
Designing Productive Assembly System Configurations Based on

Hierarchical Subassembly Decomposition

with Application to Automotive Battery Packs

by

Sha Li

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Mechanical Engineering)

in The University of Michigan

2012

Doctoral Committee:

 Professor S. Jack Hu, Chair

 Professor Jionghua Jin

 Professor Panos Y. Papalambros

 Assistant Research Scientist Hui Wang

 Jeffrey Abell, General Motors Co.

 © Sha Li 2012

ii

DEDICATION

To my family

iii

ACKNOWLEDGEMENTS

I would like to first thank my advisor, Professor Jack Hu, for recruiting and

mentoring me. Without his encouragement and discovery, I would not be able to apply

for and get admitted to the world class engineering school at the University of Michigan.

Without his guidance and support, I would not be able to accomplish what I have done in

graduate school. His great vision, vast knowledge, invaluable inspiration and inquisitive

questions have given me wisdom and strength to continue my research. His enormous

patience and persistent confidence in me supported me when my progress stalled. Going

through graduate school with him as an advisor have been a valuable process which will

benefit me for a long time to come.

I would also like to thank all my committee members for all their help. In

particular, Professor Panos Y. Papalambros and Professor Judy Jin for their insights and

suggestions on my dissertation; for being a great help throughout my faculty search

application process; Dr. Hui Wang for not only providing guidance to me on the big

picture, but also working with me in detailed programming side by side; Dr. Jeffrey Abell

for giving me opportunities to work as an intern three times at General Motors, which

help me gain many industry experiences and conduct application-based research. In

addition, I want to thank my mentor at General Motors, Yhu-Tin Lin, for providing me

his industrial insights, experience and expertise to my research.

iv

I would like to thank all the group members in the Hu lab, past and present. They

have made my graduate school life so much more enjoyable. I want to thank them all for

their help and support, the great insights and valuable discussions.

 Lastly and most importantly, I want to thank my family for their unconditional

love and support. I want to thank my parents for always believing in me no matter what

decisions I made. I want to thank my beloved husband, Wei, for always understanding

and comforting me in the hard times; sharing my joy in the great times.

 Thank you, my Lord, for everything you entrust me. The most important thing I

have learned during these years in graduate school is that: No matter what, we have GOD

with us. So love your family, love your friends and love life!

v

TABLE OF CONTENTS

DEDICATION... ii

ACKNOWLEDGEMENTS .. iii

LIST OF FIGURES ... viii

LIST OF TABLES ... xiii

ABSTRACT .. xiv

Chapter 1 INTRODUCTION .. 1

1.1 Motivation ... 1

1.2 Assembly system design for automotive battery packs 2

1.3 Research objective .. 10

1.4 Dissertation organization .. 12

Chapter 2 AUTOMATIC HIERARCHICAL SUBASSEMBLY DECOMPOSITION

FOR COMPLEX CONFIGURATION GENERATION 13

2.1 Introduction ... 14

2.2 Method overview .. 18

2.3 Subassembly decomposition ... 21

2.3.1 Enumeration of subassembly grouping ... 21

2.3.2 Hierarchical representation of assembly sequence 24

2.3.3 Recursive algorithm for assembly sequence generation 29

2.3.4 Filtering algorithm for sequence reduction 33

2.4 Discussion ... 38

2.5 Conclusion .. 39

vi

Chapter 3 AUTOMATIC GENERATION OF ASSEMBLY SYSTEM

CONFIGURATION WITH EQUIPMENT SELECTION FOR

AUTOMOTIVE BATTERY MANUFACTURING 41

3.1 Introduction ... 42

3.2 System configuration generation with machine selection 46

3.2.1 Methodology overview ... 46

3.2.2 Model for balancing and equipment selection 47

3.3 Case study ... 55

3.3.1 Problem description and results .. 55

3.3.2 Discussion ... 58

3.4 Conclusion .. 62

3.5 Nomenclature .. 63

Chapter 4 ASSEMBLY SYSTEM CONFIGURATION DESIGN FOR A

PRODUCT FAMILY.. 64

4.1 Introduction ... 65

4.2 System configuration design for product variety 71

4.2.1 Method overview .. 71

4.2.2 Mathematical representation of drift ... 73

4.2.3 Generation of joint liaison graph .. 77

4.2.4 Assembly system configuration design for product variety 79

4.3 Case study ... 83

4.3.1 Problem description and results .. 83

4.3.2 Discussion ... 88

4.4 Conclusion .. 91

vii

Chapter 5 AN ASSEMBLY SYSTEM CONFIGURATOR FOR AUTOMOTIVE

BATTERY PACKS ... 92

5.1 Introduction ... 93

5.2 Battery module/pack designs and their assembly processes 94

5.2.1 Automatic stacking methods ... 95

5.2.2 Joining methods ... 99

5.3 Battery assembly system configurator .. 99

5.3.1 Configuration generation .. 99

5.3.2 Optimization for task assignment and equipment selection 100

5.3.3 Software implementation .. 102

5.4 Case study ... 104

5.4.1 Problem description .. 104

5.4.2 Configurator demonstration .. 104

5.4.3 Performance evaluation .. 109

5.5 Summary and future Work .. 112

5.6 Nomenclature .. 112

Chapter 6 CONCLUSIONS AND FUTURE WORK .. 113

6.1 Summary and conclusions .. 113

6.2 Future work ... 114

BIBLIOGRAPHY ... 117

viii

LIST OF FIGURES

Figure 1-1 Battery cell, module and pack assembly ... 3

Figure 1-2 Different battery cell types [5] .. 3

Figure 1-3 Different electrical connections (From left to right: first parallel, then serial;

first serial, then parallel; hybrid (mixed serial & parallel)) [5] 3

Figure 1-4 Auxiliary members: battery foam, cooling plate, battery frame [5] 4

Figure 1-5 Battery cell and ancillary members and an example of battery stacking pattern

(adopted from GM volt battery pack) [6] ... 4

Figure 1-6 Symmetric configurations (squares represent machines) 6

Figure 1-7 An example of an asymmetric configuration .. 6

Figure 1-8 Two possible ways of assembly process planning and configuration generation

given product design ... 7

Figure 1-9 System configuration options for multiple generations of products 9

Figure 1-10 Research objective .. 10

Figure 1-11 Organization of the dissertation .. 12

Figure 2-1 Varieties of system configurations: (a) serial, (b) parallel, (c) hybrid 15

Figure 2-2 Layout diagrams of ((11)1) ... 17

Figure 2-3 Liaison graph for a general product design ... 19

Figure 2-4 Assembly layer/branch identification ... 19

Figure 2-5 Connection matrix ... 20

Figure 2-6 Depth-first search (DFS) algorithm to identify the longest path 21

ix

Figure 2-7 Hierarchical representations of sequence (((11)1)1) 26

Figure 2-8 Parameters ep(m): end position (the location of the last component in the

grouping window) and win(m): window size (number of components to be

grouped) .. 27

Figure 2-9 Examples of characterizing hierarchical data structure with parameters 28

Figure 2-10 Shift of grouping window in enumeration process (i) 29

Figure 2-11 Determination of ep0(m) ... 31

Figure 2-12 Flowchart of enumeration algorithms ... 34

Figure 2-13 Flowchart of filtering algorithm .. 36

Figure 2-14 Example system configuration (A, B, C, D are components) 38

Figure 3-1 Different stacking patterns for battery cells [5] .. 42

Figure 3-2 Different examples of assembly sequences (a) components are loaded and

stacked in a serial sequence; (b) components are stacked simultaneously in

one station; (c), (d) and (e) components are stacked into subassemblies and

then stacked with other components or subassemblies (circles represent tasks

for loading and stacking) .. 43

Figure 3-3 An example of manufacturing system configuration for delayed product

differentiation [42] .. 45

Figure 3-4 The nested procedure for combinatorial optimization 48

Figure 3-5 Assignment of tasks to machines with certain configuration 49

Figure 3-6 Procedure for inner-loop optimization model selection 52

Figure 3-7 Exhaustive search method ... 53

Figure 3-8 Binary integer search tree .. 54

x

Figure 3-9 An example of assembly of battery module .. 55

Figure 3-10 Task sequence graph for battery module assembly 57

Figure 3-11 System configuration before and after optimization for R#5 and Module#9 60

Figure 3-12 System configuration before and after optimization for R#8 and Module#9 61

Figure 3-13 Different configuration when processing time between stations are

significantly different and throughput requirement is increased 62

Figure 4-1 A product family architecture (common components are in grey color, variant

components are in upward diagonal shape (M12, M14) or downward disgonal

shape (M22, M24), unique components are in white color) 66

Figure 4-2 Product family architecture for battery (one common plate module, variant

repetitive patterns which differentiate one from the other by either cell tab

position or cooling fin structure, one unique interconnect cover module) 67

Figure 4-3 A liaison graph representation (grey circle represents common components

and white circle represents variant components) .. 68

Figure 4-4 Assembly lines for multiple products [60] .. 69

Figure 4-5 Positive and negative drift in accordance with [12] and [13] 70

Figure 4-6 Example of non-serial configuration ... 71

Figure 4-7 Methodology overview for system configuration design for product variety. 72

Figure 4-8 Example of possible component and product variations and their demand

percentages representation (the percentages of variant component A are

A1: l

1 , A2: l

2 ; variant component B are B1: l

1 , B2: l

2 ; final products are

A1B1: ll

11 , A2B2: ll

22 , A2B1: ll

12 , A1B2: ll

21) 74

Figure 4-9 Example of processing time calculation ... 75

xi

Figure 4-10 System processing time vs planning horizon (time) 76

Figure 4-11 Plot of the positive drift and negative drift ... 77

Figure 4-12 Precedence matrices and joint precedence graph (A-E circles denote the

battery components, where the dark circles differentiate batteries in a product

family, Numbers 1-6 denote the different assembly tasks) 79

Figure 4-13 Example configuration to explain penalty cost and station cost 82

Figure 4-14 An example of assembly pattern of battery module 83

Figure 4-15 Task sequence graph for battery repetitive pattern assembly 86

Figure 4-16 Optimization results for all the repetitive patterns (a) candidate

configurations (b) drift comparison (c) cost comparison 87

Figure 4-17 Drift comparison between serial line and branched line 88

Figure 4-18 Graphical user interface (taking the processing time as inputs and generating

configurations and drift comparison as outputs) ... 89

Figure 4-19 Drift comparison between conventional serial line and non-serial

configuration with branches (when α1=0.1, and α2 changes from 0-1) 90

Figure 5-1 Battery module assembly procedures .. 95

Figure 5-2 Roll and eject method: (a) into a stacking bucket; (b) using an elevator 96

Figure 5-3 Pick and place robots [5] ... 97

Figure 5-4 Structure of Assembly System Configurator ... 102

Figure 5-5 Framework of process engine ... 103

Figure 5-6 An example of assembly of battery module .. 104

Figure 5-7 Configurator interface 1 .. 105

Figure 5-8 Configurator output report .. 105

xii

Figure 5-9 User input of repetitive patterns .. 106

Figure 5-10 Automatic generation of initial configurations and sequences 106

Figure 5-11 Machine selection.. 107

Figure 5-12 Zoning constraints ... 108

Figure 5-13 Cycle time and cost data ... 109

Figure 5-14 Report for optimal assembly line .. 109

Figure 5-15 Flowchart of configurator and simulation model .. 110

Figure 5-16 Simulation model in Witness .. 110

Figure 5-17 Throughput results when control procedure is changed 111

Figure 6-1 Research accomplishments and research plan .. 115

Figure 6-2 System reconfiguration under product evolution .. 115

xiii

LIST OF TABLES

Table 2-1 Comparison between assembly sequences and physical representation of the

enumerations .. 23

Table 2-2 Enumeration for Four Elements {A, B, C, D} .. 25

Table 2-3 Intermediate values for a P(4) enumeration problem for {1,1,1,1} 35

Table 2-4 Reduction of assembly sequence enumerations: .. 37

Table 2-5 An example of configuration generation and evolvement 40

Table 3-1 Enumeration results for the repetitive pattern (R) .. 56

Table 3-2 First 10 enumeration results for the module (“R” represents repetitive pattern)

 .. 56

Table 3-3 Assembly tasks of repetitive pattern #5 & module #9 57

Table 3-4 Task information for the example problem .. 59

Table 4-1 Enumeration results for the repetitive pattern .. 84

Table 4-2 Enumeration results for the battery module (“R” represents repetitive pattern)

 .. 84

Table 4-3 Product variety representation and demand percentage 85

Table 4-4 Assembly tasks description .. 85

Table 4-5 Processing time for the example problem .. 86

Table 4-6 Optimization results for case #2 ... 86

Table 4-7 Processing time (assembly time on the bottleneck machine is reduced

compared with the case study) ... 88

xiv

ABSTRACT

This thesis develops a systematic method to design assembly systems with hybrid

configurations by considering the assembly hierarchy associated with product designs

and their varieties and applies it for automotive battery packs. With the growing concern

of fossil fuel depletion and climate change, high power and capacity lithium-ion batteries

are being widely adopted in personal transportation systems. A large size battery pack

usually has a hierarchical composition of components assembled in some repetitive

patterns. A lot of battery designs are emerging on the market. They require different

processes and equipment from cell to module assembly, but similar processes and

equipment from module to pack assembly. Conventional assembly system with a serial

configuration has limitations in coping with increasing demand and fast development of

the battery products. There is a strong need to develop assembly systems with complex,

non-serial (hybrid) configurations to deal with the challenges, e.g. a system layout with

multiple branch lines that converge to a common assembly line. Such configurations

could be asymmetric and allows for pre-assembly of different components on multiple

lines simultaneously, thereby potentially enhancing the system throughput and

reconfigurability, while effectively dealing with product variety.

Previous research has been focused on sequential task sequence generation but

did not address the impact of product assembly hierarchy on configuration. Limited work

exists addressing the line balancing problem on complex configuration. There is also a

xv

lack of research on non-serial system configuration design for both known and future

product variants. Existing methods for designing complex system configuration do not

consider equipment selection.

Based on graph theory and combinatorial mathematics, a new algorithm for

analyzing the liaison topographic patterns in products is developed to identify optimal

assembly/subassembly decompositions that link product designs to system configurations.

Compared with the sequential method for system design, the integrated approach of

concurrent assembly process planning, system balancing, equipment selection, and

system configuration design leads to higher throughput performances. Meanwhile, a

method is developed to model the impact of product variety on system configuration

design by considering stochastic product mix changes. This research enhances the

understanding of the complex interactions among product designs, product varieties, and

assembly system configurations.

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

In recent years, due to the concerns of fossil fuel depletion [1] and the

environment, there is a demand for the development of fuel efficient and environmentally

friendly personal transportation systems. Battery-powered electrical vehicles become one

option. Among all battery technologies lithium-ion battery has several advantages over

others because of its characteristics of high power and energy density, long cycle life and

low environmental impact, which make li-ion battery attractive for automobile

applications [2].

Cost-effective manufacturing of lithium-ion batteries for electrical and hybrid

electrical vehicles (EV/HEV) has not yet been fully developed. Efficient, flexible, and

reliable battery assembly automation is needed for the following two reasons: 1) A

variety of new battery pack designs and their changing demand rates require the assembly

system to be flexible and reconfigurable [3]; 2) The high current and voltage in battery

cells, modules and packs require automatic assembly and material handling.

Conventional assembly systems were mostly developed with a serial

configuration. Such configurations have limitations in coping with increasing demand

2

and fast development of the battery products. There is a strong need to develop assembly

systems with non-serial configurations to deal with the challenges.

1.2 Assembly system design for automotive battery packs

Compared with lead-acid and nickel-metal hydride batteries, Li-ion batteries offer

significantly higher energy density, lighter weight and longer cycle life, which are crucial

to the operation of EVs [4].

For sufficient power and driving range, each EV needs hundreds or even

thousands of battery cells assembled together into a large-sized battery pack. As shown in

Figure 1-1, a large-size Li-ion battery pack is assembled together using modules with

each module consisting of multiple cells that are electrically and mechanically connected

for a specific electric power and energy capacity. Assembly in this way facilitates easy

scale-up of battery packs and simplifies the control of battery functions. However, as

shown in Figure 1-2, Figure 1-3, and Figure 1-4, battery assembly has to deal with

multiple issues: (a) different battery cell types, such as prismatic or cylindrical cells, (b)

different serial-parallel electrical connections, and (c) existence of the auxiliary members

for thermal management as well as mechanical structure rigidity [5]. Automotive battery

packs require the assembly of many cells in hierarchical, repetitive patterns as shown in

Figure 1-5 [6]. Such a product design pattern impacts the design of assembly systems

including assembly task design, assembly sequence planning, and equipment selection to

accomplish the tasks. Variable rates of production are required in cell/component

assembly, module assembly and pack assembly. Most of the current EV battery packs are

believed to be assembled manually, which is slow, costly, and may produce inconsistent

modules or stacks. The high current and voltage in battery cells, modules and packs also

3

pose hazardous risk to human operators and manufacturing facility since the incoming

cells are at their 40%~50% state-of-charge level and cannot be fully discharged before

assembly [7-8]. Therefore a battery module/pack assembly system for integrating

multiple cell components together should have high speed and be responsive, flexible and

reliable to the needs and for various types of batteries with different designs.

Figure 1-1 Battery cell, module and pack assembly

Figure 1-2 Different battery cell types [5]

Figure 1-3 Different electrical connections (From left to right: first parallel, then serial;

first serial, then parallel; hybrid (mixed serial & parallel)) [5]

4

Figure 1-4 Auxiliary members: battery foam, cooling plate, battery frame [5]

Figure 1-5 Battery cell and ancillary members and an example of battery stacking pattern

(adopted from GM volt battery pack) [6]

In recent years, plenty of patents have been granted on the designs of

module/pack configurations, thermal management system, and electrical connection.

However, most of them are related to improving battery functions rather than addressing

manufacturing issues. Li et al [5] conducted a review of available battery module/pack

designs and investigated their implications to the automation of battery assembly. The

associated assembly cost, efficiency, flexibility, quality issues were considered as well.

A lithium-ion battery pack usually has a hierarchical structure consisting of

several modules with each module consisting of multiple battery cells and ancillary

members, such as frames, cooling fins, and compression foams, as shown in Figure 1-5

[6]. Kurfer et al [9] investigated the stacking process of high-energy lithium-ion cells.

5

Tornow and Raatz [10] proposed a conceptual design for assembly (DFA) method for

electric vehicle battery systems. However, systematic approaches do not yet exist for

addressing the relationship between battery module/pack configurations and battery

assembly processes.

Traditionally, an assembly system adopts a symmetric configuration such as a

serial line, a parallel system, a serial system with parallel stations and a parallel system

with serial stations (Figure 1-6). There also exist more complex configurations such as an

asymmetric hybrid configuration with subassembly branch lines (Figure 1-7). Under this

configuration, different tasks are independently performed at the different branches, i.e.,

preassembling different components into subassemblies at different branches. Then the

different subassemblies are fed to an assembly station which processes the finished

modules. Such a system could also have parallel stations which process identical tasks as

in the traditional assembly system for scalability requirements. High-volume production

of diverse battery products requires the assembly system with complex (hybrid)

configurations in the future because of the unique features of battery assembly process:

cell-module assembly requires different process and equipment among different battery

products, while module to pack assembly is quite similar across different products, which

allows sharing of some branches in the assembly system. Such a hybrid configuration

could be more adaptive to product variety and potentially improve system throughput.

The system can also be very conveniently reconfigured by adding or removing branches.

But very little research has addressed such complex assembly system design problem

including task/sequence generation, configuration design, line balancing and equipment

selection [11].

6

Figure 1-6 Symmetric configurations (squares represent machines)

Figure 1-7 An example of an asymmetric configuration

Currently, the industrial assembly system design starts from process planning

which includes assembly task identification and sequence generation. Then the assembly

system configuration is generated. However, since the process planning and system

configuration generation influence each other, the traditional sequential procedure may

7

lead to suboptimal system solutions. This interaction can be illustrated with an example

of automotive battery assembly. Figure 1-8 shows two possible ways of assembling four

battery components into a module. Figure 1-8(a) shows the sequential way: the first two

components are assembled first and the other components are loaded and assembled

sequentially. Figure 1-8(b) shows a hybrid line where two components can be pre-

assembled into subassemblies which in turn are assembled with the other subassembly to

form the final product. By allowing for concurrent tasks and operations, hybrid

configurations may be more suitable for dealing with products assembled in a hierarchy

and potentially enhance the system throughput. However, if the process planning in

Figure 1-8(a) were chosen at the beginning, the branch line layout would never be

derived and the system throughput might never reach the optimal level.

(a)

(b)

Figure 1-8 Two possible ways of assembly process planning and configuration generation

given product design

8

Another common practice is that the system configuration is implemented for

current generations of products under a fixed demand requirement without considering

the needs of generational changes. The changes can be 1) in the demand due to changes

of customer preference; 2) in the variety due to advances of new technology. When the

changes happen, the original system could be costly to reconfigure, resulting in the

system being discarded. By taking the available but limited information of future

products into consideration at the time of assembly system deployment, the time of

product launch can be significantly shortened and the responsiveness and competitiveness

of companies to dynamic market demands can be greatly enhanced. For example, a

company’s current strategy is to produce 100% type 1 first generation of battery packs to

be employed in the electric vehicles (Figure 1-9). But the engineers also have some

preliminary designs (Product type 2) for their second generation of battery packs. Figure

1-9 shows the possible system configuration options for multiple generations of products.

The serial configuration (Figure 1-9(a)) may be the most cost effective way for

assembling current generation product (product type 1) by adding one component at a

time, but its reconfiguration effort and cost could be significant in order to produce both

types of products. Assume that the hybrid configuration (Figure 1-9(b)), which involves

subassembly branches, is adopted at the current production plan to produce product 1,

then it may take less effort to convert the configuration to a system that is adaptable to

both product 1 and product 2 (Figure 1-9(c)) than a serial configuration.

9

Figure 1-9 System configuration options for multiple generations of products

In balancing the assembly line with more than one product types, one major

challenge is the “drift” problem caused by task variations associated with different

products. Drift is defined as the deviation of system processing time from the nominal

cycle time [12-13]. To more effectively deal with increased product variety, the assembly

system can be set up with more complex, non-serial configurations, e.g., systems with

multiple subassembly branch lines that converge to an assembly station. Such complex

configurations allow for pre-assembly of different components on multiple lines

simultaneously, thereby may potentially enhance the system productivity and reduce drift.

However, there is a lack of research on non-serial system configuration design for

product variety and the effect of such design on drift.

10

1.3 Research objective

The research objective of this thesis is to develop methods and algorithms for

designing productive assembly system configurations by simultaneously considering

product assembly hierarchy, product evolution, task and sequence generation, task

assignment, and equipment selection for non-serial configurations. Figure 1-10 shows the

inputs and outputs of such algorithms. The inputs are product design patterns, product

varieties (denoted by P1, P2, … , PN) and evolution. The outputs are system configuration

design and equipment selection.

Figure 1-10 Research objective

The specific research tasks are proposed below:

(1) Subassembly decomposition method based on analysis of product liaison

topographic patterns

This research aims to 1) analyze the topographic patterns in general product

design, including non-serially linked products, and to translate design information

of products into the assembly/subassembly operations for assembly configuration

generation [14]; and 2) develop a recursive algorithm to generate feasible

subassembly pairs for serially linked products, such as automotive batteries, to

enable efficient design and optimization of manufacturing system configuration

[15]. The computational method provides a new and efficient way to enumerate

11

all candidate tasks and sequences and enable the ensuing optimization process to

result in the right solution.

(2) Methodologies of joint process planning, system configuration selection, system

balancing, and equipment selection

The hierarchical composition of product design is utilized in generating system

configurations with equipment selection for optimal assembly system design [16].

A nested framework is proposed to model the relationship between the product

design and system configuration. The generated configurations are embedded in

an optimal assembly system design problem for simultaneous equipment selection

and task assignment to minimize equipment investment cost.

(3) System configuration design for a product family

A new method is developed for designing assembly system configurations for

multiple products [14]. Unlike the system configuration for a family of products

with delayed differentiation, the proposed configuration has diverse

subassemblies in the upstream as required by the various battery components and

has common assemblies in the downstream. The method enables efficient

assembly of products with hierarchical structures.

(4) Software development and industrial implementation: Battery Assembly System

Configurator

A software package for system configuration, Battery Assembly System

Configurator, is developed to integrate functions of process planning and optimal

system configuration generation given product information of the current and

12

possible future generations of battery packs [17]. The system is being tested at an

industrial site.

1.4 Dissertation organization

The thesis is organized as shown in Figure 1-11, in a multiple manuscript format.

Chapter 2 first discusses the hierarchical subassembly decomposition method for

complex configuration generation. A systematic approach is developed to translate

product design patterns into assembly/subassembly operations that allow for parallel

assembly sequences and adding more than one part at a time. In Chapter 3, a new method

is developed and implemented for automatic system configuration generation with

machine selection considering the hierarchical composition of battery components for a

single product type. Chapter 4 presents a systematic method for designing system

configurations for a family of products. Chapter 5 introduces the implementation of

discussed methods: a math-based tool, Assembly System Configurator, for designing

flexible battery assembly processes and systems.

Figure 1-11 Organization of the dissertation

13

CHAPTER 2

AUTOMATIC HIERARCHICAL SUBASSEMBLY

DECOMPOSITION FOR COMPLEX CONFIGURATION

GENERATION

A computational method is developed to generate candidate

assembly/subassembly operations automatically based on the analysis of liaison

topographic patterns. The system configuration generation algorithms start with the

identification of assembly layers. Then a recursive algorithm is developed to generate

feasible subassembly groupings, assembly sequences, and configurations including

hybrid configurations. The algorithm adopts the transformation of a typical system layout

diagram into a string of characters or numbers representing assembly components and

sequences of operations. The computational method provides a new and efficient way to

enumerate all candidate system configurations and enable the ensuing optimization

process to generate the right solution. This enables efficient design and optimization of

manufacturing system configurations.

14

2.1 Introduction

In most manufactured products, their components are linked to each other

following certain topographic patterns. Therefore, in production, assembly machines or

workstations need to be arranged in proper processing sequence or flow on the factory

floor such that individual components can be assembled efficiently. A system

configuration represents the realization of this arrangement of machines and material

flow among them.

As reviewed in Chapter 1, a lithium battery pack usually has a hierarchical

structure consisting of several modules, while a module is composed of battery cells and

ancillary members, such as frames, cooling fins, and compression foams. These

components are usually assembled or stacked together in a certain pattern, such as frame-

cell-foam-cell-cooling fin. In order to fulfill a vehicle’s power requirement, this stacking

pattern is repeated a number of times to form a module (Figure 1-5).

In production, an assembly workstation typically deals with unloading each

individual component from its container and then loading it onto another component or a

partially completed subassembly or stack. Figure 2-1 illustrates a few schematic diagrams

of possible system configurations for the assembly operation: (a) a serial configuration,

where each component is loaded and assembled at each station sequentially by an

individual robot or material handling machine into a stacking pallet on a moving

conveyor belt; (b) parallel configurations, where each robot is capable of picking and

placing all components to complete a stack assembly; (c) a hybrid configuration with

subassembly lines, where some components can be pre-stacked into subassemblies by

one or more robots in branch lines, which are eventually merged to the main line

15

according to the assembly sequence. A hybrid configuration is defined as a non-serial

system layout, which has multiple branch lines and/or parallel stations. Conceivably,

there are many other ways to design the system configurations by pre-stacking adjacent

components into different subassemblies, which can be further assembled with other

adjacent components or subassemblies into a larger module. As shown in Figure 2-1, a

given product design pattern Frame-Cell-Foam-Cell-Fin could yield various subassembly

groupings or assembly hierarchies and sequences such as ((((Frame-Cell)Foam)Cell)Fin)

(Figure 2-1(a)), (Frame-Cell-Foam-Cell-Fin) (Figure 2-1(b))and ((Frame-Cell)(Foam-

Cell)Fin) (Figure 2-1(c)) where the parenthesis represents a grouping of components into

an assembly/subassembly task. The configuration in Figure 2-1(c) is a branched line,

which is different from a parallel line (Figure 2-1(b)). Parallel line shares the same

upstream resources, therefore, the components need to be split and fed into multiple

parallel machines (Figure 2-1(b)). The subassembly branches in Figure 2-1(c) are

independent and the components do not need to be split.

Figure 2-1 Varieties of system configurations: (a) serial, (b) parallel, (c) hybrid

16

Identifying all the candidate assembly/subassembly groupings and sequences is

critical to system configuration design. Traditional assembly sequence generation

methods focused on sequential task sequences. Among them, Bourjault [18] presented the

first algorithm to generate all feasible assembly sequences. Building on Bourjault’s

method, Whitney [19] increased the size of the problem to accommodate assemblies with

much higher number of components by asking two questions of precedence. A number of

approaches, such as algorithms and graph based methods, have been used to generate the

assembly sequences [20-23]. Methods were also developed to derive the assembly

sequences from the disassembly sequences [24-25]. Traditional sequential task sequence

based approach does not consider parallel subassembly tasks. By allowing for concurrent

tasks and adding more than one part at a time, hybrid configurations are more suitable for

dealing with products assembled in a hierarchy.

In essence, identifying the number of candidate assembly/subassembly groupings

and sequences is an enumeration problem. The enumeration problem has been studied

and applied to assembly sequence generation, manufacturing system configuration, as

well as supply chain configurations. To facilitate enumeration problem solving, Webbink

and Hu [26] enumerated system configurations by using parentheses to group a string of

“1” characters, e.g., ((11)1) as shown in Figure 2-2. Each “1” character denotes a

workstation and each pair of parentheses represents a path of processing line in a parallel-

serial system configuration. Their work, however, does not distinguish the assembly

sequences of ((11)1) and (1(11)), for instance, because all components are treated

generically the same. Similar parentheses and alphanumerical coding are employed to

create groups of product components or subassemblies in a supply chain configuration

17

investigation by Wang et al. [27]. This method of transforming a diagrammatic system

configuration into a binary string with parentheses is conveniently adopted in this study.

Figure 2-2 Layout diagrams of ((11)1)

De Fazio and Whitney [19] proposed the “liaison” concept for assembly sequence

generation. A “liaison” is the connection between components, which represents the

physical contact or joining between components. Each pair of connected components is

assigned a liaison number. The enumeration problem is to identify the liaison or assembly

sequences through a state-transition diagram arranged in an inverted tree form and

determined by certain precedence rules. However, the work doesn’t handle more than two

components in one assembly workstation.

Likewise, Abell [28] developed a recursive algorithm to enumerate all possible

sequences for robotic material handling systems in a general m-machine layout. The

algorithm examines the system state space and generates all possible material handling

sequences while eliminating redundant sequences. Still, enumeration of multiple part

sequences is not considered.

Given a predetermined topographic pattern in product design,

assembly/subassembly decomposition is to translate design information of products into

the assembly/subassembly operations/tasks and to group assembly operations into a

combination of single-operation and multi-operation machines arranged in series, parallel

18

or mixed patterns. Therefore, the assembly/subassembly decomposition in this chapter is,

mathematically speaking, a partition problem in combinatorics [29] or one of Stanley’s

Twelvefold Way of combinatorics [30], but with the assembly requirements of allowing

more than two components in one station and parallel subassembly grouping, which had

not been addressed before.

This chapter starts with an overview of the proposed method, and then explains

the enumeration of assembly/subassembly grouping in detail. Hierarchical

representations of assembly sequence are introduced. A recursive algorithm for assembly

sequence generation is developed. The binary data tree or structure employed in

representing the recursive algorithms of assembly/subassembly generation resembles that

of integer partitions in combinatorics [29,31]. Furthermore, the computational method

also includes a filtering function to accommodate other assembly constraints, such as

“some adjacent components may or may not be preassembled”, which could significantly

reduce the number of candidate system layouts for practical handling. Lin [15] calculated

the total number of candidate system configurations which helps validate the

computational assembly/subassembly decomposition method that ensues in this chapter.

2.2 Method overview

In this chapter, a recursive method is developed in conjunction with a graph

search algorithm to generate candidate assembly/subassembly groupings and sequences.

The method can be described as follows.

Step 1: Identify branches (assembly layers) in the product liaison. Given a

topographic pattern in product design (Figure 2-3), wherein nodes

represent components/parts and lines between nodes represent relations

19

(physical contact or joining) between components, the branches can be

determined by two possible ways: 1) to use given engineering knowledge

to determine the base module etc. For example, the predetermined

unit/module/pack grouping; 2) to identify the graph diameter that is the

longest path between two vertices in a graph as the first branch (assembly

layer). Figure 2-4(a) shows the identification of longest path as assembly

layer 1.

Figure 2-3 Liaison graph for a general product design

 (a) (b) (c)

Figure 2-4 Assembly layer/branch identification

Step 2: Replace the identified branch with a node and return to Step 1, until there

is only one assembly layer left (Figure 2-4(b)(c)).

20

Step 3: Apply subassembly decomposition algorithm to each assembly layer. The

detailed algorithm will be discussed in section 2.3.

The procedure of identifying the longest path in a graph can be described as

follows. First, a connection matrix is constructed. According to graph theory, the

relationship showed in a liaison graph can be mapped one-to-one into a connection

matrix M = [mij] (Figure 2-5), where mij=1 when components i and j are directly

connected and mij=0 when no connection exists between two components i and j or self-

relationship. Second, start from any node (denoted by r) in the product liaison graph and

perform depth-first search (DFS) algorithm [32] to identify the farthest node to r, denoted

as v by
()

(, ()) max { (, ()) (,)}
r sT r T s

s child r
D r V T D s V T m r s


  , where rT is the subtree rooted at

vertex r V , which is the subgraph induced on vertex r and all its descendants; and

child(r) is the set of children of v and m(r,s) is the distance associated with the arc

connecting nodes r and s, which can be calculated using connection matrix. Then perform

the DFS again to identify the fastest node(s) from the node v, denoted as v’. At last, the

longest branch is obtained between v and v’ (Figure 2-6).

Figure 2-5 Connection matrix

21

Figure 2-6 Depth-first search (DFS) algorithm to identify the longest path

2.3 Subassembly decomposition

2.3.1 Enumeration of subassembly grouping

Given an assembly of n elements {a1, a2, a3,…an}, the parenthesis operator, (.), is

used to group two or more adjacent elements together, such as (akak+1), into a candidate

subassembly. The subassembly can be further grouped with other elements, single or

groups, to create larger groups, e.g., grouping of (a1a2) and a3 leads to ((a1a2)a3); and

grouping of (a4a5) and (a6a7) yields ((a4a5)(a6a7)). Thus, the generation of each set of

subassembly combinations is the result of grouping elements at different levels, which is

called hierarchical grouping in this chapter. The subassembly decomposition problem is

to enumerate all the non-repetitive ways of hierarchically grouping n elements.

Denote P(n) as the enumeration problem with n elements. The following steps

summarize the subassembly grouping procedure.

Step 1: Enumerate all the non-repetitive cases for grouping two elements, such as

{(a1a2)a3…an}, {a1(a2a3)…an}… {a1a2a3…(an-1an)}. Only two elements

are merged at a time, multiple two-element grouping, {(a1a2)a3…(an-1an)}

for example, is not allowed. Under each case, the grouped elements are

22

treated as a subassembly and the enumeration problem degenerates into a

P(n-1) problem since there are n-1 elements left;

Step 2: Enumerate all the non-repetitive cases for grouping three elements, such

as {(a1a2a3)…an}, … {a1… an-3 (an-2an-1an)}. Under each case, the grouped

elements are treated as a subassembly and the enumeration problem

degenerates into a P(n-2) problem since there are n-2 elements;

…

Step n-1: Enumerate the non-repetitive cases for grouping all n elements.

Apparently, there is only one possible scenario, i.e., (a1, a2, a3,…an).

It can be seen that solving a P(n) problem involves n-1 steps. The ith step has two

problems: (i) to enumerate all the non-repetitive cases for grouping i+1 elements and (ii)

to solve a P(n-i) problem. The idea is to decompose a complex problem P(n) into n-1

degenerated problems in n-1 steps, and each degenerated problem is further decomposed

into a number of simpler enumeration problems in hierarchical order or structure.

Similar to Whitney’s assembly sequence generation methods [19], each letter

(a1…an) denotes a component and the aforementioned grouping represents any of certain

user-defined relations between parts called “liaisons”. From the inside-out grouping order,

the assembly sequences are generated accordingly.

23

Table 2-1 Comparison between assembly sequences and physical representation of the

enumerations

Case Assembly
Sequence

Physical Representation Liaison Diagram #of
Liaisons

1 123 (((AB)C)D)

3

2 321 (A(B(CD)))

3 213 ((A(BC))D)

4 312 ((AB)(CD))

5 132 ((AB)(CD))

6 231 (A((BC)D))

7 [12]3 ((ABC)D)

1

8 1 [23] ((AB)CD)

9 [23] 1 (A(BCD))

10 3 [12] (AB(CD))

11 2 [13] (A(BC)D)

12 [13] 2 ((AB)(CD))

13 [123] (ABCD)

0

24

Table 2-1 shows an example of assembling four components {A, B, C, D}

together. Compared with Whitney’s assembly sequence generation methods, the

differences can be summarized as the following:

 There is no sequence differentiation between parallel groups, thus

enabling parallel subassembly grouping, sequences and configurations

(See case 4 &5 in Table 2-1).

 Assembly grouping is hierarchical and considered at all levels. Not only

components pairs can be assembled, groups of components, called

subassemblies, can also be assembled (See case 7-13 in Table 2-1).

The enumeration process consists of the two major tasks below that will be

addressed in the following sections:

 A data structure must be defined to facilitate assembly sequence

representation and manipulation.

 An algorithm must be devised to generate all non-repetitive groupings

given i elements. For example, in step 1, the same enumeration grouping

{(a1a2)a3…(an-1an)} exists when solving the P(n-1) problem under the

cases {(a1a2)a3…an} and {a1a2a3…(an-1an)}.

2.3.2 Hierarchical representation of assembly sequence

To enable computational assembly sequence generation, it is more efficient to use

numbers and numerical operations. By the fact that only neighboring components are

grouped, the enumeration problem can be formulated as merging or adding the numerals

in an identity array in various ways. For example, an identity array {1, 1, 1}, with each

“1” denotes a component, can be merged into (1+1) +1, 1+ (1+1), or (1+1+1). The

25

summed numbers within one set of parentheses stand for the components to be grouped.

Table 2-2 shows the enumerations for grouping an identity array {1, 1, 1, 1} with four 1’s

in sequence corresponding to components A, B, C, and D, respectively. Compared with

Table 2-1, since there is no sequence differentiation between parallel groups (Cases 4, 5

& 12 in Table 2-1 are the same), there are eleven possible assembly sequences generated

based on our enumeration algorithm.

Table 2-2 Enumeration for Four Elements {A, B, C, D}

Enumeration index Enumeration of number

merging

Physical interpretation

1 (1+1)+1+1 ((AB)CD)

2 ((1+1)+1)+1 (((AB)C)D)

3 (1+1)+(1+1) ((AB)(CD))

4 1+(1+1)+1 (A(BC)D)

5 (1+(1+1))+1 ((A(BC))D)

6 1+((1+1)+1) (A((BC)D))

7 1+1+(1+1) (AB(CD))

8 1+(1+(1+1)) (A(B(CD)))

9 (1+1+1)+1 ((ABC)D)

10 1+(1+1+1) (A(BCD))

11 (1+1+1+1) (ABCD)

It can be seen that the numerical grouping can be represented in a hierarchical

structure whereby the numbers are added at different recursive steps to be discussed later.

An example of the hierarchy is given in Figure 2-7, where Figure 2-7(a) shows a

sequence of grouping numbers under a data tree structure and Figure 2-7(b) shows a

simplified structure by dropping redundant 1’s. For clarity of illustration, the data tree

26

structure of Figure 2-7(a) is used in the following description. The “+” sign can be

omitted in all the representations of data structure and arrays since it is the only operator

involved.

 (a) (b)

Figure 2-7 Hierarchical representations of sequence (((11)1)1)

The hierarchical data structure can be characterized with a few parameters.

Denote m as an index of the recursive steps. There are three recursive steps in Figure 2-7.

In the recursive step m = 1, 2, 3, an internal array c(m) is defined to represent the

intermediate enumeration result, such as c(1) = [2 1 1], c(2) = [3 1]. The length of the

internal array c(m) is denoted as n(m) and n(0) = n. As shown in Figure 2-8, the window

size parameter win(m) specifies the number of components to be grouped in the internal

array c(m), and the end position parameter ep(m) denotes the location of the last

component in the grouping window of the internal array c(m). Figure 2-9 shows the

examples of using these parameters to represent the hierarchical data structure.

27

Figure 2-8 Parameters ep(m): end position (the location of the last component in the

grouping window) and win(m): window size (number of components to be grouped)

28

(a) Sequence ((11)11)

(b) Sequence ((11)(11))

(c) Sequence (((11)1)1)

(d) Sequence (1(1(11)))

(e) Sequence (1((111)1))

Figure 2-9 Examples of characterizing hierarchical data structure with parameters

29

2.3.3 Recursive algorithm for assembly sequence generation

As mentioned above, there are n-1 steps involved in solving problem P(n) with

each step using the same window size win(1), where win(1)=2,3,…n respectively. The

increment in win(1) can be achieved by using a computational loop with respect to win(1).

In step win(1)-1, one needs to solve two problems (i) the problem of enumerating all the

non-repetitive cases for grouping win(1) elements, and (ii) the P(n(1)-win(1)+1)

enumeration problem in the recursive step m=2 following the same procedures.

In the mth (m≥2) recursive step, one can have n(m)=n(m-1)-win(m-1)+1 and

win(m)=2,3…n(m). The increment in win(m) can be achieved by using a computational

loop of win(m). There are n(m)-1 steps involved to solve problem P(n(m)). In step

win(m)-1, one needs to solve (i) the problem of enumerating all the non-repetitive cases

for grouping win(m) elements and (ii) problem P(n(m)-win(m)+1) in the (m+1)th

recursive step. The recursion continues until n(m)-win(m)+1<1, i.e., n(m)<win(m).

The problem (i) in the mth recursive step can be solved by moving a grouping

window with a fixed length win(m) from left to right along the internal array c(m) as

shown in Figure 2-10. Assume that the leftmost window ends at ep0(m). There are n(m)-

ep0(m)+1 ways (windows) of groupings win(m) elements in the internal array c(m). The

rightmost window ends at n(m).

Figure 2-10 Shift of grouping window in enumeration process (i)

30

It is critical to determine the end position ep0(m) of the leftmost window. A

proper selection of ep0(m) can effectively eliminate the repetitive enumerations. In

Figure 2-11(a), the enumeration (i) when ep(m-1)=2 and (ii) when ep(m-1)>3 yield the

same assembly sequence in the mth recursive step. Therefore, in enumeration (ii), the

value of ep0(m) cannot be arbitrary. To avoid such a repetitive enumeration, selection of

ep0(m) should ensure that in the mth recursive step, the enumeration starts from the group

that is created in the (m-1)th recursive step. Such a group is generated by merging

numbers with a window with a size of win(m-1) ending at the ep(m-1)th element in the

internal array c(m-1). Since the position of the group in the internal array c(m) is ep(m-1)-

win(m-1)+1, it can be concluded that ep0(m)=ep(m-1)-win(m-1)+1 as shown in Figure

2-11(b).

Hence, in the mth recursive step, the enumeration problem (i) is to explore all the

possible combinations of the parameters ep(m) and win(m), which can be handled by a

double-loop for the two parameters in computer programming.

All the generated assembly sequences can be converted into the string format with

parentheses from the hierarchical structure parameters c(m), ep(m), win(m), and n(m) via

a number decoding procedure as follows,

1) Replace each greater than 1 numeral in c(m) with string concatenation of

1’s and add characters “2” before the string and “3” after the string to

represent the left parenthesis and the right parenthesis respectively, e.g., 3

becomes concatenating string “2”, “1”, “1”, ”1”, and “3”.

2) Convert the strings to a cell or a number, e.g., “21113” is changed to

21113.

31

(a) Repetitive enumeration exists when (i) ep(m-1)=2 and (ii) ep(m-1)>3 yield the same

assembly sequence in the mth recursive step

(b) Non-repetitive enumeration can be assured when the end position

ep0(m)=ep(m-1)-win(m-1)+1

Figure 2-11 Determination of ep0(m)

32

3) Convert number to string, e.g., 21113 to (111), where 2 is replaced by

“(“ and 3 is replaced by “)”. Lastly, all the 1’s can be replaced by “a”, “b”,

“c”, etc. sequentially.

Remark: The decoding procedures as outlined above can only process very

limited number of elements (up to 7 elements). This is due to the limitations of 32-bit or

64-bit operating system in dealing with integer numbers. As n grows, the length of the

intermediate integer numbers significantly increases. However, any integer number that is

larger than 2
32

 or 2
64

 will be automatically rounded by a computer, thus rendering the

results inaccurate. To solve this problem, a cell data type can be adopted by which the

computer treats a string as a single cell and decoding from a large integer is no longer

necessary. For example, each element of a regular string array can only be one character

such as “(“, “a”, “b”, or “)” etc. This storage requires a large array size to store a string

and is not efficient for the enumeration. If a cell array is employed, a string “(abc)” can

be saved as one single element in the array. Such storage syntax is similar to storing an

integer number in a regular array and can greatly facilitate the enumeration.

The flowchart of the developed algorithms is given in Figure 2-12, where a

function mergeN() is defined to implement the recursion. The algorithm involves

initialization, a double-loop of win(m) and ep(m) to solve problem (i), recursion with

respect to m to solve problem (ii), decoding of numbers with strings as illustrated above,

and a filtering algorithm to be discussed next.

As an example to illustrate the algorithm, Table 2-3 lists intermediate values of

ep0(m), ep(m), win(m), and c(m), m =1, 2 for a P(4) problem of enumerating four

elements {1,1,1,1}. The parameter values for m = 3 are not listed because it is a

33

straightforward data merging with c(3) = 4, ep0(3) =1, and ep(3) = win(3) = 2. It is noted,

unlike the algorithms for counting the number of sequence, the enumeration algorithms

generate all the sequence with n elements for all the possible numbers of groups. If

needed, the sequence for a specific number of groups can be segregated by the recursive

step m in the computational output.

2.3.4 Filtering algorithm for sequence reduction

In certain assembly scenarios, some components must or must not be assembled

together. These extra precedence constraints should be compared with the enumerated

assembly sequences to screen out the infeasible ones. For example, one may specify that

only elements a and b must be assembled together. Then strings such as (a(bc)d) and

(ab(cd)) are not selected. On the other hand, if elements a and b must not be co-

assembled, strings that contain “(ab)” are not permissible output.

Note that the filtering algorithm strictly matches the strings and great care must be

exercised when some constraints are applied. For example, if the constraint is that a and b

must be assembled together, the pass should be pass = ab (dropping the parentheses).

The filtering of the enumerated assembly sequences given precedence constraints

can be achieved by operations of string comparisons. Users will specify a number of

component combinations that must be assembled together and are saved in a string array

called pass. The algorithm will determine if “pass” are contained in the inspected

assembly sequences. A string will be output once a match is found. Similarly, those

component combinations that must not be co-assembled are saved on in a string called

block. Those strings that do not contain “block” will be output. The flow chart of the

filtering algorithm is shown in Figure 2-13.

34

Figure 2-12 Flowchart of enumeration algorithms

35

Table 2-3 Intermediate values for a P(4) enumeration problem for {1,1,1,1}

Output

string

c(1) c(2) ep0(1) ep0(2) ep(1) ep (2) (for

the merged

array)

win(1) win(2) (for

the merged

array)

((11)11) 2 1 1 4 1 NA 2 NA 2 NA

(((11)1)1) 2 1 1 3 1 1 1 2 2 2 2

((11)(11)) 2 1 1 2 2 1 1 2 3 2 2

(1(11)1) 1 2 1 4 1 NA 3 NA 2 NA

((1(11))1) 1 2 1 3 1 1 2 3 2 2 2

(1((11)1)) 1 2 1 1 3 1 2 3 3 2 2

(11(11)) 1 1 2 4 1 NA 4 NA 2 NA

(1(1(11))) 1 1 2 1 3 1 3 4 3 2 2

((111)1) 3 1 4 1 NA 3 NA 3 NA

(1(111)) 1 3 4 1 NA 4 NA 3 NA

(1111) 4 NA 1 NA 4 NA 4 NA

36

Figure 2-13 Flowchart of filtering algorithm

The reduction of possible assembly sequences given precedence constraints can

be dramatic. Table 2-4 compares the enumeration results for 5 elements {A, B, C, D, E}

before and after applying three filtering criteria (constraints), i.e., pass=(AB),

block(1)=(CD), and block(2)=((BC)DE). It can be seen that without precedence

constraints, the total number of sequences is 45, while given precedence constraints, the

total number of assembly sequences become 8.

37

Table 2-4 Reduction of assembly sequence enumerations:

(a) without precedence constraints

((AB)CDE) (A((BC)D)E) (ABC(DE))

(((AB)C)DE) ((A((BC)D))E) (AB(C(DE)))

((((AB)C)D)E) (A(((BC)D)E)) (A(B(C(DE))))

(((AB)C)(DE)) (A(BC)(DE)) (A(BC(DE)))

((AB)(CD)E) (A((BC)(DE))) ((ABC)DE)

(((AB)(CD))E) ((A(BC)D)E) (((ABC)D)E)

((AB)((CD)E)) (A((BC)DE)) ((ABC)(DE))

((AB)C(DE)) (AB(CD)E) (A(BCD)E)

((AB)(C(DE))) (A(B(CD))E) ((A(BCD))E)

(((AB)CD)E) ((A(B(CD)))E) (A((BCD)E))

((AB)(CDE)) (A((B(CD))E)) (AB(CDE))

(A(BC)DE) (AB((CD)E)) (A(B(CDE)))

((A(BC))DE) (A(B((CD)E))) ((ABCD)E)

(((A(BC))D)E) ((AB(CD))E) (A(BCDE))

((A(BC))(DE)) (A(B(CD)E)) (ABCDE)

(b) with precedence constraints (filtering)

((AB)CDE)

(((AB)C)DE)

((((AB)C)D)E)

(((AB)C)(DE))

((AB)C(DE))

((AB)(C(DE)))

(((AB)CD)E)

((AB)(CDE))

38

2.4 Discussion

In this work, the system configurations are generated and evolved including not

only traditional serial/parallel lines but also hybrid lines with branches. Webbink and Hu

[26] proposed an automated distribution method to enumerate all the possibilities of

different combinations of stations which are of serial or parallel configuration. Then the

configurations are matched with assembly sequences generated by Whitney’s

enumeration methods [19]. Webbink and Hu’s work assigned serial sequences to each

routes (material flow path) of the system with hybrid configurations. Figure 2-14 shows

an example of system configuration where all the different routes can produce the final

product (ABCD). The first route allows for loading and assembling components one at a

time; the second route allows assembling A and B first, then loading and assembling C, D

sequentially onto AB; the third route assembles A, B and C together first, and then

assembles D onto ABC. Lines that are in parallel may perform the same task sequence

but in different steps. For example, the parallel lines, which are shared by route 1 & 2,

both perform assembly task sequence (AB). In route 1, the task sequence needs two steps

while in route 2, it needs only one step.

Figure 2-14 Example system configuration (A, B, C, D are components)

39

Webbink’s work didn’t consider hybrid lines with branches, where tasks on the

different branches of the lines are independent subassembly tasks. If the

assembly/subassembly groupings generated by this research are used to expand each

route in Webbink’s work, more configurations can be generated. Table 2-5 shows an

example of the configuration generation and evolvement given assembly/subassembly

groupings and sequences in Table 2-2.

2.5 Conclusion

In this chapter, a new hierarchical subassembly decomposition method is

developed by utilizing hierarchical data structure and recursive decomposition algorithms

to enumerate all non-redundant assembly/subassembly groupings. The computational

sequence generation is enabled by a transformation scheme devised to convert a typical

diagram of assembly system configuration into a string of characters or numerals

representing assembly components and sequences of operations. User-defined filtering

functions are also considered in the enumeration algorithms for handling additional

system requirements or constraints, which could reduce the number of

assembly/subassembly groupings significantly. The efficient, exhaustive computational

sequence generation method provides enough candidate systems for special

considerations and ensures that a truly optimal system can be identified.

The above algorithm is verified using a combinatorial approach [15] to count the

number of candidate system configurations without physically generating them. The

number of configurations not only helps validate the computational sequence generation

algorithms, but also provides a quick assessment of the scope of the problem. Both the

40

Table 2-5 An example of configuration generation and evolvement

Assembly

grouping

Initial configuration Configuration evolvement examples

((AB)CD)

(((AB)C)D)

((AB)(CD))

(A(BC)D)

((A(BC))D)

(A((BC)D))

(AB(CD))

(A(B(CD)))

((ABC)D)

(A(BCD))

(ABCD)

algorithms for system sequence generation and counting the number of system

configurations have been tested and validated.

41

CHAPTER 3

AUTOMATIC GENERATION OF ASSEMBLY SYSTEM

CONFIGURATION WITH EQUIPMENT SELECTION FOR

AUTOMOTIVE BATTERY MANUFACTURING

High power and high capacity lithium-ion batteries are being adopted for

electrical and hybrid electrical vehicles (EV/HEV) applications. An automotive Li-ion

battery pack usually has a hierarchical composition of components assembled in

repetitive patterns. Such a product assembly hierarchy may facilitate automatic

configuration of assembly systems including assembly task grouping, sequence planning,

and equipment selection. This chapter utilizes such a hierarchical composition in

generating system configurations with equipment selection for optimal assembly system

design. A recursive algorithm is developed to generate feasible assembly sequences and

the initial configurations including hybrid configurations. The generated configurations

are embedded in an optimal assembly system design problem for simultaneous equipment

selection and task assignment by minimizing equipment investment cost. The complexity

of the computational algorithm is also discussed.

42

3.1 Introduction

Lithium-ion batteries are gaining more attention in electrical and hybrid electrical

vehicles (EV/HEV) because they offer significantly higher energy density as well as

lighter weight and longer cycle life compared with lead acid and nickel-metal hydride

batteries [2]. A lithium-ion battery pack usually has a hierarchical structure consisting of

several modules, while a module is composed of battery cells and ancillary members

which are assembled or stacked together in a certain pattern (Figure 1-5). Prismatic pouch

cells or prismatic cells with case enclosure are usually stacked in one direction, vertical

or horizontal, while cylindrical cells are assembled in tubular or grid patterns (Figure 3-1)

[5].

Figure 3-1 Different stacking patterns for battery cells [5]

The design of an assembly system often begins with assembly sequence

generation [33-34]. The challenge to assembly sequence generation is that there are many

ways of assembling the components for a given stacking pattern in battery packs. For

43

example, components can be added one at a time, leading to serial sequences.

Alternatively, all the components can be assembled in one station with flexible machines,

resulting in a parallel operation. Various hybrid assembly sequences can also be obtained

by preassembling different number of components into subassemblies which in turn are

assembled with other components or subassemblies. Figure 3-2 illustrates a set of five

candidate assembly sequences in assembling a section of a battery module.

Figure 3-2 Different examples of assembly sequences (a) components are loaded and

stacked in a serial sequence; (b) components are stacked simultaneously in one station;

(c), (d) and (e) components are stacked into subassemblies and then stacked with other

components or subassemblies (circles represent tasks for loading and stacking)

Traditional assembly sequence generation methods focused on sequential task

sequences. Among them, Bourjault [18] presented the first algorithm to generate all

feasible assembly sequences. Building on Bourjault’s method, Whitney [19] increased the

44

size of the problem to accommodate assemblies with much higher number of components

numbers by asking two questions of precedence. A number of approaches, such as

algorithms and graph based methods, have been used to generate the assembly sequences

[20-23]. Methods were also developed to derive the assembly sequences from the

disassembly sequences [24-25].

Based on the sequential task sequences, the assembly system commonly adopts a

dedicated serial configuration for mass production of limited product variants (Figure 1-6

(a)). Other configurations were also considered including parallel configurations, serial

systems with parallel machines, or parallel lines with machines in serial (Figure

1-6(b)(c)(d)) [35]. Significant amount of research has been done investigating the effects

of system configurations on performance [36-41]. On assembly system design, Webbink

and Hu [26] proposed an automated distribution method to enumerate all the possibilities

of different combinations of stations which are of serial or parallel configuration. In this

work, the hybrid configuration is generated by assigning the sequential task sequences to

each route in the system. The optimization is thus reduced to the conventional line

balancing problem of assigning a sequential task sequence to a serial line in each route.

Ko and Hu [42] presented a new method for designing complex configurations by linking

manufacturing requirements to configuration structure. The balancing of assembly

systems with the complex configurations focused on specific configurations for delayed

product differentiation (Figure 3-3).

45

Figure 3-3 An example of manufacturing system configuration for delayed product

differentiation [42]

Equipment selection is another problem in assembly system design. When

equipment selection is considered with line balancing, such a problem is called an

assembly line design problem (ALDP) [43]. Pinto et al. [44] studied a method of

simultaneously considering manufacturing process alternatives and assembly line

balancing (ALB) to minimize total costs. Graves and Lamar [45] and Graves and Holmes

Redfield [46] considered an assembly line for one or multi-products with the stations

being chosen from a set of non-identical station types with different equipment choices.

Bukchin and Tzur [47] considered stations being provided with several equipment

alternatives while minimizing the overall equipment cost. Most equipment selection has

been implemented on serial configurations.

Traditional sequential task sequence based approach does not consider parallel

subassembly tasks. In addition, there is a lack of method for simultaneous equipment

selection and complex configuration generation. This paper describes a new method for

designing assembly systems by integrating automatic configuration generation with

equipment selection considering product hierarchy. Based on an automatic enumeration

algorithm for generating assembly tasks and sequences derived from the assembly

hierarchy [15], a two loop nested optimization algorithm is developed to determine the

46

optimal hybrid system configuration along with equipment selection. By allowing for

concurrent tasks and adding more than one part at a time, hybrid configurations are more

suitable for dealing with products assembled in a hierarchy.

The remainder of the chapter is organized as follows. Section 3.2 introduces the

method of automatic system configuration with equipment selection. An overview of

methodology is discussed first and then the enumeration algorithm and balancing and

equipment selection model are introduced. Section 3.3 presents an example of system

design given a battery configuration. Section 3.4 draws the conclusions.

3.2 System configuration generation with machine selection

3.2.1 Methodology overview

The overall procedure for the system configuration generation is shown in Figure

3-4. Taking product designs as inputs, the outer loop algorithm first enumerates all

feasible assembly tasks and the corresponding sequences T1, T2…Tk. For each sequence,

one task is assigned to one machine each, thus creating an initial configuration (configk
0
)

generated from the assembly sequence. The initial configuration will be evolved and

updated following the inner-loop optimization procedures that explore all candidate

machines and feasible ways of task-machine assignments (Figure 3-5(a)). Different from

past research that focuses on assigning tasks to machines in serial configuration (Figure

3-5(b)), this method considers complex configurations that may possess superior

throughput performance and reconfigurability. After a configuration is chosen, the

performance responses, e.g., throughput Thi*, and its associated cost Ci* for the optimal

configuration are generated and the responses Thi* and costs Ci* are compared over all

the task sequences to determine the global optimal configuration in the outer loop

47

optimization. When the number of the enumerated task sequences grows large, the

exhaustive search is not computationally feasible. Genetic algorithm or computer

experiment approaches are employed to approximate the near-optimum. The outer-loop

optimization is the hierarchical subassembly decomposition method which has already

been discussed in chapter 2.

3.2.2 Model for balancing and equipment selection

Enumeration in the outer loop generates the candidate assembly tasks/task groups,

sequences, and initial configurations. The inner loop evolves each configuration by

assigning the tasks to the selected machines. This section describes a mathematical model

for the inner loop optimization including task-machine assignment, workload balancing

and machine type and number selection in assembly systems. A simplified formulation is

described in chapter 5 in order to speed up the optimization.

Decision variables

Define a task-machine assignment variable, which represents whether or not a

task is assigned to a machine, as

, ,

1 if task is assigned to the th machine of the th machine type

0 otherwise
i j k

i k j
x


 


Also define yi,j, which represents whether or not a machine type is utilized for task

i, as

,

,

,

, , ,1

1,if task i is assigned to machine type j, i.e. 0

0, otherwise, i.e. 0

 are quantities for the machine type

j

i j

i j

i j

K

i j i j kk

j

M
y

M

where M x

K j




 





48

Figure 3-4 The nested procedure for combinatorial optimization

49

Figure 3-5 Assignment of tasks to machines with certain configuration

The variable yi,j is derived from xi,j,k, i.e.,

, , , ,1

, 1 , ,

, , ,1

, machine type
 or

, machine type

j

j

j

K

i j k i j i jK k

i j k i j k K

i j k i jk

x M y j
y x

x y j







  
  

 





where the first inequality ensures that yi,j is 1 if task i is assigned to at least one machine

of machine type j; and the second ensures that yi,j is 0 if task i is not assigned to machine

type j.

Objective function

The objective in this model is to balance an assembly system by minimizing the

equipment investment cost while ensuring the throughput requirement, i.e.,

1 1 1
min

jI J K

ij ijki j k
G c x

  
   (1)

50

where ci,j is the operating cost of assigning task i to machine type j. The purchasing cost

of each machine type is assumed not to be considered here.

Constraints

1) Task assignment constraint

This constraint requires task i to be assigned to only one type of machine, i.e.,

,1
1

J

i jj
y


 (2)

Note: It is feasible that different types of machines can perform the identical

operations at the same time and pace. However, this way will pose challenges to logistics,

wiring, and machine set up.

2) Task-machine matching constraint

Certain engineering experiences may require a set of tasks not to be assigned to

certain machine type, i.e.,

, 0,(,) set that task m cannot be assigned to machine type m ny m n TM n   (3)

3) Assembly constraint

This constraint specifies the material flows between tasks. The upstream assembly

or subassemblies have to be finished before the downstream tasks can be processed. For

example, in battery assembly, one module consists of four units and one unit consists of

eight cells. If it takes one minute to produce a module, then unit stacking should not

exceed one fourth minute and cell loading should not exceed 1/32 minute. Denote gi(·I) as

the function of such material flow relationship between task i and the final task I. This

constraint ensures that the throughput of component i satisfies the demand of final

products and can be represented by

51

1 1

/ / (),
J J

i ij ij I i Ij Ijj j
M t y M g t y i I

 
    (4)

where
1

J

ij ijj
t y

 is the processing time for task i and Mi is the number of machines

used for task i and
1 1

jJ K

i ijkj k
M x

 
 

4) Cost constraint

This constraint requires that the total equipment cost does not exceed the budget

limit and can be represented by

01 1 1

jI J K

ij ijki j k
c x G

  
   (5)

5) Throughput constraint

This constraint requires the system throughput to meet the production demand, i.e.,

the throughput of the bottleneck operation satisfies

0/B BM t Th (6)

6) Task zoning constraint

Some tasks must be assigned to the same machine, and the other tasks cannot be

assigned to the same machine. These constraints are known as positive and negative

zoning constraints in [48-50]. For example, tasks requiring similar manufacturing process

or a very expensive machine may be assigned to one machine in order to reduce

equipment cost. Tasks requiring different types of manufacturing processes or having

certain safety requirements usually cannot be assigned to the same machine. The

following two equations represent positive and negative constraints, respectively.

, , , ,

, , , ,

, (,) --set of tasks that must be assigned to the same machine

1, 1,... , (,) --set of tasks that cannot be on the same machine

u j k v j k

u j k v j k j

x x u v ZS

x x k K u v ZD

 

   
 (7)

52

Inner-loop optimization model selection

In the formulations (2)-(7), the upper bound Kj of the quantities for the machine

type j is assumed to be given. To determine the optimal Kj, a model selection procedure is

developed as shown in Figure 3-6. First, a set of initial values of upper limits K1, K2, …,

Kj … are assigned to each machine type when implementing the inner loop optimization.

For the inner loop optimization, the genetic algorithm (GA) is adopted. Then the values

of the upper limits are increased and the inner-loop optimization is implemented again.

The new configuration is compared with the previous one. Keep increasing the values for

the upper limits and update the solution until the resultant configurations do not change

(converge) as the {Kj} increases.

Figure 3-6 Procedure for inner-loop optimization model selection

53

Solution Method

Genetic algorithm is a directed search algorithm based on the mechanics of

biological evolution. Most of the time a solution can be identified if initial solutions are

close to it and the solution could be local optimal. Exhaustive search method has also

been used to find the optimal solution (Figure 3-7). It takes longer time so pre-filtering

criteria could be needed in order to reduce possible enumeration.

Figure 3-7 Exhaustive search method

The following constraints have been linearized to use binary integer search

method.

, , , ,1

, 1 , ,

, , ,1

, machine type
 or

, machine type

j

j

j

K

i j k i j i jK k

i j k i j k K

i j k i jk

x M y j
y x

x y j







  
  

 





, , ,1

, 1 , ,

, , ,1

, machine type ,
 or

, machine type

j

j

j

K

i j k i j jK k

i j k i j k K

i j k i jk

x By j where B K
y x

x y j







   
  

 




 (8)

54

Binary integer search is a linear programming based branch and bound algorithm.

The algorithm creates a search tree by repeatedly adding constraints to the problem

(branching) (Figure 3-8). Different nodes represent different variable combinations. The

objective function is estimated during the binary integer search in order to find the

optimal solution.

Figure 3-8 Binary integer search tree

Computational complexity

The proposed exhaustive search method in the outer-loop optimization to solve

the combinatorial optimization problem of assembly sequence enumeration may face

computational challenges when k is large. A recursive formulation is discussed in Lin et

al. [15] for counting the number of total enumerations. For such huge number of

enumerations, solutions can be found as follows: (1) the precedence constraints (filtering

criteria) will significantly reduce k by eliminating infeasible sequences; (2) grouping

some of the components, such as identical components, into subassemblies first, then the

enumeration algorithm is applied in different assembly levels, and redundant

enumerations can thus be avoided; (3) if the reduced k still poses challenges to

computation, other searching methods such as genetic algorithm, simulated annealing, or

Kriging method should be adopted based on a number of representative solutions and

responses to obtain an approximation of the global optimum.

55

3.3 Case study

This section demonstrates the configuration generation and equipment selection

method using a case study of battery module assembly.

3.3.1 Problem description and results

As shown in Figure 3-9, a repetitive pattern in a battery module is the frame-cell-

foam-cell-cooling fin. Such a pattern repeats a number of times (N) in the module. Non-

repetitive components are added to the two ends of the repetitive pattern stack to form the

module.

Let A, B, C, D, E denote the cell and ancillary components. The repetitive pattern

is B-A-D-A-C with the non-repetitive components E-A-C at one end and A-E at the other

end. Also assume that the first cell A and foam D has to be assembled together. Table 3-1

Figure 3-9 An example of assembly of battery module

shows the enumeration results for the repetitive pattern. Table 3-2 shows only the first 10

enumeration results for the whole module due to the page limitation. If there are no

constraints applied, there are 197 possible sequences generated in total [15].

56

Table 3-1 Enumeration results for the repetitive pattern (R)

Case# 1 2 3 4

Sequence (B(AD)AC) ((B(AD))AC) (((B(AD))A)C) ((B(AD))(AC))

Case# 5 6 7 8

Sequence (B((AD)A)C) ((B((AD)A))C) (B(((AD)A)C)) (B(AD)(AC))

Case# 9 10 11

Sequence (B((AD)(AC))) ((B(AD)A)C) (B((AD)AC))

Table 3-2 First 10 enumeration results for the module (“R” represents repetitive pattern)

Case# 1 2 3

Seq. ((EA)CRAE) (((EA)C)RAE) ((((EA)C)R)AE)

Case# 4 5 6

Seq. (((((EA)C)R)A)E) ((((EA)C)R)(AE)) (((EA)C)(RA)E)

Case# 7 8 9

Seq. ((((EA)C)(RA))E) (((EA)C)((RA)E)) (((EA)C)R(AE))

Case# 10

Seq. (((EA)C)(R(AE)))

To illustrate the inner-loop optimization, consider case #5 of the repetitive pattern

and case #9 of the whole module pattern. Table 3-3 lists the assembly tasks for repetitive

(L591-L593) and non-repetitive pattern (L594-L596) assemblies and the final assembly

(L597), where in Lijk, i is the index for certain combinations of repetitive pattern, j is the

index for module pattern and k is the index of assembly tasks involved in the ijth pattern.

The task sequence is shown in Figure 3-10. Other task information such as processing

time and machine operating cost is given in Table 3-4. Since task L597 requires N

repetitive patterns, the processing time of tasks L591-L593 are N times the processing

time of performing one repetitive pattern at each single machine. The zoning constraints

require tasks for repetitive (L591-L593) and non-repetitive pattern (L594-L596) and the

57

final assembly (L597) not to be assigned to the same machine. Since tasks L594 and

L596 are essentially the same, they must be assigned to the same machine.

Table 3-3 Assembly tasks of repetitive pattern #5 & module #9

Task # Description

L591 Assembly of components A & D

L592 Assembly of components (AD) & A

L593 Assembly of components (ADA) & B & C

L594 Assembly of components E & A

L595 Assembly of components (EA) & C

L596 Assembly of components A & E

L597 Assembly of components (EAC) & R & (AE)

Figure 3-10 Task sequence graph for battery module assembly

Assume that there are two machines available for each machine type due to the

budget constraint. Figure 3-11 shows the initial configuration and the configuration after

the inner loop optimization. For example, tasks L591 and L592 can be processed in one

machine type and task L593 in another machine type. Tasks L594-L596 can be processed

in one machine with the same machine type as tasks L591&L592. Task L597 is assigned

58

to a third type machine, which stacks repetitive pattern and non-repetitive pattern

together.

For the outer-loop, one needs to find the optimal configurations for other

assembly sequences. Figure 3-12 gives the optimal configuration generated by repetitive

pattern case #8 and module assembly case #9. It has been found that repetitive pattern

cases #1, #2, #3, #5, #6, #7, #10, #11 (Table 3-1) and case #9 of the whole module (Table

3-2) yield the same configurations (Figure 3-11(b)) in the inner-loop optimization while

repetitive pattern cases #4, #8, and #9 (Table 3-1) and case #9 of the whole module

(Table 3-2) yield the same configurations (Figure 3-12). The configuration in Figure

3-11(b) is superior since it is cheaper (The cost difference is $470,000) while maintaining

the same throughput as the configuration in Figure 3-12. Similar procedure shall be

applied for other cases of the whole module pattern in Table 3-2.

3.3.2 Discussion

In the above example, the difference between processing time of the final stacker

and previous tasks for stacking repetitive patterns is not drastic. In the generated

configurations, repetitive patterns and non-repetitive patterns are processed on two

branch lines, respectively; and assembled in one machine in the final station. The

processing time for non-repetitive pattern is 15~35 seconds per product, which is

significantly smaller than the processing time for other stations (130~280 seconds per

product). To minimize the cost, tasks for stacking non-repetitive patterns could be

assigned to minimum number of machines without violating throughput constraint and

zoning constraint.

59

Table 3-4 Task information for the example problem

Task

(i)

Machine Type (j) Processing

Time (ti,j)

Machine

Cost (ci,j)

Zoning Constr.

ZS ZD

L591 Ejecting + Elevator t1,1=120 (sec) c1,1=10 L594-

L597

 Gantry Robot t1,2=158.44 c1,2=30

 Articulate Robot t1,3=180 c1,3=50

L592 Ejecting + Elevator t2,1=160 c2,1=10 L594-

L597

 Gantry Robot t2,2=196.86 c2,2=30

 Articulate Robot t2,3=210 c2,3=50

L593 Ejecting + Elevator t3,1=200 c3,1=10 L594-

L597

 Gantry Robot t3,2=255 c3,2=20

 Articulate Robot t3,3=280 c3,3=50

L594 Ejecting + Elevator t4,1=15 c4,1=10 L596 L591-

L593

&L597

 Gantry Robot t4,2=19.03 c4,2=30

 Articulate Robot t4,3=25 c4,3=50

L595 Ejecting + Elevator t5,1=25 c5,1=10 L591-

L593

&L597

 Gantry Robot t5,2=30.61 c5,2=20

 Articulate Robot t5,3=35 c5,3=50

L596 Ejecting + Elevator t6,1=15 c6,1=10 L594 L591-

L593

&L597

 Gantry Robot t6,2=19.03 c6,2=30

 Articulate Robot t6,3=25 c6,3=50

L597 Ejecting + Elevator t7,1=150 c7,1=100 L591-

L596

 Gantry Robot t7,2=180 c7,2=60

 Articulate Robot t7,3=260 c7,3=50

60

(a)

 (b)

Figure 3-11 System configuration before and after optimization for R#5 and Module#9

61

Figure 3-12 System configuration before and after optimization for R#8 and Module#9

If the difference between processing time of final stacker and previous tasks is big,

e.g., the final stacking task L597 has significantly longer processing time than all its prior

tasks, the final stacker becomes the bottleneck of the whole system. As a result, the inner-

loop optimization for all the assembly sequences generates a similar configuration, i.e.,

tasks prior to the final stacking are assigned to the minimum number of machines and

final stacking has two or more machines in parallel (to satisfy the demand). Figure 3-13

shows an example of the configuration after balancing and equipment selection for

repetitive pattern case #5 and case #9 of the whole module, given processing time of

5~30 seconds per product for all the stations prior to final stacker and 100~200 seconds

per product for the final stacking station. The throughput requirement is increased to

40JPH compared with around 15JPH requirement in the above example.

62

Figure 3-13 Different configuration when processing time between stations are

significantly different and throughput requirement is increased

3.4 Conclusion

This chapter develops a new approach for designing optimal assembly system

with complex configurations by jointly considering product design hierarchy, line

balancing, and equipment selection for a single product type. The system initial

configurations are automatically generated making use of the hierarchical and repetitive

composition of product designs. A two loop nested optimization algorithm with inner

loop and outer loop has been developed to explore all the possible assembly design

solutions based on the initial configurations. The outer loop iterates task grouping and

sequence generation and compares the performance responses among various

configurations. The inner loop explores all the feasible ways of task-machine assignments

and machine selection (type & quantity). Compared with the previous research on

assembly system configuration generation, the novel contributions of this work are the

generation of assembly system configurations considering product assembly hierarchy on

non serial task sequences, and the two loop nested optimization of task and assembly

sequence generation, equipment selection, and task-machine assignment and balancing.

63

Future research includes design of material flow path and control logic based on the

generated configuration, hybrid system configuration design for multiple products with

hierarchical assembly, and manufacturing system reconfiguration.

3.5 Nomenclature

i Index of tasks; i=1, 2...I;

j Index of machine types; j=1, 2...J;

k Label of machine for each type; k=1,2...KJ;

xi,j,k Decision variable;

yi,j Decision variable;

ti,j Processing time of each task i for the jth machine type;

cij Operating cost of performing task i on machine type j;

C0 Machine budget;

Mi,j Number of machine j used for task i;

Mi Total number of machines used for task i;

Th0 Throughput requirement;

gi(·I) Function of material flow relationship between task i and the final task

I; gi(·I)=1;

TM Set of task machine pairs for matching constraint;

ZS Set of task pairs for positive zoning constraint;

ZD Set of task pairs for negative zoning constraint.

64

CHAPTER 4

ASSEMBLY SYSTEM CONFIGURATION DESIGN FOR A

PRODUCT FAMILY

Traditionally, mixed-model assembly systems with a serial configuration are used

to manufacture families of products. Task variations associated with different models

cause “drift” in such an assembly line. “Drift” is defined as the deviation of system

processing time from the nominal cycle time. To more effectively deal with increased

product variety, the assembly system can be set up with more complex, non-serial

configurations, e.g., systems with multiple subassembly branch lines that converge to an

assembly line. Such complex configurations allow for pre-assembly of different

components on multiple lines simultaneously, thereby may potentially enhance the

system productivity and reduce drift. This chapter establishes a systematic method for

designing non-serial system configurations for a family of products. A new mathematical

definition for “drift” is introduced and a cumulative sum (CUSUM) analysis is proposed

to model the “drift”. Then the “drift” modeling is embedded in an optimal assembly

system design problem for task assignment to minimize cost and drift. The method is

developed based on a product family with tree type liaisons (no cycle in component

connections). A case study of battery pack manufacturing is conducted to demonstrate the

method. Conditions are identified when non-serial configuration with branches

outperforms conventional mixed-model line in drift reduction.

65

4.1 Introduction

Nowadays, a nearly endless variety of products is available on the market that can

meet almost each customer’s specific preferences and needs. In order to keep pace with

the fast development of technology and satisfy customers’ needs while maintaining a

reasonable cost, manufacturers tend to produce product variety through the sharing of

components. Many companies are developing product platforms and designing product

families in order to provide a sufficient variety of products for the market while achieving

low cost. Usually, a product family is defined as a group of related products that are

derived from a product platform to satisfy a variety of market needs but is characterized

by some common features, components, modules or subsystems [51]. Accordingly, a

product platform can be defined as “a set of common components, modules, or parts from

which a stream of derivative products can be efficiently developed and launched [52].”

Three types of product platforms have been observed in industry examples:

 Integral platform: In the integral platform, all the products in the family share

a single part, such as the telecommunications ground network for

interplanetary spacecraft [53].

 Modular platform: In the modular platform, products are customized by

adding, removing or replacing one or more functional modules [51]. For

example, Sony’s more than 250 models of its Walkmans
®

 are built on key

modules [54].

 Scalable platform: The scalable platform can be a subset of the modular

platform, in which products are developed by scaling the components or

modules to satisfy the market needs [51]. For example, Boeing’s many

66

airplanes are “stretched” or “shrunk” according to different applications for

transferring passengers and carrying cargo [55].

No matter which product platform a product family is developed from, a product

family is composed of common components or modules and variant components or

modules. Any given product within a family may have a unique component or module,

which is a special case of a variant component or module. Figure 4-1 shows a product

family architecture (PFA) [11]. Such an approach enabled high product variety at near

mass production cost. Figure 4-2 shows a battery product family example, including one

common plate module, two variant repetitive patterns and one unique interconnect cover

module.

Figure 4-1 A product family architecture (common components are in grey color, variant

components are in upward diagonal shape (M12, M14) or downward disgonal shape

(M22, M24), unique components are in white color)

67

Figure 4-2 Product family architecture for battery (one common plate module, variant

repetitive patterns which differentiate one from the other by either cell tab position or

cooling fin structure, one unique interconnect cover module)

Assembly system design requires the representation of assembly hierarchy and

components. In addition to the PFA method to represent the relationship among

components or modules in an assembly, several methods are available, such as liaison

graph, Bill-of-Material (BOM), precedence graph. Liaison graph is a graphical network

where nodes represent components and lines between nodes represent relations between

components, such as physical contact or joining. The assembly representation methods

for both a single product and a product family were reviewed by Hu et al. [11].

A tree type liaison graph is used to represent the topographic patterns for a battery

product family. Figure 4-3 shows the generalized liaison graph representation of the

battery example, where the grey circle represents common components (e.g. plates) and

white circle represents variant components, such as cells with tabs at either one side or

two sides, cooling fins with either air cool or liquid cool structure.

68

Figure 4-3 A liaison graph representation (grey circle represents common components

and white circle represents variant components)

Each product is composed of components or modules that are linked to each other

following certain topographic patterns, such as a tree type structure (without loop) as

shown in Figure 4-3. This chapter mainly studies the system configuration design method

for a family of products with a tree type structure. The method to identify

assembly/subassembly grouping given a liaison graph was introduced in Chapter 2.

After representing the relationship among components in a product family, the

design of an assembly system often begins with assembly precedence identification and

sequence generation [33-34]. Bourjault presented the first algorithm that generated all

feasible assembly sequences by a series of “yes” or “no” questions [18]. De Fazio and

Whitney built on Bourjault’s method, simplified the determination of precedence

constraints, and increased the size of the problem to accommodate assemblies with much

higher component numbers [19]. Lots of research took advantage of a computer aid for

automatic assembly sequence generation and planning [56-59]. Methods were also

developed to derive the assembly sequences from the disassembly sequences [24-25].

Those traditional assembly sequence generation methods are based on sequential task

sequences generation, i.e. adding one part at a time. Li et al. [16] considered concurrent

69

task sequences and adding more than one part at a time in generating all feasible

subassemblies. The method utilized a hierarchical subassembly decomposition to

facilitate automatic configuration of assembly systems for a single product and can

potentially enhance the system throughput.

Based on a set of feasible assembly sequences, the design of an assembly system

then creates optimal system configurations and balances the assembly system by

assigning tasks to machines and selecting appropriate machine types and quantities. In

order to handle a variety of products, different configurations have been designed. Figure

1-6 shows different system configurations: a serial configuration, a parallel configuration,

a serial system with parallel machines and a parallel system with serial machines.

After a configuration is chosen, assembly line balancing problem is to search for

the optimal assignment of assembly tasks to stations given precedence constraints

according to a pre-defined single or multi-objective goal: such as 1) minimize the idle

time, 2) minimize number of stations/minimize cost, 3) maximize system

productivity/throughput etc [11]. For multiple product assembly lines, two approaches

were suggested: 1) a mixed-model line which produces product variants on the same line

in an arbitrarily intermixed sequence, 2) a multi-model line which produces product

variants in a sequence of batches (Figure 4-4) [60].

Figure 4-4 Assembly lines for multiple products [60]

70

For both mixed-model line and multi-model line, because the production of

multiple products is executed on the same line, task variations associated with different

models cause “drift” in balancing such an assembly line. Drift represents the deviation

from the nominal cycle time, where positive drift describes the time exceeding the

predefined cycle time regarding one product variant and negative drift describes the time

during which no assembly work is needed regarding one product variant (Figure 4-5) [12-

13]. The ideal line balancing is to have neither bottleneck station nor idle station. Because

of the different assembly process characteristics of different model variants, “drift”, the

deviation from nominal cycle time, exists in line balancing for product variety.

Figure 4-5 Positive and negative drift in accordance with [12] and [13]

The existing research addressing the drift problem focused on serial line

balancing [61-65]. To more effectively deal with increased product variety, the assembly

system can be set up with more complex, non-serial configurations, e.g., systems with

multiple subassembly branches that converge to an assembly line (Figure 4-6). There is a

lack of research on non-serial system configuration design and drift analysis for product

variety. Furthermore, although drift has been discussed in the previous literature, there is

71

a lack of quantitative measurement of drift. This chapter describes a systematic method

for designing assembly system configurations for a family of products: a new

mathematical definition for “drift” is introduced; a CUSUM analysis is proposed to

model the “drift”; and the “drift” modeling is embedded in the optimal assembly system

design problem to minimize cost and drift.

Figure 4-6 Example of non-serial configuration

The remainder of the chapter is organized as follows. Section 4.2 introduces the

method of system configuration design for product variety. An overview of method is

discussed first and then the mathematical model is introduced. Section 4.3 presents an

example of system design given a battery product family configuration. Section 4.4 draws

the conclusions.

4.2 System configuration design for product variety

4.2.1 Method overview

The overall procedure for system configuration design for product variety still

follows a nested procedure for combinatorial optimization as discussed in Chapter 3.

Figure 4-7 shows the procedure highlighting the differences between this work and

previous research, and the contributions of this work. The differences and contributions

are: 1) Different from past research that focused on assigning tasks to machines in serial

72

configuration, this method considers complex, non-serial configurations for product

variety; 2) “Drift”, the deviation of system processing time from the nominal cycle time,

is mathematically defined and a CUSUM analysis is adopted to model the “drift”; 3)

“drift” modeling is embedded in the optimal assembly system design problem for product

variety; 4) Conditions are identified when non-serial configuration with branches

outperforms conventional mixed-model line in drift reduction. As shown in Figure 4-7,

the algorithm first takes several product designs in a product family as inputs. After

identifying the liaison relationship and precedence constraints, a joint liaison graph is

generated. Based on the joint liaison graph, the hierarchical subassembly decomposition

method as discussed in Chapter 2 (outer loop optimization) is used. The inner loop

optimization is formulated to minimize drift under a stochastic product demand mix. At

last, discussions are performed to identify conditions when non-serial configuration with

branches outperforms conventional mixed-model line.

Figure 4-7 Methodology overview for system configuration design for product variety

73

4.2.2 Mathematical representation of drift

Drift is defined as the deviation of system processing time from the nominal cycle

time [12]. Drift exists because of the stochastic changes of product demand mix over time.

Stochastic product demand mix

Because customer preferences may change over time period l=1 … L, the demand

of different products in a product family also changes. For example, at one time period,

the strategy may be to have a balanced distribution of products; at other time periods, the

strategy may be to have one or more primary products. Given the demand percentage of

each final product, the required percentage of each component can be calculated

correspondingly. For ease of mathematical representation, let 1 2(, , , , ,)l l l l

s m     be the

percentage of one variant component at time period l, and 1 2(, , , , ,)l l l l

t n     be the

percentage of another variant component, and so on. For example, as shown in Figure 4-8,

A and B are variant components, therefore AB (final product) has four variations. Let Q

denote the set of all possible assembly combinations,

  1 2 1 2| 1, , {(, , , , ,), (, , , , ,), }.l l l l l l l l

l l s m t nQ q l L whereq                

Determination of system processing time for different configurations

In order to formulate the mathematical representation of drift, system processing

time needs to be determined. System processing time is defined as the maximum

processing time among all machines. On each machine, the processing time is a weighted

sum of all processing times of different components. For example, in Figure 4-9, two

varieties of component A 1 2{ , }A A are loaded using machine A according to their demand

percentages, and two varieties of component B 1 2{ , }B B are loaded using machine B. The

74

Figure 4-8 Example of possible component and product variations and their demand

percentages representation (the percentages of variant component A are A1: l

1 , A2: l

2 ;

variant component B are B1: l

1 , B2: l

2 ; final products are A1B1: ll

11 , A2B2: ll

22 ,

A2B1: ll

12 , A1B2: ll

21)

final stacker (Machine C) assembles component A and B into different final

products 2 1 11 1 2 22{ , , , }A B A B A B A B . The system processing time is calculated as

1, 1 2, 2 1, 1 2, 2

1 1, 1 1 2 2, 2 1, 2 12 2 1 2 1 2,

max{ ,

}

,a load a load b load b load

a b asm a b asm a b asm a b asm

t t t t t

t t t t

   

       

  


 (1)

In general, the system processing time can be formulated as

(, ,...)1 1

1 2

1 2

max{ ...(...) }where

(, ,..., ,...,) is the percentage of one variant component at time period ,

(, ,..., ,...,) is the percentage of another variant

l
m nq l l

s t s t i is t

l l l l

s m

l l l l

t n

t t

l

 

   

   

 
  

1 2

component at time period ;

(, ,..., ,...,)...

 is the task time

l l l l

u o

i

l

t

   

 (2)

75

Figure 4-9 Example of processing time calculation

Mathematical representation of drift

Drift exists in the system because of the changes of product demand mix. For

example, at time period 1 (l=1), final products 2 1 11 1 2 22{ , , , }A B A B A B A B are produced

according to the ratio of {30%, 20%, 20%, 30%}; at time period 2 (l=2), final products

are produced according to the ratio of {25%, 25%, 25%, 25%} due to customer

preference change. This product demand mix continue to change over time period l=1 …

L. Since drift is defined as the deviation of system processing time from the nominal

cycle time and the product demand mix change is a continuous process, drift can be

formulated as 01
()m

l q

l m
C t c


  , which is similar to CUSUM analysis in statistical

quality control, where mq
t is the processing time at time m, 0c is the nominal cycle time.

76

The system processing time mq
t is a function of , , ,...    , therefore it changes due to the

changes of product demand mix. As shown in Figure 4-10, the system processing time

sometimes is greater than the nominal cycle time 0c , and sometimes is less than the

nominal cycle time.

Figure 4-10 System processing time vs planning horizon (time)

lC is the cumulative sum up to and including time period l. lC incorporates all the

information in the sequence of planning horizon. Figure 4-11 plots the positive drift and

negative drift from example in Figure 4-10. Ideally, 0~lC is expected at every

different time period l.

   
1

0 1 0 1 0

1 1

 () m l m

l l
q q q

l l l

m m

C t c C t c where C t c


 

 

        (3)

If the process is treated as a deterministic process, i.e. at every time period l, the

product demand mix is known, the total drifts of the assembly system over time period

l=1 … L, can be defined as

77

0

1 1 1

 ()m

L L l
q

l

l l m

C t c
  

   = |...|...|||| 21211 ctctctctctct Lqqqqqq
 (4)

Figure 4-11 Plot of the positive drift and negative drift

The absolute value is used because the imbalance of the assembly line can result

from either positive drift or negative drift, where positive drift represents the time

exceeding the optimal cycle time and negative drift represents the idle time for one or

more of the product variants [11].

The process can also be treated as a stochastic process, i.e. the product demand

mix follows a certain distribution, and therefore system processing time lq
t becomes a

random variable. Actually at the design stage of an assembly system, the changes of

product demand mix are unknown and the objective can only be set to minimize the

variation of drift. The detail is discussed in the objective function in section 4.2.4.

4.2.3 Generation of joint liaison graph

Given the liaison graph for each product, a joint liaison graph can be generated

according to Thomopoulos’s concept of a combined precedence diagram to join the

78

precedence relations of different models on a single diagram [66]. Precedence matrices

can be used to construct the joint precedence graph [67]. A precedence matrix is an

upper-triangular matrix with the entry to be either 1 or 0: if the processing of column task

requires the completion of row task, the entry is 1; otherwise, the entry is 0. Let AB =

{a1b1, a1b2, …, ambn} denotes all the task combination in the precedence matrix. So we

have:

1 2

1 1 1 1 2 1

2 2 1

1

 ...

...

...

...

... ...

n

n

m m m n

b b b

a a b a b a b

AB a a b

a a b a b

 
 


 
 
 
 

 where
1

0

j i

i j

task b is an successor of task a
a b

otherwise


 


A detailed discussion of combined precedence graph can be found in [66], [68] and [69].

A simple example using a battery product family is shown in Figure 4-12. A, B, C, D, E

denotes battery components. One battery has the assembly pattern as B-A-D-A-C-E, and

the other battery has the assembly pattern as B-A-A-D-A-C. Numbers 1-6 and T01-T06

denote the assembly tasks. Given the liaison graph for each battery product, their

precedence matrices can be generated as shown in Figure 4-12. Therefore, the joint

precedence matrix can be constructed according to the rule discussed above.

Furthermore, if there are any implied precedence relations, then the related entry in the

joint precedence matrix should also be 1. For example, in Figure 4-12, T06 is a successor

of T05, therefore T06 is the successor of every preceding tasks of T05. The joint liaison

graph can be generated based on the joint precedence matrix.

79

Figure 4-12 Precedence matrices and joint precedence graph (A-E circles denote the

battery components, where the dark circles differentiate batteries in a product family,

Numbers 1-6 denote the different assembly tasks)

4.2.4 Assembly system configuration design for product variety

This section describes a mathematical model for the inner loop optimization

including decision variables, objective functions and constraints. The optimization

problem explains task-machine assignment and workload balancing in assembly systems.

Decision Variables

A task-station assignment variable xi,k is used to represent whether or not a task is

assigned to a station.

,

1

0
i k

if task i is assigned to the kth station
x

otherwise


 


Nk is the number of machines for station k.

80

Objective function

The objective in this model is to design an assembly system by minimizing the

drift caused by different assembly process characteristics of different products in a family.

The main reason that drift exists is that product demand mix changes stochastically. The

percentages of variant components , , ,...    are assumed to be independent and they all

follow uniform distribution from 0 to 1, i.e. ~ (0,1)U . The system processing time mq
t is a

function of , , ,...    , therefore it changes at different time.

The objective is to minimize the variation of drift because of the stochastic nature

of system processing time. The objective function is expressed as:

0min (| - |)lq
Var t c

2 2

0 0 0

2 2 2

0 0 0

2 2 2 2

0 0 0 0

 (| |) [(| |)] [(| |)]

[()] 2 () [(| |)]

[()] 2 () [()] 2 ()

l l l

l l l

l l l l

q q q

q q q

q q q q

Since Var t c E t c E t c

E t c E t c E t c

E t c E t c E t c E t c

    

    

     

2 2

0(| |) [()] [()]l l lq q q
Var t c E t E t   (5)

Constraints

1) Task assignment constraint

This constraint specifies that each task must be assigned to one and only one

station.

,1
1

K

i kk
x


 (6)

2) Throughput constraint

This constraint ensures that the throughput satisfies the demand of final products

and can be represented by

81

,

1
0

I i i k
ki

t x
N

c
 (7)

3) Precedence constraint

This constraint ensures that the precedence relationship can be preserved.

, ,

1 1

,

:

K K

i k j k j

k k

j

k x k x task j and i

Set of tasks that must precede task j

 

      P

P

 (8)

4) Cost constraint

This constraint requires that total cost including operation penalty cost and

amortized annual station cost not to exceed the budget. Penalty cost is incurred due to

multiple tasks assigned in one station. If there are more assembly tasks to be processed in

one station, the penalty cost is larger. For example, Figure 4-13 explains the penalty cost

and station cost. Configuration 1 has one single station (K=1) with three parallel

machines. Each machine allows loading and assembling all the components (Cell, Fin,

Cell, and Frame denoted by C, F, C, Fr) at the same time. Configuration 2 has three

stations (K=3) with one machine at each station. Only the first station allows assembling

two components, and the other two stations only allow assembling one component at a

time. The station cost of configuration 2 is higher than configuration 1. The penalty cost

of configuration 1 is higher than the penalty cost of configuration 2 at each of its station

since more assembly tasks are processed at one station in configuration 1.

01

0

()

 is the penalty cost at the th station

 is the station cost

K

k kk

k

N c c G

c k

c

G is the budget


 

 (9)

82

Figure 4-13 Example configuration to explain penalty cost and station cost

5) Zoning constraint:

Some tasks must be assigned to the same station, and the other tasks cannot be

assigned to the same station. These constraints are known as positive and negative zoning

constraints. For example, tasks requiring similar manufacturing processes or a very

expensive machine may be assigned to one station in order to reduce station cost. Tasks

requiring different types of manufacturing processes or having certain safety

requirements usually cannot be assigned to the same station. The following two equations

represent positive and negative constraints, respectively.

, ,

, ,

, (,) --set of tasks that must be assigned to the same station

1,(,) --set of tasks that cannot be on the same station

u k v k

u k v k

x x u v ZS

x x u v ZD

 

  
 (10)

Solution Method

The problem is a mixed integer linear programming (MIP) problem that can be

solved by any integer programming solvers such as Gurobi.

83

4.3 Case study

This section demonstrates the configuration generation and line balancing method

using a case study of two battery module assemblies. “Drift” is compared between

different configurations.

4.3.1 Problem description and results

As shown in Figure 4-14, the repetitive pattern in all of the battery modules is the

same: cell-cooling fin-cell-frame. But the types of cell and cooling fin are different

depending on the cell tab position (one sided tab/two sided tab) and battery cooling

method (air cool/liquid cool), and their repeating time (N) is also different. Non-repetitive

components are added to the two ends of the repetitive pattern stack to form the module.

The whole module pattern is end plate + fin + N*(cell + fin + cell + frame) + end plate.

Figure 4-14 An example of assembly pattern of battery module

Let C, E, F, M denote the cell, end plate, cooling fin and frame respectively. The

assembly pattern for the whole module is E + F + N*(C + F + C + M) + E. Table 4-1

shows the enumeration results for the repetitive pattern and Table 4-2 shows the

84

enumeration results for the whole module. If there are no constraints applied, there are a

total of 11 possible sequences generated in each case [15].

Table 4-1 Enumeration results for the repetitive pattern

Case# 1 2 3 4

Seq. ((CF)CM) (((CF)C)M) ((CF)(CM)) (C(FC)M)

Case# 5 6 7 8

Seq. ((C(FC))M) (C((FC)M)) (CF(CM)) (C(F(CM)))

Case# 9 10 11

Seq. ((CFC)M) (C(FCM)) (CFCM)

Table 4-2 Enumeration results for the battery module (“R” represents repetitive pattern)

Case# 1 2 3 4

Seq. ((EF)RE) (((EF)R)E) ((EF)(RE)) (E(FR)E)

Case# 5 6 7 8

Seq. ((E(FR))E) (E((FR)E)) (EF(RE)) (E(F(RE)))

Case# 9 10 11

Seq. ((EFR)E) (E(FRE)) (EFRE)

Given the demand percentage of four final battery modules, the required

percentage of components can be calculated correspondingly. For ease of mathematical

representation, let  1 1, 1l l  be the demand percentage of cell C1 and C2 at time l,

 2 2, 1l l  be the percentage of cooling fin F1 and F2 at time l, respectively. For

example, if the required demand percentage for each product is 1/4 of the total demand,

1 2 0.5l l   is needed to achieve the target throughput. Table 4-3 shows the possible

product variations and their demand percentages. Among them, the repeating time for

product 1 and 4 is N1=N4=12; for product 2 and 3 is N2=N3=10.

85

Table 4-3 Product variety representation and demand percentage

Product # Product Variety Demand Percentage

Product 1 EF1(C1F1C1M)E or EF1R1E
1 2

l l 

Product 2 EF2(C1F2C1M)E or EF2R2E
1 21()l l 

Product 3 EF1(C2F1C2M)E or EF1R3E
1 2(1)l l 

Product 4 EF2(C2F2C2M)E or EF2R4E
1 2(1)(1)l l  

To illustrate the optimization procedure, consider case #2 as the battery assembly

repetitive pattern. Table 4-4 lists the assembly tasks for the repetitive pattern. The task

sequence is shown in Figure 4-15. Assume the base cost for assembling one task at each

machine is $1M, and proportionally increases as the # of assembly tasks increases at one

machine. Zoning constraints require that the assembly tasks cannot all be assigned to one

station with parallel machines because of the practical issues, such as redesign of

machine tools and reliability issues etc. Amortized annual station cost c= $0.5M. The task

processing time is given in Table 4-5. Given the throughput requirement as 150,000

modules per year (0 30Th JPH), the target cycle time (0c) is 120 second. Table 4-6

shows the optimization results for repetitive pattern case #2. Similarly, perform

optimization algorithm to all the repetitive patterns. The results are summarized and

shown in Figure 4-16. Under current condition, non-serial configuration with branches

(configuration 4) outperforms conventional serial line (configuration 3) in drift reduction

given the same cost.

Table 4-4 Assembly tasks description

Task # Description

L01 Assembly of components C & F (C1F1 or C1F2 or C2F1 or C2F2)

L02 Assembly of components CF & C

L03 Assembly of components CFC & M

86

Figure 4-15 Task sequence graph for battery repetitive pattern assembly

Table 4-5 Processing time for the example problem

Loading
1 2secCt  2 3secCt  1 2secFt  2 3secFt  sec2Mt

Assembly

(2 components)
31,1 FCt 42,1 FCt 41,2 FCt 52,2 FCt …

Assembly

(3 components)
1, 1, 8F C Mt  2, 1, 9F C Mt  1, 2, 9F C Mt  2, 2, 10F C Mt  …

Assembly

(4 components)
1, 1, 1, 10C F C Mt 

1, 2, 1, 11C F C Mt 

2, 1, 2, 11C F C Mt 

2, 2, 2, 12C F C Mt 

…

Table 4-6 Optimization results for case #2

Configuration Drift and Cost Calculation

(sec)222)89(8143|)(|: 2

0  ctVarDrift lq

)($5.6)5.02(*2)5.01(*1)(:
1

MccNCost
K

k kk  

(sec)208)100(10208|)(|: 2

0  ctVarDrift lq

)($5.6)5.01(*1)5.02(*2)(:
1

MccNCost
K

k kk  

(sec)153)108(11817|)(|: 2

0  ctVarDrift lq

)($5.4)5.01(*1

)5.01(*1)5.01(*1)(:
1

M

ccNCost
K

k kk



 

87

(a) candidate configurations

(b) drift comparison among candidate configurations

(c) cost comparison among candidate configurations

Figure 4-16 Optimization results for all the repetitive patterns (a) candidate

configurations (b) drift comparison (c) cost comparison

88

4.3.2 Discussion

In the above example, given the processing time as shown in Table 4-5, non-serial

configuration with branches outperforms conventional serial line in drift reduction under

the same cost. If the assembly time on the bottleneck machine is reduced due to faster

machines, and the loading and other assembly times are kept the same as shown in Table

4-7, the drift comparison between conventional serial line and non-serial configuration

with branches are shown in Figure 4-17. Under this condition, the conventional serial line

(configuration 3) outperforms non-serial configuration with branches (configuration 4) in

drift reduction under the same cost.

Table 4-7 Processing time (assembly time on the bottleneck machine is reduced

compared with the case study)

Loading
1 2secCt  2 3secCt  1 2secFt  2 3secFt  2secMt 

Assembly

(2 components)
1, 1 2C Ft  1, 2 3C Ft  2, 1 3C Ft  2, 2 4C Ft  …

Assembly

(3 components)
1, 1, 8F C Mt  2, 1, 9F C Mt  1, 2, 9F C Mt  2, 2, 10F C Mt  …

Assembly

(4 components)
1, 1, 1, 10C F C Mt 

1, 2, 1, 11C F C Mt 

2, 1, 2, 11C F C Mt 

2, 2, 2, 12C F C Mt 

…

Figure 4-17 Drift comparison between serial line and branched line

89

An automatic algorithm is implemented in a Graphical User Interface (GUI) as

shown in Figure 4-18. In practical, engineers can input a range of task processing times

and obtain the optimal configurations with smallest drift and cost.

Figure 4-18 Graphical user interface (taking the processing time as inputs and generating

configurations and drift comparison as outputs)

The above results show “on average” under certain condition, which

configuration is better in drift reduction given the same cost (e.g. non-serial configuration

with branches or conventional serial line). Figure 4-19 shows the drift comparison

between two configurations when the process data is changed. When α1 is fixed,

20 0.6  , the drift of serial line is bigger than that of the branched line. Same

conclusion can be drawn when 2 0.7  . Otherwise, the drift of branched line is bigger

than that of the serial line. Similar conclusions can be summarized and provided as

engineering guidelines.

90

Figure 4-19 Drift comparison between conventional serial line and non-serial

configuration with branches (when α1=0.1, and α2 changes from 0-1)

In the assumption, the percentages of variant components , , ,...    are assumed

to be independent and they are assumed to follow uniform distribution from 0 to 1,

i.e. ~ (0,1)U . If the percentages of variant components are not independent, nor they

follow uniform distribution, the solution won’t change. Since

2 2

0(| |) [()] [()]l l lq q q
Var t c E t E t   (5)

Where (, , ,...)lq l l lt f   

() (, ,...) (, ,...)

(, ,...) () () ()

(, ,...) ()

(, ,...) (|) ()

lq l l l l l l

l l l l l l

l l l l

l l l l l l l

E t f p d d

f p p d d independence

f d d uniform distribution

f p p d d

     

     

   

      

















 (11)

Therefore, our solution in calculating the drift is a conservative solution.

91

4.4 Conclusion

This chapter develops a new approach for designing optimal assembly system

configuration when a system processes multiple products in a product family. The

stochastic product demand changes cause “drift” in balancing such an assembly system.

By considering not only traditional assembly system configurations (serial, parallel

stations) but also complex configurations with branches, the method explores the optimal

ways of configuration generation and line balancing for a product family in order to

minimize the total drift and cost. Compared with the previous research on assembly

system configuration generation for a product family, the novel contributions of this work

are the generation of complex assembly system configurations with branches, drift

definition and modeling, the formulation of guidelines for engineers in practice. Future

research includes design of material flow path and control logic based on the generated

configuration and manufacturing system reconfiguration.

92

CHAPTER 5

AN ASSEMBLY SYSTEM CONFIGURATOR FOR AUTOMOTIVE

BATTERY PACKS

High power and capacity lithium-ion batteries are being adopted for electrical

vehicle applications. The assembly processes for such batteries are influenced by battery

cell designs, such as cell type, geometry, tab shape/position, module stack form and

repetitive patterns, which require proper assembly equipment for cell handling and

joining. Since battery technology is progressing rapidly, a lot of new battery designs are

emerging on the market. A math-based tool, Assembly System Configurator, is developed

for designing reconfigurable battery assembly processes and systems in a cost-effective

way. The Configurator implements the methods developed in chapter 2-4 by automating

the tasks of assembly task generation, sequence planning, equipment selection, assembly

line balancing and throughput optimization. The structure of the Configurator is

introduced and its capabilities are demonstrated using a battery case study.

93

5.1 Introduction

Lithium-ion batteries are one of the key enabling technologies for the

electrification of automobiles because of their advantages over conventional batteries:

higher energy density, lighter weight, longer life, and lower toxicity [2]. However, cost-

effective manufacturing of lithium-ion batteries for electrical and hybrid electrical

vehicles (EV/HEV) has not yet been fully developed. Efficient, flexible, and reliable

battery assembly automation is needed for two following reasons: 1) A variety of new

battery pack designs and their changing demand rates require the assembly system to be

flexible and reconfigurable. The battery designs include variations in cell type, geometry,

tab shape/position, module stack form and repetitive patterns; 2) The high current and

voltage in battery cells, modules and packs require automatic assembly and material

handling.

Systematic approaches do not yet exist for addressing the relationship between

battery module/pack configurations and battery assembly processes. Therefore, a math-

based tool, Battery Assembly System Configurator, is being developed such that the

battery assembly systems can be optimally designed by automating the tasks of assembly

task generation, sequence planning, equipment selection, assembly line balancing and

throughput optimization. By implementing the methods discussed in chapter 2-4,

Configurator establishes the framework and basis for developing cost-effective

manufacturing of vehicle battery, therefore has its practical application.

The Battery Assembly System Configurator is programmed in Visual Basic and an

Excel-based data structure. With a database of assembly equipment and technology and

the product information provided by the user through user interfaces, the Configurator

94

can sort and analyze the data and then report a set of candidate assembly machines with

process specifications and performance measures for system configuration designs and

optimization.

The remainder of the chapter is organized as follows. Section 5.2 introduces

battery module/pack designs and their appropriate assembly processes. Section 5.3

discusses the methodology implemented in the Configurator, including automatic system

configuration generation, optimization for task assignment and equipment selection, and

throughput analysis. The structure of the Configurator is also presented. Section 5.4

demonstrates the Configurator with an example of system design given a battery

configuration. Section 5.5 draws the conclusions and suggests future work.

5.2 Battery module/pack designs and their assembly processes

A lithium-ion battery pack usually has a hierarchical structure consisting of

several modules with each module consisting of multiple battery cells and ancillary

members, such as frames, cooling fins, and compression foams, as shown in Figure 1-5.

Three types of battery cells are commonly seen today: the prismatic cell with a rigid case

or container, the prismatic cell with a pouch, and the cylindrical cell with a rigid can.

Their shapes and types determine the module/pack configurations and the assembly

methods. Battery tab positions (one-sided or two-sided) may also influence the selection

of the assembly method. The tab type, stud or foil, mainly influences the methods of

joining cells [70].

Figure 5-1 shows the process flow of battery assembly involving four operations:

loading, inspection and sorting, stacking, and clamping to module or pack. First, battery

cells and auxiliary components are loaded from feeders or crates onto the assembly line.

95

Then the battery cells are inspected and sorted according to their properties (type, size,

tab shape and tab position), conditions (good, damaged, defective, low performance) and

different electrochemical characteristics (capacity, voltage) by optical, electrical,

ultrasonic, X-ray or mechanical sorting devices. Battery components are assembled and

aligned into a stack by appropriate stacking equipment. Each stack is then clamped or

strapped with end plates. Upon the completion of these four operations, the cells are

welded together into a battery module. Finally several battery modules are mechanically

connected to form a battery pack.

Figure 5-1 Battery module assembly procedures

In the above battery assembly process, stacking and joining are the two most

important assembly operations for determining assembly productivity and quality.

Meanwhile, they also present major challenges to production automation and flexible

system design. Therefore, this chpater will focus on those two critical operations.

5.2.1 Automatic stacking methods

The methods for automatic stacking of components can be categorized into two

types: roll and eject; pick and place. This section reviews these two automatic stacking

methods and discusses their applications to battery assembly.

96

Roll and eject

Roll and eject is a fast assembly method using conveyor belt to roll or transport

the parts to be stacked and eject them into a stacking bucket with the aid of gravity or an

elevator which can move up or down to form a stack (Figure 5-2). Figure 5-2(a) shows

the stacking bucket which may have a slightly inclined bottom so that the parts in the

bucket can slide to align themselves against the bucket wall. This stacking method is

mostly used for stacking non-fragile, light-weight and thin parts, such as newspaper and

printing materials [71-74], but not suitable for battery cells which either are too heavy or

have tabs with carefully bent geometry for welding.

Roll and eject using an elevator (Figure 5-2(b)) is very robust for extensive

stacking applications, like food packaging and video cassette stacking [75]. With little or

no falling distance controlled by the elevator, the impact of stacking motion is limited to

the edge stopped by the guide of the stack. Prismatic cells should be good candidates for

this kind of stacking methods. Still, care needs to be taken to turn the battery cell tabs

away from direct contact with the stacking guide of the elevator.

 (a) (b)

Figure 5-2 Roll and eject method: (a) into a stacking bucket; (b) using an elevator

97

Pick and place

The pick and place method uses robots or mechanized grippers to fetch and place

individual parts and thereby form a stack. Based on their configurations and degrees of

freedom (DOF), four types of robots can be found commercially available, i.e., SCARA

(Selective Compliant Assembly Robot Arm) robots (Figure 5-3(a)), PKM (Parallel

Kinematic Machine) robot (Figure 5-3(b)), articulate robots (Figure 5-3(c)), and gantry

robots (Figure 5-3(d)) [5].

 (a) (b)

(c) (d)

Figure 5-3 Pick and place robots [5]

The SCARA robot normally has four DOF with a set of serially jointed and

motorized arms that is compliant in the X-Y directions, but stiff in the Z direction. It is

98

particularly suitable for stacking parts that do not need sophisticated manipulation. This

type of robots is fast, precise, compact and low cost and thus has been extensively used in

the electronics industry.

The relatively new PKM robot has four or more DOF with multiple sets of arms

that are connected to a moving platform (end effector). Through coordinated actuation at

the base of each arm, the robot can pick and place parts as the conventional robots. Due

to its light-weight and non-motorized arms, the robot has the fastest acceleration and

speed among all types of robots for applications. For battery assembly, this type of robots

may satisfy the speed requirement of stacking; however, its positioning accuracy or

repeatability can be a concern.

The articulate robot typically has six DOF with a set of serially articulated and

motorized arms. The robot is the most flexible in applications and commercially available

with a wide range of reach and payload. It is heavier, slower and more expensive than the

SCARA robot, but its flexibility for other applications can be an important consideration

in flexible or reconfigurable manufacturing systems.

The gantry robot has three axes that move linearly in the Cartesian or XYZ

coordinates. This type of robots usually is the most accurate and customizable to various

work range, payload and DOF. In fact, the robot can be scaled down to two DOF, and

thus called mechanized module here, for simple pick and place operations. In many

applications, the linear movements of the axes afford the gantry robots to relocate parts

without the need of an extra rotary axis to adjust part orientation as other types of robots

have. The fixed rails of the axes, unfortunately, make this type of robots the poorest in

space utilization.

99

5.2.2 Joining methods

Lee et al [70] have conducted a comprehensive review of the state-of-the-art

battery joining technologies. In developing the Configurator, automatic

assembly/stacking methods are our main focus, but the Configurator has the capability to

handle joining as well.

5.3 Battery assembly system configurator

The overall method implemented in the Configurator for the system configuration

generation and optimization is shown in Figure 3-4. This method adopts the nested

framework proposed in [16] to model the relationship between the product design and

system configuration. The detailed method has been introduced in chapter 3.

5.3.1 Configuration generation

Different sequences and system configurations can be used to assemble

components for a given stacking pattern in a battery pack. For example, components can

be added one at a time, leading to serial sequences. Alternatively, all the components can

be assembled at one station with flexible machines, resulting in a parallel operation.

Various hybrid assembly sequences can also be obtained by pre-assembling different

number of components into subassemblies which in turn are assembled with other

components or subassemblies. Webbink and Hu [26] proposed an automated distribution

method to enumerate all the possibilities of different combinations of stations which are

of serial or parallel configuration. The assembly sequence and configuration generation

problem is to enumerate all the non-repetitive ways of hierarchically grouping n

elements. A complete description of the algorithm can be found in chapter 2.

100

5.3.2 Optimization for task assignment and equipment selection

Enumeration in the outer loop generates the candidate assembly tasks/task groups,

sequences, and initial configurations. The inner loop changes each initial configuration

by assigning the tasks to the selected machines. A mathematical model for the inner loop

optimization including task-machine assignment, workload balancing and machine type

and number selection in assembly systems is described in chapter 3.

In order to speed up the optimization, the model is simplified to the following:

consider the assignment of task to machine type (xi,j), and determine the optimized

number of machines (Nj) to satisfy the throughput constraint at the same time.

Decision variables

A task-machine assignment variable xi,j is used to represent whether or not a task

is assigned to a machine type.

,

1

0
i j

if task i is assigned to the jth machine type
x

otherwise


 


Nj is the quantity for machine type j.

Objective function

The objective in this model is to balance an assembly system by minimizing the

total equipment investment cost while ensuring the throughput requirement, i.e.,

1 1
min

I J

ij i ij j ji j
G Th c h x N c

 
   (1)

Where ci,j is the operation cost to process task i on machine type j, cj is the

amortized annual cost on machine type j, and hi is the number of repetition required to

produce one unit of the product. Th is the actual throughput.

101

Constraints

(1)Task assignment constraint.

This constraint specifies that each task must be assigned to one and only one type

of machine.

 ,1
1

J

i jj
x


 (2)

(2)Task-machine matching constraint

Certain engineering experiences may require a set of tasks not to be assigned to

certain machine type, i.e.,

, 0,(,) m nx m n TM set that task m cannot be assigned to machine type n   (3)

(3) Throughput constraint

This constraint ensures that the throughput satisfies the demand of final products

and can be represented by

, ,

1
0

I i j i j

ji

t x
N

c
 (4)

Where c0 is the system cycle time.

 (4) Task zoning constraint

There are two types of zoning constraints in the simplified model. The first type

of zoning constraint forbids some of the tasks to be assigned to the same machine. Let

S={s1,s2,…} be a set of task groups. Each task group consists of tasks that are compatible

to each other. For any task i∈s and any task i'∈s', s∈S, s'∈S, s≠s', i and i' cannot be

assigned to the same machine, i.e., they are incompatible. With such type of constraints,

the original optimization problem can be divided to a set of sub-problems. Each sub-

problem is to find an optimized configuration for a task group.

102

The second type of zoning constraint requires tasks within the same group be

assigned to the same machine type:

, , , 1,... ,

(,) - -

u j v jx x j J

u v ZS set of tasks that must be assigned to the same machine type

 


 (5)

5.3.3 Software implementation

Figure 5-4 shows the structure of Assembly System Configurator, including two

engines: process engine and system engine.

Figure 5-4 Structure of Assembly System Configurator

The process engine has 1) user interfaces for inputting battery designs (cells,

frames, fins, foams), specifications (size, weight), manufacturing requirements (demand,

working days, shifts) etc; 2) database and query algorithms constructed for equipment

103

selection and machine capability calculation; 3) configuration generation algorithms

given a hierarchical structure of battery design. The system engine is the design and

optimization module in the Configurator. The outputs of the process engine (enumeration

of the candidate initial configurations, candidate equipment, cycle time and cost) are fed

into the system engine to generate the optimal assembly line given several assembly

conditions (Takt time, floor layout requirement etc) and the budget.

The process engine of the Configurator has an Excel based framework (Figure

5-5). Both the equipment databases and the user interfaces are stored in Excel. While

users answer questions in user interfaces, the product information is stored in an Excel

spreadsheet and compared with candidate equipment at each stage, and one or several

candidate machines are selected. The ID numbers of the potential machines are

transferred to Access by Access DLL or Data engine (JET or ACE) to retrieve the full

information of candidate machines and thus generate reports. The report is then saved in

.pdf format and displayed to the user.

Figure 5-5 Framework of process engine

104

5.4 Case study

This section demonstrates the Configurator using a case study of a battery module

assembly.

5.4.1 Problem description

The core of a battery module is a stack of battery cells and auxiliary components,

such as repeating frames, cooling fins, and compression foams. As shown in Figure 5-6,

most of the components are stacked in a repetitive pattern, such as A-B-C-B-D, where A,

B, C, D denote the cell and ancillary components. Such a pattern repeats a number of

times (N) to form the whole module stack.

Figure 5-6 An example of assembly of battery module

5.4.2 Configurator demonstration

The Configurator first takes a series of product and process related inputs, such as

production rates, working days, battery cell type and specifications, battery tab shape and

position etc. (Figure 5-7) in order to generate a report with candidate assembly equipment

105

selection, and specifications of machines (payload, work space, reach and cycle time).

(Figure 5-8)

Figure 5-7 Configurator interface 1

Figure 5-8 Configurator output report

The Configurator can generate all the candidate system initial configurations and

sequences for the repetitive pattern with the user input as shown in Figure 5-9. Up to four

106

different repetitive patterns can be input by the user, albeit this battery example needs

only one.

Figure 5-9 User input of repetitive patterns

Figure 5-10 shows the configuration output of the Configurator. Without any

assembly constraints, there are 45 candidate system configurations, which are all

represented in alphanumerical characters and parentheses. The symbolic representation

can then be displayed in a graphical layout as shown in Figure 5-10. The blue icons

represent loading equipment and the green icons represent stacking equipment.

Figure 5-10 Automatic generation of initial configurations and sequences

A B C B D

107

The design and optimization module of the Configurator has interfaces for

selecting machines from the candidate lists (Figure 5-11), inputting zoning constraints

(Figure 5-12), and revising cycle time and cost data if necessary (Figure 5-13). The

candidate machine lists, cycle time and cost data are taken from the previous selection

and calculation. The optimal assembly line is generated in a report with appropriate task

assignment and equipment selection (Figure 5-14).

Figure 5-11 Machine selection

108

Figure 5-12 Zoning constraints

109

Figure 5-13 Cycle time and cost data

Figure 5-14 Report for optimal assembly line

5.4.3 Performance evaluation

The output of the Configurator is input to a throughput simulation model as

shown in Figure 5-15. The purpose of using a simulation model for performance

110

evaluation is to explore the most effective production control and production line layout

for the assembly operations [76-77]. The optimal assembly line configuration with task

assignment and machine cycle time is needed to build the simulation model in Witness as

shown in Figure 5-16. Seven machines are used (green icons in Figure 5-16) with some

machines for loading components, some machines for stacking cells and ancillary

components, the last machine for final stacking all the components together.

Figure 5-15 Flowchart of configurator and simulation model

Figure 5-16 Simulation model in Witness

111

The performance measures studied in this research include the system throughput,

the work-in-process level, the buffer size deployments, and the system robustness to

uncertainties such as machine failures and part scraping rates. Some critical control issues

and their impacts on the overall system performance are explored. These control issues

include: different production line layouts and the number of independent conveyors for

material handling required in the system, the pull and push production mechanisms and

their impact on the system throughput and the WIP.

Figure 5-17 shows the throughput results when one of the control procedures is

changed: control the re-allocation of the tasks from an expensive machine (final stacker)

to other machines. From the simulation model, a significant throughput improvement can

be observed and proper re-allocation level can also be concluded: Case 2 in this example,

since further re-allocation cannot change the throughput.

Figure 5-17 Throughput results when control procedure is changed

112

5.5 Summary and future Work

This chapter presents the methodology and implementation of a math-based tool,

an Assembly System Configurator for automotive battery packs. The Assembly System

Configurator integrates functions of process planning and optimal system configuration

generation given the current and possible future generations of products.

Future work for continuous improvement of Configurator includes: test running of

more product design cases in Battery Assembly Configurator and attempts to calibrate the

modeling and decision making.

5.6 Nomenclature

i Index of tasks; i=1, 2...I;

j Index of machine types; j=1, 2...J;

xi,j Decision variable;

Nj Decision variable;

ti,j Processing time of each task i for the jth machine type;

cij Operating cost of performing task i on machine type j;

cj Amortized annual cost on machine type j;

hi The number of repetition required by the throughput requirement;

Th Actual throughput;

c0 System cycle time;

ZS Set of task pairs for type two zoning constraint;

113

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Summary and conclusions

Motivated by the battery assembly problem, several research opportunities in

manufacturing system design have been addressed and the related literature and the state

of the art of battery module/pack designs and their assembly processes are reviewed.

Compared with the previous research on assembly system design and configuration

generation, this work has the following novel contributions:

 A new approach for assembly sequence generation is developed by exploiting

the product design patterns and identifying assembly hierarchies and

sequences. Unlike previous algorithms of assembly sequence generation, the

method identifies assembly hierarchies that enable parallel assembly

sequences or tasks. Such a characterization of the assembly hierarchy is the

key to designing system with the complex configuration with subassembly

branches. The efficient, exhaustive computational subassembly decomposition

method ensures a truly optimal system can be identified and provides enough

candidate systems for special considerations.

 A new method is developed to jointly consider product design, configuration

generation, line balancing and equipment selection. Conventional

manufacturing system balancing mainly focuses on serial configurations. Our

114

method deals with balancing of systems with various configurations along

with process planning and equipment selection. The results show that non

serial configurations with subassembly branches outperform serial

configurations, resulting in enhanced system performance (throughput and

cost).

 A novel method is developed to design system configurations under stochastic

product demand mix. The “drift” problem is mathematically defined and

incorporated into the optimization. The method is unique in delivering a

system with subassembly branches through joint decision making over

possible configurations and all subassembly branches.

 All these methods are implemented in a software package for system

configuration, “Assembly System Configurator,” developed to integrate

functions of process planning and optimal system configuration generation

given the current and possible future generations of products.

6.2 Future work

The future research goal is to develop a reconfigurable battery assembly system

with hybrid configurations under product variety and uncertainty. Figure 6-1 shows the

research accomplishments (Chapter 2-5) and future work or research plan (bolded) which

is described below.

 Novel algorithm of system reconfiguration with known product evolution:

Given information on product design changes, a method is needed to identify

system reconfiguration solutions. As shown in Figure 6-2, as the new product

type PN+1,PN+2…etc are considered, assembly system that was designed for

115

products P1…PN will need to be reconfigured by

adding/removing/reconnecting machines, reselecting equipment, or

adding/changing buffers. An appropriate reconfiguration will be able to

reduce reconfiguration cost while ensuring system performances.

Figure 6-1 Research accomplishments and research plan

Figure 6-2 System reconfiguration under product evolution

116

 New method of system configuration and reconfiguration under stochastic

product evolution: Product design changes are rarely deterministic because of

unpredictable market environments, customer orders, and technological

advancement. A new method is needed to minimize the total configuration

and reconfiguration cost considering the product evolution uncertainty.

117

BIBLIOGRAPHY

1. K. Aleklett and C.J. Campbell, “The peak and decline of world oil and gas

production”, Uppsala 2003, www.peakoil.net

2. D. Linden and T.B. Reddy, Handbook of Batteries, 2002, McGraw-Hill, New

York

3. Y. Koren and M. Shpitalni, “Design of reconfigurable manufacturing systems”,

Journal of Manufacturing Systems, Vol 29, Issue 4, Oct 2010, pp 130-141

4. G. Berdichevsky, K. Kelty, J.B. Straubel and E. Toomre, “The Tesla Roadster

Battery System”, Tesla Motors, Aug 16, 2006

5. S. Li, H. Wang, S. J. Hu, Y.T. Lin and J. Abell, “Review of high capacity battery

module/pack designs for electric vehicles and their implications to assembly

process automation”, Proceedings of ASME (American Society of Mechanical

Engineers) – MSEC 2010 Manufacturing Science Engineering Conference

(MSEC), Oct 12-15, 2010, Erie, PA

6. Http://gm-volt.com/2010/03/26/gm-exec-gen-3-voltec-battery-to-have-shortened-

lifespan-simpler-shape-and-be-offered-in-smaller-ranges/, GM Exec: Gen 3

Voltec Battery to Have Shortened Lifespan, Simpler Shape, and be Offered in

Smaller Ranges, Accessed July 16th, 2012

7. http://www.batteryuniversity.com/parttwo-34.htm, Accessed July 16th, 2012

8. http://www.prba.org/, The rechargeable battery association, Accessed July 16th,

2012

118

9. J. Kurfer, M. Westermeier, and G. Reinhart, “Cell stacking process of high-

energy lithium-ion cells”, Proceedings of the 4
th

 CIRP conference on assembly

technologies and systems, May 20-22, 2012, Ann Arbor, MI

10. A. Tornow and A. Raatz, “Conceptual DFA method for electric vehicle battery

systems”, Proceedings of the 4
th

 CIRP conference on assembly technologies and

systems, May 20-22, 2012, Ann Arbor, MI

11. S.J. Hu, J. Ko, L. Weyand, H.A. ElMaraghy, T.K. Lien, Y. Koren, H. Bley, G.

Chryssolouris, N. Nasr, and M. Shpitalni, “Assembly System Design and

Operations for Product Variety”, CIRP Annals–Manufacturing Technology,

2011.05.004

12. W. Eversheim, I. Abels, “Simulationsgestützte Personaleinsatzplanung in Der

Pkw-Endmontage (Simulation-Based Staff Planning in the Field of Final

Assembly of Cars)” in J. Bayer (Ed.) et al., Simulation in Der

Automobilproduktion, Springer, 2003, pp. 61–70

13. L. Weyand, “Risikoreduzierte Endmontageplanung Am Beispiel Der

Automobilindustrie (Risk-Reduced Final Assembly Planning in the Automotive

Industry)”, Dr. -Ing. Dissertation. Universität des Saarlandes, Germany

14. S. Li, H. Wang, S.J. Hu, “Assembly system configuration design for a product

family with tree type assembly liaisons,” submitted to ASME Journal of

Manufacturing Science and Engineering, 2012

15. Y.T. Lin, H. Wang, C.H. Shao, S. Li, S.J. Hu, “Computational assembly task and

sequence generation for battery stack assembly system with hybrid

119

configurations,” submitted to IEEE Transactions on Automation Science and

Engineering, 2012

16. S. Li, H. Wang, S.J. Hu, Y.T. Lin, J. Abell, “Automatic generation of assembly

system configuration with equipment selection for automotive battery

manufacturing,” Journal of Manufacturing Systems, Volume 30, Issue 4, Oct

2011, Pages 188-195

17. S. Li, Y.T. Lin, H. Wang, S. Yang, C. Chen, S.J. Hu, J. Abell, “An assembly

system configurator for automotive battery packs,” the 10
th

 International

Conference on Frontiers of Design and Manufacturing, June 10-12, 2012,

Chongqing, China

18. A. Bourjault, “Contribution a nue approche methodologique de l’ assemblage

automatise: Elaboration automatique des sequences operatiores”, Thesis to obtain

Grade de Docteur es Sciences Physiques at L’ Universite de Franche-Comte, 1984

19. T.L. De Fazio and D.E. Whitney, “Simplified generation of all mechanical

assembly sequences”, IEEE J. Robot. Autom., 3, 640-658, 1987

20. L.S. Homem de Mello and A.C. Sanderson, “Representations of mechanical

assembly sequences”, IEEE Trans Robotic Autom, 7, 211-227, 1991

21. M. Santochi and G. Dini, “Computer aided planning of assembly operations: the

selection of assembly sequences”, Robot CIM-Int Manuf, 9, 439-446, 1992

22. T. Gu, Z. Xu and Z. Yang, “Symbolic OBDD representations for mechanical

assembly sequences”, Comput Aided Des, 40, 411-421, 2008

120

23. F. Demoly, X.T. Yan, B. Eynard, L. Rivest and S. Gomes, “An assembly-oriented

design framework for product structure engineering and assembly sequence

planning”, Robotics and Computer-integrated manufacturing, 27, 33-46, 2011

24. Y.Q. Lee and S.R.T. Kumara, “A scheme for mechanical assembly design and

assembly line layout conceptualization”, Computers in Industrial Engineering, 27,

261-264, 1994

25. U. Roy, P. Banerjee and C.R. Liu, “Design of an automated assembly

environment”, Computer-Aided Design, 21, 561-569, 1989

26. F. Webbink and S.J. Hu, “Automated Generation of Assembly System-Design

Solutions,” IEEE Transactions on Automation Science and Engineering, Vol. 2,

pp. 32-39, 2005

27. H. Wang, J. Ko, X. Zhu, and S.J. Hu, "A Complexity Model for Assembly Supply

Chains and Its Application to Configuration Design," ASME Transactions on

Journal of Manufacturing Science and Engineering, 13, doi:10.1115/1.4001082,

2010

28. J.A. Abell, "Generating Production Sequences for an m-Machine Robotic

Workcell," Proceedings of Autofact '98, Society of Manufacturing Engineers,

September 1998

29. D.E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 3:

Generating All Combinations and Partitions, Addison Wesley Professional, 2005

30. R.P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge Press, 1997

31. D.E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 4: History of

Combinatorial Generation, Addison Wesley Professional, 2005

121

32. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to

Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001. ISBN 0-262-

03293-7. Section 22.3: Depth-first search, pp. 540–549.

33. R.G. Askin, C.R. Standridge, Modeling and Analysis of Manufacturing System,

Wiley, New York, 1993

34. D.E. Whitney, Mechanical Assemblies: Their Design, Manufacture, and Role in

Product Development, Oxford University Press, New York, 2004

35. Y. Koren, S.J. Hu and T.W. Weber, “Impact of manufacturing system

configuration on performance”, CIRP Annals-Manufacturing Technology, 47,

369-372, 1998

36. R.G. Askin and M. Zhou, “A parallel station heuristic for the mixed-model

production line balancing problem”, International Journal of Production

Research, 35, 3095-3105, 1997

37. J. Bukchin and J. Ruvinovitz, “A weighted approach for assembly line design

with station paralleling and equipment selection”, IIE Transactions, 35, 73-85,

2003

38. T. Freiheit, M. Shpitalni, and S.J. Hu, “Throughput of paced parallel-serial

manufacturing lines with and without crossover”, Journal of Manufacturing

Science and Engineering-Transactions of the ASME, 126, 361-367, 2004

39. M.K. Jeong, M. Perry and C. Zhou, “Throughput gain with parallel flow in

automated flow lines”, IEEE Transactions on Automation Science and

Engineering, 2, 84-86, 2005

122

40. P. Pinto, D.G. Dannenbring and B.M. Khumawala, “A branch and bound

algorithm for assembly line balancing with paralleling”, International Journal of

Production Research, 13, 183-196, 1975

41. D.S. Cochran, D.C. Dobbs, “Evaluating manufacturing system design and

performance using the manufacturing system design decomposition approach”,

Journal of Manufacturing Systems, 20, 390-404, 2002

42. J. Ko, S.J. Hu, “Balancing of manufacturing systems with complex configurations

for delayed product differentiation”, International Journal of Production

Research, 46, 4285-4308, 2006

43. I. Baybars, “A survey of exact algorithms for the simple assembly line balancing

problem”, Management Science 32, 909-932, 1986

44. P.A. Pinto, D.G. Dannenbring, B.M. Khumawala, “Assembly line balancing with

processing alternatives: an application”, Management Science 29, 817–830, 1983

45. S.C. Graves, B.W. Lamar, “An integer programming procedure for assembly

system design problems”, Operations Research 31, 522-545, 1983

46. S.C. Graves, C. Holmes Redfield, “Equipment selection and task assignment for

multiproduct assembly system design”, International Journal of Flexible

Manufacturing Systems 1, 31-50, 1988

47. J. Bukchin, M. Tzur, “Design of flexible assembly line to minimize equipment

cost”, IIE Transactions 32, 585-598, 2000

48. A. Agnetis, A. Ciancimino, M. Lucertini, M. Pizzichella, “Balancing flexible lines

for car components assembly”, International Journal of Production Research, 33,

333-350, 1995

123

49. R. Rachamadugu, B. Talbot, “Improving the equality of workload assignments in

assembly lines”, International Journal of Production Research, 29, 619-633,

1991

50. P.M. Vilarinho and A.S. Simaria, “A two-stage heuristic method for balancing

mixed-model assembly lines with parallel workstations”, International Journal of

Production Research, 40,1405-1420, 2002

51. T.W. Simpson, Z. Siddique, and J.X. Jiao, “Product platform and product family

design: methods and applications,” Boston, MA: Springer Science & Business

Media, LLC. 2006

52. M.H. Meyer and A.P. Lehnerd, “The power of product platforms: building value

and cost leadership,” Free press, New York, NY. 1997

53. X.F. Zha and R.D. Sriram, “Platform-based product design and development:

knowledge support strategy and implementation,” Intelligent knowledge-based

systems, Volume Ӏ., 3-35, 2005

54. S. Sanderson and M. Uzumeri, “Managing product families: The case of the Sony

Walkman,” Research Policy, 24(5): 761-782, 1995

55. K. Sabbagh, “Twenty first century jet – The making and marketing of the Boeing

777,” Scribner, New York, NY, 1996

56. D.F. Baldwin, T.E. Abell, M. Lui, T.L. De Fazio, and D.E. Whitney, “An

Integrated Computer Aid for Generating and Evaluating Assembly Sequences for

Mechanical Products,” IEEE Transactions on Robotics and Automation, Volume

7, number 1, pp. 78–94, 1991

124

57. C.K. Choi, X.F. Zha, T.L. Ng, and W.S. Lau, “On the Automatic Generation of

Product Assembly Sequences,” International Journal of Production Research,

Volume 36, number 3, pp. 617–633, 1998

58. S. Kanai, H. Takahashi, and H. Makino, “ASPEN: Computer-Aided Assembly

Sequence Planning and Evaluation System Based on Predetermined Time

Standard,” CIRP Annals – Manufacturing Technology, Volume 45, number 1, pp.

35–39, 1996

59. P.K. Khosla and R. Mattikali, “Determining the Assembly Sequence from a 3-D

Model,” Journal of Mechanical Working Technology, Volume 20 Journal Article,

pp. 153–162, 1989

60. C. Becker and A. Scholl, “A survey on problems and methods in generalized

assembly line balancing,” European Journal of Operational Research, 168 (2006)

694-715, 2006

61. J. Bautista, J. Cano, “Minimizing Work Overload in Mixed-Model Assembly

Lines”, International Journal of Production Economics, 112 (1) (2008), pp. 177–

191

62. S. Matanachai, C.A. Yano, “Balancing Mixed-Model Assembly Lines to Reduce

Work Overload”, IIE Transactions, 33 (1) (2001), pp. 29–42

63. P.Y. Tambe, “Balancing Mixed-Model Assembly Line to Reduce Work Overload

in a Multi-Level Production System”, master’s thesis, 2005

64. W. Xu, T. Xiao, “Mixed Model Assembly Line Balancing Problem with Fuzzy

Operation Times and Drifting Operations”, Winter Simulation Conference (WSC

2008), Miami, Florida, USA, 7–10 December (2008), pp. 1752–1760

125

65. X. Zhao, K. Ohno, and H.S. Lau, “A Balancing Problem for Mixed Model

Assembly Lines with a Paced Moving Conveyor”, Naval Research Logistics, 51

(3) (2004), pp. 446–464

66. N. T. Thomopoulos, “Mixed-model line balancing with smoothed station

assignments”, Management Science, 16, 1970, 593-603.

67. H. Gokcen and E. Erel, “Binary integer formulation for mixed-model assembly

line balancing problem”, Computers and Industrial Engineering, Vol. 34, No. 2,

pp. 451-461, 1998

68. J. L. C. Macaskill, “Production line balances for mixed-model lines”,

Management Science, 19, 1972, 423-433

69. A. K. Chakravarty and A. Shtub, “Balancing mixed model lines with in-process

inventories”, Management Science, 31, 1985, 1161-1174

70. S. Lee, T.H. Kim, and S.J. Hu, Joining technologies for automotive lithium ion

battery manufacturing: a review, ASME 2010 International Manufacturing

Science and Engineering Conference, 2010, pp 541-549

71. M.C. Bethesda and B.B. Potomac, Method of treating printed computer paper,

US4573409, 1986

72. R. Dufour, Automatic Stacking Machine, US3593624, 1971

73. J.B. Cole, Split-Stream Collating Apparatus, US3421758, 1969

74. H. Hansen, Paper Accumulating Device, US2697388,1954

75. P.L. McGilvery, Automatic Cassette Wrapping and Assembly Machine, US

6186208 B1, 2001

126

76. S., Yang, S. Li, H. Wang, C. Chen, S.J. Hu, Y.T. Lin, Analysis and control of the

Li-ion battery assembly line based on simulation models, Manuscript in

preparation

77. A. Law, Simulation modeling and analysis, McGraw-Hill Publishing Co., 4th

edition, 2006

