV).

Han, F., and S. Zhu (2005), Bottom-up/top-down image parsing by attr ibute graph
grammar, in Proc. of IEEE Intern. Conf. in Computer Vision (ICCV).

Hays, J., and A. A. Efros (2007), Scene completion using millions of photographs,
ACM Trans. Graph., 26 (3).

He, X., R. S. Zemel, and M. Á. Carreira-Perpiñán (2004), Multiscale conditional
random fields for image labeling, in IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR).

Hedau, V., D. Hoiem, and D. Forsyth (2009), Recovering the spatial layout of clut-
tered rooms, in Proc. of IEEE Intern. Conf. in Computer Vision (ICCV).

Hedau, V., D. Hoiem, and D. Forsyth (2010), Thinking inside the box: Using ap-
pearance models and context based on room geometry, in European Conference of
Computer Vision (ECCV).

Heitz, G., and D. Koller (2008), Learning spatial context: Using stuff to find things,
in European Conference of Computer Vision (ECCV).

219

Heitz, G., S. Gould, A. Saxena, and D. Koller (2008), Cascaded classification mod-
els: Combining models for holistic scene understanding, in Advances in Neural
Information Processing Systems (NIPS).

Hoeim, D., and S. Savarese (2011), Representations and Techniques for 3D Object
Recognition and Scene Interpretation, Morgan and Claypool.

Hoeim, D., C. Rother, and J. Winn (2007), 3d layoutcrf for multi-view object class
recognition and segmentation, in IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR).

Hoiem, D., A. A. Efros, and M. Hebert (2005a), Geometric context from a single
image, in Proc. of IEEE Intern. Conf. in Computer Vision (ICCV).

Hoiem, D., A. A. Efros, and M. Hebert (2005b), Automatic photo pop-up, ACM
Trans. Graph., 24 (3), 577–584.

Hoiem, D., A. A. Efros, and M. Hebert (2006), Putting objects in perspective, in
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

Hoiem, D., A. Efros, and M. Hebert (2007), Recovering surface layout from an image,
Intl. Journal of Computer Vision (IJCV).

Hoiem, D., A. A. Efros, and M. Hebert (2008), Closing the loop on scene interpreta-
tion, in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

Hong, E.-J., and T. Lozano-Perez (2006), Protein side-chain placement through MAP
estimation and problem-size reduction, in Workshop on Algorithms in Bioinformat-
ics (WABI).

Horry, Y., K.-I. Anjyo, and K. Arai (1997), Tour into the picture: using a spidery
mesh interface to make animation from a single image, in SIGGRAPH: Proceedings
of the 24th annual conference on Computer graphics and interactive techniques, pp.
225–232.

Hsiao, E., A. Collet, and M. Hebert (2010), Making specific features less discrimi-
native to improve point-based 3d object recognition, in IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR).

Huttenlocher, D. P., and S. Ullman (1987), Object recognition using alignment, in
ICCV.

Ionescu, C., L. Bo, and C. Sminchisescu (2009), Structural svm for visual localization
and continuous state estimation, in IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR).

Jacobs, D., and R. Basri (1999), 3d to 2d pose determination with regions, Interna-
tional Journal of Computer Vision, 2/3 (34), 123–145.

220

Jiang, H., and D. R. Martin (2008), Global pose estimation using non-tree models,
in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

Jiang, N., P. Tan, and L.-F. Cheong (2009), Symmetric architecture modeling with a
single image, ACM Trans. Graph., 28 (5), 113:1–113:8.

Kanade, T. (1981), Recovery of the three-dimensional shape of an object from a single
view, Artificial Intelligence, 17, 409 – 460.

Karpenko, O. A., and J. F. Hughes (2006), Smoothsketch: 3d free-form shapes from
complex sketches, ACM Trans. Graph., 25/3, 589–598.

Koenderink, J., and A. V. Doorn (1979), The internal representation of solid shape
with respect to vision, Biol. Cybern, 32, 211–216.

Kohli, P., L. Ladicky, and P. H. Torr (2008), Robust higher order potentials for enforc-
ing label consistency, in IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR).

Koller, D., and N. Friedman (2009), Probabilistic graphical models: Principles and
techniques, MIT Press.

Kolmogorov, V. (2006), Convergent tree-reweighted message passing for energy min-
imization, IEEE Trans. Pattern Analysis and Machine Intelligence (TPAMI),
28 (10), 1568 –1583.

Kolmogorov, V., and R. Zabih (2004), What energy functions can be minimizedvia
graph cuts?, IEEE Trans. Pattern Analysis and Machine Intelligence (TPAMI),
26, 147–159.

Komodakis, N., and N. Paragios (2008), Beyond loose LP-relaxations: Optimizing
MRFs by repairing cycles, in European Conference of Computer Vision (ECCV).

Kopf, J., B. Neubert, B. Chen, M. Cohen, D. Cohen-Or, O. Deussen, M. Uyttendaele,
and D. Lischinski (2008), Deep photo: model-based photograph enhancement and
viewing, ACM Trans. Graph., 27 (5), 116:1–116:10.

Koster, A., C. P. M. van Hoesel, and A. W. J. Kolen (1998), The partial constraint
satisfaction problem: Facets and lifting theorems, Oper. Res. Lett., 23, 89–97.

Kushal, A., and J. Ponce (2006), Modeling 3d objects from stereo views and recog-
nizing them in photographs, in European Conference of Computer Vision (ECCV).

Kushal, A., C. Schmid, , and J. Ponce (2007), Flexible object models for category-level
3d object recognition, in IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR).

Kutulakos, K. N., and S. M. Seitz (2000), A theory of shape by space carving, Intl.
Journal of Computer Vision (IJCV), 38 (3), 199–218.

221

Ladicky, L., C. Russell, P. Kohli, and P. Torr (2010a), Graph cut based inference with
co-occurrence statistics, in European Conference of Computer Vision (ECCV).

Ladicky, L., C. Russell, P. Kohli, and P. H. Torr (2010b), Graph cut based inference
with co-occurrence statistics, in European Conference of Computer Vision (ECCV).

Ladicky, L., P. Sturgess, K. Alahari, C. Russell, and P. H. Torr (2010c), What,where
& how many? combining object detectors and CRFs, in European Conference of
Computer Vision (ECCV).

Lafferty, J., A. McCallum, and F. Pereira (2001), Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data, in ICML.

Lampert, C. H., H. Nickisch, and S. Harmeling (2009), Learning to detect unseen
object classes by between-class attribute transfer, in CVPR.

Lan, T., Y. Wang, W. Yang, and G. Mori (2010), Beyond actions: Discriminative
models for contextual group activities, in Advances in Neural Information Process-
ing Systems (NIPS).

Lan, X., and D. P. Huttenlocher (2005), Beyond trees: Common factor models for 2d
human pose recovery, in Proc. of IEEE Intern. Conf. in Computer Vision (ICCV).

Land, A. H., and A. G. Doig (1960), An automatic method of solving discrete pro-
gramming problems, Econometrica, pp. 497–520.

Laurentini, A. (1994), The visual hull concept for silhouette-based image understand-
ing, IEEE Trans. Pattern Analysis and Machine Intelligence (TPAMI), 16 (2), 150–
162.

Lazebnik, S., C. Schmid, and J. Ponce (2006), Beyond bags of features: Spatial pyra-
mid matching for recognizing natural scene categories, in IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR).

Lee, D. C., M. Hebert, and T. Kanade (2009), Geometric reasoning for single image
structure recovery, in IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR).

Leibe, B., A. Leonardis, and B. Schiele (2004), Combined object categorization and
segmentation with an implicit shape model, in European Conference of Computer
Vision (ECCV) workshop on statistical learning in computer vision.

Levoy, M., and P. Hanrahan (1996), Light field rendering, in SIGGRAPH: Proceedings
of the 23rd annual conference on Computer graphics and interactive techniques, pp.
31–42.

Levoy, M., et al. (2000), The digital michelangelo project: 3d scanning of large statues,
in SIGGRAPH: Proceedings of the 27th annual conference on Computer graphics
and interactive techniques, pp. 131–144.

222

Li, C., A. Kowdle, A. Saxena, and T. Chen (2010), Towards holistic scene under-
standing: Feedback enabled cascaded classification models, in Advances in Neural
Information Processing Systems (NIPS).

Li, L.-J., and L. Fei-Fei (2007), What, where and who? classifying event by scene and
object recognition, in Proc. of IEEE Intern. Conf. in Computer Vision (ICCV).

Li, L.-J., G. Wang, and L. Fei-Feie (2007), Optimol: automatic online picture collec-
tion via incremental model learning, in CVPr.

Li, L.-J., R. Socher, and L. Fei-Fei (2009a), Towards total scene understand-
ing:classification, annotation and segmentation in an automatic framework, in
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

Li, Y., L. Gu, and T. Kanade (2009b), A robust shape model for multi-view car
alignment, in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

Liebelt, J., and C. Schmid (2010), Multi-view object class detection with a 3D geomet-
ric model, in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

Liebelt, J., C. Schmid, and K. Schertler (2008), Viewpoint-independent object class
detection using 3d feature maps, in IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR).

Liebowitz, D., A. Criminisi, and A. Zisserman (1999), Creating architectural mod-
els from images, in Annual Conference of the European Association for Computer
Graphics (Eurographics), vol. 18, pp. 39–50.

Lowe, D. (1999), Object recognition from local scale-invariant features, in Proc. of
IEEE Intern. Conf. in Computer Vision (ICCV).

Lowe, D., and T. Binford (1985), The recovery of three-dimensional structure from
image curves, IEEE Trans. Pattern Analysis and Machine Intelligence (TPAMI),
7, 320–326.

Lucas, B. D., and T. Kanade (1981), An iterative image registration technique with
an application to stereo vision, in Intern. Joint Conf. on Artificial Intelligence
(IJCAI).

Maji, S., and J. Malik (2009), Object detection using a max-margin hough tranform,
in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

Marinescu, R., and R. Dechter (2007), Best-first and/or search for graphical models,
in National Conf. on Artificial intelligence (AAAI).

Marr, D. (1978), Representing visual information, in Computer Vision Systems.

Marr, D. (1982), Vision: A Computational Investigation into the Human Represen-
tation and Processing of Visual Information, Henry Holt and Co., Inc.

223

Matas, J., O. Chum, M. Urban, and T. Pajdla (2002), Robust wide baseline stereo
from maximally stable extremal regions, in British Machine Vision Conference
(BMVC).

McMillan, L., and G. Bishop (1995), Plenoptic modeling: an image-based rendering
system, in SIGGRAPH: Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques, pp. 39–46.

Meltzer, T., C. Yanover, and Y. Weiss (2005), Globally optimal solutions for energy
minimization in stereo vision using reweighted belief propagation, in Proc. of IEEE
Intern. Conf. in Computer Vision (ICCV).

Mendonça, P. R. S., K.-Y. K. Wong, and R. Cipolla (2000), Camera pose estima-
tion and reconstruction from image profiles under circular motion, in European
Conference of Computer Vision (ECCV).

Microsoft Corp. Redmond WA (2010), Kinect for Xbox 360.

Mikolajczyk, K., and C. Schmid (2002), An affine invariant interest point detector,
in International Journal of Computer Vision, pp. 128–142.

Mitra, N. J., L. J. Guibas, and M. Pauly (2006), Partial and approximate symmetry
detection for 3d geometry, ACM Trans. Graph., 25 (3), 560–568.

Munoz, D., J. A. Bagnell, and M. Hebert (2010), Stacked hierarchical labeling, in
European Conference of Computer Vision (ECCV).

Ng, J., and S. Gong (1999), Multi-view face detection and pose estimation using a
composite support vector machine across the view sphere, in RATFG-RTS.

Obdrzalek, S., and J. Matas (2002), Object recognition using local affine frames on
distinguished regions, in British Machine Vision Conference (BMVC).

Ommer, B., and J. Malik (2009), Multi-scale object detection by clustering lines, in
Proc. of IEEE Intern. Conf. in Computer Vision (ICCV).

Oswald, M. R., E. Töppe, K. Kolev, and D. Cremers (2009), Non-parametric single
view reconstruction of curved objects using convex optimization, in DAGM Sym-
posium on Pattern Recognition.

Palmer, S. (1975), Visual perception and world knowledge: notes on a model of
sensory-cognitive interaction, in Explorations in Cognition.

Palmer, S., E. Rosch, and P. Chase (1981), Canonical perspective and the perception
of objects, Attention and Performance, 9, 135–151.

Palmer, S. E. (1999), Vision science-photons to phenomenology, MIT Press.

224

Pauly, M., N. J. Mitra, J. Giesen, M. Gross, and L. J. Guibas (2005), Example-based
3d scan completion, in SGP: Proceedings of the third Eurographics symposium on
Geometry processing.

Payet, N., and S. Todorovic (2011a), From contours to 3d object detection and pose
estimation, in Proc. of IEEE Intern. Conf. in Computer Vision (ICCV).

Payet, N., and S. Todorovic (2011b), Scene shape from textures of objects, in IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR).

Pérez, P., M. Gangnet, and A. Blake (2003), Poisson image editing, ACM Trans.
Graph., 22 (3), 313–318.

Perona, P. (2010), Visions of a visipedia, Proceedings of the IEEE, 98, 1526–1534.

Pingkun Yan, S. M. K., and M. Shah (2007), 3d model based object class detection
in an arbitrary view, in Proc. of IEEE Intern. Conf. in Computer Vision (ICCV).

Poggio, T., and S. Edelman (1990), A neural network that learns to recognize three-
dimensional objects, Nature, 343, 263–266.

Pollefeys, M., L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops, and
R. Koch (2004), Visual modeling with a hand-held camera, Intl. Journal of Com-
puter Vision (IJCV), 59 (3), 207–232.

Prasad, M., and A. Fitzgibbon (2006), Single view reconstruction of curved surfaces,
in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

Prasad, M., A. W. Fitzgibbon, A. Zisserman, and L. J. V. Gool (2010), Finding
nemo: Deformable object class modelling using curve matching, in IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR).

P.Winston (1975), Learning structural descriptions from examples, in The Psycology
of Computer Vision.

Rabinovich, A., A. Vedaldi, C. Galleguillos, E. Wiewiora, and S. Belongie (2007),
Objects in context, in Proc. of IEEE Intern. Conf. in Computer Vision (ICCV).

Ramanan, D. (2006), Learning to parse images of articulated bodies, in Advances in
Neural Information Processing Systems (NIPS).

Ren, X., A. C. Berg, and J. Malik (2005), Recovering human body configurations us-
ing pairwise constraints between parts, in Proc. of IEEE Intern. Conf. in Computer
Vision (ICCV).

Romea, A. C., S. S. D. Berenson, and D. Ferguson (2009), Object recognition and
full pose registration from a single image for robotic manipulation, in IEEE Inter-
national Conference on Robotics and Automation (ICRA).

225

Rother, C., V. Kolmogorov, and A. Blake (2004), ”grabcut”: interactive foreground
extraction using iterated graph cuts, ACM Trans. Graph., 23 (3), 309–314.

Rother, C., V. Kolmogorov, V. Lempitsky, and M. Szummer (2007), Optimizing
binary mrfs via extended roof duality, in IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR).

Rothganger, F., S. Lazebnik, C. Schmid, and J. Ponce (2003), 3D object modeling
and recognition using affine-invariant patches and multi-view spatial constraints.,
in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

Rusinkiewicz, S., O. Hall-Holt, and M. Levoy (2002), Real-time 3d model acquisition,
ACM Trans. Graph., 21 (3), 438–446.

Russell, B. C., A. Torralba, K. P. Murphy, and W. T. Freeman (2008), Labelme:
A database and web-based tool for image annotation, Intl. Journal of Computer
Vision (IJCV), 77 (1-3), 157–173.

Sapp, B., C. Jordan, and B. Taskar (2010a), Adaptive pose priors for pictorial struc-
tures, in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

Sapp, B., A. Toshev, and B. Taskar (2010b), Cascaded models for articulated pose
estimation., in European Conference of Computer Vision (ECCV).

Sapp, B., D. Weiss, and B. Taskar (2010c), Sidestepping intractable inference with
structured ensemble cascades, in Advances in Neural Information Processing Sys-
tems (NIPS).

Sapp, B., D. Weiss, and B. Taskar (2011), Parsing human motion with stretchable
models, in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

Savarese, S., and L. Fei-Fei (2007), 3d generic object categorization, localization and
pose estimation, in Proc. of IEEE Intern. Conf. in Computer Vision (ICCV).

Savarese, S., and L. Fei-Fei (2008), View synthesis for recognizing unseen poses of
object classes, in European Conference of Computer Vision (ECCV).

Savarese, S., M. Andreetto, H. Rushmeier, F. Bernardin, and P. Perona (2006a), 3d
reconstruction by shadow carving: Theory and practical evaluation, Intl. Journal
of Computer Vision (IJCV), 71 (3), 305–336.

Savarese, S., J. Winn, and A. Criminisi (2006b), Discriminative object class models
of appearance and shape by correlatons, in IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR).

Saxena, A., M. Sun, and A. Y. Ng (2009), Make3d: Learning 3d scene structure
from a single still image, IEEE Trans. Pattern Analysis and Machine Intelligence
(TPAMI), 31 (5), 824–840.

226

Schmid, C. (2006), Beyond bags of features: Spatial pyramid matching for recog-
nizing natural scene categories, in IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR).

Schneiderman, H., and T. Kanade (2000), A statistical approach to 3D object de-
tection applied to faces and cars, in IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR).

Schwing, A., T. Hazan, M. Pollefeys, and R. Urtasun (2012), Efficient structured
prediction for 3d indoor scene understanding, in IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR).

Seitz, S. M., and C. R. Dyer (1996), View morphing, in SIGGRAPH: Proceedings of
the 23rd annual conference on Computer graphics and interactive techniques.

Seitz, S. M., B. Curless, J. Diebel, D. Scharstein, and R. Szeliski (2006), A comparison
and evaluation of multi-view stereo reconstruction algorithms, in IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR).

Shamir, A., and S. Avidan (2009), Seam carving for media retargeting, Commun.
ACM, 52 (1), 77–85.

Shilane, P., P. Min, M. Kazhdan, and T. Funkhouser (2004), The princeton shape
benchmark, in SMI ’04: Proceedings of the Shape Modeling International 2004.

Shimony, S. E. (1994), Finding MAPs for belief networks is NP-hard, Artificial Intel-
ligence, 68, 399–410.

Shlezinger, M. I. (1976), Syntactic analysis of two-dimensional visual signals in the
presence of noise, Cybernetics and Systems Analysis, 12, 612–628.

Shotton, J., J. Winn, C. Rother, and A. Criminisi (2006), Textonboost: Joint ap-
pearance, shape and context modeling for multi-class object recognition and seg-
mentation, in European Conference of Computer Vision (ECCV).

Shotton, J., A. Blake, and R. Cipolla. (2008), Semantic texton forests for image
categorization and segmentation., in IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR).

Sigal, L., and M. J. Black (2006), Measure locally, reason globally: Occlusion-sensitive
articulated pose estimation, in IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR).

Snavely, N., S. M. Seitz, and R. Szeliski (2006), Photo tourism: exploring photo
collections in 3d, ACM Trans. Graph., 25 (3), 835–846.

Sontag, D., and T. Jaakkola (2009), Tree block coordinate descent for MAP in graph-
ical models, in Intern. Conf. on Artificial Intelligence and Statistics (AISTATS).

227

Sontag, D., A. Globerson, and T. Jaakkola (2008a), Clusters and coarse partitions in
LP relaxations, in Advances in Neural Information Processing Systems (NIPS).

Sontag, D., T. Meltzer, A. Globerson, Y. Weiss, and T. Jaakkola (2008b), Tight-
ening LP relaxations for MAP using message-passing, in Conf. on Uncertainty in
Artificial Intelligence (UAI).

Stark, M., M. Goesele, and B. Schiele (2010), Back to the future: Learning shape
models from 3d cad data, in British Machine Vision Conference (BMVC).

Sudderth, E. B., A. Torralba, W. T. Freeman, and A. S. Willsky (2008), Describing
visual scenes using transformed objects and parts, Intl. Journal of Computer Vision
(IJCV), 77 (1-3), 291–330.

Sun, M., and S. Savarese (2011), Articulated part-based model for joint object de-
tection and pose estimation, in Proc. of IEEE Intern. Conf. in Computer Vision
(ICCV).

Sun, M., H. Su, S. Savarese, and L. Fei-Fei (2009), A multi-view probabilistic model
for 3d object classes, in IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR).

Sun, M., S. Y.-Z. Bao, and S. Savarese (2010a), Object detection with geometrical
context feedback loop, in British Machine Vision Conference (BMVC).

Sun, M., G. Bradski, B.-X. Xu, and S. Savarese (2010b), Depth-encoded hough voting
for coherent object detection, pose estimation, and shape recovery, in European
Conference of Computer Vision (ECCV).

Sun, M., B.-s. Kim, P. Kolih, and S. Savarese (2012a), Relating things and stuff via
object property interactions, in European Conference of Computer Vision (ECCV)
workshop on Higher-Order Models and Global Constraints in Computer Vision.

Sun, M., M. Telaprolu, H. Lee, and S. Savarese (2012b), Efficient and exact MAP-
MRF inference using branch and bound, in Intern. Conf. on Artificial Intelligence
and Statistics (AISTATS).

Sun, M., M. Telaprolu, H. Lee, and S. Savarese (2012c), An efficient branch-and-
bound algorithm for optimal human pose estimation, in IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR).

Tao, M. W., M. K. Johnson, and S. Paris (2010), Error-tolerant image compositing,
in European Conference of Computer Vision (ECCV).

Tarr, M., and S. Pinker (1989), Mental rotation and orientation-dependence in shape
recognition, Cognitive Phycology, 21, 233–282.

Teller, S., M. Antone, Z. Bodnar, M. Bosse, S. Coorg, M. Jethwa, and N. Master
(2003), Calibrated, registered images of an extended urban area, Intl. Journal of
Computer Vision (IJCV), 53 (1), 93–107.

228

Thomas, A., V. Ferrari, B. Leibe, T. Tuytelaars, B. Schiele, and L. V. Goo (2006),
Towards multi-view object class detection, in IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR).

Thomas, A., V. Ferrari, B. Leibe, T. Tuytelaars, and L. J. V. Gool (2007), Depth-
from-recognition: Inferring meta-data by cognitive feedback, in Proc. of IEEE In-
tern. Conf. in Computer Vision (ICCV).

Tian, T.-P., and S. Sclaroff (2010), Fast globally optimal 2D human detection with
loopy graph models, in IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR).

Tighe, J., and S. Lazebnik (2010), Superparsing: Scalable nonparametric image pars-
ing with superpixels, in European Conference of Computer Vision (ECCV).

Toldo, R., and A. Fusiello (2008), Robust multiple structures estimation with j-
linkage, in European Conference of Computer Vision (ECCV).

Torralba, A., K. P. Murphy, W. T. Freeman, and M. A. Rubin (2003), Context-based
vision system for place and object recognition, in Proc. of IEEE Intern. Conf. in
Computer Vision (ICCV).

Tran, D., and D. Forsyth (2010), Improved human parsing with a full relational
model, in European Conference of Computer Vision (ECCV).

Tsai, G., C. Xu, J. Liu, and B. Kuipers (2011), Real-time indoor scene understand-
ing using bayesian filtering with motion cues, in Proc. of IEEE Intern. Conf. in
Computer Vision (ICCV).

Tsochantaridis, I., T. Hofmann, T. Joachims, and Y. Altun (2004), Support vector
machine learning for interdependent and structured output spaces, in Intl. Conf.
on Machine Learning (ICML).

Ullman, S., and R. Basri (1991), Recognition by linear combinations of models,
TPAMI, 13, 992–1006.

Viola, P., and M. J. Jones (2004), Robust real-time face detection, Intl. Journal of
Computer Vision (IJCV), 57 (2), 137–154.

Wainwright, M. J., and M. I. Jordan (2008), Graphical models, exponential families,
and variational inference, Found. Trends Mach. Learn., 1, 1–305.

Wainwright, M. J., T. S. Jaakkola, and A. S. Willsky (2005), MAP estimation via
agreement on trees: message-passing and linear programming, IEEE Trans. Infor-
mation Theory, 51 (11), 3697 – 3717.

Wang, H., S. Gould, and D. Koller (2010), Discriminative learning with latent vari-
ables for cluttered indoor scene understanding, in European Conference of Com-
puter Vision (ECCV).

229

Wang, Y., and G. Mori (2008), Multiple tree models for occlusion and spatial con-
straints in human pose estimation, in European Conference of Computer Vision
(ECCV).

Wang, Y., D. Tran, and Z. Liao (2011), Learning hierarchical poselets for human
parsing, in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

Weber, M., W. Einhaeuser, M. Welling, and P. Perona (2000a), Viewpoint-invariant
learning and detection of human heads, in Proc. 4th Int. Conf. Autom. Face and
Gesture Rec., pp. 20–27.

Weber, M., M. Welling, and P. Perona (2000b), Unsupervised learning of models for
recognition, in European Conference of Computer Vision (ECCV).

Werner, T. (2007), A linear programming approach to max-sum problem: A review,
IEEE Trans. Pattern Analysis and Machine Intelligence (TPAMI), 29, 1165–1179.

Werner, T. (2008), High-arity interactions, polyhedral relaxations, and cutting plane
algorithm for soft constraint optimisation (MAP-MRF), in IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR).

Winn, J., and J. Shotton (2006), The layout consistent random field for recognizing
and segmenting partially occluded objects, in IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR).

Xiang, Y., and S. Savarese (2012), Estimating the aspect layout of object categories,
in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

Xiao, J., and M. Shah (2004), Tri-view morphing, Comput. Vis. Image Underst.
(CVIU), 96 (3), 345–366.

Xu, C., B. Kuipers, and A. Murarka (2009), 3d pose estimation for planes, in Proc. of
IEEE Intern. Conf. in Computer Vision (ICCV) workshop on 3D Representation
for Recognition (3dRR-09).

Yan, P., D. Khan, and M. Shah (2007), 3d model based object class detection in an
arbitrary view., in Proc. of IEEE Intern. Conf. in Computer Vision (ICCV).

Yang, W., Y. Wang, and G. Mori (2010), Recognizing human actions from still images
with latent poses, in IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR).

Yang, Y., and D. Ramanan (2011), Articulated pose estimation using flexible mixtures
of parts, in IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).

Yang, Y., S. Baker, A. Kannan, and D. Ramanan (2012), Recognizing proxemics
in personal photos, in IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR).

230

Yanover, C., T. Meltzer, and Y. Weiss (2006), Linear programming relaxations and
belief propagation – an empirical study, Journal of Machine Learning Research, 7,
1887–1907.

Yao, B., and L. Fei-Fei (2010), Modeling mutual context of object and human pose
in human-object interaction activities, in IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR).

Yao, B., X. Jiang, A. Khosla, A. L. Lin, L. J. Guibas, and L. Fei-Fei (2011), Action
recognition by learning bases of action attributes and parts, in Proc. of IEEE
Intern. Conf. in Computer Vision (ICCV).

Yao, B., G. Bradski, and L. Fei-Fei (2012a), A codebook-free and annotation-free
approach for fine-grained image categorization, in CVPR.

Yao, J., S. Fidler, and R. Urtasun (2012b), Describing the scene as a whole: Joint
object detection, scene classification and semantic segmentation, in IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR).

Zhang, Z. (2004), Floatboost learning and statistical face detection, TPAMI, 26,
1112–1123.

Zhu, L. L., Y. Chen, Y. Lu, C. Lin, and A. Yuille (2008), Max margin and/or graph
learning for parsing the human body, in IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR).

Zhu, L. L., Y. Chen, A. Yuille, and W. Freeman (2010), Latent hierarchical structural
learning for object detection, in IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR).

Zitnick, C. L., S. B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski (2004),
High-quality video view interpolation using a layered representation, ACM Trans.
Graph., 23 (3), 600–608.

231

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ABSTRACT
	Introduction
	Challenges
	Previous Work
	Our Contributions
	Themes
	Models for 3D Object Recognition and View Point Estimation
	Models for 3D Object Shape Inference
	Models for Articulated Objects
	Efficient Inference on Loopy Models for Articulated Objects
	Models for Capturing Interplay between Objects and Scene Layout
	Models for Coherent Scene Understanding

	Background
	Object Recognition
	Object Instance Recognition
	Single View Object Category Recognition
	3D Object Category Recognition

	Articulated Object Recognition
	Human Detection
	Human Pose Estimation
	Joint Human Detection and Pose Estimation

	Scene Understanding
	2D Scene Elements
	Beyond 2D Scene Elements
	Object and Scene Elements

	Models for 3D Object Recognition and View Point Estimation
	A Dense Multi-view Representation of 3D object Categories
	Model
	Part-Based Representation
	View Sphere Parameterizations
	Part-Based Model over the View Sphere
	Key View Generation
	Generative Process
	3D Geometric Constraints

	Learning
	Initialization with A Video Clip
	View Matching Exemplars:
	Part-Based Model:
	Obtaining Candidate Parts:

	Incremental learning with Unsorted Images
	Viewpoint Estimation
	Part-Based Model Incremental Update

	Learning Summary
	Comparison with previous methods

	Applications
	Object class detection
	Object viewpoint classification
	Viewpoint synthesis

	Conclusion

	Models for 3D Object Shape Inference
	Related Works on 3D Object Modelling
	Our Method
	Stage 1: Depth-Encoded Hough Voting
	Training the model
	Recognition and 3D reconstruction

	Stage 2: 3D Modelling
	3D shape recovery
	Texture Completion
	Symmetric Property
	Hole Filling

	Experiment
	Evaluation of DEHV
	Exp.I: System analysis on a novel 3D table-top object dataset
	Exp.II:Comparision on three challenging datasets

	Evaluation of 3D Modelling

	Conclusion

	Models for Articulated Objects
	Articulated Object Representation
	Recognition
	Matching Scores
	Model Properties (APM)

	Model Learning
	Implementation Details
	Experiments
	Evaluation Criteria
	Comparing with Poselet (Bourdev et al. (2010))
	ETHZ Stickmen dataset

	Conclusion

	Efficient Inference on Loopy Models for Articulated Objects
	Introduction on MAP-MRF inference
	The MAP problem and its LP Relaxation
	Dual LPRs.
	MPLP
	Time Complexity and Tightness of the Bound

	Efficient Branch-and-Bound
	Branch-and-Bound Basics
	Efficient Bound
	Branch-Max-Tree (BMT)
	Opportunistic Branch Max Search (OBMS)

	Branching Strategy
	Guided Variable Selection (GVS)
	Variable Hypothesis Ordering (VHO)

	Experiments
	General Experimental Setting
	Detailed Experimental Settings
	Improved Naive Branch-and-Bound Algorithm
	Experiments with Synthetic Data
	Human Pose Estimation (HPE)
	HPE Problem Given a Single Image
	HPE Problem Given a Video Sequence

	Other Application: Protein Design

	Conclusion

	Models for Capturing Interplay between Objects and Scene Layout
	Geometrical Context Feedback Loop
	Model Overview
	Model Representation
	Object Detector Module
	3D Layout Estimator Module
	Supporting Region Segmenter Module

	Model Learning
	Object Detector Module
	Supporting Region Segmenter Module

	Model Inference using Context Feedback Loop
	Implementation details

	Experiment
	Table-top Object Dataset
	Label-Me Outdoor Dataset
	Office Dataset

	Conclusion and Future Work

	Models for Coherent Scene Understanding
	Augmented CRF
	Relating Y and X
	Indicator CRF

	Inference
	Functions of indicator variables Y with only category property.
	Functions of indicator variables Y with instance properties.
	Functions of Indicators Y
	-expansion move energy

	Learning
	Loss Function

	Experiments
	Relationship Analysis

	Conclusion

	Conclusion
	Object Recognition
	Articulated Object Recognition
	Scene Understanding

	BIBLIOGRAPHY

