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ABSTRACT

Permutation Tests for Random Effects in Mixed Models

by

Oliver E. Lee

Chair: Thomas M. Braun

Inference regarding the inclusion or exclusion of random effects in mixed models

is challenging because the variance components are located on the boundary of their

parameter space under the null hypothesis. As a result, the asymptotic null distribu-

tion of the Wald, score, and likelihood ratio tests will not have the typical chi-squared

distribution. Although it has been proved that the correct asymptotic distribution is

a mixture of chi-squared distributions, the appropriate mixture distribution is cum-

bersome and non-intuitive when the null and alternative hypotheses differ by more

than one random effect. This dissertation addresses these challenges through the use

of permutation methods.

For the first chapter, we focus on linear mixed models and present two permutation

tests, one that is based on the Best Linear Unbiased Predictors (BLUPs), and one

that is based on the restricted likelihood ratio test statistic. The null permutation

distributions of our statistics are computed by permuting the residuals both within-

ix



and among-subjects and are valid both asymptotically and in small samples. Through

simulations we show that our permutation tests are valid for small sample sizes and

is more powerful than the asymptotic likelihood ratio test. The proposed tests are

also shown to be more robust to violations of distributional assumptions compared

with the asymptotic likelihood ratio tests.

For the second chapter we extend the linear mixed model permutation methods

to inference on random effects in generalized linear mixed models (GLMMs). We use

the idea of working variates to approximate the GLMM with a linear mixed model.

Through simulations we show that our permutation tests are valid and display power

that is comparable to the most powerful score test.

For the final chapter we demonstrate the versatility of our permutation tests with

an application to linear penalized spline models. By re-expressing the penalized spline

model as a mixed model our permutation tests can test the spline model alternative

against a linear regression model. The validity and power are examined through

simulation, and find that the BLUP based permutation test is the most powerful

when compared with the permutation test of Raz and the asymptotic likelihood ratio

test.
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CHAPTER I

Introduction

The simplest form of regression in statistics is linear regression, which is usually

expressed as Y = Xβ + ε where Y is a vector of a continuous outcome of interest,

X is a matrix of known fixed effects or explanatory variables that are multiplied

by coefficients from the vector β, and ε is a vector of independent and identically

distributed random errors that are typically assumed to follow a normal distribution.

One of the key assumptions in linear regression is that the data are independent.

Often this assumption is violated when data come from clusters or groups. Examples

of sources of correlation include shared genetic traits of family members, plots of land

in agricultural studies, and hospitals in multi-center clinical trials.

Mixed models are an extension of regression models that incorporate random

effects into typical fixed effects regression models to account for correlation in the

data. Adding Zb to the linear regression model, where Z is a matrix of random

effect covariates and b is the vector of random effects, results in the Laird and Ware

[1982] formulation of the linear mixed model (LMM):

Y = Xβ +Zb+ ε.

1
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The random effects are assumed to come from a mean zero random distribution,

usually a normal distribution.

Random effects can also be added to generalized linear models (GLMs) for non-

normal data. GLMs were first proposed by McCullagh and Nelder [1989] and are an

extension of linear models where the mean of the outcome is associated with a linear

function of the independent variables through a link function and the variance of the

outcomes can be a function of the mean. Just like with linear models the observations

are assumed to be independent. A standard GLM is written as

g(µ) = Xβ

where our data, Y , come from an exponential family distribution, and µ is the mean

of the distribution that is related to a linear function of fixed effects and coefficients

through a link function g(·). Examples of GLMs include logistic regression and Pois-

son regression. When the data are correlated, random effects can be added extending

the GLM to a generalized linear mixed model (GLMM). After adding random effects

to the GLM, the subsequent GLMM can be written as

g(µ) = Xβ +Zb.

Additional notation for both LMMs and GLMMs will be provided in the subsequent

chapters.

Our motivating application for developing methods for mixed models is in the

analysis of longitudinal data [Laird and Ware, 1982, Diggle et al., 2002]. These types

of data are characterized by repeated measurements of an outcome from a set of
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Figure 1.1: Scatterplot of the Pothoff Roy dental data.
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subjects over a period of time. Mixed models are needed in order to ensure that

inference for the fixed effects is valid, because measurements that originate from the

same individual are likely to be correlated and assumption of independence will lead

to invalid standard error estimates.

One example of longitudinal data is the Potthoff and Roy [1964] dental data

where dental growth measurements of the distance (in millimeters) from the center

of the pituitary gland to the pteryomaxillary fissure were recorded on 16 males and

11 females at ages 8, 10, 12, and 14. To illustrate the longitudinal trend in the data,

Figure 1.1 is a plot of measurements by age overlaid with overall linear regression fits

for the males and the females.
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Figure 1.2: Subject specific scatterplots of the Pothoff Roy dental data.
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Although the data appear to be quite variable, the regression lines have a dis-

tinct increasing trend. This is further enhanced in Figure 1.2 where each subject is

individually plotted along with a regression fit that shows that each subject has an

increasing slope. In addition, with a couple of exceptions such as M13, most of the

children had similar growth rates and children who started with a high measurement

also ended with a high measurement, providing some visual evidence of correlation

among measurements from the same child.

Inference for the fixed effects in mixed models is straightforward and usually done

by comparing the standard likelihood ratio, Wald, or score statistic with a χ2 dis-

tribution with degrees of freedom equal to the number of parameters being tested.
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One drawback to these tests is that they are based on asymptotic distributions and

may not be valid for small sample sizes. Methods to address small sample situations

have been explored and include corrections based on the Wald statistic [Kenward

and Roger, 1997], corrections based on the likelihood ratio [Zucker et al., 2000], and

permutation tests [Gail et al., 1992, Braun and Feng, 2001].

Apart from inference on the fixed effects, testing for the inclusion or exclusion

of random effects may be of interest because estimating unnecessary random effects

leads to a loss of power. Testing for random effects is the same as testing to see if

the variance of the random effect distribution is equal to 0 under the null hypothesis.

This is a difficult problem because 0 is on the boundary of the parameter space for

variance components. As a result, the standard asymptotic hypothesis tests do not

hold. In this dissertation we will address this problem through the use of permutation

methods. As an added benefit, our methods will also be suitable for small data sets as

opposed to asymptotic methods. This problem is further compounded when dealing

with GLMMs because for many distributions the likelihood has no closed form and

instead must be approximated using various methods.

We continue this chapter with a review of the asymptotic likelihood ratio test for

variance components and an overview of permutation tests. In Chapter 2 we develop

permutation tests for random effects in LMMs based on permuting weighted residuals.

Chapter 3 extends the permutation tests developed in Chapter 2 in order to apply

them to GLMs. In Chapter 4 we demonstrate the flexibility of mixed models as well

as our permutation tests in an unique application by testing a linear penalized spline

alternative against linear regression. We conclude this dissertation with a discussion

of our work and some ideas for future research.
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1.1 The Asymptotic Likelihood Ratio Test for Variance Com-
ponents

Hypothesis testing for random effects in linear mixed models began with the works

of Self and Liang [1987] and Stram and Lee [1994]. Although separated by seven

years, these two works are almost universally cited together in the literature for

testing random effects in linear mixed models. The work of Self and Liang focused on

deriving the properties of the likelihood when the true parameter value may be on the

boundary of its parameter space. This includes showing the existence of a maximum

likelihood estimator, its large sample properties, and the asymptotic distribution of

likelihood ratio statistics under these conditions.

Stram and Lee applied the results of Self and Liang [1987] specifically to likelihood

ratio tests for nonzero variance components in linear mixed models. Stram and Lee

showed that likelihood ratio statistics for nonzero variance components follow mixture

χ2 distributions. In their paper they illustrated this through a number of specific

hypotheses of the random effect covariance matrix that they have labeled as cases.

For case 1, likelihood ratio statistics for tests of one random effect against no random

effects have an asymptotic distribution following a 50:50 mixture of χ2
0 and χ2

1. In

case 2 they test a model with 2 random effects that are potentially correlated against

a model with just 1 random effect. The likelihood ratio test statistic for case 2 follows

a 50:50 mixture of χ2
1 and χ2

2. Case 3 is a generalization of case 2, when testing q+ 1

random effects against q random effects. Here, the likelihood ratio statistic follows a

50:50 mixture of χ2
q and χ2

q+1. Lastly case 4 addresses simultaneously testing multiple

variance components. For the special case when the information matrix is equal to the

identity under the null hypothesis then the asymptotic distribution follows a mixture
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χ2 with binomial mixing probabilities. For all other situations simulation methods

are recommended. As is the case with standard asymptotic test statistics, the Wald

and score statistics for hypothesis tests of nonzero variance components also follow

the same mixture χ2 distributions as the likelihood ratio test statistic [Silvapulle and

Silvapulle, 1995, Verbeke and Molenberghs, 2003, Silvapulle, 1992].

An intuitive argument as to why the asymptotic distribution is a mixture of χ2

distributions was provided in Molenberghs and Verbeke [2007]. In general, variances

are constrained to be greater than or equal to 0, and this constraint has an impact on

tests for random effects because the estimates of the variances are also constrained

to be non-negative. When the constrained estimator, σ̂2
bl

, for σ2
bl

equals 0 there is

no evidence against H0, and the likelihood ratio, Wald, and score test statistics are

equal to 0. However, for positive values of σ̂2
bl

the likelihood ratio, Wald, and score test

statistics follow a χ2 distribution of the appropriate degrees of freedom. For example

when estimating a single random effect under the null hypothesis the proportion of

times that the variance estimate is equal to 0 is 50%.

1.2 Permutation Tests

The origins of permutation tests date all the way back to 1935 and The Design of

Experiements where R. A. Fisher observed that hypotheses can be examined through

randomization without the assumption of normality. Additional early work on per-

mutation tests was conducted by Pitman [1937], Hoeffding [1952], and Kempthorne

[1955]. Sometimes referred to as randomization tests, permutation tests operate un-

der the belief that if the null hypothesis is true, then the arrangement of data that is

observed is purely due to chance, and therefore, all of the possible rearrangements or
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permutations of the data are equally likely.

Permutation tests are considered to be nonparametric in the sense that no as-

sumption of a specific probability distribution is made for the underlying population.

However, permutation tests are not free of assumptions, as the data must be assumed

to be exchangeable for a permutation test to be valid. A vector, Y , is exchangeable

if, for any permutation of Y denoted as Y ∗, Y ∗ has the same distribution as Y

[Commenges, 2003]. Independent and identically distributed (iid) data are exchange-

able, and, in fact, iid is a stronger condition than exchangeability. Samples without

replacement from a finite population and multivariate normal data where the covari-

ance matrix has a constant variance along the diagonal and identical covariance for all

of the off-diagonal elements are both exchangeable [Good, 2005]. In the latter case,

this type of exchangeable covariance structure is often used in modeling correlated

data.

Permutation tests proceed with the following steps. First, the observed data are

used to calculate a test statistic. Then all possible permutations of the observed

data are enumerated, and for each permutation of the data, a new test statistic is

calculated. The collection of all of the permuted test statistics comprises the null dis-

tribution to which the test statistic from the observed data is then compared in order

to obtain a p-value. The permutation p-value is the proportion of the permutation

distribution with values as extreme or more extreme than the observed test statistic.

While the steps are straightforward to implement, the challenge lies in selecting an

appropriate test statistic and determining how to permute the data correctly.

We present a simple example of a permutation test. Suppose that investigators

wish to compare two different treatments in their ability to shrink solid tumors. The

null hypothesis is that there is no difference in tumor shrinkage between the two
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treatments. Five patients are recruited and randomized to one of the two treatments

with split of three to treatment A and two to treatment B. Table 1.1 contains the

observed tumor shrinkage percentage for these five patients.

Table 1.1: Observed outcomes for a hypothetical clinical trial

Patient Treatment Total Percent Shrinkage
1 A 10
2 A 12
3 A 14
4 B 4
5 B 5

The test statistic will be the difference in the mean percent shrinkage between

treatment A and treatment B. For the data that we collected, this is the difference

between 12% and 4.5%, which are the means of treatment A and B, respectively, and

equals 7.5%. Under the null hypothesis of no difference between treatments A and B

each patient’s measured shrinkage would have occurred regardless of the treatment

to which they were assigned. Therefore, this observed set of outcomes is due to the

random assignment of the patients to each treatment, and any of the ten different

permutations of treatment assignments are equally likely to have occurred. Table 1.2

contains all of the ten possible permutations sorted by the absolute value of the test

statistic. Only one of these ten permutations has a test statistic that is as extreme

or more extreme than the observed result leaving us with an exact p-value of 0.10.

Permutation tests are appealing because they can often be used when parametric

tests fail. For example, when the assumptions for parametric tests cannot be met,

permutation tests can be implemented as long as the exchangeability assumption

holds. Permutation tests can also be used when the asymptotic distribution of a test
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Table 1.2: All possible permutations of patients to the two treatments

Treatment A Treatment B Difference in Means
10 12 5 4 14 0.00
10 4 14 12 5 0.83
10 12 4 14 5 -0.83
10 5 14 4 12 1.67
4 12 14 10 5 2.50
5 12 14 4 10 3.33
4 5 14 10 12 -3.33
4 12 5 10 14 -5.00

10 4 5 12 14 -6.67
10 12 14 4 5 7.50

Patients are represented by their observed measurement.

statistic is unknown or intractable. This arises when testing for multiple variance

components simultaneously and will be elaborated upon in the subsequent chapters.

When all of the possible permutations can be enumerated permutation tests are exact.

Often enumerating all of the permutations is computationally unfeasible, but a small

representative random sample [Dwass, 1957] can be used. This process is called Monte

Carlo permutations, and typically between 100 and 1600 random permutations are

necessary [Good, 2005]. Asymptotically permutation tests have nominal size and are

nearly as powerful as parametric tests [Hoeffding, 1952]. Finally, permutation tests

are often better suited for small samples than asymptotic parametric tests.



CHAPTER II

Permutation Tests for Random Effects in Linear

Mixed Models

Linear mixed models (LMMs) are a rich class of models containing both fixed and

random effects. LMMs are often used to fit longitudinal or repeated measures data

[Laird and Ware, 1982] where outcomes for a limited number of subjects are collected

repeatedly over time, or with multilevel or clustered data where random effects are

used to account for the within-level or within-cluster correlations. Often, inference

focuses upon the need for the inclusion of random effects. For example, subjects

in a clinical trial may be recruited from a set of hospitals that are participating in

the study. Homogeneity among patients from the same hospital is likely and can be

accounted for through a random hospital effect in the model. However, if there is

no correlation among patients from the same hospital then there would be a loss of

power by estimating an unnecessary random effect variance.

The difficulty in testing for random effects lies in the fact that the variance com-

ponent of the random effect is equal to 0 under the null hypothesis, a value that

is on the boundary of the parameter space. As a result, the usual χ2 asymptotic

distributions of the Wald, score, and likelihood ratio test statistics do not hold. In-

11
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stead, the correct null distribution for the likelihood ratio statistic has been shown

to be a mixture of χ2 distributions [Self and Liang, 1987, Stram and Lee, 1994]. For

example, when testing for one random effect, the null distribution becomes a 50:50

mixture of χ2
q and χ2

q−1 distributions where q is the total number of random effects

in the alternative model. The score [Silvapulle and Silvapulle, 1995, Verbeke and

Molenberghs, 2003] and Wald [Silvapulle, 1992] tests for variance components have

been proven to have equivalent mixture χ2 distributions. These modified tests also

rely on asymptotic approximations and are not guaranteed to have nominal size with

small sample sizes.

Other methods for variance component inference have been published. Öfversten

[1993] developed an exact test for uncorrelated random effects in unbalanced linear

mixed models through orthogonal transformations of the model matrix. Crainiceanu

and Ruppert [2004] derived the finite sample null distribution for the likelihood ra-

tio and restricted likelihood ratio test statistics when testing for a single variance

component with no other nuisance variance components. They derived the spectral

decomposition of each test statistic and they also developed a simulation algorithm

that generates the approximate finite sample null distribution via the spectral de-

composition. Greven et al. [2008] extended the methods of Crainiceanu and Ruppert

to test for a single variance component in the presence of multiple independent nui-

sance random effects and also developed an approximation to the parametric boot-

strap. Kinney and Dunson [2008] used a Bayesian stochastic search variable selection

(SSVS) method to identify nonzero random effect variances in LMMs using a modified

Cholesky decomposition of the random effect covariance matrix. By reparameterizing

the LMM, the SSVS method can perform variable selection with the random effects.

An alternative Bayesian method was developed by Saville and Herring [2009] in which
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null and alternative models are compared via Bayes factors.

Permutation tests are a viable alternative to the methods that were covered in

chapter 1, as permutation tests are known to have nominal size in finite samples while

requiring only a few weak assumptions. Nonetheless, the only existing permutation

approach for testing for random effects was presented by Fitzmaurice and Ibrahim

[2007]. The test was specifically designed for multi-level studies where inclusion of

a single random effect to quantify the heterogeneity among the different levels may

be required. They compared the likelihood ratio test statistic to an empirical null

distribution generated by randomly permuting the observed level assignments among

the subjects. However, their test is limited to the setting at hand and cannot be gen-

eralized to longitudinal studies and other correlated data sources if there are multiple

random effects or a single continuous random effect, such as time.

Our work is a generalization to the approach of Fitzmaurice and Ibrahim and leads

to a pair of permutation tests that allow for inference with any number and type of

random effects in a LMM. Both test statistics are a sum of weighted squared residuals

with the weights determined by the among- and within- subject variance components,

and the empirical null distributions generated via permutations of the residuals. The

first test statistic is based on the Best Linear Unbiased Predictions (BLUP) [Robinson,

1991] and the second statistic is the restricted likelihood ratio test statistic assuming

normality of the data. We will show that our tests have valid size and their powers

are comparable to existing methods. We will also demonstrate that our likelihood

ratio based permutation test can address simultaneous inference on multiple random

effects. We begin with LMM notation and some background on permutation methods

in Section 2. Section 3 follows with a presentation of our proposed methods. We

present the results of simulations in Section 4 that demonstrate the validity and
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power of our methods as we vary both the numbers of subjects and the numbers

of observations per subject. In this section we also examine the robustness of our

permutation tests to violations to the assumption of normality in the data. In Section

5 we apply our methods to data from a longitudinal study investigating the levels of

adenosine deaminase in chronic myelogenous leukemia patients. We close with a

discussion of our work in Section 6.

2.1 Methods

2.1.1 Linear Mixed Models

Let Yij be observation j of subject or cluster i for i = 1, 2, ..., N and j = 1, 2, ..., ni.

Following the Laird and Ware [1982] formulation of the linear mixed model, we have

Yij = β1x1ij + ...+ βpxpij + bi1z1ij + ...+ biqzqij + εij,

where β1, ..., βp are the population level fixed-effect coefficients and bi1, ..., biq are the

random effects for the i-th subject or cluster. The x1ij, ..., xpij and z1ij, ..., zqij are the

observed fixed effect covariates and random effect covariates respectively for observa-

tion j of subject i. Generally, x1ij and z1ij, are constant and equal to 1 to represent the

fixed and random intercepts, respectively. The random effects, bi = {bi1, bi2, . . . biq}

are assumed to have a multivariate normal distribution with mean 0 and covari-

ance matrix Σ, in which the respective variances for bi1, bi2, . . . biq are denoted as

σ2
b1
, σ2

b2
, ..., σ2

bq
. The random errors, εij, are independent, identically distributed nor-

mal random variables with mean 0 and variance σ2
ε . For each j, bi and εij are assumed

to be independent, although the elements of bi are not necessarily independent of each
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other.

Equivalently, we can write the linear mixed model for subject i using matrix

notation, Yi = Xiβ + Zibi + εi, where β = {β1, β2, . . . , βp}, εi = {εi1, εi2, . . . , εini
},

and Xi and Zi are subject-specific design matrices for the p fixed effect covariates

and q random effect covariates, respectively. We then combine data from all subjects

so that Y = {Y1,Y2, . . . ,YN} is the
∑

i ni vector of outcomes, ε = {ε1, ε2, . . . , εN}

is the
∑

i ni vector of errors, and X and Z are the respective design matrices for

the p fixed effect covariates and q random effect covariates formed by successively

placing each subject’s design matrices under each other. Furthermore, if we denote

b = {b1, b2, . . . , bN}, we have

V ar

 b
ε

 =

 G 0

0 R


where G = Σ⊗ IG and R = σ2

εIR, in which ⊗ denotes the Kroenecker product, and

IG and IR are N ×N and
∑

i ni ×
∑

i ni identity matrices, respectively.

Estimation of the elements of β, G, and R is typically done through maximum

likelihood (ML) or restricted maximum likelihood (REML). Asymptotically, the max-

imum likelihood and REML estimators are equivalent, but for small sample sizes, the

REML estimator is expected to be less biased than the maximum likelihood estimator

[Ruppert et al., 2003]. In addition, a comprehensive simulation study performed by

Morrell [1998] found that the asymptotic likelihood ratio test based on the REML

estimates are closer to nominal than test statistics utilizing the ML estimates. There-

fore, in our proposed methods we used the REML estimators. Subject specific random

effects, bi1, ..., biq, can be predicted using best linear unbiased prediction (BLUP), the
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results from which we denote b̃ = {b̃1, b̃2, . . . , b̃N}, where b̃i = {b̃i1, b̃i2, . . . , b̃iq}. The

estimate of β, β̂ = {β̂1, β̂2, . . . , β̂p}, and b̃ are solutions to the following mixed model

equations given by Henderson [1950]

XTR−1Xβ̂+XTR−1Zb̃ = XTR−1Y

ZTR−1Xβ̂+ (ZTR−1Z +G−1)b̃ = ZTR−1Y ,

and lead to the solutions

β̂ = (XT V̂ −1X)−1XT V̂ −1Y

b̃ = ĜZV̂ −1ê (2.1)

where ê = Y −Xβ̂ are the residuals and V̂ = ZĜZT +R̂ is the estimated covariance

matrix for Y . In general, b̃ can be interpreted as realized values of the random vector

b [Robinson, 1991].

Our objective in this paper is to compare a linear mixed model containing p fixed

effects and q random effects to a model with the same p fixed effects but only q − r

random effects where 0 < r ≤ q. Performing this inference is equivalent to testing

if the variances of the r random effects are all equal to 0. As stated before classical

tests in this situation do not follow their typical χ2
r distributions. Intuitive arguments

as to why this is the case are presented by Molenberghs and Verbeke [2007].



17

2.1.2 Permutation Tests

A permutation test is one in which the null distribution of the test statistic is

determined through permutations of the data; the test will have nominal size when the

permutations are performed correctly. As an example, consider a study investigating

the efficacy of a new treatment by comparing it to a placebo. The investigators

wish to see if the treatment has an effect on some measured outcome of interest

and randomize subjects equally to the treatment and placebo groups. Let Xi be the

measured outcome for subject i in the treatment group, i = 1, 2, ...nx, and Yj be the

outcome for subject j in the placebo group, j = 1, 2, ..., ny. The Xi are assumed

to have distribution F with mean µx and variance σ2, and the Yi are assumed to

have distribution F with mean µy and variance σ2. Under the null hypothesis of no

treatment effect, µx = µy, the two groups will have the same mean response, and

more importantly, the same distribution.

Therefore, we can test our null hypothesis using the mean difference in observed

response between treatment and placebo groups or T = X̄ − Ȳ , in which X̄ is the

observed mean response in the treatment group and Ȳ is the observed mean in the

placebo group. If F were a normal distribution, then T , appropriately standardized

by its standard error, would have a t-distribution and the appropriate critical value

would be determined from this distribution. If F were not a normal distribution, we

could still appeal to the Central Limit Theorem and use the same t-distribution as

an asymptotic approximation to the exact null distribution.

However, under the null hypothesis of no treatment effect, and conditioning on

the observed outcomes of the nx + ny subjects, the observed response of each patient

would have occurred independent of group assignment. Thus, we can generate the null
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distribution for T by recomputing T under all P =
(
nx+ny

nx

)
possible permutations of

group assignments. The p-value is obtained by computing the percentage of values in

the permutation distribution whose magnitudes are at least as large as the magnitude

of T . This permutation test is guaranteed to be nominal, meaning its size is no larger

than desired [Hoeffding, 1952]. More specifically, permutation tests assume that the

values being permuted are exchangeable under the null hypothesis [Good, 2005]. A

vector, Y , is exchangeable if, for any permutation of Y denoted as Y ∗, Y ∗ has the

same distribution as Y [Commenges, 2003]. It should be noted that exchangeability

is a weaker condition than independent and identically distributed.

As the amount of data increases, so does the number of possible permutations,

eventually making exact enumeration of all P permutations computationally unfea-

sible. Instead of calculating all possible permutations, an approximate permutation

distribution can be generated through Monte Carlo sampling [Dwass, 1957]. By

randomly permuting the data between 100 and 1600 times [Good, 2005], an approx-

imate permutation distribution can be generated, assuming the randomly selected

permutations are drawn to sufficiently represent the tails of the exact permutation

distribution.

2.2 Proposed Methods

2.2.1 Best Linear Unbiased Predictors Based Permutation Test

We begin by considering the hypothesis test for the inclusion or exclusion of a

single random effect, bi ∼ N(0, σ2
bi

), in a linear mixed model with no other random

effects present. This is equivalent to testing if σ2
bi

= 0. Thus, we are comparing the
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following models:

H0 : Yij = β1x1ij + ...+ βpxpij + εij (2.2)

H1 : Yij = β1x1ij + ...+ βpxpij + bi1z1ij + εij. (2.3)

We use

T1 =
N∑
i=1

b̃2i1/N (2.4)

as our test statistic, which is the sample variance of the BLUPs for the random effect,

bi. This statistic involves the sum of the squared BLUPs where the BLUPs are treated

as a random sample of bi ∼ N(0, σ2
bi

). Note that the denominator of the test statistic

is constant for all of the permutations and does not affect the validity or power of our

test.

To construct the permutation distribution with which to compare the observed

test statistic, we permute the marginal errors, ε = Y −Xβ. Under the null hypoth-

esis of no random effects, the ε are exchangeable, and more specifically, independent

and identically normally distributed with mean 0 and variance σ2
ε . By subtracting

the fixed effects, Xβ from the response Y , the errors have the benefit of not re-

quiring the continuous X’s to be identical among all subjects nor do the number of

observations for each subject need to be the same. Therefore, we can permute the

errors both within and between subjects. In practice, the errors are estimated by the

residuals, ê = Y −Xβ̂, calculated from estimates fit from the alternative model, and

Schmoyer [1994] showed that the alternative model residuals are also asymptotically

exchangeable both within- and among- subjects under the null hypothesis.

The marginal residuals from the full model are part of the calculation for the
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BLUPs and lead to a straightforward permutation distribution for T1. For each per-

mutation k = 1, 2, ...1, 000, we randomly permute the marginal full model residuals.

Using these permuted residuals, we generate a permuted estimate σ̂2
bi,k

for σ2
bi

, from

which we compute BLUPs for the k-th permutation which are used to compute T ∗1k,

the test statistic T1 for permutation k. These 1,000 permuted values of T1 result in an

approximate empirical null distribution of T1. The re-estimation of σ2
bi

is performed

because some permutations of the residuals will result in σ̂2
bi

= 0 and lead to the

empirical null distribution having positive mass at zero. Note that the fixed effects,

β, are not re-estimated. We then generate a p-value by calculating the percentage of

permutations with T ∗1 greater than T1.

Next, we extend the permutation test to test for the presence of a single random

effect in a model that contains other random effects such as:

H0 : Yij = β1x1ij + ...+ βpxpij + bi1z1ij + εij (2.5)

H1 : Yij = β1x1ij + ...+ βpxpij + bi1z1ij + bi2z2ij + εij. (2.6)

In this setting, the null model now contains other random effects so that all
N∑
i=1

ni

errors under the null hypothesis are no longer exchangeable under the null hypothesis.

Instead, the errors are normally distributed with mean 0 and covariance matrix,

V0 = σ2
b10
ZTZ+R0 with R0 = σ2

ε0
I. We resolve this issue by weighting the errors by

the matrix (UT
0 )−1, where U0 is the Cholesky decomposition of V0, i.e. V0 = UT

0 U0.

As a result, the set of weighted errors, (UT
0 )−1(Y −Xβ), are normally distributed

with mean 0 and covariance matrix I, and are thereby exchangeable, allowing once

again for permutations both within and between subjects. We re-express the test
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statistic T1 in equation (2.4), to incorporate the Cholesky decomposition as:

T2 =
N∑
i=1

b̃2i2/N = b̃∗T b̃∗/N, (2.7)

where b∗ = Ĝ1ZV̂
−1

1 UT
0 (UT

0 )−1(Y −Xβ̂). Note that T2 is only calculated for the

single random effect being tested. For the observed data the statistic remains the

sample variance of b̃i2 because UT
0 (UT

0 )−1 equals the identity for the unpermuted

weighted residuals. Also, the earlier random intercept hypothesis test is a special

case of this test, because the Cholesky decomposition in that scenario is equal to the

identity, and (2.7) reduces to (2.4). With the appropriate weights, this BLUP-based

permutation test can be used to perform inference on any single random effect of

interest.

In simulation studies which are presented in Section 2.3, this permutation test

is shown to be valid and displays power comparable to the asymptotic mixture χ2

likelihood ratio tests. The test is very intuitive and easy to perform. However, since

the test is based on the BLUPs, it does have one limitation: it can only test for one

random effect at a time. In the next section, we present a likelihood ratio based

permutation test that allows for testing of multiple random effects and of which the

BLUP permutation test is a special case.

2.2.2 Likelihood Ratio Based Permutation Test

This permutation test is based on the likelihood ratio test statistic, λ = −2 log(LH0−

LH1), where LH0 and LH1 are the likelihoods under the null and alternative hypothe-

ses, respectively. Using the same linear mixed model notation as described previously

where Y ∼ N(Xβ,V ) and ε = Y −Xβ, we have λ = log [|V0|/|V1|] + εT (V −1
0 −
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V −1
1 )ε+ log [|XTV −1

0 X|/|XTV −1
1 X|].

Let us test for a random intercept using the null and alternative hypotheses stated

in (2.2) and (2.3). Similar to the BLUP based permutation test, the likelihood ratio

test statistic involves the marginal residuals, ε, and we can permute ε within and

between the subjects under the null hypothesis. Therefore, the test statistic becomes

T3 = log [|V̂0|/|V̂1|] + êT1 (V̂0
−1 − V̂1

−1
)ê1 + log [|XT V̂0

−1
X|/|XT V̂1

−1
X|], (2.8)

which is λ with all parameters replaced by their estimates under the null and alter-

native hypotheses as denoted by their subscripts.

Similar to the BLUP based permutation test, a new V̂0 and V̂1 is estimated for

each permutation of ê1 and denoted as V̂0
∗

and V̂1
∗
. The permuted residuals are

treated as an outcome, and V̂0
∗

is estimated from a mixed model with a fixed intercept

and random effects from the null hypothesis. We estimate V̂1
∗

from a mixed model

with a fixed intercept and random effects from the alternative hypothesis.

Re-estimation of V̂0
∗

and V̂1
∗

is necessary due to the changes that occur in the

rank of Σ̂ when random effect variances are estimated to be equal to 0. If we do

not re-estimate V0 and V1 (including Σ0 and Σ1), the permutation distribution will

be completely based on estimates from the observed data. By estimating V0 and

V1 for each permutation, we allow the empirical distribution to “mix” as the rank

of Σ̂ varies, thereby generating a distribution similar to the mixture χ2 asymptotic

distribution of Stram and Lee [1994]. We create the permutation distribution by

calculating T ∗3 for each of the random permutations and determine a p-value through

the location of T3 in the permutation distribution.

When testing the presence of one random effect with one or more additional ran-
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dom effects in the null hypothesis, things proceed similarly to that of the BLUP

permutation test. In order to be able to permute the errors, they must first be

weighted by (UT
0 )−1. Once weighted, the errors are exchangeable and can be per-

muted. The permuted weighted errors are then multiplied (unweighted) by (UT
0 ) to

get them back on the original scale of the residuals, and for each permutation, V̂0
∗

and V̂1
∗

are re-estimated using the unweighted permuted errors as described earlier.

Then T ∗3 is calculated, and the permutation distribution is generated for the likeli-

hood ratio test statistic to which the observed test statistic will be compared and a

p-value calculated.

If we wish to test for the inclusion of 0 < r ≤ q random effects, we have the

models:

H0 : Yij = β1x1ij + ...+ βpxpij + bi1z1ij + ...+ bi(q−r)z(q−r)ij + εij

H1 : Yij = β1x1ij + ...+ βpxpij + bi1z1ij + ...+ biqzqij + εij

The steps for this scenario are identical to those from the previous scenario where

testing for one random effect in the presence of additional random effects in the

null hypothesis. Nonetheless, we emphasize the importance of re-estimating Σ0 and

Σ1 after each permutation when testing for multiple random effects. Herein lies

the largest contribution of our methods: for a general value of r, simulation is the

only existing approach for calculating the correct mixing probabilities for the χ2

distributions. In contrast, our permutation test based on the likelihood ratio statistic

will automatically generate the correct mixing probabilities as the rank of Σ̂∗ changes

from permutation to permutation.



24

2.3 Simulation Studies

2.3.1 Validity

We performed a series of simulation studies to examine the performance of our

permutation tests under a number of different settings. The first study was used to

evaluate the validity of our two tests under four different scenarios: (1) testing for

a random intercept, (2) testing for a random slope given an independent random

intercept is present in the null hypothesis, (3) testing for a random slope given a po-

tentially correlated random intercept, and (4) simultaneously testing for both random

intercept and random slope. Five hundred data sets were generated for each of the

simulation scenarios using the following random intercept model:

Yij = β1 + β2x2ij + bi1 + εij (2.9)

with β1 = 3, β2 = 2.75, σ2
ε = 1, bi1 ∼ N(0, σ2

i1), and our fixed effect, x2ij, was

randomly drawn from the standard normal distribution. Then, similar to Saville and

Herring [2009], x2ij was centered at 0 and scaled by twice its standard deviation. For

scenarios 1 and 4, σ2
bi1

was set equal to 0, while for scenarios 2 and 3, σ2
bi1

was set

to 1. We varied both the number of subjects, N ∈ {50, 10}, as well as the number

of observations per subject, n ∈ {10, 5}, and compared the size of our permutation

tests to that of the asymptotic restricted likelihood ratio test with a 50:50 mixture

of χ2 distributions with 0 and 1 degrees of freedom, 1 and 2 degrees of freedom, 1

and 2 degrees of freedom, and 0, 1, and 2 degrees of freedom in a 25:50:25 ratio, for

scenarios 1, 2, 3, and 4 respectively. The mixing probabilities for scenario 4 were

derived from Case 4 of Stram and Lee [1994] who state that when the information
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matrix is equal to the identity under the null hypothesis, the likelihood ratio test has

an asymptotic null distribution that is a mixture of χ2 distributions with binomial

mixing probabilities. For all other situations they recommend finding the critical

value through simulations.

All estimates were performed in the statistical package R using the lmer() func-

tion from the R-package lme4 Bates et al. [2011]. Unlike other linear mixed model

fitting algorithms that can only estimate extremely small values for variances, lmer()

is able to estimate 0 for the variance components. The simulations were performed

using 20 cores of an Intel Xeon X5660 2.80 GHz server with 32 gigabytes of memory.

The simulation results for validity are presented in Table 1. In all settings,

both permutation tests have valid size, defined as a size contained in the interval

(0.031, 0.061), the approximate 95% confidence interval for Type I error rate with

500 simulations. In contrast, the asymptotic test for one random effect (scenarios

1, 2, and 3) becomes more conservative as the number of subjects or the number of

observations decreases. In addition, it appears that under scenario 4, the asymptotic

likelihood ratio test is liberal when N = 10 and n = 5.

2.3.2 Power

The simulations to examine the power of the tests were performed for the same

four scenarios in the validity study. We generated 500 data sets using the random

intercept and slope model:

Yij = β1 + β2x2ij + bi1 + bi2z2ij + εij (2.10)
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Table 2.1: Size and power for the permutation tests compared to the asymptotic
likelihood ratio test

Testing Scenarios
(1) (2) (3) (4)

N n σ2
i B L A B L A B L A L A

50 10 0 5.8 5.8 5.0 5.8 5.8 5.6 5.0 4.8 4.2 4.2 4.4
0.15 99.2 99.2 98.8 40.2 41.2 38.4 45.2 42.6 38.9 98.0 98.0
0.20 100.0 100.0 100.0 57.4 58.4 55.4 62.2 58.4 56.4 98.8 98.8
0.30 100.0 100.0 100.0 82.4 81.0 78.8 78.8 75.4 73.6 99.8 99.8

5 0 3.8 3.6 2.6 6.2 5.2 5.0 5.0 5.2 4.4 4.8 4.0
0.15 80.0 80.0 77.6 16.2 18.2 16.0 21.4 22.0 18.6 56.4 55.4
0.20 91.2 91.2 90.2 27.8 27.4 24.4 27.0 25.4 22.0 70.1 69.3
0.30 97.6 97.6 97.6 38.4 39.0 36.8 41.6 39.6 36.6 92.6 92.6

10 10 0 5.4 5.4 4.0 5.2 4.4 3.0 6.2 4.8 3.4 4.2 5.0
0.15 63.4 63.2 58.8 16.2 15.2 12.6 17.3 16.3 11.0 55.6 58.3
0.20 75.2 74.6 69.6 23.6 23.6 19.8 23.1 21.7 17.3 68.1 70.1
0.30 89.0 89.0 87.6 34.4 34.8 29.8 30.7 27.3 22.5 88.2 89.0

5 0 4.6 4.4 3.6 5.2 3.8 2.6 5.6 5.2 3.8 5.6 7.0
0.15 31.6 29.4 27.0 10.0 8.6 7.0 9.8 10.0 7.2 24.8 29.1
0.20 44.6 43.4 37.6 12.6 11.4 9.2 12.6 13.0 8.8 37.5 42.1
0.30 63.6 62.0 58.6 12.8 13.8 11.2 15.7 15.7 10.6 47.9 53.3

Results are reported in percentages.
σ2
i refers to the variance component(s) being tested.

(1): Random intercept test,
(2): Random slope test with an independent random intercept present,
(3): Random slope test with a correlated random intercept present,
(4): Simultaneous test for the random intercept and random slope.
B: BLUP based permutation test,
L: Likelihood Ratio based permutation test,
A: Asymptotic likelihood ratio test
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with the same fixed effects from the validity simulations and with bi1 ∼ N(0, σ2
i1),

bi2 ∼ N(0, σ2
i2), and x2ij = z2ij. We varied the variance of the random effect (or

random effects under scenario 4) of interest, k ∈ {1, 2}, σ2
ik ∈ {0.15, 0.2, 0.3} as well

as both the number of subjects, N ∈ {50, 10}, and the number of observations per

subject, n ∈ {10, 5}. For scenarios 3 and 4 the correlation of the random effects, ρ,

was set equal to -0.3.

The results of the power simulations are shown in Table 1. With the exception of

scenario 4, both permutation tests displayed strictly better power than the asymptotic

test, even when the asymptotic test had nominal size. For scenario 4 the asymptotic

likelihood ratio test using the 25:50:25 ratio of χ2 distributions and the likelihood

ratio based permutation test performed very similarly when N = 50. However, the

number of rejections of the asymptotic test is higher than the permutation test for

N = 10, and this can be explained by its inflated Type I error rate. In fact, when

critical values found through simulation were used instead of the 25:50:25 mixture χ2

null distribution, the power results for the asymptotic test were almost identical to

those from the permutation test for all combinations of N and n.

Given that the residuals follow known normal distributions, it is possible that

residuals could be drawn directly from those distributions (bootstrapped), rather

than permuting the actual residuals, to generate the empirical null distributions of

T1, T2, and T3. To examine this idea, we performed simulations in which we replaced

permuting the residuals with simulating new values from normal distributions with

mean zero and variance equal to the error variance estimate from the null model. All

other steps in the permutation tests were identical to those presented in Section 3.

Both the BLUP and the restricted likelihood ratio versions were examined. N and n

were set at 10, and we varied the variance of the random slope, σ2
i2 ∈ {0, 0.15, 0.2, 0.3}.
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We tested for the presence of a random slope given a potentially correlated random

intercept. The results from these simulations closely mirrored the results of the

permutation tests in Table 1. Both test statistics using bootstrap residuals led to

valid inference. When σ2
i2 = 0.15 the powers were 16.1% and 16.6% for the BLUP

test and the restricted likelihood ratio tests respectively compared with the 17.3% and

16.3% from the permutation tests. For σ2
i2 = 0.2 the powers for the BLUP and the

restricted likelihood ratio tests were 23.1% and 20.7%, respectively, and for σ2
i2 = 0.3,

the powers were 29.1% and 27.9%, respectively.

2.3.3 Sensitivity to Non-Normality

We also investigated the sensitivity of the permutation tests to non-normality of

the random effects and/or residuals when testing for a random slope given an inde-

pendent random intercept in the model with N = 10 and n = 10. Both the null

model with σ2
i2 = 0 and the alternative with σ2

i2 = 0.3 were run. Four different

settings were studied: (1a) normal errors and normal random effects, (1b) logisti-

cally distributed errors and normal random effects, (1c) normal errors and logistically

distributed random effects, and (1d) logistically distributed errors and logistically dis-

tributed random effects. Size and power estimates are given in Table 2. We see that

under the null hypothesis, both permutation tests appear have size closer to nominal

than the asymptotic test, with the asymptotic test being conservative in settings 1a,

1b, and 1c. Under the alternative hypothesis, we see that as expected, the permuta-

tion test is most powerful when the data truly are normally distributed (setting 1a),

with slight losses in power when extra variation due to non-normality exists in the

data. Nonetheless, the power losses of the permutation tests are slight, and in all

settings, the permutation tests display greater power than the asymptotic test.
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Table 2.2: Size and power of proposed permutation tests when random effects and/or
errors are non-normally distributed.

Method

Model Setting B L A

σ2
i2 = 0.0 1a 5.2 4.4 3.0

1b 5.4 4.4 3.6
1c 4.4 4.4 3.2
1d 5.0 5.0 5.6

σ2
i2 = 0.3 1a 34.4 34.8 29.8

1b 29.2 29.4 26.8
1c 29.4 30.4 25.2
1d 29.4 30.0 27.2

Results are reported in percentages.
Settings: (1a): Normal errors and normal random effects
(1b): Logistic errors and normal random effects
(1c): Normal errors and logistic random effects
(1d): Logistic errors and logistic random effects
B: BLUP based permutation test,
L: Likelihood Ratio based permutation test,
A: Asymptotic likelihood ratio test

2.3.4 The Effect of Unbalanced Data

We also investigated the performance of the permutation tests when the data are

unbalanced. We tested for a random slope given an independent random intercept in

the model with N = 10 and n = 10. For the random effect of interest we used the

null model with σ2
i2 = 0 and the alternatives as in the original power simulations with

σ2
i2 ∈ {0.15, 0.2, 0.3}. In order to create unbalanced data the number of observations

for each patient was a uniform random integer from [2, 10]. Therefore, our total

number of observations can vary, but within a simulation it was fixed for all of the

runs. Size and power estimates are given in Table 2.3 along with the asymptotic

likelihood ratio test. We see that unbalanced data does not appear to affect the
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hypothesis test. The permutation tests still appear to be slightly closer to the nominal

level under the null scenario. Under the alternative the permutation tests are very

slightly more powerful than the asymptotic likelihood ratio test. Since the total

number of observations are not fixed to be equal to one of the above simulations

where the data was balanced we cannot directly compare these results to those from

the balanced data scenario.

Table 2.3: Size and power of proposed permutation tests when the number of obser-
vations for each subject is not constant.

Method

N σ2
i2 B L A

10 0.00 4.8 4.0 3.8
0.15 11.4 10.2 9.0
0.20 14.2 15.0 13.6
0.30 50.6 49.2 46.4

50 0.00 5.2 5.2 4.4
0.15 25.0 25.2 24.0
0.20 35.8 37.8 35.0
0.30 50.8 51.2 50.6

Results are reported in percentages.
B: BLUP based permutation test,
L: Likelihood Ratio based permutation test,
A: Asymptotic likelihood ratio test

2.3.5 Comparison to Existing Methods

In our final simulation study, we compared the permutation tests to a portion of

the results published by Saville and Herring [2009] when testing for the presence of a

random slope. Following their simulation settings, we generated 250 data sets from

(2.10) with β0 = 2.75, β1 = 3, ni = n = 10, σ2
i1 = 1, and ρ = −0.3. The standard

deviation for the random slope, σi2 ∈ {0, 0.15, 0.30, 0.45, 0.60}. Table 3 presents the
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Table 2.4: Comparison of power of permutation tests to results reported by Saville
and Herring when testing for the inclusion of a random slope.

N σi2 SH1 SH2 BLUP LRT

50 0.00 8 3 3 4
0.15 14 7 8 9
0.30 30 17 28 22
0.45 56 57 66 60
0.60 75 90 94 91

100 0.00 4 4 5 4
0.15 12 8 14 12
0.30 38 38 44 43
0.45 69 87 91 90
0.60 72 99 100 100

Results are reported in percentages.
SH1: Bayes factor as described in Saville and Herring [2009]; page 370.
SH2: Bayes factor as described in Saville and Herring [2009]; page 371.
BLUP: BLUP based permutation test.
LRT: Likelihood ratio based permutation test.

BLUP and likelihood ratio based permutation results for N ∈ {100, 50} next to the

published results from Saville and Herring resulting from Bayes’ factors based on two

different parameterizations of the model.

We see that the power for the likelihood ratio based permutation test is compa-

rable with the approximate Bayes factors method employed by Saville and Herring.

Despite some difference in results due to simulation variability, for all settings, our

permutation test is as powerful or even more powerful than one or both of the tests

of Saville and Herring.
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2.4 Application

We applied our permutation test to a set of data presented in Klein et al. [1984]

that was collected on patients with chronic myelogenous leukemia (CML). CML is

characterized by a lengthy chronic phase with little to no symptoms that eventually

transitions into an accelerated phase which behaves similarly to acute leukemia. The

length of time until the transition from a chronic to an accelerated phase can vary

greatly among patients, motivating the discovery of markers that can indicate when

CML is about to change from a chronic to an accelerated stage. One potential marker

is adenosine deaminase (ADA). This particular data set contains the ADA levels

of 55 patients that were measured at various time points during their follow-up.

Time is quantified as days following the initial observation date, and at each time

point, investigators also recorded the phase of each patient’s disease as chronic or

accelerated. The frequency of the repeated measurements as well as the times of the

measurements were not fixed and fluctuated greatly. Patients had anywhere from

2 to 59 measurements, and the repeated measurements took place from the initial

observation date up to 1073 days following the diagnosis date.

We modeled the ADA measurements as patients progress from chronic to acceler-

ated phases, and we were primarily interested in evaluating the level of heterogeneity

among the patients to see if random effects are necessary in our model. Figure 1

contains boxplots stratified by stage of disease of the slopes and intercepts from in-

dividual linear regressions of each patient’s ADA measurements on time. The figure

indicates significant variation between the two stages, both in terms of mean ADA

levels as well as changes over time, necessitating the inclusion of random effects.

We are also interested in investigating how the rate-of-change in ADA differs
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Figure 2.1: Boxplots stratified by stage of the patient-specific intercepts and slopes
produced from a linear regression model of ADA levels over time.
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Table 2.5: Permutation and asymptotic likelihood ratio test results for inclusion of
specific random effects when modeling ADA levels in patients with chronic
myelogenous leukemia.

Observed Permutation Asymptotic
Test LRTS p-value p-value

(5) vs (4) 3.00 0.226 0.474
(4) vs (1) 234.59 <0.001 <0.001
(4) vs (2) 146.99 <0.001 <0.001
(4) vs (3) 12.88 0.019 0.004

(1): No random effects
(2): Random intercept only model
(3): Random intercepts for both stages model
(4): Random intercepts for both stages and a random slope for acute stage only
(5): Random intercepts and slopes for both stages

between chronic and accelerated phases. We applied a cubed root transformation to

the ADA values so that they were approximately normally distributed, and fit a linear

mixed model with the cubed root ADA assay values regressed on disease phase, with

chronic as the baseline category, number of days from the initial observation date,

and interaction terms between the two to allow the time effect to differ between the

two disease states. Our initial model is ADA
1/3
ij = β1 + bi1 + (β2 + bi2)Stateij + (β3 +

bi3)Daysij + (β4 + bi4)Stateij ∗Daysij + εij. The full random effects model includes

four random effects, bi1, bi2, bi3, and bi4, to allow for at most a random intercept and

time effect for each of the two disease stages. We wish test if any or all of these

random effects should be included.

Table 4 shows the results of our permutation tests, based on 1,000 permutations,

for the inclusion or exclusion of the random effects, along with results from the asymp-

totic likelihood ratio test. Both tests support what is seen in Figure 1: the random

day effect for the chronic stage is not significant, while the other three random effects
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appear to be significant. As a gauge of the computation time necessary, each of these

tests takes around 4 minutes to perform when using 20 cores of an Intel Xeon X5660

2.80 GHz server with 32 gigabytes of memory.

2.5 Discussion

In this chapter, we have proposed two methods for performing inference on random

effects by permuting the weighted residuals both within- and among- subjects. In

some simulations, we have found that the convergence of the solutions derived from

the lmer() function in the statistical package R appears to suffer as the number of

random effects increases. Our current solution is to generate more permutations to

ensure that there are enough permutations to create the null distribution.

Specifying a covariance structure to the errors should not affect the validity of the

permutation tests. Examples include the autoregressive and the Toeplitz covariance

structures and means that the unweighted marginal residuals are not exchangeable.

When this is the case then the covariance structure and its parameter estimates are

incorporated into the residual covariance matrix R̂. The Cholesky decomposition

of V̂0 will account for the covariance structure, and the weighted residuals will be

asymptotically exchangeable.

As demonstrated, the proposed permutation tests perform well even when the

number of patients and the number of observations per patient is small. The tests

also do not require balanced data nor do the measurements need to occur at the

same points in time. As a result, our methods can be applied to the use of a LMM

representation of penalized spline models [Ruppert et al., 2003] in which the smooth-

ing parameter is a random effect. Finally, implementing these permutation tests is
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straightforward and can be incorporated into standard practice for analysis of lin-

ear mixed models using existing software; example computer code can be found at

www.sph.umich.edu/∼/tombraun/software.html. While the methods are computa-

tionally intensive, the recent rise in parallel computing through clusters and multi-

core processors has made it possible to greatly reduce the amount of time necessary

to implement these tests.

In the following chapter we generalize the methods presented in this chapter to

allow for permutation-based inference in generalized linear mixed models (GLMMs).

Our approach is based upon a first-order approximation of the GLMM to make it

resemble the form of a LMM, an approach that is the foundation of penalized quasi-

likelihood (PQL) [Breslow and Clayton, 1993] for estimation in GLMMs.



CHAPTER III

Permutation Tests for Random Effects in

Generalized Linear Mixed Models

3.1 Introduction

Often in studies non-normal data are observed and can be modeled using general-

ized linear models (GLM) such as logistic regression or Poisson regression [McCullagh

and Nelder, 1989]. When the data arise from common origins or clusters it is likely

that the assumption of independence among all of the data is violated because ob-

servations from the same cluster can be correlated. Examples of this include clinical

trials where patients who share a common hospital are potentially correlated due to

similar treatment standards and longitudinal data where a set of subjects are followed

and repeatedly measured over time. When the independence assumption is presumed

to be violated random effects can be added to the GLM resulting in the generalized

linear mixed model (GLMM) [Breslow and Clayton, 1993]. Similar to adding random

effects to a linear regression model to form a linear mixed model (LMM) the random

effects account for the subject or cluster specific variation. Typically, the random

effects are assumed to be normally distributed with mean zero and variance equal to

σ2
b .

37
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Maximum likelihood estimation of the mean parameters (fixed effects) of a GLMM

is a challenging task because the likelihood for the mean parameters does not have a

closed form when the random effects have a normal distribution. However, a closed

form does exist for a GLMM with a single random effect when a so-called bridge

distribution is assumed for the random effect [Wang and Louis, 2003]. With nor-

mally distributed random effects, the likelihood for the mean parameters is a possibly

multi-dimensional integral, with one integral for each of the random effects, making

numerical computation problematic. Therefore, many methods to circumvent this

hurdle have been developed. These include a Monte Carlo EM algorithm [McCul-

loch, 1997, Booth and Hobert, 1999], a method of estimation by parts [Song et al.,

2005], penalized quasi-likelihood [Breslow and Clayton, 1993], and adaptive Gaussian

quadrature (AGQ)[Pinheiro and Bates, 1995]. Bayesian methods based on the Gibbs

sampler have also been explored [Zeger and Karim, 1991].

While the majority of the literature has been focused on inference of the popu-

lation or fixed effects, there is also considerable interest in testing for the inclusion

or exclusion of random effects. These are tests for overdispersion, heteroscedasticity,

and correlation among the outcomes of a GLMM. For the simplest case when one

random effect is present, this test is equivalent to testing for the GLMM alternative

against a null GLM with no random effects. Since the random effect is defined as a

normally distributed random variable with mean zero, comparing the GLMM to the

GLM is equivalent to testing if the variance of the random effect is equal to zero.

This presents another set of problems because under the null hypothesis, the vari-

ance component is located on the boundary of its parameter space, and the typical

likelihood ratio, score and Wald test statistics do not have their usual χ2 asymptotic

null distributions. Instead it was shown by Self and Liang [1987] that the likelihood
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ratio test (LRT) statistic follows a mixture χ2 distribution. Stram and Lee [1994]

demonstrated these results specifically for the LMM; these results also hold for the

GLMM [Wolak, 1989].

Apart from the likelihood ratio test, there has also been work on score tests for

variance components in GLMMs [Lin, 1997, Hall and Præstgaard, 2001]. Lin [1997]

builds upon the the quasilikelihood methods of Breslow and Clayton and utilizes a

Laplace expansion of the integrated log-quasilikelihood to derive a global or omnibus

score test for the null hypothesis that all random effects are unnecessary. The ad-

vantage of the score test over the LRT is that only the simpler GLM needs to be fit

to obtain the null parameter estimates. Surprisingly, Lin [1997] shows that the score

test follows an asymptotic χ2
m distribution, where m is the number of independent

random effects. She notes that the asymptotic tests could be less accurate when the

number of levels of each random effect is small. In addition to the global score test,

Lin [1997] also developed an individual variance component test, however, the per-

formance of this test is unsatisfactory when the data are binary. Hall and Præstgard

modify Lin’s omnibus score test by constraining the alternative covariance matrix

to be positive-semidefinite. The modified score test statistic follows a mixture of χ2

distributions and is shown to have increased power in simulations when compared

with the score test of Lin [1997].

Bootstrap tests for variance components of GLMMs have also been proposed

[Sinha, 2009]. Using the score as the test statistic the parametric bootstrap pro-

ceeds by generating samples of the data under the null GLM which are then used to

calculate a bootstrap specific score statistic. The bootstrap score statistics form an

approximate null distribution for the score statistic with which to calculate a p-value.

Bayesian alternatives have also been proposed; the work of Sinharay and Stern [2005]
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provides an overview of different methods of estimating Bayes factors for GLMMs.

Permutation tests provide an alternative method of testing for random effects in

mixed models. The work of Fitzmaurice and Ibrahim [2007] is applicable to GLMMs,

but is limited to multi-level studies where the inclusion of a single random effect to

quantify the heterogeneity among the different levels may be tested. They compared

the likelihood ratio test statistic to an empirical null distribution generated by ran-

domly permuting the level assignments among the subjects. The methods of Lee and

Braun [2012] are based on permutations of weighted residuals and are applicable to

any type of LMM and any number of random effects. However, these methods were

developed solely for LMMs.

In this article we present a modification of the work of Lee and Braun to apply

the permutation tests to the random effects of GLMMs based on a penalized quasi-

likelihood (PQL) approximation developed by Breslow and Clayton [1993]. Two

permutation test statistics are proposed, and both statistics are a sum of squared

residuals, with the empirical null distributions generated via permutations of the

residuals. The first test statistic is based on the Best Linear Unbiased Predictions

(BLUPs) [Robinson, 1991] and the second statistic is the restricted likelihood ratio

test statistic assuming normality of the data. We will show via simulation that our

tests appear to have valid size, and that their powers are comparable to existing

methods. In Section 2, we begin with notation for generalized linear mixed models.

Section 3 follows with a presentation of our proposed methods. We present the results

of simulations in Section 4 that demonstrate the validity and power of our methods,

and compare our permutation tests to existing methods. In Section 5 we apply our

methods to two data sets: a longitudinal clinical trial investigating the incidence of

amenorrhea in women using contraception, and a clinical trial studying the effects of
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progabide on reducing the number of seizures. We close with a discussion of our work

in Section 6.

3.2 Methods

3.2.1 Generalized Linear Mixed Models

Let Yi be an observation of subject i for i = 1, 2, . . . , N , where the density of Yi

belongs to the exponential family of distributions, written as

f(y; η) = exp

(
yη − b(η)

φ
+ c(y, φ)

)
.

For exponential family distributions φ is the dispersion parameter, η is the natural

parameter, b(η) is a known function specific to the distribution, and c(y, φ) is a

function of the data that does not depend on η. The natural parameter, η is connected

to the mean of the distribution, µ, through a strictly increasing link function g(·).

A generalized linear model for Yi relates the mean, µi, to a linear function of the

covariates through the natural parameter ηi

g(µi) = ηi = β1x1i + . . .+ βpxpi

where β1, . . . , βp are the population level fixed-effect coefficients. The x1i, . . . , xpi are

the observed fixed effect covariates for subject i. Generally, x1i is constant and equal

to 1 to represent the fixed intercept.

Next, we will extend the GLM by accounting for correlation among the observa-

tions. The subscript j will denote a repeatedly measured cluster or subject. There-
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fore, let Yij be the jth observation of subject or cluster i for i = 1, 2, . . . , N and

j = 1, 2, . . . , ni, where the density of Yij belongs to the exponential family of distri-

butions. A generalized linear mixed model for Yij relates the mean, µij conditional

on the subject specific random effects, to a linear function of the covariates

g(µij|bi) = ηij = β1x1ij + . . .+ βpxpij + bi1z1ij + . . .+ biqzqij

where β1, . . . , βp are still the population level fixed-effect coefficients and bi = (bi1, . . . , biq)

are the subject-specific random effects for subject or cluster i. The z1ij, . . . , zqij are

the observed random effect covariates for observation j of subject i, and usually z1ij,

is constant and equal to 1 to represent a random intercept. The random effects,

bi = {bi1, bi2, . . . , biq} are assumed to have a multivariate normal distribution with

mean 0 and covariance matrix Σ, in which the respective variances for bi1, bi2, . . . , biq

are denoted as σ2
b1
, σ2

b2
, . . . , σ2

bq
. Typically, the inverse link function is denoted as h(·).

Therefore for a given bi, µij = h(β1x1ij+ . . .+βpxpij+bi1z1ij+ . . .+biqzqij). The linear

mixed model is a special case of the GLMM with yij normally distributed given bi

and the identity link g(µ) = µ. Other examples of GLMMs include logistic regression

and Poisson regression with random effects.

The generalized linear mixed model for subject i can be written using matrix

notation as ηi = Xiβ+Zibi, where β = {β1, β2, . . . , βp} and Xi and Zi are subject-

specific design matrices for the p fixed effect covariates and q random effect covariates,

respectively. We then combine data from all subjects so that Y = {Y1,Y2, . . . ,YN}

is the
∑

i ni vector of outcomes and X and Z are the respective design matrices

for the p fixed effect covariates and q random effect covariates formed by successively

placing the design matrices of each subject under each other. Furthermore, we denote
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b = {b1, b2, . . . , bN} where V ar(b) = G = Σ⊗IG, in which ⊗ denotes the Kroenecker

product, and IG is a N ×N identity matrix to reflect independence among subjects

or clusters.

Estimation of the fixed effect parameters of the GLMM involves maximizing the

marginal log-likelihood ∫
f(Y |β, b)f(b|G)db

and requires that all of the q random effects are integrated out of the log-likelihood.

However, the q-dimensional integral often does not have a closed-form solution. There-

fore, methods for approximating the integral are required and have seen a lot of

development.

3.3 Proposed Methods

3.3.1 Linear Mixed Model Approximation of the Generalized Linear Mixed
Model

In order to apply the permutation tests from Chapter 2, an approximation for the

GLMM is necessary to “linearize” the data so that an LMM can be used to fit the

data to get working random errors. Let us begin with a standard GLMM,

g(µ|b) = Xβ +Zb. (3.1)

Using an extension of working variates in generalized linear models [Nelder and Wed-

derburn, 1972], a Taylor expansion of the link function, g, around the conditional

mean of Y given b [McCulloch et al., 2008] results in a vector of working variates
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that will be denoted as Y ∗:

Y ∗ = Xβ +Zb+ g′(µ|b)(Y − µ|b). (3.2)

The third term of this equation, g′(µ|b)(Y − µ|b), has mean equal to 0 so it can

be considered to be an error term which we will denote as ε∗. Therefore, Y ∗ can be

fit using a linear mixed model with non-constant variance, as each element of ε∗ has

variance that is a function of its mean. In fact, a method for estimation in GLMMs

through iterations of LMM fits was proposed by Schall [1991]. Breslow and Clayton

arrived at the same conclusion through their work on the penalized quasi-likelihood.

Because the elements of ε∗ do not have constant variance, they are not exchange-

able and cannot be permuted. The variance of ε∗ conditional on bi, denoted as W−1,

is a matrix with the diagonal elements equal to wij = {V ar(µij|bi)(g′(µij|bi))2}−1.

When g is the canonical link, g′(µij|bi) = V ar(µij|bi)−1, so that wij = g′(µij|bi).

Thus, we can weight Y ∗ by W so that Wε∗ has variance equal to σ2
εI, resulting in

the following equation:

WY ∗ = WXβ +WZb+Wε∗. (3.3)

At this point, (3.3) is a linear mixed model of WY ∗ with parameters equal to

those in (3.1). Estimates from the GLMM are needed in order to calculate WY ∗,

and inserting the GLMM estimates into (3.3) results in

ŴY ∗ = ŴXβ̂ + ŴZb̃+ Ŵ ε̂∗, (3.4)

where Ŵ−1 has diagonal elements equal to ŵij = {V ar(µ̂ij|b̃i)(g′(µ̂ij|b̃i))2}−1 and



45

ε̂ = g′(µ̂|b̃)(Y − µ̂|b̃).

Now that we have rewritten (3.1) as a linear mixed model with estimates obtained

from a GLMM fit we can proceed with the permutation tests.

In our simulations, we have found that performing the permutation test after

transforming the data under the alternative GLMM resulted in inflated estimates

of the random effect variance components, and caused the permutation tests to be

liberal. As a remedy, we instead transform the data based on estimates from the null

hypothesis GLM. This method estimates only the fixed effects, and all of the random

effects and random error are contained in the working error term. We then use a

linear mixed model to partition the model variance into random effects and random

noise.

3.3.2 Permutation Tests for Random Effects

We begin by considering the hypothesis test for the inclusion or exclusion of a

single random effect, bi ∼ N(0, σ2
bi

), in a GLMM with no other random effects present.

Thus, we are comparing the following models:

H0 : g(µij) = β1x1ij + . . .+ βpxpij

H1 : g(µij|bi) = β1x1ij + . . .+ βpxpij + bi1z1ij.

We first fit the null GLM and calculate

ŵijYij
∗ = β̂1ŵijx1ij + . . .+ β̂pŵijxpij + ŵijg

′(µ̂ij)(Yij − µ̂ij), (3.5)
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where ŵij = {V ar(µ̂ij)(g′(µ̂ij))2}−1. Once we have obtained ŵijYij
∗ if the alternative

hypothesis is true then eij = ε̂ij = ŵijg
′(µ̂ij)(Yij − µ̂ij) contains both random effects

as well as the random error. We propose using either T1 or T3 as the permutation

test statistic, and to obtain observed values for T1 or T3, we fit the alternative linear

mixed model to ŵijYij
∗ computed in Equation (3.5).

The permutation distribution is achieved by permuting the marginal residuals

from the linear mixed model. Under the null hypothesis, the errors, eij = wijg
′(µij)(Yij−

µij), are exchangeable because they are independent and have constant variance.

Asymptotically, the residuals, eij are also exchangeable. Permuting the residuals has

the benefit of not requiring the continuous X’s to be identical among all subjects nor

do the number of observations for each subject need to be the same.

For each permutation of the residuals we must re-estimate the variance component

of the random effect of interest. This allows our permutation null distribution to

“mix” because a proportion of the permutations will result in a random effect variance

estimate equal to zero. When testing for a single random effect, this allows the

permutation test to generate the point mass at zero that is seen in the asymptotic

50:50 mixture of χ2
0 and χ2

1 distributions. For more complex hypotheses, this will

automatically generate the appropriate mixture χ2 distribution. The linear mixed

model estimates are then used to calculate the permutation test statistics. In our

simulations, 1000 Monte Carlo permutations are generated for the permutation null

distribution of the test statistic. The same method can be used for hypothesis tests

that simultaneously test multiple random effects at the same time.
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3.3.2.1 Best Linear Unbiased Predictors Based Permutation Test Statis-
tic

The first proposed permutation test statistic is the sample variance of the BLUPs

for the random effect of interest:

T1 =
N∑
i=1

b̃2i1/N

where the denominator N is constant for all of the permutations and does not affect

the validity or power of the test. T1 involves the sum of the squared BLUPs where

the BLUPs are treated as a random sample from the random effect distribution.

The BLUPs are predicted using solutions to the mixed model equations given by

Henderson [1950].

b̃ = ĜŴZV̂ −1ê

where ê = ŴY ∗−ŴXβ̂. After calculating T1 for each permutation, we generate a p-

value by calculating the percentage of permutations with T1 greater than the observed

T1. This test statistic is intuitive and the permutation test is easy to perform, but

T1 can only be used to test for one random effect at a time. The next test statistic

that we propose will be able to test for multiple random effects, and, of which, T1 is

a special case.

3.3.2.2 Linear Mixed Model Restricted Likelihood Ratio Based Permu-
tation Test Statistic

The second proposed test statistic is the restricted likelihood ratio test statistic for

a linear mixed model, λ = −2 log(LH0 − LH1), where LH0 and LH1 are the restricted

likelihoods under the null and alternative hypotheses, respectively. For Equation



48

(3.3) we assume that WY ∗ ∼ N(WXβ,V ) and ε = WY −WXβ, then we have

λ = log [|V0|/|V1|] + εT (V −1
0 − V −1

1 )ε+ log [|WXTV −1
0 WX|/|WXTV −1

1 WX|].

Inserting estimates into λ gives us the statistic

T3 = log [|V̂0|/|V̂1|]+êT1 (V̂0
−1−V̂1

−1
)ê1+log [|ŴXT V̂0

−1
ŴX|/|ŴXT V̂1

−1
ŴX|],

in which the subscripts 0 and 1 correspond to the null and alternative hypotheses,

respectively. The observed T3 is compared to the permutation distribution created

by calculating T3 for each permutation to calculate the p-value.

The main advantage of T3 is that it can simultaneously test for multiple random

effects. Coupled with re-estimation of the parameters for each permutation this means

that for any number of random effects in our test the permutation test based on the

likelihood ratio statistic will automatically generate the correct mixing probabilities as

the rank of Σ̂∗ changes from permutation to permutation. The only other method of

finding the correct mixing probabilities for the χ2 distributions is through simulation.

3.4 Simulation Studies

3.4.1 Validity

We performed a series of simulations to examine the performance of our permuta-

tion tests under a number of different settings. The first study was used to evaluate

the validity of the two tests under two different scenarios: (1) testing for a random

intercept and (2) simultaneously testing for both random intercept and slope. This

was done for both logistic and Poisson regression models. Five hundred data sets
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were generated for each of the simulation scenarios using the following GLM

g(µij) = β1 + β2xij

with the appropriate link function for binary and Poisson data. The fixed effects, β1

and β2 were set equal to 0.25 and 0.5, respectively. Our fixed effect covariate, x2ij,

was randomly drawn from the standard normal distribution. We varied the number

of subjects, N ∈ {50, 10}, and set the number of observations per subject, n = 5. For

N = 10 we ran additional simulations with n = 10.

We compare the size of our permutation tests to that of the asymptotic restricted

likelihood ratio test with a 50:50 mixture of χ2 distributions with 0 and 1 degrees

of freedom in scenario (1), and 0, 1, and 2 degrees of freedom in a 25:50:25 ratio in

scenario (2). The mixing probabilities for scenario 2 were derived from Case 4 of Stram

and Lee [1994] who state that when the information matrix is equal to the identity

under the null hypothesis, the likelihood ratio test has an asymptotic null distribution

that is a mixture of χ2 distributions with binomial mixing probabilities. For all other

situations, they recommend finding the critical value through simulations.

All estimates were performed in the statistical package R with the GLM estimates

obtained using the glm() function and estimates for the LMM obtained through the

lmer() function from the R-package lme4 Bates et al. [2011]. Unlike other linear

mixed model fitting algorithms that can only estimate extremely small values for

variances, lmer() is able to estimate 0 for the variance components.

The simulation results for validity are presented in the first, sixth, and eleventh

rows of Table 3.1. With the exception of two simulations with very small samples,

N = 10 and n = 5, for the Poisson data both permutation tests have nominal
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size, defined as a size contained in the interval (0.031, 0.069), the approximate 95%

confidence interval for Type I error rate with 500 simulations. The hypothesis tests

for the binomial data appears to be more stable and closer to 0.05 than those for the

Poisson data. For the Poisson data with smaller sample sizes, the asymptotic test

appears to be slightly more conservative than the permutation tests when testing for

one random effect and more liberal when testing for two random effects.

3.4.2 Power

The simulations to examine the power of the tests were performed for both binary

and Poisson data under the same two scenarios as in the validity study. We generated

500 data sets using the random intercept and slope model model:

g(µij|bi) = β1 + β2x2ij + bi1 + bi2z2ij

with the same fixed effects from the validity simulations and with bi1 ∼ N(0, σ2
i1),

bi2 ∼ N(0, σ2
i2), and x2ij = z2ij. We varied the variance of the random effect (or

random effects under scenario 2) of interest, k ∈ {1, 2}, σ2
ik ∈ {0.25, 0.5.0, 0.75, 1.00}

as well as both the number of subjects, N ∈ {50, 10}. Again, for N = 10 we performed

simulations for n ∈ {10, 5}. For scenario 2 the random effects are assumed to be

independent.

The results of the power simulations are shown in Table 3.1. It appears that

the BLUP based and restricted likelihood ratio permutation tests have extremely

similar power. When testing for a single random effect the permutation tests are

more powerful than the asymptotic likelihood ratio test. The difference in power

increases as the sample size gets smaller. For the Poisson data the difference in power
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Table 3.1: Size and power for the permutation tests compared to the asymptotic
likelihood ratio test

Testing Scenarios
Binomial Poisson

(1) (2) (1) (2)

N n σ2
i B L A L A B L A L A

50 5 0 4.4 4.4 5.8 5.0 5.8 3.2 3.2 4.2 4.0 6.6
0.25 28.8 28.8 27.2 34.6 33.2 99.6 99.6 99.6 98.4 100.0
0.50 62.4 62.0 61.4 68.8 68.4 100.0 100.0 100.0 98.8 100.0
0.75 81.4 81.4 81.6 85.6 85.2 100.0 100.0 100.0 98.8 100.0
1.00 92.6 92.4 92.0 94.8 94.4 100.0 100.0 100.0 99.0 100.0

10 10 0 6.6 6.0 5.4 4.4 5.4 6.0 5.6 3.4 4.4 5.8
0.25 26.0 26.4 21.6 31.0 30.8 92.8 92.2 91.4 98.0 99.0
0.50 49.4 49.0 44.8 57.2 57.0 98.6 98.6 98.4 99.2 99.8
0.75 64.4 63.6 60.6 72.6 71.8 99.0 99.0 99.0 99.2 100.0
1.00 73.2 73.0 70.6 82.4 82.4 99.8 99.8 99.8 99.6 100.0

10 5 0 6.6 6.6 4.8 4.8 4.8 5.6 7.0 3.8 7.2 9.6
0.25 14.4 13.8 12.0 13.6 13.8 69.0 69.0 66.8 75.6 83.0
0.50 18.4 18.6 17.0 26.2 26.6 85.8 85.4 84.8 91.0 94.4
0.75 32.6 32.0 29.6 34.6 34.4 96.4 96.4 95.8 94.6 98.0
1.00 40.0 39.0 35.6 37.4 38.4 96.0 96.4 96.0 97.2 99.4

Results are reported in percentages.
σ2
i refers to the variance component(s) being tested.

(1): Random intercept test,
(2): Simultaneous test for the random intercept and random slope.
B: BLUP based permutation test,
L: Likelihood ratio based permutation test,
A: Asymptotic likelihood ratio test
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between the permutation tests and the asymptotic test is small, but this could be

attributed to how powerful all three tests are for our simulation settings. When we

test for two random effects the asymptotic likelihood ratio test using the 25:50:25

ratio of χ2 distributions displays similar power to the restricted likelihood ratio based

permutation test when the data are binary. For Poisson data the asymptotic test has

higher power but this could be due to the test being liberal which can be seen from

the null test.

For the simulations in Table 3.1 we only performed omnibus tests where we com-

pare the alternative GLMM to the null GLM. When we compare two GLMMs and

include a nuisance random effect we have observed that the permutation tests are

liberal. It has been shown that the estimators obtained through the linear mixed

model approximation of non-normal data are biased [?]. Our hypothesis is that this

bias on the nuisance random negatively impacts the permutation tests for the random

effect of interest.

3.4.3 Comparison Simulations

In this section we compare our restricted likelihood ratio permutation test to the

score tests of Lin [1997] and Hall and Præstgaard [2001]. We compare the size and

power of our test to published results from simulations performed by Hall and Præst-

gaard [2001] which have identical settings to those that were initially performed by

Lin [1997]. These simulations are based upon the salamander mating dataset found

in McCullagh and Nelder [1989] where two populations of salamanders, rough butt

(RB) and whiteside (WS), are mated together in a crossed design. The salamander

experiment involves mating ten males and ten females from each of the two popu-

lations six times for each salamander resulting in 120 correlated binary observations
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of whether or not the mating took place. The experiment was performed a total of

three times for a grand total of 360 observations. The question of interest is whether

or not there is heterogeneity across males and females. To answer this the following

model is used

logit{E(yij|bfi , bmj )} = xTijα + bfi + bmj (i = 1, . . . , nf , j = 1, . . . , nm),

where nf and nm are the numbers of female and male salamanders, respectively.

The outcome yij is the binary mating outcome of female i with male j and xij =

(1,WSfi ,WSmj ,WSfmij )T contains the four covariates of interest. The first is the

intercept, WSfi is an indicator variable for whiteside female (0 = RB , 1 = WS),

WSmj is an indicator variable for whiteside male (0 = RB , 1 = WS), and WSfmij is

their interaction. The random effects, bfi and bmj , are assumed to be independent and

normally distributed with mean 0 and variances σ2
f and σ2

m, respectively.

For each simulation we generated 3,000 data sets under the following settings.

The number of females and males, nf and nm, are both set equal to 60. Next, the

fixed effects were set equal to their estimates obtained from the original data through

restricted maximum likelihood, α = (1.18,−0.32,−2.84, 3.35)T . We test the following

null hypothesis: H0 : θ = (σ2
f , σ

2
m)T = 0. We assess the performance of the permuta-

tion test as we vary the random effect variances σ2
f = σ2

m ∈ {0, 0.25, 0.50, 0.75, 1.00}.

We compare our restricted likelihood ratio based permutation test to four score tests:

T, the score test of Lin [1997], T ∗ the bias corrected score test of Lin [1997], T̃ the

order restricted score test of Hall and Præstgaard [2001], and T̃ ∗ the bias corrected

order restricted score test of Hall and Præstgaard [2001].

From Table 3.2 we see that the restricted likelihood ratio based permutation test



54

Table 3.2: Estimated test size and power based on simulated data from the salaman-
der dataset

θ T3 T T ∗ T̃ T̃ ∗

0.00 5.4 5.1 4.9 5.0 5.8
0.25 42.1 28.9 31.0 40.1 43.5
0.50 79.5 69.2 71.7 78.8 81.3
0.75 94.8 89.9 91.0 94.6 95.5
1.00 99.0 97.0 97.5 98.4 98.7

Results are reported in percentages.

displays power on par with the most powerful score test which is the small-sample

bias-corrected order restricted score test of Hall and Præstgaard. Slight differences

can be attributed to simulation variability.

3.5 Examples

3.5.1 Amenorrhea Events from a Clinical Trial of Contracepting Women

In our first example, we analyze data arising from a longitudinal clinical trial of

contracepting women. Studies of contraceptive methods are time-to-event studies pri-

marily interested in the time from first use of the contraceptive until discontinuation

for any reason. In this particular study women were randomized to receive either a

100 mg or a 150 mg dosage of depot-medroxyprogesterone acetate (DMPA). Three

additional identical dosages were given at 90-day intervals and a final follow-up visit

occurred 90 days following the fourth dose. One of the major reasons for discontin-

uations are disturbances in menstrual bleeding. One third of the women dropped

out before the completion of the trial, and of those 58.8% reported bleeding pattern

disturbances as the reason. To further investigate the impact of the drug dose level
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on disrupting menstrual bleeding, each woman completed a menstrual diary that

recorded any bleeding pattern disturbances starting from the day of the first dosage.

It was concluded that the major difference between the two dose levels was that less

amenorrhea, the absence of menstrual bleeding for a specified number of days, was

observed in the 100 mg group [World Health Organization, 1987].

The article of Machin et al. [1988] was interested in analyzing the occurrence of

amenorrhea in these women. Of the women who participated in the clinical trial, 1,151

had a sufficiently completed menstrual diary. Each woman accounts for a sequence

of up to four binary records indicating whether she experienced amenorrhea in each

of the the 90 days following a contraception dose with 0 indicating no amenorrhea

and 1 indicating that it occurred. In our analysis we investigate if there was indeed

a higher incidence of amenorrhea in the 150 mg dose group and if there are any

changes in amenorrhea incidence over time. We fit the data using a GLMM with

random intercept to account for the repeated subject measurements. The suitability

of this model will be checked using a permutation test for the subject level random

effects.

We fit the following logistic regression model with a random intercept

logit{E(Yij|bi)} = β0 + b0i + β1timeij + β2time2
ij + β3dosei × timeij + β4dosei × time2

ij

where time = 1, 2, 3, 4 indicating one of the four 90-day intervals following a dose of

DMPA, and dose equals 1 if assigned to 150 mg DMPA and 0 otherwise. Due to

this parameterizing of time there is no information when time = 0, and therefore, no

main effect of dose is included in this model. We assume that individual women may

be heterogeneous in their propensity of developing amenorrhea and is the reason for
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the inclusion of the random intercept. The estimate for the variance component for

the random intercept is 4.3366 which strongly suggests the necessity of the random

intercept. The results of the permutation tests confirm this with p-values of < 0.001

for both the likelihood ratio based and BLUP based permutation tests.

3.5.2 Comparing the Number of Epileptic Seizures between Progabide
and Placebo

The second example focuses on a clinical trial of counts of epileptic seizures that

took place in 1987 [Leppik et. al.]. This was a placebo-controlled trial of an anti-

epileptic drug, progabide, with 59 patients suffering from epilepsy. Progabide is a

drug that operates by enhancing the amount of gamma-aminobutyric acid which is

the primary inhibitory neurotransmitter in the brain. Each patient was randomly

assigned to either progabide or placebo as an adjuvant to the standard anti-epileptic

treatment.

The researchers collected baseline data on the number of seizures that occurred for

each patient in the eight weeks leading up to the treatment. The outcome of interest

was the count of seizures during four two-week intervals following the treatment start

date. A plot of the mean number of seizures is provided in Figure 3.1.

The goal of the analysis is to determine whether or not the addition of progabide

to standard treatment reduces the rate of seizures and determine the necessity of

accounting for within-subject correlation. We fit the following Poisson regression

model with a random intercept and slope

log{E(Yij|bi)} = log(Tij) + β0 + b0i + (β1 + b1i)timeij + β2trti + β3trti × timeij,
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Figure 3.1: Plot of the mean number of seizures per week by treatment group
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Figure 3.2: Boxplots of the subject specific intercepts and slopes
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where Yij is the number of epileptic seizures for the i-th patient in the j-th 2 week pe-

riod and j = 0, 1, 2, 3, 4. Tij is the length of period j and is equal to 8 when j = 0 and

equal to 2 when j ∈ (1, 2, 3, 4) we include an offset log(Tij) to adjust for the difference

in the observation time for the baseline seizure count and the post randomization

follow-up periods. The treatment variable, trt, is an indicator variable equaling 1

for the progabide group and 0 for the placebo group. Finally, time ∈ (0, 2, 4, 6, 8)

tracks the number of weeks following randomization. The random intercept and

slope account for heterogeneity among the patients both at the baseline level and

in their response to treatment over time. The two random effects are allowed to be

potentially correlated with each other.

Boxplots for subject specific intercepts and slopes were created and can be seen

in Figure 3.2. These plots appear to display a significant amount of variation in

the subject specific intercepts and slopes and support the decision to include random
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effects for the intercept and slope. An earlier boxplot of the subject specific intercepts

revealed a potential outlier. This outlier is patient number 49 who had a baseline

record of 151 seizures in the 8 weeks leading up to the randomization date and 302

total seizures over the next 8 week which is more than twice as many as the next

highest number of total seizures following randomization. As a result we decided to

remove patient 49. The boxplots in Figure 3.2 have this observation removed.

Table 3.3: Permutation test results for inclusion of specific random effects when mod-
eling seizure counts.

Observed LRT Permutation BLUP Permutation
Test LRTS p-value p-value

(4) vs (1) 151.19 <0.001 -
(3) vs (1) 140.36 <0.001 <0.001
(2) vs (1) 39.68 <0.001 <0.001

(1): No random effects
(2): Random intercept only model
(3): Random slope only model
(4): Random intercept and random slope model

Initial estimates for the variance components were 0.461 and 0.005 for the intercept

and slope respectively. While the random slope for time is very small the slope

estimate is equal to 0.009 which means that the random slope effect is quite large

in comparison. Permutation tests were applied to this model for the global test and

each of the individual variance components by themselves. From the results in Table

3.3 we reject all of the null hypotheses and conclude that the random effects in this

model are necessary.
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3.6 Discussion

In this chapter, we have proposed two methods for performing inference on random

effects in GLMMs by linearizing the data in order to fit linear mixed model. After

this step, permuting the weighted residuals both within- and among- subjects allows

us to test for the inclusion or exclusion of the random effects in an omnibus test.

Unfortunately, the permutation tests for individual random effects in the presence of

nuisance random effects displayed Type I error rates nearly twice the nominal size.

Our hypothesis as to a potential cause of this is the bias in the estimate for the

nuisance random effect after linearization. A correction for the bias may be one way

to resolve this problem [Lin and Breslow, 1996].

As demonstrated through our simulations and example, when we are examining

omnibus hypotheses the proposed permutation tests are valid when the number of

patients and the number of observations per patient is small. The performance of

the tests is similar to that of the small sample bias-corrected order restricted score

test of Hall and Præstgaard. The tests also do not require balanced data nor do the

measurements need to occur at the same points in time. As a result, our methods

can be applied to omnibus tests of any type of GLMM. Finally, these methods can

be applied through standard software and can be incorporated into standard practice

for analysis of generalized linear mixed models. While the methods are computation-

ally intensive, the recent rise in parallel computing through clusters and multi-core

processors has made it possible to greatly reduce the amount of time necessary to

implement these tests.

In the following chapter we generalize the methods presented in Chapter 2 to

demonstrate how the permutation tests can be applied to the roughness penalty of a
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linear penalized spline model through a mixed model representation of the penalized

spline model.



CHAPTER IV

Permutation Tests for Linear Penalized Spline

Models

4.1 Introduction

Standard statistical regression methods model an outcome or dependent variable

as a function of one or more independent predictor variables. The effect of each

predictor variable on the dependent variable is often assumed to be constant or linear.

That is, each one unit increase in the predictor variable, X, results in a mean change

in the dependent variable, Y, equal to the estimated coefficient for X. However, for

some data this assumption of linearity may not hold. When the predictor variable

does not affect Y in a constant manner polynomials of X could be used to obtain

a better fit of the data. For extremely nonlinear data higher degree polynomials

could be utilized but leads to additional curvature that is often not representative

of the data as a result of the degrees of the polynomial. Another alternative is

to apply transformations to the data. However, the amount of correction feasible

through transformations is limited. As an alternative, statisticians often turn to

nonparametric smoothing methods broadly termed scatterplot smoothing.

The focus of this article is on one particular type of scatterplot smoothing known

62
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as penalized splines which were first proposed by Eilers and Marx [1996] based on

the ideas of O’Sullivan [1986]. A basic linear spline model is a linear combination of

spline basis functions that forms a piecewise linear function joined at K pre-specified

points known as knots. Examples of spline basis functions include truncated power

bases and B-splines. The number and location of the knots have a profound impact

on the fit of the linear spline model. When K is small the model may not be flex-

ible enough to properly fit the data, but large values of K can lead to overfitting.

Instead of using automated methods of selecting the optimal number and location

of the knots, a penalty term is incorporated into the objective function in order to

constrain the influence of the K knots. This results in the linear penalized spline

model. The effect of the tuning parameter penalty term is that it controls the de-

gree of smoothness. Furthermore, K only needs to be sufficiently large to ensure the

desired flexibility in the linear penalized spline model [Ruppert, 2002]. Examples of

nonlinear data that can be modeled using penalized splines include pharmacokinetic

and pharmacodynamic data [Bonate, 2005]. Pharmacokinetics is the study of the

time course of a drug in the human body which is affected by processes such as the

metabolism and excretion. The goal of analyzing pharmacokinetic data is to devise a

treatment regimen that will maintain a consistent concentration of drug in the body

of a patient. Pharmacodynamic analysis deals with modeling the effect of a drug on

the body over various concentrations of the drug within the body.

Extensive work has been done to devise methods of estimating the tuning parame-

ter penalty term which include cross validation, Mallows Cp, and Akaikes information

criterion. Following Brumback et al. [1999] a penalized spline model can be repre-

sented as a linear mixed model (LMM) with the penalized spline coefficients treated

as random effects and the penalty parameter parametrized as a function of the vari-
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ances of the random error and the random spline coefficients. As a result of this

maximum likelihood or restricted maximum likelihood can also be used to estimate

the penalty term.

Hypothesis testing has received less attention in the literature. For a linear penal-

ized spline model that is represented as a linear mixed model a hypothesis test on the

penalty term is equivalent to testing a standard linear regression fit versus a linear

penalized spline alternative. Since the penalty term is a function of the variance of

the random penalized spline coefficients the hypothesis test is equivalent to testing if

the variance of the random spline coefficients is equal to 0. This hypothesis test is a

variance component test.

The difficulty in testing for variance components lies in the fact that the variance

component is equal to 0 under the null hypothesis, a value that is on the boundary

of the parameter space. As a result, the usual χ2 asymptotic distributions of the

Wald, score, and likelihood ratio test statistics do not hold. Instead, the correct null

distribution for the likelihood ratio statistic has been shown to be a mixture of χ2

distributions [Self and Liang, 1987; Stram and Lee, 1994]. For example, when testing

for one random effect, the null distribution becomes a 50:50 mixture of χ2
q and χ2

q−1

distributions where q is the total number of random effects in the alternative model.

The score [Silvapulle and Silvapulle, 1995; Verbeke and Molenberghs, 2003] and Wald

[Silvapulle, 1992] tests for variance components have been proven to have equivalent

mixture χ2 distributions.

The asymptotic likelihood ratio test for the variance component of the random

penalized spline coefficients was investigated by Crainiceanu and Ruppert [2004], and

they found that the 50:50 mixture of χ2
0 and χ2

1 distributions is a conservative approx-

imation and can lead to severe loss of power. For example, through simulation they
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find that when comparing a constant mean versus an alternative piecewise constant

spline model with K = 20 the χ2
0 mixing proportion is equal to 0.65 for the restricted

likelihood ratio test while for the likelihood ratio test it is essentially a degenerate

distribution at 0. Therefore, alternative methods for testing variance components

are needed. One such method is presented by Crainiceanu and Ruppert [2004]. The

authors apply the spectral decomposition to the likelihood ratio and restricted like-

lihood tests. A simulation algorithm is then applied to obtain the finite sample null

distribution of the likelihood ratio and restricted likelihood ratio tests. Other meth-

ods include bootstrap [Kauermann et al., 2009] and a general permutation test [Raz,

1990] designed to test any nonparametric fit of a variable versus no effect at all.

As demonstrated by Raz permutation tests are a viable method for addressing

this problem, as permutation tests are known to have nominal size in finite samples

while requiring only a few weak assumptions. Our work here is an application of

two permutation tests that we have developed specifically for variance component

tests in linear mixed models [Lee and Braun, 2012] in order to test a linear regression

model against the alternative linear penalized spline model. The two permutation test

statistics are a sum of weighted squared residuals, and the empirical null distributions

are generated via permutations of the residuals. The first test statistic is based on the

Best Linear Unbiased Predictions (BLUPs) [Robinson, 1991] and the second statistic

is the restricted likelihood ratio test statistic assuming normality of the data. We

will show that our tests have valid size and their powers are comparable to existing

methods. In Section 4.2, we begin with notation for linear penalized spline models

and show how they can be parametrized as linear mixed models. Section 4.3 follows

with a presentation of our proposed methods. We present the results of simulations

in Section 4.4 that demonstrate the validity and power of our methods as we vary the
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number of observations. In Section 4.5 we apply our methods to data from a study

investigating the concentration of ragweed pollen over the course of a season. We

close with a discussion of our work in Section 4.6.

4.2 Methods

4.2.1 Linear Penalized Spline Models

Let Yi be the i-th observation for i = 1, 2, ..., N , and xi is the independent variable

measured for observation i. A standard linear spline model can be written as

Yi = β0 + β1xi +
K+1∑
k=2

βk(xi − κk)+ + εi, (4.1)

where there are K linear spline basis functions written as (xi−κk)+. The subscript +

indicates that negative values of the spline basis function are set equal to 0, where each

of the κ terms is fixed and known as a knot. Other spline bases such as truncated

power functions, B-splines, and cubic splines can be used as well. In this model

there are a total of K + 2 coefficients where β0 and β1 are the standard fixed effect

coefficients for the intercept and slope, and β2, β3, ...βK+1 are the spline coefficients.

The random errors, εi, are independent and identically distributed normal with mean

0 and variance, σ2
ε . Equivalently, we can write the linear spline model using matrix

notation, Y = Xβ + ε, where β is a (K + 2)-dimensional vector of the fixed effect

coefficients, and X is the design matrix containing a column of ones, xi, and all of

the linear spline basis functions. ε is the vector of the random errors, εi.

Estimations of the parameters of a linear spline model can be obtained through
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ordinary least squares by minimizing the objective function,

‖Y −Xβ‖2. (4.2)

This fit results in a piecewise linear model joined at each knot. The adequacy of the

fit is sensitive to the location and number of specified knots. When the number of

knots is low the fit can be poor, while too many knots can lead to overfitting where

some of the effects in the model are due to random noise in the data.

To control overfitting, a roughness penalty is applied. The penalty constrains or

shrinks each of the spline coefficients, β2, β3, ...βK+1 towards 0. The linear penalized

spline model does this by adding the roughness penalty to the objective function.

Instead of minimizing (4.2) the penalized spline model minimizes

‖Y −Xβ‖2 + λ2βTDβ, (4.3)

where λ ≥ 0. The λ2βTDβ term is the roughness penalty, where D is a (K + 2) ×

(K + 2) matrix with D1,1 = 0, D2,2 = 0, and each of the remaining diagonal terms

equal to 1. The off-diagonal elements are all equal to 0. This forces the penalty

to only be applied to the spline coefficients, and in turn the estimates for the spline

coefficients are ridge regression estimators. The amount of smoothing is controlled by

λ. When λ is equal to 0 then the penalty is not applied and the model reduces to the

piecewise linear model. As λ goes to infinity, which is the test of interest, the spline

coefficients are shrunk all the way to 0 which results in a standard linear regression

model. Therefore the choice of λ is crucial, while the number of knots only needs to

be large enough to provide the desired level of flexibility in the model [Ruppert, 2002].
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Once the number of knots is selected they are located at evenly spaced quantiles of

xi [Ruppert, 2002]. Choosing λ can be done through different selection methods such

as cross-validation, Mallows’ Cp, and the Akaike information criterion. In the next

subsection we show how maximum likelihood or restricted maximum likelihood can

be used to estimate λ for linear penalized spline models.

4.2.2 Representing a Linear Penalized Spline Model as a Linear Mixed
Model

As demonstrated by Brumback et al. [1999] and Ruppert et al. [2003] a linear

penalized spline model can be expressed as a linear mixed model. Starting with

the linear penalized spline model written as in (4.1), two design matrices are be

defined. X is a N × 2 matrix containing a column of ones and xi. Z is a N × K

matrix containing the K spline basis functions. Furthermore, the coefficients are also

partitioned into two vectors–β∗ = {β0, β1} and b = {β2, ..., βK+1}. Subsequently, the

objective function now becomes

‖Y −Xβ∗ +Zb‖2 + λ2bTb. (4.4)

Next, divide (4.4) by the error variance, σ2
ε .

1

σ2
ε

‖Y −Xβ∗ +Zb‖2 +
λ2

σ2
ε

bTb (4.5)

If b is treated as a random effect that follows a normal distribution with mean 0 and

variance σ2
b = σ2

ε/λ
2, and b and ε are independent, then (4.5) is the objective function

of a linear mixed model derived from the log likelihood conditional on b. As a result,

the linear penalized spline model can now be written as the following linear mixed
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model, Y = Xβ∗ +Zb+ ε, where

V ar

 b
ε

 =

 G 0

0 R


with G = σ2

bI and R = σ2
εI.

Estimation of β, σ2
ε , and σ2

b can be done through maximum likelihood or restricted

maximum likelihood. Predictions for the the penalized spline coefficients, b1, ..., bK

are denoted by b̃1, ..., b̃K or b̃ and are obtained using best linear unbiased prediction

or BLUP

b̃ = GZTV −1(Y −Xβ̂), (4.6)

where V ≡ cov(Y ) = ZGZT +R.

Once the linear penalized spline model has been re-expressed as a linear mixed

model, we can utilize LMM methods to test for the necessity of the penalized spline

model opposed to a standard linear regression model. For example, we would be

testing

H0 : Yi = β0 + β1xi + εi (4.7)

H1 : Yi = β0 + β1xi +
K+1∑
k=2

βk(xi − κk)+ + εi. (4.8)

Given that the spline coefficients are random effects from a normal distribution with

mean 0 and variance, σ2
b , this hypothesis test is equivalent to testing that σ2

b = 0. As

noted previously, estimation of the parameters of a LMM is typically done through

maximum likelihood or restricted maximum likelihood. Asymptotically, the maxi-

mum likelihood and REML estimators are equivalent, but for small sample sizes, the
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REML estimator is expected to be less biased than the maximum likelihood estimator

[Ruppert et al., 2003]. In addition, a comprehensive simulation study performed by

Morrell [1998] found that the asymptotic likelihood ratio test based on the REML

estimates are closer to nominal than test statistics utilizing the ML estimates. There-

fore, in our proposed methods we used the REML estimators.

4.3 Proposed Methods

4.3.1 Permutation Tests

As alternatives to the asymptotic likelihood ratio test for variance components

we propose two permutation tests [Lee and Braun, 2012]. Permutation tests are

nonparametric tests that have nominal size when performed correctly. They operate

by generating an empirical null distribution for an observed test statistic through

permutations of the data. Permutation tests assume that the values being permuted

are exchangeable under the null hypothesis [Good, 2005]. A vector, Y , is exchangeable

if, for any permutation of Y denoted as Y ∗, Y ∗ has the same distribution as Y

[Commenges, 2003]. It should be noted that exchangeability is a weaker condition

than independent and identically distributed. When it is unfeasible to enumerate

all possible permutations, an approximate permutation distribution can be generated

through Monte Carlo sampling [Dwass, 1957].

Both proposed permutation tests are based upon permuting the marginal errors,

ε = Y − Xβ. Under the null hypothesis of penalized spline functions, the ε are

exchangeable, and more specifically, independent and identically normally distributed

with mean 0 and variance σ2
ε . In practice, the errors are estimated by the residuals,

ê = Y −Xβ̂, calculated from estimates fit from the alternative model, and Schmoyer
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[1994] showed that the residuals are also asymptotically exchangeable.

When the null hypothesis includes nuisance variance components such as ran-

dom effects or penalized spline functions for a different independent variable the

marginal errors are no longer identically distributed under the null hypothesis. In-

stead, the errors follow a normal distribution with mean 0 and covariance matrix,

V0 = ZG0Z
T +R0 with R0 = σ2

ε0
I where σ2

ε0
is the variance of the random errors

under the null model, and G0 is the covariance matrix of the nuisance random effects.

This problem is resolved by weighting the errors by (UT
0 )−1 where U0 is the Cholesky

decomposition of V0. The set of weighted errors, (UT
0 )−1(Y −Xβ), are distributed

MVN(0, I) under the null hypothesis and can be permuted which is extended to the

residuals.

The first permutation test is based on the sum of the squared BLUPs or the

penalized spline coefficients and utilizes the following test statistic:

T2 =
K∑
i=1

b̃2i2/K = b̃∗T b̃∗/K, , (4.9)

where b∗ = Ĝ1ZV̂
−1

1 UT
0 (UT

0 )−1(Y − Xβ̂). This is the BLUP formula with the

weighted residuals and an unweighting matrix. For this test statistic we sum over

the K squared spline coefficients because these are the random coefficients that are

normally distributed with mean zero and variance equal to σ̂2
b . For the observed data

this quantity is the sample variance of the BLUPs for the random spline coefficients.

Note that the denominator of the test statistic is constant for all of the permutations

and does not affect the validity or power of our test.

To obtain the permutation null distribution we use Monte Carlo sampling to

randomly permute the weighted marginal residuals. Next, we re-estimate σ̂2
b for each
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permutation before computing T ∗2m, the value of T2 computed from permutation m of

the data, m = 1, 2, ..., 1000, to generate the approximate empirical null distribution

of T2. The re-estimation is performed because certain permutations of the residuals

will result in estimates of σ̂2
b equal to zero. We then calculate the percentage of

permutations with T ∗2 greater than T2 to generate a p-value. T2 is only calculated for

the single variance component being tested and cannot be used for tests of multiple

variance components at the same time.

Our second permutation test is able to overcome this limitation. It is based on the

restricted likelihood ratio test statistic, φ = −2 log(LH0 − LH1), where LH0 and LH1

are the restricted likelihoods under the null and alternative hypotheses, respectively.

Our test statistic is

T3 = log [|V̂0|/|V̂1|] + êT (V̂0
−1 − V̂1

−1
)ê− log [|XT V̂0

−1
X|/|XT V̂1

−1
X|]. (4.10)

Again, the marginal residuals are weighted prior to permutation. Following per-

mutation, the unweighted permuted residuals are used to obtain permutation specific

estimates of V̂0
∗

and V̂1
∗
. When simultaneously testing for multiple variance com-

ponents, re-estimation of V̂0
∗

and V̂1
∗

is necessary due to the changes that occur in

the rank of Σ̂ when some number of the variance components of interest are esti-

mated to be equal to 0. By taking this into account, the permutation distribution is

allowed to “mix” as the rank of Ĝ1 varies, thereby generating a distribution similar

to the mixture χ2 asymptotic distribution of Stram and Lee [1994]. Simulation is

the only other method of obtaining the correct mixture distribution. We create the

permutation distribution by calculating T ∗3 for each of the random permutations and

determine a p-value by comparing the observed log restricted likelihood ratio statistic
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to the permutation distribution.

4.4 Simulation Studies

4.4.1 Validity

We examine the validity of our permutation tests on linear penalized spline mod-

els through a series of simulations while varying the number of observations N ∈

30, 50, 100. A total of one thousand data sets were generated from the the following

linear regression model:

Yi = β0 + β1xi + εi

with β0 = 3, β1 = 2.75, σ2
ε = 1, and our fixed effect, xi, are equally spaced points

on the interval (0,1]: xi = i/N where i = 1, ..., N . The alternative model that we

are testing is a penalized linear spline model with linear basis splines at 10 equally

spaced knots over the range min(xi) and max(xi).

All estimates were performed in the statistical package R using the amer() func-

tion from the R-package amer [Scheilpl, 2011]. The amer() function leverages the

mixed model fitting function lmer() from the R-package lme4 [Bates et al., 2011] in

order to estimate the spline coefficients and fit a linear penalized spline model.

To contrast against the two proposed permutation tests we also incorporate the

mixture χ2 asymptotic likelihood ratio test as well as the alternative permutation

method developed by Raz [1990]. The inclusion of the asymptotic likelihood ratio

test serves as an example of how poorly this approximation performs when testing

for a penalized spline alternative. Raz’s permutation test was developed to assess

any effect of a variable when it is used in a nonparametric procedure to estimate a
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smooth function. This method can be applied to several nonparameteric regression

procedures such as kernel smoothing, local regression, and smoothing splines. The

test statistic, R, is a ratio of sums of squares and is similar to an F-type of statistic.

R = (N − 1)Q1/Q3

For this test statistic Q1 =
∑
i

[f̂(xi)− Ȳ ]2 and Q3 =
∑
i

[Yi − Ȳ ]2, where f̂(xi) is the

nonparametric estimate for Yi. The permutation distribution for this test statistic is

obtained by permuting xi among all of the N responses. Raz also provides a method of

approximating the permutation distribution using a gamma distribution, but through

parallel computing we will avoid using the approximation and instead generate 1000

Monte Carlo permutations for each simulation. One consequence of applying Raz’s

permutation test is that it tests for any effect of xi on the independent variable Yi

which includes the fixed slope effect in our linear penalized spline model. Therefore,

in order to make use of Raz’s method for just the penalized spline portion of the model

we first subtract the estimated intercept and slope of xi from Yi before permuting xi

for the penalized spline terms.

The simulation results for validity are presented in Table 4.1. Both the likelihood

ratio based permutation test and Raz’s permutation test appear to be valid with

Type I error rates that lie within the 95% confidence bounds for 0.05 which are

(0.036, 0.064). The BLUP based permutation test is conservative when N = 30 but

is valid as N increases. The asymptotic likelihood ratio test is quite conservative for

all three settings.
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4.4.2 Power

Simulations to examine the power of the permutation tests were also performed

and again are compared to the asymptotic likelihood ratio test and Raz’s permutation

method. We generated 500 data sets from a sine curve with some random noise

Yi = C sin(xi) + εi,

where xi are equally spaced points on the interval (0, 4π] : xi = 4iπ/N where i =

1, ..., N and σ2
ε = 1. C is a scalar that controls the amplitude of the sine curve

and was varied from 0.5, 1, and 2. Small values of C lead to a reduction in the

amount of curvature in the data relative to the random noise making a penalized

spline model less necessary. Once again, we varied the sample size N ∈ {30, 50, 100}.

The alternative model that we are testing is a penalized linear spline model with

linear basis splines at 10 knots that are equally spaced over the range min(xi) and

max(xi).

Table 4.1 contains the results of the power simulations. Overall the performance

of the BLUP based permutation test and Raz’s permutation test are very similar with

slight advantages for the BLUP based permutation test in three of the settings. The

likelihood ratio based permutation test is not as powerful as either of the other two

permutation tests. Again, the 50:50 mixture of χ2
0 and χ2

1 asymptotic null distribution

for the asymptotic likelihood ratio tests is conservative in all but the most extreme

settings.



76

Table 4.1: Size and power for the permutation tests compared to the asymptotic
likelihood ratio test and Raz’s method

Method
N C B L R A

30 0.0 2.8 4.5 4.2 2.3
0.5 11.7 9.7 12.3 5.8
1.0 34.2 26.7 34.0 21.6
2.0 81.4 81.2 78.4 80.8

50 0.0 4.2 5.4 5.0 2.7
0.5 20.1 16.3 20.0 10.5
1.0 63.6 57.6 61.9 55.2
2.0 99.8 99.8 99.6 99.8

100 0.0 5.2 6.1 5.7 2.7
0.5 43.3 35.4 39.7 29.8
1.0 95.7 95.6 95.7 95.5
2.0 100 100 100 100

Results are reported in percentages.
B: BLUP based permutation test,
L: Likelihood ratio based permutation test,
R: Raz’s permutation test,
A: Asymptotic likelihood ratio test.

4.5 Application

We apply our permutation tests to a set of data presented by Stark et al. [1997]

who modeled ragweed pollen levels collected in Kalamazoo, MI from 1991 to 1994

as a function of meteorological data. Pollen measurements were obtained 7 days a

week during this four year period on the roof of a local television station. Ragweed

pollen can cause hay fever and asthma in sensitive people. One method of controlling

pollen-induced allergies is through avoidance. Accurate predictions of pollen levels

would benefit people seeking to avoid being exposed to pollen. The authors found that

the most significant variables for predicting ragweed pollen counts were an indicator

of whether or not there was significant rainfall in the late morning with 3 hours of
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steady rain or brief but intense rain defined as significant rainfall, wind speed in knots,

average daily temperature in degrees Fahrenheit, and the day number in the ragweed

pollen season. Given that there are seasonal effects the day number in the ragweed

pollen season may not affect the ragweed pollen count linearly. Wind speed has

been previously shown to influence pollen dispersal in a linear fashion. However, the

effects of temperature and the day number of the pollen season may not be linear. It

is reasonable to believe that as the pollen season progresses in days the pollen levels

increases to a peak and then declines as the days in season continues to increase.

Regarding the effect of temperature, the same temperature during the peak pollen

season will probably have a different effect than towards the end of the season.

We utilized penalized splines to fit the three continuous variables and used the

proposed permutation tests to determine if the penalized splines are necessary. First,

in order to make the pollen counts more normally distributed we transformed the

ragweed pollen counts by taking square root of those values. Figure 1 contains pre-

liminary plots of the three continuous variables with a loess curve fit in order to show

the potential deviation from linearity. Neither wind speed nor temperature appear to

deviate too much from linearity while the day in season variable appears to be very

nonlinear.

Each continuous variable was modeled using penalized splines with 20 evenly

spaced knots. Our initial full model is

√
Yi = β0 + β1X1i + β2X2i +

20∑
k=1

β2k(X2i − κ2k)+ + β3X3i +
20∑
k=1

β3k(X3i − κ3k)+

+ β4X4i +
20∑
k=1

β4k(X4i − κ4k)+ + εij.
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Figure 4.1: Plot of square root pollen counts against wind speed.
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Figure 4.2: Plot of square root pollen counts against temperature.
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Figure 4.3: Plot of square root pollen counts against day in season.
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Table 4.2: Permutation test results the penalized spline terms

Test Observed LRTS Permutation
P-value

(3) vs (1) 296.16 <0.001
(3) vs (2) 11.64 <0.001

(1): No penalized splines
(2): Penalized splines for day in season
(3): Penalized splines for temperature and day in season

Yi is the pollen level for the i-th measurement, and X1i, X2i, X3i, and X4i are the rain,

wind speed, temperature, and day in season variables, respectively, for measurement

i. This model is written as a linear mixed model with b2 ∼ N(0, σ2
b2

), b3 ∼ N(0, σ2
b3

),

and b4 ∼ N(0, σ2
b4

). We wish test if any or all of these variance components is equal

to 0. After fitting the initial model the estimated variance for the random spline

coefficients for wind speed is equal to 0. Therefore, the penalized spline terms for

wind speed were removed resulting in the following model

√
Yi = β0+β1X1i+β2X2i+β3X3i+

20∑
k=1

β3k(X3i−κ3k)++β4X4i+
20∑
k=1

β4k(X4i−κ4k)++εij.

Table 3 shows the results of our hypothesis tests based on 1000 permutations for

the variance components of the penalized spline terms using the likelihood ratio based

permutation test. First, we performed the omnibus hypothesis test to simultaneously

test both temperature and day in season. This test was highly significant so at least

one of the two penalized spline terms is necessary. The day in season variable shows a

very strong nonlinear marginal relationship with the square root of the pollen counts.

Therefore, we then test for the necessity of nonparametrically modeling temperature
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given that day in season is already modeled with penalized splines. The hypothesis

test result is again signifiant, and we must reject the null hypothesis and include

both penalized spline terms. For completeness, we also calculated the BLUP based

permutation test for the second hypothesis test. This test results in
∑
b̃20 = 1.43

and a p-value equal to 0.021 supporting the conclusion that we must reject the null

hypothesis.

4.6 Discussion

In this paper, we have proposed two methods based on permutations which can

be used to test a linear regression model against the alternative of a linear penalized

spline model. The permutation tests were originally designed for variance component

tests but can be applied to the variance component of the random penalized spline

coefficients when the linear penalized spline model is represented as a linear mixed

model and estimated using restricted maximum likelihood. The permutation tests

are based on permuting the weighted residuals and both proposed tests can be ap-

plied to hypothesis tests for a single variance component. For hypothesis tests that

include multiple variance components simultaneous the likelihood ratio based permu-

tation test is required, and the only other alternative is through simulation. As was

previously reported and replicated in our simulations the asymptotic mixture of χ2

null distribution for the likelihood ratio test statistic is very conservative under this

setting.

The proposed permutation tests perform well even when the number of observa-

tions is small. We have shown that these tests have nominal Type I error rates, and

that their power are equivalent to the alternative permutation test of Raz. We have
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shown that the tests can be used for continuous data modeled with a linear penalized

spline models, but the methods will also work for generalized linear mixed models

(GLMMs) as well. The approach for GLMMs is based upon a first-order approxi-

mation of the GLMM to make it resemble the form of a LMM, an approach that is

the foundation of penalized quasi-likelihood (PQL) [Breslow and Clayton, 1993] for

estimation in GLMMs.

Implementing these permutation tests is straightforward and can be incorporated

into standard practice for fitting linear penalized spline models using maximum like-

lihood. While the methods are computationally intensive, the recent rise in parallel

computing through clusters and multi-core processors has made it possible to greatly

reduce the amount of time necessary to implement these tests.

The permutation tests that we have presented in this article are not limited only

to hypothesis tests for linear penalized spline models. The tests can be applied to

any type of penalized regression method that is equivalent to a mixed model such as

smoothing splines [Liu and Wang, 2002].

Throughout this paper, we have assumed that the errors are normally distributed.

We have previously examined the performance of the permutation tests when the

assumption of normality of the errors is violated and found that the permutation tests

appear to be robust enough to continue to work well, but a more detailed examination

of the behavior of the tests is necessary. In particular violations that cause poor

estimates of the variance components could potentially affect the permutation test

and warrants further investigation.



CHAPTER V

Discussion

5.1 Closing

In this dissertation we have developed new methods of performing inference on

the random effects of mixed effects models. Through permutations of the weighted

marginal residuals, our tests can be applied to any type of mixed model, and the

residuals can be permuted both between and among the subjects. The tests can

handle single random effect tests and simultaneous tests of multiple random effects.

Through simulations we have shown that the tests are valid, more powerful, and more

robust to violations in the distribution assumptions of the random effects and random

error than the asymptotic likelihood ratio test.

We have demonstrated how the LMM random effect tests can be applied to

GLMMs using a Taylor expansion to approximate the GLMMs. We find in this

setting that the permutation tests perform well when comparing a GLMM to a GLM,

i.e. no random effects, but the tests do not have the correct size when comparing two

nested GLMMs. However, existing methods also cannot deal with nuisance random

effects.

84



85

Finally, we demonstrate how our random effect test can be applied to nonlinear

data fit using penalized linear splines where we test the spline alternative against the

linear regression model. The asymptotic likelihood ratio test is conservative in this

setting, but the permutation tests are valid. The power of our tests are comparable

to the permutation test of Raz [1990].

5.2 Commonly Asked Questions

After several presentations of this work to others, a number of questions have been

repeatedly asked. First, it has been asked how the performance of our permutation

test compares to that of the bootstrap. Good [2005] has shown that the permutation

test is generally more powerful than the nonparametric bootstrap in many settings,

but empirical support for this conclusion specifically in variance component tests does

not yet exist. For the parametric bootstrap, the linear mixed model is first fit under

the null hypothesis, and then new data is simulated from the estimated linear model

and these data are then used to calculate test statistics that form an empirical null

distribution. Simulations that were performed under the linear mixed model setting

found that the results from the parametric bootstrap were nearly identical to those

of the permutation test.

However, because the parametric bootstrap generates data in conjunction with an

assumed parametric model, the validity of the parametric bootstrap is questionable

if the assumptions in that model are violated. Then the distribution from which the

bootstrap data are generated will be incorrect. The permutation test is only affected

if the residuals are not asymptotically exchangeable and therefore more robust to

model misspecification than the parametric bootstrap.
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Finally, the assumptions required for a general permutation test is that the errors

are exchangeable under the null hypothesis. This means that there is a possibility

that we can relax the assumptions of normality on the random effects and the random

errors. This would lead into the realm of nonparametric regression methods for fitting

mixed models and will be further elaborated upon in a subsequent sub-section.

Second, others have suggested alternative test statistics for the permutation tests.

Examples include σ̂2
b/σ̂

2
ε and σ̂2

b , the restricted maximum likelihood estimate of the

random effect variance. We examined simulations that used σ̂2
b as a test statistic

and found that its size and power were, unsurprisingly, very similar to those of T2.

Perhaps gains in power could be attained through a test statistic that we have not

yet explored, although we suspect that any gain in power would be very modest at

best.

Third, it has been noted by others that sometimes with correlated data when the

fixed effects are of primary interest, statisticians will include random effects without

performing any inference on those random effects. There is extensive literature on

the dangers of ignoring correlation within data and its effects on inference for the

fixed effects. By including random effects, the hope is that these pitfalls will be

avoided. However, very little work exists on understanding the potential consequences

of incorporating unnecessary random effects into a model beyond the loss in efficiency

due to estimating additional parameters. A more comprehensive study of the impact

of including unnecessary random effects would be interesting and could convince

more statisticians to incorporate random effect hypothesis tests into their standard

procedures when building mixed models.
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5.3 Further Research

5.3.1 Simultaneously Testing for Multiple Random Effects with T2

As in Chapter 2, the statistic derived T2 =
N∑
i=1

b̃2i2/N can be interpreted as the

sample variance of the random effect of interest with weights to account for nuisance

random effects in the permutations. In the preceding chapters we concluded that T2

is limited to tests of single random effects as it is a sum of BLUPs for the variance

component of interest. Subsequently, we developed the restricted likelihood ratio

based permutation test to handle testing for multiple random effects. However, we

believe that T2 may still be suitable for a hypothesis test comparing multiple random

effects. This can be done when the random effects of interest are assumed to be

independent of one another or are transformed so that each of the transformed random

effects are independent.

Consider each random effect being tested as a random variable following a normal

distribution with mean 0 and variance σ2
k where k = 1, 2, 3, ..., K is the index for the

K random effects of interest and each random effect is independent of the others.

When we test for a single random effect, the BLUPs for the random effect of interest

are treated as a random sample from the random effect distribution. If we now scale

the BLUPs for random effect k by σk, the distribution for each set of BLUPs is now a

standard normal distribution. Scaled BLUPs from all of the random effects of interest

can then be incorporated into a test statistic. T2b =

K∑
k=1

(
N∑
i=1

(b̃2ik/σ̂k))

Nk
, as our BLUP

based test statistic where again N is the number of subjects. A large value for T2b

would be evidence against the null hypothesis that all of the random effects of interest

are equal to zero.
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If the random effects were assumed to be correlated with one another, we could

use a Cholesky decomposition of the covariance matrix of the K random effects in a

manner very similar to Chapter 2 to create BLUPs that are iid N(0,1). The trans-

formed random effects and the associated BLUPs could then be used to calculate T2b.

However, an examination of the validity of this test still needs to be performed.

5.3.2 Permutation Based Confidence Intervals for Random Effect Vari-
ance Components

After a significant hypothesis test occurs, it is natural to compute a confidence

interval to provide a range of plausible values for the parameter of interest. To

generate a permutation based confidence interval for a location parameter, a series

of simple-vs-simple hypotheses are tested until we find the set or range of parameter

values for which the tests no longer reject the null hypothesis [Good, 2005]. For

example, a simple hypothesis test for a location parameter would be H0: θ = θ0 vs.

H1: θ 6= θ0. To test this hypothesis, θ0 is subtracted from all of the observations, and

the test statistic is calculated. This is done for all possible values of θ0; those that

accept the hypothesis at the desired α level form the confidence interval for θ.

Now for a variance component, consider a hypothesis test for a single random

intercept with variance σ2 against no random effects for an LMM. We denote σ2
0 as one

of the possible values of σ2 and we have a test of H0: σ
2 = 0 vs. H1: σ

2 = σ2
0. Each

of the tests in the series assumes that V , the variance of Y , is equal to σ2
0Z

TZ +R.

Therefore, we can weight Y by A such that var(AY ) = I. A is equal to (UT )−1

where U is the Cholesky decomposition of V . Then we can test for the inclusion or

exclusion of the random intercept for AY using a permutation test. The resulting

p-value will show whether or not σ2
0 is in the confidence interval. Similar steps can
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be taken when working with GLMMs to obtain confidence intervals for the random

effect variances by following the methods in Chapter 3.

While relatively straightforward, one challenge that will need to be addressed is

the computational intensity of this method of generating confidence intervals. This

method requires that a large number of hypothesis tests are performed in order to

locate the bounds of the confidence interval. As a gauge of the potential computa-

tional time necessary, each of the the simulation results from Chapter 2 can take over

8 hours to complete while the GLMM simulations from Chapter 3 can take up to 16

hours using 20 cores of an Intel Xeon X5660 2.80 GHz server with 32 gigabytes of

memory.

5.3.3 Increasing Computational Efficiency

Huge improvements to the processing time can be achieved through personal com-

puters with multi-core processors or through computing clusters by leveraging paral-

lelization methods. For example, an array job with up to 200 total cores available on

a computing cluster can reduce a 16 hour simulation from chapter 3 to a single hour

by processing each of the 500 runs within a simulation as an independent job run by

a single core. However, access to a computing cluster may not always be possible or

the necessary resources on a cluster may already be in use. Therefore, methods to

improve computational efficiency must be explored.

In this dissertation we have extensively utilized the Monte Carlo as a method of

reducing the total number of permutations that we identify. However, there is minor

a drawback to this approach in that because a random sample of the permutations is

drawn the estimated p-value that we obtain is actually a binomial random variable

Good [2005]. This can cause a small reduction in the power of the test Dwass [1957],
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but is typically not an issue. We could implement importance sampling which places

weights on the permutations in order to minimize the variance of the permutation

distribution and improve the power of the test [Mehta et al., 1988].

When an observed test statistic is compared to the permutation distribution only

the proportion of the distribution which is greater than or equal to the observed test

statistic is considered. Therefore, methods that focus on the tails of the permutation

distribution can significantly reduce the computation time. An example is the branch

and bound method presented by Green [1977] for Fisher’s one and two-sample tests

of location. In our setting this might be applied once a Monte Carlo permutation

is obtained by looking at the absolute value of the sum of the permuted residuals

for each subject. If many patients have large values then this could be a sign that

heterogeneity between subjects is present and place this permutation towards the tail

of the empirical distribution. This would reduce the number of permutations that we

would need to calculate test statistics for.

5.3.4 Relaxing the Assumptions of the Proposed Permutation Tests

For a general permutation test the only assumption that is required is that the

data being permuted are exchangeable under the null hypothesis. However, for the

permutation tests that we have developed, a few extra assumptions are necessary.

These assumptions are that the random effects and in the case of the linear mixed

model, the random errors, are normally distributed.

It should be possible to relax the assumptions of normality for the random effects

and/or the errors. When neither random effects nor errors are assumed to be normally

distributed we only need to assume that the errors are exchangeable under the null hy-

pothesis. To do this, we would need to estimate the parameters using semiparametric
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regression methods in the case where we relax one assumption and nonparametric re-

gression methods when neither random quantity has an assumed distribution. Many

of these estimation methods have been explored in the literature. Examples include

Zhang and Davidian [2001], Chen et al. [2002], and Vock et al. [2011], who developed

semiparametric methods with normally distributed errors. Nonparametric methods

include work by Laird [1978], Mallet et al. [1988], and Chafäı and Loubes [2006].

5.3.5 Simultaneously Testing for Both Fixed and Random Effects

One might wish to simultaneously test for both fixed and random effects using a

permutation test. For this hypothesis test, the full likelihood ratio is a plausible test

statistic because it incorporates information about both the fixed and random effects.

We can still use permutations of the errors in order to test for the fixed effects. For

example, consider a very simple hypothesis test where we test for a single fixed effect

in a linear regression model.

H0 : Yi = β0 + εi (5.1)

H1 : Yi = β0 + β1x1i + εi (5.2)

The fixed effect of interest is β1, and under the null hypothesis εi ∼ N(0, σ2
ε ) and are

exchangeable. Therefore, we can utilize the likelihood ratio test statistic and obtain

the p-value from the permutation null distribution to test for the fixed effect.

While our two random effect permutation tests were not originally developed using

the likelihood ratio test statistic it is easy to simply use the full likelihood ratio as the

test statistic. Therefore, a combined test using the full likelihood ratio and through
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permuting the errors both within and among the subjects appears to be reasonable.

Nuisance random effects can still be dealt with by weighting the errors. One concern

is the impact of the small sample bias of the full likelihood estimates of the variance

components for the random effects. As mentioned in Chapter 2, this is reason that

we decided to use the restricted likelihood for our estimation as well as the restricted

likelihood ratio for our test statistic. The impact of this on the validity and power

of our test will need to be evaluated. For large samples there should be no difference

between the restricted likelihood and the full likelihood for the variance component

estimates.

The simultaneous hypothesis test for both fixed and random effects potentially

provides a one-stage method of building mixed models. In contrast, the most common

existing approach to model building is to first determine significant fixed effects using

the full likelihood with an unstructured design for the errors. Once the mean structure

has been determined, the restricted likelihood is used to estimate and select the

random effects. However, extensive simulations that compare the traditional approach

to model building to a permutation test approach first need to be performed to

determine the utility of permutation tests with selecting a “best” LMM for a set of

data.
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D. Chafäı and J. M. Loubes. On nonparametric maximum likelihood for a class of

stochastic inverse problems. Statistical & Probability Letters, 76:1225–1237, 2006.

J. Chen, D. Zhang, and M. Davidian. A monte carlo em algorithm for generalized



95

linear mixed models with flexible random effects distribution. Biostatistics, 3:347–

360, 2002.

D. Commenges. Transformations which preserve exchangeability and application to

permutation tests. Journal of Nonparametric Statistics, 88:9–25, 2003.

C. M. Crainiceanu and D. Ruppert. Likelihood ratio tests in linear mixed models

with one variance component. Journal of the Royal Statistical Society, Series B,

66:165–185, 2004.

P. J. Diggle, P. J. Heagerty, K.-Y. Liang, and S. L. Zeger. Analysis of Longitudinal

Data. Oxford niversity Press, New York, 2nd edition, 2002.

M. Dwass. Modified randomization tests for nonparametric hypotheses. Annals of

Mathematical Statistics, 66:165–185, 1957.

P. H. C. Eilers and B. D. Marx. Flexible smoothing with B-splines and penalties.

Statistical Science, 11:89–121, 1996.

R. A. Fisher. The Design of Experiments. Hafner, New York, 1st edition, 1935.

G. M. Fitzmaurice and J. G. Ibrahim. A note on permutation tests for variance

components in multilevel generalized linear mixed models. Biometrics, 63:942–946,

2007.

M. H. Gail, D. P. Byar, T. F. Pechacek, and D. K. Corle. Aspects of statistical

design for the Community Intervention Trial for Smoking Cessation (COMMIT).

Controlled Clinical Trials, 123:6–21, 1992.

P. I. Good. Permutation, Parametric, and Bootstrap Tests of Hypotheses. Springer-

Verlag, New York, 3rd edition, 2005.

B. F. Green. A practical interactive program for randomization tests of location. The

American Statistician, 31:37–39, 1977.

S. Greven, C. M. Crainiceanu, H. Küchenhoff, and A. Peters. Restricted likelihood



96

ratio testing for zero variance components in linear mixed models. Journal of

Computational and Graphical Statistics, 17:870–891, 2008.

D. B. Hall and J. T. Præstgaard. Order-restricted score tests for homogeneity in

generalised linear and nonlinear mixed models. Biometrika, 88:739–751, 2001.

C. R. Henderson. Estimation of genetic parameters. Annals of Mathematical Statis-

tics, 21:309–310, 1950.

W. Hoeffding. The large-sample power of tests based on permutation of observations.

Annals of Mathematical Statistics, 23:169–192, 1952.

G. Kauermann, G. Claeskens, and J. D. Opsomer. Bootstrapping for penalized spline

regression. Journal of Computational and Graphical Statistics, 18:126–146, 2009.

O. Kempthorne. The randomization theory of experimental inference. Journal of the

American Statistical Society, 50:946–967, 1955.

M. Kenward and J. Roger. Small sample inference for fixed effects from restricted

maximum likelihood. Biometrics, 53:983–997, 1997.

S. K. Kinney and D. B. Dunson. Fixed and random effects selection in linear and

logistic models. Biometrics, 63:690–698, 2008.

J. P. Klein, J. H. Klotz, and M. R. Grever. A biological marker model for predicting

disease transitions. Biometrics, 40:927–936, 1984.

N. M. Laird. Nonparametric maximum likelihood estimation of a mixing distribution.

Journal of the American Statistical Association, 73:805–811, 1978.

N. M. Laird and J. H. Ware. Random-effects models for longitudinal data. Biometrics,

38:963–974, 1982.

O. E. Lee and T. M. Braun. Permutation tests for random effects in linear mixed

models. Biometrics, 68:486–493, 2012.

X. Lin. Variance component testing in generalized linear models with random effects.



97

Biometrika, 84:309–326, 1997.

X. Lin and N. E. Breslow. Bias correction in generalized linear mixed models with

multiple components of dispersion. Journal of the American Statistical Association,

91:1007–1016, 1996.

A. Liu and Y. Wang. Hypothesis testing in smoothing spline models. Available from

http://www. pstat.ucsb.edu/faculty/yuedong/papers/tests.pdf., 2002.

D. Machin, T. Farley, B. Busca, M. Campbell, and C. d’Arcangues. Assessing changes

in vaginal bleeding patterns in contracepting women. Contraception, 38:165–179,

1988.
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