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RE (x) and the cooperative module ḡ(1,2)
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RE (x) and the cooperative module ḡ(1,2)
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CHAPTER I

Introduction

In this thesis, we address the problem of safety control with applications to vehicle

collision avoidance. The contributions of this thesis are summarized below.

• An explicit representation of the capture set is derived for the two-agent safety control

problem, under the assumption of imperfect state information and disturbance inputs,

with significantly reduced complexity compared with the state of the art.

• A controller rendering the complement of the capture set controlled invariant is con-

structed based on the capture set representation, which can be computed in real-time

using algorithms of linear complexity with respect to state.

• Our algorithms are applied both in simulation and on-board a multi-agent test-bed.

• These safety control algorithms are extended to a three-vehicle roundabout multi-

agent test bed, where formal and experimental results guarantee non-blocking safety

of the system.

• The assumptions needed for the safety algorithms are extended to include full size

vehicle dynamics, communication delay and distributed control implementation.

• The algorithms are implemented on-board a full-size vehicle test-bed at the Toyota

Technical Center, which demonstrates safety of our controller in a real-world setting.

1
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1.1 Problem

The central problem addressed in this thesis is that of safety control for multi-agent sys-

tems. In the control literature, given a subset within the state space, this is traditionally

called the computation of the maximal controlled invariant set for a dynamical system.

This problem has the real-world interpretation of preventing collisions between mechan-

ical agents in a distributed control topology. We look to extend state-of-the-art results to

techniques that allow for implementation on-board real world-vehicles, where modeling

can be imprecise and computation has limitations.

1.2 Motivation

In the United States, vehicular collisions kill on average 116 and injure 7,900 people [75]

per day. In 2009, more than 33,800 people were killed in police-reported motor vehicle

traffic crashes and about 2.2 million people were injured [9]. The estimated economic cost

for all these police-report crashes was $230US billion. The National Safety Council says

the odds of dying from a motor vehicle accident are 1 in 84, the fourth highest odds after

heart disease, cancer, and stroke. The situation in the European Union is similar, with

about 43,000 deaths and 1.8 million people injured per year, for an estimated cost of 160

billion euros [41]. In 2010, the number of fatalities from traffic accidents in Japan was

4,863. The total number of fatal and injury traffic accidents was 725,773. In April 2011,

the Japanese government set the target to reduce fatalities to less than 3,000 by 2015 [8]. In

2009, light vehicle (passenger cars, sport utility vehicles, vans, and pickup trucks) crashes

accounted for 68% of all U.S. motor vehicle fatalities and, of those light vehicle fatalities,

26% were from side impacts [9], suggesting crashes at intersections or on roadways close

to and leading to intersections. In a different study from 1999 and 2000, 22% of all police-

reported fatal accidents involving light vehicles occurred at traffic intersections.
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These statistics clearly indicate that crashes at traffic intersections have a major impact

on the total amount of crashes and fatalities in the United States. Furthermore, unlike

other high-percentage crashes, such as road departure (23% of all crashes) and rear end

(28% of all crashes), for which radar and camera-based forward collision systems are now

available, there is currently no established technology to address side-impact collisions at

intersections. Therefore, preventing unintentional stop-sign and red-light violations is one

focus of this project.

1.3 Related Work

There two main domains of research literature we consider, is the control community

concerned with safety control for general nonlinear systems, and the community involved

with Intelligent Transportation Systems (ITS).

1.3.1 Safety Control of Hybrid Systems

In this paper, we consider a class of piecewise continuous systems that evolve on a par-

tial order and propose an explicit solution to the two-agent safety control problem with

imperfect state information.

There has been a wealth of research on safety control for general nonlinear and hybrid

systems assuming perfect state information [71, 86, 91, 92]. In these works, the safety

control problem is elegantly formulated in the context of optimal control and leads to

the Hamilton-Jacobi-Bellman (HJB) equation. This equation implicitly determines the

maximal controlled invariant set and the least restrictive feedback control map. Due to

the complexity of exactly solving the HJB equation, researchers have been investigating

approximated algorithms for computing inner-approximations of the maximal controlled

invariant set [54, 55, 84, 92]. Termination of the algorithm that computes the maximal

controlled invariant set is often an issue and work has been focusing on determining special
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classes of systems that allow one to prove termination (see [86] and the references therein).

The safety control problem for hybrid systems has also been investigated within a viability

theory approach by a number of researchers (see [22, 43, 44], for example).

The above cited works focus on control problems with full state information and, as a

result, static feedback control maps are designed. When the state of the system is not fully

available for control, the above approaches cannot be applied. The advances in state esti-

mation for hybrid systems of the past few years [10, 23, 24, 26, 31, 37, 85, 100] have set the

basis for the development of dynamic feedback (state estimation plus control) for hybrid

systems [34, 35, 102]. In particular, [102] proposes a solution to the control problem with

imperfect state information for rectangular hybrid automata that admit a finite-state ab-

straction. For this case, the problem is shown to have exponential complexity in the size of

the system. This problem is solved by determining the maximal controlled invariant safe

set, that is, the set of all initial information states for which a dynamic control law exists

guaranteeing that the current information state never intersects the set of bad states. Since

the information state is a set, the maximal controlled invariant set is a set of sets, making

its computation even harder than for the static feedback problem. As a consequence, for

general hybrid systems the dynamic feedback problem under safety specifications is pro-

hibitive. Dynamic feedback in a special class of hybrid systems with imperfect discrete

state information is presented in [34], however the problem of computing the maximal

controlled invariant set is not considered. Dynamic control of block triangular order pre-

serving hybrid automata under imperfect continuous state information is considered in

[35] for discrete-time systems, and an algorithm for computing an inner approximation of

the maximal controlled invariant set is proposed. Dynamic feedback for order preserving

systems in continuous time is considered in [36, 49]. However, in [36] only a cooperative

game structure is considered and in [49] only a competitive game structure is addressed.



5

In [99], dynamic feedback is addressed for a class of hybrid automata with imperfect state

information.

Since for general classes of hybrid systems, the dynamic feedback problem is pro-

hibitive, we consider this problem in a restricted class of hybrid systems, which is still

general enough to model application scenarios of interest. In particular, we focus on a

class of hybrid systems whose state and input spaces have a partial ordering and generate

trajectories that preserve this ordering. The problem is posed as an order preserving game

structure, which is an approach that unifies the special cases of cooperative [36] and com-

petitive [49] game structure between two agents in a general framework. By exploiting

the order preserving property of the flow, we obtain an explicit solution for the maximal

controlled invariant set and for a dynamic control map. We show that the static and dy-

namic feedback problems are solved by the same control map, which is computed on the

state in the first case and on a state estimate in the second case. This implies separation

between state estimation and control for the class of systems considered. For safety con-

trol problems generated by a specific conflict topology, this solution can be computed in

discrete-time by linear complexity algorithms, for which we can show termination.

Dynamical systems whose flow preserves an ordering on the state space with respect to

state and input are called monotone control systems [15]. Monotone control systems have

received considerable attention in the dynamical systems and control literature as several

biological processes involving competing or cooperating species are monotone [89]. More

general bio-molecular systems can be modeled as the interconnection of monotone con-

trol systems [16, 17, 40]. There are also a large number of engineering applications that

feature agents evolving on partial orders with order preserving dynamics. Multi-robot sys-

tems engaged in target assignment tasks have been shown to evolve according to an order

preserving dynamics on the partial order established on the set of all possible assignments
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[37]. Railway control networks feature a number of agents (the trains) that evolve on pre-

defined paths (the railways) unidirectionally according to the Lomonossoff’s model, which

is an order preserving system on the path [58, 79]. Transportation networks also feature

vehicles traveling unidirectionally on their paths and lanes, which impose an ordering on

their motion. In air traffic networks, the longitudinal motion of each aircraft along its

prescribed route can also be modeled by an order preserving dynamics [61, 82].

1.3.2 Intelligent Transportation Systems

In 2009, more than 33,800 people were killed in police-reported motor vehicle traffic

crashes and about 2.2 million people were injured [9]. The estimated economic cost for

all these police-report crashes was $230US billion. The situation in the European Union is

similar, with about 43,000 deaths and 1.8 million people injured per year, for an estimated

cost of 160 billion euros [41].In 2009, light vehicle crashes accounted for 68% of all U.S.

motor vehicle fatalities and, of those light vehicle fatalities, 26% were from side impacts

[9], suggesting crashes at intersections or on roadways close to and leading to intersec-

tions. These statistics clearly indicate that crashes at traffic intersections have a major

impact on the total amount of crashes and fatalities in the United States. Furthermore,

unlike other high-percentage crashes, such as road departure and rear end, for which radar

and camera-based forward collision systems are now available, there is currently no estab-

lished technology to address side-impact collisions at intersections. Therefore, preventing

unintentional stop sign and red light violations has been subject of intense research in the

past few years.

Vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communication have been

among the major technologies leveraged in research focused on preventing collisions at

traffic intersections. In fact, the basic idea is that vehicles could cooperate with each other
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and with the surrounding infrastructure sharing information about the environment to im-

prove situational awareness. This would allow a vehicle to predict potential collisions that

a driver may fail to foresee due, for example, to obstructed view or distraction. Based

on this technology, intelligent transportation systems (ITS) for inter-vehicle cooperative

safety continue to be examined world-wide by government and industry consortia, such

as the Crash Avoidance Metrics Partnership (CAMP)[2, 3] and Vehicle Infrastructure In-

tegration Consortium (VIIC)[5, 6] in the U.S., the Car2Car Communications Consortium

in Europe [1], and the Advanced Safety Vehicle project 3 (ASV3) in Japan.

Previous work concerning formal approaches to ITS involved the automated highway

systems (AHS) by the California PATH project in the 90s. The objective of the AHS

project was to develop fully autonomous highway systems, with the goal of decreasing

congestion, increasing safety, and improving fuel efficiency [52, 59, 81, 94]. Most of this

work pertaining to safety involved the development of vehicle platooning, where formal

modeling and control solutions were employed based on the computation the largest un-

safe set, drawing from techniques in optimal control and game theory [12–14, 48, 60, 69,

70, 91]. Recent work concerning the design of intelligent intersections revolves around

provably safe scheduling algorithms for large numbers of vehicles [62].

The employment of a formal hybrid modeling and control approach has been previ-

ously applied in the development of automated highway systems (AHS) by the California

PATH project in the 90s 1. The objective of the AHS project was the employment of fully

autonomous highway systems, mainly based on the concept of platooning, to increase traf-

fic throughput, safety, and fuel efficiency [52, 59, 81, 94]. In the context of platooning, a

number of papers and PATH reports have proposed a formal hybrid modeling and control

approach based on the computation of the safe set of initial conditions (the complement
1http://www.path.berkeley.edu/nahsc/default.htm
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of the capture set), on optimal control, and on game theory [12–14, 48, 69, 70]. By con-

trast to the PATH project, we do not focus on fully autonomous highway systems, but on

partially autonomous traffic intersection systems in which (i) not all vehicles approach-

ing an intersection are assumed to be equipped with the on-board safety system (and thus

they do not necessarily cooperate) and (ii) those vehicles that are equipped with the safety

system are driven by humans, warnings are supplied when needed, and automatic control

is applied only if necessary to prevent a collision. These two constraints are dictated by

the application for a realistic deployment of this technology. From a theoretical stand-

point, the partially autonomous nature of the system results in hybrid dynamical models,

in which the state of the system is not known and thus it is not available to the controller.

This structural feature renders the formal approaches previously investigated in the PATH

project [12–14, 48, 69, 70] inapplicable as they assume perfect knowledge of the state of

the system.

Due to the life-critical role of cooperative active safety systems, it is essential that these

systems are designed so that they are guaranteed to be safe. This “guaranteed” design can

be performed by employing formal methods, which have been investigated for a number of

years both in the computer science and control communities [63, 83, 91, 92]. The control of

agents under a safety specification can be addressed by computing the set of states that lead

to an unsafe configuration independently of an input choice, called backward reachable set

or capture set [91]. Then, a feedback is computed that guarantees that the state never enters

such a set [39, 86]. To reduce the computational load, approximate algorithms have been

proposed to compute an over-approximation of the capture set [54, 55, 92]. More recently,

researchers have been tackling computational issues by focusing on restricted classes of

systems (see, for example, [11, 45, 47, 50]).

Most of the cited approaches assume perfect knowledge of the system state. This as-
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Figure 1.1: Example of two adjacent vehicles approaching a four way intersection. The location of potential
collisions is shaded in red.

sumption is not satisfied in our application because of sensor noise and especially com-

munication delays. We require algorithms that account for imperfect knowledge on the

system state while being computationally efficient so that they can be implemented in

real-time. Hence, in this paper, we apply the results of [50], which guarantee safety in the

presence of imperfect state information, produce efficient algorithms suitable for real-time

implementation, and only need a coarse model of the vehicle dynamics. Specifically, we

focus on a two-vehicle collision avoidance scenario at a traffic intersections (Figure 1.1)

and develop a decentralized control algorithm that uses V2V communication to determine

whether automatic control is needed to prevent a collision. Here, we consider preventing

a collision through automatic control by actuating only brake and throttle, but not steer-

ing, and assuming drivers follow nominal paths as established by the driving lanes. In

our intersection collision avoidance (ICA) application, the drivers retain full control of

the vehicle until the system configuration hits the capture set. At this point, a control

action is necessary to prevent a collision, and automatic throttle or brake are applied to
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both vehicles in a coordinated fashion so that one vehicle enters the intersection only after

the other has exited it. After the crash has been prevented, the driver regains control of

brake and throttle. We implemented our algorithms on two Lexus IS 250 test vehicles and

performed a number of experiments with different use cases on a test intersection at the

Toyota Technical Center of Ann Arbor, MI.

The employment of formal methods has been previously applied in the development

of automated highway systems (AHS) by the California PATH project in the 90s. The

objective of the AHS project was to deploy fully autonomous highway systems incorpo-

rating vehicle platoons to increase traffic throughput, safety, and fuel efficiency [52, 81].

In the context of platooning, a number of papers and PATH reports have proposed for-

mal approaches based on the computation of the capture set, on optimal control, and on

game theory [12, 70]. Recent work concerning centralized control of autonomous traffic

intersections employs scheduling techniques to determine a possible safe trajectory [62]

or to construct a safe supervisor that overrides the driver when a crash is imminent [30].

Similarly, centralized cooperative vehicle intersection control algorithms to enforce safety

based on optimal control have appeared [66]. Experimental works have also recently ap-

peared on full scale vehicle test-beds on collision avoidance systems at traffic intersections,

which leverage V2V communication. In particular, in [72] a fuzzy controller to manage ve-

hicles crossing an intersection is proposed, however safety guarantees are not provided. In

[73], an on-board vehicle hazard detection that uses V2V is developed to warn the driver

about dangerous situations. However, no automatic control is employed and no formal

safety guarantees are provided. In this paper, we bridge the gap between formal methods

and cooperative collision avoidance systems at traffic intersections by developing/testing

an experimental cooperative collision avoidance system based on formal control theoretic

techniques.
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General control design problems under language specification (safety, for example)

[63, 71, 80, 91, 92] have been extensively studied for discrete systems in the computer sci-

ence literature (see [90] for an overview). A control perspective in the context of discrete

event systems was given by [83]. The approach has been extended to specific classes of

hybrid systems such as timed automata [18, 57] and rectangular automata [101]. For these

classes of hybrid systems, implementation results using tools such as [54] showed that in

practice the synthesis procedure is limited to control problems with a small number of

control modes. Most of the work on safety controller design for general classes of hy-

brid systems has been concerned with the computation of reachable sets (see for example

[71, 91, 92], and the references therein). The control problem under safety specifications

can be addressed by computing the set of states that lead to an unsafe configuration inde-

pendently of an input choice (called the backward reachable set [91] or the uncontrollable

predecessor [56] of an unsafe set). Then, a feedback is computed that guarantees that

the state never enters such a set [39, 86]. As it appears from these previous works, com-

putational constraints usually limit the system to four or five continuous variables and to

two or three discrete states. To reduce the computational load, approximate algorithms

have been proposed to compute an over-approximation of the backward reachable set of

the unsafe set [54, 55, 92]. More recently, researchers have been tackling computational

issues by focusing on restricted classes of hybrid systems. In [11, 47], hybrid systems

whose continuous dynamics is linear time-invariant and discrete state switching is due to

transition guards are considered. An over approximation of the reachable set is computed

using simulation techniques over bounded time in [47] and by using zonotopes in [11]. In

[77], a hybrid system is considered whose discrete state can switch due to discrete control,

discrete disturbance and discrete human input. Hybrid reachability results are then utilized

to create an invariance-preserving discrete event system abstraction of the so called hybrid
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human-automation system.

However, all the above works are concerned with state feedback, that is, the state of the

system is assumed to be available to the controller. Hence, they are not directly applicable

to the problem investigated in this proposal, in which only imperfect/partial information

on the state is available. Initial work in safety control of hybrid systems with imperfect

or partial state information can be found in [102] and in the PI’s previous work [33–

35, 38]. In [102], a controller that relies on a state estimator is proposed for finite state

systems. The results are then extended to control a class of rectangular hybrid automata

with imperfect state information, which can be abstracted by a finite state system. The

proposed algorithm has exponential complexity in the size of the system. In [34, 38], we

have proposed a partial order approach for the design of computationally efficient state

estimation and control algorithms. In such a work, only discrete dynamic feedback is

considered. Also, no algorithm is provided to compute the capture set. Initial results for

the efficient computation of an approximation of such a set for a special class of discrete

time hybrid automata with imperfect continuous state information is proposed in [33, 35]

and extended to continuous time models in [36, 46, 49, 51]. More recently, initial results

to handle imperfect information on the mode of the system have appeared [95].

1.4 Organization

This thesis is organized into three main chapters. Chapter II introduces the formal problem

in a rigorous fashion. Once the problem is formulated, an explicit representation of the

capture set assuming imperfect information is derived, and formal proofs are provided.

A controller is generated based on this representation, and formally verified to maintain

invariance of the complement of the capture set, thus guaranteeing safety of the closed loop

system. Algorithms are provided, which are formally shown to compute the capture set,
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and subsequently implemented both in simulation and on-board the multi-agent test-bed

at the University of Michigan.

In Chapter III, we extend these results to a working three-vehicle roundabout system.

To accomplish this, we break the global safety problem into a set of localized two-vehicle

collisions, and show that our results extend to such a system. The formal description of

the results are necessarily extended to hold for an arbitrary collection of control modules.

Experimental results are provided to validate the safety of this system.

In Chapter IV we start by reintroducing the safety control problem with the specific goal

of designing a full-scale vehicle safety controller. The assumptions are extended to the

full vehicle case, which includes system identification, estimator design, and algorithmic

extensions to handle distributed implementation of the controller. The system is validated

by comprehensive experimental testing, where we successfully maintain safety in a variety

of conditions.



CHAPTER II

Theory: Safety Control for Piecewise
Continuous Systems on a Partial Order

This chapter addresses the two-agent safety control problem for piecewise continuous

systems with disturbances and imperfect state information. In particular, we focus on a

class of systems that evolve on a partial order and whose dynamics preserve the ordering.

While the safety control problem with imperfect state information is prohibitive for general

classes of nonlinear and hybrid systems, the class of systems considered in this paper

admits an explicit solution. We compute this solution with linear complexity discrete-time

algorithms that are guaranteed to terminate. The proposed algorithms are illustrated on

a two-vehicle collision avoidance problem and implemented on a hardware roundabout

test-bed.

2.1 Introduction

We consider a class of piecewise continuous systems that evolve on a partial order and

propose an explicit solution to the two-agent safety control problem with imperfect state

information. We illustrate the application of the proposed technique to a two-vehicle col-

lision avoidance problem as found in traffic intersections or modern roundabouts in the

presence of modeling uncertainty, missing communication, and imperfect state informa-

tion.

14
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Figure 2.1: (Left) Vehicles approaching a “T” intersection. (Right) The sets CωL and CωH , in which L = (L1, L2),
H = (H1,H2), and B =]L1,H1[ × ]L2,H2[.

Motivating Example. Consider the problem of preventing a collision between two

vehicles approaching an intersection as depicted in the left panel of Figure 2.1. A collision

occurs if the two vehicles are in the shaded red area B at the same time. The problem is

to design a controller that guarantees that the vehicles do not collide excluding the trivial

solution in which the vehicles stop. In general, the vehicle states can be subject to large

uncertainties as deriving from GPS, for example, and the dynamic model can be affected

by modeling error. For the sake of explaining the basic idea of our solution, consider the

case in which the dynamics of vehicles 1 and 2 are given by ẋ1 = u1, ẋ2 = u2, respectively,

with u1, u2 ∈ [uL, uH] and uL, uH > 0. A more realistic second order hybrid model for each

of the vehicle dynamics will be considered in the simulation section. Assume also perfect

information of the state (x1, x2). Here, x1 and x2 denote the longitudinal displacements

of the vehicles on their paths as shown in the figure. In this coordinate system, B =

]L1,H1[ × ]L2,H2[. To solve the control problem, we seek to compute the set of all initial

conditions (x1(0), x2(0)) that are taken to B for all inputs (u1, u2). This set is called the

capture set, denoted C, and is the complement of the largest controlled invariant set that

does not contain B. On the basis of the capture set, we then seek to design a feedback map

that guarantees that any state starting outside C is kept outside C.
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This general problem can be elegantly formulated as an optimal control problem with

terminal cost, which leads to an implicit solution expressed as the solution of a PDE [71].

In this example, however, there is a rich structure that can be exploited to obtain an im-

mediate explicit solution without the need of solving an optimal control problem. In par-

ticular, the dynamics of each vehicle preserve the standard ordering on R, that is, higher

initial conditions xi(0) and higher inputs ui lead to higher values of the state xi(t) for all

time. Denote by CωH the set of all initial conditions that are taken to B when the input to

the system is set to ωH := (uL, uH), that is, vehicle 1 applies constant u1 = uL and vehicle

2 applies constant u2 = uH. Similarly, denote by CωL the set of all initial conditions that

are taken to B when the input to the system is set to ωL := (uH, uL), that is, vehicle 1

applies constant u1 = uH and vehicle 2 applies constant u2 = uL. Because the dynamics

of the system have the order preserving properties described above, one can show that the

capture set is given by the intersection of these two sets, that is, C = CωL ∩ CωH (right

panel of Figure 2.1). In practice, this means the following. The state x is taken to B for

all input choices if and only if it is taken to B both when (a) vehicle 1 applies maximum

control and vehicle 2 applies minimum control and (b) vehicle 1 applies minimum control

and vehicle 2 applies maximum control.

The relevance of having C = CωL ∩ CωH resides in the following key points. First, CωL

and CωH can be easily computed by backward integration without the need of optimizing

over the control values because the controls are fixed. Second, this backward integration

task can be performed by simply propagating back through the dynamics the lower and

upper bounds of B, that is, L and H, respectively, with fixed inputs (refer to the right

panel of Figure 2.1). In discrete-time, this can be performed by a linear complexity algo-

rithm. Furthermore, checking whether a state (x1, x2) belongs to either CωL or CωH can be

performed in finite time because the backward integration of L and H leads to strictly de-
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creasing sequences: once the decreasing sequences starting in H passes beyond the point

(x1, x2), one has enough information to establish whether (x1, x2) belongs either to CωL or

to CωH . Finally, a feedback map is one that imposes the control ωH = (uL, uH) when the

state is inside CωH and on the boundary of CωL , while it imposes the control ωL = (uH, uL)

when the state is inside CωL and on the boundary of CωH (right panel of Figure 2.1). This

way, we provide also a closed form solution for the feedback map. In this paper, we show

that this basic result holds for arbitrary order preserving dynamics, for the case in which

these dynamics are affected by disturbances, and when only imperfect state information is

available.

This chapter is organized as follows. In §2.2, we introduce basic definitions and the

class of systems that we consider is introduced in §2.3. In §2.4, we provide a mathematical

statement of the safety control problem. In §2.5, we give the main result of the paper,

namely the computation of the maximal controlled invariant set and the related dynamic

feedback control map. In §2.6, we present a discrete-time algorithm for computing the

maximal controlled invariant set and the dynamic feedback map. In §2.7, we present

an example application involving a two-vehicle collision avoidance problem at a traffic

intersection. Several of the proofs are found in the Appendix.

2.2 Notation and Basic Definitions

For the set A ⊂ X with X a normed vector space, denote the complement ∼ A := X\A,

the interior Å, the closure A, the closed convex hull co A, the boundary ∂A, and the set

of all subsets contained in A by 2A. For x ∈ Rn, denote the Euclidean norm ||x||, and

the inner product ⟨y |x⟩. For x ∈ Rn and set A ⊂ Rn, denote the distance from x to A as

d(x, A) := infy∈A ||x − y||. This extends to the distance between two sets A, B ∈ Rn, where

d(A, B) := infy∈A d(y, B). Let ]a, b[, ]a, b], [a, b] ⊂ R denote the open, half open, and



18

closed intervals respectively. This notation extends to interval sets ]a, b[, ]a, b], [a, b] ⊂

Rn, where, for example, ]a, b[ := ]a1, b1[ × . . . × ]an, bn[. The open ball of radius ϵ > 0

centered at x ∈ Rn is denoted B(x, ϵ) := {z ∈ Rn | ||x − z|| < ϵ}. For the set A ⊂ Rn, we

define an open neighborhood about A of radius ϵ > 0 by B(A, ϵ) := {z ∈ Rn | d(z, A) < ϵ}.

Denote the canonical basis vectors êi for i ∈ {1, 2, . . . , n}. For x ∈ Rn, denote the ith

component by xi := ⟨x |êi ⟩. Denote the canonical projection τi : Rn → R defined by

τi(x) = xi, which naturally extends to sets. Denote the unit sphere Sn and the unit disk Dn,

where Sn := {x ∈ Rn+1 | ||x|| = 1} and Dn+1 := {x ∈ Rn+1 | ||x|| ≤ 1}. For sets A, B ⊆ Rn we

define the binary relation A ≺ B (A ≼ B) if τ1(A) ∩ τ1(B) is non-empty and for all x ∈ A

and y ∈ B such that x1 = y1, we have x2 < y2 (x2 ≤ y2).

Denote the space of n-times continuously differentiable functions from A into B as

Cn(A, B). We use the notation F : A ⇒ B to denote a set-valued map from A into

B. For A ⊂ X and f : X → Y , we define the image of A under f as f (A) :=

{ f (x) ∈ Y | x ∈ A}. We denote the space of piecewise continuous signals on A

as S (A) := PC(R+, A). Denote the unit interval I := [0, 1]. For the set A ⊂ R2,

we will call a path γ ∈ C0(I, A) simple if γ is injective. We will call it closed if

γ(0) = γ(1). We define the Cone at vertex x ∈ Rn with respect to a1, a2, . . . , ak ∈ Rn

as Cone{a1,a2,...,ak}(x) := {y ∈ Rn | ⟨y − x |ai ⟩ ≥ 0 ∀ i ∈ {1, 2, . . . , k}} . For x ∈ R2, we use the

shorthand notation Cone+(x) := Cone{ê1,ê2}(x) ⊂ R2 and Cone−(x) := Cone{−ê1,−ê2}(x) ⊂ R2.

We use the following continuity definition for set-valued maps [21].

Definition 1. For metric spaces A and D, a set-valued map F : A ⇒ D is said upper

hemi-continuous at x ∈ A if for all ϵ > 0 there is η > 0 such that F(y) ⊂ B(F(x), ϵ) for all

y ∈ B(x, η).

We next introduce a set characterization useful in formulating safety control problems

for order preserving systems.
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Figure 2.2: The sets A, B ⊂ R2 are o.p.c., while the sets C,D ⊂ R2 are not o.p.c.

Definition 2. A path γ ∈ C0(I,R2) is said to be order preserving connected (o.p.c.) if it

is simple, and for all x ∈ R2 Cone+(x) ∩ γ(I) , ∅ implies that Cone+(x) ∩ γ(I) is path

connected. A set D ⊆ R2 is said o.p.c. if for all x, y ∈ D, there exists a γ ∈ C0(I,D) such

that γ(0) = x, γ(1) = y and γ is o.p.c. (Figure 2.2).

Note that any convex set is trivially o.p.c. A partial order is a set P with a partial

order relation “≤”, which we denote by the pair (P,≤) [32]. In this paper, we are mostly

concerned with the partial order (Rn,≤) defined by component-wise ordering, that is, for

all w, z ∈ Rn we have that w ≤ z if and only if wi ≤ zi for all i ∈ {1, 2, . . . , n}. Given sets

A, B ⊂ Rn, we say A ≤ B if a ≤ b for all a ∈ A and b ∈ B. For U ⊆ Rm, we define the

partial order (S (U),≤) by component-wise ordering for all time, that is, for all w, z ∈ S (U)

we have that w ≤ z provided w(t) ≤ z(t) for all t ∈ R+. Suppose (P,≤P) and (Q,≤Q) are

two partially ordered sets. A map f : P → Q is an order preserving map provided x ≤P y

implies f (x) ≤Q f (y).
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2.3 Class of Systems Considered

We consider piecewise continuous systems, with imperfect state information. This in-

cludes the set of hybrid systems with no continuous state reset and no discrete state mem-

ory, also referred to as switched systems [28].

Definition 3. A piecewise continuous system Σ with imperfect state information is a col-

lection Σ = (X,U,O, f , h), in which

(i) X ⊂ Rn is a set of continuous variables;

(ii) U ⊂ Rm is a set of continuous inputs;

(iii) O ⊂ X is a set of continuous outputs;

(iv) f : X × U → X is a piecewise continuous vector field;

(v) h : O⇒ X is an output map.

For an output measurement z ∈ O, the function h(z) returns the set of all states compat-

ible with the current output. We assume h is closed valued, that is, for all z ∈ O, h(z) is

closed. We assume that there is a z̄ ∈ O such that h(z̄) = X, corresponding to missing sen-

sory information. We let ϕ(t, x,u) denote the flow of Σ at time t ∈ R+, with initial condition

x ∈ X and input u ∈ S (U) [67]. Denote the ith component of the flow by ϕi(t, x, u).

We restrict the class of piecewise systems to order preserving systems. These systems

are defined on the partial orders (Rn,≤) and (S (U),≤) as follows.

Definition 4. The system Σ = (X,U,O, f , h) is an order preserving system provided there

exist constants uL, uH ∈ Rm and ξ > 0 such that

(i) U = [uL, uH] ⊂ Rm;

(ii) The flow ϕ(t, x,u) is an order preserving map with respect x and u;

(iii) f1(x, u) ≥ ξ for all (x, u) ∈ X × U;

(iv) For all z ∈ O, h(z) = [inf h(z), sup h(z)] ⊆ Rn.

Conditions for establishing order preserving properties of the flow generated by a
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smooth vector field f (x, u) have been previously addressed [15]. Sufficient conditions for

establishing order preserving properties of piecewise-affine systems have been addressed

in [19]. For systems in which x1 is a position (as in the case of the example illustrated

in §2.1), condition (iii) guarantees that the system never comes to a halt. More gener-

ally, it enforces the liveness of the system. Condition (iv) requires that the set h(z) for

any measurement z is an interval in the (Rn,≤) partial order. We next define the parallel

composition of two systems as defined in standard references [53].

Definition 5. For Σ1 = (X1,U1,O1, f 1, h1) and Σ2 = (X2,U2,O2, f 2, h2), we define the

parallel composition Σ = Σ1||Σ2 := (X,U,O, f , h), in which X := X1 × X2, U := U1 ×

U2, O := O1 × O2, f := ( f 1, f 2) and h := (h1, h2).

For x = (x1, x2) ∈ X1 × X2 and u = (u1,u2) ∈ S (U1 × U2), we denote the flow of the

parallel composition Σ1||Σ2 as ϕ(t, x, u) = (ϕ1(t, x1,u1), ϕ2(t, x2,u2)) in which ϕ1(t, x1,u1) ∈

X1 and ϕ2(t, x2,u2) ∈ X2. We denote ϕ j(t, x,u) := (ϕ1
j(t, x

1,u1), ϕ2
j(t, x

2,u2)).

We next define a new partial order (S (U),E) on input signals of the parallel composition

of two systems as follows.

Definition 6. Given the parallel composition Σ = Σ1||Σ2, the input set U = U1 × U2, and

u, v ∈ S (U), we say that u E v if u1 ≥ v1 and u2 ≤ v2.

Proposition 1. Consider Σ = Σ1||Σ2 in which Σ1 and Σ2 are order preserving systems.

For x ∈ X and input signals u, v ∈ S (U) such that u E v, we have that ϕ1(R+, x,u) ≼

ϕ1(R+, x, v).

The proof is given in the Appendix. This proposition states that if two inputs satisfy

the “E” relation, the trajectories generated by these inputs (with the same initial condition)

must satisfy the “≼” relation, that is, one trajectory will always “lie above” the other in the

(x1
1, x

2
1) subspace.
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2.4 Problem Formulation

In order to formulate the control problem, we first specify what inputs of Σ = Σ1||Σ2 are

controlled and what are uncontrolled (disturbances). This is performed by introducing a

two-player game structure on the parallel composition of the two systems as follows.

Definition 7. A two-player piecewise continuous game structure is a tuple G =

(Σ,Ω,∆, φ,B) in which

(i) Σ = Σ1||Σ2 = (X,U,O, f , h) with Σ1 and Σ2 piecewise continuous systems;

(ii) Ω,∆ ⊂ Rm × Rm are the control and disturbance sets, respectively;

(iii) φ : Ω × ∆→ U is the game input map;

(iv) B ⊂ X is a set of bad states.

The disturbance δ ∈ ∆ and the control ω ∈ Ω determine the input u = (u1, u2) of Σ

through the map φ, that is, we have that u = φ(ω, δ). Extend the map φ to operate on

signals by φ(λ,u, d) := u where u is the signal such that u(t) = φ(ω(t),d(t)). We denote

the flow of the game by ϕ(t, x, φ(λ,u,d)). We will say that the disturbance δ wins the game

if the flow of G enters B, while the controller ωwins the game if the flow of G never enters

B.

Definition 8. A game structure G = (Σ,Ω,∆, φ,B) is an order preserving game structure

provided

(i) Σ = Σ1||Σ2 with Σ1 and Σ2 order preserving systems;

(ii) ∆ := [δ1
L, δ

1
H] × [δ2

L, δ
2
H] := [δL, δH] and Ω := [ω1

L, ω
1
H] × [ω2

L, ω
2
H] := [ωL, ωH];

(iii) The game input φ(ω, δ) = (φ1(ω1, δ1), φ2(ω2, δ2)) is an order preserving map with

respect to control ω and disturbance δ;
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(iv) B := {x ∈ Rn × Rn | (x1
1, x2

1) ∈ B} with B an o.p.c. set.

The order preserving property of φ can be interpreted as follows. For the control sig-

nals ω,w ∈ S (Ω) and disturbance signals d,d ∈ S (∆), if we have that ω ≤ w and d ≤ d,

then φ(ω,d) ≤ φ(w,d). Similarly, ω E w and d E d implies φ(ω,d) E φ(w,d). The

utility of this formulation lies in the ability to model cooperation and competition be-

tween two agents under a simple unified framework. For a cooperative scenario, in which

both systems Σ1 and Σ2 are affected by the control but not by the disturbance, we let

φcoop(ω, δ) := ω. For a competitive scenario, in which system Σ2 is an adversary while

system Σ1 is completely controlled, we have φcomp(ω, δ) := (ω1, δ2). The more general

case, in which both systems Σ1 and Σ2 are affected by control and disturbance, could rep-

resent model uncertainty for example. An instance of each case is presented in §2.7. One

can easily check that the example proposed in §2.1 is an order preserving game structure

in which φ = φcoop.

In the reminder of this paper, we assume (unless stated otherwise) that the flow of G is

continuous with respect to initial condition, with respect to input, and with respect to time.

Continuity conditions for the flow of a hybrid system have been previously investigated by,

for example, [68] and the references therein. For the compact set of initial conditions A ⊂

X, we assume that the set-valued flow ϕ(t, A, S (U)) is compact and upper hemi-continuous

with respect to time. This property is satisfied, for example, in systems generated by the

differential inclusion ẋ ∈ f (x,U), in which f (x,U) is a Marchaud map (see Theorem

3.5.2 in [20], and Corollary 4.5 in [88]). Note that, given a differential inclusion ẋ ∈

f (x,U), the closed convex hull generates a differential inclusion ẋ ∈ co f (x,U), which is

Marchaud provided that it is upper hemi-continuous and bounded above by some linear

affine function, that is, || f (x,U)|| ≤ c(||x|| + 1). This allows for the over-approximation of

a given system with another one that has the desired properties of the set-valued flow.
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Given a game structure G , we consider the problem of designing a controller that on

the basis of the output information guarantees that the flow of G never enters the bad set

of states B for all disturbance choices. For stating the control problem with imperfect state

information, denote by x̂(t, x̂0, ω, z) the set of all possible states at time t compatible with

the set of initial conditions x̂0 ⊂ X and measurable signals ω and z. More formally,

x̂(t, x̂0, ω, z) := {x ∈ X | ∃ x0 ∈ x̂0 and d ∈ S (∆) s.t. ϕ(t, x0, φ(λ,u,d)) = x and

ϕ(τ, x0, φ(λ,u,d)) ∈ h(z(τ)) ∀ τ ∈ [0, t]}.
The set x̂(t, x̂0, ω, z) is called the information state [64] and we will denote it by x̂(t)

when x̂0, ω and z are clear from the context. We note that if the set of initial conditions x̂0

is compact, then the information state x̂(t, x̂0, ω, z) is compact by the compactness of the

set-valued flow and the closed value property of the output map h(z).

Problem 1. (Dynamic Feedback Safety Control Problem) Given a game structure G , de-

termine the set

W̄ :=

A ∈ 2X

∣∣∣∣∣∣∣∣∣∣
∃ ω ∈ S (Ω) s.t. ∀ z ∈ S (O) and ∀ t ∈ R+

we have x̂(t, A, ω, z) ∩ B = ∅


and a set-valued map G : 2X ⇒ Ω such that for initial convex sets A ∈ W̄, we have

x̂(t, A, ω, z)∩B = ∅ for all t ∈ R+ and z ∈ S (O) when ω(τ) ∈ G(x̂(τ, A, ω, z)) for all τ ∈ R+.

This problem can be interpreted as one of determining the set of all initial state uncer-

tainties A ∈ 2X for which a control map exists, that on the basis of the measurable signals,

guarantees that the information state never intersects B.

Problem 2. (Static Feedback Safety Control Problem) Given a game structure G with

O = X and h the identity map, determine the set

W :=

x ∈ X

∣∣∣∣∣∣∣∣∣∣
∃ ω ∈ S (Ω) s.t. ∀ d ∈ S (∆) and ∀ t ∈ R+

we have ϕ(t, x, φ(λ,u,d)) < B


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and a set-valued map g : X ⇒ Ω such that for initial conditions x ∈ W, we have that

ϕ(t, x, φ(λ,u, d)) < B for all d ∈ S (∆) and t ∈ R+ when ω(τ) ∈ g(ϕ(τ, x, φ(λ, u,d))) for all

τ ∈ R+.

This problem can be interpreted as one of determining the set of all initial states x ∈ X

for which a static feedback map exists such that the flow of the system never enters B for

all possible disturbance signals d.

2.5 Problem Solution

In this section, we propose the solution to Problems 1 and 2 by first computing the com-

plement to the sets W̄ andW, then explicitly computing a dynamic and a static feedback

map.

2.5.1 Computation of the Sets W̄ andW

Consider C := X\W. This set is named the capture set as it represents the set of all initial

states for which no matter what control is applied, there is a disturbance that drives the

flow into B. It is mathematically represented as

C = {x ∈ X | ∀ ω ∈ S (Ω),∃ d ∈ S (∆) and t ∈ R+ s.t. ϕ(t, x, φ(λ,u, d)) ∈ B} .

For a fixed control signal ω̄ ∈ S (Ω), we define the restricted capture set Cω̄ to be the

capture set when the control signal is fixed to ω̄. Mathematically, it is expressed as

Cω̄ = {x ∈ X | ∃ d ∈ S (∆) and t ∈ R+ s.t. ϕ(t, x, φ(ω̄,d)) ∈ B} .

The restricted capture sets form the basis for our solution to Problems 1 and 2. In the

simple example presented in §2.1, two restricted capture sets of relevance, CωH and CωL ,

are represented in Figure 2.1. More generally, for an order preserving game structure
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define the constant controlωL := (ω1
H, ω

2
L) andωH := (ω1

L, ω
2
H), and corresponding control

signals ωL(t) := ωL and ωH (t) := ωH for all t ∈ R+. For all ω ∈ S (Ω), we have that

ωL E ω E ωH .(2.1)

Similarly, define the constant disturbance δL := (δ1
H, δ

2
L) and δH := (δ1

L, δ
2
H), and corre-

sponding disturbance signals dL(t) := δL and dH (t) := δH for all t ∈ R+. For all d ∈ S (∆),

we have that

dL E d E dH .(2.2)

We now state the main results of this paper.

Lemma 1. Consider order preserving game structure G = (Σ,Ω,∆, φ,B) with a convex

set A ⊂ X. Let ω ∈ S (Ω) and γ ∈ C0(I,R2) o.p.c. with inf τ1(A) < max τ1(γ(I)). Then,

γ(I)∩∪d∈S (∆) ϕ1(t, A, φ(λ,u,d)) = ∅ for all t ∈ R+ if and only if ϕ1(R+, A, φ(ω,dL)) ≻ γ(I)

or ϕ1(R+, A, φ(ω,dH )) ≺ γ(I).

Before giving the proof, we need the following intermediate results.

Proposition 2. Consider order preserving game structure G = (Σ,Ω,∆, φ,B) and let x ∈

X, ω ∈ S (U), d ∈ S (∆) and γ ∈ C0(I,R2) o.p.c. where x1
1 ≤ max τ1(γ(I)). Then, we

have that either ϕ1(R+, x, φ(λ, u,d)) ≻ γ(I) or ϕ1(R+, x, φ(λ,u,d)) ≺ γ(I) if and only if

ϕ1(R+, x, φ(λ,u,d)) ∩ γ(I) = ∅.

Proof. (⇒) Follows from the definition of the ≺ relation.

(⇐) Suppose {ϕ1(R+, x, φ(λ, u,d)) ≻ γ(I) or ϕ1(R+, x, φ(λ,u,d)) ≺ γ(I)} does not hold.

The hypothesis ϕ1
1(0, x1, φ1(ω1,d1)) ≤ sup τ1(γ(I)) and condition (iii) of Definition 4 im-

ply that there exist α1, α2 ∈ I and t1, t2 ∈ R+ such that ϕ1(t1, x, φ(λ,u, d)) ≼ γ(α1) and

ϕ1(t2, x, φ(λ,u,d)) ≽ γ(α2). For simplifying notation, let ζ(t) := ϕ1(t, x, φ(λ,u, d)). With-

out loss of generality, assume α1 ≤ α2, define χ ∈ R2 where χ1 := min
{
γ1(α1), γ1(α2)

}
and
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Figure 2.3: Three Cases.

χ2 := min{ϕ2
1(t1, x2, φ2(ω2,d2)), γ2(α2)}. Next, we define Γ12 := γ([α1, α2]). By the con-

struction of χ, we have that γ(α1), γ(α2) ∈ Cone+(χ), which implies that Γ12 ⊂ Cone+(χ)

by the definition of o.p.c. We now consider the three possible cases: (Case I) t1 = t2, (Case

II) t1 < t2, and (Case III) t1 > t2.

(Case I) Suppose t1 = t2, implying γ(α2) ≼ ζ(t1) ≼ γ(α1). Consider the open half space

A :=∼ Cone{e1}(χ) ⊂ R2 which is trivially path connected, and the set Ã := A∪γ(α1)∪γ(α2).

The set Ã is also path connected, implying the existence of a path γ̄ ∈ C0(I, Ã) such that

γ̄(0) = γ(α1) and γ̄(1) = γ(α2) where γ̄ is simple. Since Γ12 ⊂ Cone+(χ), and Cone{−ê1}(χ)∩

Cone+(χ) = ∅ by definition of the cone, we must have that A ∩ Γ12 = ∅. This implies that

γ̄(I) only intersects Γ12 at γ̄(0) and γ̄(1), allowing us to re-parameterize γ̄(I) ∪ Γ12 with a

simple closed curve (see Figure 2.3).

This simple closed curve, by the Jordan Curve Theorem [74], partitions R2 into two

sets, D bounded and ∼ D unbounded. By construction, D is such that ζ(t1) ∈ D and

∂D = Γ12 ∪ γ̄(I). Condition (iii) of Definition 4 implies that ||ζ(t)|| → ∞ as t → ∞.

Thus, ζ([t̄,∞)) ∩ ∂D must be non-empty because D is a bounded set. Since condition

(iii) of Definition 4 implies that ζ([t̄,∞)) ∩ Ã is empty and γ̄(I) ⊂ Ã, we must have that

ζ([t̄,∞)) ∩ Γ12 , ∅. This in turn implies ϕ1(R+, x, φ(λ,u,d)) ∩ γ(I) , ∅.

(Case II) Suppose t1 < t2. This along with condition (ii) of Definition 4 implies that

γ1(α1) < γ1(α2). We assume that ζ(t1) ≼ γ(I) and ζ(t2) ≽ γ(I), otherwise we would be
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back to (Case I). Define the sets S 1 := Cone{ê1,−ê2}(γ(α2)) and S 2 := Cone+(χ). Define

A := S̊ 1∪ (∼ S 2) and Ã := A∪γ(α1)∪γ(α2). Since γ is an o.p.c. path, Γ12 ⊂ Cone+(χ) and

Γ12 ∩ S 1 = ∅, we must have that Γ12 ∩ A = ∅. The set Ã is path connected, implying the

existence of γ̄ ∈ C0(I, Ã) with γ̄(0) = γ(α1), γ̄(1) = γ(α2) and γ̄ simple. Since A∩Γ12 = ∅,

γ̄(I)∪Γ12 can be re-parameterized with a simple closed curve (see Figure 2.3). This curve,

by the Jordan Curve Theorem, forms a bounded set D, where ζ(t1) ∈ D by construction.

Condition (ii) and (iii) of Definition 4 along with the decoupling of the dynamics imply that

ζ([t1,∞])∩ A = ∅ and ζ([t1,∞])∩ ∂D , ∅. Since γ̄ ⊂ A, we have that ζ([t1,∞])∩ Γ12 , ∅.

Therefore, ϕ1(R+, x, φ(λ,u, d)) ∩ γ(I) , ∅.

(Case III) Suppose t2 < t1, which along with condition (iii) of Definition 4 implies

that γ1(α2) < γ1(α1). We assume that ζ(t1) ≼ γ(I) and ζ(t2) ≽ γ(I), otherwise we would

be back to (Case I). Define the sets P := Cone{e1}(χ), R := Cone{e1,−e2}(γ(α1)), H :=

Cone(+)(χ)\R̊, A := P\H, and Ã := A ∪ γ(α1) ∪ γ(α2). The set Ã is path connected,

implying the existence of γ̄ where γ̄ ∈ C0(I, Ã) with γ̄(0) = γ(α1), γ̄(1) = γ(α2) and γ̄

simple. Observe that A ∩ Γ12 = ∅, thus γ̄(I) ∪ Γ12 can be re-parametrized with a simple

closed curve. We invoke the Jordan Curve Theorem to construct the bounded set D, where

ζ(t1) ∈ D by construction (Figure 2.3). By construction, we also have that ζ(t2) < D.

Thus, the uniform continuity of the flow with respect to time implies ζ([t2, t1]) ∩ ∂D , ∅.

Condition (iii) of Definition 4 implies that ζ([t2, t1]) ⊂ H, thus implying ζ([t2, t1])∩ Ã = ∅.

Since ∂D = Γ12 ∪ γ̄(I) and γ̄(I) ⊂ Ã, we must have ζ([t2, t1]) ∩ Γ12 , ∅. This implies that

ζ([t2, t1]) ∩ γ(I) , ∅, giving the desired result ϕ1(R+, x, φ(λ,u,d)) ∩ γ(I) , ∅.

Therefore, we have shown for each case ϕ1(R+, x, φ(λ, u,d))∩γ(I) , ∅, completing the

proof. �

Proposition 2 states that the flow ϕ generated from the initial condition x, controlled

input ω and disturbance d can avoid an o.p.c. path γ in the (x1
1, x

2
1) subspace if and only
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if the trajectory of ϕ1 lies above γ(I) or if the trajectory of ϕ1 lies below γ(I). Another

intermediate result is needed before stating the proof of Lemma 1.

Proposition 3. Consider order preserving game structure G = (Σ,Ω,∆, φ,B), x ∈ X, ω ∈

S (U) and γ ∈ C0(I,R2) o.p.c. with x1
1 ≤ max τ1(γ(I)). If

∪
d∈S (∆) ϕ1(R+, x, φ(λ,u, d)) ∩

γ(I) = ∅, then either ϕ1(R+, x, φ(ω,dL)) ≻ γ(I) or ϕ1(R+, x, φ(ω, dH )) ≺ γ(I).

Proof. The assumption that γ(I) ∩∪d∈S (∆) ϕ1(R+, x, φ(λ,u, d)) = ∅ implies

(a) ϕ1(R+, x, φ(ω,dL))∩ γ(I) = ∅ and (b) ϕ1(R+, x, φ(ω,dH ))∩ γ(I) = ∅. From Proposition

2, we have that (a) implies either

ϕ1(R+, x, φ(ω,dL)) ≻ γ(I)(2.3)

or ϕ1(R+, x, φ(ω,dL)) ≺ γ(I).(2.4)

Similarly, Proposition 2 along with (b) implies either

ϕ1(R+, x, φ(ω,dH )) ≻ γ(I)(2.5)

or ϕ1(R+, x, φ(ω,dH )) ≺ γ(I).(2.6)

If (2.3) is satisfied, we immediately obtain the result. Similarly, if (2.4) and (2.6) are

satisfied the result also follows. Therefore, we are left with showing that relations (2.4)

and (2.5) are not both possible. By contradiction, assume they are both possible and define

the constant signals d2
L(t) := δ2

L, d2
H(t) := δ2

H, d1
L(t) := δ1

L, and d1
H(t) := δ1

H for all t ∈ R+.

Then, there is (α1, α2) ∈ γ(I), ta > 0, and tb > 0 such that ϕ2
1(ta, x2, φ2(ω2,d2

L)) < α2 and

ϕ2
1(tb, x2, φ2(ω2,d2

H)) > α2. Since ϕ1
1(ta, x1, φ1(ω1,d1

H)) = α1 = ϕ1
1(tb, x1, φ1(ω1, d1

L)), the

order preserving property of φ in its arguments imply that ta ≤ tb. For fixed x2 and ω2,

define the function Φ2
1 : [ta, tb] × S (∆2) → R by Φ2

1(t, d2) := ϕ2
1(t, x2, φ2(ω2,d2)). This is a

continuous function from a connected metric space into the reals. Therefore, we can apply

the intermediate value theorem to state that there is a pair t̄ ∈ [ta, tb] and d̄2 ∈ S (∆2) such

that Φ2
1(t̄, d̄2) = α2.
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Property (iii) of Definition 4 further implies that the ordering ϕ1
1(t̄, x1, φ1(ω1,d1

H)) > α1

and ordering ϕ1
1(t̄, x1, φ1(ω1,d1

L)) < α1 must hold. For fixed x1 and ω1, define the map

Φ1
1 : S (∆1) → R by Φ1

1(d1) := ϕ1
1(t̄, x1, φ1(ω1,d1)). This is a continuous function from a

connected metric space to the reals, therefore we can apply again the intermediate value

theorem to conclude that there is d̄1 ∈ S (∆1) such that Φ1
1(d̄1) = α1.

As a consequence, we have that ϕ1(t̄, x, φ(ω, (d̄1, d̄2))) = (α1, α2) ∈ γ(I) for (d1, d2) ∈

S (∆). This in turn contradicts the assumption that
∪

d∈S (∆) ϕ1(R+, x, φ(λ,u,d)) ∩ γ(I) =

∅. �

Proposition 3 states that the flow ϕ generated from the initial condition x and controlled

input ω will avoid an o.p.c. path γ in the (x1
1, x2

1) subspace if and only if the trajectory of ϕ1

generated with the disturbance signal dL lies above γ(I) or if the trajectory of ϕ1 generated

with the disturbance signal dH lies below γ(I).

Proof. (Lemma 1) (⇐) For every disturbance d ∈ S (∆), we have that dL E d E dH . From

Proposition 1, it follows that for every x ∈ A and t ∈ R+, we have that ϕ(t, x, φ(ω,dL)) -

ϕ(t, x, φ(ω, d)) - ϕ(t, x, φ(ω, dH )). Therefore, the result follows directly from the assump-

tion.

(⇒) Suppose {ϕ1(R+, A, φ(ω,dL)) ≻ γ(I) or ϕ1(R+, A, φ(ω,dH )) ≺ γ(I)} does not hold.

Then there must exist x, y ∈ A, α1, α2 ∈ I, and t1, t2 > 0 such that ϕ1(t1, x, φ(ω,dL)) ≺ γ(α1)

and ϕ1(t2, y, φ(ω, dH )) ≻ γ(α2) (the relation is strict, otherwise the result is immedi-

ate). We assume that ϕ1(R+, x, φ(ω, dL)) ≺ γ(I), otherwise Proposition 2 implies that

ϕ1(R+, x, φ(ω,dL)) ∩ γ(I) , ∅. Likewise, Proposition 2 implies we must have

ϕ1(R+, y, φ(ω,dH )) ≻ γ(I). Furthermore, unless ϕ1(R+, y, φ(ω,dL)) ≻ γ(I) is satisfied, the

previous statement along with Proposition 3 implies that ϕ1(R+, y, φ(ω, dL)) ∩ γ(I) , ∅.

Figure 2.4 shows the resulting geometry of the flow. Let ᾱ ∈ I be such that τ1(γ(I)) ≤
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Figure 2.4: Geometry of ϕ1(t, x, φ(ω,dL)) and ϕ1(t, y, φ(ω,dL)).

τ1(γ(ᾱ)). Condition (iii) of Definition 4 leads to x1
1 < ϕ1

1(t1, x1, φ1(ω,dL)) ≤ γ1(ᾱ) and

y1
1 < ϕ1

1(t2, y1, φ1(ω,dL)) ≤ γ1(ᾱ). Consider H := co{x, y} ⊂ A, since convexity is pre-

served under projection [27], condition (iii) of Definition 4 implies there is T > 0 such

that

ϕ1
1(0, τ1(H), φ1(ω1,d1

L)) < γ1(ᾱ) < ϕ1
1(T, τ1(H), φ1(ω1,d1

L)).(2.7)

We seek to show that γ(ᾱ) ∈ ϕ1([0, T ],H, φ(ω,dL)). Define K := [0,T ] × H ⊂ R+ × R2n

and let Θ : K → R2 be the map defined by Θ(t, z) := ϕ1(t, z, φ(ω, dL)) for (t, z) ∈ K. We

proceed by breaking this proof into three steps:

(i) Construct from Θ a map ψ : S1 → S1;

(ii) Show that the degree of ψ is nonzero;

(iii) Show that the degree of ψ being nonzero implies

that γ(ᾱ) ∈ Θ(K).

(i) Denote the four corners of ∂K : h1 = (0, x), h2 = (T, x), h3 = (T, y), h4 = (0, y). Define

the sets A1 := co({h1, h2}) ∪ co({h2, h3}) and A2 := co({h3, h4}) ∪ co({h4, h1}). Consider the

standard covering map of S1 p : R → S1, in which p(z) := (cos(2πz), sin(2πz)). Define
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Figure 2.5: The Mapping ψ.

(a) Commuting Diagram (b) Four Quadrants of S1

Figure 2.6: Tools used to find deg ψ.

the homeomorphism f : D1 → K, such that f (p(0)) = h1, f (p(.25)) = h2, f (p(.5)) = h3,

and f (p(.75)) = h4. Since Θ is a continuous function, we have that Θ(∂K) defines a closed

curve. Assume that γ(ᾱ) < Θ(∂K) and let g : R2\γ(ᾱ)→ S1 be the continuous map defined

by

g(z) :=
z − γ(ᾱ)
∥z − γ(ᾱ)∥ , ∀z ∈ R2\γ(ᾱ).(2.8)

Define ψ ∈ C0(S1,S1) as ψ(x) := g ◦ Φ ◦ f (x) for all x ∈ S1 (see Figure 2.5).

(ii) To compute the degree of ψ, we consider the lift ψ̃ : I → R where p◦ ψ̃ = ψ◦ p (see

Figure 2.6(a)). The degree of ψ is defined as degψ := ψ̃(1)− ψ̃(0) (see [65] for details). We

introduce the sets S1
I := p([0, .25]), S1

II := p([.25, .5]),S1
III := p([.5, .75]), S1

IV := p([.75, 1])

(see Figure 2.6(b)). Let κ1 := ψ̃(0) and note that p(κ1) = ψ(p(0)) = g(Θ(h1)), which must
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be in S1
III , since Θ(h1) < γ(ᾱ). Let κ2 = ψ̃(.5) and note that p(κ2) = ψ(p(.5)) = g(Θ(h3)).

From (2.7) and condition (iii) of Definition 4, we have that γ(ᾱ) < Θ(h3). This inequality

along with the definition of g imply that g(Θ(h3)) ∈ S1
I . As a consequence, we have p(κ2) ∈

S1
I , implying that κ1 , κ2.

We next show that κ2 > κ1. Since Θ ◦ f (p([0, .5])) = Θ(A1), equation (2.7) along with

condition (iii) of Definition 4 implies that Θ(A1) ≺ γ(ᾱ). This implies that ψ(p([0, .5])) =

g(Θ(A1)) ⊂ S1
I ∪ S1

IV ∪ S1
III . Therefore, if ψ(p(ζ)) cannot enter S1

II for all ζ ∈ [0, .5], then

κ1 < κ2 by the definition of p.

Finally, let κ3 := ψ̃(1).We show that κ2 < κ3. SinceΘ◦ f (p([.5, 1])) = Θ(A2), from (2.7)

and Condition (ii) of Definition 4 we have that Θ(A2) ≻ γ(ᾱ). This, along with Condition

(iii) of Definition (4) implies that ψ(p([.5, 1])) = g(Θ(A2)) ⊂ S1
I ∪ S1

II ∪ S1
III . Therefore, if

ψ(p(ζ)) cannot enter S 1
IV for all ζ ∈ [.5, 1], then κ2 < κ3 from the definition of p.

We have shown that κ1 < κ2 < κ3. As a consequence, deg ψ = ψ̃(1)− ψ̃(0) = κ3−κ1 , 0.

(iii) Now suppose we extend the map ψ to ψ̄ ∈ C0(D1,S1), where ψ̄(x) := g ◦ Θ ◦ f (x)

for all x ∈ D1. By Lemma 3.5.7 in [65], if a continuous function h : S1 → S1 extends to a

continuous function H : D1 → S1, then deg h must be zero. However, we found the degree

of ψ to be non-zero, implying that ψ cannot extend to ψ̄. Since Θ( f (D1)) is well defined,

we must have that g(Θ( f (D1))) is undefined. Since g(z) is defined for all z ∈ R2\γ(ᾱ), we

must have that γ(ᾱ) ∈ Θ( f (D)). This implies that γ(ᾱ) ∈ Θ(K) = ϕ1([0,T ],H, φ(ω,dL)) ⊂∪
d∈S (∆) ϕ1(R+, A, φ(λ,u,d)). Therefore,

∪
d∈S (∆) ϕ1(R+, A, φ(λ,u, d)) ∩ γ(I) , ∅. �

Lemma 1 states that the flow in the (x1
1, x2

1) subspace generated from the convex set of

initial conditions A and control ω can avoid an o.p.c. path γ(I) for all disturbance signals if

and only if the disturbance signal dL takes the trajectory of ϕ1 above γ(I) or the disturbance

dH takes the trajectory of ϕ1 below γ(I). This result can be generalized to connected sets

A ⊂ X such that τ1,2(A) is convex, that is, to cases where only the projection of the set A
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onto the subspace X1 need be convex.

Theorem 1. Consider the order preserving game structure G = (Σ,Ω,∆, φ,B)

with a convex set A ⊂ X. Then, the following statements are equivalent

(i) A ∩ CωL , ∅ and A ∩ CωH , ∅;

(ii) For all ω ∈ S (Ω), there exist d ∈ S (∆) and t ∈ R+ such that

ϕ(t, A, φ(λ,u,d)) ∩ B , ∅.

Proof. (⇐ Contrapositive) By the definition of the restricted capture set, we have that if

A ∩ CωL = ∅ then ϕ(t, A, φ(ωL,d)) ∩ B = ∅ for all t ∈ R+ and d ∈ S (∆). Similarly, if

A ∩ CωH = ∅ then ϕ(t, A, φ(ωH , d)) ∩ B = ∅ for all t ∈ R+ and d ∈ S (∆).

(⇒ Construction) Consider an arbitrary ω ∈ S (Ω). Since A∩CωL , ∅ and A∩CωH , ∅,

the definition of the restricted capture set implies that there are x, y ∈ A, d1,d2 ∈ S (∆) and

t1, t2 ∈ R+ such that ϕ(t1, x, φ(ωL,d1)) ∈ B and ϕ(t2, y, φ(ωH ,d2)) ∈ B. Let ν, κ ∈ R2 be

such that ν = ϕ1(t1, x, φ(ωL,d1)) and κ = ϕ1(t2, y, φ(ωH ,d2)). Since κ, ν ∈ B and B is an

o.p.c. set, there exists an o.p.c. path γ ∈ C0(I, B) with γ(0) = κ and γ(1) = ν.

From equations (2.1)-(2.2) and the order preserving property of φ with respect to con-

trol ω and disturbance d, we have that φ(ωL,d1) E φ(ω,dH ). From Proposition 1, we have

that ϕ1(R+, x, φ(ωL,d1)) ≼ ϕ1(R+, x, φ(ω, dH )). Since ϕ1(t1, x, φ(ωL,d1)) = ν ∈ γ(I) and

x ∈ A, this in turn implies that

ϕ1(R+, A, φ(ω, dH )) ⊀ γ(I).(2.9)

From equations (2.1)-(2.2) and the order preserving property of φ with respect to con-

trol ω and disturbance d, we have that φ(ω,dL) E φ(ωH ,d2). From Proposition 1, we have

that ϕ1(R+, y, φ(ω,dL)) ≼ ϕ1(R+, y, φ(ωH ,d2)). Since also ϕ1(t2, y, φ(ωH ,d2)) = κ ∈ γ(I)

and y ∈ A, we have that

ϕ1(R+, A, φ(ω, dL)) � γ(I).(2.10)
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Note that y1 < κ1 from condition (iii) of Definition 4, implying that inf τ1(A) <

max τ1(γ(I)). Therefore, equations (2.9)-(2.10) and Lemma 1 imply that γ(I) ∩∪
d∈S (∆) ϕ1(t, A, φ(λ,u,d)) , ∅ for some t ∈ R+. This in turn implies, since γ(I) ⊂ B,

that there are d̄ ∈ S (∆) and t ∈ R+ such that ϕ1(t, A, φ(ω, d̄)) ∩ B , ∅. This leads to

ϕ(t, A, φ(ω, d̄)) ∩ B , ∅. Since this holds for arbitrary ω ∈ S (Ω), we have completed the

proof. �

Corollary 1. For an order preserving game structure G = (Σ,Ω,∆, φ,B), we have that

C = CωH ∩ CωL .

Proof. (⊂) This follows from the definition of C. (⊃) Suppose we have that the initial

condition x ∈ CωH ∩ CωL . Consider any input signal ω ∈ S (Ω). Since τ1,2({x}) is trivially

convex, by Theorem 1 there are d ∈ S (∆) and t ∈ R+ such that ϕ(t, {x}, φ(ω, d)) ∩ B , ∅,

implying x ∈ C. �

Theorem 1 states that an initial convex state uncertainty is taken to intersect B indepen-

dently of the control input if and only if it intersects both restricted capture sets CωH and

CωL . By the corollary, a known initial state is taken to B independently of the control input

if and only if it is in both CωH and CωL .

2.5.2 The Control Map

For an order preserving game structure G , if an initial convex state uncertainty A does not

intersect both CωH and CωL , from Theorem 1 a control ω exists such that ϕ(t, A, φ(λ, u,d))

never intersects B for all d. Since x̂(t, A, ω, z) ⊆ ∪d∈S (∆) ϕ(t, A, φ(λ,u,d)), there must also

exist a control ω such that x̂(t, A, ω, z) never intersects B. We thus construct such a control

as a feedback map from the current state uncertainty x̂. For this purpose, define for an
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element Z ∈ 2X, the set-valued map G : 2X ⇒ Ω as

G(Z) :=



ωL if Z ∩ CωH , ∅ and Z ∩ ∂CωL , ∅ and Z ∩ CωL = ∅

ωH if Z ∩ CωL , ∅ and Z ∩ ∂CωH , ∅ and Z ∩ CωH = ∅

ωL
if Z ∩ ∂CωH , ∅ and Z ∩ ∂CωL , ∅

and Z ∩ (CωH ∪ CωL) = ∅

Ω otherwise.

(2.11)

We call the pair (G ,G) a control system, where given the initial conditions A ⊂ X and

measurement z ∈ S (O), the control system (G ,G) generates the feedback ωcl ∈ S (Ω) and

the closed-loop information state x̂cl(t, A, ωcl, z). The feedback must satisfy the set-valued

map G for all time, namely ωcl(t) ∈ G(x̂cl(t, A, ωcl, z)) for all t ∈ R.

We next show that the control system (G ,G), where G is an order preserving game

structure and G is given by (2.11), generates a closed-loop information state that never

intersects B provided the initial conditions A ⊂ X are compact, connected, and A∩CωH = ∅

or A ∩ CωL = ∅.

Theorem 2. Let G = (Σ,Ω,∆, φ,B) be an order preserving game structure, (G ,G) be

the control system generated by the static set-valued feedback (2.11), and let A ⊂ X be

compact and convex. If A ∩ CωH = ∅ or A ∩ CωL = ∅, then for arbitrary z ∈ S (O) we have

that x̂cl(t, A, ωcl, z) ∩ B = ∅ for all t ∈ R+ under (G ,G).

Proof. First, note that if x̂cl(t, A, ωcl, z) ∩ Cω = ∅ for some ω ∈ S (Ω), then necessarily

x̂cl(t, A, ωcl, z)∩B = ∅ because B ⊂ Cω. Thus, we show that if A∩CωH = ∅ or A∩CωL = ∅,

then x̂cl(t, A, ωcl, z) ∩ CωH = ∅ or x̂cl(t, A, ωcl, z) ∩ CωL = ∅ for all t ∈ R+.

We proceed by constructing a modified control system (G , Ĝ) with a dynamic set-

valued map Ĝ, that differs from G only if the argument Z ⊂ X is such that Z ∩ CωL , ∅

and Z ∩ CωH , ∅. Denote the closed-loop information state generated by the modi-

fied control system as ŷcl(t, A, ωcl, z). We will show that ŷcl(t, A, ωcl, z) ∩ CωL = ∅ or
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ŷcl(t, A, ωcl, z) ∩ CωH = ∅ for all t ∈ R+. We then show that this implies that the feedback

generated by the modified control system (G , Ĝ) is no different from the feedback gener-

ated by the original control system (G ,G). Thus, we also have that x̂cl(t, A, ωcl, z)∩CωL = ∅

or x̂cl(t, A, ωcl, z) ∩ CωH = ∅ for all t ∈ R+.

We now define the dynamic set-valued feedback Ĝ : R+ × S (2X) ⇒ Ω as follows. For

the time varying set Z ⊂ S (2X) and time t ∈ R+, we define Ĝ(t,Z) as

Ĝ(t,Z) :=


G(Z(t)) if Z(t) ∩ CωL = ∅ or Z(t) ∩ CωH = ∅

G(Z(t∗))
else, where t∗ := sup{ζ ∈ [0, t] | Z(ζ) ∩ CωL = ∅

or Z(ζ) ∩ CωH = ∅}

(2.12)

We will now show that the closed-loop information state ŷcl(t, A, ωcl, z) generated by

the control system (G , Ĝ) never intersects both CωH and CωL at a single time t ∈ R.

We proceed by contradiction. Suppose that given the measurement z ∈ S (O), there

exists a time t1 > 0 and feedback ω̄cl ∈ S (Ω) generated by (G , Ĝ) such that ŷcl(t1, A, ω̄cl, z)∩

CωH , ∅ and ŷcl(t1, A, ω̄cl, z) ∩ CωL , ∅. Define the times

tL := inf{t ∈ [0, t1] | ŷcl(ζ, A, ω̄cl, z) ∩ CωL , ∅ ∀ ζ ∈ [t, t1]}(2.13)

tH := inf{t ∈ [0, t1] | ŷcl(ζ, A, ω̄cl, z) ∩ CωH , ∅ ∀ ζ ∈ [t, t1]}.(2.14)

Let the maximum of these two times be t̄ := max{tL, tH }. We must have one of the

following cases: (I) tL > tH ; (II) tL < tH ; (III) tL = tH .

Case(I). From definition (2.14), tH < t̄ implies that ŷcl(t̄, A, ω̄cl, z) ∩ CωH , ∅. We first

show that ŷcl(t̄, A, ω̄cl, z) ∩ CωL = ∅.

Suppose that ŷcl(t̄, A, ω̄cl, z)∩CωL , ∅. By the definition of the closed-loop information

state, there exists x0 ∈ A and a disturbance d ∈ S (∆) such that ϕ(t̄, x0, φ(ω̄cl,d)) ∈ CωL and

ϕ(τ, x0, φ(ω̄cl,d)) ∈ ŷcl(τ, A, ω̄cl, z) for all τ ∈ [0, t̄]. For notation, let ν := ϕ(t̄, x0, φ(ω̄cl, d)).

Since the flow is continuous with respect to initial conditions, one can show that B open



38

implies that CωL is open. Therefore, we can find ϵ > 0 such that B(ν, ϵ) ⊂ CωL . By the

continuity of the flow with respect to time, we can find η > 0 such that if t ∈]t̄ − η, t̄],

then ϕ(t, x0, φ(ω̄cl, d)) ∈ B(ν, ϵ) ⊂ CωL . This implies that ŷcl(t, A, ω̄cl, z) ∩ CωL , ∅ for all

t ∈]t̄ − η, t̄], thus contradicting t̄ = tL as the infimum in (2.13).

We next show that ŷcl(t̄, A, ω̄cl, z) ∩ ∂CωL , ∅. Suppose that instead ŷcl(t̄, A, ω̄cl, z) ∩

∂CωL = ∅. For notation, let ŷ0 := ŷcl(t̄, A, ω̄cl, z). Since A is compact, ŷcl(t, A, ω̄cl, z) is

compact for all t and z. Now consider the distance γ := d(∂CωL , ŷ0). If γ = 0, then the

intersection must be non-empty, as both sets are closed. Therefore, we assume that γ > 0.

By the upper hemi-continuity of the set-valued flow, there exists η > 0 such that for all

t ∈ [t̄, t̄ + η[, we have that ϕ(t, ŷ0, S (U)) ⊂ B(ŷ0, γ/2). By the definition of the closed-loop

information state, for all t ≥ t̄ we have that ŷcl(t, A, ω̄cl, z) ⊂ ϕ(t, ŷ0, S (U)). This implies

that for all t ∈ [t̄, t̄ + η[ we have ŷcl(t, A, ω̄cl, z) ∩ CωH = ∅, since d(ŷcl(t, A, ω̄cl, z),CωH ) >

γ/2 > 0. This contradicts t̄ = tL as given in equation (2.13), hence we must have that

ŷcl(t̄, A, ω̄cl, z) ∩ ∂CωL , ∅.

We have thus shown that ŷcl(t̄, A, ω̄cl, z) ∩ CωH , ∅, ŷcl(t̄, A, ω̄cl, z) ∩ ∂CωL , ∅ and

ŷcl(t̄, A, ω̄cl, z)∩CωL = ∅. From the definition of the modified dynamic set-valued feedback

map Ĝ given in (2.12), we must necessarily have that ω̄cl(t̄) = ωL = Ĝ(ŷcl(t̄, A, ω̄cl, z)).

From definitions (2.13) and (2.14), we therefore have that ŷcl(t, A, ω̄cl, z) ∩ CωH , ∅

and ŷcl(t, A, ω̄cl, z) ∩ CωL , ∅ for all t ∈ [t̄, t1]. Therefore, by the definition of Ĝ in

equation (2.12), we have that ω̄cl(t) = ωL = Ĝ(ŷcl(t, A, ω̄cl, z)) for all t ∈ [t̄, t1]. Let

v ∈ ŷcl(t1, A, ω̄cl, z)∩CωL and choose w ∈ ŷcl(t̄, A, ω̄cl, z) such that ϕ(t1 − t̄,w, φ(ωL,d)) = v

for some d ∈ S (∆) (note that such a w exists by the definition of the information state ŷ).

Since v ∈ CωL and ω(t) = ωL for all t ∈ [t̄, t1], we must have that w ∈ CωL by the definition

of CωL . This leads to a contradiction, since we assumed that ŷcl(t̄, A, ω̄cl, z) ∩ CωL = ∅. As

a consequence, such a time t1 for which Case(I) holds cannot exist.
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For Case(II), an equivalent argument holds by interchanging ωL with ωH , and CωL with

CωH , then showing that this leads to a contradiction of tH as defined in (2.14).

For Case(III), the argument is similar. First, it can be shown that ŷcl(t̄, A, ω̄cl, z)∩∂CωL ,

∅ and ŷcl(t̄, A, ω̄cl, z) ∩ ∂CωH , ∅ by a continuity argument (similar to the one made in

Case(I)). The proof proceeds as in Case(I) with the eventual contradiction regarding the

definition CωL , and thus contradicting the existence of tL and tH as defined in (2.13) and

(2.14) respectively.

Therefore ŷcl(t, A, ω̄cl, z) ∩ CωH = ∅ or ŷcl(t, A, ω̄cl, z) ∩ CωL = ∅ must hold for all

t ∈ R+ under any control ω̄cl ∈ S (Ω) generated by (G , Ĝ). From the definition of G

in (2.11), it must be that G(ŷcl(t, A, ω̄cl, z)) = Ĝ(ŷcl(t, A, ω̄cl, z)) for all t ∈ R+. This im-

plies that for every closed-loop information state x̂cl(t, A, ωcl, z) and feedback ωcl gen-

erated by the control system (G ,G), there is a corresponding feedback ω̄cl and closed-

loop information state ŷcl(t, A, ω̄cl, z) generated by the control system (G , Ĝ) such that

ω̄cl = ωcl and ŷcl(t, A, ω̄cl, z) = x̂cl(t, A, ωcl, z). This implies that x̂cl(t, A, ωcl, z) ∩ CωH = ∅

or x̂cl(t, A, ωcl, z) ∩ CωL = ∅ for all t ∈ R+. Therefore, the closed-loop information state

generated by the control system (G ,G) satisfies x̂cl(t, A, ωcl, z) ∩ B = ∅ for all t ∈ R+. �

We can thus summarize the solutions to Problem1 and Problem 2 in the two following

theorems, respectively.

Theorem 3. (Solution to Problem 1) For an order preserving game structure G =

(Σ,Ω,∆, φ,B), a convex set x̂0 ⊂ X is in W̄ if and only if x̂0 ∩ CωH = ∅ or x̂0 ∩ CωL = ∅.

Furthermore, if x̂0 ∈ W̄ is also compact, then a dynamic feedback map G : 2X ⇒ Ω is

given by (2.11).

Proof. By Theorem 1, there exists a control signal ω ∈ S (Ω) such that ϕ(t, x̂0, φ(λ,u,d))∩

B = ∅ for all d ∈ S (∆) and all t ∈ R+ if and only if x̂0 ∩ CωH = ∅ or x̂0 ∩ CωL = ∅.
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Assuming that z is the worst-case observation signal, that is, z(t) = z̄ for all t ∈ R+, we

have that x̂(t, x̂0, ω, z) =
∪

d∈S (∆) ϕ(t, x̂0, φ(λ,u,d)) for all t ∈ R+. Therefore, there is a

control signal ω ∈ S (Ω) such that x̂(t, x̂0, ω, z) ∩ B = ∅ for all t ∈ R+ if and only if

x̂0 ∩ CωH = ∅ or x̂0 ∩ CωL = ∅. By the definition of W̄, we thus have that x̂0 ∈ W̄

if and only if x̂0 ∩ CωH = ∅ or x̂0 ∩ CωL = ∅. Since the set of initial conditions x̂0 is

compact, Theorem 2 further shows that the feedback map G given by expression (2.11)

maintains x̂(t, x̂0, ω, z) with ω(τ) ∈ G(x̂(τ, x̂0, ω, z)) for all τ ∈ R+ not intersecting B for all

t ∈ R+. �

Theorem 4. (Solution to Problem 2) For an order preserving game structure G =

(Σ,Ω,∆, φ, B), the set W of Problem 2 is given by W = X\(CωH ∩ CωL). A feedback

map g : X ⇒ Ω is given by

g(x) :=



ωH if x ∈ CωL and x ∈ ∂CωH

ωL if x ∈ CωH and x ∈ ∂CωL

ωL if x ∈ ∂CωH and x ∈ ∂CωL

Ω otherwise.

Proof. Direct consequence of Corollary 1 and Theorem 2, in which A is a singleton. �

The order preserving properties of the dynamics allow for the construction of discrete-

time linear complexity algorithms for the computation of the restricted capture sets CωL

and CωH . These algorithms are presented in the next section.

2.6 Algorithms

By virtue of Theorems 3 and 4, the dynamic and static control Problems 1 and 2 can be

solved by only computing the sets CωH and CωL . For a class of order preserving systems in

discrete-time, we introduce an algorithm for computing the restricted capture set Cω. This

algorithm has linear complexity with respect to the number of continuous variables.
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The restrictions on the game structure G imposed are:

Assumption (a) f i(xi, ui) has no dependency on xi
1;

Assumption (b) The bad set B is given by B := {x ∈ X | (x1
1, x

2
1) ∈ B},

with B := ]L,H[⊂ R2.

This structure of f i(xi, ui) is found, for example, in vector fields derived from Newton’s

laws with no position dependent forces (such as gravity). The bad set B generated by

the open rectangle set B can represent, for example, the set of all collision configurations

between two agents evolving on intersecting paths. If B is a more general bounded o.p.c.

set, a rectangular over-approximation can be employed.

2.6.1 Discrete-Time Model

Seeking digital implementation, we illustrate the algorithm in discrete-time. For agent

i ∈ {1, 2}, denote the state space X̄i := Xi
2 × . . . × Xi

n, the corresponding state x̄i ∈ X̄i,

and the set of discrete-time signals D : N → U i as D(U i). Define the discretization of

the system (employing forward Euler approximation) for agent i ∈ {1, 2} with step size

∆T > 0, input ui ∈ D(U i) and step n ∈ N as

xi[n + 1] = xi[n] + ∆T f i(xi[n],ui[n]).

For the index n ∈ N, initial condition xi ∈ Xi, and input signal ui ∈ D(U i), we denote

the discrete-time flow Φi : N × Xi × D(U i)→ Xi as Φi(n, xi,ui), which satisfies

Φi(n + 1, xi,ui) = Φi(n, xi, ui) + ∆T f i(Φi(n, xi, ui),ui[n − 1]) for all n ∈ N,(2.15)

where Φi(0, xi,ui) = xi. We assume the discrete flow Φi is continuous with respect to input

ui ∈ D(U i). Let zi ∈ D(O) be the output measurement. From Definition 4, the output map

is given by hi(zi[n]) = [inf hi(zi[n]), sup hi(zi[n])]. The jth component of the flow is denoted

as Φi
j(n, xi,ui)
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For the parallel composition of two systems Σ = Σ1||Σ2, the discretization and discrete-

time flow extend to

∆T f (x[n],u[n]) := (∆T f 1(x1[n],u1[n]),∆T f 2(x2[n],u2[n]))

Φ(n, x,u) := (Φ1(n, x1,u1),Φ2(n, x2,u2)).

The game input map, as in Definition 7, easily extends to discrete-time control signals

ω ∈ D(Ω) and disturbance signals d ∈ D(∆) as u[n] = φ(ω[n],d[n]).

From Assumption (a), it follows that for an initial condition (x1, x̄) ∈ X and input

u ∈ D(U), we have that

Φ1(n, x,u) = x1 + Φ1(n, (0, x̄),u) for all n ∈ N,(2.16)

where the state (0, x̄) represents the initial condition x with the state x1 set to zero. This

property implies that the flow projected onto the subspace X1 has no dependency on the

state x1 other than the initial condition.

2.6.2 Restricted Capture Set Cω Computation

The definition of the discrete-time capture set is the same as in continuous time, however

now the index n ∈ N replaces time t ∈ R+, and the discrete signal d ∈ D(∆) replaces the

continuous signal d ∈ S (∆). This is mathematically represented as

Cω = {x ∈ X | ∃ n ∈ N, ∃ d ∈ D(∆) s.t. Φ(n, x, φ(ω, d)) ∈ B}.

To compute the restricted capture set, we introduce the sequences

{Li(n, xi, ωi)}, {Hi(n, xi, ωi)} ⊂ Xi
1 generated with the state xi ∈ Xi and constant con-

trol input ωi ∈ D(Ωi). These sequences are defined as

Li(n, xi, ωi) := Li − Φi
1(n, (0, x̄i), φi(ωi, di

H))

Hi(n, xi, ωi) := Hi − Φi
1(n, (0, x̄i), φi(ωi,di

L)).
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We can combine these sequences for i ∈ {1, 2} and define L(n, x, ω) :=

(L1(n, x1, ω1), L2(n, x2, ω2)), H(n, x, ω) := (H1(n, x1, ω1),H2(n, x2, ω2)).

The sequence {L(n, x, ω)}n∈N represents the backward integration of L with state (0, x̄),

control input ω and constant disturbance input dH. The sequence {H(n, x, ω)}n∈N repre-

sents the backward integration of H with state (0, x̄), control input ω and constant distur-

bance input dL. We use both these sequences to define a sequence of rectangle sets as

{]L(n, x, ω),H(n, x, ω)[}k∈N ⊂ R2.

We introduce Algorithm 1, which can be used to compute the restricted capture set Cω,

by recursively computing the elements of the sequence {]L(n, x, ω),H(n, x, ω)[}n∈N. To

accommodate the case of state uncertainty (§2.6.3), the input of Algorithm 1 is a set x̂ ⊂ X

rather than a singleton x ∈ X.

Algorithm 1 C̃ω = CaptureSetSlice(x̂, ω)

Input: (x̂, ω) ∈ 2X × D(Ω)

n = 1
loop

Termination met when the sequence H(n, inf x̂, ω) is no longer in the set Cone+(inf x̂1).
if inf x̂1 ≤ H(n, inf x̂, ω) and inf x̂1 < ]L(n, sup x̂, ω),H(n, inf x̂, ω)[ then

n = n + 1
else

return C̃ω =
∪

k≤n]L(k, sup x̂, ω),H(k, inf x̂, ω)[.
end if

end loop

Output: C̃ω ⊂ X1.

We can interpret Algorithm 1 as the backward propagation of the rectangle set ]L,H[

with control signal ω and all disturbances. This, in turn, by the order preserving properties

of the discrete-time flow with respect to the input, only requires the upper bound dH and

the lower bound dL. To show termination of Algorithm 1, we note that condition (iii) of

Definition 4 implies that the sequence {H(n, x, ω)}n∈N is strictly monotonically decreasing

without limit for any x ∈ X and ω ∈ D(Ω). Therefore, there must be some finite n ∈ N
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such that inf x̂1 � H(n, inf x̂, ω), implying termination of Algorithm 2.

Claim 1.

Cω =
{
x ∈ X | x1 ∈ C̃ω = CaptureSetSlice({x}, ω)

}
.

Proof. Denote S :=
{
x ∈ X | x1 ∈ C̃ω = CaptureSetSlice({x}, ω)

}
. We show first that Cω ⊆

S and then that Cω ⊇ S .

(⊆) Let x ∈ Cω, then by the definition of Cω we have that there is d ∈ D(∆) and n̄ ∈ N

such that L ≤ Φ1(n̄, x, φ(λ,u,d)) ≤ H. From equation (2.16), we have that

L − Φ1(n̄, (0, x̄), φ(λ,u,d)) ≤ x1 ≤ H − Φ1(n̄, (0, x̄), φ(λ, u,d)).(2.17)

From the order preserving property of the game input map with respect to the disturbance

and by the order preserving property of the discrete-time flow with respect to the input, we

have that

Φ1(n̄, (0, x̄), φ(ω,dL)) ≤ Φ1(n̄, (0, x̄), φ(λ,u,d)) ≤ Φ1(n̄, (0, x̄), φ(ω,dH )).(2.18)

Therefore, from expressions (2.17) and (2.18), we have that

x1 ≤ H − Φ1(n̄, (0, x̄), φ(λ,u,d)) ≤ H − Φ1(n̄, (0, x̄), φ(ω,dL)) = H(n̄, x, ω)

x1 ≥ L − Φ1(n̄, (0, x̄), φ(λ,u,d)) ≥ L − Φ1(n̄, (0, x̄), φ(ω, dH )) = L(n̄, x, ω),

which imply x ∈ S .

(⊇) Let x ∈ S , for agent i ∈ {1, 2} we have that xi
1 ≤ Hi(n̄, xi, ωi) = Hi −

Φi
1(n̄, (0, x̄i), φi(ωi,di

L)) and xi
1 ≥ Li(n̄, xi, ωi) = Li − Φi

1(n̄, (0, x̄i), φi(ωi,di
H)) for some

n̄ ∈ N. We can rearrange these inequalities to give Φi
1(n̄, (0, x̄i), φi(ωi,di

L)) ≤ Hi − xi
1

and Φi
1(n̄, (0, x̄i), φi(ωi,di

H)) ≥ Li − xi
1. If either Φi

1(n̄, (0, x̄i), φi(ωi, di
L)) ≥ Li − xi

1

or Φi
1(n̄, (0, x̄i), φi(ωi,di

H)) ≤ Hi − xi
1, we have that there is a disturbance d such that

xi
1 + Φ

i
1(n̄, (0, x̄), φi(ωi,di))) = Φi

1(n̄, xi, φ(λ,u,d)) ∈]Li,Hi[. If neither of these two cases
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is satisfied, the following inequalities are satisfied: Φi
1(n̄, (0, x̄i), φ(ωi, di

L)) < L − x1 and

Φi
1(n̄, (0, x̄i), φi(ωi,di

H)) > H − x1. Since Φi
1(n̄, (0, x̄i), φi(ωi, ·)) : D(∆i) → Xi

1 is a con-

tinuous function and D(∆i) is a connected metric space with ∆i = [δi
L, δ

i
H], by the inter-

mediate value theorem there must be di ∈ D(∆i) such that Φi
1(n̄, (0, x̄i), φi(ωi,di)) = w ∈

]Li−xi
1,H

i−xi
1[. As a consequence, for such a di we have that xi

1+Φ
i
1(n̄, (0, x̄i), φi(ωi,di)) =

Φi
1(n̄, xi, φi(ωi,di)) ∈ ]Li,Hi[. Since this holds for arbitrary i ∈ {1, 2}, we have shown that

x ∈ Cω. �

Note that the sets Cω are 2n dimensional. Claim 1 shows that these high dimensional

sets can be computed by just computing a sequence of lower {L(n, x, ω)}n∈N and upper

{H(n, x, ω)}n∈N bounds in X1, which are parameterized by the 2n state variables x. For

any fixed value of x ∈ X, the union of intervals ∪n∈N]L(n, x, ω),H(n, x, ω)[ over all n ∈ N

represents the two dimensional slice of Cω corresponding to the state x.

The boundary of the capture set ∂Cω must be reinterpreted, as now the discrete-time

flow can enter the interior of the capture set without touching the boundary. We provide a

definition of the capture set boundary ∂Cω as

∂Cω := {x ∈ X\Cω | ∃ δ ∈ ∆ s.t. x + ∆T f (x, φ(ω, δ)) ∈ Cω}.(2.19)

According to this definition, a state outside of the restricted capture set is said to be on the

boundary of the restricted capture set, if there is some disturbance such that the state is

mapped inside the capture set in one step.

2.6.3 Dynamic Feedback Implementation

Since the dynamics of the system are order preserving with respect to the state and to the

input, we construct a state estimator that keeps track of only the lower and upper bounds

of the information state similar to the estimator proposed in [37]. Let ∨x̂ := sup x̂ and

∧x̂ := inf x̂ denote the upper and lower bounds, respectively, of the set of possible current
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states x̂ (the sup and inf are taken component-wise in accordance to the partial ordering

defined on (X,≤)). Then, a state estimate x̂[n] is constructed with Algorithm 2, by only

updating the upper and lower bounds of x̂[n − 1]. To construct the state estimate, first

the previous state estimate is mapped forward under the discrete update map with the

control input supplied and all possible disturbances. Then, the measurement is used to

further restrict the set of all possible compatible states. Conditions leading to estimator

convergence are provided in [37] for a class of systems.

Algorithm 2 x̂[n] = StateEstimate(x̂[n − 1], ω[n − 1], z[n])

Input: (x̂[n − 1], z[n]) ∈ 2X × O

Update state estimate.
∨x̂[n] = inf{∆T f (∨x̂[n − 1], φ(ω[n − 1], δH)), sup h(z[n])}.
∧x̂[n] = sup{∆T f (∧x̂[n − 1], φ(ω[n − 1], δL)), inf h(z[n])}.

Return state estimate with upper and lower bounds.
return x̂[n] = [∧x̂[n],∨x̂[n]].

Output: x̂[n] ⊂ X.

To implement the closed-loop feedback G : 2X ⇒ U given by equation (2.11) from

§2.5.2, one must check whether the state estimate x̂[n] intersects CωH and CωL . Since the

sequence L(k, x, ω) is order reversing in the argument x, a sufficient condition guaranteeing

that x̂[n] ∩ Cω = ∅ is that

x̂1[n] ∩
∪
k∈N

]L(k,∨x̂[n], ω),H(k,∧x̂[n], ω)[ = ∅.(2.20)

We introduce Algorithm 3, which can be used to compute the feedback ω[n] generated

by the set-valued map G by using the current state x̂[n] and the state prediction x̂[n + 1].

We can interpret Algorithm 3 as the discrete-time implementation of the set-valued

map G, as defined in (2.11). The algorithm is comprised of a series of steps. First, capture

set slices are constructed with Algorithm 1 for the state prediction. If the state prediction

x̂[n + 1] has non-empty intersection with each restricted capture set, as established by
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Algorithm 3 ω = FeedbackMap(x̂[n + 1], x̂[n])

Input: (x̂[n + 1], x̂[n]) ∈ 2X × 2X

Construct capture set slices for state prediction.
C̃ωL = CaptureSetSlice(x̂[n + 1], ωL), C̃ωH = CaptureSetSlice(x̂[n + 1], ωH )

Check if predicted state x̂[n + 1] intersects both capture set slices.
if x̂[n + 1] ∩ C̃ωL , ∅ and x̂[n + 1] ∩ C̃ωH , ∅ then

Construct capture set slices for current state.
C̃ωL = CaptureSetSlice(x̂[n], ωL), C̃ωH = CaptureSetSlice(x̂[ j], ωH )

Determine control according to equation (2.11).
if x̂1[n] ∩ C̃ωL = ∅ and x̂1[n] ∩ C̃ωH , ∅ then
ω = ωL

else if x̂1[n] ∩ C̃ωL , ∅ and x̂1[n] ∩ C̃ωH = ∅ then
ω = ωH

else
ω = ωL

end if

else
No control specified.
ω ∈ Ω

end if

Output: ω ⊂ Ω.

equation (2.20), then the state estimate x̂[n] either has non-empty intersection or is on the

boundary of each restricted capture set. The state estimate x̂[n] is on the boundary of a

restricted capture set, as defined in (2.19), if the state estimate x̂[n] has empty intersection

with the corresponding capture set slice constructed with Algorithm 1. If the intersection

is non-empty, then the state estimate x̂[n] has non-empty intersection with the restricted

capture set. Lastly, control is evaluated with the set-valued map G based on the restricted

capture set membership established.

The closed-loop control system is implemented with Algorithm 4, where the feedback

and state estimate are given by (ω[n], x̂[n]) = ControlSystem(x̂[n − 1], z[n]). We can

summarize Algorithm 4 as follows. First, the state estimate is constructed with Algorithm

2. Next, a state prediction is constructed by mapping the current state estimate forward



48

with all possible disturbance signals. Finally, control is evaluated with Algorithm 3 based

on current state estate estimate and state prediction.

Algorithm 4 (ωcl[n], x̂[n]) = ControlSystem(x̂[n − 1], z[n])

Input: (x̂[n − 1], z[n]) ∈ 2X × O

Update state estimate.
x̂[n] = StateEstimate(x̂[n − 1], z[n])

Construct state prediction.
x̂[n + 1] = [∆T f (∨x̂[n], φ(ω[n], δL)),∆T f (∧x̂[n], φ(ω[n], δH))]

Compute closed-loop feedback.
ωcl[n] = FeedbackMap(x̂[n + 1], x̂[n])

Output: (ωcl[n], x̂[n]) ∈ Ω × 2X

2.7 Simulation and Experimental Results

Figure 2.7: Vehicles approaching a “T” intersection. A collision occurs if two vehicles are in the set B at the same time.

In this section, we illustrate the application of the algorithms outlined in §2.6 to the

two-vehicle collision avoidance problem introduced in §2.1, in which we now consider

disturbances, imperfect state information, and higher order piecewise continuous vehicle

dynamics.
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In-vehicle cooperative active safety and related technologies continue to be examined

world-wide by government and industry consortium, such as the Crash Avoidance Metrics

Partnership (CAMP) [2], the Vehicle Infrastructure Integration Consortium (VIIC) [5, 6]

in the U.S., the Car2Car Communications Consortium in Europe [1], the Advanced Safety

Vehicle project 3 (ASV3) in Japan, and by university research centers such as the Virginia

Tech Transportation Institute (VTTI) and the California PATH. In the near future, ITS

is expected to become more comprehensive by connecting vehicles with each other and

with the surrounding road infrastructure through vehicle-to-vehicle (V2V) and vehicle-to-

infrastructure (V2I) wireless communication.

Here, we consider three different scenarios. In the first scenario, the cooperative case,

we assume V2V communication. The two vehicles thus share information and cooperate

to prevent a potential collision. In the second scenario, the competitive case, we assume

that the two vehicles cannot communicate with each other, for example, only one of the

two vehicles is equipped with the on-board active safety system. This scenario is of high

interest, as any realistic deployment of cooperative active safety systems will not be uni-

versally equipped on all vehicles. The third scenario assumes V2V communication and

thus cooperation between the two vehicles. However, we assume that the dynamic model

of the vehicles is subject to modeling uncertainty. For this combined case, experimental

results on a concrete in-lab implementation are presented. In all of these three cases, we

consider the traffic intersection instance depicted in Figure 2.7 as a reference.

The longitudinal dynamics of each vehicle along its path can be modeled employing

Newton’s laws. Let p ∈ R denote the longitudinal displacement along the vehicle path.

The longitudinal vehicle dynamics can thus be written as

p̈ = [R2/(Jw +MR2)]( fw − fbrake −
ρair

2
CDA f v2 −CrrMg −Mg sin(θroad)),

in which R is the tire radius, Jw is the wheel inertia,M is the mass of the vehicle, fw = τwR
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where τw is the drive shaft output torque, fbrake is the brake force, ρair is the air density,

CD is the drag coefficient, A f is the projected front area of the vehicle, v is the longitudinal

vehicle velocity, Crr is the rolling resistance coefficient, g is the gravity constant, and θroad

is the road gradient. For more details on this model, the reader is referred to [97] and

to the references therein. For automatic driving, fw and fbrake are control inputs to the

longitudinal dynamics of the vehicle. Assuming that the road is flat and that the air drag

term is negligible, we can re-write the longitudinal dynamics as

(2.21) p̈ = a u + b,

in which u = fw − fbrake is the total force, which is the control input to the vehicle, a =

R2/(Jw +MR2), and b = −R2/(Jw +MR2) CrrMg.

For vehicle i ∈ {1, 2}, we denote (see Figure 2.7) the longitudinal displacement along its

path by xi
1 and the longitudinal speed by xi

2. As a consequence, the longitudinal dynamics

for vehicle i ∈ {1, 2} can be re-written as

ẋi
1 = xi

2

ẋi
2 = aiui + bi.

In order to prevent the vehicle from stopping (to prevent the trivial solution in which the

vehicles come to a stop) and from exceeding a maximum speed (to respect road speed

limitations), we consider the hybrid system depicted in Figure 2.8. For each vehicle sub-

Figure 2.8: Hybrid system modeling the vehicle system Σi for i ∈ {1, 2}. In the diagram, we have defined γi := aiui+bi.
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system Σi, we choose for zi ∈ R2 an output map h(zi) = [zi
1 − d1, zi

1 + d1]× [zi
2 − d2, zi

2 + d2]

(a continuous set-valued function), in which zi is a pair of position/speed measurements

assumed to be continuous in time, d1 models uncertainty on the position measurement,

and d2 models uncertainty on the speed measurement. While d2 is practically close to zero

as the on-board speed measurements are quite accurate, d1 can be quite large due to GPS

positioning error. One can verify that systems Σi are order preserving systems, and the

differential inclusion generated by all inputs is Marchaud.

The corresponding discrete-time dynamical system with time step ∆T is given by

xi
1[n + 1] = xi

1[n] + ∆T xi
2[n]

xi
2[n + 1] = xi

2[n] + ∆Tγi,

in which γi = aiui + bi in the central mode of Figure 2.8 and γi = 0 in the right and left

modes of the same figure.

The bad set B is constructed with the rectangle set B = ]L1,H1[ × ]L2,H2[.

2.7.1 The Cooperative Case

In the cooperative case, we have that u = (u1, u2) = φcoop(ω, δ) = (ω1, ω2), that is, both

of the agents are controlled and (u1, u2) ∈ Ω = [ω1
L, ω

1
H] × [ω2

L, ω
2
H]. We implement the

algorithms of §2.6 to compute the restricted capture sets CωL and CωH . Figure 2.9 shows

snapshots in the position plane of the trajectory of the set [∧x̂,∨x̂] for the closed-loop

system. As soon as the set [∧x̂,∨x̂] hits the intersection of the two restricted capture

sets CωL and CωH , the safety control acts and, as a result, set [∧x̂,∨x̂] slides along the

boundary of the capture set until it passes B. Note that the sets CωL and CωH are each

four dimensional. The plots of Figure 2.9 show slices of such sets in the position plane

corresponding to the value of the current speeds.
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Figure 2.9: The cooperative case. The above plots depict snapshots of the dynamic evolution of the closed-loop system.
The system considered has ai = 1 and bi = −.5 for i ∈ {1, 2}, with vmin = .25m/sec and vmax = .8m/sec. We
choose ∆T = .1 sec, B =]4, 6[×R×]4, 6[×R, Ω = [0, 1]× [0, 1], x0 = (1.5, .5, 1, .5), x̂0 = [.5, 2.5]× [.4, .6]×
[0, 2] × [.4, .6]. The measurements z are generated randomly with a uniform probability distribution in the
interval [x(t)− (1, .1, 1, .1), x(t)+ (1, .1, 1, .1)] so that h(z) = [z− (1, .1, 1, .1), z+ (1, .1, 1, .1)]. The grey box
represents the projection of x̂(t) onto the (x1

1, x
2
1) plane, with the black asterisk representing the state of the

system projected onto the (x1
1, x

2
1) plane. The red box represents the projection of B onto the (x1

1, x
2
1) plane,

the slice of CωL corresponding to the current speeds is shown in green and the slice of CωH corresponding
to the current speeds is shown in purple. Plots of the velocities, controls, disturbances, estimation error
∥ ∧ x̂ − ∨x̂∥, and inputs are depicted in the lower panels.

2.7.2 The Competitive Case

In the competitive case, we have that u = (u1, u2) = φ(ω, δ) = (ω1, δ2), that is, the first

agent is controlled while the second one is not and (u1, u2) ∈ [ω1
L, ω

1
H] × [δ2

L, δ
2
H]. We
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implement the algorithms of §2.6 to compute the restricted capture sets CωL and CωH .

Figure 2.10 shows snapshots in the position plane of the trajectory of the set [∧x̂,∨x̂] for

the closed-loop system.

0 2 4 6 8 10 12 14 16 18 20

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (sec)

V
e
lo

ci
ty

(m
/
se

c)

 

 

x
1

2
(t)

x
2

2
(t)

vmin

vmax

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

1.5

2

2.5

Time (sec)

||
∨

x̂
(t

)
−

∧
x̂
(t

)|
|

0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

Time (sec)

ω
i
(t

)

 

 

ω1(t) ω2(t)

0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

Time (sec)

δ
i
(t

)

 

 

δ
1(t) δ

2(t)

0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

Time (sec)

u
i
(t

)

 

 

u1(t) u2(t)

Figure 2.10: The competitive case. The above plots depict snapshots of the dynamic evolution of the closed-loop
system. The system considered has ai = 1 and bi = −.5 for i ∈ {1, 2}, with vmin = .25m/sec and
vmax = .8m/sec. We choose ∆T = .1 sec, B =]4, 6[×R×]4, 6[×R, Ω = [0, 1] × [0, 1], ∆ = [0, 1] × [0, 1],
x0 = (−6, .5,−10, .5), x̂0 = [−7,−5] × [.4, .6] × [−11,−12] × [.4, .6]. The measurements z are generated
randomly with a uniform probability distribution in the interval [x(t) − (1, .1, 1, .1), x(t) + (1, .1, 1, .1)] so
that h(z) = [z− (1, .1, 1, .1), z+ (1, .1, 1, .1)]. The grey box represents the projection of x̂(t) onto the (x1

1, x2
1)

plane, with the black asterisk representing the state of the system projected onto the (x1
1, x2

1) plane. The
red box represents the projection of B onto the (x1

1, x
2
1) plane, the slice of CωL corresponding to the current

speeds is shown in green and the slice of CωH corresponding to the current speeds is shown in purple.
Plots of the velocities, controls, disturbances, estimation error ∥ ∧ x̂ − ∨x̂∥, and inputs are depicted in the
lower panels.
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2.7.3 The Combined Case: Experimental Results

Figure 2.11: Roundabout test-bed (left). The longitudinal displacements of the vehicles with respect to a reference
point along their corresponding paths are indicated by p1 and p2. The bad set B is a disk about point C.
The vehicles (right).

In order to show the suitability of the proposed algorithms for real-time applications,

we implemented the algorithms on the in-scale roundabout test-bed shown in Figure 2.11.

The vehicles are equipped with an on-board computer running Linux Fedora core, wire-

less (802.11b), speed and position sensors, and a motion controller that translates desired

torque commands for the wheels into a PWM signal applied to the DC motor. This guar-

antees that the vehicle responds to torque commands (calculated in the on-board com-

puter) through a second order dynamics of the type of equation (2.21). For a detailed

description of the vehicles, the reader is referred to [97]. The dynamical parameters for

each vehicle were experimentally determined and resulted in the longitudinal dynamics

model p̈i = aiτi + bi + Di = f i
2((pi, ṗi), φ(τi,Di)), in which τi ∈ [0, 100] is the percent-

age torque control command applied to the wheels from the motor, a1 = 1.20 cm/sec2,

b1 = −0.90cm/sec2, a2 = 1.26 cm/sec2, b2 = −1.15 cm/sec2, D1 ∈ [0.6, 19.1] cm/sec2,

and D2 ∈ [0.85, 24.85] cm/sec2. A torque command of 100% corresponds to a torque

of 0.09 Nm. The terms Di incorporate uncertainty that has been added to the model to

take into account the parameter identification error. The limits on the speeds are taken as

vmax = 80 cm/sec and vmin = 25 cm/sec. The speeds vmax and vmin given in the guard con-
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ditions in Figure 2.8 are maintained through the employment of a proportional derivative

(PD) speed control. The longitudinal dynamics model corresponds to a game model G

in which ui = φi(ωi, δi) = (ω
1+δ1

2 , ω
2+δ2

2 ) with ωi ∈ [0.0, 200.0], δ1 ∈ [0.6, 19.1] 2/a1, and

δ2 ∈ [0.85, 24.85] 2/a2.

Vehicle control has two main components: maintaining the vehicles on the correspond-

ing roundabout paths and applying the appropriate control torques ω to the longitudinal

dynamics to prevent collisions at point C (Figure 2.11). In general, the longitudinal and

lateral dynamics of a vehicle are coupled. However, since the radii of the paths are much

greater than the length of the vehicles and the speeds are low, it is possible to assume

low coupling. This allows us to decouple the path following task, using a steering control

input, from the longitudinal dynamics control, using the torque control input ω.

When no special torque command is required to guarantee safety (the last case of the

control map in Theorem 4), a cruise control algorithm comes into effect to maintain the

vehicle speeds about pre-defined set points. For the roundabout implementation, vehicle

1 tracks a speed of 0.4 m/s, while vehicle 2 tracks a speed of 0.5 m/s. A PD controller is

employed for this tracking task. These speeds were selected such that the vehicles would

be able to accelerate and decelerate as much as possible while staying in the speed range

enforced by the speed limiter. The range of speeds was selected based on the geometry

of the roundabout such that the capture set C does not extend beyond the reference point

on either path. If this were not the case, the vehicles may apply control to avoid the bad

set on the first pass, only to end up in the capture set for the second pass, thus making it

impossible to avoid a collision.

Figure 2.12 illustrates the trajectory of the vehicle configuration projected onto the po-

sition plane, when avoiding a collision in one instance of the collision avoidance algorithm.

The sets CωL and CωH are four dimensional. In the figure, we show the slices of these sets
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(a) After 98.2 sec (b) After 99.8 sec (c) After 100.8 sec

(d) After 101.2 sec (e) After 102.4 sec (f) After 104.3 sec

(g) After 105.4 sec (h) After 106.5 sec

Figure 2.12: Experiment data showing the trajectory in the position plane of the vehicles configuration as it approaches
a potential collision scenario. The red box is the projection of B in the position plane. In each panel, the
green set represents a slice of the four dimensional set CωH corresponding to the current vehicles speeds.
The yellow set represents a slice of the four dimensional set CωL corresponding to the current vehicles
speeds. The red dot indicates the current vehicles positions. Control is applied at (d) to avoid the capture
set, and the vehicles resume normal operation after passing the bad set (in (g) and (h)). The capture set
slices are updated at every iteration on the basis of the vehicles speeds.

in the position plane corresponding to the current speeds of the vehicles.



CHAPTER III

Multi-Agent Testbed Implementation

In this chapter, we show how to design a provably safe robotic roundabout system

by combining a number of control primitives. In particular, for the two-vehicle collision

avoidance primitive, we exploit the natural partial order structure on which the system

evolves to apply control techniques on partial orders, which have been shown to be com-

putationally light [36, 49, 51]. We consider bounded state uncertainty derived from sensor

noise and communication delay, and construct a state estimator. We show how to design

the system variables in order to prevent conflicts among the control primitives and to thus

ensure the safety and liveness of the system as a whole. We implement our design on

a multi-vehicle hardware test-bed involving three vehicles continuously running on three

different conflicting roundabouts. The experimental results show that the system is colli-

sion free and live.

3.1 Introduction

In this work, we solve the three-vehicle collision avoidance problem for a specific conflict

topology. This problem is motivated by single lane modern roundabouts with multiple

access points. Roundabouts are becoming common due to their impact on fuel economy

and added safety benefits [7, 93]. To overcome the previously mentioned limitations in

complexity, we exploit the fact that traffic systems can be well modeled by order pre-

57
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serving systems. Our previous work involving two-vehicle collision avoidance exploited

this structure to produce control primitives guaranteeing safety using linear complexity

algorithms [36, 49, 96]. We now look to extend these methods to the three-vehicle safety

control problem in which one vehicle can have simultaneous collision instances with the

other two, see Figure 3.1. This is of practical significance in a roundabout where vehicles

must avoid collisions with more than one vehicle merging into the roundabout. Central

to our approach is the notion of modularity, which allows us to avoid computational dif-

ficulties inherent to the safety control problem for more than two-vehicles at a time. We

accomplish this by combining control primitives (modules) through a conjunctive archi-

tecture where each module only guarantees part of the safety specification is met. We

then show that this can be performed in a dead-lock free manner, thereby guaranteeing the

whole system is safe.

The prior tools cited were developed for maintaining safety between two agents, thus

we look to extend their definitions to guarantee safety for the complete three agent sys-

tem. This is accomplished by modularizing the control maps that guarantee safety for the

individual safety specifications outlined in Section 3.3. This chapter is organized as fol-

lows. In Section 3.2, we provide a description of the roundabout system, the models used

for each vehicle. In Section 3.3, a formal description of the safety specification is given.

A formal solution to this problem along with the feedback maps are provided in Section

3.4. The algorithms used to implement these feedback maps are provided in Section 3.5.

In Section 3.6, we provide the experimental setup, the on-line control algorithm, and our

experimental results.
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3.2 System Model

We describe the system by introducing coordinates along each path, with the origins indi-

cated as ticks along the paths in Figure 3.1. Assuming that each vehicle is constrained to

evolve along the fixed path, we can completely describe the motion of each vehicle with

the longitudinal dynamics along each path.

3.2.1 Longitudinal Dynamics

We denote by p the displacement of the vehicle along its path, and by v the velocity of the

vehicle . The longitudinal dynamics along the vehicle path can be written as

p̈ = [R2/(Jw +MR2)]( fw − fbrake −
ρair

2
CDA f ( ṗ)2 −CrrMg),

in which R is the tire radius, Jw is the wheel inertia,M is the mass of the vehicle, fw = τ
i
wR

where τw is the drive shaft output torque, fbrake is the brake force, ρair is the air density,

CD is the drag coefficient, A f is the frontal area of the vehicle, Crr is the rolling resistance,

and g is the gravitational constant. For more details of this model, the reader is referred to

[97] and the references therein. Assuming that the air drag is negligible, we can re-write

the longitudinal dynamics as

p̈ = au + b, where u = fw − fbrake, a =
R2

Jw +MR2 and b = − R2

Jw +MR2 CrrMg.

3.2.2 Piecewise Continuous Model

We next introduce a system model that incorporates a class of hybrid systems used to

impose invariants on the velocity state. This system, denoted Σi, will be employed to

model each vehicle i ∈ {1, 2, 3}.

Definition 9. (Piecewise Continuous System) A piecewise continuous system Σi is a tuple

Σi = (Xi,U i, f i,Oi), in which
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(i) Xi ⊂ R2 is a set of continuous states;

(ii) U i ⊂ R is a set of continuous inputs;

(iii) Oi ⊂ Xi is a set of continuous outputs.

In particular, for each vehicle i ∈ {1, 2, 3} the state space is given by Xi = [0,Di) ×

[vi
min, v

i
max], where Di is the distance of the circular path as seen in Figure 3.1 and 0 <

vi
min < vi

max. For notation, let Xi
1 = [0,Di] and Xi

2 = [vi
min, v

i
max]. When a vehicle traverses

the complete path, that is xi
1(t) = Di, the displacement is set to xi

1(t) = 0, thus Xi
1 is

homeomorphic the circle S1. We assume vi
min > 0 to enforce a liveness condition and a

maximum velocity vi
max to model the maximum speed limit. Let xi

j(t) denote the ith agent

and jth component, where j = 1 corresponds to position and j = 2 corresponds to velocity.

Define the set of all Lebesgue measurable functions ui(·) : R+ → U i that are essentially

bounded asUi. The piecewise continuous vector field is represented as a hybrid automaton

in Figure 3.2, where ai and bi are the vehicle parameters discussed in Section 3.2.1.

For vehicle i ∈ {1, 2, 3}, we denote the flow ϕi : R+ × Xi × Ui → Xi, where for the

initial condition xi ∈ X and input ui ∈ Ui, we have ϕ(0, xi,ui) = xi and d
dtϕ(t, xi,ui) =

f (ϕ(t, xi,ui),ui(t)).

3.2.3 Parallel Composition

To formally describe the entire three vehicle roundabout system, we define the entire sys-

tem as the parallel composition of each system, that is Σ := Σ1||Σ2||Σ3. We next formally

define the parallel composition among systems.

Definition 10. (Parallel Composition) For Σi = (Xi,U i, f i) with i ∈ {1, 2, 3}, we define

the parallel composition Σ = Σ1||Σ2||Σ3 := (X,U, f ), in which X := X1 × X2 × X3, U :=

U1 × U2 × U3 and f := ( f 1, f 2, f 3).

For the initial condition x = (x1, x2, x3) ∈ X1 × X2 × X3, input u = (u1,u2,u3) ∈
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Figure 3.1: Roundabout system with locations of potential collisions superimposed on the paths, and vehicle
states shown along with path origins.

Figure 3.2: Hybrid system modeling the vehicle system Σi for i ∈ {1, 2, 3}. In the diagram, we have defined
γi := aiui + bi.
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U1 ×U2 ×U3, we denote the flow of the entire system Σ = Σ1||Σ2||Σ3 as

ϕ(t, x, u) = (ϕ1(t, x1, u1), ϕ2(t, x2,u2), ϕ3(t, x3,u3)),

where ϕ1(t, x1,u1) ∈ X1, ϕ2(t, x2,u2) ∈ X2 and ϕ3(t, x3,u3) ∈ X3.

In the sequel, we will frequently consider the state space and flow for only two vehicles.

We introduce the vehicle collision index set, denoted by I ⊂ N2, which represents all non-

ordered pairs corresponding to vehicles for which collision is possible. For the system

generated by the roundabout in Figure 3.1, the vehicle collision index set is given as

I := {(1, 2), (1, 3)}.(3.1)

For any collision index k ∈ I , we use the following notation. Define the two vehicle

state space by Xk := Xk1 × Xk2 and a component of the state space by Xk
j := Xk1

j × Xk1
j .

Similarly, define the state vector xk := (xi, x j) and a component of the state vec-

tor by xk
j := (xk1

j , x
k2
j ). The two-vehicle input space is defined by Uk := Uk1 × Uk2 ,

with the input signal defined by uk := (uk1 ,uk2). The two-vehicle flow is defined by

ϕk(t, xk,uk) := (ϕk1(t, xk1 , uk1), ϕk2(t, xk2 ,uk2)) and a component of the flow defined by

ϕk
j(t, xk,uk) := (ϕk1

j (t, xk1 ,uk1), ϕk2
j (t, xk2 ,uk2)).

3.3 Problem Statement

To formalize the safety control problem, we introduce a set B ⊂ X, called the bad set,

representing system configurations that violate a safety condition for the entire system Σ.

We will say that the set B represents a global safety specification. We construct this set by

taking the union of all collision configurations between the vehicles.

From the geometry of the roundabout, we can classify all collisions into two types (Fig-

ure 3.1). We call the first type a merging collision, denoted by the specification M, which

occurs when vehicles collide as their paths first come together, an example is provided in
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Figure 3.3. We call the second type a rear-end collision, denoted by the specification RE,

which occurs when vehicles collide while their paths overlap, an example is provided in

Figure 3.4.

Figure 3.3: Example of merging collision scenario at an intersection. It is assumed that a merging collision
occurs when both vehicles simultaneously lie within the red circle.

Figure 3.4: Example of rear-end collision scenario along overlapping vehicle paths. It is assumed that a
rear-end collision is only possible within the red box.

3.3.1 Construction of the Bad Set

Define the two-vehicle bad set Bk
s ⊂ Xk for a collision type s ∈ {M,RE} between vehicles

k ∈ I . If two vehicles are close enough to each other, then a collision occurs regardless

of velocity. Therefore, instances of collision are determined solely by vehicle positions.

Let Ωk
s ⊂ Xk

1 be the set of all positions that generate a collision, then we define

Bk
s := {xk ∈ Xk | xk

1 ∈ Ωk
s}.
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We will call the space Xk
1 the space of constraint for the two-vehicle bad set Bk

s. The

two-vehicle bad set can be used to define a local safety specification.

Definition 11. (Local Safety Specification) Given the bad set Bk
s ⊂ Xk, initial condition

xk ∈ Xk and input uk ∈ Uk, we say the local safety specification is met if ϕk(t, xk,uk) < Bk
s

for all t ∈ R+.

We call this safety specification, since it pertains only to a specific two-vehicle colli-

sion.

3.3.2 Collisions Considered

We now mathematically construct all instances of two-vehicle bad sets that are possible

within the roundabout system (Figure 3.1).

Merging Collisions

From the path geometries, there only exist merging collisions between vehicles of index

k ∈ I (defined in (3.1)), as shown by the circle sets in Figure 3.1. For k ∈ I , define the

set Ωk
M corresponding to positions that generate merging collisions as

Ωk
M :=

{
xk

1 ∈ Xk
1 | xk ∈]Lk

M,U
k
M[
}
,

where 0 < Lk
M < Uk

M < min{Dk
1,D

k
2} are positive constants. The set Ωk

M represents the

collection of all positions of vehicles k1 and k2 such that both lie in the open interval

]Lk
M,U

k
M[. This set is shown for both k2 = 2 and k2 = 3 in Figure 3.6.

We use the set Ωk
M to define the merging two-vehicle merging bad set as

Bk
M :=

{
xk ∈ Xk | xk

1 ∈ Ωk
M

}
.
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Figure 3.5: The two-vehicle bad set B1,2
M is depicted within X1,2.

Rear-End Collisions

From the path geometries in Figure 3.1, there only exist rear-end collisions between vehi-

cles {1, 2} and between vehicles {1, 3}. We present the rear-end safety specification by first

constructing the bad sets in the space of constraint. Define the avoid sets A(1,2)
RE and A(1,3)

RE

corresponding to positions that generate rear-end collisions as

Ωk
RE :=

{
xk

1 ∈ Xk
1 | xk

1 ∈]Lk
RE,U

k
RE[ ∧ |xk1

1 − xk2
1 | < l

}
,

where 0 < Lk
RE,U

k
RE < min{Dk1 ,Dk2} are positive constants, and l denotes a length of the

vehicle. We note that Lk
M = Lk

RE by construction. This set corresponds to sections of the

roundabout where vehicle paths overlap, and each vehicle is a car length apart. This set is

shown in Figure 3.6. We use the sets Ω(1,2)
RE and Ω(1,3)

RE to construct the rear-end bad sets as

Bk
RE := {xk ∈ Xk | xk

1 ∈ Ωk
RE}.

3.3.3 Complete Safety Specification

For the spec s ∈ {M,RE}, we extend the two-vehicle bad set Bk
s ⊂ Xk to the bad set Bk

s ⊂ X

for the entire system by defining Bk
s := {x ∈ X | xk ∈ Bk

s}. It naturally follows from the



66

Figure 3.6: The sets Ω(1,2)
M , Ω(1,3)

M , Ω(1,2)
RE and Ω(1,3)

RE projected onto the relevant Spaces of Constraint.

above definition that xk < Bk
s if and only if x < Bk

s for all states x ∈ X. That is, the two-

vehicle component of the state vector xk is outside of the two-vehicle bad set Bk
s if and

only if the entire state vector is outside of the bad set Bk
s. The set Bk

M is shown in Figure

3.5.

We define the bad set as B := B(1,2)
M ∪ B(1,3)

M ∪ B(1,2)
RE ∪ B(1,3)

RE . With the definition of the

bad set B, we now define the global safety specification for the complete system.

Definition 12. (Global Safety Specification)

The system Σ, along with initial condition x0 ∈ X and input u ∈ U, is said to meet the

global safety specification if ϕ(t, x0,u) < B for all t ∈ R+.

3.3.4 Control Modules

For each two-vehicle bad set Bk
s, we define the two-vehicle control primitive as a feedback

map into the two-vehicle input space Uk, used to maintain the local safety specification as

defined in Definition 11. The primitive is then extended to a module, which is defined as a
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feedback map into the entire Input space U.

Cooperative Control Primitive

We assume all merging collisions are to be resolved by both vehicles operating in a coop-

erative fashion. For the two-vehicle bad set Bk
M between k ∈ I , we define the capture set

Ck
M as

Ck
M := {xk ∈ Xk | ∀ uk ∈ Uk, ∃ t ∈ R+ s.t. ϕk(t, xk,uk) ∈ Bk

M}.

That is, we seek to find the set of all initial conditions xk in the space Xk such that for every

input signal uk ∈ Uk applied to vehicles k1 and k1, the flow enters Bk
M at some time t ∈ R+.

From this set, we then define the cooperative control primitive gk
M.

Definition 13. (Cooperative Primitive)

For the two-vehicle bad set Bk
M and the capture set Ck

M, define the cooperative control

primitive gk
M(·) : Xk ⇒ Uk such that if xk ∈ Xk\Ck

M, then

ϕk(t, xk,uk) < Ck
M ∀ t ∈ R+,

under any feedback signal uk(τ) ∈ gk
M(ϕk(τ, xk,uk)) for all τ ∈ [0, t].

The cooperative primitive acts in the least conservative manner possible, that is to say

control is only applied when absolutely necessary.

Competitive Control Primitive

We next define a competitive two-vehicle control primitive, used to maintain the local

safety specification for the two-vehicle bad set Bk
RE. For the competitive primitive, we only

assume control authority for vehicle k2. This primitive will be useful in guaranteeing the

local safety specification while only requiring control of one vehicle. Two accommodate

the worst case, the uncontrolled vehicle is modeled as a disturbance attempting to violate

the local two-vehicle safety specification.
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For the two-vehicle bad set Bk
RE between vehicles k ∈ I , we define the competitive

two-vehicle capture set Ck
RE as

Ck
RE := {xk ∈ Xk | ∀ uk2 ∈ Uk2 , ∃ uk1 ∈ Uk1 , ∃ t ∈ R+ s.t. ϕk(t, xk,uk) ∈ Bk

RE}.

That is, we seek to find the set of initial conditions xk in the two vehicle space Xk such that

for every input signal uk2 ∈ Uk2 applied to vehicle k2, there exists an input signal uk1 ∈ Uk1

such that the flow enters Bk
RE at some time t ∈ R+.

From this set, we then define the competitive control primitive gk
RE.

Definition 14. (Competitive Primitive) For the two-vehicle bad set Bk
RE and the capture set

Ck
RE, define the competitive control primitive gk

RE(·) : Xk ⇒ Uk2 such that if xk ∈ Xk\Ck
RE,

then ϕk(t, xk,uk) < Ck
RE for all t ∈ R+ under any input signal uk1 ∈ Uk1 and any feedback

signal uk2(τ) ∈ gk
RE(ϕk(τ, xk,uk)) for all τ ∈ [0, t].

This control module is useful in that only one vehicle is tasked with maintaining the

safety specification. In this sense, the behavior of this primitive is far more conservative

than the cooperative primitive. This module is useful in cases where a single vehicle

could be simultaneously engaged in two possible collision scenarios, and hence cannot use

cooperative primitives for both collisions due to the possibility that they could command

opposite control input at a single instant.

Control Modules from Primitives

The cooperative primitive only applies control to two-vehicles while the competitive prim-

itive only applies control to one-vehicle, therefore we look to extend the definition of prim-

itives to the entire input set U so they can be combined. In addition, we define an enabling

set A ⊂ X used to turn the module on and off based on the input argument.

Given the cooperative primitive gk
M between vehicles k ∈ I , we first define the coop-

erative module.
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Definition 15. (Cooperative Module)

Given cooperative primitive gk
M and enable set Ak

M ⊂ X where we require that Bk
M ⊂

Ak
M, define the cooperative module gk

M : X ⇒ U as

gk
M(x) =


{u ∈ U | uk ∈ gk

M(xk)} if x ∈ Ak
M,

U else.

We say that gk
M is the least restrictive extension, since any control input satisfying the

lower dimensional constraint gk
M(xk) ⊂ Uk is admissible when x is inside the enable set

Ak
M ⊂ X.

Given the competitive primitive gk
RE between vehicles k ∈ I , we next define the com-

petitive module.

Definition 16. (Competitive Module)

Given competitive primitive gk
RE and enable set Ak

RE ⊂ X where we require that Bk
RE ⊂

ARE
i j , define the cooperative module gk

RE : X ⇒ U as

gk
RE(x) =


{u ∈ U | u j ∈ gk

RE(xk)} if x ∈ Ak
RE,

U else.

We say that gk
RE is the least restrictive extension, since any control input satisfying the

lower dimensional constraint gk
RE(xk) ⊂ Uk2 is admissible when x is inside the enable set

Ak
M ⊂ X.

We next define the composition of two modules utilizing a conjunctive control archi-

tecture.

Definition 17. (Composition of Modules)

For the modules gk
r(x) and gl

s(x), where k, l ∈ I and r, s ∈ {M,RE}, define the compo-

sition g : X ⇒ U as

g(x) := gk
r(x) ∩ gl

s(x).
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It is not necessarily true that the resulting combination of two modules will maintain

both local safety specifications (Definition 11). To establish conditions guaranteeing the

combination of modules maintains both safety specifications, for k ∈ I and s ∈ {M,RE}

we first define the capture set Ck
s ⊂ X extended into the entire space X.

Definition 18. Given the two-vehicle capture set Ck
s ⊂ Xk with s ∈ {M,RE} and k ∈ I ,

we define the capture set Ck
s := {x ∈ X | xk ∈ Ck

s}.

3.4 Problem Solution

The problem of constructing the cooperative control module (Definition 15) and the com-

petitive control module (Definition 16) has already been solved in [36], [49]. In this work,

the central assumption is that the system under consideration falls into the class of order

preserving systems. We first introduce this abstraction.

3.4.1 Order Preserving Systems

Order preserving systems comprise a class of dynamical systems that are useful in describ-

ing vehicles commonly encountered in traffic systems. Before introducing the specifics,

we first introduce the notion of a partial order.

A partial order is a set P along with a relation ≤, denoted (P,≤). We are concerned with

the partial order (Rn,≤) defined by component-wise ordering, and the partial order (U,≤),

where we say u1 ≤ u2 given that u1(t) ≤ u2(t) for all t ∈ R+.

We next define an order preserving map. Given partial orders (P,≤p), (S ,≤s) and a

map F : P → S , we say that F is order preserving if x ≤p y implies F(x) ≤s F(y).

The definition of an order preserving map allows us to formally define the class of order

preserving systems.

Definition 19. (Order Preserving System)
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The system Σi = (Xi,U i, f i), for i ∈ {1, 2, 3}, is an Order Preserving System provided

that there exist constants ui
L, u

i
H ∈ R and χi > 0 such that

(i) U i = [ui
L, u

i
H] ⊂ R;

(ii) The flow ϕi(t, xi,ui) generated by the vector field f is an order preserving map

with respect to (X,≤) and (U,≤);

(iii) f i
1(x, u) > χi for all (x, u) ∈ Xi × U i.

Condition (i) states that the input to vehicle i ∈ {1, 2, 3} falls within the bounded interval

[ui
L, u

i
H]. Condition (ii) with respect to state implies that greater initial speeds and initial

displacements generate larger speeds and displacements. Condition (ii) with respect to in-

put implies that greater inputs generate greater speeds and displacements. Mathematically

for vehicle i ∈ {1, 2, 3}, this is stated for x̃i, ỹi ∈ X̃i and ui, ûi ∈ U as

xi ≤ yi, ui ≤ ûi ⇒ ϕi(t, xi,ui) ≤ ϕi(t, yi, ûi) for all t ∈ R+.

Condition (iii) guarantees that a liveliness condition is always maintained.

3.4.2 Primitive Generation

For the two-vehicle index k ∈ I and a system Σ := Σk1 ||Σk2 defined as the parallel compo-

sition of two order preserving systems, and an order preserving connected (o.p.c.) bad set

Bk ⊂ Xk := Xk1 × Xk2 [49], we construct the control primitives (Definitions 13, 14).

For the cooperative control primitive, all results are taken from [36]. The set Ck(uk)

corresponds to the set of all states that are taken into Bk under the fixed input uk ∈ Uk. We

present the control primitive generated from the restricted cooperative capture set.

Theorem 5. (Cooperative Primitive Construction)

For the two-vehicle index k ∈ I , order preserving system Σ := Σk1 ||Σk2 and the o.p.c.
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bad set Bk ⊂ Xk, the cooperative primitive gk : Xk ⇒ Uk is given by

gk(xk) :=



uk
L if xk ∈ ∂Ck(uk

L) ∩Ck(uk
H ),

uk
H if xk ∈ ∂Ck(uk

H ) ∩Ck(uk
L),

{uk
H , u

k
L} if xk ∈ ∂Ck(uk

L) ∩ ∂Ck(uk
H ),

Uk else,

where uk
H := (uk1

L , u
k2
H ), uk

L := (uk1
L , u

k2
H ), the constant signal uk

H = uk
H for all t ∈ R+ and the

constant signal uk
L = uk

L for all t ∈ R+.

This primitive has been shown to render the set X\Ck controlled invariant, where it has

been shown that the cooperative capture set can be found as Ck = Ck(uk
L) ∩Ck(uk

H ).

For the competitive control primitive, results are taken from [49]. The set Ck(uk2) corre-

sponds to the set of all states that are taken into Bk under the fixed input uk2 ∈ Uk2 and any

input uk1 ∈ Uk1 . We present the competitive control primitive generated with the restricted

competitive capture sets.

Theorem 6. (Competitive Primitive Construction)

For the two vehicle index k ∈ I and order preserving system Σ := Σk1 ||Σk2 and the

o.p.c. bad set Bk ⊂ Xk, the competitive primitive gk : Xk ⇒ Uk2 is given by

gk(xk) :=



uk2
L if xk ∈ ∂Ck(uk2

L ) ∩Ck(uk2
H ),

uk2
H if xk ∈ ∂Ck(uk2

H ) ∩Ck(uk2
L ),

{uk2
H , u

k2
L } if xk ∈ ∂Ck(uk2

L ) ∩ ∂Ck(uk2
H ),

U2 else,

where uk2
H := uk2

H for all t ∈ R+ and uk2
L := uk2

L for all t ∈ R+.

This primitive has been shown to render the set X\C12 controlled invariant for any input

signal u1 ∈ U1, where it has been shown that the competitive capture set can be found as

Ck = Ck(uk2
L ) ∩Ck(uk2

L ).
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3.4.3 Extended System Description

The problem with the system Σi, as defined in Section 3.2.2 for i ∈ {1, 2, 3}, is that one

cannot place the natural component-wise partial order on the set Xi
1, as it is homeomorphic

to S1. Therefore, we extend the state space to allow for a partial order.

The Covering Space X̃

We introduce the covering space X̃i, where X̃i
1 := R and X̃i

2 := Xi
2, along with the covering

map ξi : X̃i → Xi [74]. For a state x̃i ∈ X̃i, the covering map ξi is defined by

xi =: ξi(x̃i) where xi
2 = x̃i

2 and xi
1 = x̃i

1 + kD1 for some k ∈ Z and xi
1 ∈ Xi

1.

The notation ξi
j for j ∈ {1, 2} corresponds to components of the image of the covering map

ξi.

The covering space corresponds to viewing the position of vehicle i ∈ {1, 2, 3} on the

real line instead of on the circle Xi
1. If a vehicle i ∈ {1, 2, 3} traveled around the path

multiple times, the state x̃i
1 ∈ X̃i

1 would reflect this, while the state xi
1 ∈ Xi

1 only defines

the directed distance from the path origin. For an element xi ∈ Xi, denote the equivalence

class [xi] ⊂ X̃i
1 as

[xi] := {x̃i ∈ X̃ | ξi(x̃i) = xi}.

We say that two elements x̃, ỹ ∈ X̃i
1 are equivalent, denoted x̃ ∼ ỹ, provided that x̃, ỹ ∈ [xi

1].

The position space Xi
1, covering space X̃i

1 and covering map ξi
1 are each depicted in Figure

3.7.

In the space X̃i, we can define the partial order (X̃i,≤) using the standard component-

wise ordering.

We introduce an extension operator that allows us to take a system Σi (as defined in

Section 3.2.2) and map it to a system Σ̃i with a state space defined to be the covering
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Figure 3.7: The Position Space Xi
1, Covering Space X̃i

1 and Covering Map ξi for Vehicle i ∈ {1, 2, 3}.

space.

Definition 20. (Extended System Operator) Given the system Σi for vehicle i{1, 2, 3}, de-

fine the extended system Σ̃i and operator Υ where Σ̃i := Υ(Σi), such that

Σ̃i = {X̃i,U i, f̃ i},

where the vector field f̃ i : X̃i × U i → X̃i is such that

ξi( f̃ i(x̃i, ui)) = f (ξi(x̃i), ui)

for all x̃i ∈ X̃i and ui ∈ U i.

We define the extended flow ϕ̃ generated by the extended system Σ̃i. Let ϕ̃ : R+ ×

X̃i × U → X̃i, where for an initial condition x̃i ∈ X̃i and input ui ∈ Ui, we have that

ϕ̃(0, x̃i,ui) = x̃i and

ξi(ϕ̃i(t, x̃i,ui)) = ϕi(t, ξi(x̃i),ui).

We next provide a result that shows that extended system generated by the extension of

each piecewise continuous system is of the order preserving systems class.

Remark 1. Given the piecewise continuous system Σi where i ∈ {1, 2, 3} (Definition 9), the

system Σ̃i generated by extension operator Υ(Σi) an order preserving system.
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Proof. Condition (i) holds trivially from the definition of U i. �

(i) U i = [ui
L, u

i
H] ⊂ R;

(ii) The flow ϕi(t, xi,ui) generated by the vector field f is an order preserving map

with respect to (X,≤) and (U,≤);

(iii) f i
1(x, u) > χi for all (x, u) ∈ Xi × U i.

Parallel Composition

We can extend this definition to the parallel composition of extended systems, that is Σ̃ :=

Σ̃1||Σ̃2||Σ̃3. All of the above notation regarding the flow ϕ of the entire system Σ carries over

to the flow ϕ̃ of the extended entire system Σ̃. In particular, we have that ϕ̃ : R+×X̃×U → X̃

is order preserving with respect to (X̃,≤) and (U,≤). We also can define the covering map

ξ defined on the entire system Σ̃, given by ξ(x̃) = (ξ1(x̃1), ξ2(x̃2), ξ3(x̃3))

All of the notation pertaining to the two-vehicle description, as in Section 3.2.3, carries

over naturally to the extended system Σ̃.

3.4.4 Extended Safety Specification

For each bad set Bk
s ⊂ Xk generated by the safety specification s ∈ {M,RE} for two-vehicle

index k ∈ I , we can extend the bad set into the covering space X̃k. Define the extended

bad set B̃k
s ⊂ X̃k generated by the Bk

s as

B̃k
s := {x̃k ∈ X̃k | ξk(x̃k) ∈ Bk

s}.

This set can be further embedded into the entire extended statespace as B̃k
s = {x̃ ∈ X̃ | x̃k ∈

Bk
s}. The bad set B will be denoted B̃ in the covering space. The extended bad set will allow

us to view the safety specification as a subset of a partially ordered set, which will be useful

in invoking previous results concerning safety control for order preserving systems.

The safety specification can be described in terms of the extended bad set.
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Condition 1. Given the system Σ, bad set B̃, initial condition x0 ∈ X and input u ∈ U, we

say the system is safe if the for any x̃0 ∈ X̃ such that ξ(x̃0) = x0, the extended system Υ(Σ)

generates a flow ϕ̃(t, x̃0,u) never enters the extended bad set B̃, that is ϕ̃(t, x̃0,u) < B̃ = ∅

for all t ∈ R+.

This condition is equivalent to Condition 12 from Section 3.3.3, in that ξ(B̃) = B

and ξ(ϕ̃(t, x̃0,u)) = ϕ(t, x0,u), however now we have described the condition within the

partially ordered space (X̃,≤).

3.4.5 Control Module Generation

The purpose of extending the system description to Σ̃ and defining the partial order (X̃,≤) is

to invoke previous work concerning two-vehicle cooperative safety control, see [36], and

two-vehicle competitive safety control, see [49]. We look to now generate the modules

defined in Section 3.3.4 with the extended system description.

Before invoking our previous results, we must first discuss the topological properties

of the global bad set B̃ and the local bad sets B̃k
M and B̃k

RE, where k ∈ I .

Order Preserving Connected Sets

We define a class of sets called order preserving connected (o.p.c.) in R2 with respect

to the standard partial order (R2,≤). As defined in [49], order preserving connected sets

have the property that any non-empty intersection with a pointed cone is a path connected

set. An example of such a set is provided in Figure 3.8. Order preserving connected sets

are useful in safety control problems defined with order preserving systems, in that they

provide a natural geometry for capturing the flow. That is to say, once the forward cone of

evolution is entirely pointed into the set, then the flow must necessary enter for any control

input.

With some abuse of notation, for the two-vehicle index k ∈ I we will say the set
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Figure 3.8: A is an o.p.c. set while B is not an o.p.c. set.

A ⊂ X̃k (which is a subset of R4) is o.p.c. provided the projection of A onto X̃k
1 is o.p.c.

Connected Components of the Bad Set B

For vehicles k ∈ I , the projection of the extended bad set B̃k
s into the extended space of

constraint X̃k
1 is not o.p.c. Therefore, in order to invoke prior results using o.p.c. sets, we

instead look to solve the safety control problem for each connected component of B̃k
s when

projected into the space of constraint X̃k
1.

To isolate each connected component of X̃k
1, we define the shifted box set. For two-

vehicle index set k ∈ I and integers l ∈ Z2 we define the box set Boxk(l) ⊂ X̃k as

Boxk(l) := {x̃k ∈ X̃k | xk
1 ∈ [l1Dk1 , (l1 + 1)Dk1] × [l2Dk2 , (l2 + 1)Dk2].

We now use the box set to construct isolated components of the two-vehicle collision

set B̃k
s, where s ∈ {M,RE} and k ∈ I . Define the set

B̃k
s(l) := B̃k

s ∩ Boxk(l)

which by the construction of B̃k
s is an o.p.c. set. Note that the union of all such sets gives

us the entire bad set B̃k
s, that is

B̃k
s =
∪
l∈Z2

B̃k
s(l).
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Therefore, if we can construct a module for B̃k
s(l), and show that the conjunction of each

module is non-conflicting, then we can guarantee the entire safety specification B̃k
s is never

violated.

3.4.6 Cooperative Module Solution

We seek to design a controller that guarantees the state of the system never enters B̃k
s(l) for

s ∈ {M,RE} and k ∈ I . We accomplish this by first looking for the primitive gk
s(·, ·)coop :

X̃k × Z2 ⇒ Uk. We assume each vehicle can apply control to avoid a merging collision,

therefore we look to design these primitives and extend them as cooperative modules, as

defined in Section 3.3.4.

In order to find such a gk
s(·, ·)coop where k ∈ I , we invoke previous results involving

cooperative two vehicle collision avoidance [36]. We first look to compute the extended

capture set

C̃k
s := {xk ∈ X̃k | ∀ uk ∈ S (Uk), ∃ t ∈ R+ s.t ϕ̃k(t, xk,uk) ∈ B̃k

s}.

Rather than directly computing this capture set, we instead compute simpler sets. For

a fixed control signal uk ∈ S (Uk), we define the restricted capture set

C̃k
s(u

k) := {x̃k ∈ X̃k | ∃ t ∈ R+ s.t. ϕ̃k(t, x̃k,uk) ∈ B̃k
s}.

The set C̃k
s(uk) corresponds to the sets of all states that are taken into B̃k

s under the fixed

input uk ∈ S (Uk).

With the partial order (X̃,≤) and order preserving property of the system given by (ii)

from Definition 19, we can compute each capture set using the restricted capture sets if the

bad set is o.p.c. In this case, the bad set B̃k
s is not o.p.c., however for the shift parameter

l ∈ Z2 we know that B̃k
s(l) is o.p.c., as discussed in section 3.4.5.
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For vehicles k ∈ I , the safety specification s ∈ {M,RE} and the shift parameter l ∈ Z2,

we define the shifted capture set as

C̃k
s(l) := {xk ∈ X̃k | ∀uk ∈ S (Uk), ∃ t ∈ R+ s.t ϕ̃k(t, xk,uk) ∈ B̃k

s(l)},

and for the input uk ∈ S (Uk), we define the shifted restricted capture set as

C̃k
s(u

k, l) := {x̃k ∈ X̃k | ∃ t ∈ R+ s.t. ϕ̃k(t, x̃k,uk) ∈ B̃k
s(l)}.

For i ∈ {1, 2, 3}, we define the constant inputs ui
L := ui

L for all t ∈ R+ and ui
H := ui

H

for all t ∈ R+. These signals can be used to construct the two useful input signals uH :=

(u1
L,u

2
H,u

3
H) and uL := (u1

H, u
2
L,u

3
L). With the shifted restricted capture set generated from

a bad set that is o.p.c., we can now invoke a critical result using the signals uH and uL.

Theorem 7. For the shift parameter l ∈ Z2, safety specification s ∈ {M,RE} and index

k ∈ I , we have

C̃k
s(l) = C̃k

s(u
k
L, l) ∩ C̃k

s(u
k
H , l).

A proof of this Theorem can be found in [36]. This Theorem states if the initial condi-

tion x̃k generates a flow that enters the bad set B̃k
s(l) under both the inputs uH and uL, then

the flow will enter the bad set no matter what input is applied. From the assumptions on

the system dynamics and the geometry of B̃k
s(l), the restricted capture set C̃k

s(uk, l) can be

computed using linear complexity algorithms that are guaranteed to terminate. We provide

this algorithm in Section 3.5.1.

From this characterization of the capture set, for j ∈ {2, 3} we can construct the primi-

tive in the form of the static feedback set-valued map gk
s(·, l)coop : X̃k ⇒ Uk to render the
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set X̃k\Ck
s(l) controlled invariant (see [36]), where

gk
s(x̃k, l)coop :=



uk
L if x̃k ∈ ∂C̃k

s(uk
L, l) ∩ C̃k

s(uk
H , l),

uk
H if x̃k ∈ ∂C̃k

s(uk
H , l) ∩ C̃k

s(uk
L, l),

{uk
H , u

k
L} if x̃k ∈ ∂C̃k

s(uk
L, l) ∩ ∂C̃k

s(uk
H , l),

Uk else.

(3.2)

Under this primitive, control action is only applied when the state is inside one of the

restricted capture set while simultaneously on the boundary of the other restricted capture

set. If the state is in the intersection of the both restricted capture set boundaries, then two

possible control actions are possible. Otherwise, any control input is acceptable.

We define the module ḡk
s(·, l, ·)coop : X̃ × 2X ⇒ U for j ∈ {2, 3} by

ḡk
s(x̃, l,A)coop :=


{u ∈ U | uk ∈ gk

s(x̃, l)coop} if ξ(x̃) ∈ A,

U else,
(3.3)

where x̃ ∈ X̃ represents the extended state and A ⊂ X represents the enable set.

We next would like to show there exists a termination of the evaluation of ḡk
s(ŷ, l,A)coop

when we set A = X. Since this map itself is constructed from the restricted capture set

C̃k
s(uk, l), we use these sets in the termination condition.

Termination of Cooperative Module

We next provide a measure of termination in the construction of ḡk
M(ŷ, l, X)coop. Since we

compute this module using the restricted capture sets C̃k
s(uk, l), we use them directly in this

characterization.

We now use the geometric tool αk
s(l) ∈ X̃k

1 to define the termination of the feedback

set-valued map ḡk
s(ŷ, l, X)coop as

αk
s(l) := inf{x̃k

1 ∈ X̃k
1 | ∃ yk ∈ ∂C̃k

s(l) s.t. xk
1 = yk

1}.
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We will give conditions in Section 3.5.1 for the existence of αk
s for s = M. This condition

can be used to define the termination of the construction of ḡk
s(x, l, X)coop.

Remark 2. Given l ∈ Z2 and x̃ ∈ X̃, if x̃k
1 < α

k
s(l), then it follows that

ḡk
s(x, l, X) = U

This result follows from the fact that if x̃k
1 < αk

s(l), then necessarily ḡk
s(x, l, X)coop = U

since x ∩ Ck
M = ∅.

Non-Conflicting Condition on Cooperative Module

For the specification s ∈ M,RE and two-vehicle index k ∈ I , we know from the construc-

tion of B̃k
s that for l ∈ Z2 only one component B̃k

s(l) can be within the box set Boxk(l). How-

ever, it is not necessarily the case that the restricted capture sets C̃k
s(uk
H , l) and C̃k

s(uk
L, l) are

within the box set Boxk(l). Since the restricted capture sets are used in the construction

of ḡk
s(x, l, Xk

1)coop, we would like to have a condition that guarantees that we never have

conflicts between these modules when taking separate shifting parameters l, l̄ ∈ Z2.

That is, we would like to show that for all l, l̄ ∈ Z2, we always have that the conjunction

ḡk
s(x̃, l, X)coop ∩ ḡk

s(x̃, l̄, X)coop , ∅.(3.4)

We next provide a result that guarantees this is the case. Let 0⃗ ∈ Z2 be the zero vector

0⃗ = (0, 0).

Proposition 4. If sup B̃k
s(0⃗) − αk

s(0⃗) > (D1,D j), then for all l, l̄ ∈ Z2 we must have the

conjunction of two modules are non-conflicting, that is

ḡk
s(x, l, X) ∩ ḡk

s(x, l̄, X) , ∅.

3.4.7 Competitive Module Solution

We seek to design a controller that guarantees the information state never enters B̃k
s(l) for

s ∈ {M,RE}, l ∈ Z2 and k ∈ I . We accomplish this by first looking for the primitive
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gk
s(·, ·)δ : X̃k × Z2 ⇒ Uk2 . Since we do not want this module to conflict with the merging

collision module, we ask that vehicle k2 prevent a rear end collision for any input uk1

applied by vehicle k1.

In order to find such a gk
RE(·, l, X)δ for k ∈ I and l ∈ Z2, we invoke our previous results

involving two-agent collision avoidance under the competitive control. That is we seek to

find the capture set

C̃k
s(l) :=

{
x̃k ∈ X̃k | ∀ uk2 ∈ Uk2 , ∃ uk1 ∈ S (Uk1) s.t. ϕ̃k(R+, x̃k,uk) ∩ B̃k

RE(l) , ∅
}
,

and the feedback set-valued map gk
RE(·, l) : X̃k× ⇒ U j such that if the initial condition

x̃k ∈ X̃k starts outside of Wk
RE(l) := X̃k\C̃RE

k (l), then no matter what input is applied by

vehicle 1, the flow never enters B̃k
RE(l).

For a fixed control signal uk2 ∈ Uk2 , we denote the restricted capture set

C̃k
s(u

k2 , l) := {x̃k ∈ X̃k | ∃ uk1 ∈ S (Uk1), ∃t ∈ R+ s.t. ϕ̃k(t, x̃k,uk) ∈ B̃k
RE}.

The set C̃k
s(ui, l) corresponds to the set of all states that are taken into B̃k

s(l) for some

uk1 ∈ Uk1 under the fixed input uk2 . Under the order preserving hypothesis and the fact

that B̃k
s(l) is order preserving connected (see Section 3.4.5), we can compute each capture

set using the restricted sub-capture sets with arguments uk2
L and uk2

H .

Theorem 8. For the specification s ∈ {M,RE}, shift parameter l ∈ Z2 and o.p.c. bad set

B̃k
s(l), we have that

C̃k
s(l) = C̃k

s(u
k2
L , l) ∩ C̃k

s(u
k2
H , l).

A proof of this result can be found in [49]. This characterization again provides us with
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the static feedback set-valued map gk
s(·, ·)δ : X̃k ⇒ Uk1 given by

gk
s(x̃k, l)δ :=



uk2
L if x̃k ∈ C̃k

s(u
k2
H , l) ∩ ∂C̃k

s(u
k2
L , l),

uk2
H if x̃k ∈ C̃k

s(u
k2
L , l) ∩ ∂C̃k

s(u
k2
H , l),

{uk2
H , u

k2
L } if x̃k ∈ ∂C̃k

s(u
k2
L , l) ∩ ∂C̃k

s(u
k2
H , l),

Uk2 else.

(3.5)

We define the module ḡk
s(·, l, ·)δ : X̃ × X ⇒ U with

ḡk
s(x̃, l,A)δ :=


{u ∈ U | uk2 ∈ gk

s(x̃k, l)δ} if ξ(x̃) ∈ A,

U else,
(3.6)

where x̃ ∈ X̃ represents the extended state and A ⊂ X represents the enable set.

3.4.8 Control Modules Used

We assume each vehicle can apply control to avoid a merging collision, therefore use

cooperative modules to solve for the M specification types, as constructed in Section 3.4.6.

We choose the enable sets Ak
M := X to be the entire state space.

We choose to satisfy the rear-end safety specification using the competitive modules.

We choose the enable sets to be Ak
RE := [inf Bk

RE, sup Bk
RE], which represents the smallest

rectangle set that completely inscribes the bad set Bk
RE.

3.4.9 Composition of the Control Modules

We combine control modules through conjunction of their extensions. In order to show

that the conjunction maintains each modularized safety specification, we must show that

the conjunction is non-blocking. We next provide a set of conditions that guarantees the

conjunction of the previously mentioned modules is non-blocking.

To allow us to analyze the conjunction of the modules, we first ask for a condition on

the maximum size of uncertainty in our system. If the set of uncertainty is allowed to grow
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without bound (such is the case when communication channels fail), we cannot guarantee

that the safety condition be maintained.

Conditions on Composition

We next provide a condition guaranteeing the system is able to avoid both merging colli-

sions.

Lemma 2. If U (1,2)
M < α(1,3)

M and U (1,3)
M < α(1,2)

M , then ḡM(x) := ḡ(1,2)
M (x) ∩ ḡ(1,3)

M (x) is non-

conflicting.

Proof. We show that there cannot exist an x ∈ X such that ḡ(1,2)
M (x) ∩ ḡ(1,3)

M (x) = ∅.

We have that the input to agent 3 under the set-valued map ḡ(1,2)
M (x) always evaluates

to U3 for all x ∈ X, that is τ3(ḡ(1,2)
M (x)) = U3 for all x ∈ X. Thus, ḡ(1,2)

M (x) does not

affect the input of agent 3. The same statement can be made regarding ḡ(1,3)
M , namely that

τ2(ḡ(1,3)
M (x)) = U2. Therefore, blocking can only occur with respect to the input of agent 1.

Therefore, we will show that for all x ∈ X,

τ1(ḡ(1,2)
M (x)) ∩ τ1(ḡ(1,3)

M (x)) , ∅.(3.7)

Suppose that τ1(ḡ(1,2)
M (x)) , U1. We know that if ϕ1,2

1 x(t, x0,u)) < α12, then we

must necessarily have that ḡ(1,2)
M (x) = U by the definition of α(1,2)

M . Similarly, the or-

der preserving condition of the dynamics with respect to initial condition implies that

if U (1,2)
M < ϕ(1,2)

1 (t, x0,u), then we must also have ḡ(1,2)
M (x) = U. Therefore, we must have

that

ϕ(1,2)
1 (t, x0,u) ∈ [α(1,2)

M ,U (1,2)
M ].(3.8)

If (3.8) holds, the assumption U (1,2)
M < α(1,3)

M in the Lemma statement implies that

ϕ1
1(t, x0,u) < α(1,3)

M .(3.9)
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If (3.8) holds, the assumption U (1,3)
M < α(1,2)

M in the Lemma statement that

U (1,3)
M < ϕ1,2

1 (t, x0,u, z).(3.10)

To accommodate the situation where α(1,2)
M does not wrap around, the previous statement

would read U (1,3)
M < (D1,D2) + ϕ1,2

1 (t, x0,u).

We can then combine (3.10)-(3.9), taking into account wrapping in X(1,2)
1 , to get

ϕ(1, 2)1(t, x0,u) ∩ [α(1,3),U (1,3)
M ] = ∅. This along with the definition of α(1,2)

M and the

order preserving property of the dynamics with respect to initial condition implies that

ḡ(1,3)
M (x) = U.

Therefore, if ḡ(1,2)
M (x) , U then we must have ḡ(1,3)

M (x) = U, implying that (3.7) must

always hold, implying that ḡM = ḡ(1,2)
M (x) ∩ ḡ(1,3)

M (x) , ∅ for all x ∈ X. �

For k ∈ I , define the sets D
k

:= {xk ∈ Xk | xk
1 = (Lk

M,U
k
M)} and Dk := {xk ∈ Xk | xk

1 =

(Uk
M, L

k
M)}. We next provide a condition guaranteeing that the composition of modules gk

M

and gk
RE are non-conflicting.

Lemma 3. If D
k ∩ Ck

RE = ∅ and Dk ∩ Ck
RE = ∅, then ḡk(x) := ḡk

RE(x) ∩ ḡk
M(x) , ∅ for all

x ∈ X.

Proof. We carry out the proof for ḡ12(x), a similar proof holds for ḡ13(x). Since g1,2
RE only

maps into U2 and g(1,2)
M only maps into U1,2, the only possible conflict between ḡ1,2

RE(x) and

ḡ(1,2)
M (x) is into the input U2. Therefore, we will show that for all x ∈ X,

τ2(ḡ(1,2)
M (x)) ∩ τ2(ḡ(1,2)

RE (x)) , ∅.(3.11)

From the definition gk
RE, we know that the evaluation becomes non-trivial (equal to U2)

only after the flow ϕ(t, x, u) enters the set Av1,2
RE. Conversely, we know that once the flow

enters the set Av1,2
RE, the order preserving property on the dynamics implies that unless the
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flow is inside the bad set B(1,2)
M , it is impossible to have a merging collision until the agents

once again approach the intersection.

If the module ḡ(1,2)
M (x) properly enforces the merging collision safety specification, then

order preserving property with respect to the dynamics implies the flow must pass either

above or below the bad set B(1,2)
M , when projected on the space of constraint. �

We now combine each of these results to show that the complete system is safe.

Theorem 9. If ḡRE(x) and ḡM(x) are each defined for all x ∈ X, then ḡ(x) := ḡ1,2
RE(x) ∩

ḡ(1,2)
M (x) ∩ ḡ(1,3)

RE (x) ∩ ḡ(1,3)
M (x) is non-conflicting, that is ḡ(x) , ∅ for all x ∈ X.

Proof. We first combine the modules ˜̄g(x) := ḡ1,2
RE(x)∩ ḡ(1,2)

M (x)∩ ḡ(1,3)
RE (x). This conjunction

is non-conflicting since ḡ1,2
RE(x) ∩ ḡ(1,2)

M (x) = ḡ12(x) only constrains U1,2 while ḡ(1,3)
RE (x) only

constrains U3. If we add a module to ˜̄g(x), we need only check that the conjunction is

non-conflicting by checking: (i) Image into U1,2 does not conflict with ḡ12(x), (ii) Image

into U3 does not conflict with ḡ(1,3)
RE (x).

We add the module ḡ(1,3)
M (x) to ˜̄g(x) through conjunction and show that ḡ(1,3)

RE (x) does not

conflict with any of the modules that make up ˜̄g(x). This will imply the entire conjunction

is non-blocking.

(i) We have already shown that ḡ(1,3)
M (x) ∩ ḡ(1,2)

M (x) is non-conflicting by the definition

of ḡM(x). Furthermore, we have that if ḡ(1,2)
M (x) , U, then necessarily ḡ(1,3)

M (x) = U. Thus

any such x ∈ X that generates a non-trivial evaluation ḡ12(x) , U, we must have that

ḡ(1,3)
M (x) = U. This implies that ḡ(1,3)

M (x) ∩ ḡ1,2
RE(x) is non-conflicting.

(ii) We have already shown that ḡ(1,3)
M (x) ∩ ḡ(1,3)

RE (x) is non-conflicting by the definition

of ḡ13(x).

Since the above conditions (i) and (ii) both hold for all x ∈ X, we must have that the

entire composition is non-conflicting, that is ḡ(x) , ∅ for all x ∈ X. �
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3.5 Algorithms

We first compute the discrete time equivalent of the dynamics defined in Section 3.2, since

they will be used in the computation of restricted capture sets Ck
s(u). For the ith agent

with i ∈ {1, 2, 3}, the discrete time equations (employing forward Euler approximation)

are given with step size ∆T > 0 and index m ∈ N as

xi
1[m + 1] = xi

1[m] + F i(xi
2[m], ui[m]),

xi
2[m + 1] = F̄ i(xi

2[m], ui[m]),

where F i(xi
2[m],ui[m]) := ∆T xi

2[m] and F̄ i(xi
2[m],ui[m]) := xi

2[m] + ∆T (αi) with αi as

defined in the hybrid automaton seen in Figure 3.2.

For the input signal ui ∈ Ui to agent i ∈ {1, 2, 3}, define the recursive sequence F̄ i :

Xi
2 × S (Ui) × N→ Xi

1 as

F̄ i(xi
2,u

i[−1])0 := xi
2,

F̄ i(xi
2,u

i[m])m+1 := F̄ i(F̄ i(xi
2, u

i[m − 1])m,ui[m]).

We can compute the displacement xi
1[m] for each vehicle i ∈ {1, 2, 3} from the initial

condition xi ∈ Xi as

xi
1[m] = xi

1 +

m−1∑
j=0

F i(F̄ i(xi
2,u

i[ j − 1]) j,ui[ j]).

We introduce the sequence ζ i for vehicle i ∈ {1, 2, 3} for a velocity xi
2 ∈ Xi

2 and constant

input signal ui ∈ S (Ui) as

ζ i(xi
2,u

i)m :=
m−1∑
j=0

F i(F̄ i(xi
2, u

i) j, ui),

giving xi
1[m] = xi

1 + ζ
i(xi

2,u
i)m.
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3.5.1 Computation of Restricted Capture Sets for CA Collisions

For k ∈ I with i ∈ {k1, k2}, the constant input ui and the initial condition xi
2, let

Li
M(xi

2, u
i)m := Lk

M − ζ i(xi
2, u

i)m,

U i
M(xi

2, u
i)m := Uk

M − ζ i(xi
2, u

i)m.

We note that these sequences are order reversing in their arguments.

Theorem 10.

Ck
M(u) =

{
xk ∈ Xk | ∃ m ∈ Z+ s.t. Lk

M(xk
2, u

k)m < xk
1 < Uk

M(xk
2, u

k)m

}
.

A proof of this result can be found in [36]. It has been shown that these algorithms are

guaranteed to terminate in a finite number of iterations m ∈ Z+.

Computation of Bound on CA Restricted Capture Set

We have previously defined the bound αk in Section 3.4.9, we now give an existence

condition and a means of computation.

Lemma 4. If (i) aiui
H + bi > 0 ; (ii) aiui

L + bi < 0 hold for i ∈ {1, 2, 3}, and vi
min < v j

max for

all i, j ∈ {1, 2, 3}, then αk for all k ∈ I exist and are finite.

Proof. We show the result with respect to α(1,2), a similar proof can be carried out for α(1,3).

Theorem 7 allows us to determine C(1,2)
M with C(1,2)

M (u(1,2)
L ) and C(1,2)

M (u(1,2)
H ).

While computing C(1,2)
M (u(1,2)

L ), assumption (i) of the Lemma hypothesis implies that

ζ1(x1
2, u

1
H)m is a strictly monotone sequence of partial sums which achieves the upper bound

v1
max in finite m. Similarly, assumption (ii) of the Lemma hypothesis implies that ζ2(x2

2, u
2
L)m

reaches the lower bound v2
min in finite m. Likewise, ζ1(x1

2, u
1
L)m tends to v1

min and ζ2(x2
2, u

2
H)m

tends to v2
max in finite steps.
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Since v1
min < v1

max, we must have a step m1 such that (a) U1
M(x1

2, u
1
H)m1 < L1

M(x1
2, u

1
L)m1 for

any velocity x1
2. Since v2

min < v2
max, we must have a step m2 such that (b) U2

M(x2
2, u

2
H)m2 <

L2
M(x2

2, u
2
L)m2 for any velocity x2

2. Once achieved, these inequalities will be maintained

by the order reversing properties, that is U1
M(x1

2, u
1
H)m < L1

M(x1
2, u

1
L)m for m ≥ m1 and

U2
M(x2

2, u
2
H)m < L2

M(x2
2, u

2
L)m for m ≥ m2.

For a given velocity x2, consider the rectangles used in the computation of the slices of

C(1,2)
M (u1,2

L ) and C(1,2)
M (u1,2

H ). For notation, define these rectangles respectively as

R(x2, uL)m := [L1
M(x1

2, u
1
H)m,U1

M(x1
2, u

1
H)m] × [L2

M(x2
2, u

2
L)m,U2

M(x2
2, u

2
L)m],(3.12)

R(x2,uH )m := [L1
M(x1

2, u
1
L)m,U1

M(x1
2, u

1
L)m] × [L2

M(x2
2, u

2
H)m,U2

M(x2
2, u

2
H)m].(3.13)

Now we take m̄ := max(m1,m2). It follows from the inequalities (a) and (b) that

R(x2, uL)m̄ ∩ R(x2,uH )m̄ = ∅. Now we show the intersection is empty over the union

of all subsequent iterations, that is

∪
m≥m̄

R(x2, uL)m ∩
∪
m≥m̄

R(x2,uH )m = ∅.(3.14)

Suppose that this does not hold, then there are m̄1, m̄2 greater than m̄ such that

R(x2, uL)m̄1 ∩ R(x2, uH )m̄2 , ∅. This implies that both (c) L1
M(x1

2, u
1
L)m̄2 < U1

M(x1
2, u

1
H)m̄1

and (d) L2
M(x2

2, u
2
L)m̄1 < U2

M(x2
2, u

2
H)m̄2 hold.

If m̄1 ≤ m̄2, then U2
M(x2

2, u
2
H)m̄2 ≤ U2

M(x2
2, u

2
H)m̄1 by the order reversing property. We

know that (b) implies that U2
M(x2

2, u
2
H)m̄1 < L2

M(x2
2, u

2
L)m̄1 , therefore (d) cannot hold.

If instead m̄2 ≤ m̄1, then U1
M(x1

2, u
1
H)m̄1 ≤ U1

M(x1
2, u

1
H)m̄2 by the order reversing property.

We know that (a) implies that U1
M(x1

2, u
1
H)m̄2 < L1

M(x1
2, u

1
L)m̄2 , therefore (c) cannot hold.

Therefore, (c) and (d) cannot both be true, implying (3.14) always holds given an arbi-

trary velocity x2. Thus, the intersection of C(1,2)
M (u(1,2)

L ) and C(1,2)
M (u(1,2)

H ) terminates for each

velocity x2 with a non-zero velocity, where L1
M(x1

2, u
1
L)m̄ ≤ α(1,2). Since x2 is an element of
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the compact set X2, we must have that L1
M(x1

2, u
1
L)m̄ is defined for all x2, thus α(1,2) exists

and is bounded. �

3.5.2 Computation of Restricted Capture Sets for Rear-End Collisions

Unlike Bk
M which is an interval set within the space of constraint, Bk

RE is a more general

o.p.c. sets within the space of constraint.

Computation of Restricted Capture Set C̃k
RE(u j, 0⃗)

We note that Bk
RE is completely characterized by the positive constants Lk

RE, Uk
RE and l. For

the constant input uk1 and initial condition xk
2, we define the sequences with index m ∈ N

l(x1,k2
2 , uk2)m := −l − ζk1(xk1

2 , u
k1
H )m + ζ

k2(xk2
2 , u

k2)m,

h(x2, uk2)m := l − ζk1(xk1
2 , u

k1
L )m + ζ

k2(xk2
2 , u

k2)m,

Lk1
RE(xk1

2 )m := Lk
RE − ζk1(xk1

2 , u
k1
H )m,

Uk1
RE(xk1

2 )m := Uk
RE − ζk1(xk1

2 , u
k1
L )m,

Lk2
RE(xk2

2 , u
k2)m := Lk

RE − ζk2(xk2
2 , u

k2)m,

Uk2
RE(xk2

2 , u
k2)m := Uk

RE − ζk2(xk2
2 , u

k2)m.

We can compute the restricted capture set Ck
RE(uk2)m with the above sequences.

Claim 2.

Ck
RE(uk2)m =


xk ∈ Xk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∃ m ∈ Z+ s.t. (xk1

1 − xk2
1 ) ∈ (lk2(xk

2, u
k2)m, hk2(x2, uk2)m),

Lk2
RE(xk1

2 , u
k2)m < xk2

1 < Uk2
RE(xk1

2 , u
k2)m

and Lk1
RE(xk1

2 )m < xk1
1 < Uk1

RE(xk1
2 )m


.

Proof. Denote

S :=

xk ∈ Xk

∣∣∣∣∣∣∣∣∣∣
∃ k ∈ Z+ s.t. (xk1

1 − xk2
1 ) ∈ (lk2(xk

2, u
k2)m, hk2(x2, uk2)m),

Lk2
RE(xk2

2 , u
k2)m < xk2

1 < Uk2
RE(xk2

2 , u
k2)m and Lk1

RE(xk1
2 )m < xk1

1 < Uk1
RE(xk1

2 )m

 ,
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we will show that Ck
RE(uk2)m ⊆ S and Ck

RE(uk2)m ⊇ S .

(⊆) Consider an element x ∈ Ck
RE(uk2)m, by definition there must exist an index k ∈ Z+

and input uk1 ∈ S (Uk1) such that

xk
1 + (ζk1(xk1

2 ,u
k1)m, ζ

k2(xk2
2 , u

k2)m) ∈ B̃k
RE.(3.15)

By the order preserving properties of the dynamics with respect to input, we must have

that xk1
1 +ζ

k1(xk1
2 ,u

k1)m ∈ xk1
1 +[ζk1(xk1

2 , u
k1
L )m, ζ

k1(xk1
2 , u

k1
H )m]. This statement can be combined

with (3.15) to give

xk
1 + [ζk1(xk1

2 , u
k1
L )m, ζ

k1(xk1
2 , u

k1
H )m] × {ζk2(xk2

2 , u
k2)m} ∩ B̃k

RE , ∅.

The non-empty intersection with B̃k
RE holds if and only if

xk1
1 + [ζk1(xk1

2 , u
k1
L )m, ζ

k1(xk1
2 , u

k1
H )m] ∩ (Lk

RE,U
k
RE) , ∅,

xk2
1 + ζ

k2(xk2
2 , u

k2)m ∩ (Lk
RE,U

k
RE) , ∅,

|xk1
1 + [ζk1(xk1

2 , u
k1
L )m, ζ

k1(xk1
2 , u

k1
H )m] − (xk2

1 + ζ
k2(xk2

2 , u
k2)m)| ∩ [0, l) , ∅.

The last statement can be reorganized to

(xk1
1 − xk2

1 ) + [ζk1(xk1
2 , u

k1
L )m − ζk2(xk2

2 , u
k2)m, ζ

k1(xk1
2 , u

k1
H )m − ζk2(xk2

2 , u
k2)m] ∩ (−l, l) , ∅(3.16)

For the simple case where (x + [a, b]) ∩ (c, d) , ∅, it is clear that this holds if and only

if x > c − b and x < d − a. Therefore, statement (3.16) can be reorganized to read

(xk1
1 − xk2

1 ) > −l − ζk1(xk1
2 , u

k1
H )m + ζ

k2(xk2
2 , u

k2)m = lk2(xk
2, u

k2)m,

(xk1
1 − xk2

1 ) < l − ζk1(xk1
2 , u

k1
L )m + ζ

k2(xk2
2 , u

k2)m = hk2(xk
2, u

k2)m,

which combined give (xk1
1 − xk2

1 ) ∈ (lk2(xk
2, u

k2)m, hk2(x2, uk2)m), therefore xk
1 is in S .
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(⊇) Let x ∈ S , by definition of S there must exist an index k ∈ Z+ such that the following

inequalities are satisfied

Lk
RE − ζk1(xk1

2 , u
k1
H )m < xk1

1 < Uk
RE − ζk1(xk1

2 , u
k1
L )m,(3.17)

Lk
RE − ζk2(xk2

2 , u
k2)m < xk2

1 < Uk
RE − ζk2(xk1

2 , u
k2)m,(3.18)

(xk1
1 − xk2

1 ) ∈ (−l − ζk1(xk1
2 , u

k1
H )m + ζ

k2(xk2
2 , u

k2)m, l − ζk1(xk1
2 , u

k1
L )m + ζ

k2(xk2
2 , u

k2)m)(3.19)

From (3.18), we immediately have that

Lk
RE < xk2

1 + ζ
k2(xk2

2 , u
k2)m < Uk

RE,(3.20)

therefore to show x ∈ Ck
RE(uk2)m we would like to show the existence of an input uk1 ∈

S (Uk1) such that

|xk1
1 + ζ

k1(xk1
2 ,u

k1)m − xk2
1 − ζ

k2(xk2
2 , u

k2)m| < l, Lk
RE < xk1

1 + ζ
k1(xk1

2 ,u
k1)m < Uk

RE.

These inequalities can be combined to give the two inequalities

ζk1(xk1
2 ,u

k1)m < min{Uk
RE − xk1

1 , l − xk1
1 + xk2

1 + ζ
k2(xk2

2 , u
k2)m},(3.21)

ζk1(xk1
2 ,u

k1)m > max{Lk
RE − xk1

1 ,−l − xk1
1 + xk2

1 + ζ
k2(xk2

2 , u
k2)m}.(3.22)

For (3.19), we can rearrange terms

(xk1
1 − xk2

1 − ζ
k2(xk2

2 , u
k2)m) ∈ (−l − ζk1(xk1

2 , u
k1
H )m, l − ζk1(xk1

2 , u
k1
L )m),

⇒ −l < xk1
1 − xk2

1 − ζ
k2(xk2

2 , u
k2)m + ζ

k1(xk1
2 , u

k1
H )m

and xk1
1 + ζ

k1(xk1
2 , u

k1
L )m − xk2

1 − ζ
k2(xk2

2 , u
k2)m < l

The last two inequalities along with (3.17) give the inequalities

ζk1(xk1
2 , u

k1
L )m < min{Uk

RE − xk1
1 , x

k2
1 + ζ

k2(xk2
2 , u

k2)m − xk1
1 + l},

ζk1(xk1
2 , u

k1
H )m > max{Lk

RE − xk1
1 , x

k2
1 + ζ

k2(xk2
2 , u

k2)m − xk1
1 − l}.
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Now suppose that either

ζk1(xk1
2 , u

k1
H )m ≤ min{Uk

RE − xk1
1 , x

k2
1 + ζ

k2(xk2
2 , u

k2)m − xk1
1 + l},

or ζk1(xk1
2 , u

k1
L )m ≥ max{Lk

RE − xk1
1 , x

k2
1 + ζ

k2(xk2
2 , u

k2)m − xk1
1 − l},

then we immediately satisfy (3.21)-(3.22) implying either (xk1
1 + ζk1(xk1

2 , u
k1
H )m, x

k2
2 +

ζk2(xk2
2 , u

k2)m) ∈ Bk
RE or (xk1

1 + ζ
k1(xk1

2 , u
k1
L )m, x

k2
1 + ζ

k2(xk2
2 , u

k2)m) ∈ Bk
RE. Therefore, we

must have that

ζk1(xk1
2 , u

k1
H )m > min{Uk

RE − xk1
1 , x

k2
1 + ζ

k2(xk2
2 , u

k2)m − xk1
1 + l},

and ζk1(xk1
2 , u

k1
L )m < max{Lk

RE − xk1
1 , x

k2
1 + ζ

k2(xk2
2 , u

k2)m − xk1
1 − l}.

We have that ζk1(xk1
2 , ·) : S (Uk1) → Xk1

1 is a continuous function and S (Uk1) is a con-

nected subset of a metric space. Therefore, the intermediate value theorem implies we can

find an input uk1 ∈ S (Uk1) such that

max{Lk
RE − xk1

1 , xk2
1 + ζ

k2(xk2
2 , u

k2)m − xk1
1 − l} < ζk1(xk1

2 ,u
k1)m

< min{Uk
RE − xk1

1 , x
k2
1 + ζ

k2(xk2
2 , u

k2)m − xk1
1 + l},

giving

max{Lk
RE, xk2

1 + ζ
k2(xk2

2 , u
k2)m} < xk1

1 + ζ
k1(xk1

2 ,u
k1)m < min{Uk

RE, x
k2
1 + ζ

k2(xk2
2 , u

k2)m + l}.

The above inequality implies that (3.21)-(3.22) hold, which along with (3.20) implies that

(xk1
1 + ζ

k1(xk1
2 ,u

k1)m, xk2
2 + ζ

k2(xk2
2 , u

k2)m) ∈ Bk
RE. Therefore, we have that x ∈ Ck

RE(uk2). �

3.5.3 State Estimation

Since the dynamics are order preserving with respect to the state, we can construct

a state estimator that only keeps track of lower and upper bounds of the information

state x̂(n, x̂0,u[n], z[n]) similar to the estimator proposed in [37]. For notation, we let
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∨x̂ := sup x̂ and ∧x̂ := inf x̂, which is taken component-wise. Consider the received

message denotes the received message for the ith vehicle, and with abuse of notation,

let h(zi[n]) := h(zi[n]) where zi[n] = (zi[n], τi). We let F i(xi[n], ui[n]) := (xi
1[n] +

∆T xi
2[n], F̄ i(xi

2[n],ui[n])) for i ∈ {1, 2, 3}. We design with the maximum communication

delay tolerance µ > 0, where we do not use the most recent received signal if the time

delay is greater than µ.

Estimation of Next State with Sensor Information

We can now design a state estimator that updates ∨x̂[n + 1] and ∧x̂[n + 1] as follows.

Consider vehicle i ∈ {1, 2, 3}, we assume that at all times the measurement is current, that

is τi[n] = n.

Then for x̂i[n + 1], we have

∨x̂i[n + 1] = inf{F i(∨x̂i[n],ui[n]), sup hi(zi[n + 1])},

∧x̂i[n + 1] = sup{F i(∧x̂i[n],ui[n]), inf hi(zi[n + 1])}.

For k ∈ I , we must check to see that the received measurement is recent enough to use,

otherwise we cannot use any measurement information. That is, for the measurements

zk1[n] and zk2[n], the corresponding delays τk1 ∈ zi[n] and τk2 ∈ z j[n], we can compute

∨x̂k[n + 1] and ∧x̂k2[n + 1] with the algorithm

if |τk1 − τ j| ≤ µ then

∨x̂k2[n + 1] = inf{Fk2(∨x̂k2[n],uk2[n]), sup hk2(zk2[n + 1])}

∧x̂k2[n + 1] = sup{Fk2(∧x̂k2[n],uk2[n]), inf hk2(zk2[n + 1])}

else

∨x̂ j[n + 1] = F j(∨x̂ j[n],u j[n])

∧x̂ j[n + 1] = F j(∧x̂ j[n],u j[n])

end if
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In this case, a received signal that is considered expired implies that the measurement

zk2[n] for vehicle k2 is equivalent to no measurement, that is hk1(zk2[n]) = Xk2 .

Estimation of Future States

Similar to expired received signals, when projecting the dynamics into the future we must

assume no measurement information. That is for vehicle i ∈ {1, 2, 3} at time step n ∈ Z+,

for any future time step l ∈ N, we have the estimate given by

∨x̂i[n + l] = F i(∨x̂i[n + l − 1],ui[n + l − 1]),

∧x̂i[n + l] = F i(∧x̂i[n + l − 1],ui[n + l − 1]).

Intersection with Capture Set

At each time step n ∈ Z+, we only need to check whether [∧x̂[n],∨x̂[n]] intersects with

restricted capture sets. For the restricted capture sets Ck
M(uk), the fact that Li

M(xi
2, u

i)m

and U i
M(xi

2, u
i)m are order reversing in the argument xi

1 implies that a sufficient condition

guaranteeing for k ∈ I that [∧x̂k[n],∨x̂k[n]] ∩Ck
M(uk) = ∅ is that

[∧x̂[n],∨x̂[n]] ∩ [Lk
M(∧x̂k

2[n], uk)m,Uk
M(∧x̂k

2[n], uk)m] = ∅, ∀ m ∈ Z+.

3.6 Experimental Results

We present our experimental results on an autonomous roundabout system with 3 vehicles

in which the proposed algorithms are implemented on-board each vehicle. We show the

system parameters of the experimental setup satisfy the necessary conditions guaranteeing

global safety. This is validated through experimental data with a duration of 26 minutes.

3.6.1 Experimental Setup

We introduce the experimental roundabout system with a description of the vehicles, po-

sitioning system, and communication. We consider 3 different experimental bad set con-
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Bad Set Parameters for Configuration 1
B(1,2)

M L(1,2)
M = (8.96, 2.18) m U(1,2)

M = (10.76, 3.98) m n/a
B(1,3)

M L(1,3)
M = (1.97, 2.42) m U(1,3)

M = (2.87, 3.32) m n/a
B1,2

RE L(1,2)
RE = (8.96, 2.18) m U(1,2)

RE = (0.87, 5.2) m l = .40 m
B(1,3)

RE L(1,3)
RE = (1.97, 2.42) m U(1,3)

RE = (8.72, 9.17) m l = .40 m

Table 3.1: The parameters used to construct each Bad Set (Section 3.3.1) are provided for Experimental
Configuration 1.

Bad Set Parameters for Configuration 2
B(1,2)

M L(1,2)
M = (8.96, 2.18) m U(1,2)

M = (10.76, 3.98) m n/a
B(1,3)

M L(1,3)
M = (1.97, 2.42) m U(1,3)

M = (2.87, 3.32) m n/a
B1,2

RE L(1,2)
RE = (8.96, 2.18) m U(1,2)

RE = (0.87, 5.2) m l = .40 m
B(1,3)

RE L(1,3)
RE = (1.97, 2.42) m U(1,3)

RE = (11.06, 11.51) m l = .40 m

Table 3.2: The parameters used to construct each Bad Set (Section 3.3.1) are provided for Experimental
Configuration 2.

Bad Set Parameters for Configuration 3
B(1,2)

M L(1,2)
M = (9.86, 3.08) m U(1,2)

M = (10.76, 3.98) m n/a
B(1,3)

M L(1,3)
M = (1.97, 2.42) m U(1,3)

M = (2.87, 3.32) m n/a
B1,2

RE L(1,2)
RE = (8.96, 2.18) m U(1,2)

RE = (0.87, 5.2) m l = .40 m
B(1,3)

RE L(1,3)
RE = (1.97, 2.42) m U(1,3)

RE = (8.72, 9.17) m l = .40 m

Table 3.3: The parameters used to construct each Bad Set (Section 3.3.1) are provided for Experimental
Configuration 3.

figurations. This allows us to explore

Roundabout Drill

The roundabout drill layout is shown in Figure 3.1(a), where each path length is given by

D1 = 11.62 m, D2 = 5.91 m and D3 = 14.22 m.

A coordinate system is generated along each path, where the path origins are shown in

Figure 3.1. Three bad set configurations are considered. The parameters used to construct

the bad sets for Configuration 1 are given in Table 3.1, Configuration 2 are given in Table

3.2 and Configuration 2 are given in Table 3.3. The vehicles position of Figure 3.1(7) is

represented in the position spaces X1,2
1 and X1,3

1 in Figure 3.1(b)-(c).
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Figure 3.9: Custom Dynamic Vehicle.

Vehicle Hardware Description

Each vehicle is custom designed with a commercial RC chassis and standard electric mo-

tor, as seen in Figure 3.9. The dimensions of the vehicle are 0.17 m wide, and 0.38 m long.

The on-board computer system consists of VIA EPIA Mini-ITX with a 600 MHz proces-

sor, 512 MB of RAM, and a 40 GB hard drive, as shown in Figure 3.9. The control and

communication algorithms are written in C and run on the Mini-ITX using a Linux Fedora

Core 5 operating system. Torque commands from control algorithms on the Mini-ITX

are transmitted to a BrainStem Moto 1.0 motor controller via a serial connection, where

torque is translated into voltage for the DC motor through motor maps [97].

Parameters for Longitudinal Dynamics

The parameters a and b that define the longitudinal dynamics of each vehicle, as defined

in Section 3.2.1, were found through standard least squares techniques as:

Vehicle 1: a = 3.77, b = −55;

Vehicle 2: a = 5.07, b = −12;

Vehicle 3: a = 6.43, b = −133;
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where a is in kg−1mm−1, and b is in mm/s2.

The maximum and minimum acceleration γ, as defined in Figure 3.2, are limited on

each vehicle by γmin = −350mm/s2 and γmax = 350 mm/s2. This implies the input sets are

given by

U1 = [−79, 71] N · mm;

U2 = [−67, 71] N · mm;

U3 = [−34, 75] N · mm.

Communication and Measurement

Each vehicle is equipped with a wireless network card so that communication between the

overhead positioning system, the vehicles, and the lab computers is achieved through a

local 802.11b wireless network.

The overhead positioning system consists of four grey-scale cameras fixed to the labo-

ratory ceiling and linked to two desktop computers via a FireWire cable. The computers

use template matching to locate the patterns shown in Figure 3.11, which are affixed to

the top of the vehicles. Each individual pattern is unique, which allows the system to dis-

tinguish individual vehicles. The patterns are circular, making the templates rotationally

invariant so that orientation does not impede vehicle identification. The orientation is de-

rived by calculating the angle of a line segment at the front of the template with respect

to a reference angle. The desktop computers calculate the position and orientation of each

vehicle, and over the wireless network send each vehicle only its individual position and

orientation. The vehicle position is accurate within +/-50 mm and the orientation is ac-

curate within +/-10 degrees. The vehicle velocity is calculated on-board each vehicle by

differentiating and low pass filtering the positioning data.
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Figure 3.10: Kinematic model describing the vehicle dynamics.

Path Following Algorithm

A low level path following controller is implemented that keeps each vehicle on its re-

spective path. A kinematic bicycle model (Figure 3.10) to describe the vehicle dynamics

is given by

ḋx = v cos(ξ + ρ), ḋy = v sin(ξ + ρ), ξ̇ =
v
l

sin(ρ),

where dx and dy are the vehicle coordinates, ξ is the heading angle of the vehicle, ρ is the

steering wheel offset angle, v is the absolute speed and l is the vehicle length.

At every instant of time, the vehicle determines the closest forward point within a

waypoint list and uses a proportional controller to adjust the heading toward the target

point by means of actuating the steering angle. Let the target point be given by χtar, then

the target angle is given by ξtar[k] = arctan( χy,tar−dy[k]
χx,tar−dx[k] ), which a proportional controller uses

to actuate the steering angle by ρ[k] = KP(ξtar[k]− ξ[k]), where ξ[k] represents the current

heading.
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Figure 3.11: Template patterns used by the Positioning System for Vehicle Identification and Orientation.

3.6.2 Safety Controller Algorithm Implementation

This section examines how the control primitives are implemented. A block diagram that

represents the logic of the software is depicted in Figure 3.12. We use a discrete time

implementation of the safety control map g with sampling period ∆T = .1 s. We start by

discuss some details pertaining to how the algorithms from Section 3.5 are implemented.

Velocity Uncertainty

Both the modules gk
M and gk

RE require checking membership of the current state in the

boundary of a restricted capture set. As discussed in Section 3.5, membership within a

restricted capture set can be checked by computing a slice of the capture set correspond-

ing to the current velocity. To accommodate velocity error arising from noisy position

measurements, we show how to compute a slice of the capture set for a set of velocities.

Model the velocity error at step k as the set X2[k] := [x2[k] − 50, x2[k] + 50] given the

velocity measurement x2[k]. From the definition of g, control is only applied when the

state x[k] lies on the boundary of a restricted capture set, as defined in Section 3.3.4. We
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Figure 3.12: High-level software architecture depicting the interaction of the control components of the en-
tire system. Signals sent over the air are denoted by dashed arrows. The speed limiter block
keeps the speed within the interval [vmin, vmax].

check if the state belongs to the boundary of the restricted capture set C(u) as follows:

x[k] ∈ ∂C(u)⇔ x[k] < C(u) and x[k + 1] ∈ C(u).(3.23)

When computing x[k+1] with an imperfect velocity measurementX2[k], we must consider

all possible future positions. Define the set of future positionsX1[k+1] := x1[k]+∆TX2[k].

Determining if any future state within X[k+1] is in the restricted capture set C(u) requires

checking whether or not X[k + 1] ∩ C(u) , ∅. Therefore, we check if the state belongs to
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the boundary of the restricted capture set C(u) as follows:

x[k] ∈ ∂C(u)⇔ x[k] < C(u) , ∅ and X[k + 1] ∩C(u) , ∅.(3.24)

Under the order preserving property of the dynamics with respect to the state, intersec-

tion of a set of states with a restricted capture set C(u) can be found by checking whether

for j ∈ I there exists m ∈ N such that

X j[k + 1]∩]L j(supX j
2[k],u j

m),U j(infX j
2[k],u j)m[, ∅.

3.6.3 Interaction of Modules

We check whether or not the composition of the modules is non-conflicting. We first check

that the merging modules are non-conflicting, which follows if C(1,2)
M ∩ C(1,3)

M =. We next

check that the rear-end modules and the merging modules do not conflict each other, which

is the case when ∂Ak
RE ∩ Ck

RE ⊂ Bk
M for k ∈ I . To check if C(1,2)

M ∩ C(1,3)
M =, we compute

the maximum size of the capture set C(1,2)
M , which is found by computing capture set slices

for all possible velocity values x(1,2)
2 ∈ X(1,2)

2 . We similarly compute the maximum size

of the capture set C(1,3)
M by computing capture set slices for all possible velocity values

x(1,3)
2 ∈ X(1,3)

2 . Each capture set slice is projected onto the position space in Figure 3.13.

From Figure 3.13(a), we see that α12 = (6.78m, 0.0m) and α13 = (0.49m, 0.94m) for

Configurations 1 and 2. From Figure 3.13(b), we see that α12 = (8.37m, 1.60m) and

α13 = (0.49m, 0.94m) for Configuration 3. In Figure 3.14(a), we project the merging

capture sets onto the roundabout drill to show that the capture sets do not overlap for all

configurations.

Hence, we have that C(1,2)
M ∩ C(1,3)

M = ∅ for all configurations, implying that g(1,2)
M (x) ∩

g(1,3)
M (x) , ∅ for all configurations.

We next verify that the rear-end modules never interfere with the merging modules.

We generate all possible rear-end capture set slices for every velocity x1,2
2 ∈ X1,2

2 in Figure
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(a)

(b)

Figure 3.13: All possible Merging Capture Set Slices for (a) Configurations 1 and 2, (b) Configuration 3.

3.15(a) for Configuration 1, Figure 3.15(b) for Configuration 2, and Figure 3.15(c) for

Configuration 3. We see that we have met the Conditions that C(1,2)
RE ∩ ∂A(1,2)

RE ⊂ B(1,2)
M and

that C(1,3)
RE ∩ ∂A(1,3)

RE ⊂ B(1,3)
M , sufficient conditions guaranteeing we never have g(1,2)

M (x) ∩

g(1,2)
RE (x) = ∅ or g(1,3)

M (x) ∩ g(1,3)
RE (x) = ∅.

3.6.4 Experimental Results

We provide experimental results for ten separate trials. Each trial starts by placing the

vehicles in a configuration outside of all capture sets, and then running each of them at a

velocity set-point of .7 m/s. The duration of each trial is arbitrary, ranging from 34 seconds
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(a)

(b)

Figure 3.14: Merging Capture Sets Projected onto Roundabout Drill for (a) Configurations 1 and 2, (b)
Configuration 3.

to 228 seconds. If no modules are active at a given instant, the user can change the velocity

set-point of each vehicle within the interval [vmin, vmax] via the desktop computers. Of the

ten trials, six trials were performed with Configuration 1 (Table 3.1), two trials were per-

formed with Configuration 2 (Table 3.2) and two trials were performed with Configuration

3 (Table 3.3).

Overview

A table containing the number of times each module activated during each trial is provided

in Table 3.4. We plot the complete history of the flow over all time projected onto the
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(a)

(b)

(c)

Figure 3.15: All Rear-End Capture Set slices shown for (a) Configuration 1, (b) Configuration 2, and (c)
Configuration 3. In each figure, the bad set Bk

M is shown in red, the bad set Bk
RE is shown in

blue, and the enable set Ak
RE is shown in black.

position spaces X(1,2)
1 and X(1,3)

1 in Figure 3.16, which are separated by Configuration. The

safety specification is maintained if the flow, as projected into these spaces, never enters
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Experimental Results
Trial Time (sec) Configuration Merging (12) Rear-End (12) Merging (13) Rear-End (13)

1 159.9 1 4 0 2 3
2 228.0 1 5 0 1 5
3 158.0 1 7 0 1 3
4 131.8 1 5 0 0 5
5 203.5 1 10 0 0 4
6 191.2 1 9 0 1 3
7 177.0 2 4 0 0 2
8 210.0 2 8 1 0 5
9 34.2 3 0 0 1 1
10 112.7 3 0 0 2 1

Total 112.7 3 0 0 2 1

Table 3.4: Statistics for all Trials.

Experiment Numbers
Trial Number Coupling Entered Capture Set Entered Bad Set

1 0 0 0
2 0 4 0
3 1 1 1
4 2 0 0
5 0 1 0
6 0 3 0
7 2 5 0
8 3 3 0
9 0 0 0
10 0 0 2

Table 3.5: Statistics for all Trials (cont).

any of the bad sets.

We next provide a detailed example of the execution of the module g(1,3)
M for a specific

instance, shown in Figure 3.17. The evolution of the flow in the state space along with the

control signals applied are provided in Figure 3.20.
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Figure 3.16: Evolution of the state x(1,2)
1 in the left column and the state x(1,3)

1 in the right column. The
red box denotes Ω(1,2)

M and the green set denotes Ω(1,3)
RE . Trials 1-6 are shown in the plots of

Configuration 1. Trials 7 and 8 are shown in the plots of Configuration 2. Trials 9 and 10 are
shown in the plots of Configuration 3
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Figure 3.17: Resolution for g(1,3)
M below the Bad Set B(1,3)

M with rows depicting vehicle trajectories with cor-
responding test images. System flow is shown in Figure 3.20.
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3.6.5 Conflict Resolution Scenarios

We now present individual instances of the activation of each module in all the possible

ways. In each case, a Figure with snaps shots of the evolution is given with the state, bad

set and capture set slice shown. In addition, the control signals applied along with vehicle

velocities are shown.

Merging module between vehicle 1 and vehicle 2, vehicle 3 is free

We present instances of the ḡ(1,2)
M (x̂)coop module working for two conflict resolutions:

(i) Vehicle 1 = u1
H, Vehicle 2 = u2

L, Vehicle 3 = anything;

(ii) Vehicle 1 = u1
L, Vehicle 1 = u2

H, Vehicle 3 = anything.

One instance, hit boundary and show flow evolving on boundary and passing boundary.

In X(1,2)
1 position space, the flow ϕ(1,2) proceeds below the bad set B(1,2)

M . This is shown in

Figure 3.18.

One instance, hit boundary and show flow evolving on boundary and passing boundary.

In X(1,2)
1 position space, the flow ϕ(1,2) proceeds above the bad set B(1,2)

M . This is shown in

Figure 3.19.

Merging module between vehicle 1 and vehicle 3, vehicle 2 is free

We present instances of the ḡ(1,3)
M (x̂)coop module working for two conflict resolutions:

(i) Vehicle 1 = u1
H, Vehicle 2 = free, Vehicle 3 = u3

L;

(ii) Vehicle 1 = u1
L, Vehicle 1 = free, Vehicle 3 = u3

H.

One instance, hit boundary and show flow evolving on boundary and passing boundary.

In X(1,3)
1 position space, the flow ϕ(1,3) proceeds below the bad set B(1,3)

M . This is shown in

Figure 3.20.
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Figure 3.18: The above plots depict snap shots of the dynamic evolution of the system for which only the
cooperative module ḡ(1,2)

M (x) is activated. The vehicle not activated by any module applies ve-
locity maintaining commands through user directed action. The top figure depicts 8 snap shots
of the flow ϕ(t, x,u) projected onto the space of constraint X1,2

1 , with the red dot corresponding
to ϕ(t, x,u) at the snapshot time and blue dots corresponding to recent history. The red set
depicts the bad set B(1,2)

M as projected onto the space of constraint X(1,2)
1 . The yellow set repre-

sents the slice of the restricted capture set C(1,3)
RE (uH ) corresponding to the current speed and the

green set represents the slice of the restricted capture set C(1,3)
RE (uL) corresponding to the current

speed. Plots of the control module evaluation, inputs applied, and velocities for each vehicle
are depicted in the lower plots.

One instance, hit boundary and show flow evolving on boundary and passing boundary.

In X(1,3)
1 position space, the flow ϕ(1,3) proceeds above the bad set B(1,3)

M . This is shown in

Figure 3.21.

Rear-End module between vehicle 1 and vehicle 2, vehicle 3 is free

We present instances of the ḡ(1,2)
RE (x̂)δ module working for two conflict resolutions:
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Figure 3.19: The above plots depict snap shots of the dynamic evolution of the system for which only the
cooperative module ḡ(1,2)

M (x) is activated. The vehicle not activated by any module applies ve-
locity maintaining commands through user directed action. The top figure depicts 8 snap shots
of the flow ϕ(t, x,u) projected onto the space of constraint X1,2

1 , with the red dot corresponding
to ϕ(t, x,u) at the snapshot time and blue dots corresponding to recent history. The red set
depicts the bad set B(1,2)

M as projected onto the space of constraint X(1,2)
1 . The yellow set repre-

sents the slice of the restricted capture set C(1,3)
M (uH ) corresponding to the current speed and the

green set represents the slice of the restricted capture set C(1,3)
M (uL) corresponding to the current

speed. Plots of the control module evaluation, inputs applied, and velocities for each vehicle
are depicted in the lower plots.

(i) Vehicle 1 = free, Vehicle 2 = u2
L, Vehicle 3 = free;

(ii) Vehicle 1 = free, Vehicle 2 = u2
H, Vehicle 3 = free.

One instance, hit boundary and show flow evolving on boundary and passing boundary.

In X1,2
1 position space, the flow ϕ1,2(t) proceeds above the bad set B1,2

RE. Plotted as Figure

3.22.

One instance, hit boundary and show flow evolving on boundary and passing boundary.

In X(1,2)
1 position space, the flow ϕ1,2(t) proceeds below the bad set B(1,2)

RE . Plotted as Figure

3.23.
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Figure 3.20: The above plots depict snap shots of the dynamic evolution of the system for which only the
cooperative module ḡ(1,3)

M (x) is activated. The vehicle not activated by any module applies ve-
locity maintaining commands through user directed action. The top figure depicts 8 snap shots
of the flow ϕ(t, x,u) projected onto the space of constraint X1,3

1 , with the red dot corresponding
to ϕ(t, x,u) at the snapshot time and blue dots corresponding to recent history. The red set
depicts the bad set B(1,3)

M as projected onto the space of constraint X(1,3)
1 . The yellow set repre-

sents the slice of the restricted capture set C(1,3)
M (uH ) corresponding to the current speed and the

green set represents the slice of the restricted capture set C(1,3)
M (uL) corresponding to the current

speed. Plots of the control module evaluation, inputs applied, and velocities for each vehicle
are depicted in the lower plots.

Rear-End module between vehicle 1 and vehicle 3, vehicle 2 is free

We present instances of the ḡ(1,3)
RE (x̂)δ module working for two conflict resolutions:

(i) Vehicle 1 = free, Vehicle 2 = free, Vehicle 3 = u3
L;

(ii) Vehicle 1 = free, Vehicle 1 = free, Vehicle 3 = u3
H.

One instance, hit boundary and show flow evolving on boundary and passing boundary.

In X(1,3)
1 position space, the flow ϕ(1,3)(t) proceeds below the bad set B(1,3)

RE . Plotted as

Figure 3.24.
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Figure 3.21: The above plots depict snap shots of the dynamic evolution of the system for which only the
cooperative module ḡ(1,3)

M (x) is activated. The vehicle not activated by any module applies ve-
locity maintaining commands through user directed action. The top figure depicts 8 snap shots
of the flow ϕ(t, x,u) projected onto the space of constraint X1,3

1 , with the red dot corresponding
to ϕ(t, x,u) at the snapshot time and blue dots corresponding to recent history. The red set
depicts the bad set B(1,3)

M as projected onto the space of constraint X(1,3)
1 . The yellow set repre-

sents the slice of the restricted capture set C(1,3)
M (uH ) corresponding to the current speed and the

green set represents the slice of the restricted capture set C(1,3)
M (uL) corresponding to the current

speed. Plots of the control module evaluation, inputs applied, and velocities for each vehicle
are depicted in the lower plots.

One instance, hit boundary and show flow evolving on boundary and passing boundary.

In X(1,3)
1 position space, the flow ϕ(1,3)(t) proceeds above the bad set B(1,3)

RE . Plotted as Figure

3.25.

Merging module between vehicle 1 and vehicle 2, rear-end module between vehicle 1 and vehicle 3

We present instances of the ḡ(1,2)
M (x̂)coop ∩ ḡ(1,3)

RE (x̂)δ module working for four conflict reso-

lutions:
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Figure 3.22: The above plots depict snap shots of the dynamic evolution of the system for which only the
competitive module ḡ1,2

RE(x) is activated. The vehicles not activated by any modules apply ve-
locity maintaining commands through user directed action. The top figure depicts 8 snap shots
of the flow ϕ(t, x,u) projected onto the space of constraint X1,2

1 , with the red dot corresponding
to the snapshot time and blue dots corresponding to recent history. The red set depicts the bad
set B(1,3)

RE as projected onto the space of constraint X1,2
1 . The upper boundary for the slice of the

capture set C1,2
RE corresponding to the current speed is shown as a black line. Vehicle 1 never

applies any brake control as the module ḡ(1,3)
M never activates, therefore the flow does not stay

on the boundary of the capture set C1,2
RE . Plots of the control evaluation, inputs applied, and

velocities for each vehicle are depicted in the lower plots.

(i) Vehicle 1 = u1
H, Vehicle 2 = u2

L, Vehicle 3 = u3
L;

(ii) Vehicle 1 = u1
L, Vehicle 2 = u2

H, Vehicle 3 = u3
L;

(iii) Vehicle 1 = u1
H, Vehicle 2 = u2

L, Vehicle 3 = u3
H;

(iv) Vehicle 1 = u1
L, Vehicle 2 = u2

H, Vehicle 3 = u3
H.

One instance, hit boundary and show flow evolving on boundary and passing boundary

for both simultaneously. In X(1,2)
1 position space, the flow ϕ(1,2)(t) proceeds below the bad

set B(1,2)
M . In X(1,3)

1 position space, the flow ϕ(1,3)(t) proceeds below the bad set B(1,3)
RE . Plotted

as Figure 3.26.
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Figure 3.23: The above plots depict snap shots of the dynamic evolution of the system for which only the
competitive module ḡ1,2

RE(x) is activated. The vehicles not activated by any modules apply ve-
locity maintaining commands through user directed action. The top figure depicts 8 snap shots
of the flow ϕ(t, x,u) projected onto the space of constraint X1,2

1 , with the red dot corresponding
to the snapshot time and blue dots corresponding to recent history. The red set depicts the bad
set B(1,3)

RE as projected onto the space of constraint X1,2
1 . The Lower boundary for the slice of the

capture set C1,2
RE corresponding to the current speed is shown as a black line. Vehicle 1 never

applies any brake control as the module ḡ(1,3)
M never activates, therefore the flow does not stay

on the boundary of the capture set C1,2
RE . Plots of the control evaluation, inputs applied, and

velocities for each vehicle are depicted in the lower plots.

One instance, hit boundary and show flow evolving on (off) boundary and passing

boundary for both simultaneously. In X(1,2)
1 position space, the flow ϕ(1,2)(t) proceeds above

the bad set B(1,2)
M . In X(1,2)

1 position space, the flow ϕ(1,3)(t) proceeds below the bad set B(1,3)
RE .

Plotted as Figure 3.27.

One instance, hit boundary and show flow evolving on (off) boundary and passing

boundary for both simultaneously. In X1,2
1 position space, the flow ϕ(1,2)(t) proceeds below

the bad set B(1,2)
M . In X(1,3)

1 position space, the flow ϕ(1,3)(t) proceeds above the bad set B(1,3)
RE .

Plotted as Figure 3.28.
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Figure 3.24: The above plots depict snap shots of the dynamic evolution of the system for which only the
competitive module ḡ(1,3)

RE (x) is activated. The vehicles not activated by any modules apply ve-
locity maintaining commands through user directed action. The top figure depicts 8 snap shots
of the flow ϕ(t, x,u) projected onto the space of constraint X1,3

1 , with the red dot corresponding
to the snapshot time and blue dots corresponding to recent history. The red set depicts the bad
set B(1,3)

RE as projected onto the space of constraint X1,3
1 . The upper boundary for the slice of the

capture set C(1,3)
RE corresponding to the current speed is shown as a black line. Vehicle 1 never

applies any brake control as the module ḡ(1,2)
M never activates, therefore the flow does not stay

on the boundary of the capture set C(1,3)
RE . Plots of the control evaluation, inputs applied, and

velocties for each vehicle are depicted in the lower plots.

One instance, hit boundary and show flow evolving on boundary and passing boundary

for both simultaneously. In X(1,2)
1 position space, the flow ϕ(1,2)(t) proceeds above the bad

set B(1,2)
M . In X(1,3)

1 position space, the flow ϕ(1,3)(t) proceeds above the bad set B(1,3)
RE . Plotted

as Figure 3.29.

3.7 Discussion

There were instances where the state entered the capture set during experimentation. Pos-

sible causes for this include actuator delays, communication delays, poor position infor-
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Figure 3.25: The above plots depict snap shots of the dynamic evolution of the system for which only the
competitive module ḡ(1,3)

RE (x) is activated. The vehicles not activated by any modules apply ve-
locity maintaining commands through user directed action. The top figure depicts 8 snap shots
of the flow ϕ(t, x,u) projected onto the space of constraint X1,3

1 , with the red dot corresponding
to the snapshot time and blue dots corresponding to recent history. The red set depicts the bad
set B(1,3)

RE as projected onto the space of constraint X1,3
1 . The upper boundary for the slice of the

capture set C(1,3)
RE corresponding to the current speed is shown as a black line. Vehicle 1 never

applies any brake control as the module ḡ(1,2)
M never activates, therefore the flow does not stay

on the boundary of the capture set C(1,3)
RE . Plots of the control evaluation, inputs applied, and

velocities for each vehicle are depicted in the lower plots.

mation and path following errors.

3.7.1 Actuator Delays

It is assumed in theory that each vehicle can apply torque instantaneously as dictated by the

controller. In practice, actuator delays often reach .5 sec, therefore, rather than checking

if (3.23) holds for x1[k] and X1[k + 1], we instead check if (3.24) holds for six time steps

into the future, that is for X1[k + 6].
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Figure 3.26: The above plots depict snap shots of the dynamic evolution of the system for which both the
competitive module ḡ(1,3)

RE (x) and the cooperative module ḡ(1,2)
M (x) are activated. When not con-

trolled by a module, the inputs are applied through user defined maintain velocity commands.
The left column of the top figure depicts 4 snap shots of the flow ϕ(t, x,u) projected onto the
space of constraint X(1,2)

1 , with the red dot corresponding to the snapshot time and blue dots
corresponding to recent history. The right column of the top figure depicts 4 snap shots of the
flow ϕ(t, x,u) projected onto the space of constraint X(1,3)

1 , with the red dot corresponding to
the snapshot time and blue dots corresponding to recent history. The red sets depict the bad
sets B(1,2)

M and B(1,3)
RE as projected onto the relevant spaces of constraint X(1,2)

1 and X(1,3)
1 . In the

left column, for the current speed, the yellow set represents the slice of the restricted capture
set C(1,3)

RE (uH ) and the green set represents the slice of the restricted capture set C(1,3)
RE (uL). In

the right column, the lower boundary for the slice of the capture set C(1,3)
RE corresponding to

the current speed is shown as a black line. Plots of the control evaluation, inputs applied, and
velocities for each vehicle are depicted in the lower plots.

3.7.2 Communication Delay

Ideally, the vehicles have access to the current state information from the other vehicles.

However, there are periodic delays in the wireless network that result in the vehicles re-

ceiving either corrupted position data or not receiving anything. There are cases without

updated state information where the flow can be thought to have entered the capture set,
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Figure 3.27: The above plots depict snap shots of the dynamic evolution of the system for which both the
competitive module ḡ(1,3)

RE (x) and the cooperative module ḡ(1,2)
M (x) are activated. When not con-

trolled by a module, the inputs are applied through user defined maintain velocity commands.
The left column of the top figure depicts 4 snap shots of the flow ϕ(t, x,u) projected onto the
space of constraint X(1,2)

1 , with the red dot corresponding to the snapshot time and blue dots
corresponding to recent history. The right column of the top figure depicts 4 snap shots of the
flow ϕ(t, x,u) projected onto the space of constraint X(1,3)

1 , with the red dot corresponding to
the snapshot time and blue dots corresponding to recent history. The red sets depict the bad
sets B(1,2)

M and B(1,3)
RE as projected onto the relevant spaces of constraint X(1,2)

1 and X(1,3)
1 . In the

left column, for the current speed, the yellow set represents the slice of the restricted capture
set C(1,3)

RE (uH ) and the green set represents the slice of the restricted capture set C(1,3)
RE (uL). In

the right column, the lower boundary for the slice of the capture set C(1,3)
RE corresponding to

the current speed is shown as a black line. Plots of the control evaluation, inputs applied, and
velocities for each vehicle are depicted in the lower plots.

corresponding to a false positive.

3.7.3 Severe Position Errors

There were observed cases of the position error suddenly jumping an order of a car length

or more within a single time step. While there is the possibility of received state infor-

mation jumping significantly after temporary communication loss, the magnitude of these
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Figure 3.28: The above plots depict snap shots of the dynamic evolution of the system for which both the
competitive module ḡ(1,3)

RE (x) and the cooperative module ḡ(1,2)
M (x) are activated. When not con-

trolled by a module, the inputs are applied through user defined maintain velocity commands.
The left column of the top figure depicts 4 snap shots of the flow ϕ(t, x,u) projected onto the
space of constraint X(1,2)

1 , with the red dot corresponding to the snapshot time and blue dots
corresponding to recent history. The right column of the top figure depicts 4 snap shots of the
flow ϕ(t, x,u) projected onto the space of constraint X(1,3)

1 , with the red dot corresponding to
the snapshot time and blue dots corresponding to recent history. The red sets depict the bad
sets B(1,2)

M and B(1,3)
RE as projected onto the relevant spaces of constraint X(1,2)

1 and X(1,3)
1 . In the

left column, for the current speed, the yellow set represents the slice of the restricted capture
set C(1,3)

RE (uH ) and the green set represents the slice of the restricted capture set C(1,3)
RE (uL). In

the right column, the lower boundary for the slice of the capture set C(1,3)
RE corresponding to

the current speed is shown as a black line. Plots of the control evaluation, inputs applied, and
velocities for each vehicle are depicted in the lower plots.

errors signify a potential error in the positioning system much larger than the nominal error

assumed.
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Figure 3.29: The above plots depict snap shots of the dynamic evolution of the system for which both the
competitive module ḡ(1,3)

RE (x) and the cooperative module ḡ(1,2)
M (x) are activated. When not con-

trolled by a module, the inputs are applied through user defined maintain velocity commands.
The left column of the top figure depicts 4 snap shots of the flow ϕ(t, x,u) projected onto the
space of constraint X(1,2)

1 , with the red dot corresponding to the snapshot time and blue dots
corresponding to recent history. The right column of the top figure depicts 4 snap shots of the
flow ϕ(t, x,u) projected onto the space of constraint X(1,3)

1 , with the red dot corresponding to
the snapshot time and blue dots corresponding to recent history. The red sets depict the bad
sets B(1,2)

M and B(1,3)
RE as projected onto the relevant spaces of constraint X(1,2)

1 and X1,3
1 . In the

left column, for the current speed, the yellow set represents the slice of the restricted capture
set C(1,3)

RE (uH ) and the green set represents the slice of the restricted capture set C(1,3)
RE (uL). In

the right column, the lower boundary for the slice of the capture set C(1,3)
RE corresponding to

the current speed is shown as a black line. Plots of the control evaluation, inputs applied, and
velocities for each vehicle are depicted in the lower plots.



CHAPTER IV

Cooperative Collision Avoidance on
Full-Size Vehicles

In this Chapter, we provide computationally efficient decentralized algorithms for

a two-vehicle cooperative collision avoidance at traffic intersections, which leverage

vehicle-to-vehicle (V2V) communication. Our algorithms are guaranteed to maintain

safety (no collision) by design and are not conservative, that is, the driver is overridden by

the on-board controller only when it is absolutely needed to prevent a crash. Additionally,

the proposed algorithms are designed to be robust to communication delays, sensor noise,

and model uncertainty in the vehicle dynamics. We implement our algorithms on two

instrumented full scale vehicles and demonstrate their performance on a number of exper-

iments at a traffic intersection. In no instance of the experiments safety was violated. We

illustrate also how one can tradeoff between conservatism and aggressiveness by tuning

suitable design parameters.

4.1 Organization

This chapter is organized as follows. In Section 4.2, we provide an overview of the prob-

lem considered and in Section 4.3 we illustrate our general approach to the problem solu-

tion. In Section 4.4, we analyze the vehicle dynamics in detail and illustrate how that fits

the class of systems described in Section 4.3. System identification of the vehicle dynam-

122



123

ics is also performed in this section. In Section 4.5, we illustrate the software components

of the ICA application, including estimation, communication, and control. In Section 4.6,

we illustrate the experimental results.

4.2 Problem Overview

We consider the intersection scenario in which two vehicles approach an intersection and

can potentially collide in the indicated red shaded area. A collision may occur for a number

of reasons, including a distracted driver not seeing the incoming vehicle, under-estimating

the vehicle speed, and violating red lights or stop signs. We seek to design controllers on

board of each vehicle that use V2V communication in order to negotiate the intersection

and apply automatic control only when it is absolutely necessary to prevent a collision.

We assume that, after making high level route decisions, drivers follow predefined paths

as established by driving lanes. Collisions between two vehicles are prevented by only

controlling the longitudinal velocity and displacement of each vehicle along its path, never

controlling vehicle steering. We assume each vehicle is equipped with sensors for state

measurement (absolute position, heading, velocity, acceleration, brake torque, and pedal

position), V2V communication, and the ability to automatically actuate the throttle and

brake. Under the above assumptions, the safety algorithms that we illustrate here guarantee

that the vehicles will never collide.

4.2.1 Test vehicles and test track

The test vehicles used in this work are modified Lexus IS 250 (2007) test vehicles (Figure

4.1(a)). The modifications include: computer running a Linux operating system; Differen-

tial Global Positioning System (DGPS) for position, absolute time and heading measure-

ment; Denso Wireless Safety Unit (WSU) capable of V2V and Vehicle-to-Infrastructure

(V2I) Dedicated Short-Range Communications (DSRC); connection to the Controller-
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(a) (b)

(c)

Figure 4.1: (a) Modified Lexus IS 250 vehicles used in the experiments. (b) System components are high-
lighted: main computer running the application, DGPS receiver, computer interface with the
CAN bus, and Denso WSU. (c) Top-down view of the test-track

Area Network (CAN) bus to read information from vehicle sensors (velocity, accelera-

tion, brake pedal position, transmission state, etc.); (e) CAN bus interface with brake and

throttle actuators. We provide illustrations of some of these systems in Figure 4.1(b).

The computer system is affixed inside the wheel well (Figure 4.1(b)). The purpose of

this system is to interface with all on-board vehicle sensors and actuators, in a manner

that allows for rapid development, deployment and testing of software applications. The
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computer runs an Ubuntu Linux distribution, and consists of a Intel Core-Duo 2.0 GHz

processor, 1 GB RAM, 150 GB hard drive, and a motherboard with on-board ethernet and

USB ports. A USB video card is connected to the vehicle navigation display unit, and a

wireless keyboard is used to control the computer from the passenger seat. The computer

can read and write to the CAN bus via a USB adapter. To communicate between vehicles

and interface with a DGPS unit, a Denso Wireless Safety Unit (WSU) is connected via eth-

ernet, which is an after-market industry standard (planned) in communication and control

for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) safety systems [76].

The on-board DGPS unit is capable of 0.45 m accuracy for absolute position, 1.5o

accuracy for absolute heading, and 0.1 s accuracy for absolute time. The measurement

update rate is 10 Hz. Other sensors include: (i) accelerometer, based on MEMS technol-

ogy, capable of 0.5 m/s accuracy; (ii) speedometer, measuring average speed at the wheel,

capable of 0.5 m/s accuracy; (iii) throttle pedal measurement, capable of 0.5 % accuracy;

(iv) brake torque applied at wheel, capable of 0.5 Nm accuracy. The vehicle brake con-

troller is modified to accept brake commands from the computer via CAN bus messages.

The drive-by-wire (sends ECU electric signals over CAN bus) throttle pedal, is modified

to allow computer issued commands via CAN bus messages to create throttle pedal signals

to the ECU. Communication is carried out by the Denso WSU unit. The message standard

is the Dedicated Short-Range Communication (DSRC), which is broadcast at the 5.9 GHz

band, which is dedicated to V2V and V2I communication. The WSU is connected to a

top mounted antenna (Figure 4.1(a)). Communication is carried out with a broadcast net-

work topology, that is, messages transmitted by a sender can be received by any listener

in-range.
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4.3 Solution Approach

The general solution approach is based on formally encoding the requirement of no-

collision into a bad set of vehicle speed and position configurations to be avoided. Then,

based on the vehicles dynamical model, we calculate the capture set, which is the set of

all vehicle configurations that enter the bad set independently of any throttle/brake con-

trol action. Once the capture set is computed, we determine a throttle/brake control map

for both vehicles that keeps the system state outside of the capture set at all times. This

control map applies throttle and brake inputs only when the system configuration hits the

boundary of the capture set. Otherwise, no control action is applied and the driver has full

control of the vehicle.

The computation of the capture set and of the control map are usually very demanding,

require an exact description of the system dynamics, and assume perfect information on

the state of the system. In this section, we illustrate the approach to compute the capture set

and the control map developed in [50], which exploits the specific structure of the appli-

cation domain to overcome these limitations. Specifically it provides efficient algorithms,

allows a coarser model obtained from suitable experiments, and is robust to imperfect state

information due to sensor uncertainty and especially to communication delays.

4.3.1 System model and safety specification

We model each vehicle as a system Σi for i ∈ {1, 2}, describing the longitudinal dynamics

of vehicle i along its path. Each system Σi is an input-output system, defined by the tuple

Σi := {Xi,Oi,Ui,Di, f i, hi}, where Xi ⊂ R2 is the state space describing position and

speed, Oi ⊂ Rm is the output measurement space, Ui := [ui
L, u

i
H] ⊂ [0, 1] × [0, 1] is the

control input space representing the percentage the brake and throttle pedal are depressed,

Di := [di
L, d

i
H] ⊂ Rm is the disturbance input space, which can be employed to account for
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unmodeled dynamics, f i : Xi × Ui × Di → Xi is the vector field modeling the dynamics

of the vehicle, and hi : Oi ⇒ Xi is the output set-valued map that provides the set of

states compatible with an output measurement. We let xi
1 ∈ Xi

1 denote the longitudinal

displacement of vehicle i along its fixed path and xi
2 denote the longitudinal speed of

vehicle i along its path. We denote the continuous flow of system Σi as ϕi(t, xi,ui,di),

where t denotes the time, xi denotes the initial state, ui denotes the control input signal and

di denotes the disturbance signal. In this paper, we will denote in bold signals, which are

functions of time.

The two-vehicle system is modeled as the parallel composition of the two systems,

denoted as Σ = Σ1||Σ2 = {X,O,U,D, f , h}, in which X = X1 × X2, O = O1 × O2, U =

U1×U2,D = D1×D2, f = ( f 1, f 2), and h = (h1, h2). Accordingly, we will let x = (x1, x2),

u = (u1, u2), and d = (d1, d2). Furthermore, we let x1 = (x1
1, x

2
1) ∈ X1 denote the pair of

two-vehicle displacements. The safety specification for Σ is described in terms of a subset

of the state space that needs to be avoided to prevent a collision. Specifically, we call such a

set the bad set B ⊂ X and we will say that the system is safe if the flow never enters the bad

set B. For some initial state xo, the system is safe if there exists some control input signal

u such that for all disturbance input signals d and time t, we have that ϕ(t, xo,u,d) < B.

From the construction of the state space and the fact that a collision between two ve-

hicles results when they are both in the red shaded area of Figure 4.2 (a), B ⊆ X can be

defined as

B := {x ∈ X | (x1
1, x

2
1) ∈ ]L1,H1[ × ]L2,H2[},(4.1)

where Li < Hi for i ∈ {1, 2} (see Figure 4.2 (b)). We also denote L = (L1, L2) and

H = (H1,H2).

The safe controller is based on computing a subset of the state space, called the capture

set, denoted C ⊆ X. The capture set is the set of all initial conditions, such that no control
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(a) (b)

Figure 4.2: Shape of the bad set B. (a) Li determines the lower limit of the collision set along vehicle
i path, while U i determines the upper limit of the collision set along vehicle i path. (b) In the
coordinate system where displacement is along the longitudinal path, the bad set B is the interval
]L1,H1[ × ]L2,H2[ in the X1 space for every value of the speeds of the two vehicles.

input can prevent a collision. The mathematical definition is given by

C := {x ∈ X | ∀ u, ∃ t, ∃ d s.t. ϕ(t, x,u,d) ∈ B}.(4.2)

The approach of our solution to the safety control problem is to compute the capture set,

and through the application of feedback control, prevent the flow from ever entering the

capture set. By the definition of the capture set, safety is guaranteed if the flow never

enters the capture set.

Computing the capture set is in general a difficult problem. In the next sections, we

show how exploiting the structural features of the specific system under study allows us to

compute this set and handle imperfect state information.

4.3.2 Computation approach exploiting partial orders

In this section, we illustrate the main result of [50] to compute the capture set. This

approach relies on (i) the state and input spaces of the system Σi being partially ordered

and (ii) the flow of the system Σi being an order preserving map. Specifically, for the state

space Xi ⊆ R2, we consider elements to be partially ordered according to component-wise
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ordering , that is, for zi,wi ∈ Xi we have that zi ≤ wi provided zi
1 ≤ wi

1 and zi
2 ≤ wi

2.

Further, we consider the partial ordering between input signals defined for signals ui, vi

as ui ≤ vi ⇔ ui(t) ≤ vi(t) for all t. The inequality ui(t) ≤ vi(t) is defined such that

ui
1(t) ≥ vi

1(t) and ui
2(t) ≤ vi

2(t). We assume that the flow of each system Σi is an order

preserving map. Mathematically, this means that for initial conditions zi,wi ∈ Xi, inputs

ui, vi and disturbances di,bi, the following implication holds

zi ≤ wi ∧ ui ≤ vi ∧ di ≤ bi ⇒ ϕi(t, zi,ui,di) ≤ ϕi(t,wi, vi,bi) ∀ t.(4.3)

In terms of the vehicle dynamics, this assumption implies that greater initial displacement,

greater initial velocity, and greater inputs will lead to greater displacements and speeds at

any time. The validity of this assumption for the vehicle dynamics is discussed in detail

in Section 4.4, where the vehicle model is introduced. A liveliness condition is introduced

by requiring that for at least one i f i
1(xi, ui, di) > 0 for all xi, ui and di. From a practical

point of view, this requires that vehicle i does not go in reverse and does not stop.

The order preserving property of the dynamics along with the structure of the bad set

can be exploited to compute the capture set for system Σ = Σ1||Σ2 with an algorithm that

has linear complexity with respect to the state dimension. The algorithm is based on the

restricted capture set, which for a fixed input signal u, is defined as Cu := {x ∈ X | ∃ t ≥

0, ∃ d s.t. ϕ(t, x,u,d) ∈ B}. This set represents the set of initial conditions that are taken

into the bad set under the fixed input signal u. Define the fixed input signals uL,uH , as

uL(t) := (u1
H, u

2
L) and uH (t) := (u1

L, u
2
H) for all t. Then, we have ([50])

C = CuL ∩ CuH .(4.4)

The capture set can be computed by only computing the two restricted capture sets cor-

responding to maximum and minimum inputs. The restricted capture sets are simpler to

compute, since they can be obtained by just integrating the dynamics under fixed control
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inputs. This is in contrast with the capture set C, whose computation requires the solution

of a differential game between the control and the disturbance.

Based on the expression of the capture set given in (4.4), the feedback control map is

given by

g(x) :=


(u1

H, u
2
L) if x ∈ CuL and x ∈ ∂CuH ,

(u1
L, u

2
H) if x ∈ ∂CuL and x ∈ CuH ,

U otherwise,

(4.5)

in which CuH denotes the closure of CuH . The controller allows the driver to chose any

input until the flow hits the boundary of the capture set. The driver retains control once

the flow no longer touches the boundary of the capture set. A visual interpretation of the

feedback map is provided in Figure 4.3.

In the presence of communication delays and/or uncertain sensor readings the vehicles

will not have access to the exact value of the system state but to a set of possible current

system states. This can be easily incorporated in the above described control strategy [50].

Let the set of possible current system states be denoted x̂ ⊂ X, which can be constructed

using output measurement z ∈ O as explained in Section 4.5.1. The safety specification

is now posed in terms of preventing the state uncertainty x̂ from intersecting the bad set

B. That is, the system is safe if x̂(t) ∩ B = ∅ for all t ∈ R+. It has been shown that this

is the case if and only if x̂(t) never intersects both CuL and CuH at the same time [50].

The feedback set-valued map g, as defined in (4.5) can still guarantee this as long as it is

extended to set x̂ as follows

g(x̂) :=


(u1

H, u
2
L) if x̂ ∩ CuH , ∅ and x̂ ∩ ∂CuL , ∅ and x̂ ∩ CuL = ∅,

(u1
L, u

2
H) if x̂ ∩ CuL , ∅ and x̂ ∩ ∂CuH , ∅ and x̂ ∩ CuH = ∅,

U otherwise.

(4.6)

The interpretation of this feedback set-valued map is that control is applied when the
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Figure 4.3: Feedback map g(x) shown for two separate trajectories. The pink region represents a slice of the
capture set in position space corresponding to a pair of vehicles speeds. When the flow touches
the upper boundary of the capture set, geometrically as x ∈ CuL and x ∈ ∂CuH , the feedback
controller commands the input (u1

L, u
2
H), corresponding to vehicle 1 applying maximum brake

while vehicle 2 applies maximum throttle. When the flow touches the lower boundary of the
capture set, geometrically as x ∈ CuH and x ∈ ∂CuL , the feedback controller commands the
input (u1

H , u
2
L), corresponding to vehicle 1 applying maximum throttle while vehicle 2 applies

maximum brake.

state uncertainty has non-empty intersection with either CuL or CuH , and simultaneously

is touching the boundary of the other. We remark that by construction, feedback map g

is order reversing with respect to partial order established by set inclusion, that is, A ⊂

B ⇒ g(A) ⊃ g(B). This property implies that the larger the state uncertainty, the more

conservative the controller will be.

4.3.3 Algorithmic Implementation

In this section, we provide a summary of the algorithms that compute the restricted cap-

ture set for the case in which the first component of the vector fields f i do not depend on

the xi
1 coordinate (displacement) [50]. This assumption is satisfied by the vehicle dynam-
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ics considered in the next section. The algorithms are implemented on-board the vehicle

computer, therefore they must use a discrete-time model of the dynamics. For n > 0 and

step size ∆T > 0, the discrete-time flow of system Σ is given by Φ(n, x,u,d) and is gener-

ated by the forward Euler approximation of the continuous time dynamics, mathematically

given by Φ(n+1, x, u,d) = Φ(n, x,u,d)+∆T f (Φ(n, x,u,d),u[n−1],d[n−1]), with initial

condition Φ(0, x,u, d) = x, and sampled signals u[n] := u(n∆T ) and d[n] := d(n∆T ).

The feedback map g is implemented in discrete time, which requires an alternate defini-

tion of the capture set boundary. We will say that the set x̂[n] ⊂ X intersects the boundary

and not the interior of the restricted capture setCu provided x̂[n]∩Cu = ∅ and x̂[n+1]∩Cu ,

∅. This states that x̂[n] intersects the boundary and not the interior of the restricted capture

set if it is currently outside of the set, but it will be inside the set at the next time step.

To compute the capture set Cu, we can compute a slice of it in the displacement space,

denoted Cu ⊂ X1, corresponding to the current two-vehicle velocity (x1
2, x

2
2). Due to the or-

der preserving properties of the dynamics with respect to state and input, and the structure

of the bad set B, the restricted capture set slice is computed through the back propagation

of the upper and lower bounds of the bad set, i.e., L,H ∈ X1. Specifically, define the

sequences

L(n, x, u) := L + x1 − Φ1(n, x,u, dH),

H(n, x, u) := H + x1 − Φ1(n, x,u,dL),
(4.7)

where dL(k) := (d1
L, d

2
L) and dH(k) := (d1

H, d
2
H) for all k. Given current state estimate set x̂,

the restricted capture set slice Cu can be written as (Algorithm 1)

Cu =
∪
k∈N

]L(n, sup x̂,u),H(n, inf x̂, u)[.

Membership within the capture set slice can then be concluded by taking intersection of
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the state uncertainty with the collection of all interval sets, established by

x̂1 ∩
∪
k∈N

]L(n, sup x̂,u),H(n, inf x̂,u)[ , ∅ ⇔ x̂1 ∩ Cu , ∅.(4.8)

Algorithm 5 Cu = CaptureSetSlice(x̂,u)

Input: (x̂,u) ∈ 2X × S (U)

n = 1
loop

if inf x̂1 ≤ H(n, inf x̂,u) and inf x̂1 < ]L(n, sup x̂,u),H(n, inf x̂,u)[ then
n = n + 1

else
return Cu =

∪
k≤n]L(k, sup x̂,u),H(k, inf x̂,u)[.

end if
end loop

Output: Cu ⊂ X1.

We can determine non-empty intersection of the capture set with the state uncertainty

by using the equivalence x̂1 ∩ Cu = ∅ ⇔ x̂ ∩ Cu = ∅. The closed-loop implemen-

tation of the feedback map (4.6), in discrete time, is provided in Algorithm 2, where

u = FeedbackMap(x̂[n + 1], x̂[n]).

Note that for evaluating the control map, we only need to calculate the sequences

L(n, x, u) and H(n, x, u) for two extremal constant inputs u = (u1
H, u

2
L) and u = (u1

L, u
2
H).

Hence, we do not require the detailed model of the system Σ, we just need to know how

the system responds to these two extremal constant inputs. As we will see in Section

4.4, this can be achieved through a series of experiments where these constant inputs are

applied for a set of different initial speeds.

4.4 Vehicle Dynamics

The vehicle dynamics, which takes throttle and brake as inputs and provides longitudinal

displacement as output, is the cascade of the powertrain system and the vehicle model

(Figure 4.4(a)). The powertrain system (Figure 4.4(b)) generates the wheel torque inputs in
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Algorithm 6 u = FeedbackMap(x̂[n + 1], x̂[n])

Input: (x̂[n + 1], x̂[n]) ∈ 2X × 2X

Construct capture set slices for state prediction.
CuL = CaptureSetSlice(x̂[n + 1],uL), CuH = CaptureSetSlice(x̂[n + 1], uH )

Check if predicted state x̂[n + 1] intersects both capture set slices.
if x̂[n + 1] ∩ CuL , ∅ and x̂[n + 1] ∩ CuH , ∅ then

Construct capture set slices for current state.
CuL = CaptureSetSlice(x̂[n],uL), CuH = CaptureSetSlice(x̂[n],uH )

Determine control according to equation (4.6).
if x̂1[n] ∩ CuL = ∅ and x̂1[n] ∩ CuH , ∅ then

u = uL
else if x̂1[n] ∩ CuL , ∅ and x̂1[n] ∩ CuH = ∅ then

u = uH
else

u = uL
end if

else
No control specified.
u ∈ U

end if

Output: u ∈ U.

response to throttle and brake inputs. The vehicle model takes throttle and brake inputs and

produces longitudinal displacement as output according to Newton’s law. In this section,

we describe each of the two subsystems and illustrate how the cascade of the two generates

a flow that is an order preserving map when throttle inputs do not change with time. Then,

we perform a system identification procedure to determine the dynamics of the cascade

system only in response to maximal throttle and maximal braking, which is sufficient for

the implementation of the control map as described in Section 4.3.

4.4.1 Vehicle Model

The longitudinal displacement of the vehicle along its path is denoted by p and the longi-

tudinal velocity is denoted by v ∈ [vmin, vmax], where vmin ≥ 0. The controlled forces that

act on the vehicle are the brake input fb ∈ Fb = [ fmin, 0] with fmin < 0 and engine input
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(a)

(b)

Figure 4.4: (a) Block diagram representing the cascade of the powertrain model and the vehicle model. Here,
p denotes longitudinal displacement and v denotes longitudinal speed. The powertrain model (b)
takes the inputs u and velocity v to produce engine torque at the wheel fe. The static map π takes
the brake pedal percentage input u1 to produce brake torque fb. The vehicle model takes the
brake force fb and engine force fe as inputs. (b) Powertrain system. The Engine Control Unit
(ECU) is a means of controlling the fuel injection rate and the gear state q of the transmission.
The output signals of the ECU are the fuel injection rate i and the gear reset R. The second block
is the Internal Combustion Engine (ICE), which is where the fuel combustion takes place based
on the fuel injection rate i, and produces an output torque τ at the flywheel. The next block is
the transmission, which converts torque at the flywheel τ to torque at the transmission output τq

as a function of the gear state q. The drivetrain is the last block, which transfers torque from the
gearbox τq to force at the wheel fe.

fe ∈ Fe = [0, fmax] with fmax > 0. The brake force fb is controlled by the driver via the

surjective-monotone map π : U1 → Fb that takes brake pedal percentage u1 as an input,

while the engine force fe is supplied by the powertrain (Figure 4.4(a)). The longitudinal

dynamics are given by

dv
dt
=

R2

Jw +MR2 ( fe + fb −
ρair

2
CDA f v2 −CrrMg) =: f̃ (v, fb, fe),(4.9)

where R is the wheel radius,M is the vehicle mass, ρair is the air density, CD is the air drag

coefficient, A f is the projected vehicle cross section, and Crr is the coefficient of rolling

friction [98].

The longitudinal dynamics (4.9) generate a flow (p(t, po, vo, fb, fe), v(t, vo, fb, fe)) that is
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an order preserving map with respect to brake force input signal fb, engine force signal fe,

and initial conditions (po, vo). That is, larger forces fb and fe will result in greater displace-

ments and speeds; larger initial conditions (po, vo) will also result in larger displacements

and speeds. On the input space, we use the partial order defined by by u ≤ v provided

u1 ≥ v1 and u2 ≤ v2. Consequently, we have uL = (1, 0) and uH = (0, 1). Since the brake

force map π : U1 → Fb is monotone, the flow is an order preserving map also with respect

to the brake input u1. In the next section, we illustrate the components of the powertrain.

4.4.2 Powertrain

The dynamics of the powertrain take as control inputs u = (u1, u2) ∈ [0, 1] × [0, 1], where

the first component u1 denotes the brake pedal percent input, and the second component

u2 denotes the throttle pedal percent input [25]. In our application, these inputs can be

administered either by the driver or by the automatic controller. The output of the system

is assumed to be the torque applied at the wheel of the vehicle fe. An overview of the

system is provided in Figure 4.4(b).

The first component of the powertrain is the Engine Control Unit (ECU). This sub-

system determines the fuel injection rate i ∈ [0, 1] into the Internal Combustion Engine

(ICE), and the current gear q ∈ {1, 2, 3, 4, 5, 6} of the gearbox. The inputs to this block

consist of the current velocity of the vehicle v, the throttle pedal input u2 and the brake

pedal input u1. The second component of the powertrain is the Internal Combustion Engine

(ICE). The output of this system is the torque τ applied by the flywheel, and the input is the

fuel injection rate administered by the ECU. The third component of the powertrain is the

gearbox. This module consists of the transmission with a fixed gear ratio. All switching

logic is determined by the ECU, which sends a reset input R to the gearbox when a gear

shift has been determined. The gearbox takes torque at the flywheel τ and converts it
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to the torque τq based on the current gear. The last component of the powertrain is the

drivetrain. This component transfers torque at the gearbox τq to force applied at the wheel

fe. This module consists of the flywheel, torque converter, variable gear ratio transformer,

propeller shaft, final drive and drive shaft (details can be found, for example, in [97]).

For the powertrain model, the order preserving property of the output fe with respect

to throttle input u2 does not hold in general. This is due to the complexity of the ECU,

which controls the fuel injection rate in a manner that optimizes a set of performance

metrics, such as emissions, engine thermodynamic efficiency, with transients that can be

quite complex and non-monotone [25]. By design, however, this is performed in a manner

that generates monotone input-output behavior at steady-state [42].

Therefore, the dynamics of the vehicle system that take brake u1 and throttle u2 com-

mands as inputs and provide speed and displacement as output are order preserving with

respect to constant throttle input at least after an initial transient. Hence, we restrict the

control commands to be constant with time, so that the system dynamics generate an or-

der preserving flow with respect to the inputs after an initial transient time ϵ. In the next

section, we illustrate how to identify the vehicle dynamics for the maximal braking and

throttle inputs, which is the only knowledge on the model required by our algorithm.

4.4.3 System Identification

In order to model how the powertrain responds to constant control inputs (maximal brak-

ing and maximal throttle), in principle one should model the details of all the blocks in

Figure 4.4(b). Rather than modeling this level of detail, we exploit the fact that the ap-

proach illustrated in Section 4.3 allows for disturbance inputs, which we use here to ac-

count for unmodeled dynamics. For the input signal u and velocity signal v, define the

non-deterministic engine force trajectories Fe(u, v) as the set of all possible output engine
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force trajectories applied at the wheel given an input signal and velocity signal. When the

powertrain model is combined with the vehicle physics, the vehicle velocity v and engine

force at the wheel fe are coupled through the longitudinal dynamics introduced in (4.9).

To capture this dependency, we say a system evolution is realizable if the velocity tra-

jectory v(t, v0,u1, fe) and engine torque trajectory fe([0, t]) satisfy (4.9) at all time and the

inclusion

fe([0, t]) ∈ Fe(u([0, t]), v([0, t], v0, π(u1), fe)).(4.10)

Let ϵ ∈ R+ denote the maximum delay between initial changes in driver input u and

steady state vehicle acceleration v̇. This is the consequence of delays in: (1) software

subsystems of the drive-by-wire throttle system; (2) delays in the powertrain due to chem-

ical combustion; (3) gear shift delays; and (4) delays imposed by the Engine Control Unit

(ECU) for filtering and environmental reasons. For a speed x2, input u∗, and time-delay

constant ϵ ≥ 0, the permissible acceleration set, denoted Υ(x2, u∗, ϵ) ⊂ R, is given by

Υ(x2, u∗, ϵ) :=


f̃ (v(t, v0, π(u∗1), fe), π(u∗1(t)), fe(t)) ∈ R |

∃ fe([0, t]) ∈ Fe(u∗, v([0, t], v0, π(u∗1), fe)),

∃ t ≥ ϵ, ∃ v0 s.t. x2 = v(t, v0, π(u∗1), fe)


,(4.11)

where u∗(t) = u∗ for all t. This is the set of all possible accelerations f̃ (x2, π(u∗1), fe(t))

achievable at velocity x2 after t ≥ ϵ seconds have elapsed under the constant input signal

u∗. Letting x1 = p and x2 = v, we construct the vector field f (x, u, d) of Section 4.3.2 for

a fixed input u = u∗ as follows

f1(x, u∗, d) := x2, f2(x, u∗, dH) := supΥ(x2, u∗, ϵ), f2(x, u∗, dL) := inf Υ(x2, u∗, ϵ).

For the case of maximum disturbance dH (minimum disturbance dL), the interpretation

of f2(x, u∗, dH) ( f2(x, u∗, dL)) is that it represents the greatest acceleration (least accel-

eration) that can possibly be achieved at the velocity x2 after the constant input u∗ has
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been applied for at least ϵ ≥ 0 seconds. If Υ(x, u∗, ϵ) = ∅, then find the minimizer

x∗2 := arg miny2∈X2 {||y2 − x2|| | Υ(y2, u∗, ϵ) , ∅} and set f (x, u∗, d) = f ((x1, x∗2), u∗, d).

For implementing the feedback map of Section 4.3.2, it is enough to identify exper-

imentally f2(x, uL, dH) and f2(x, uH, dL). The identification procedure is as follows. To

identify f2(x, uL, dH), we conducted a set of experiments called braking trials, in which,

starting from an initial constant velocity, maximal braking uL = (1, 0) is applied and ve-

hicle acceleration after ϵ = 0.7s is recorded to provide data points for Υ(x2, uL, ϵ) for the

values of speed x2 reached after ϵ. The value of ϵ was chosen to be enough for the vehicle

to reach a steady state acceleration. Several trials for the same initial speed were performed

and the infimum of these data points for every speed x2 was computed to provide the value

of f2(x, uL, dH). The set of initial velocities chosen is V0 :=
{

1
4vmax,

1
2vmax,

3
4vmax, vmax

}
, in

which vmax = 8 m/s for vehicle 1 (Blue IS 250) and vmax = 17 m/s for vehicle 2 (Grey IS

250). A brake trial consists of the following steps (1) accelerate each vehicle to a nomi-

nal constant velocity v0 ∈ V0 on the vehicle path; (2) maintain velocity v0 for at least 2

seconds, so transmission comes to a steady state; (3) apply brake input uL := (1, 0) via

computer issued command, driver does not override command until vehicle reaches rest.

Similarly, to identify f2(x, uH, dL), we conducted a set of experiments called throttle

trials, in which starting from an initial constant velocity, maximal throttle uH = (0, 1) for

the vehicle 1 and uH = (0, 0.5) for the vehicle 2 was applied. The set of initial velocities are

given byV0 :=
{
0, 1

4vmax,
1
2vmax,

3
4vmax

}
, in which vmax = 8 m/s for vehicle 1 and vmax = 17

m/s for vehicle 2. A throttle trial consists of the following steps: (1) accelerate each

vehicle to a nominal constant velocity v0 ∈ V0 on vehicle path, if v0 = 0, leave vehicle

in idling state; (2) maintain velocity v0 for at least 2 seconds, so transmission comes to

steady state; (3) apply acceleration input via computer issued command, driver does not

override command until vehicle reaches maximum velocity vmax.
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For vehicle 1, which has U1 = [0, 1] × [0, 0.5] and x1
2 ∈ [0, 8.8] m/s, along path 1 (as

shown in Figure 4.1(c)), we obtained f 1
2 (x1

2, u
1
L, d

1
H) = −3.0 and

f 1
2 (x1

2, u
1
H, d

1
L) =


3.0 x1

2 ∈ [0, 7),

1.75 x1
2 ∈ [7,∞).

(4.12)

For vehicle 2, which hasU2 = [0, 1]× [0, 1] and x2
2 ∈ [8.8, 20] m/s, along path 2 (as shown

in Figure 4.1(c)), we obtained also f 2
2 (x2

2, u
2
L, d

2
H) = −3.0 and

f 2
2 (x2

2, u
2
H, d

2
L) =


3.9 x2

2 ∈ [0, 13),

2.5 x2
2 ∈ [13,∞).

(4.13)

Figure 4.5 shows the system identification results for vehicle 2. Similar plots were ob-

tained for vehicle 1.

(a) (b)

Figure 4.5: (a) A summary of all the experimental data for identifying f 2
2 (x2

2, u
2
L, d

2
H) (black solid line) of

vehicle 2. (b) A summary of all the experimental data for identifying f 2
2 (x2

2, u
2
H , d

2
L) (black solid

line) of vehicle 2.

4.5 Software Implementation

The major software components of the ICA application are estimation, communication,

and control (Figure 4.6).
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Figure 4.6: Software system overview for the local vehicle. In the figure, we let the superscript L denote
the local vehicle while the superscript R denotes the remote vehicle. The estimator (delimited
by a green box) takes as inputs the UTM time and position information (yUT M and tUT M), the
vehicle path information PL, the local vehicle time tL, the local vehicle input uL, and time/state
information of the remote vehicle {xR, tR,AR

t }, and provides a set of possible position/speed con-
figurations for the two-vehicle system x̂ ⊂ X. The communication system (delimited by the
blue box) is a module that continuously sends to and receives information from the remote vehi-
cle. The control system takes as input the state estimate set x̂ computed locally and information
from the control evaluation from the remote vehicle and returns the control input applied to the
vehicle.

4.5.1 Estimation

State estimation consists of several modules: longitudinal state measurement construction

from raw measurements in UTM coordinates; calculation of the universal time; Kalman

filter for local state prediction; and a full state estimator to construct the current state

estimate set x̂(t) ⊂ X for the whole system. We denote with superscript “L” quantities

computed on the local vehicle while with superscript “R” we denote quantities of the

remote vehicle that the local vehicle receives through the wireless communication. The

measurement projection block is used to compute the longitudinal state measurement yk

from GPS and CAN measurements yUT M (heading and position from GPS, velocity from

CAN). The global time is computed by using a local time measurement tL from the vehicle
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PC, and drift is removed by using the universal time tUT M from the GPS system. The

Kalman filter combines the longitudinal state measurement yk and the pedal inputs uL to

compute the state estimate xL and acceleration profile AL
t . This information is sent both

to the communication system, and to the full state estimator. The full state estimator takes

the current state estimate, time and acceleration profile {xL, tL,AL
t }, and combines this with

the remote state information {xR, tR,AR
t } to construct the full state estimate x̂[k] for use by

the controller.

The time measurements available to each vehicle consist of the global time tUT M, taken

from the GPS system, and the local time tL taken off the vehicle PC. The global time tUT M

is accurate, however only is received at a rate of 10 Hz, and can sometimes be unavailable

due to message loss. The local time tL is available at a higher rate of 1.5 GHz to a precision

of 1 ms, however it is not accurate globally due to inherent drift in the crystal oscillator

used to calculate time. To accurately compute a global time with update rate equal to 1.5

GHz, we combine the global time tUT M with the local time tL to produce the time t with

using a simple moving average, where the moving average is updated every time a new

global time tUT M is made available.

The measurement projection block constructs a longitudinal state measurement from

raw sensors on-board the vehicle. This involves projecting raw measurements onto the

vehicle’s path stored locally in PL. The source of absolute position and heading measure-

ments is the GPS system, which provides updates at a fixed broadcast rate of 10Hz.

Kalman filter

For the Kalman filter, the longitudinal dynamics are assumed to be linear and hybrid,

where the transmission state q ∈ {1, 2, 3, 4, 5, 6} is assumed to be known at all time as

obtained from the CAN bus. To model rolling friction, we add a fictitious frictional input,

which takes values based on the sign of velocity, given by u3 = sgn(x2). Since we seek
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to estimate also the acceleration, we add the engine torque at the wheels as a third state.

Specifically, the Kalman filter state is ê ∈ R3, where the first component is longitudinal

displacement, the second component is longitudinal velocity and the third component is

the engine torque applied at the wheels. The output measurement is yk ∈ R3, and incor-

porates longitudinal displacement, longitudinal velocity, and acceleration measured from

the on-board accelerometer. The output is a discrete time signal indexed by k ∈ N with

constant time-step ∆T > 0, where the correspondence to time t is given by t = k∆T . The

process dynamics are given by

˙̂e(t) = A(q(t))ê(t) + B(q(t))u(t) + w(t), yk = Ckê(k∆T ) + Dku(k∆T ) + vk,

where w(t) ∼ (0,Q) is continuous-time white noise with covariance Q, and vk ∼ (0,R) is

discrete-time white noise with covariance R.

Let the matrix P(t) denote the estimated state error covariance, which is initialized

to the identity matrix. Then, the prediction step of the filter is given by the following

update equations, which represent a forward Euler approximation of the continuous time

dynamics

ê(t) = ê(t−) + t∆(A(q(t))ê(t−) + B(q(t))u(t))

P(t) = P(t−) + t∆(A(q(t))P(t−) + P(t−)A(q(t))T + Q),

where t− is the time of the previous update, and t∆ := t− t−. A prediction step is performed

every time the software system updates the current state, therefore, in general the time-

step t∆ is not constant. The correction step occurs only when a new longitudinal state

measurement y is available and consists of the following update equations

Kk = P(t−)CT (CP(t−)CT + R)−1

ê(t) = ê(t−) + Kk(yk − (Cê(t−) + Du(t)))

P(t) = (I − KkC)P(t−)(I − KkC)T + KkRKT
k .
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By nature of the fixed rate of measurements (discrete-time) and continuous-time inputs,

the filter is said to be hybrid [87].

The matrices A, B, C, and D, have been identified from data for every gear q employing

the system identification toolbox within MATLAB. In particular, we used a gray-box tech-

nique, where the system identification determines a vector of parameters, given a matrix

structure derived from first principles. In particular, we have a second order system with

rolling friction and inputs. We assume a multiplicative gear ratio from engine input to

change in wheel torque. Therefore, the matrices are of the following form

A(q) =


0 1 0

0 0 1

0 0 a(q)


, B(q) =


0 0 0

b1 0 b2

0 α(q)b3(q) 0


,

C(q) =


1 0 0

0 1 0

0 0 1


, D(q) =


0 0 0

0 0 0

b1 0 α(q)b3(q)


.

Data to preform this identification task was taken from four driving trials with varying

input signals. The input signals were chosen by the driver to ensure an adequate sweep

of the vehicles dynamic range under consideration. Each trial was taken on the path for

which the vehicle normally drives on.

From the experimental data collected, we obtained for q = 1 that a(q) = −2.5, b1 = −5,

b2 = −0.1, b3(q) = 5, and b1 = 0.002. For q ∈ {2, 3, 4, 5, 6}, we obtained that a(q) = −1,

b1 = −5, b2 = −0.1, b3(q) = 5, and b1 = 0.002. The gear ratios are given by α(1) =

3.5, α(2) = 2.0, α(3) = 1.5, α(4) = 1.2, α(5) = 1, and α(6) = 0.8, which were taken from

a technical data sheet [4]. This model was validated by comparing simulations obtained

with an experimental input signal with the experimental trajectories, as seen in Figure 4.7.

The order preserving properties of this model with respect to input and state can be
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verified for piecewise affine systems by checking Hypothesis 1 of [19], which is satisfied

for this system because each matrix A(q) satisfies the classical Kamke-Muller conditions

(all off diagonal entries are positive).
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Figure 4.7: Experimental trial used to identify the system dynamics, along with validate the resultant model.
Open-loop simulation is performed using the learning system data. In (a), the experimental input
signals for brake pedal percent, throttle pedal percent and rolling friction are provided. In (b),
experimental output is compared to an open loop simulation using the identified model. The
simulated trajectory is generated by the nominal initial conditions, and the input signals shown
in (a).

To implement the Kalman filter, we chose the process and output noise covariance

matrices to maximize noise rejection while still maintaining satisfactory bandwidth. We

assume all noise processes are independent and identically distributed and have no mode

dependency, therefore, the covariance matrices are all diagonal. The matrices are given as

R = diag(0.5, 0.3, 1) and R = diag(0.5, 1, 1).

Kalman Filter performance is demonstrated in Figure 4.8, where we compare raw mea-

surement data, post-processed filtered data, and the Kalman Filter state estimate. The

post-processed filtered data is constructed by differentiated cubic smoothing spline fit to
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raw velocity measurements in MATLAB.
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Figure 4.8: Experimental data comparing the closed loop Kalman filter, the raw measurements, and filtered
off-line data. The offline data is the measurement data filtered, and is assumed to be the actual
state.

The Kalman filter is used to construct a state prediction. This is accomplished by com-

puting the acceleration profile At̄, a set-valued signal containing all possible acceleration

trajectories for future times t ≥ t̄. This allows to predict the set of possible speeds ê2(t) for

t ≥ t̄. Mathematically, this is given as ê2(t) ∈ ê2(t̄) +
t∫̄

t

At̄(τ)dτ.

By the order preserving property of the dynamics with respect to input, we can represent

the setAt̄ as an interval set evolving in time, that isAt̄(t) ⊂ [l(t), h(t)], where l(t), h(t) ∈ R.

To compute the upper and lower bounds in practice, the predictive capability of the Kalman

Filter is utilized with the time-step t∆ = ∆T (Section 4.5.1), assuming constant discrete

state qt̄(t) := q(t̄) for all t ≥ t̄. Denote the upper flow ∨ê(t) and the lower flow ∧ê(t) ∈ X.

The initial condition chosen as ∧ê0 = ∨ê0 = ê(t̄). The upper and lower bounds of the

acceleration profile can be computed with extremal inputs by virtue of the order preserving

properties the flow with respect to input (Section 4.5.1). The lower bound, defined as the
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sequence lk, is computed with the minimum input umin ∈ U as

∧êk := ∧êk−1 + ∆T (A(q(t̄)) ∧ êk−1 + B(q(t̄))umin),

lk := [0 0 1](C ∧ êk + Dumin),

where umin = (80, 0). The upper bound, given by the sequence hk, is computed with the

maximum input as

∨êk := ∨êk−1 + ∆T (A(q(t̄)) ∨ êk−1 + B(q(t̄))umax),

hk := [0 0 1](C ∨ êk + Dumax),

where umax = (0, 100). The discrete time sequences are converted to continuous time

signals using a zero-order hold approximation, giving the acceleration profile

At̄(t) =
∑

k

[lk, hk](H((t − t̄) − (k − 1)Tp) − H((t − t̄) − kTp)),(4.14)

where t ≥ t̄ and H(t) denotes the heavy side step function [78]. An example is provided

as Figure 4.9. As mentioned in Section 4.3.3, Algorithm 2 requires a two-vehicle state

Figure 4.9: Acceleration profileAt̄ example.
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prediction, which has a tunable time-step ∆p, which can be chosen by the test engineer,

assumed to be less than 1.5 sec in total. With such a short time scale, it is reasonable to

assume the input stays constant, that is u(t) = u(t̄) for all t ≥ t̄. To account for the error

of this assumption, we add a configurable window parametrized by the parameter β ∈ R+

to the resulting acceleration. As β is taken to 0, the prediction is assumed to exact. The

calculation is carried out, to obtain upper and lower bound sequences [lk, hk], with the

Hybrid Kalman filter as

êk = êk−1 + ∆T (A(q(t̄))êk−1 + B(q(t̄))u(t̄)),

[lk, hk] = [0 0 1](Cêk + Du(t̄)) + k[−β, β],

where set addition is understood in the sense of the Minkowski sum. The acceleration

profileAt̄(t) is found by taking the zero-order hold approximation of the sequence [lk, uk].

Full state estimator

The Kalman filter output is the estimate of position and speed, which are the first two

components of ê, denoted by xL for the local vehicle and by xR for the remote vehicle,

the estimate of global time t, and the acceleration profile At̄(t). The full state estimate

is constructed by combining local state estimation from the Kalman filter with received

remote vehicle state information. In accordance with feedback map g(x̂), as defined in

Algorithm 2, evaluating control involves discretizing the flow and constructing the current

state estimate x̂[n] and a prediction x̂[n + 1]. We now define the algorithm for computing

the full state estimate and prediction, with arguments local state information (xL, t,AL
t̄L),

remote state information (xR, tR,AR
t̄R), and prediction time-step ∆P. The state estimate

is found with FullS tateEstimate, defined in Algorithm 3,which returns the current state

estimate x̂[n] and state prediction estimate x̂[n + 1].
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Algorithm 7 (x̂[n], x̂[n + 1]) = FullStateEstimate(xL, xR, t, tR,∆P,AL
t̄L ,AR

t̄R )

Input: (xL, xR, t, tR,∆P,AL
t̄L ,AR

t̄R ) ∈ 2XL × 2XR × R3
+ × S (2R) × S (2R) × R+

Synchronize remote state due to transmission delay
x̂R

1 [n] = xR
1 + (t − tR)xR

2 , x̂R
2 [n] = xR

2 + (t − tR)[infAR
t̄R (tR − t̄R), supAR

t̄R (tR − t̄R)]
x̂[n] = xL × x̂R

1 [n] × x̂R
2 [n]

Construct prediction
x̂L

1 [n + 1] = x̂L
1 [n] + ∆p x̂L

2 [n], x̂L
2 [n + 1] = x̂L

2 [n] + ∆p[infAL
t̄L (t − t̄L), supAL

t̄L (t − t̄L)]
x̂R

1 [n + 1] = x̂R
1 [n] + ∆p x̂R

2 [n], x̂R
2 [n + 1] = x̂R

2 [n] + ∆p[infAR
t̄R (t − t̄R), supAR

t̄R (t − t̄R)]
x̂[n + 1] = x̂L

1 [n + 1] × x̂L
2 [n + 1] × x̂R

1 [n + 1] × x̂R
2 [n + 1]

Output: (x̂[n + 1], x̂[n]) ⊂ 2X × 2X .

4.5.2 Communication

The state prediction performed by the estimator is necessary to account for communica-

tion delays and avoid control to be evaluated on old information. Communication delay

comprises all delay experienced from the instant measurement data is populated on-board

the local vehicle until the remote vehicle uses this state information to construct a capture

set for control evaluation. This can be broken down into the following major components:

(1) ICA application acquisition of state information from the local state estimator; (2) con-

struction of a remote data message as commanded by the ICA application; (3) interface

with communication layer Denso WSU radio; (4) physical delay in the wireless transmis-

sion of the information; (5) reception of the message from the remote vehicle communi-

cation layer; (6) population of this state information into the ICA application for use in

capture set construction and subsequent control evaluation. From experimental results,

we have found that the worst case delay is 0.4 seconds. Hence the multiple predictions

performed to determine x̂[n + 1] are such that the time ∆p ≈ 0.4 seconds.

4.5.3 Control

The set-valued feedback map g is computed locally on each vehicle. To accommodate

delay in the system arising from communication, software and actuators (as discussed
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before, we evaluate the feedback controller for a set of state estimate predictions. Let the

state estimate x̂[n]i ⊂ X represent the estimate on-board vehicle i at time t. Algorithm 3

can be used recursively to construct more state estimate predictions. Define the prediction

horizon count Np ∈ N, which is a configurable design parameter. We construct the state

estimate predictions on-board vehicle i, given by x̂[n + j]i for 1 ≤ j ≤ Np, as follows

(x̂[n + j]i, x̂[n + j − 1]i) = FullStateEstimate(x̂[n + j − 1]i, t + j∆p, tR + j∆p,∆p,AL
t̄L ,AR

t̄R),

where the local vehicle refers to vehicle i ∈ {1, 2}. We then use the set of predictions

to evaluate the feedback map g on-board vehicle i ∈ {1, 2}, implemented as g(x̂[n]i) :=∩
1≤ j≤Np

FeedbackMap(x̂[n + j]i, x̂[n]i).

Before applying control, the two vehicles should reach an agreement on the control

commands to apply. In general, we have that x̂[n]1 , x̂[n]2. However, both sets contain

the true system state x by construction. As a consequence, we have that g(x̂[n]i) ⊆ g(x)

given the order reversing property of the map g. As a consequence, we can take g(x̂[n]1)∪

g(x̂[n]2) as the set of all possible safe control choices. In practice, we implement this

with a handshake mechanism to guarantee that both vehicles choose the same actions.

Specifically, the handshake module remains in the trivial initial state until a collision is

predicted on-board the local vehicle. From Algorithm 2, a collision is predicted on-board

vehicle i when g(x̂[n]i) , U, at which point a message is sent to the remote vehicle

indicating a collision has been predicted. Vehicle i then waits for a message indicating a

collision has been predicted on-board the second vehicle j. If no such message is received,

the application sleeps for 10 ms and then re-sends the message denoting a collision has

been predicted (in case the message was not received). This process continues until a

message has been received from vehicle j, or it times out. If a message is received, then a

consensus control is chosen and applied to the local actuator of both vehicles.
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(a) (b)

Figure 4.10: (a) Use case A involves a merging vehicle entering the intersection without first checking oncoming traffic.
The figure shows a top down cartoon of this scenario along with the system configuration related to the
capture set in the position plane X1 for a fixed pair of vehicle speeds. (b) Use case B involves a merging
vehicle approaching the intersection while misjudging the speed of oncoming traffic. The figure shows a
top down cartoon of this scenario along with the configuration of the system related to the capture set in
the X1 plane.

4.6 Intersection Collision Avoidance Experiments

4.6.1 Experiment Setup

Experiments were conducted at the TEMA test track in Ann Arbor, Michigan employing

two modified Lexus IS 250 vehicles (Figure 4.1(c)). Both vehicles run ICA as they ap-

proach the intersection. The velocity of approach is not fixed, however it must be within

safe limits. Each path is stored as a list of UTM co-ordinates on the respective vehicle.

The speed limits for path 1 are vmin = 0 m/s and vmax = 8.8 m/s, while the speed lim-

its for path 2 are vmin = 8.8 m/s and vmax = 18 m/s. The bad set parameters chosen are

L1 = 55 m, L2 = 75 m, H1 = 65 m and H2 = 85 m. The input sets are chosen to be

U1 := [u1
L, u

1
H] = [0, 0.3] × [0, 0.5] andU2 := [u2

L, u
2
H] = [0, 0.3] × [0, 1], which represent



152

extremal inputs that maintain safe driving conditions along the vehicle paths within the

speed limits.

We consider two real-world scenarios, which we refer to as “use cases”. For use case

A, we assume a merging vehicle enters the intersection without properly surveying for

oncoming traffic. Since the vehicle has already entered the intersection (or the speed is too

high such that this is unavoidable), the only solution is for the merging vehicle to apply

throttle and the straight vehicle to brake. A visualization of this is provided in Figure

4.10(a). For use case B, we assume a merging vehicle is approaching an intersection at

high speed, and likely misjudging the speed of oncoming traffic. The solution in this case

is for the merging vehicle to apply brake while the straight vehicle applies the throttle. A

visualization of this is provided in Figure 4.10(b). We performed a total of 28 trials, 15 for

use case A and 13 for use case B.

4.6.2 Experiment results

All trajectories generated by the experiments are provided in Figure 4.11 in the displace-

ment plane. As it is apparent from the plots, no trajectory ever entered the bad set, hence

all collisions were averted. Also, the trajectories pass fairly close to the bad set, indicating

that the control algorithm is non- conservative as expected from theory. In order to better

quantify the performance, we calculated the distance of the trajectory of the system from

the capture set, denoted γ, and the distance of the trajectory from the bad set, denoted ζ.

Table 4.1 provides the summary of the results. This table shows that the trajectory never

entered the capture set during any trial. This is expected from theory as the controller guar-

antees that trajectories starting outside of the capture set remain outside of the capture set.

Furthermore, the distances of the trajectories from the capture set are very small and can

be decreased by decreasing the prediction horizon ∆p and removing the state uncertainty



153

0 20 40 60 80 100
0

20

40

60

80

100

120

140

X
1
1 (m)

1

Figure 4.11: All trajectories from all trials. The safety specification is maintained given that the flow of the system
never entered the bad set B during any trial.

β. With no state uncertainty (β = 0), the trajectories pass extremely close to the capture

set and to the bad set, indicating a very aggressive and non-conservative controller. When

state uncertainty is introduced, the distances of the trajectory from the capture set and from

the bad set increase, but they can be rendered smaller by decreasing the prediction horizon

∆p used at each state prediction step. For a small prediction horizon, even with a larger

number of prediction steps Np, the distances from both the capture set and the bad set are

still fairly small indicating that the controller is non-conservative. Our algorithms hence

also provide a number of design parameters to compromise how aggressive the controller

is (measured by how close to the bad set the trajectories go) with the control conservatism

(the controller acts sooner than it could have). This tradeoff is very important in practice

because overriding the driver can be justified only if it is needed to keep the system safe.
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# Trials Np ∆p Info ζ (m) min/avg γ (m) min/avg Entered C Entered B Use case
4 3 0.4 P 0.9, 3 0.7 , 2.8 No No A(2), B(2)
4 4 0.2 P 0.6, 0.9 0.1, 0.6 No No A(2), B(2)

14 3 0.4 I 2, 5.9 2, 5.8 No No A(9), B(5)
6 4 0.2 I 0.7, 1.7 0.5, 1.4 No No A(2), B(4)

Table 4.1: The first column indicates the number of trials, the second column the number of prediction steps
Np employed for evaluation the control map (Section 4.5.3), ∆p is the prediction time employed in
state prediction (Algorithm 3),“P” denotes perfect state information (β = 0 in the prediction step
of Section 4.5.1) and “I” denotes imperfect state information (β = 0.2), ζ and γ are the distances
of the trajectory from the bad set B and from the capture set C, respectively. We show both the
minimum value and the average value across the trials. The trajectory never entered the capture
set nor the bad set in any trial.

Our results show that the controller, while being robust to un-modeled dynamics, state

uncertainty, and communication delays, can be tuned so to override the drivers only when

it is necessary to prevent a collision.

Figure 4.12 shows an experimental trial with perfect state information (β = 0) and with

use case A, while Figure 4.13 shows a trial for use case B and imperfect state information

(β , 0). In use case A (Figure 4.12), the merging vehicle (vehicle 1) approached the in-

tersection at a cruising speed of 6 m/s, while vehicle 2 approached the intersection at an

accelerating speed of around 14 m/s. To avoid the collision, the drivers were overridden at

time 19.7 sec when the state prediction hit the boundary of the capture set. At this time,

automatic throttle was applied to vehicle 1 and automatic brake was applied to vehicle

2. This control results in vehicle 2 entering the intersection only (and immediately) after

vehicle 1 has cleared the intersection. Vehicle 1 reached the speed limit v1
max while ap-

plying throttle, after which time, the controller held the speed constant. The test ended

after the merging vehicle exited the intersection, after which time, automatic control was

deactivated and the driver retained control. While conducting this experiment, the system

trajectory x̂(t) was at least within 0.7 m of the capture set, while never actually entering it,

which implies safety was maintained and the control actions were not conservative.

In use case B (Figure 4.13), imperfect state information was considered using β =



155

40 60 80
Vehicle 1 Displacement (m)

Time = 18.8 sec

Time = 18.8 sec

Path 1

Easting

20 40 60 80
0

50

100

150

Vehicle 1 Displacement (m)

V
eh

ic
le

 2
 D

is
p

la
ce

m
en

t 
(m

)

Time = 19.7 sec

Time = 19.7 sec

Path 2 Path 1

Easting

N
o

rt
h

in
g

20 40 60 80
0

50

100

150

Vehicle 1 Displacement (m)

V
eh

ic
le

 2
 D

is
p

la
ce

m
en

t 
(m

)

Time = 20.6 sec

Time = 20.6 sec

Path 2 Path 1

Easting

N
o

rt
h

in
g

20 40 60 80
0

50

100

150

Vehicle 1 Displacement (m)

V
eh

ic
le

 2
 D

is
p

la
ce

m
en

t 
(m

)

Time = 21.5 sec

Time = 21.5 sec

Path 2 Path 1

Easting

N
o

rt
h

in
g

20 40 60 80
0

50

100

150

Vehicle 1 Displacement (m)

V
eh

ic
le

 2
 D

is
p

la
ce

m
en

t 
(m

)

Time = 22.3 sec

Time = 22.3 sec

Path 2 Path 1

Easting

N
o

rt
h

in
g

(a)

20 22
Time (s)

18 20 22
8

10

12

14

16

18

V
el

o
ci

ty
 (

m
/s

)

Time (s)
18 20 22

-4

-2

0

2
A

cc
el

er
at

io
n

 (
m

/s
2 )

Time (s)
18 20 22

0

0.2

0.4

0.6

0.8

1

T
h

ro
tt

le
 In

p
u

t

Time (s)
18 20 22

0

0.2

0.4

0.6

0.8

1

B
ra

ke
 In

p
u

t

Time (s)

20 22
Time (s)

18 20 22

0

2

4

6

8

10
V

el
o

ci
ty

 (
m

/s
)

Time (s)
18 20 22

-0.5

0

0.5

1

1.5

2

A
cc

el
er

at
io

n
 (

m
/s

2 )

Time (s)
18 20 22

0

0.2

0.4

0.6

0.8

1

Time (s)

T
h

ro
tt

le
 In

p
u

t

18 20 22

0

0.2

0.4

0.6

0.8

1

B
ra

ke
 In

p
u

t

Time (s)

(b)

16 17 18 19 20 21 22 23
0

10

20

30

40

50

60

D
is

ta
n

ce
 γ

 (
m

)

Time (s)

(c)
30 35 40 45 50 55 60 65 70 75 80

0

20

40

60

80

100

120

Vehicle 1 Displacement (m)

V
eh

ic
le

 2
 D

is
p

la
ce

m
en

t 
(m

)

(d)

Figure 4.12: An experimental trial for use case A. Here, perfect state information is assumed. (a) Snapshots showing
the configuration of the vehicles at different times. The upper row shows the configuration of the vehicles
(indicated by the cross) in the displacement space along with the capture set slice C (delimited by the
black line) corresponding to the current vehicle speeds. The bad set is the red box. The solid blue line
indicates the trajectory in the displacement space. The portion of this line ahead of the cross indicates
the state prediction. The lower row shows the vehicle positions as they appear from a top-down view of
the experiment. The red area corresponds to the bad set (red box in the upper row plots). (b) Signals for
vehicle 1 are shown in the upper row, while the bottom row shows signals for vehicle 2. At time 19.7 sec,
the state prediction hits the boundary of the capture set and hence vehicle 1 applies throttle and vehicle 2
applies brake. (c) Distance between state and capture set shown as a function of time. (d) Entire trajectory
for the test.

0.2 m/s2. In this trial, the merging vehicle (vehicle 1) started at rest, while vehicle 2

approached the intersection at an accelerating speed of around 8 m/s. Vehicle 1 attempted

to violently accelerate and enter the intersection. To avoid the collision, the drivers were
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Figure 4.13: An experimental trial for use case B. Imperfect state information is considered here (β , 0). The upper
row shows the configuration of the vehicles (indicated by the cross) in the displacement space along with
the capture set slice C (delimited by the black line) corresponding to the current vehicle speeds. The bad
set is the red box. The solid blue line indicates the trajectory in the displacement space. The portion of
this line ahead of the cross indicates the state prediction set. In this experiment, Np = 3 and ∆p = 0.4
and the resulting uncertainty in position is very small (about 0.1 m), so it is hardly visible in the plot.
However, the uncertainty on the speed is significant and it is about 0.5 m/sec. The velocity signal displays
the estimate velocity xL

2 resulting from the Kalman filter. The lower row shows the vehicle positions as
they appear from a top-down view of the experiment. The red area corresponds to the bad set (red box in
the upper row plots). (b) Signals for vehicle 1 are shown in the upper row, while the bottom row shows
signals for vehicle 2. At time 47.2 sec, the state prediction hits the boundary of the capture set and hence
vehicle 2 applies throttle and vehicle 1 applies brake. (c) Distance between flow and capture set shown as
a function of time. (d) Entire trajectory for the test.

overridden at time 47.2 sec, when the set prediction hit the boundary of the capture set. In

this case, automatic brake was applied to vehicle 1 and automatic throttle was applied to
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vehicle 2. This control results in vehicle 1 entering the intersection only (and immediately)

after vehicle 2 has cleared the intersection. The merging vehicle reached the speed limit

v1
min while applying brake, after which time, the controller held the vehicle at rest. The

straight vehicle reached the speed limit v2
max while applying throttle, after which time, the

controller held the vehicle at a constant speed. The test ended after the straight vehicle

exited the intersection, after which time, automatic control was deactivated and the driver

retained longitudinal control. While conducting this experiment, the system trajectory x̂(t)

was within 0.6 m of the capture set, while never actually entering it, which implies safety

was maintained and the control actions were not conservative.



CHAPTER V

Conclusion

In this thesis we developed a general formulation for the safety control problem en-

countered in multi-agent systems. The primary motivation was toward traffic networked

systems, where problems of imperfect sensor information, communication delay, and com-

putational limitations make traditional centralized control approaches prohibitive. This is

a practical problem without a well defined solution, where fully automated traffic networks

are not feasible these days due to both legal and commercial hurdles. Therefore, it is ad-

vantageous to develop automatic control systems that can be implemented in parallel with

human drivers, such as cases where control is applied only when it is absolutely necessary.

Furthermore, formal methods are attractive in the sense that safety can be shown mathe-

matically rather than through exhaustive ad-hoc testing. While localized to the problem

of two-vehicle collision avoidance, the methods developed in this thesis will function as a

building block for more complex autonomous and semi-autonomous systems.

5.1 Summary

Since the dynamic feedback problem for general hybrid systems with imperfect state in-

formation is prohibitive, we focused on a restricted class of systems, which is still relevant

for modeling a number of application scenarios. In particular, we focused on a class of

hybrid systems with order preserving dynamics. For this class of systems, we have pre-

158
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sented an explicit solution to the safety control problem with imperfect state information.

These results were presented under the assumption of disturbance inputs, which can repre-

sent un-modeled dynamics, or situations where one of the agents is uncontrolled. We have

provided linear complexity discrete-time algorithms for computing this solution. We have

shown the application of these algorithms to a two-vehicle collision avoidance scenario at

a traffic intersection. The experimental results confirm the suitability of these algorithms

for fast real-time computation.

Next, the problem of a three-vehicle roundabout system was considered, where the

safety specification was defined as the union of all possible two-vehicle collisions. With

this approach, we were able to construct feedback controllers using the primitives intro-

duced in Chapter II, assuming both cases of cooperative and competitive control between

the vehicles. A formal procedure for checking the non-blocking conjunction was devel-

oped, where we showed the system maintains safety. This was verified through experi-

mental data taken in the multi-agent test-bed at the University of Michigan.

Lastly, we showed how these results could be extended and implemented on-board

full-size test vehicles. In this case, the disturbance model was utilized to account for

complexity in the vehicle dynamics, whose trajectories often did not follow deterministic

trajectories. The method of system identification utilized simple field experimentation,

and resulted in a model, while not conservative, which gave guaranteed dynamical perfor-

mance. A set-valued state estimator was developed on the vehicles computer which could

by design account for communication delay and synchronization errors. Such delay was

found to be inherent in a distributed control system with a dynamic nature of this caliber.

A control handshake mechanism was developed to account for the distributed evaluation

of control.

Experimentally, we have shown how one can tune the prediction horizon and the num-
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ber of prediction steps in order to tune the conservatism, that is, how soon the controller

decides that automatic control is needed to prevent an imminent collision. The later the

automatic control acts, the less conservative the algorithm is, but the closer the system

trajectories come to a collision (while still averting it). This trade off can be decided de-

pending on the system specifications.

The algorithms are guaranteed to be safe by design as they are based on calculating the

capture set and on keeping the system state outside of the capture set. These algorithms

can account for imperfect information due to sensor noise and to communication delays,

need only a coarse model of the vehicle dynamics, can be efficiently run in real-time, and

are guaranteed from a theoretical point of view to be the least conservative.

5.2 Future Work

5.2.1 General Classification for Piecewise Continuous Order Preserving Systems

The order preserving properties of a dynamical system are often compromised by the in-

troduction of computer subsystems, as is the case for the transmission module used to

describe the full vehicle system. While it is unclear what the order preserving properties

of this system are in general, it is true that when the dynamics are abstracted to case of dis-

turbance inputs, we do know that the convex hull of all possible trajectories generated by

the differential inclusion (set of disturbance inputs) has certain order preserving properties.

We aim to show that, under the more relaxed assumption

ϕ(t, x,u,dL) ≤ ϕ(t, x,u, S (D)) ≤ ϕ(t, x,u,dH) ∀ t ∈ R≥0,(5.1)

ϕ(t, x,uL,d) ≤ ϕ(t, x, S (U),d)) ≤ ϕ(t, x,uH,d) ∀ t ∈ R≥0,(5.2)

then we can still say that C = CωL ∩ CωH , and subsequently that the safety property of the

system is maintained under the set-valued feedback G : 2X ⇒ S (U).



161

Conditions for Envelope Properties

Rather than making an assumption on the flow of a dynamical system (5.1), it would be

far more useful to establish this property from assumptions on piecewise vector fields with

disturbances. Therefore, we aim to show that property (5.1), is a consequence of a vector

field f : X × U × D→ X that satisfies

f (x, u, dL) ≤ f (x, u,D) ≤ f (x, u, dH),(5.3)

f (x, uL, d) ≤ f (x,U, d) ≤ f (x, uH, d).(5.4)

Relationship between Abstract System Capture Set and Physical Vehicle Model Capture Set

If (5.3) is a sufficient assumption to conclude safety under the feedback controller intro-

duced in (4.6), then we would like to establish safety of the system described in Section

4.4.1. This would follow if we can establish that the capture set generated by the vehicle

system when considering the powertrain model.

5.2.2 Verify Modular Control Distributed

The idea of implementing controllers on a distributed manner is well understood in terms

of state estimation, however problems arise when considering cooperative active control

and handshaking. State estimates can always be generated more and more conservatively

to account for delays, but differences between agents can lead to incompatible control

actions. Therefore, control system models must account for the logic based decision trees

for handshaking, which can be modeled as discrete event systems.

Handshaking

We design a handshake module that computes the logical disjunction of the local vehicle

controller g(x̂l(t, l)) and the remote vehicle controller g(x̂r(t, r)). To formally describe the
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action of the handshake mechanism, we introduce a discrete event formalism to model the

software implementation of this module on each vehicle. To define safety of execution, we

consider the parallel composition of the local and remote discrete event systems. Safety

of the execution is then verified by using formal verification tools from the Discrete Event

Systems literature [29].

Software Overview

This flowchart for the handshake module is given in Figure 5.1. The system remains in the

trivial initial state until a collision is predicted on-board the local vehicle. From Algorithm

2.6.3, a collision is predicted when g(X) , U on-board the local vehicle. Therefore, the

state of the remote vehicle feedback controller is of no consequence if a collision is not

predicted locally. Mathematically, the implication is that

g(x̂1(t, i)) ∪ g(x̂2(t, i)) = U ∪ g(x̂2(t, i)) = U,

implying no control is needed unless both vehicles predict a collision

To formally verify safety of the system when considering the handshake mechanism,

we introduce a discrete event model to describe the handshake software module. The

handshake module can be described by a discrete event system H := {X, E, f ,Γ, x0, Xm},

where X ⊂ N3 is a discrete state space, E is a finite set of events, f : X × E → X is the

transition function, Γ : X ⇒ E is the active event set-valued map, x0 is the initial state, and

Xm ⊂ X are the marked states. The state space is defined by

XL := {nominal, waiting, rceieved, active, collision} = {n,w, r, a, c},

X2 := {safe, throttle, brake, arbitrary, collision} = {s, t, b, a, c},

where X1 denotes the logic state of the controller and X2 denotes the solution state of the

controller.
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Figure 5.1: Handshaking overview.

Assume the logical state x1 ∈ {rL} × XR
1 , define the handshake logic as follows between

solution states xR
2 ∈ XL

2 and xR
2 ∈ XR

2 as

H(x) :=



(a, XR
1 , t

L, bR) if x2 ∈ (tL, bR) ∪ (aL, bR) ∪ (tL, cR),

(a, XR
1 , b

L, tR) if x2 ∈ (bL, tR) ∪ (bL, cR),

(n, XR
1 , X2) if x2 ∈ (bL, bR) ∪ (tL, bR),

(c, XR
1 , c) if x2 ∈ (cL, cR).
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Figure 5.2: Handshaking automaton.

Safety Verification

The closed loop implementation of the handshake module between vehicles can be viewed

as the parallel composition of two discrete-event system. We define the deadlock states

D ⊂ X, where for x ∈ D, we have Γ(x) = ∅. This set represents the collection of all failure

states, which in the considered application represents both the local and remote vehicle in

the logical state ”collision predicted” with control state ”captured”. If this state within the

two-vehicle automaton cannot be reached under certain language assumptions imposed

on the individual vehicle models, then necessarily the system is provably safe under the

abstracted logical formulation.

Extension to Timed Automaton

The continuous time control imposed by the supervisor g(x̂(t)) can be abstracted away

by means of imposing language restrictions on the automaton used to model the logi-

cal evaluation. That is, in order to arrive in the state (collisionpredicted, captured), the

state (collisionpredicted, {brake, throttle, arbitray}) must have been previously visited.

We would like to extend this model to consider the timed execution of each step, since

the handshake module must be implemented on-board a computer system.
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