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ABSTRACT 

 

This thesis develops a systematic method to design assembly systems with hybrid 

configurations by considering the assembly hierarchy associated with product designs 

and their varieties and applies it for automotive battery packs. With the growing concern 

of fossil fuel depletion and climate change, high power and capacity lithium-ion batteries 

are being widely adopted in personal transportation systems. A large size battery pack 

usually has a hierarchical composition of components assembled in some repetitive 

patterns. A lot of battery designs are emerging on the market. They require different 

processes and equipment from cell to module assembly, but similar processes and 

equipment from module to pack assembly. Conventional assembly system with a serial 

configuration has limitations in coping with increasing demand and fast development of 

the battery products. There is a strong need to develop assembly systems with complex, 

non-serial (hybrid) configurations to deal with the challenges, e.g. a system layout with 

multiple branch lines that converge to a common assembly line. Such configurations 

could be asymmetric and allows for pre-assembly of different components on multiple 

lines simultaneously, thereby potentially enhancing the system throughput and 

reconfigurability, while effectively dealing with product variety. 

Previous research has been focused on sequential task sequence generation but 

did not address the impact of product assembly hierarchy on configuration. Limited work 

exists addressing the line balancing problem on complex configuration. There is also a  



 

xv 

 

lack of research on non-serial system configuration design for both known and future 

product variants. Existing methods for designing complex system configuration do not 

consider equipment selection.  

Based on graph theory and combinatorial mathematics, a new algorithm for 

analyzing the liaison topographic patterns in products is developed to identify optimal 

assembly/subassembly decompositions that link product designs to system configurations. 

Compared with the sequential method for system design, the integrated approach of 

concurrent assembly process planning, system balancing, equipment selection, and 

system configuration design leads to higher throughput performances. Meanwhile, a 

method is developed to model the impact of product variety on system configuration 

design by considering stochastic product mix changes. This research enhances the 

understanding of the complex interactions among product designs, product varieties, and 

assembly system configurations. 
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CHAPTER 1                                                                     

INTRODUCTION 

 

1.1 Motivation 

In recent years, due to the concerns of fossil fuel depletion [1] and the 

environment, there is a demand for the development of fuel efficient and environmentally 

friendly personal transportation systems. Battery-powered electrical vehicles become one 

option. Among all battery technologies lithium-ion battery has several advantages over 

others because of its characteristics of high power and energy density, long cycle life and 

low environmental impact, which make li-ion battery attractive for automobile 

applications [2]. 

Cost-effective manufacturing of lithium-ion batteries for electrical and hybrid 

electrical vehicles (EV/HEV) has not yet been fully developed. Efficient, flexible, and 

reliable battery assembly automation is needed for the following two reasons: 1) A 

variety of new battery pack designs and their changing demand rates require the assembly 

system to be flexible and reconfigurable [3]; 2) The high current and voltage in battery 

cells, modules and packs require automatic assembly and material handling.  

Conventional assembly systems were mostly developed with a serial 

configuration. Such configurations have limitations in coping with increasing demand 
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and fast development of the battery products. There is a strong need to develop assembly 

systems with non-serial configurations to deal with the challenges. 

1.2 Assembly system design for automotive battery packs 

Compared with lead-acid and nickel-metal hydride batteries, Li-ion batteries offer 

significantly higher energy density, lighter weight and longer cycle life, which are crucial 

to the operation of EVs [4].  

For sufficient power and driving range, each EV needs hundreds or even 

thousands of battery cells assembled together into a large-sized battery pack. As shown in 

Figure 1-1, a large-size Li-ion battery pack is assembled together using modules with 

each module consisting of multiple cells that are electrically and mechanically connected 

for a specific electric power and energy capacity. Assembly in this way facilitates easy 

scale-up of battery packs and simplifies the control of battery functions. However, as 

shown in Figure 1-2, Figure 1-3, and Figure 1-4, battery assembly has to deal with 

multiple issues: (a) different battery cell types, such as prismatic or cylindrical cells, (b) 

different serial-parallel electrical connections, and (c) existence of the auxiliary members 

for thermal management as well as mechanical structure rigidity [5]. Automotive battery 

packs require the assembly of many cells in hierarchical, repetitive patterns as shown in 

Figure 1-5 [6]. Such a product design pattern impacts the design of assembly systems 

including assembly task design, assembly sequence planning, and equipment selection to 

accomplish the tasks. Variable rates of production are required in cell/component 

assembly, module assembly and pack assembly. Most of the current EV battery packs are 

believed to be assembled manually, which is slow, costly, and may produce inconsistent 

modules or stacks. The high current and voltage in battery cells, modules and packs also 



 

3 

 

pose hazardous risk to human operators and manufacturing facility since the incoming 

cells are at their 40%~50% state-of-charge level and cannot be fully discharged before 

assembly [7-8]. Therefore a battery module/pack assembly system for integrating 

multiple cell components together should have high speed and be responsive, flexible and 

reliable to the needs and for various types of batteries with different designs. 

 

Figure 1-1 Battery cell, module and pack assembly 

 

Figure 1-2 Different battery cell types [5]  

 

Figure 1-3 Different electrical connections (From left to right: first parallel, then serial; 

first serial, then parallel; hybrid (mixed serial & parallel)) [5] 
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Figure 1-4 Auxiliary members: battery foam, cooling plate, battery frame [5] 

 

Figure 1-5 Battery cell and ancillary members and an example of battery stacking pattern 

(adopted from GM volt battery pack) [6] 

In recent years, plenty of patents have been granted on the designs of 

module/pack configurations, thermal management system, and electrical connection. 

However, most of them are related to improving battery functions rather than addressing 

manufacturing issues. Li et al [5] conducted a review of available battery module/pack 

designs and investigated their implications to the automation of battery assembly. The 

associated assembly cost, efficiency, flexibility, quality issues were considered as well. 

A lithium-ion battery pack usually has a hierarchical structure consisting of 

several modules with each module consisting of multiple battery cells and ancillary 

members, such as frames, cooling fins, and compression foams, as shown in Figure 1-5 

[6]. Kurfer et al [9] investigated the stacking process of high-energy lithium-ion cells. 
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Tornow and Raatz [10] proposed a conceptual design for assembly (DFA) method for 

electric vehicle battery systems. However, systematic approaches do not yet exist for 

addressing the relationship between battery module/pack configurations and battery 

assembly processes. 

Traditionally, an assembly system adopts a symmetric configuration such as a 

serial line, a parallel system, a serial system with parallel stations and a parallel system 

with serial stations (Figure 1-6). There also exist more complex configurations such as an 

asymmetric hybrid configuration with subassembly branch lines (Figure 1-7). Under this 

configuration, different tasks are independently performed at the different branches, i.e., 

preassembling different components into subassemblies at different branches. Then the 

different subassemblies are fed to an assembly station which processes the finished 

modules. Such a system could also have parallel stations which process identical tasks as 

in the traditional assembly system for scalability requirements. High-volume production 

of diverse battery products requires the assembly system with complex (hybrid) 

configurations in the future because of the unique features of battery assembly process: 

cell-module assembly requires different process and equipment among different battery 

products, while module to pack assembly is quite similar across different products, which 

allows sharing of some branches in the assembly system. Such a hybrid configuration 

could be more adaptive to product variety and potentially improve system throughput. 

The system can also be very conveniently reconfigured by adding or removing branches. 

But very little research has addressed such complex assembly system design problem 

including task/sequence generation, configuration design, line balancing and equipment 

selection [11].  
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Figure 1-6 Symmetric configurations (squares represent machines) 

 

Figure 1-7 An example of an asymmetric configuration 

Currently, the industrial assembly system design starts from process planning 

which includes assembly task identification and sequence generation. Then the assembly 

system configuration is generated. However, since the process planning and system 

configuration generation influence each other, the traditional sequential procedure may 
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lead to suboptimal system solutions. This interaction can be illustrated with an example 

of automotive battery assembly. Figure 1-8 shows two possible ways of assembling four 

battery components into a module. Figure 1-8(a) shows the sequential way: the first two 

components are assembled first and the other components are loaded and assembled 

sequentially. Figure 1-8(b) shows a hybrid line where two components can be pre-

assembled into subassemblies which in turn are assembled with the other subassembly to 

form the final product. By allowing for concurrent tasks and operations, hybrid 

configurations may be more suitable for dealing with products assembled in a hierarchy 

and potentially enhance the system throughput. However, if the process planning in 

Figure 1-8(a) were chosen at the beginning, the branch line layout would never be 

derived and the system throughput might never reach the optimal level. 

 

(a) 

 

(b) 

Figure 1-8 Two possible ways of assembly process planning and configuration generation 

given product design 
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Another common practice is that the system configuration is implemented for 

current generations of products under a fixed demand requirement without considering 

the needs of generational changes. The changes can be 1) in the demand due to changes 

of customer preference; 2) in the variety due to advances of new technology. When the 

changes happen, the original system could be costly to reconfigure, resulting in the 

system being discarded. By taking the available but limited information of future 

products into consideration at the time of assembly system deployment, the time of 

product launch can be significantly shortened and the responsiveness and competitiveness 

of companies to dynamic market demands can be greatly enhanced. For example, a 

company’s current strategy is to produce 100% type 1 first generation of battery packs to 

be employed in the electric vehicles (Figure 1-9). But the engineers also have some 

preliminary designs (Product type 2) for their second generation of battery packs. Figure 

1-9 shows the possible system configuration options for multiple generations of products. 

The serial configuration (Figure 1-9(a)) may be the most cost effective way for 

assembling current generation product (product type 1) by adding one component at a 

time, but its reconfiguration effort and cost could be significant in order to produce both 

types of products. Assume that the hybrid configuration (Figure 1-9(b)), which involves 

subassembly branches, is adopted at the current production plan to produce product 1, 

then it may take less effort to convert the configuration to a system that is adaptable to 

both product 1 and product 2 (Figure 1-9(c)) than a serial configuration. 
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Figure 1-9 System configuration options for multiple generations of products 

In balancing the assembly line with more than one product types, one major 

challenge is the “drift” problem caused by task variations associated with different 

products. Drift is defined as the deviation of system processing time from the nominal 

cycle time [12-13]. To more effectively deal with increased product variety, the assembly 

system can be set up with more complex, non-serial configurations, e.g., systems with 

multiple subassembly branch lines that converge to an assembly station. Such complex 

configurations allow for pre-assembly of different components on multiple lines 

simultaneously, thereby may potentially enhance the system productivity and reduce drift. 

However, there is a lack of research on non-serial system configuration design for 

product variety and the effect of such design on drift. 
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1.3 Research objective 

The research objective of this thesis is to develop methods and algorithms for 

designing productive assembly system configurations by simultaneously considering 

product assembly hierarchy, product evolution, task and sequence generation, task 

assignment, and equipment selection for non-serial configurations. Figure 1-10 shows the 

inputs and outputs of such algorithms. The inputs are product design patterns, product 

varieties (denoted by P1, P2, … , PN) and evolution. The outputs are system configuration 

design and equipment selection. 

 

Figure 1-10 Research objective 

The specific research tasks are proposed below:  

(1) Subassembly decomposition method based on analysis of product liaison 

topographic patterns  

This research aims to 1) analyze the topographic patterns in general product 

design, including non-serially linked products, and to translate design information 

of products into the assembly/subassembly operations for assembly configuration 

generation [14]; and 2) develop a recursive algorithm to generate feasible 

subassembly pairs for serially linked products, such as automotive batteries, to 

enable efficient design and optimization of manufacturing system configuration 

[15]. The computational method provides a new and efficient way to enumerate 
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all candidate tasks and sequences and enable the ensuing optimization process to 

result in the right solution.  

(2) Methodologies of joint process planning, system configuration selection, system 

balancing, and equipment selection  

The hierarchical composition of product design is utilized in generating system 

configurations with equipment selection for optimal assembly system design [16]. 

A nested framework is proposed to model the relationship between the product 

design and system configuration. The generated configurations are embedded in 

an optimal assembly system design problem for simultaneous equipment selection 

and task assignment to minimize equipment investment cost.  

(3) System configuration design for a product family  

A new method is developed for designing assembly system configurations for 

multiple products [14]. Unlike the system configuration for a family of products 

with delayed differentiation, the proposed configuration has diverse 

subassemblies in the upstream as required by the various battery components and 

has common assemblies in the downstream. The method enables efficient 

assembly of products with hierarchical structures.  

(4) Software development and industrial implementation: Battery Assembly System 

Configurator  

A software package for system configuration, Battery Assembly System 

Configurator, is developed to integrate functions of process planning and optimal 

system configuration generation given product information of the current and 
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possible future generations of battery packs [17]. The system is being tested at an 

industrial site. 

1.4 Dissertation organization 

The thesis is organized as shown in Figure 1-11, in a multiple manuscript format. 

Chapter 2 first discusses the hierarchical subassembly decomposition method for 

complex configuration generation. A systematic approach is developed to translate 

product design patterns into assembly/subassembly operations that allow for parallel 

assembly sequences and adding more than one part at a time. In Chapter 3, a new method 

is developed and implemented for automatic system configuration generation with 

machine selection considering the hierarchical composition of battery components for a 

single product type. Chapter 4 presents a systematic method for designing system 

configurations for a family of products. Chapter 5 introduces the implementation of 

discussed methods: a math-based tool, Assembly System Configurator, for designing 

flexible battery assembly processes and systems. 

 
Figure 1-11 Organization of the dissertation 
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CHAPTER 2                                                                                 

AUTOMATIC HIERARCHICAL SUBASSEMBLY 

DECOMPOSITION FOR COMPLEX CONFIGURATION 

GENERATION 

  

 

A computational method is developed to generate candidate 

assembly/subassembly operations automatically based on the analysis of liaison 

topographic patterns. The system configuration generation algorithms start with the 

identification of assembly layers. Then a recursive algorithm is developed to generate 

feasible subassembly groupings, assembly sequences, and configurations including 

hybrid configurations. The algorithm adopts the transformation of a typical system layout 

diagram into a string of characters or numbers representing assembly components and 

sequences of operations. The computational method provides a new and efficient way to 

enumerate all candidate system configurations and enable the ensuing optimization 

process to generate the right solution. This enables efficient design and optimization of 

manufacturing system configurations. 
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2.1 Introduction 

In most manufactured products, their components are linked to each other 

following certain topographic patterns. Therefore, in production, assembly machines or 

workstations need to be arranged in proper processing sequence or flow on the factory 

floor such that individual components can be assembled efficiently. A system 

configuration represents the realization of this arrangement of machines and material 

flow among them. 

As reviewed in Chapter 1, a lithium battery pack usually has a hierarchical 

structure consisting of several modules, while a module is composed of battery cells and 

ancillary members, such as frames, cooling fins, and compression foams. These 

components are usually assembled or stacked together in a certain pattern, such as frame-

cell-foam-cell-cooling fin. In order to fulfill a vehicle’s power requirement, this stacking 

pattern is repeated a number of times to form a module (Figure 1-5). 

In production, an assembly workstation typically deals with unloading each 

individual component from its container and then loading it onto another component or a 

partially completed subassembly or stack. Figure 2-1 illustrates a few schematic diagrams 

of possible system configurations for the assembly operation: (a) a serial configuration, 

where each component is loaded and assembled at each station sequentially by an 

individual robot or material handling machine into a stacking pallet on a moving 

conveyor belt;  (b) parallel configurations, where each robot is capable of picking and 

placing all components to complete a stack assembly; (c) a hybrid configuration with 

subassembly lines, where some components can be pre-stacked into subassemblies by 

one or more robots in branch lines, which are eventually merged to the main line 
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according to the assembly sequence.  A hybrid configuration is defined as a non-serial 

system layout, which has multiple branch lines and/or parallel stations. Conceivably, 

there are many other ways to design the system configurations by pre-stacking adjacent 

components into different subassemblies, which can be further assembled with other 

adjacent components or subassemblies into a larger module. As shown in Figure 2-1, a 

given product design pattern Frame-Cell-Foam-Cell-Fin could yield various subassembly 

groupings or assembly hierarchies and sequences such as ((((Frame-Cell)Foam)Cell)Fin) 

(Figure 2-1(a)), (Frame-Cell-Foam-Cell-Fin) (Figure 2-1(b))and ((Frame-Cell)(Foam-

Cell)Fin) (Figure 2-1(c)) where the parenthesis represents a grouping of components into 

an assembly/subassembly task. The configuration in Figure 2-1(c) is a branched line, 

which is different from a parallel line (Figure 2-1(b)). Parallel line shares the same 

upstream resources, therefore, the components need to be split and fed into multiple 

parallel machines (Figure 2-1(b)). The subassembly branches in Figure 2-1(c) are 

independent and the components do not need to be split.  

 

Figure 2-1 Varieties of system configurations: (a) serial, (b) parallel, (c) hybrid 
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Identifying all the candidate assembly/subassembly groupings and sequences is 

critical to system configuration design. Traditional assembly sequence generation 

methods focused on sequential task sequences. Among them, Bourjault [18] presented the 

first algorithm to generate all feasible assembly sequences. Building on Bourjault’s 

method, Whitney [19] increased the size of the problem to accommodate assemblies with 

much higher number of components by asking two questions of precedence. A number of 

approaches, such as algorithms and graph based methods, have been used to generate the 

assembly sequences [20-23]. Methods were also developed to derive the assembly 

sequences from the disassembly sequences [24-25]. Traditional sequential task sequence 

based approach does not consider parallel subassembly tasks. By allowing for concurrent 

tasks and adding more than one part at a time, hybrid configurations are more suitable for 

dealing with products assembled in a hierarchy. 

In essence, identifying the number of candidate assembly/subassembly groupings 

and sequences is an enumeration problem. The enumeration problem has been studied 

and applied to assembly sequence generation, manufacturing system configuration, as 

well as supply chain configurations. To facilitate enumeration problem solving, Webbink 

and Hu [26] enumerated system configurations by using parentheses to group a string of 

“1” characters, e.g., ((11)1) as shown in Figure 2-2.  Each “1” character denotes a 

workstation and each pair of parentheses represents a path of processing line in a parallel-

serial system configuration. Their work, however, does not distinguish the assembly 

sequences of ((11)1) and (1(11)), for instance, because all components are treated 

generically the same. Similar parentheses and alphanumerical coding are employed to 

create groups of product components or subassemblies in a supply chain configuration 
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investigation by Wang et al. [27]. This method of transforming a diagrammatic system 

configuration into a binary string with parentheses is conveniently adopted in this study. 

 

Figure 2-2 Layout diagrams of ((11)1) 

De Fazio and Whitney [19] proposed the “liaison” concept for assembly sequence 

generation. A “liaison” is the connection between components, which represents the 

physical contact or joining between components. Each pair of connected components is 

assigned a liaison number. The enumeration problem is to identify the liaison or assembly 

sequences through a state-transition diagram arranged in an inverted tree form and 

determined by certain precedence rules. However, the work doesn’t handle more than two 

components in one assembly workstation. 

Likewise, Abell [28] developed a recursive algorithm to enumerate all possible 

sequences for robotic material handling systems in a general m-machine layout.  The 

algorithm examines the system state space and generates all possible material handling 

sequences while eliminating redundant sequences.  Still, enumeration of multiple part 

sequences is not considered. 

Given a predetermined topographic pattern in product design, 

assembly/subassembly decomposition is to translate design information of products into 

the assembly/subassembly operations/tasks and to group assembly operations into a 

combination of single-operation and multi-operation machines arranged in series, parallel 
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or mixed patterns. Therefore, the assembly/subassembly decomposition in this chapter is, 

mathematically speaking, a partition problem in combinatorics [29] or one of Stanley’s 

Twelvefold Way of combinatorics [30], but with the assembly requirements of allowing 

more than two components in one station and parallel subassembly grouping, which had 

not been addressed before. 

This chapter starts with an overview of the proposed method, and then explains 

the enumeration of assembly/subassembly grouping in detail. Hierarchical 

representations of assembly sequence are introduced. A recursive algorithm for assembly 

sequence generation is developed. The binary data tree or structure employed in 

representing the recursive algorithms of assembly/subassembly generation resembles that 

of integer partitions in combinatorics [29,31]. Furthermore, the computational method 

also includes a filtering function to accommodate other assembly constraints, such as 

“some adjacent components may or may not be preassembled”, which could significantly 

reduce the number of candidate system layouts for practical handling. Lin [15] calculated 

the total number of candidate system configurations which helps validate the 

computational assembly/subassembly decomposition method that ensues in this chapter.   

2.2 Method overview 

In this chapter, a recursive method is developed in conjunction with a graph 

search algorithm to generate candidate assembly/subassembly groupings and sequences. 

The method can be described as follows. 

Step 1: Identify branches (assembly layers) in the product liaison. Given a 

topographic pattern in product design (Figure 2-3), wherein nodes 

represent components/parts and lines between nodes represent relations 
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(physical contact or joining) between components, the branches can be 

determined by two possible ways: 1) to use given engineering knowledge 

to determine the base module etc. For example, the predetermined 

unit/module/pack grouping; 2) to identify the graph diameter that is the 

longest path between two vertices in a graph as the first branch (assembly 

layer). Figure 2-4(a) shows the identification of longest path as assembly 

layer 1.  

 

Figure 2-3 Liaison graph for a general product design 

 
                       (a)                                                       (b)                              (c) 

Figure 2-4 Assembly layer/branch identification 

Step 2: Replace the identified branch with a node and return to Step 1, until there 

is only one assembly layer left (Figure 2-4(b)(c)). 
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Step 3: Apply subassembly decomposition algorithm to each assembly layer. The 

detailed algorithm will be discussed in section 2.3. 

The procedure of identifying the longest path in a graph can be described as 

follows. First, a connection matrix is constructed. According to graph theory, the 

relationship showed in a liaison graph can be mapped one-to-one into a connection 

matrix M = [mij] (Figure 2-5), where mij=1 when components i and j are directly 

connected and mij=0 when no connection exists between two components i and j or self-

relationship. Second, start from any node (denoted by r) in the product liaison graph and 

perform depth-first search (DFS) algorithm [32] to identify the farthest node to r, denoted 

as v by
( )

( , ( )) max { ( , ( )) ( , )}
r sT r T s

s child r
D r V T D s V T m r s


  , where rT is the subtree rooted at 

vertex r V , which is the subgraph induced on vertex r and all its descendants; and 

child(r) is the set of children of v and m(r,s) is the distance associated with the arc 

connecting nodes r and s, which can be calculated using connection matrix. Then perform 

the DFS again to identify the fastest node(s) from the node v, denoted as v’. At last, the 

longest branch is obtained between v and v’ (Figure 2-6). 

 

Figure 2-5 Connection matrix 
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Figure 2-6 Depth-first search (DFS) algorithm to identify the longest path 

2.3 Subassembly decomposition 

2.3.1 Enumeration of subassembly grouping 

Given an assembly of n elements {a1, a2, a3,…an}, the parenthesis operator, (.), is 

used to group two or more adjacent elements together, such as (akak+1), into a candidate 

subassembly. The subassembly can be further grouped with other elements, single or 

groups, to create larger groups, e.g., grouping of (a1a2) and a3 leads to ((a1a2)a3); and 

grouping of (a4a5) and (a6a7) yields ((a4a5)(a6a7)). Thus, the generation of each set of 

subassembly combinations is the result of grouping elements at different levels, which is 

called hierarchical grouping in this chapter. The subassembly decomposition problem is 

to enumerate all the non-repetitive ways of hierarchically grouping n elements.  

Denote P(n) as the enumeration problem with n elements. The following steps 

summarize the subassembly grouping procedure.  

Step 1: Enumerate all the non-repetitive cases for grouping two elements, such as 

{(a1a2)a3…an}, {a1(a2a3)…an}… {a1a2a3…(an-1an)}. Only two elements 

are merged at a time, multiple two-element grouping, {(a1a2)a3…(an-1an)} 

for example, is not allowed. Under each case, the grouped elements are 
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treated as a subassembly and the enumeration problem degenerates into a 

P(n-1) problem since there are n-1 elements left; 

Step 2: Enumerate all the non-repetitive cases for grouping three elements, such 

as {(a1a2a3)…an}, … {a1… an-3 (an-2an-1an)}. Under each case, the grouped 

elements are treated as a subassembly and the enumeration problem 

degenerates into a P(n-2) problem since there are n-2 elements; 

… 

Step n-1: Enumerate the non-repetitive cases for grouping all n elements. 

Apparently, there is only one possible scenario, i.e., (a1, a2, a3,…an). 

It can be seen that solving a P(n) problem involves n-1 steps. The ith step has two 

problems: (i) to enumerate all the non-repetitive cases for grouping i+1 elements and (ii) 

to solve a P(n-i) problem. The idea is to decompose a complex problem P(n) into n-1 

degenerated problems in n-1 steps, and each degenerated problem is further decomposed 

into a number of simpler enumeration problems in hierarchical order or structure.  

Similar to Whitney’s assembly sequence generation methods [19], each letter 

(a1…an) denotes a component and the aforementioned grouping represents any of certain 

user-defined relations between parts called “liaisons”. From the inside-out grouping order, 

the assembly sequences are generated accordingly. 
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Table 2-1 Comparison between assembly sequences and physical representation of the 

enumerations 

Case Assembly 
Sequence  

Physical Representation  Liaison Diagram  #of 
Liaisons  

1  123  (((AB)C)D)   

 

 

 

 

3 

2  321  (A(B(CD)))  

3  213  ((A(BC))D)  

4  312  ((AB)(CD))  

5  132  ((AB)(CD))  

6  231  (A((BC)D))  

7  [12]3  ((ABC)D)  
 

1 

8  1 [23]  ((AB)CD)  
 

9  [23] 1  (A(BCD))  
 

10  3 [12]  (AB(CD))  
 

11  2 [13]  (A(BC)D)  
 

12  [13] 2  ((AB)(CD))   

13  [123]  (ABCD)  
 

0 
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Table 2-1 shows an example of assembling four components {A, B, C, D} 

together. Compared with Whitney’s assembly sequence generation methods, the 

differences can be summarized as the following: 

 There is no sequence differentiation between parallel groups, thus 

enabling parallel subassembly grouping, sequences and configurations 

(See case 4 &5 in Table 2-1). 

 Assembly grouping is hierarchical and considered at all levels. Not only 

components pairs can be assembled, groups of components, called 

subassemblies, can also be assembled (See case 7-13 in Table 2-1). 

The enumeration process consists of the two major tasks below that will be 

addressed in the following sections: 

 A data structure must be defined to facilitate assembly sequence 

representation and manipulation. 

 An algorithm must be devised to generate all non-repetitive groupings 

given i elements. For example, in step 1, the same enumeration grouping 

{(a1a2)a3…(an-1an)} exists when solving the P(n-1) problem under the 

cases {(a1a2)a3…an} and {a1a2a3…(an-1an)}. 

2.3.2 Hierarchical representation of assembly sequence 

To enable computational assembly sequence generation, it is more efficient to use 

numbers and numerical operations. By the fact that only neighboring components are 

grouped, the enumeration problem can be formulated as merging or adding the numerals 

in an identity array in various ways. For example, an identity array {1, 1, 1}, with each 

“1” denotes a component, can be merged into (1+1) +1, 1+ (1+1), or (1+1+1).  The 
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summed numbers within one set of parentheses stand for the components to be grouped.  

Table 2-2 shows the enumerations for grouping an identity array {1, 1, 1, 1} with four 1’s 

in sequence corresponding to components A, B, C, and D, respectively. Compared with 

Table 2-1, since there is no sequence differentiation between parallel groups (Cases 4, 5 

& 12 in Table 2-1 are the same), there are eleven possible assembly sequences generated 

based on our enumeration algorithm. 

Table 2-2 Enumeration for Four Elements {A, B, C, D} 

Enumeration index Enumeration of number 

merging 

Physical interpretation 

1 (1+1)+1+1 ((AB)CD) 

2 ((1+1)+1)+1 (((AB)C)D) 

3 (1+1)+(1+1) ((AB)(CD)) 

4 1+(1+1)+1 (A(BC)D) 

5 (1+(1+1))+1 ((A(BC))D) 

6 1+((1+1)+1) (A((BC)D)) 

7 1+1+(1+1) (AB(CD)) 

8 1+(1+(1+1)) (A(B(CD))) 

9 (1+1+1)+1 ((ABC)D) 

10 1+(1+1+1) (A(BCD)) 

11 (1+1+1+1) (ABCD) 

 

It can be seen that the numerical grouping can be represented in a hierarchical 

structure whereby the numbers are added at different recursive steps to be discussed later. 

An example of the hierarchy is given in Figure 2-7, where Figure 2-7(a) shows a 

sequence of grouping numbers under a data tree structure and Figure 2-7(b) shows a 

simplified structure by dropping redundant 1’s. For clarity of illustration, the data tree 
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structure of Figure 2-7(a) is used in the following description.  The “+” sign can be 

omitted in all the representations of data structure and arrays since it is the only operator 

involved. 

 

                                 (a)                                                                          (b) 

Figure 2-7 Hierarchical representations of sequence (((11)1)1) 

The hierarchical data structure can be characterized with a few parameters. 

Denote m as an index of the recursive steps.  There are three recursive steps in Figure 2-7.  

In the recursive step m = 1, 2, 3, an internal array c(m) is defined to represent the 

intermediate enumeration result, such as c(1) = [2 1 1], c(2) = [3 1].  The length of the 

internal array c(m) is denoted as n(m) and n(0) = n. As shown in Figure 2-8, the window 

size parameter win(m) specifies the number of components to be grouped in the internal 

array c(m), and the end position parameter ep(m) denotes the location of the last 

component in the grouping window of the internal array c(m).  Figure 2-9 shows the 

examples of using these parameters to represent the hierarchical data structure. 
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Figure 2-8 Parameters ep(m): end position (the location of the last component in the 

grouping window) and win(m): window size (number of components to be grouped) 
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(a) Sequence ((11)11) 

 

(b) Sequence ((11)(11)) 

 

(c) Sequence (((11)1)1) 

 

(d) Sequence (1(1(11))) 

 

(e) Sequence (1((111)1)) 

Figure 2-9 Examples of characterizing hierarchical data structure with parameters 
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2.3.3 Recursive algorithm for assembly sequence generation 

As mentioned above, there are n-1 steps involved in solving problem P(n) with 

each step using the same window size win(1), where win(1)=2,3,…n respectively. The 

increment in win(1) can be achieved by using a computational loop with respect to win(1). 

In step win(1)-1, one needs to solve two problems (i) the problem of enumerating all the 

non-repetitive cases for grouping win(1) elements, and (ii) the P(n(1)-win(1)+1) 

enumeration problem in the recursive step m=2 following the same procedures.   

In the mth (m≥2) recursive step, one can have n(m)=n(m-1)-win(m-1)+1 and 

win(m)=2,3…n(m). The increment in win(m) can be achieved by using a computational 

loop of win(m). There are n(m)-1 steps involved to solve problem P(n(m)). In step 

win(m)-1, one needs to solve (i) the problem of enumerating all the non-repetitive cases 

for grouping win(m) elements and (ii) problem P(n(m)-win(m)+1) in the (m+1)th 

recursive step. The recursion continues until n(m)-win(m)+1<1, i.e., n(m)<win(m).  

The problem (i) in the mth recursive step can be solved by moving a grouping 

window with a fixed length win(m) from left to right along the internal array c(m) as 

shown in Figure 2-10. Assume that the leftmost window ends at ep0(m). There are n(m)-

ep0(m)+1 ways (windows) of groupings win(m) elements in the internal array c(m). The 

rightmost window ends at n(m). 

 

Figure 2-10 Shift of grouping window in enumeration process (i) 
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It is critical to determine the end position ep0(m) of the leftmost window. A 

proper selection of ep0(m) can effectively eliminate the repetitive enumerations. In 

Figure 2-11(a), the enumeration (i) when ep(m-1)=2 and (ii) when ep(m-1)>3 yield the 

same assembly sequence in the mth recursive step. Therefore, in enumeration (ii), the 

value of ep0(m) cannot be arbitrary. To avoid such a repetitive enumeration, selection of 

ep0(m) should ensure that in the mth recursive step, the enumeration starts from the group 

that is created in the (m-1)th recursive step. Such a group is generated by merging 

numbers with a window with a size of win(m-1) ending at the ep(m-1)th element in the 

internal array c(m-1). Since the position of the group in the internal array c(m) is ep(m-1)-

win(m-1)+1, it can be concluded that ep0(m)=ep(m-1)-win(m-1)+1 as shown in Figure 

2-11(b). 

Hence, in the mth recursive step, the enumeration problem (i) is to explore all the 

possible combinations of the parameters ep(m) and win(m), which can be handled by a 

double-loop for the two parameters in computer programming.  

All the generated assembly sequences can be converted into the string format with 

parentheses from the hierarchical structure parameters c(m), ep(m), win(m), and n(m) via 

a number decoding procedure as follows, 

1) Replace each greater than 1 numeral in c(m) with string concatenation of 

1’s and add characters “2” before the string and “3” after the string to 

represent the left parenthesis and the right parenthesis respectively, e.g., 3  

becomes concatenating string “2”, “1”, “1”, ”1”, and “3”. 

2) Convert the strings to a cell or a number, e.g., “21113” is changed to 

21113. 
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(a) Repetitive enumeration exists when (i) ep(m-1)=2 and (ii) ep(m-1)>3 yield the same 

assembly sequence in the mth recursive step 

 

(b) Non-repetitive enumeration can be assured when the end position  

ep0(m)=ep(m-1)-win(m-1)+1 

Figure 2-11 Determination of ep0(m) 
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3) Convert number to string, e.g., 21113 to (111), where 2 is replaced by 

“(“ and 3 is replaced by “)”. Lastly, all the 1’s can be replaced by “a”, “b”, 

“c”, etc. sequentially. 

Remark: The decoding procedures as outlined above can only process very 

limited number of elements (up to 7 elements). This is due to the limitations of 32-bit or 

64-bit operating system in dealing with integer numbers. As n grows, the length of the 

intermediate integer numbers significantly increases. However, any integer number that is 

larger than 2
32

 or 2
64

 will be automatically rounded by a computer, thus rendering the 

results inaccurate. To solve this problem, a cell data type can be adopted by which the 

computer treats a string as a single cell and decoding from a large integer is no longer 

necessary. For example, each element of a regular string array can only be one character 

such as “(“, “a”, “b”, or “)” etc. This storage requires a large array size to store a string 

and is not efficient for the enumeration. If a cell array is employed, a string “(abc)” can 

be saved as one single element in the array. Such storage syntax is similar to storing an 

integer number in a regular array and can greatly facilitate the enumeration. 

The flowchart of the developed algorithms is given in Figure 2-12, where a 

function mergeN() is defined to implement the recursion. The algorithm involves 

initialization, a double-loop of win(m) and ep(m) to solve problem (i), recursion with 

respect to m to solve problem (ii), decoding of numbers with strings as illustrated above, 

and a filtering algorithm to be discussed next. 

As an example to illustrate the algorithm, Table 2-3 lists intermediate values of 

ep0(m), ep(m), win(m), and c(m), m =1, 2 for a P(4) problem of enumerating four 

elements {1,1,1,1}.  The parameter values for m = 3 are not listed because it is a 
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straightforward data merging with c(3) = 4, ep0(3) =1, and ep(3) = win(3) = 2.  It is noted, 

unlike the algorithms for counting the number of sequence, the enumeration algorithms 

generate all the sequence with n elements for all the possible numbers of groups.  If 

needed, the sequence for a specific number of groups can be segregated by the recursive 

step m in the computational output.  

2.3.4 Filtering algorithm for sequence reduction 

In certain assembly scenarios, some components must or must not be assembled 

together. These extra precedence constraints should be compared with the enumerated 

assembly sequences to screen out the infeasible ones. For example, one may specify that 

only elements a and b must be assembled together. Then strings such as (a(bc)d) and 

(ab(cd)) are not selected. On the other hand, if elements a and b must not be co-

assembled, strings that contain “(ab)” are not permissible output. 

Note that the filtering algorithm strictly matches the strings and great care must be 

exercised when some constraints are applied. For example, if the constraint is that a and b 

must be assembled together, the pass should be pass = ab (dropping the parentheses). 

The filtering of the enumerated assembly sequences given precedence constraints 

can be achieved by operations of string comparisons. Users will specify a number of 

component combinations that must be assembled together and are saved in a string array 

called pass. The algorithm will determine if “pass” are contained in the inspected 

assembly sequences. A string will be output once a match is found. Similarly, those 

component combinations that must not be co-assembled are saved on in a string called 

block. Those strings that do not contain “block” will be output. The flow chart of the 

filtering algorithm is shown in Figure 2-13.  
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Figure 2-12 Flowchart of enumeration algorithms  
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Table 2-3 Intermediate values for a P(4) enumeration problem for {1,1,1,1} 

Output 

string

c(1) c(2) ep0(1) ep0(2) ep(1) ep (2) (for 

the merged 

array)

win(1) win(2) (for 

the merged 

array)

((11)11) 2 1 1 4 1 NA 2 NA 2 NA

(((11)1)1) 2 1 1 3 1 1 1 2 2 2 2

((11)(11)) 2 1 1 2 2 1 1 2 3 2 2

(1(11)1) 1 2 1 4 1 NA 3 NA 2 NA

((1(11))1) 1 2 1 3 1 1 2 3 2 2 2

(1((11)1)) 1 2 1 1 3 1 2 3 3 2 2

(11(11)) 1 1 2 4 1 NA 4 NA 2 NA

(1(1(11))) 1 1 2 1 3 1 3 4 3 2 2

((111)1) 3 1 4 1 NA 3 NA 3 NA

(1(111)) 1 3 4 1 NA 4 NA 3 NA

(1111) 4 NA 1 NA 4 NA 4 NA
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Figure 2-13 Flowchart of filtering algorithm 

The reduction of possible assembly sequences given precedence constraints can 

be dramatic. Table 2-4 compares the enumeration results for 5 elements {A, B, C, D, E}  

before and after applying three filtering criteria (constraints), i.e., pass=(AB), 

block(1)=(CD), and block(2)=((BC)DE). It can be seen that without precedence 

constraints, the total number of sequences is 45, while given precedence constraints, the 

total number of assembly sequences become 8. 
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Table 2-4 Reduction of assembly sequence enumerations: 

(a) without precedence constraints  

((AB)CDE) (A((BC)D)E) (ABC(DE)) 

(((AB)C)DE) ((A((BC)D))E) (AB(C(DE))) 

((((AB)C)D)E) (A(((BC)D)E)) (A(B(C(DE)))) 

(((AB)C)(DE)) (A(BC)(DE)) (A(BC(DE))) 

((AB)(CD)E) (A((BC)(DE))) ((ABC)DE) 

(((AB)(CD))E) ((A(BC)D)E) (((ABC)D)E) 

((AB)((CD)E)) (A((BC)DE)) ((ABC)(DE)) 

((AB)C(DE)) (AB(CD)E) (A(BCD)E) 

((AB)(C(DE))) (A(B(CD))E) ((A(BCD))E) 

(((AB)CD)E) ((A(B(CD)))E) (A((BCD)E)) 

((AB)(CDE)) (A((B(CD))E)) (AB(CDE)) 

(A(BC)DE) (AB((CD)E)) (A(B(CDE))) 

((A(BC))DE) (A(B((CD)E))) ((ABCD)E) 

(((A(BC))D)E) ((AB(CD))E) (A(BCDE)) 

((A(BC))(DE)) (A(B(CD)E)) (ABCDE) 

 

(b) with precedence constraints (filtering) 

((AB)CDE) 

(((AB)C)DE) 

((((AB)C)D)E) 

(((AB)C)(DE)) 

((AB)C(DE)) 

((AB)(C(DE))) 

(((AB)CD)E) 

((AB)(CDE)) 
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2.4 Discussion 

In this work, the system configurations are generated and evolved including not 

only traditional serial/parallel lines but also hybrid lines with branches. Webbink and Hu 

[26] proposed an automated distribution method to enumerate all the possibilities of 

different combinations of stations which are of serial or parallel configuration. Then the 

configurations are matched with assembly sequences generated by Whitney’s 

enumeration methods [19]. Webbink and Hu’s work assigned serial sequences to each 

routes (material flow path) of the system with hybrid configurations. Figure 2-14 shows 

an example of system configuration where all the different routes can produce the final 

product (ABCD). The first route allows for loading and assembling components one at a 

time; the second route allows assembling A and B first, then loading and assembling C, D 

sequentially onto AB; the third route assembles A, B and C together first, and then 

assembles D onto ABC. Lines that are in parallel may perform the same task sequence 

but in different steps. For example, the parallel lines, which are shared by route 1 & 2, 

both perform assembly task sequence (AB). In route 1, the task sequence needs two steps 

while in route 2, it needs only one step.  

 

Figure 2-14 Example system configuration (A, B, C, D are components) 
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Webbink’s work didn’t consider hybrid lines with branches, where tasks on the 

different branches of the lines are independent subassembly tasks. If the 

assembly/subassembly groupings generated by this research are used to expand each 

route in Webbink’s work, more configurations can be generated. Table 2-5 shows an 

example of the configuration generation and evolvement given assembly/subassembly 

groupings and sequences in Table 2-2. 

2.5 Conclusion 

In this chapter, a new hierarchical subassembly decomposition method is 

developed by utilizing hierarchical data structure and recursive decomposition algorithms 

to enumerate all non-redundant assembly/subassembly groupings. The computational 

sequence generation is enabled by a transformation scheme devised to convert a typical 

diagram of assembly system configuration into a string of characters or numerals 

representing assembly components and sequences of operations. User-defined filtering 

functions are also considered in the enumeration algorithms for handling additional 

system requirements or constraints, which could reduce the number of 

assembly/subassembly groupings significantly. The efficient, exhaustive computational 

sequence generation method provides enough candidate systems for special 

considerations and ensures that a truly optimal system can be identified.   

The above algorithm is verified using a combinatorial approach [15] to count the 

number of candidate system configurations without physically generating them. The 

number of configurations not only helps validate the computational sequence generation 

algorithms, but also provides a quick assessment of the scope of the problem. Both the  
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Table 2-5 An example of configuration generation and evolvement 

Assembly 

grouping 

Initial configuration Configuration evolvement examples 

((AB)CD) 

 

 

 

 

(((AB)C)D) 

 
((AB)(CD)) 

 
(A(BC)D) 

 
((A(BC))D) 

 
(A((BC)D)) 

 
(AB(CD)) 

 
(A(B(CD))) 

 
((ABC)D) 

 
(A(BCD)) 

 
(ABCD) 

 
 

algorithms for system sequence generation and counting the number of system 

configurations have been tested and validated. 
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CHAPTER 3                                                                            

AUTOMATIC GENERATION OF ASSEMBLY SYSTEM 

CONFIGURATION WITH EQUIPMENT SELECTION FOR 

AUTOMOTIVE BATTERY MANUFACTURING 

 

High power and high capacity lithium-ion batteries are being adopted for 

electrical and hybrid electrical vehicles (EV/HEV) applications. An automotive Li-ion 

battery pack usually has a hierarchical composition of components assembled in 

repetitive patterns. Such a product assembly hierarchy may facilitate automatic 

configuration of assembly systems including assembly task grouping, sequence planning, 

and equipment selection. This chapter utilizes such a hierarchical composition in 

generating system configurations with equipment selection for optimal assembly system 

design. A recursive algorithm is developed to generate feasible assembly sequences and 

the initial configurations including hybrid configurations. The generated configurations 

are embedded in an optimal assembly system design problem for simultaneous equipment 

selection and task assignment by minimizing equipment investment cost. The complexity 

of the computational algorithm is also discussed. 
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3.1 Introduction 

Lithium-ion batteries are gaining more attention in electrical and hybrid electrical 

vehicles (EV/HEV) because they offer significantly higher energy density as well as 

lighter weight and longer cycle life compared with lead acid and nickel-metal hydride 

batteries [2]. A lithium-ion battery pack usually has a hierarchical structure consisting of 

several modules, while a module is composed of battery cells and ancillary members 

which are assembled or stacked together in a certain pattern (Figure 1-5). Prismatic pouch 

cells or prismatic cells with case enclosure are usually stacked in one direction, vertical 

or horizontal, while cylindrical cells are assembled in tubular or grid patterns (Figure 3-1) 

[5]. 

 

 

Figure 3-1 Different stacking patterns for battery cells [5] 

The design of an assembly system often begins with assembly sequence 

generation [33-34]. The challenge to assembly sequence generation is that there are many 

ways of assembling the components for a given stacking pattern in battery packs. For 
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example, components can be added one at a time, leading to serial sequences. 

Alternatively, all the components can be assembled in one station with flexible machines, 

resulting in a parallel operation. Various hybrid assembly sequences can also be obtained 

by preassembling different number of components into subassemblies which in turn are 

assembled with other components or subassemblies. Figure 3-2 illustrates a set of five 

candidate assembly sequences in assembling a section of a battery module. 

 

Figure 3-2 Different examples of assembly sequences (a) components are loaded and 

stacked in a serial sequence; (b) components are stacked simultaneously in one station; 

(c), (d) and (e) components are stacked into subassemblies and then stacked with other 

components or subassemblies (circles represent tasks for loading and stacking) 

Traditional assembly sequence generation methods focused on sequential task 

sequences. Among them, Bourjault [18] presented the first algorithm to generate all 

feasible assembly sequences. Building on Bourjault’s method, Whitney [19] increased the 
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size of the problem to accommodate assemblies with much higher number of components 

numbers by asking two questions of precedence. A number of approaches, such as 

algorithms and graph based methods, have been used to generate the assembly sequences 

[20-23]. Methods were also developed to derive the assembly sequences from the 

disassembly sequences [24-25]. 

Based on the sequential task sequences, the assembly system commonly adopts a 

dedicated serial configuration for mass production of limited product variants (Figure 1-6 

(a)). Other configurations were also considered including parallel configurations, serial 

systems with parallel machines, or parallel lines with machines in serial (Figure 

1-6(b)(c)(d)) [35]. Significant amount of research has been done investigating the effects 

of system configurations on performance [36-41]. On assembly system design, Webbink 

and Hu [26] proposed an automated distribution method to enumerate all the possibilities 

of different combinations of stations which are of serial or parallel configuration. In this 

work, the hybrid configuration is generated by assigning the sequential task sequences to 

each route in the system. The optimization is thus reduced to the conventional line 

balancing problem of assigning a sequential task sequence to a serial line in each route. 

Ko and Hu [42] presented a new method for designing complex configurations by linking 

manufacturing requirements to configuration structure. The balancing of assembly 

systems with the complex configurations focused on specific configurations for delayed 

product differentiation (Figure 3-3). 
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Figure 3-3 An example of manufacturing system configuration for delayed product 

differentiation [42] 

Equipment selection is another problem in assembly system design. When 

equipment selection is considered with line balancing, such a problem is called an 

assembly line design problem (ALDP) [43]. Pinto et al. [44] studied a method of 

simultaneously considering manufacturing process alternatives and assembly line 

balancing (ALB) to minimize total costs. Graves and Lamar [45] and Graves and Holmes 

Redfield [46] considered an assembly line for one or multi-products with the stations 

being chosen from a set of non-identical station types with different equipment choices. 

Bukchin and Tzur [47] considered stations being provided with several equipment 

alternatives while minimizing the overall equipment cost. Most equipment selection has 

been implemented on serial configurations. 

Traditional sequential task sequence based approach does not consider parallel 

subassembly tasks. In addition, there is a lack of method for simultaneous equipment 

selection and complex configuration generation. This paper describes a new method for 

designing assembly systems by integrating automatic configuration generation with 

equipment selection considering product hierarchy. Based on an automatic enumeration 

algorithm for generating assembly tasks and sequences derived from the assembly 

hierarchy [15], a two loop nested optimization algorithm is developed to determine the 
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optimal hybrid system configuration along with equipment selection. By allowing for 

concurrent tasks and adding more than one part at a time, hybrid configurations are more 

suitable for dealing with products assembled in a hierarchy. 

The remainder of the chapter is organized as follows. Section 3.2 introduces the 

method of automatic system configuration with equipment selection. An overview of 

methodology is discussed first and then the enumeration algorithm and balancing and 

equipment selection model are introduced. Section 3.3 presents an example of system 

design given a battery configuration. Section 3.4 draws the conclusions. 

3.2 System configuration generation with machine selection 

3.2.1 Methodology overview 

The overall procedure for the system configuration generation is shown in Figure 

3-4. Taking product designs as inputs, the outer loop algorithm first enumerates all 

feasible assembly tasks and the corresponding sequences T1, T2…Tk. For each sequence, 

one task is assigned to one machine each, thus creating an initial configuration (configk
0
) 

generated from the assembly sequence. The initial configuration will be evolved and 

updated following the inner-loop optimization procedures that explore all candidate 

machines and feasible ways of task-machine assignments (Figure 3-5(a)). Different from 

past research that focuses on assigning tasks to machines in serial configuration (Figure 

3-5(b)), this method considers complex configurations that may possess superior 

throughput performance and reconfigurability. After a configuration is chosen, the 

performance responses, e.g., throughput Thi*, and its associated cost Ci* for the optimal 

configuration are generated and the responses Thi* and costs Ci* are compared over all 

the task sequences to determine the global optimal configuration in the outer loop 
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optimization. When the number of the enumerated task sequences grows large, the 

exhaustive search is not computationally feasible. Genetic algorithm or computer 

experiment approaches are employed to approximate the near-optimum. The outer-loop 

optimization is the hierarchical subassembly decomposition method which has already 

been discussed in chapter 2. 

3.2.2 Model for balancing and equipment selection 

Enumeration in the outer loop generates the candidate assembly tasks/task groups, 

sequences, and initial configurations. The inner loop evolves each configuration by 

assigning the tasks to the selected machines. This section describes a mathematical model 

for the inner loop optimization including task-machine assignment, workload balancing 

and machine type and number selection in assembly systems. A simplified formulation is 

described in chapter 5 in order to speed up the optimization. 

Decision variables 

Define a task-machine assignment variable, which represents whether or not a 

task is assigned to a machine, as 

, ,

1        if task  is assigned to the th machine of the th machine type 

0                  otherwise                                                                        
i j k

i k j
x


 


       

Also define yi,j, which represents whether or not a machine type is utilized for task 

i, as  

,

,

,

, , ,1

1,if task i is assigned to machine type j, i.e. 0

0,                                           otherwise, i.e. 0

         

 are quantities for the machine type 

j

i j

i j

i j

K

i j i j kk

j

M
y

M

where M x

K j




 




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Figure 3-4 The nested procedure for combinatorial optimization
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Figure 3-5 Assignment of tasks to machines with certain configuration 

The variable yi,j is derived from xi,j,k, i.e.,  

, , , ,1

, 1 , ,

, , ,1

,      machine type 
 or 

,             machine type 

j

j

j

K

i j k i j i jK k

i j k i j k K

i j k i jk

x M y j
y x

x y j







  
  

 




 

where the first inequality ensures that yi,j  is 1 if task i is assigned to at least one machine 

of machine type j; and the second ensures that yi,j is 0 if task i is not assigned to machine 

type j. 

Objective function 

The objective in this model is to balance an assembly system by minimizing the 

equipment investment cost while ensuring the throughput requirement, i.e., 

1 1 1
min   

jI J K

ij ijki j k
G c x

  
                                                                                         (1) 
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where ci,j is the operating cost of assigning task i to machine type j. The purchasing cost 

of each machine type is assumed not to be considered here. 

Constraints 

1) Task assignment constraint 

This constraint requires task i to be assigned to only one type of machine, i.e., 

,1
1

J

i jj
y


                                                                                                              (2) 

Note: It is feasible that different types of machines can perform the identical 

operations at the same time and pace. However, this way will pose challenges to logistics, 

wiring, and machine set up. 

2) Task-machine matching constraint 

Certain engineering experiences may require a set of tasks not to be assigned to 

certain machine type, i.e.,  

, 0,( , ) set that task m cannot be assigned to machine type m ny m n TM n    (3) 

3) Assembly constraint 

This constraint specifies the material flows between tasks. The upstream assembly 

or subassemblies have to be finished before the downstream tasks can be processed. For 

example, in battery assembly, one module consists of four units and one unit consists of 

eight cells. If it takes one minute to produce a module, then unit stacking should not 

exceed one fourth minute and cell loading should not exceed 1/32 minute. Denote gi(·I) as 

the function of such material flow relationship between task i and the final task I. This 

constraint ensures that the throughput of component i satisfies the demand of final 

products and can be represented by  
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1 1

/ / ( ),    
J J

i ij ij I i Ij Ijj j
M t y M g t y i I

 
                                                      (4) 

where 
1

J

ij ijj
t y

 is the processing time for task i and Mi is the number of machines 

used for task i and 
1 1

jJ K

i ijkj k
M x

 
    

4) Cost constraint 

This constraint requires that the total equipment cost does not exceed the budget 

limit and can be represented by 

01 1 1

jI J K

ij ijki j k
c x G

  
                                                                                    (5) 

5) Throughput constraint 

This constraint requires the system throughput to meet the production demand, i.e., 

the throughput of the bottleneck operation satisfies 

0/B BM t Th                                                                                                      (6) 

6) Task zoning constraint 

Some tasks must be assigned to the same machine, and the other tasks cannot be 

assigned to the same machine. These constraints are known as positive and negative 

zoning constraints in [48-50]. For example, tasks requiring similar manufacturing process 

or a very expensive machine may be assigned to one machine in order to reduce 

equipment cost. Tasks requiring different types of manufacturing processes or having 

certain safety requirements usually cannot be assigned to the same machine. The 

following two equations represent positive and negative constraints, respectively.  

, , , ,

, , , ,

, ( , ) --set of tasks that must be assigned to the same machine

1, 1,... , ( , ) --set of tasks that cannot be on the same machine

u j k v j k

u j k v j k j

x x u v ZS

x x k K u v ZD

 

   
 (7) 

 



 

52 

 

Inner-loop optimization model selection 

In the formulations (2)-(7), the upper bound Kj of the quantities for the machine 

type j is assumed to be given. To determine the optimal Kj, a model selection procedure is 

developed as shown in Figure 3-6. First, a set of initial values of upper limits K1, K2, …, 

Kj … are assigned to each machine type when implementing the inner loop optimization. 

For the inner loop optimization, the genetic algorithm (GA) is adopted. Then the values 

of the upper limits are increased and the inner-loop optimization is implemented again. 

The new configuration is compared with the previous one. Keep increasing the values for 

the upper limits and update the solution until the resultant configurations do not change 

(converge) as the {Kj} increases.  

 

Figure 3-6 Procedure for inner-loop optimization model selection 
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Solution Method 

Genetic algorithm is a directed search algorithm based on the mechanics of 

biological evolution. Most of the time a solution can be identified if initial solutions are 

close to it and the solution could be local optimal. Exhaustive search method has also 

been used to find the optimal solution (Figure 3-7). It takes longer time so pre-filtering 

criteria could be needed in order to reduce possible enumeration. 

 

Figure 3-7 Exhaustive search method 

The following constraints have been linearized to use binary integer search 

method. 
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Binary integer search is a linear programming based branch and bound algorithm. 

The algorithm creates a search tree by repeatedly adding constraints to the problem 

(branching) (Figure 3-8). Different nodes represent different variable combinations. The 

objective function is estimated during the binary integer search in order to find the 

optimal solution. 

 

Figure 3-8 Binary integer search tree 

Computational complexity 

The proposed exhaustive search method in the outer-loop optimization to solve 

the combinatorial optimization problem of assembly sequence enumeration may face 

computational challenges when k is large. A recursive formulation is discussed in Lin et 

al. [15] for counting the number of total enumerations. For such huge number of 

enumerations, solutions can be found as follows: (1) the precedence constraints (filtering 

criteria) will significantly reduce k by eliminating infeasible sequences; (2) grouping 

some of the components, such as identical components, into subassemblies first, then the 

enumeration algorithm is applied in different assembly levels, and redundant 

enumerations can thus be avoided; (3) if the reduced k still poses challenges to 

computation, other searching methods such as genetic algorithm, simulated annealing, or 

Kriging method should be adopted based on a number of representative solutions and 

responses to obtain an approximation of the global optimum. 
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3.3 Case study 

This section demonstrates the configuration generation and equipment selection 

method using a case study of battery module assembly. 

3.3.1 Problem description and results 

As shown in Figure 3-9, a repetitive pattern in a battery module is the frame-cell-

foam-cell-cooling fin. Such a pattern repeats a number of times (N) in the module. Non-

repetitive components are added to the two ends of the repetitive pattern stack to form the 

module. 

Let A, B, C, D, E denote the cell and ancillary components. The repetitive pattern 

is B-A-D-A-C with the non-repetitive components E-A-C at one end and A-E at the other 

end. Also assume that the first cell A and foam D has to be assembled together. Table 3-1 

 

Figure 3-9 An example of assembly of battery module 

shows the enumeration results for the repetitive pattern. Table 3-2 shows only the first 10 

enumeration results for the whole module due to the page limitation. If there are no 

constraints applied, there are 197 possible sequences generated in total [15]. 

 



 

56 

 

Table 3-1 Enumeration results for the repetitive pattern (R) 

Case# 1 2 3 4 

Sequence (B(AD)AC) ((B(AD))AC) (((B(AD))A)C) ((B(AD))(AC)) 

Case# 5 6 7 8 

Sequence (B((AD)A)C) ((B((AD)A))C) (B(((AD)A)C)) (B(AD)(AC)) 

Case# 9 10 11  

Sequence (B((AD)(AC))) ((B(AD)A)C) (B((AD)AC))  
 

Table 3-2 First 10 enumeration results for the module (“R” represents repetitive pattern) 

Case# 1 2 3 

Seq. ((EA)CRAE) (((EA)C)RAE) ((((EA)C)R)AE) 

Case# 4 5 6 

Seq. (((((EA)C)R)A)E) ((((EA)C)R)(AE)) (((EA)C)(RA)E) 

Case# 7 8 9 

Seq. ((((EA)C)(RA))E) (((EA)C)((RA)E)) (((EA)C)R(AE)) 

Case# 10   

Seq. (((EA)C)(R(AE)))   
 

To illustrate the inner-loop optimization, consider case #5 of the repetitive pattern 

and case #9 of the whole module pattern. Table 3-3 lists the assembly tasks for repetitive 

(L591-L593) and non-repetitive pattern (L594-L596) assemblies and the final assembly 

(L597), where in Lijk, i is the index for certain combinations of repetitive pattern, j is the 

index for module pattern and k is the index of assembly tasks involved in the ijth pattern. 

The task sequence is shown in Figure 3-10. Other task information such as processing 

time and machine operating cost is given in Table 3-4. Since task L597 requires N 

repetitive patterns, the processing time of tasks L591-L593 are N times the processing 

time of performing one repetitive pattern at each single machine. The zoning constraints 

require tasks for repetitive (L591-L593) and non-repetitive pattern (L594-L596) and the 
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final assembly (L597) not to be assigned to the same machine. Since tasks L594 and 

L596 are essentially the same, they must be assigned to the same machine. 

Table 3-3 Assembly tasks of repetitive pattern #5 & module #9 

Task # Description 

L591 Assembly of components A & D 

L592 Assembly of components (AD) & A 

L593 Assembly of components (ADA) & B & C 

L594 Assembly of components E & A 

L595 Assembly of components (EA) & C 

L596 Assembly of components A & E 

L597 Assembly of components (EAC) & R & (AE) 

 

 

 

Figure 3-10 Task sequence graph for battery module assembly 

Assume that there are two machines available for each machine type due to the 

budget constraint. Figure 3-11 shows the initial configuration and the configuration after 

the inner loop optimization. For example, tasks L591 and L592 can be processed in one 

machine type and task L593 in another machine type. Tasks L594-L596 can be processed 

in one machine with the same machine type as tasks L591&L592. Task L597 is assigned 
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to a third type machine, which stacks repetitive pattern and non-repetitive pattern 

together.  

For the outer-loop, one needs to find the optimal configurations for other 

assembly sequences. Figure 3-12 gives the optimal configuration generated by repetitive 

pattern case #8 and module assembly case #9.  It has been found that repetitive pattern 

cases #1, #2, #3, #5, #6, #7, #10, #11 (Table 3-1) and case #9 of the whole module (Table 

3-2) yield the same configurations (Figure 3-11(b)) in the inner-loop optimization while 

repetitive pattern cases #4, #8, and #9 (Table 3-1) and case #9 of the whole module 

(Table 3-2) yield the same configurations (Figure 3-12). The configuration in Figure 

3-11(b) is superior since it is cheaper (The cost difference is $470,000) while maintaining 

the same throughput as the configuration in Figure 3-12. Similar procedure shall be 

applied for other cases of the whole module pattern in Table 3-2. 

3.3.2 Discussion 

In the above example, the difference between processing time of the final stacker 

and previous tasks for stacking repetitive patterns is not drastic. In the generated 

configurations, repetitive patterns and non-repetitive patterns are processed on two 

branch lines, respectively; and assembled in one machine in the final station. The 

processing time for non-repetitive pattern is 15~35 seconds per product, which is 

significantly smaller than the processing time for other stations (130~280 seconds per 

product). To minimize the cost, tasks for stacking non-repetitive patterns could be 

assigned to minimum number of machines without violating throughput constraint and 

zoning constraint.  
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Table 3-4 Task information for the example problem 

Task 

(i) 

Machine Type (j) Processing 

Time (ti,j) 

Machine 

Cost (ci,j) 

Zoning Constr. 

ZS ZD 

L591 Ejecting + Elevator t1,1=120 (sec) c1,1=10  L594-

L597 

 Gantry Robot t1,2=158.44 c1,2=30   

 Articulate Robot t1,3=180 c1,3=50   

L592 Ejecting + Elevator t2,1=160 c2,1=10  L594-

L597 

 Gantry Robot t2,2=196.86 c2,2=30   

 Articulate Robot t2,3=210 c2,3=50   

L593 Ejecting + Elevator t3,1=200 c3,1=10  L594-

L597 

 Gantry Robot t3,2=255 c3,2=20   

 Articulate Robot t3,3=280 c3,3=50   

L594 Ejecting + Elevator t4,1=15 c4,1=10 L596 L591-

L593 

&L597 

 Gantry Robot t4,2=19.03 c4,2=30   

 Articulate Robot t4,3=25 c4,3=50   

L595 Ejecting + Elevator t5,1=25 c5,1=10  L591-

L593 

&L597 

 Gantry Robot t5,2=30.61 c5,2=20   

 Articulate Robot t5,3=35 c5,3=50   

L596 Ejecting + Elevator t6,1=15 c6,1=10 L594 L591-

L593 

&L597 

 Gantry Robot t6,2=19.03 c6,2=30   

 Articulate Robot t6,3=25 c6,3=50   

L597 Ejecting + Elevator t7,1=150 c7,1=100  L591-

L596 

 Gantry Robot t7,2=180 c7,2=60   

 Articulate Robot t7,3=260 c7,3=50   
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(a) 

 

 (b) 

Figure 3-11 System configuration before and after optimization for R#5 and Module#9 
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Figure 3-12 System configuration before and after optimization for R#8 and Module#9 

If the difference between processing time of final stacker and previous tasks is big, 

e.g., the final stacking task L597 has significantly longer processing time than all its prior 

tasks, the final stacker becomes the bottleneck of the whole system. As a result, the inner-

loop optimization for all the assembly sequences generates a similar configuration, i.e., 

tasks prior to the final stacking are assigned to the minimum number of machines and 

final stacking has two or more machines in parallel (to satisfy the demand). Figure 3-13 

shows an example of the configuration after balancing and equipment selection for 

repetitive pattern case #5 and case #9 of the whole module, given processing time of 

5~30 seconds per product for all the stations prior to final stacker and 100~200 seconds 

per product for the final stacking station. The throughput requirement is increased to 

40JPH compared with around 15JPH requirement in the above example. 
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Figure 3-13 Different configuration when processing time between stations are 

significantly different and throughput requirement is increased 

3.4 Conclusion 

This chapter develops a new approach for designing optimal assembly system 

with complex configurations by jointly considering product design hierarchy, line 

balancing, and equipment selection for a single product type. The system initial 

configurations are automatically generated making use of the hierarchical and repetitive 

composition of product designs. A two loop nested optimization algorithm with inner 

loop and outer loop has been developed to explore all the possible assembly design 

solutions based on the initial configurations. The outer loop iterates task grouping and 

sequence generation and compares the performance responses among various 

configurations. The inner loop explores all the feasible ways of task-machine assignments 

and machine selection (type & quantity). Compared with the previous research on 

assembly system configuration generation, the novel contributions of this work are the 

generation of assembly system configurations considering product assembly hierarchy on 

non serial task sequences, and the two loop nested optimization of task and assembly 

sequence generation, equipment selection, and task-machine assignment and balancing. 
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Future research includes design of material flow path and control logic based on the 

generated configuration, hybrid system configuration design for multiple products with 

hierarchical assembly, and manufacturing system reconfiguration. 

3.5 Nomenclature 

i Index of tasks; i=1, 2...I; 

j Index of machine types; j=1, 2...J; 

k Label of machine for each type; k=1,2...KJ; 

xi,j,k Decision variable; 

yi,j Decision variable; 

ti,j Processing time of each task i for the jth machine type; 

cij Operating cost of performing task i on machine type j; 

C0 Machine budget; 

Mi,j Number of machine j used for task i; 

Mi Total number of machines used for task i; 

Th0 Throughput requirement; 

gi(·I) Function of material flow relationship between task i and the final task 

I; gi(·I)=1; 

TM Set of task machine pairs for matching constraint; 

ZS Set of task pairs for positive zoning constraint; 

ZD Set of task pairs for negative zoning constraint. 
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CHAPTER 4                                                                                       

ASSEMBLY SYSTEM CONFIGURATION DESIGN FOR A 

PRODUCT FAMILY 

Traditionally, mixed-model assembly systems with a serial configuration are used 

to manufacture families of products. Task variations associated with different models 

cause “drift” in such an assembly line. “Drift” is defined as the deviation of system 

processing time from the nominal cycle time. To more effectively deal with increased 

product variety, the assembly system can be set up with more complex, non-serial 

configurations, e.g., systems with multiple subassembly branch lines that converge to an 

assembly line. Such complex configurations allow for pre-assembly of different 

components on multiple lines simultaneously, thereby may potentially enhance the 

system productivity and reduce drift. This chapter establishes a systematic method for 

designing non-serial system configurations for a family of products. A new mathematical 

definition for “drift” is introduced and a cumulative sum (CUSUM) analysis is proposed 

to model the “drift”. Then the “drift” modeling is embedded in an optimal assembly 

system design problem for task assignment to minimize cost and drift. The method is 

developed based on a product family with tree type liaisons (no cycle in component 

connections). A case study of battery pack manufacturing is conducted to demonstrate the 

method. Conditions are identified when non-serial configuration with branches 

outperforms conventional mixed-model line in drift reduction. 
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4.1 Introduction 

Nowadays, a nearly endless variety of products is available on the market that can 

meet almost each customer’s specific preferences and needs. In order to keep pace with 

the fast development of technology and satisfy customers’ needs while maintaining a 

reasonable cost, manufacturers tend to produce product variety through the sharing of 

components. Many companies are developing product platforms and designing product 

families in order to provide a sufficient variety of products for the market while achieving 

low cost. Usually, a product family is defined as a group of related products that are 

derived from a product platform to satisfy a variety of market needs but is characterized 

by some common features, components, modules or subsystems [51]. Accordingly, a 

product platform can be defined as “a set of common components, modules, or parts from 

which a stream of derivative products can be efficiently developed and launched [52].”  

Three types of product platforms have been observed in industry examples: 

 Integral platform: In the integral platform, all the products in the family share 

a single part, such as the telecommunications ground network for 

interplanetary spacecraft [53]. 

 Modular platform: In the modular platform, products are customized by 

adding, removing or replacing one or more functional modules [51]. For 

example, Sony’s more than 250 models of its Walkmans
®

 are built on key 

modules [54]. 

 Scalable platform: The scalable platform can be a subset of the modular 

platform, in which products are developed by scaling the components or 

modules to satisfy the market needs [51]. For example, Boeing’s many 
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airplanes are “stretched” or “shrunk” according to different applications for 

transferring passengers and carrying cargo [55]. 

No matter which product platform a product family is developed from, a product 

family is composed of common components or modules and variant components or 

modules. Any given product within a family may have a unique component or module, 

which is a special case of a variant component or module. Figure 4-1 shows a product 

family architecture (PFA) [11]. Such an approach enabled high product variety at near 

mass production cost. Figure 4-2 shows a battery product family example, including one 

common plate module, two variant repetitive patterns and one unique interconnect cover 

module. 

 

Figure 4-1 A product family architecture (common components are in grey color, variant 

components are in upward diagonal shape (M12, M14) or downward disgonal shape 

(M22, M24), unique components are in white color) 
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Figure 4-2 Product family architecture for battery (one common plate module, variant 

repetitive patterns which differentiate one from the other by either cell tab position or 

cooling fin structure, one unique interconnect cover module) 

Assembly system design requires the representation of assembly hierarchy and  

components. In addition to the PFA method to represent the relationship among 

components or modules in an assembly, several methods are available, such as liaison 

graph, Bill-of-Material (BOM), precedence graph. Liaison graph is a graphical network 

where nodes represent components and  lines between nodes represent relations between 

components, such as physical contact or joining. The assembly representation methods 

for both a single product and a product family were reviewed by Hu et al. [11].  

A tree type liaison graph is used to represent the topographic patterns for a battery 

product family. Figure 4-3 shows the generalized liaison graph representation of the 

battery example, where the grey circle represents common components (e.g. plates) and 

white circle represents variant components, such as cells with tabs at either one side or 

two sides, cooling fins with either air cool or liquid cool structure. 
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Figure 4-3 A liaison graph representation (grey circle represents common components 

and white circle represents variant components) 

Each product is composed of components or modules that are linked to each other 

following certain topographic patterns, such as a tree type structure (without loop) as 

shown in Figure 4-3. This chapter mainly studies the system configuration design method 

for a family of products with a tree type structure. The method to identify 

assembly/subassembly grouping given a liaison graph was introduced in Chapter 2. 

After representing the relationship among components in a product family, the 

design of an assembly system often begins with assembly precedence identification and 

sequence generation [33-34]. Bourjault presented the first algorithm that generated all 

feasible assembly sequences by a series of “yes” or “no” questions [18]. De Fazio and 

Whitney built on Bourjault’s method, simplified the determination of precedence 

constraints, and increased the size of the problem to accommodate assemblies with much 

higher component numbers [19]. Lots of research took advantage of a computer aid for 

automatic assembly sequence generation and planning [56-59]. Methods were also 

developed to derive the assembly sequences from the disassembly sequences [24-25]. 

Those traditional assembly sequence generation methods are based on sequential task 

sequences generation, i.e. adding one part at a time. Li et al. [16] considered concurrent 
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task sequences and adding more than one part at a time in generating all feasible 

subassemblies. The method utilized a hierarchical subassembly decomposition to 

facilitate automatic configuration of assembly systems for a single product and can 

potentially enhance the system throughput. 

Based on a set of feasible assembly sequences, the design of an assembly system 

then creates optimal system configurations and balances the assembly system by 

assigning tasks to machines and selecting appropriate machine types and quantities. In 

order to handle a variety of products, different configurations have been designed. Figure 

1-6 shows different system configurations: a serial configuration, a parallel configuration, 

a serial system with parallel machines and a parallel system with serial machines. 

After a configuration is chosen, assembly line balancing problem is to search for 

the optimal assignment of assembly tasks to stations given precedence constraints 

according to a pre-defined single or multi-objective goal: such as 1) minimize the idle 

time, 2) minimize number of stations/minimize cost, 3) maximize system 

productivity/throughput etc [11]. For multiple product assembly lines, two approaches 

were suggested: 1) a mixed-model line which produces product variants on the same line 

in an arbitrarily intermixed sequence, 2) a multi-model line which produces product 

variants in a sequence of batches (Figure 4-4) [60]. 

 

Figure 4-4 Assembly lines for multiple products [60] 
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For both mixed-model line and multi-model line, because the production of 

multiple products is executed on the same line, task variations associated with different 

models cause “drift” in balancing such an assembly line. Drift represents the deviation 

from the nominal cycle time, where positive drift describes the time exceeding the 

predefined cycle time regarding one product variant and negative drift describes the time 

during which no assembly work is needed regarding one product variant (Figure 4-5) [12-

13]. The ideal line balancing is to have neither bottleneck station nor idle station. Because 

of the different assembly process characteristics of different model variants, “drift”, the 

deviation from nominal cycle time, exists in line balancing for product variety.  

 

Figure 4-5 Positive and negative drift in accordance with [12] and [13] 

The existing research addressing the drift problem focused on serial line 

balancing [61-65]. To more effectively deal with increased product variety, the assembly 

system can be set up with more complex, non-serial configurations, e.g., systems with 

multiple subassembly branches that converge to an assembly line (Figure 4-6). There is a 

lack of research on non-serial system configuration design and drift analysis for product 

variety. Furthermore, although drift has been discussed in the previous literature, there is 
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a lack of quantitative measurement of drift. This chapter describes a systematic method 

for designing assembly system configurations for a family of products: a new 

mathematical definition for “drift” is introduced; a CUSUM analysis is proposed to 

model the “drift”; and the “drift” modeling is embedded in the optimal assembly system 

design problem to minimize cost and drift. 

 

Figure 4-6 Example of non-serial configuration 

The remainder of the chapter is organized as follows. Section 4.2 introduces the 

method of system configuration design for product variety. An overview of method is 

discussed first and then the mathematical model is introduced. Section 4.3 presents an 

example of system design given a battery product family configuration. Section 4.4 draws 

the conclusions. 

4.2 System configuration design for product variety 

4.2.1 Method overview 

The overall procedure for system configuration design for product variety still 

follows a nested procedure for combinatorial optimization as discussed in Chapter 3. 

Figure 4-7 shows the procedure highlighting the differences between this work and 

previous research, and the contributions of this work. The differences and contributions 

are: 1) Different from past research that focused on assigning tasks to machines in serial 
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configuration, this method considers complex, non-serial configurations for product 

variety; 2) “Drift”, the deviation of system processing time from the nominal cycle time, 

is mathematically defined and a CUSUM analysis is adopted to model the “drift”; 3) 

“drift” modeling is embedded in the optimal assembly system design problem for product 

variety; 4) Conditions are identified when non-serial configuration with branches 

outperforms conventional mixed-model line in drift reduction. As shown in Figure 4-7, 

the algorithm first takes several product designs in a product family as inputs. After 

identifying the liaison relationship and precedence constraints, a joint liaison graph is 

generated. Based on the joint liaison graph, the hierarchical subassembly decomposition 

method as discussed in Chapter 2 (outer loop optimization) is used. The inner loop 

optimization is formulated to minimize drift under a stochastic product demand mix. At 

last, discussions are performed to identify conditions when non-serial configuration with 

branches outperforms conventional mixed-model line.  

 

Figure 4-7 Methodology overview for system configuration design for product variety 



 

73 

 

4.2.2 Mathematical representation of drift 

Drift is defined as the deviation of system processing time from the nominal cycle 

time [12]. Drift exists because of the stochastic changes of product demand mix over time. 

Stochastic product demand mix 

Because customer preferences may change over time period l=1 … L, the demand 

of different products in a product family also changes. For example, at one time period, 

the strategy may be to have a balanced distribution of products; at other time periods, the 

strategy may be to have one or more primary products. Given the demand percentage of 

each final product, the required percentage of each component can be calculated 

correspondingly. For ease of mathematical representation, let 1 2( , , , , ,  )l l l l

s m     be the 

percentage of one variant component at time period l, and 1 2( , , , , , )l l l l

t n     be the 

percentage of another variant component, and so on. For example, as shown in Figure 4-8, 

A and B are variant components, therefore AB (final product) has four variations. Let Q 

denote the set of all possible assembly combinations, 

  1 2 1 2| 1, ,     {( , , , , ,  ), ( , , , , , ), }.l l l l l l l l

l l s m t nQ q l L whereq                  

Determination of system processing time for different configurations 

In order to formulate the mathematical representation of drift, system processing 

time needs to be determined. System processing time is defined as the maximum 

processing time among all machines. On each machine, the processing time is a weighted 

sum of all processing times of different components. For example, in Figure 4-9, two 

varieties of component A 1 2{ , }A A  are loaded using machine A according to their demand 

percentages, and two varieties of component B 1 2{ , }B B  are loaded using machine B. The 
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Figure 4-8 Example of possible component and product variations and their demand 

percentages representation (the percentages of variant component A are A1: l

1 , A2: l

2 ; 

variant component B are B1: l

1 , B2: l

2 ; final products are A1B1: ll

11 , A2B2: ll

22 , 

A2B1: ll

12 , A1B2: ll

21 ) 

final stacker (Machine C) assembles component A and B into different final 

products 2 1 11 1 2 22{ , , ,  }A B A B A B A B . The system processing time is calculated as 

1, 1 2, 2 1, 1 2, 2

1 1, 1 1 2 2, 2 1, 2 12 2 1 2 1 2,

max{ ,

}

,a load a load b load b load

a b asm a b asm a b asm a b asm

t t t t t

t t t t

   

       

  


                                               (1) 

In general, the system processing time can be formulated as     

( , ,...)1 1

1 2

1 2

max{ ...( ...) }where

( , ,..., ,..., ) is the percentage of one variant component at time period ,

( , ,..., ,..., ) is the percentage of another variant 

l
m nq l l

s t s t i is t

l l l l

s m

l l l l

t n

t t

l

 

   

   

 
  

1 2

component at time period ;

( , ,..., ,..., )...

 is the task time

l l l l

u o

i

l

t

   

      (2) 
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Figure 4-9 Example of processing time calculation 

Mathematical representation of drift 

Drift exists in the system because of the changes of product demand mix. For 

example, at time period 1 (l=1), final products 2 1 11 1 2 22{ , , ,  }A B A B A B A B are produced 

according to the ratio of {30%, 20%, 20%, 30%}; at time period 2 (l=2), final products 

are produced according to the ratio of {25%, 25%, 25%, 25%} due to customer 

preference change. This product demand mix continue to change over time period l=1 … 

L. Since drift is defined as the deviation of system processing time from the nominal 

cycle time and the product demand mix change is a continuous process, drift can be 

formulated as 01
( )m

l q

l m
C t c


  , which is similar to CUSUM analysis in statistical 

quality control, where mq
t is the processing time at time m, 0c is the nominal cycle time. 
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The system processing time mq
t is a function of , , ,...    , therefore it changes due to the 

changes of product demand mix. As shown in Figure 4-10, the system processing time 

sometimes is greater than the nominal cycle time 0c , and sometimes is less than the 

nominal cycle time.  

 

Figure 4-10 System processing time vs planning horizon (time) 

lC is the cumulative sum up to and including time period l. lC  incorporates all the 

information in the sequence of planning horizon. Figure 4-11 plots the positive drift and 

negative drift from example in Figure 4-10. Ideally, 0~lC  is expected at every 

different time period l.   

   
1

0 1 0 1 0

1 1

  ( )                    m l m

l l
q q q

l l l

m m

C t c C t c where C t c


 

 

                                     (3) 

If the process is treated as a deterministic process, i.e. at every time period l, the 

product demand mix is known, the total drifts of the assembly system over time period 

l=1 … L, can be defined as 
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0

1 1 1

  ( )m

L L l
q

l

l l m

C t c
  

   = |...|...|||| 21211 ctctctctctct Lqqqqqq
 (4) 

 

Figure 4-11 Plot of the positive drift and negative drift 

The absolute value is used because the imbalance of the assembly line can result 

from either positive drift or negative drift, where positive drift represents the time 

exceeding the optimal cycle time and negative drift represents the idle time for one or 

more of the product variants [11].   

The process can also be treated as a stochastic process, i.e. the product demand 

mix follows a certain distribution, and therefore system processing time   lq
t becomes a 

random variable. Actually at the design stage of an assembly system, the changes of 

product demand mix are unknown and the objective can only be set to minimize the 

variation of drift. The detail is discussed in the objective function in section 4.2.4. 

4.2.3 Generation of joint liaison graph  

Given the liaison graph for each product, a joint liaison graph can be generated 

according to Thomopoulos’s concept of a combined precedence diagram to join the 
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precedence relations of different models on a single diagram [66]. Precedence matrices 

can be used to construct the joint precedence graph [67]. A precedence matrix is an 

upper-triangular matrix with the entry to be either 1 or 0: if the processing of column task 

requires the completion of row task, the entry is 1; otherwise, the entry is 0. Let AB = 

{a1b1, a1b2, …, ambn} denotes all the task combination in the precedence matrix. So we 

have: 

1 2

1 1 1 1 2 1

2 2 1

1

        ...  

...

...

... ... ...

... ...

n

n

m m m n

b b b

a a b a b a b

AB a a b

a a b a b

 
 


 
 
 
 

 where 
1        

0

j i

i j

task b is an successor of task a
a b

otherwise


 


 

A detailed discussion of combined precedence graph can be found in [66], [68] and [69]. 

A simple example using a battery product family is shown in Figure 4-12. A, B, C, D, E 

denotes battery components. One battery has the assembly pattern as B-A-D-A-C-E, and 

the other battery has the assembly pattern as B-A-A-D-A-C. Numbers 1-6 and T01-T06 

denote the assembly tasks. Given the liaison graph for each battery product, their 

precedence matrices can be generated as shown in Figure 4-12. Therefore, the joint 

precedence matrix can be constructed according to the rule discussed above. 

Furthermore, if there are any implied precedence relations, then the related entry in the 

joint precedence matrix should also be 1. For example, in Figure 4-12, T06 is a successor 

of T05, therefore T06 is the successor of every preceding tasks of T05. The joint liaison 

graph can be generated based on the joint precedence matrix. 
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Figure 4-12 Precedence matrices and joint precedence graph (A-E circles denote the 

battery components, where the dark circles differentiate batteries in a product family, 

Numbers 1-6 denote the different assembly tasks) 

4.2.4 Assembly system configuration design for product variety 

This section describes a mathematical model for the inner loop optimization 

including decision variables, objective functions and constraints. The optimization 

problem explains task-machine assignment and workload balancing in assembly systems. 

Decision Variables 

A task-station assignment variable xi,k is used to represent whether or not a task is 

assigned to a station. 

,

1         

0
i k

if task i is assigned to the kth station
x

otherwise


 


 

Nk is the number of machines for station k. 
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Objective function 

The objective in this model is to design an assembly system by minimizing the 

drift caused by different assembly process characteristics of different products in a family. 

The main reason that drift exists is that product demand mix changes stochastically. The 

percentages of variant components , , ,...    are assumed to be independent and they all 

follow uniform distribution from 0 to 1, i.e. ~ (0,1)U . The system processing time mq
t is a 

function of , , ,...    , therefore it changes at different time.  

The objective is to minimize the variation of drift because of the stochastic nature 

of system processing time. The objective function is expressed as: 

0min  (| - |)lq
Var t c  

2 2

0 0 0

2 2 2

0 0 0

2 2 2 2

0 0 0 0

 (| |) [(| |) ] [ (| |)]

[( ) ] 2 ( ) [ (| |)]

[( ) ] 2 ( ) [ ( )] 2 ( )

l l l

l l l

l l l l

q q q

q q q

q q q q

Since Var t c E t c E t c

E t c E t c E t c

E t c E t c E t c E t c

    

    

     

  

2 2

0(| |) [( ) ] [ ( )]l l lq q q
Var t c E t E t                                                                          (5) 

Constraints 

1) Task assignment constraint 

This constraint specifies that each task must be assigned to one and only one 

station. 

,1
1

K

i kk
x


                                                                                                             (6) 

2) Throughput constraint 

This constraint ensures that the throughput satisfies the demand of final products 

and can be represented by 



 

81 

 

,

1
0

I i i k
ki

t x
N

c
                                                                                                    (7) 

3) Precedence constraint 

This constraint ensures that the precedence relationship can be preserved. 

, ,

1 1

,

:         

K K

i k j k j

k k

j

k x k x task j and i

Set of tasks that must precede task j

 

      P

P

                                                        (8) 

4) Cost constraint 

This constraint requires that total cost including operation penalty cost and 

amortized annual station cost not to exceed the budget. Penalty cost is incurred due to 

multiple tasks assigned in one station. If there are more assembly tasks to be processed in 

one station, the penalty cost is larger. For example, Figure 4-13 explains the penalty cost 

and station cost. Configuration 1 has one single station (K=1) with three parallel 

machines. Each machine allows loading and assembling all the components (Cell, Fin, 

Cell, and Frame denoted by C, F, C, Fr) at the same time. Configuration 2 has three 

stations (K=3) with one machine at each station. Only the first station allows assembling 

two components, and the other two stations only allow assembling one component at a 

time. The station cost of configuration 2 is higher than configuration 1. The penalty cost 

of configuration 1 is higher than the penalty cost of configuration 2 at each of its station 

since more assembly tasks are processed at one station in configuration 1. 

01

0

( )

 is the penalty cost at the th station

 is the station cost

   

K

k kk

k

N c c G

c k

c

G is the budget


 

                                                                        (9) 
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Figure 4-13 Example configuration to explain penalty cost and station cost 

5) Zoning constraint: 

Some tasks must be assigned to the same station, and the other tasks cannot be 

assigned to the same station. These constraints are known as positive and negative zoning 

constraints. For example, tasks requiring similar manufacturing processes or a very 

expensive machine may be assigned to one station in order to reduce station cost. Tasks 

requiring different types of manufacturing processes or having certain safety 

requirements usually cannot be assigned to the same station. The following two equations 

represent positive and negative constraints, respectively.  

, ,

, ,

, ( , ) --set of tasks that must be assigned to the same station

1,( , ) --set of tasks that cannot be on the same station

u k v k

u k v k

x x u v ZS

x x u v ZD

 

  
   (10) 

Solution Method 

The problem is a mixed integer linear programming (MIP) problem that can be 

solved by any integer programming solvers such as Gurobi.  

 

 

 



 

83 

 

4.3 Case study 

This section demonstrates the configuration generation and line balancing method 

using a case study of two battery module assemblies. “Drift” is compared between 

different configurations. 

4.3.1 Problem description and results 

As shown in Figure 4-14, the repetitive pattern in all of the battery modules is the 

same: cell-cooling fin-cell-frame. But the types of cell and cooling fin are different 

depending on the cell tab position (one sided tab/two sided tab) and battery cooling 

method (air cool/liquid cool), and their repeating time (N) is also different. Non-repetitive 

components are added to the two ends of the repetitive pattern stack to form the module. 

The whole module pattern is end plate + fin + N*(cell + fin + cell + frame) + end plate. 

 

Figure 4-14 An example of assembly pattern of battery module 

Let C, E, F, M denote the cell, end plate, cooling fin and frame respectively. The 

assembly pattern for the whole module is E + F + N*(C + F + C + M) + E. Table 4-1 

shows the enumeration results for the repetitive pattern and Table 4-2 shows the 
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enumeration results for the whole module. If there are no constraints applied, there are a 

total of 11 possible sequences generated in each case [15].  

Table 4-1 Enumeration results for the repetitive pattern 

Case# 1 2 3 4 

Seq. ((CF)CM) (((CF)C)M) ((CF)(CM)) (C(FC)M) 

Case# 5 6 7 8 

Seq. ((C(FC))M) (C((FC)M)) (CF(CM)) (C(F(CM))) 

Case# 9 10 11  

Seq. ((CFC)M) (C(FCM)) (CFCM)  

 

Table 4-2 Enumeration results for the battery module (“R” represents repetitive pattern) 

Case# 1 2 3 4 

Seq. ((EF)RE) (((EF)R)E) ((EF)(RE)) (E(FR)E) 

Case# 5 6 7 8 

Seq. ((E(FR))E) (E((FR)E)) (EF(RE)) (E(F(RE))) 

Case# 9 10 11  

Seq. ((EFR)E) (E(FRE)) (EFRE)  

Given the demand percentage of four final battery modules, the required 

percentage of components can be calculated correspondingly. For ease of mathematical 

representation, let  1 1, 1l l  be the demand percentage of cell C1 and C2 at time l, 

 2 2, 1l l   be the percentage of cooling fin F1 and F2 at time l, respectively. For 

example, if the required demand percentage for each product is 1/4 of the total demand, 

1 2 0.5l l   is needed to achieve the target throughput. Table 4-3 shows the possible 

product variations and their demand percentages. Among them, the repeating time for 

product 1 and 4 is N1=N4=12; for product 2 and 3 is N2=N3=10.  
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Table 4-3 Product variety representation and demand percentage 

Product # Product Variety Demand Percentage 

Product 1 EF1(C1F1C1M)E or EF1R1E 
1 2

l l   

Product 2 EF2(C1F2C1M)E or EF2R2E 
1 21( )l l   

Product 3 EF1(C2F1C2M)E or EF1R3E 
1 2(1 )l l   

Product 4 EF2(C2F2C2M)E or EF2R4E 
1 2(1 )(1 )l l    

 

To illustrate the optimization procedure, consider case #2 as the battery assembly 

repetitive pattern. Table 4-4 lists the assembly tasks for the repetitive pattern. The task 

sequence is shown in Figure 4-15. Assume the base cost for assembling one task at each 

machine is $1M, and proportionally increases as the # of assembly tasks increases at one 

machine. Zoning constraints require that the assembly tasks cannot all be assigned to one 

station with parallel machines because of the practical issues, such as redesign of 

machine tools and reliability issues etc. Amortized annual station cost c= $0.5M. The task 

processing time is given in Table 4-5. Given the throughput requirement as 150,000 

modules per year ( 0 30Th JPH ), the target cycle time ( 0c ) is 120 second. Table 4-6 

shows the optimization results for repetitive pattern case #2. Similarly, perform 

optimization algorithm to all the repetitive patterns. The results are summarized and 

shown in Figure 4-16. Under current condition, non-serial configuration with branches 

(configuration 4) outperforms conventional serial line (configuration 3) in drift reduction 

given the same cost. 

Table 4-4 Assembly tasks description 

 

Task # Description 

L01 Assembly of components C & F (C1F1 or C1F2 or C2F1 or C2F2) 

L02 Assembly of components CF & C 

L03 Assembly of components CFC & M 
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Figure 4-15 Task sequence graph for battery repetitive pattern assembly 

Table 4-5 Processing time for the example problem 

 

Loading 
1 2secCt   2 3secCt   1 2secFt   2 3secFt   sec2Mt

 

Assembly  

(2 components) 
31,1 FCt  42,1 FCt  41,2 FCt  52,2 FCt  … 

Assembly  

(3 components) 
1, 1, 8F C Mt   2, 1, 9F C Mt   1, 2, 9F C Mt   2, 2, 10F C Mt   … 

Assembly  

(4 components) 
1, 1, 1, 10C F C Mt 

 

1, 2, 1, 11C F C Mt 

 

2, 1, 2, 11C F C Mt 

 

2, 2, 2, 12C F C Mt 

 

… 

 

 

Table 4-6 Optimization results for case #2 

Configuration Drift and Cost Calculation 

 

(sec)222)89(8143|)(|: 2

0  ctVarDrift lq
 

)($5.6)5.02(*2)5.01(*1)(:
1

MccNCost
K

k kk  

 

 

(sec)208)100(10208|)(|: 2

0  ctVarDrift lq
 

)($5.6)5.01(*1)5.02(*2)(:
1

MccNCost
K

k kk  

 

 
(sec)153)108(11817|)(|: 2

0  ctVarDrift lq
 

)($5.4)5.01(*1

)5.01(*1)5.01(*1)(:
1

M

ccNCost
K

k kk



   
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(a) candidate configurations 

 
(b) drift comparison among candidate configurations 

 
(c) cost comparison among candidate configurations 

 
Figure 4-16 Optimization results for all the repetitive patterns (a) candidate 

configurations (b) drift comparison (c) cost comparison 
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4.3.2 Discussion 

In the above example, given the processing time as shown in Table 4-5, non-serial 

configuration with branches outperforms conventional serial line in drift reduction under 

the same cost. If the assembly time on the bottleneck machine is reduced due to faster 

machines, and the loading and other assembly times are kept the same as shown in Table 

4-7, the drift comparison between conventional serial line and non-serial configuration 

with branches are shown in Figure 4-17. Under this condition, the conventional serial line 

(configuration 3) outperforms non-serial configuration with branches (configuration 4) in 

drift reduction under the same cost. 

Table 4-7 Processing time (assembly time on the bottleneck machine is reduced 

compared with the case study) 

 

Loading 
1 2secCt   2 3secCt   1 2secFt   2 3secFt   2secMt 

 

Assembly  

(2 components) 
1, 1 2C Ft   1, 2 3C Ft   2, 1 3C Ft   2, 2 4C Ft   … 

Assembly  

(3 components) 
1, 1, 8F C Mt   2, 1, 9F C Mt   1, 2, 9F C Mt   2, 2, 10F C Mt   … 

Assembly  

(4 components) 
1, 1, 1, 10C F C Mt 

 

1, 2, 1, 11C F C Mt 

 

2, 1, 2, 11C F C Mt 

 

2, 2, 2, 12C F C Mt 

 

… 

 

 

Figure 4-17 Drift comparison between serial line and branched line 



 

89 

 

An automatic algorithm is implemented in a Graphical User Interface (GUI) as 

shown in Figure 4-18. In practical, engineers can input a range of task processing times 

and obtain the optimal configurations with smallest drift and cost. 

 

Figure 4-18 Graphical user interface (taking the processing time as inputs and generating 

configurations and drift comparison as outputs) 

The above results show “on average” under certain condition, which 

configuration is better in drift reduction given the same cost (e.g. non-serial configuration 

with branches or conventional serial line). Figure 4-19 shows the drift comparison 

between two configurations when the process data is changed.  When α1 is fixed, 

20 0.6  , the drift of serial line is bigger than that of the branched line. Same 

conclusion can be drawn when 2 0.7  . Otherwise, the drift of branched line is bigger 

than that of the serial line. Similar conclusions can be summarized and provided as 

engineering guidelines. 
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Figure 4-19 Drift comparison between conventional serial line and non-serial 

configuration with branches (when α1=0.1, and α2 changes from 0-1) 

In the assumption, the percentages of variant components , , ,...    are assumed 

to be independent and they are assumed to follow uniform distribution from 0 to 1, 

i.e. ~ (0,1)U . If the percentages of variant components are not independent, nor they 

follow uniform distribution, the solution won’t change. Since 

2 2

0(| |) [( ) ] [ ( )]l l lq q q
Var t c E t E t                                                                          (5) 

Where ( , , ,...)lq l l lt f     

( ) ( , ,...) ( , ,...)

( , ,...) ( ) ( ) ( )

( , ,...) (  )

( , ,...) ( | ) ( )

lq l l l l l l

l l l l l l

l l l l

l l l l l l l

E t f p d d

f p p d d independence

f d d uniform distribution

f p p d d

     

     

   

      

















                                           (11) 

Therefore, our solution in calculating the drift is a conservative solution.  
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4.4 Conclusion 

This chapter develops a new approach for designing optimal assembly system 

configuration when a system processes multiple products in a product family. The 

stochastic product demand changes cause “drift” in balancing such an assembly system. 

By considering not only traditional assembly system configurations (serial, parallel 

stations) but also complex configurations with branches, the method explores the optimal 

ways of configuration generation and line balancing for a product family in order to 

minimize the total drift and cost. Compared with the previous research on assembly 

system configuration generation for a product family, the novel contributions of this work 

are the generation of complex assembly system configurations with branches, drift 

definition and modeling, the formulation of guidelines for engineers in practice. Future 

research includes design of material flow path and control logic based on the generated 

configuration and manufacturing system reconfiguration. 
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CHAPTER 5                                                                                               

AN ASSEMBLY SYSTEM CONFIGURATOR FOR AUTOMOTIVE 

BATTERY PACKS 

  

 

High power and capacity lithium-ion batteries are being adopted for electrical 

vehicle applications. The assembly processes for such batteries are influenced by battery 

cell designs, such as cell type, geometry, tab shape/position, module stack form and 

repetitive patterns, which require proper assembly equipment for cell handling and 

joining. Since battery technology is progressing rapidly, a lot of new battery designs are 

emerging on the market. A math-based tool, Assembly System Configurator, is developed 

for designing reconfigurable battery assembly processes and systems in a cost-effective 

way. The Configurator implements the methods developed in chapter 2-4 by automating 

the tasks of assembly task generation, sequence planning, equipment selection, assembly 

line balancing and throughput optimization. The structure of the Configurator is 

introduced and its capabilities are demonstrated using a battery case study. 
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5.1 Introduction 

Lithium-ion batteries are one of the key enabling technologies for the 

electrification of automobiles because of their advantages over conventional batteries: 

higher energy density, lighter weight, longer life, and lower toxicity [2]. However, cost-

effective manufacturing of lithium-ion batteries for electrical and hybrid electrical 

vehicles (EV/HEV) has not yet been fully developed. Efficient, flexible, and reliable 

battery assembly automation is needed for two following reasons: 1) A variety of new 

battery pack designs and their changing demand rates require the assembly system to be 

flexible and reconfigurable. The battery designs include variations in cell type, geometry, 

tab shape/position, module stack form and repetitive patterns; 2) The high current and 

voltage in battery cells, modules and packs require automatic assembly and material 

handling.  

Systematic approaches do not yet exist for addressing the relationship between 

battery module/pack configurations and battery assembly processes. Therefore, a math-

based tool, Battery Assembly System Configurator, is being developed such that the 

battery assembly systems can be optimally designed by automating the tasks of assembly 

task generation, sequence planning, equipment selection, assembly line balancing and 

throughput optimization. By implementing the methods discussed in chapter 2-4, 

Configurator establishes the framework and basis for developing cost-effective 

manufacturing of vehicle battery, therefore has its practical application. 

The Battery Assembly System Configurator is programmed in Visual Basic and an 

Excel-based data structure. With a database of assembly equipment and technology and 

the product information provided by the user through user interfaces, the Configurator 
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can sort and analyze the data and then report a set of candidate assembly machines with 

process specifications and performance measures for system configuration designs and 

optimization. 

The remainder of the chapter is organized as follows. Section 5.2 introduces 

battery module/pack designs and their appropriate assembly processes. Section 5.3 

discusses the methodology implemented in the Configurator, including automatic system 

configuration generation, optimization for task assignment and equipment selection, and 

throughput analysis. The structure of the Configurator is also presented. Section 5.4 

demonstrates the Configurator with an example of system design given a battery 

configuration.  Section 5.5 draws the conclusions and suggests future work. 

5.2 Battery module/pack designs and their assembly processes 

A lithium-ion battery pack usually has a hierarchical structure consisting of 

several modules with each module consisting of multiple battery cells and ancillary 

members, such as frames, cooling fins, and compression foams, as shown in Figure 1-5. 

Three types of battery cells are commonly seen today: the prismatic cell with a rigid case 

or container, the prismatic cell with a pouch, and the cylindrical cell with a rigid can. 

Their shapes and types determine the module/pack configurations and the assembly 

methods. Battery tab positions (one-sided or two-sided) may also influence the selection 

of the assembly method. The tab type, stud or foil, mainly influences the methods of 

joining cells [70].  

Figure 5-1 shows the process flow of battery assembly involving four operations: 

loading, inspection and sorting, stacking, and clamping to module or pack. First, battery 

cells and auxiliary components are loaded from feeders or crates onto the assembly line. 
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Then the battery cells are inspected and sorted according to their properties (type, size, 

tab shape and tab position), conditions (good, damaged, defective, low performance) and 

different electrochemical characteristics (capacity, voltage) by optical, electrical, 

ultrasonic, X-ray or mechanical sorting devices. Battery components are assembled and 

aligned into a stack by appropriate stacking equipment. Each stack is then clamped or 

strapped with end plates. Upon the completion of these four operations, the cells are 

welded together into a battery module. Finally several battery modules are mechanically 

connected to form a battery pack.  

 

Figure 5-1 Battery module assembly procedures 

In the above battery assembly process, stacking and joining are the two most 

important assembly operations for determining assembly productivity and quality. 

Meanwhile, they also present major challenges to production automation and flexible 

system design. Therefore, this chpater will focus on those two critical operations. 

5.2.1 Automatic stacking methods 

The methods for automatic stacking of components can be categorized into two 

types: roll and eject; pick and place. This section reviews these two automatic stacking 

methods and discusses their applications to battery assembly. 
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Roll and eject 

Roll and eject is a fast assembly method using conveyor belt to roll or transport 

the parts to be stacked and eject them into a stacking bucket with the aid of gravity or an 

elevator which can move up or down to form a stack (Figure 5-2). Figure 5-2(a) shows 

the stacking bucket which may have a slightly inclined bottom so that the parts in the 

bucket can slide to align themselves against the bucket wall. This stacking method is 

mostly used for stacking non-fragile, light-weight and thin parts, such as newspaper and 

printing materials [71-74], but not suitable for battery cells which either are too heavy or 

have tabs with carefully bent geometry for welding. 

Roll and eject using an elevator (Figure 5-2(b)) is very robust for extensive 

stacking applications, like food packaging and video cassette stacking [75]. With little or 

no falling distance controlled by the elevator, the impact of stacking motion is limited to 

the edge stopped by the guide of the stack. Prismatic cells should be good candidates for 

this kind of stacking methods. Still, care needs to be taken to turn the battery cell tabs 

away from direct contact with the stacking guide of the elevator. 

        
                                   (a)                                                            (b) 

Figure 5-2 Roll and eject method: (a) into a stacking bucket; (b) using an elevator 
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Pick and place 

The pick and place method uses robots or mechanized grippers to fetch and place 

individual parts and thereby form a stack. Based on their configurations and degrees of 

freedom (DOF), four types of robots can be found commercially available, i.e., SCARA 

(Selective Compliant Assembly Robot Arm) robots (Figure 5-3(a)), PKM (Parallel 

Kinematic Machine) robot (Figure 5-3(b)), articulate robots (Figure 5-3(c)), and gantry 

robots (Figure 5-3(d)) [5]. 

 
   (a)                          (b) 

 
(c)                           (d) 

Figure 5-3 Pick and place robots [5] 

The SCARA robot normally has four DOF with a set of serially jointed and 

motorized arms that is compliant in the X-Y directions, but stiff in the Z direction. It is 
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particularly suitable for stacking parts that do not need sophisticated manipulation. This 

type of robots is fast, precise, compact and low cost and thus has been extensively used in 

the electronics industry. 

The relatively new PKM robot has four or more DOF with multiple sets of arms 

that are connected to a moving platform (end effector). Through coordinated actuation at 

the base of each arm, the robot can pick and place parts as the conventional robots. Due 

to its light-weight and non-motorized arms, the robot has the fastest acceleration and 

speed among all types of robots for applications. For battery assembly, this type of robots 

may satisfy the speed requirement of stacking; however, its positioning accuracy or 

repeatability can be a concern. 

The articulate robot typically has six DOF with a set of serially articulated and 

motorized arms. The robot is the most flexible in applications and commercially available 

with a wide range of reach and payload. It is heavier, slower and more expensive than the 

SCARA robot, but its flexibility for other applications can be an important consideration 

in flexible or reconfigurable manufacturing systems. 

The gantry robot has three axes that move linearly in the Cartesian or XYZ 

coordinates. This type of robots usually is the most accurate and customizable to various 

work range, payload and DOF. In fact, the robot can be scaled down to two DOF, and 

thus called mechanized module here, for simple pick and place operations. In many 

applications, the linear movements of the axes afford the gantry robots to relocate parts 

without the need of an extra rotary axis to adjust part orientation as other types of robots 

have. The fixed rails of the axes, unfortunately, make this type of robots the poorest in 

space utilization. 
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5.2.2 Joining methods 

Lee et al [70] have conducted a comprehensive review of the state-of-the-art 

battery joining technologies. In developing the Configurator, automatic 

assembly/stacking methods are our main focus, but the Configurator has the capability to 

handle joining as well.  

5.3 Battery assembly system configurator 

The overall method implemented in the Configurator for the system configuration 

generation and optimization is shown in Figure 3-4. This method adopts the nested 

framework proposed in [16] to model the relationship between the product design and 

system configuration. The detailed method has been introduced in chapter 3. 

5.3.1 Configuration generation 

Different sequences and system configurations can be used to assemble 

components for a given stacking pattern in a battery pack. For example, components can 

be added one at a time, leading to serial sequences.  Alternatively, all the components can 

be assembled at one station with flexible machines, resulting in a parallel operation. 

Various hybrid assembly sequences can also be obtained by pre-assembling different 

number of components into subassemblies which in turn are assembled with other 

components or subassemblies. Webbink and Hu [26] proposed an automated distribution 

method to enumerate all the possibilities of different combinations of stations which are 

of serial or parallel configuration. The assembly sequence and configuration generation 

problem is to enumerate all the non-repetitive ways of hierarchically grouping n 

elements. A complete description of the algorithm can be found in chapter 2. 



 

100 

 

5.3.2 Optimization for task assignment and equipment selection 

Enumeration in the outer loop generates the candidate assembly tasks/task groups, 

sequences, and initial configurations. The inner loop changes each initial configuration 

by assigning the tasks to the selected machines. A mathematical model for the inner loop 

optimization including task-machine assignment, workload balancing and machine type 

and number selection in assembly systems is described in chapter 3. 

In order to speed up the optimization, the model is simplified to the following: 

consider the assignment of task to machine type (xi,j), and determine the optimized 

number of machines (Nj) to satisfy the throughput constraint at the same time.  

Decision variables 

A task-machine assignment variable xi,j is used to represent whether or not a task 

is assigned to a machine type. 

,

1          

0
i j

if task i is assigned to the jth machine type
x

otherwise


 


 

Nj is the quantity for machine type j. 

Objective function 

The objective in this model is to balance an assembly system by minimizing the 

total equipment investment cost while ensuring the throughput requirement, i.e., 

1 1
min   

I J

ij i ij j ji j
G Th c h x N c

 
                                                                    (1) 

Where ci,j is the operation cost to process task i on machine type j, cj is the 

amortized annual cost on machine type j, and hi is the number of repetition required to 

produce one unit of the product. Th is the actual throughput.  
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Constraints 

(1)Task assignment constraint.  

This constraint specifies that each task must be assigned to one and only one type 

of machine. 

 ,1
1

J

i jj
x


                                                                                                       (2) 

(2)Task-machine matching constraint 

Certain engineering experiences may require a set of tasks not to be assigned to 

certain machine type, i.e., 

, 0,( , )           m nx m n TM set that task m cannot be assigned to machine type n            (3) 

(3) Throughput constraint 

This constraint ensures that the throughput satisfies the demand of final products 

and can be represented by 

, ,

1
0

I i j i j

ji

t x
N

c
                                                                                                   (4) 

Where c0 is the system cycle time. 

 (4) Task zoning constraint 

There are two types of zoning constraints in the simplified model. The first type 

of zoning constraint forbids some of the tasks to be assigned to the same machine. Let 

S={s1,s2,…} be a set of task groups. Each task group consists of tasks that are compatible 

to each other. For any task i∈s and any task i'∈s', s∈S, s'∈S, s≠s', i and i' cannot be 

assigned to the same machine, i.e., they are incompatible. With such type of constraints, 

the original optimization problem can be divided to a set of sub-problems. Each sub-

problem is to find an optimized configuration for a task group. 
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The second type of zoning constraint requires tasks within the same group be 

assigned to the same machine type: 

, , , 1,... ,

( , ) - -            

u j v jx x j J

u v ZS set of tasks that must be assigned to the same machine type

 


                  (5) 

5.3.3 Software implementation 

Figure 5-4 shows the structure of Assembly System Configurator, including two 

engines: process engine and system engine.  

 

Figure 5-4 Structure of Assembly System Configurator 

The process engine has 1) user interfaces for inputting battery designs (cells, 

frames, fins, foams), specifications (size, weight), manufacturing requirements (demand, 

working days, shifts) etc; 2) database and query algorithms constructed for equipment 
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selection and machine capability calculation; 3) configuration generation algorithms 

given a hierarchical structure of battery design. The system engine is the design and 

optimization module in the Configurator. The outputs of the process engine (enumeration 

of the candidate initial configurations, candidate equipment, cycle time and cost) are fed 

into the system engine to generate the optimal assembly line given several assembly 

conditions (Takt time, floor layout requirement etc) and the budget.  

The process engine of the Configurator has an Excel based framework (Figure 

5-5). Both the equipment databases and the user interfaces are stored in Excel. While 

users answer questions in user interfaces, the product information is stored in an Excel 

spreadsheet and compared with candidate equipment at each stage, and one or several 

candidate machines are selected. The ID numbers of the potential machines are 

transferred to Access by Access DLL or Data engine (JET or ACE) to retrieve the full 

information of candidate machines and thus generate reports. The report is then saved in 

.pdf format and displayed to the user.  

 

Figure 5-5 Framework of process engine 



 

104 

 

5.4 Case study 

This section demonstrates the Configurator using a case study of a battery module 

assembly. 

5.4.1 Problem description 

The core of a battery module is a stack of battery cells and auxiliary components, 

such as repeating frames, cooling fins, and compression foams. As shown in Figure 5-6, 

most of the components are stacked in a repetitive pattern, such as A-B-C-B-D, where A, 

B, C, D denote the cell and ancillary components. Such a pattern repeats a number of 

times (N) to form the whole module stack. 

 

Figure 5-6 An example of assembly of battery module 

5.4.2 Configurator demonstration 

The Configurator first takes a series of product and process related inputs, such as 

production rates, working days, battery cell type and specifications, battery tab shape and 

position etc. (Figure 5-7) in order to generate a report with candidate assembly equipment 
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selection, and specifications of machines (payload, work space, reach and cycle time). 

(Figure 5-8)  

 

Figure 5-7 Configurator interface 1 

 

Figure 5-8 Configurator output report 

The Configurator can generate all the candidate system initial configurations and 

sequences for the repetitive pattern with the user input as shown in Figure 5-9. Up to four 



 

106 

 

different repetitive patterns can be input by the user, albeit this battery example needs 

only one. 

 

Figure 5-9 User input of repetitive patterns 

Figure 5-10 shows the configuration output of the Configurator. Without any 

assembly constraints, there are 45 candidate system configurations, which are all 

represented in alphanumerical characters and parentheses. The symbolic representation 

can then be displayed in a graphical layout as shown in Figure 5-10. The blue icons 

represent loading equipment and the green icons represent stacking equipment.  

 

Figure 5-10 Automatic generation of initial configurations and sequences 

A           B           C           B           D 
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The design and optimization module of the Configurator has interfaces for 

selecting machines from the candidate lists (Figure 5-11), inputting zoning constraints 

(Figure 5-12), and revising cycle time and cost data if necessary (Figure 5-13). The 

candidate machine lists, cycle time and cost data are taken from the previous selection 

and calculation. The optimal assembly line is generated in a report with appropriate task 

assignment and equipment selection (Figure 5-14).  

 

Figure 5-11 Machine selection 
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Figure 5-12 Zoning constraints 
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Figure 5-13 Cycle time and cost data 

 

Figure 5-14 Report for optimal assembly line 

5.4.3 Performance evaluation 

The output of the Configurator is input to a throughput simulation model as 

shown in Figure 5-15. The purpose of using a simulation model for performance 
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evaluation is to explore the most effective production control and production line layout 

for the assembly operations [76-77]. The optimal assembly line configuration with task 

assignment and machine cycle time is needed to build the simulation model in Witness as 

shown in Figure 5-16. Seven machines are used (green icons in Figure 5-16) with some 

machines for loading components, some machines for stacking cells and ancillary 

components, the last machine for final stacking all the components together.  

 

Figure 5-15 Flowchart of configurator and simulation model 

 

Figure 5-16 Simulation model in Witness 
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The performance measures studied in this research include the system throughput, 

the work-in-process level, the buffer size deployments, and the system robustness to 

uncertainties such as machine failures and part scraping rates. Some critical control issues 

and their impacts on the overall system performance are explored. These control issues 

include: different production line layouts and the number of independent conveyors for 

material handling required in the system, the pull and push production mechanisms and 

their impact on the system throughput and the WIP.  

Figure 5-17 shows the throughput results when one of the control procedures is 

changed: control the re-allocation of the tasks from an expensive machine (final stacker) 

to other machines. From the simulation model, a significant throughput improvement can 

be observed and proper re-allocation level can also be concluded: Case 2 in this example, 

since further re-allocation cannot change the throughput. 

 

Figure 5-17 Throughput results when control procedure is changed 
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5.5 Summary and future Work 

This chapter presents the methodology and implementation of a math-based tool, 

an Assembly System Configurator for automotive battery packs. The Assembly System 

Configurator integrates functions of process planning and optimal system configuration 

generation given the current and possible future generations of products. 

Future work for continuous improvement of Configurator includes: test running of 

more product design cases in Battery Assembly Configurator and attempts to calibrate the 

modeling and decision making. 

5.6 Nomenclature 

i Index of tasks; i=1, 2...I; 

j Index of machine types; j=1, 2...J; 

xi,j Decision variable; 

Nj Decision variable; 

ti,j Processing time of each task i for the jth machine type; 

cij Operating cost of performing task i on machine type j; 

cj Amortized annual cost on machine type j; 

hi The number of repetition required by the throughput requirement; 

Th Actual throughput; 

c0 System cycle time; 

ZS Set of task pairs for type two zoning constraint; 
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CHAPTER 6                                                                                

CONCLUSIONS AND FUTURE WORK 

6.1 Summary and conclusions 

Motivated by the battery assembly problem, several research opportunities in 

manufacturing system design have been addressed and the related literature and the state 

of the art of battery module/pack designs and their assembly processes are reviewed. 

Compared with the previous research on assembly system design and configuration 

generation, this work has the following novel contributions: 

 A new approach for assembly sequence generation is developed by exploiting 

the product design patterns and identifying assembly hierarchies and 

sequences. Unlike previous algorithms of assembly sequence generation, the 

method identifies assembly hierarchies that enable parallel assembly 

sequences or tasks. Such a characterization of the assembly hierarchy is the 

key to designing system with the complex configuration with subassembly 

branches. The efficient, exhaustive computational subassembly decomposition 

method ensures a truly optimal system can be identified and provides enough 

candidate systems for special considerations. 

 A new method is developed to jointly consider product design, configuration 

generation, line balancing and equipment selection. Conventional 

manufacturing system balancing mainly focuses on serial configurations. Our 
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method deals with balancing of systems with various configurations along 

with process planning and equipment selection. The results show that non 

serial configurations with subassembly branches outperform serial 

configurations, resulting in enhanced system performance (throughput and 

cost). 

 A novel method is developed to design system configurations under stochastic 

product demand mix. The “drift” problem is mathematically defined and 

incorporated into the optimization. The method is unique in delivering a 

system with subassembly branches through joint decision making over 

possible configurations and all subassembly branches. 

 All these methods are implemented in a software package for system 

configuration, “Assembly System Configurator,” developed to integrate 

functions of process planning and optimal system configuration generation 

given the current and possible future generations of products. 

6.2 Future work 

The future research goal is to develop a reconfigurable battery assembly system 

with hybrid configurations under product variety and uncertainty. Figure 6-1 shows the 

research accomplishments (Chapter 2-5) and future work or research plan (bolded) which 

is described below. 

 Novel algorithm of system reconfiguration with known product evolution: 

Given information on product design changes, a method is needed to identify 

system reconfiguration solutions. As shown in Figure 6-2, as the new product 

type PN+1,PN+2…etc are considered, assembly system that was designed for 
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products P1…PN will need to be reconfigured by 

adding/removing/reconnecting machines, reselecting equipment, or 

adding/changing buffers. An appropriate reconfiguration will be able to 

reduce reconfiguration cost while ensuring system performances. 

 

Figure 6-1 Research accomplishments and research plan 

 

Figure 6-2 System reconfiguration under product evolution 
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 New method of system configuration and reconfiguration under stochastic 

product evolution: Product design changes are rarely deterministic because of 

unpredictable market environments, customer orders, and technological 

advancement. A new method is needed to minimize the total configuration 

and reconfiguration cost considering the product evolution uncertainty. 
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