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ABSTRACT

Applications of Circular Distributions and
Spatial Point Processes to the Analysis of

Periodontal Data

by

Samopriyo Maitra

Chair: Thomas M. Braun

The dissertation focuses on three novel approaches for analyzing data arising from

studies of periodontal disease, a common cause of tooth loss in adults, in order to

provide periodontists with a better understanding of periodontal disease and improv-

ing the prevention and treatment of the disease. Our first two methods focus on

identifying regions of the mouth that are most susceptible to periodontal disease and

thus determining locations of the mouth where localized treatments for the disease

can be best applied. First, we assume the directions of diseased teeth to be obser-

vations from a unimodal von Mises distribution, the mean of which is a function of

mouth-level covariates. Because multiple teeth from a subject are correlated, we use

a bias-corrected generalized estimating equation approach to obtain robust variance

estimates for our parameter estimates. Second, we extend our methods to model

asymmetry and multimodality by assuming the directions of diseased teeth follow

a Generalized von Mises distribution. We use generalized estimating equations to

model periodontally diseased locations and use a model selection criterion in order to

determine the appropriate number of modes. As applied to our motivating set of data,

xii



we find that periodontal disease tends to be located at the back of both sides of the

upper jaw, as well as at the middle of the lower jaw. Third, we propose using point

pattern data analysis methods to study the association between clinical attachment

level (CAL) and bone level (BL) and how the association varies among different types

of teeth. Applying these methods to our motivating data, we find that CAL and BL

are similar for molars and bicuspids, with the similarity stronger for bicuspids than

molars. We also found a substantial similarity between the CAL and BL of molars

with the CAL and BL of bicuspids. The results suggest that measurements on a single

tooth can be considered to be representative of the measurements obtained from the

other teeth. Thus, fewer teeth would need to be part of a periodontal exam, thereby

reducing the time and effort devoted to patient exams in future periodontal studies.
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CHAPTER I

Introduction

Periodontal disease, commonly called gum disease, is the most common cause of

tooth loss among adults and has a moderately high prevalence in the United States

(Brown and Loe, 1993). It is an inflammation and infection that destroys the tissues

that support the teeth, including the gums and the periodontal ligaments. The most

mild form of periodontal disease is gingivitis or inflammation of the gingiva, which

with poor dental hygiene and left untreated leads to loosening or loss of teeth and thus

develops into periodontitis. Periodontal disease is primarily caused by the deposition

of bacterial plaque, a sticky, colorless film that is usually present on the surface of

teeth. Regular brushing and flossing helps reduce the plaque biofilms. However, in

the absence of routine oral care, the plaque can harden to form calculus or tartar

that can irritate and inflate the gingiva. This results in the gingiva getting tender

or swollen and thus the gums pull away from the teeth ultimately resulting in tooth

loss.

The presence of a number of pathogens in the plaque has been linked with the

severity of periodontal disease. Though a single pathogen has not been identified

to be most predictive of periodontal health, Socransky et al. (1998) found that the

bacterial species Porphyromonas gingivalis, Tannerella forsythia and Treponema den-

ticola, commonly referred to as the “red complex,” had a high association with the
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severity of periodontal disease. Various studies have shown that smoking, tobacco

use are detrimental for periodontal health and the risk of periodontal disease also

increases with aging or having diabetes mellitus. A general overview of risk factors

for periodontitis are stated in Genco (1996) and Timmerman and Van der Weijden

(2006).

The development and progression of periodontal disease is commonly quantified

via longitudinal collection of several clinical parameters, most common of which are

clinical attachment level (CAL), pocket depth (PD), bleeding on probing (BOP) and

alveolar bone level (BL). The point where the crown (enamel) of the tooth connects

with the root (cementum) of the tooth is known as the cementoenamel junction

(CEJ). Any detachment of the gingiva from the cementum produces a gap between

the gum and the tooth, commonly referred to as a pocket. PD quantifies the depth

(in whole millimeters) of the pocket, while CAL quantifies the vertical distance (in

whole millimeters) from the base of the pocket to the CEJ. Figure 1.1, presented in

Arora et al. (2009), illustrates the clinical parameters and compares the measures

between a healthy tooth and a periodontally diseased tooth.

Figure 1.1: Diagram comparing clinical parameters in healthy (left) and periodon-
tally diseased (right) tooth. AL and PD refers to Clinical Attachment
Level and Pocket Depth respectively while CEJ refers to cementoenamel
junction. This diagram is presented in Arora et al. (2009).

2



In clinical studies of periodontal disease, all periodontal parameters are typically

measured at six sites around every tooth. At each probe, bleeding of the gums or the

absence of it gives an indication of active periodontal disease, leading to the binary

indicator of bleeding on probing (BOP). BL is calculated using radiographs and is the

length (in millimeters) from the CEJ to the crest of alveolar bone and is measured on

two surfaces of the tooth. Thus, a high value of CAL, PD, BOP or BL is detrimental

to periodontal health and ideally periodontists would expect all the clinical measures

to convey similar implications. Although no conclusive definition of periodontitis

exists, the American Academy of Periodontology has a site-specific, three-category

definition of periodontitis as being mild, moderate or severe according to whether

CAL is less than 3 mm, greater than 3 mm but less than 5 mm, and greater than 5

mm respectively (Wiebe and Putnins, 2000).

Various researchers and statisticians have been interested in understanding the

orientation of affected teeth in the mouth, as well as identifying the mechanism and

determining the risk factors for periodontal disease progression. Such research would

create a better understanding of the disease and hopefully yield therapeutic benefits

leading to prevention of periodontal disease. Since the measures from multiple teeth

are correlated, the association of periodontal disease with various risk factors could

be studied using either a marginal model (Hoffman et al., 2001) or a subject specific

model (Gillthorpe et al., 2003). In addition to measurements from multiple teeth

being correlated, there is an association between different types of teeth depending

on their position and function, and researchers have been interested in incorporating

these various kinds of associations into modeling of periodontal data. Reich et al.

(2007) proposed methods in which CAL data were modeled using a conditionally

autoregressive (CAR) prior model. Reich and Bandyopadhyay (2010) used spatial

factor analysis methods in order to model the number and location of missing teeth,

assuming the number and location of missing teeth to be indicative of a subject’s

3



periodontal health.

There is also considerable research interest in studying the locations of affected

teeth and determining locations of the mouth that are most prone to periodontal

disease. Loe and Brown (1991) and Thomson et al. (2000) observed that teeth at

the back of the mouth, and particular to one side of the mouth showed the great-

est indications for periodontal disease. Using basic summary statistics and simplistic

statistical models, it has been shown that intraoral distribution of periodontal disease

is associated with smoking (Torrungruang et al., 2011), race (Loe et al., 1978), age

(Spalj and Plancak, 2003) and pathogen levels (Riviere et al., 1995). However these

studies required prior knowledge of which locations and specific types of teeth to ex-

amine, and failed to incorporate multiple measurements from subjects. Furthermore,

the majority of the results were anecdotal, descriptive, and lacked formal statistical

inference. All these studies motivated us to pursue research addressing these issues.

Thus in Chapter II via a unified statistical model, we aim to address the limi-

tations of the studies cited previously. We propose methods for the identification of

periodontally diseased locations as well as quantify their dependence with mouth-level

characteristics using a regression approach that incorporates multiple measurements

from a subject. Our statistical model not only allows us to estimate where periodon-

tal disease is occurring, but also ascribe inferential concepts i.e. standard errors and

p-values to our estimates. To the best of our knowledge, ours is the first attempt to

specifically model where periodontal disease occurs and how the location varies ac-

cording to different patient characteristics incorporating multiple measurements from

a subject.

However a drawback of our approach is that we assume the distribution of affected

teeth is unimodal i.e. there is a single region in the mouth that is most likely to be

affected, which might be debatable. Mombelli and Meier (2001) and Darby et al.

(2012) studied the distribution of periodontal disease and have noted a symmetry
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among the left and right sides of the mouth with respect to the distribution of peri-

odontal disease in patients suffering from severe periodontal disease. Various dental

studies (Tomasi et al., 2007; Reich and Bandyopadhyay, 2010) have suggested that

periodontal disease is most common particularly at the back of the mouth and thus

it is possible that the distribution of affected teeth is multimodal. However, there

have been no formal attempts to determine the exact distribution of affected teeth

nor methods to verify if the distribution of diseased teeth is multimodal. Thus in

Chapter III we propose methods to study the distribution of affected teeth in the

mouth and to quantify the number and location of regions in the mouth that are

most likely to be affected with periodontal disease. In both Chapters II and III we

assume the mouth to be a circle with teeth as points located on the circumference

and thus use circular statistical methods to study the association.

Furthermore, periodontists are interested in studying the correspondence between

the different clinical measures and how they vary between different teeth. This is

essential in order to determine the periodontal status as well as to validate their mea-

sures. Of particular interest is the comparison between clinical attachment level (AL)

and alveolar bone level (BL) since both of them are used to determine the periodontal

status but are evaluated in different ways, namely by periodontal probes and radio-

graphs respectively. Renvert et al. (1981) found a high correlation between attach-

ment level and radiographic bone length measures. Goodson et al. (1984) proposed

that attachment loss precedes radiographic bone loss particularly during periods of

periodontal disease activity. Jeffcoat (1992) and Hausmann et al. (1994) showed that

there was a significant concordance between changes in bone level and attachment

level. The results from the above-cited studies were based on either Pearson’s cor-

relation coefficients or two-way contingency tables and were based on subject-level

data. To complement these existing approaches, we propose in Chapter IV to assess

the association of CAL and BL using spatial point pattern data analysis methods,
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and our approach allows for the incorporation of multiple tooth-level measurements

from each subject. Our methods also allow for direct estimation of the association as

a function of a binary covariate that indicates whether a tooth is a molar or biscupid,

and also assess the difference in the association between the two types of teeth.

The clinical dataset motivating our methods was obtained from a clinical trial

of periodontitis studied in Ramseier et al. (2009) and Kinney et al. (2011). It was

a non-randomized observational study, conducted at the Michigan Center for Oral

Health Research involving 50 periodontally healthy and 50 periodontally diseased

subjects, based upon entry criteria specified in Ramseier et al. (2009). In the study,

investigators gave periodontal exams and collected saliva samples from each of the

100 subjects at baseline, as well as six and twelve months after enrollment. There

were various types of data collected on each subject. We have information about their

demographic characteristics, clinical measures like CAL, BOP, BL and also various

salivary biomarkers and pathogen levels. The main motivation behind the study was

to assess the association between salivary biomarkers and red complex pathogens in

the presence of periodontal disease. For our endeavor, we have analyzed the data in

all the chapters and it also was the motivating dataset on which we based all our

simulation examples.
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CHAPTER II

Analysis of Periodontal Data using Unimodal

Circular Statistics

2.1 Introduction

Periodontal disease is the most common cause of tooth loss among adults and has

a prevalence of about 30-50 % in the United States (Brown and Loe, 1993). The most

mild form of periodontal disease is gingivitis, or inflammation of the gingiva, which,

in the absence of routine oral care to reduce plaque, frequently develops into peri-

odontitis, which, if left untreated, leads to loosening and loss of teeth. The American

Academy of Periodontology and National Institute of Dental and Craniofacial Re-

search state that the primary cause of periodontal disease is the presence of bacterial

plaque, a sticky, colorless film that is usually present on the surface of teeth.

The presence of a number of pathogens in the plaque has been linked with the

severity of periodontal disease. Though a single pathogen has not been identified

to be most predictive of periodontal health, Socransky et al. (1998) found that the

bacterial species Porphyromonas gingivalis, Tannerella forsythia and Treponema den-

ticola, commonly referred to as the “red complex,” had a high association with the

severity of periodontal disease. Recently, Ramseier et al. (2009) showed that the sali-

vary biomarkers matrix metalloproteinase (MMP)-8 and MMP-9, together with red

complex pathogens, were indicative of the presence of periodontal disease. A general

overview of mouth-level risk factors for periodontitis are stated in Timmerman and
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Van der Weijden (2006).

The development and progression of periodontal disease is commonly quantified

via longitudinal collection of several clinical parameters, including clinical attachment

level (CAL), pocket depth (PD), and a binary indicator of bleeding on probing (BOP).

The point where the crown (enamel) of the tooth connects with the root (cementum)

of the tooth is known as the cementoenamel junction (CEJ). Any detachment of the

gingiva from the cementum produces a pocket. PD quantifies the depth (in whole

millimeters) of the pocket, while CAL quantifies the vertical distance (in whole mil-

limeters) from the base of the pocket to the CEJ. In clinical studies of periodontal

disease, all periodontal parameters are typically measured at six sites around ev-

ery tooth. Although no definitive definition of periodontitis exists, the American

Academy of Periodontology has a site-specific, three-category definition of periodon-

titis as being mild, moderate, or severe according to whether CAL is less than 3 mm,

greater than 3 mm but less than 5 mm, and greater than 5 mm respectively (Wiebe

and Putnins, 2000).

Because the measures collected from multiple teeth of a subject are correlated, the

association of periodontal disease with mouth-level risk factors could be determined

using either a marginal model or a subject-specific model. For example, Hoffman

et al. (2001) analyzed periodontal data using marginal methods, while Gillthorpe

et al. (2003) used a random coefficient model in order to model periodontal disease

progression. Furthermore, as clinical measures are collected on sites and teeth with a

specific orientation in the mouth, existing statistical methods have focused on how to

incorporate this orientation into the analysis of periodontal data. Reich et al. (2007)

proposed methods in which CAL data were modeled using a conditionally autore-

gressive (CAR) prior model, and Reich and Hodges (2008) extended that idea to a

spatiotemporal model to monitor the progression of CAL. Reich and Bandyopadhyay

(2010) used spatial factor analysis methods in order to model the number and location
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of missing teeth, assuming the number and location of missing teeth to be indicative

of a subject’s periodontal health. Recently, Zhang et al. (2011) used latent variable

models for analyzing tooth level caries data.

Quantifying where periodontal disease occurs in the mouth would assist in identi-

fying locations in the mouth most susceptible to periodontal disease and lead to better

prevention of and treatment for the disease. For example, the work of Tiwari (2010)

presents a method for delivering the antimicrobial agent metronidazole through the

use of microspheres to localize the delivery of the drug. Such a localized delivery

might also be used in subjects who are at higher risk of developing periodontal dis-

ease, but have yet to show symptoms of the disease, as a method for reducing the

prevalence of periodontal disease. However, such an approach is only feasible once

we are able to accurately determine the locations where periodontal disease is most

likely to occur.

Although much published research exists on the location of periodontal disease,

the majority of the results are anecdotal and descriptive and lack formal statistical

inference. For example, Loe and Brown (1991) and Thomson et al. (2000) studied

specific locations of the mouth and concluded that periodontal disease is most com-

mon at the back of the mouth. However, their work required a priori knowledge

of which locations and specific types of teeth to examine, and lacked a mouth-wide

assessment of all locations in the mouth. Additionally, various researchers have been

interested in detecting variations in the intraoral distribution of periodontal disease

associated with smoking (Torrungruang et al., 2011), race (Loe et al., 1978), age

(Spalj and Plancak, 2003), pathogen levels (Riviere et al., 1995), and other patient

characteristics (Tomasi et al., 2007). However, the statistical methods used in these

examples were simplistic, relying upon summary statistics of clinical measures and

comparing these statistics across different regions of the mouth and differing patient

characteristics using t-tests and ANOVA, without simultaneously modeling all lo-
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cations in the mouth. Hirotomi et al. (2010) used multilevel logistic regression to

identify tooth-level and mouth-level factors affecting periodontal disease progression,

and found that multi-rooted and maxillary teeth were at higher risk for periodontal

disease progression, demonstrating continuing interest in identifying specific locations

in the mouth that are more susceptible to periodontal disease.

Through a single statistical model, we aim to address the limitations of the stud-

ies cited previously. Our proposed methods will allow for the identification of peri-

odontally diseased locations as well as quantify their dependence with mouth-level

characteristics. In contrast to existing methods, we propose a regression approach

that incorporates the multiple measurements from a subject and does not require any

prior knowledge about which specific mouth locations to include. Furthermore, our

methods allow us to identify the mean location of affected teeth, which quantifies the

region in the mouth where one would expect periodontal disease to be pronounced in

the study population and how the location varies with patient characteristics. Most

importantly, through our use of a statistical model, we are able to not only estimate

where periodontal disease is occurring, but ascribe inferential concepts, i.e. standard

errors and p-values to our estimates. To the best of our knowledge, ours is the first

attempt to specifically model where periodontal disease occurs and how the location

varies according to different patient characteristics.

We apply circular statistics, a specific area of directional statistics, for analyzing

data arising from periodontal studies. The primary motivation of our approach arises

from the orientation of teeth in the mouth. We assume the mouth to be a circle

and the teeth to be points lying on the circumference of the circle. The periodontal

disease status of an individual tooth is determined on the basis of its tooth-averaged

CAL. Using a circular-linear regression model (Fisher and Lee, 1992), we model the

direction of diseased teeth in the mouth as a function of mouth-level covariates.

Using this model, we can determine the mean location of periodontal disease in the
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mouth and also identify important predictors of where periodontal disease occurs

in the mouth. Section 2.2 describes the details of our proposed methods, Section

2.3 contains the results of simulation studies of our proposed methods as well as

application of our methods to an actual dataset and Section 2.4 contains concluding

remarks.

2.2 Methods

2.2.1 Circular Location Model

In order to incorporate the spatial orientation of teeth in the mouth, we envision

the mouth to be a circle and assume the teeth are distributed on the circumference

as shown in Figure 2.1. We use the Universal Numbering System adopted by the

American Dental Association, in which the 32 teeth in an adult are numbered se-

quentially from 1 to 32, with the numbers 1-16 referring to the teeth in the upper

jaw (maxillary) and the numbers 17-32 referring to the sixteen teeth in the lower jaw

(mandibular). As wisdom teeth (teeth 1, 16, 17 and 32) are often removed in most

adults even when healthy, these teeth are usually omitted from periodontal studies,

leading to a maximum of 28 teeth measured in each subject.

These numbers allow us to designate a specific direction in radians for each tooth

corresponding to its location in the mouth. If we assume that all 32 teeth are uni-

formly distributed among the circumference of a circle covering 2π radians rang-

ing from −π to π, tooth number t, t = 1, 2, . . . 32, is associated with a direction of

π(2t− 33)/32 radians. Thus, a location of zero radian lies between teeth 16 and 17,

designating maxillary teeth with negative radians and mandibular teeth with positive

radians. We define a tooth to be diseased with periodontal disease if its corresponding

six sites have an average CAL of 3 mm or more, as in Hoffman et al. (2001). Thus,

the data to be analyzed for each subject are the locations (in radians) of the teeth
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Figure 2.1: Diagram showing orientation of teeth in the mouth including numbering
according to the Universal Numbering System.

affected with periodontal disease. Since we are primarily interested in identifying

mean locations of diseased teeth, teeth not affected with periodontal disease (mean

CAL less than 3 mm) are noninformative for our purpose and therefore will not be a

part of the data to be analyzed.

We have m subjects in our study and subject i, i = 1, 2, . . .m has 1 ≤ ni ≤ 28 dis-

eased teeth. We let Yij denote the location of diseased tooth j, j = 1, 2, . . . ni in subject

i, with a corresponding vector of K mouth-level covariates X i = {Xi1, Xi2, . . . , XiK}.

Since the response variable Yij denotes an angle on a circle, we assume Yij to be a

realization from a von Mises distribution. The von Mises distribution, also known

as a Circular Normal distribution, is a continuous probability distribution on a circle

(Mardia, 1972; Fisher, 1993). It is a symmetric unimodal distribution widely used

in directional statistics to model circular data. The von Mises density for random
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variable Z, with mean direction µ and concentration parameter κ, is given by

f(z) =
1

2πI0(κ)
exp[κ cos(z − µ)] − π ≤ z, µ < π, κ ≥ 0 (2.1)

where I0(κ) is the modified Bessel function of the first kind of order zero (Abramowitz

and Stegun, 1965). The parameter µ denotes the mean direction while the parameter

κ quantifies the concentration (variability) about the mean direction with smaller

values of κ indicating greater variability.

For our purposes, we assume the response Yij has a marginal von Mises distribution

with mean µi and concentration parameter κ. We denote the vector of locations

for subject i as Y i = {Yi1, Yi2, . . . , Yini
}, which has corresponding mean locations

µi = µi1ni
. We note that each response Yij is a circular random variable while the

corresponding vector of mouth-level or mouth-level covariates X i are not circular,

i.e. are continuous or categorical as with standard regression approaches. Hence,

in order to study the relationship between Yij and X i, we use a so-called circular-

linear regression model (Fisher and Lee, 1992). This model assumes a monotone link

function that maps the explanatory variables to a circle. Though a variety of choices

of the link function can be used, as discussed in Fisher and Lee (1992), we use the

link function h(x) = 2 arctan(x). Hence, the circular-linear regression equation for

modeling the marginal response is

µi = 2 arctan(β0 + β1Xi1 + β2Xi2 + ...βKXiK) = 2 arctan(ηi) (2.2)

where ηi = β0 + β1Xi1 + β2Xi2 + ...βKXiK .

We note that our methods can incorporate covariates measured at both mouth-

level (equal for all teeth in the same mouth) and tooth-level (possibly different for

each tooth in the same mouth). However, we focus solely on mouth-level covariates

as our model (2.2) results in a single mean location per subject of where periodontal
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disease exists in a mouth. Tooth-level predictors in our regression model would output

a vector of mean locations for each subject, which though statistically correct, would

not be easily interpretable in our setting. This challenge in interpretation is analogous

to the use of time-varying covariates with longitudinal data. Our goal is to find mouth-

level characteristics that may be associated with disease location. We note that some

of these mouth-level covariates can be summary statistics of tooth-level measures, i.e.

average pathogen level throughout the mouth or the mean number of locations that

bleed when probed.

One crucial assumption of a von Mises distribution is that the location of peri-

odontal disease is unimodal, an assumption that some may view as debatable. We

first note that ours is the first attempt at modeling the distribution of periodontal

disease locations, and no conclusive proof exists regarding whether unimodality is a

valid assumption, as any evidence of multi-modality of periodontal disease locations

is based mostly on anecdotal evidence from relatively small samples of data, with no

formal attempts to determine whether more than one mode can be detected relative

to the amount of variability inherent in the data. Mombelli and Meier (2001) and

Darby et al. (2012) studied the distribution of periodontal disease and have noted a

symmetry among the left and right sides of the mouth with respect to the distribution

of periodontal disease in patients suffering from severe periodontal disease. Similarly,

Thomson et al. (2000) and Loe and Brown (1991) observed that teeth at the back of

the mouth, and particular to one side of the mouth showed the greatest indications

for periodontal disease. When affected teeth mostly occur on one side and at the

back of the mouth, our methods should give a valid estimate of the mean direction.

We further note that for bimodal data where there similarity between opposing teeth

in both jaws, our algorithm would result in a mean direction that is the average di-

rection between the two modes, but closer to the the part of the mouth having the

maximum number of affected teeth (see simulation results in Section 2.3).
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2.2.2 Computing Mean Parameter Estimates and Their Standard Error

Estimates

Our goal is to estimate the regression coefficients β=(β0,β1,...,βK)T in equation

(2.2) and derive consistent variance estimates of the parameter estimates. Our data

is comprised of multiple locations of diseased teeth per person, the number of which

can vary from person to person, that are likely to be correlated due to the presence

of some unobservable (latent) subject characteristics. Although this correlation could

be incorporated through the inclusion of random effects in equation (2.2), such an

approach changes the interpretation of the coefficients to be conditional on the values

of the random effects. We instead focus on a population-averaged (marginal) approach

for determining where periodontitis in the mouth. Given that we intend to model

the marginal effects of the covariates, we have chosen to account for the correlation

of locations from the same subject using generalized estimating equations (GEE)

(Liang and Zeger, 1986). The advantage of GEE is that it does not require the

correlation structure to be correctly specified in order to produce consistent estimates

of the regression parameters, assuming that mean structure of the locations has been

correctly specified. Moreover, GEE can produce consistent variance estimates for

the regression parameter estimates even if the correlation structure is misspecified,

although incorporating a correctly-specified correlation structure leads to improved

efficiency (Lipsitz et al., 1994).

This last fact is important in our setting, because it is difficult to quantify the

correct correlation structure with periodontal outcomes. The within-subject correla-

tion of locations is not only related to the proximity of teeth to each other, but is

also related to the biological functioning of the teeth, i.e. two molars, although in

different regions of the mouth, are expected to be more correlated than a molar and

incisor that are in different regions of the mouth. Hence, the assumption of any stan-

dard correlation structure, e.g. exchangeable or autoregressive, seems unreasonable
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in our setting, while an unstructured correlation matrix will require the estimation

of far too many parameters. Thus, our methods will simply assume independence of

locations from the same subject when estimating the regression parameters, i.e. use

an independence “working” correlation matrix, and then use the resulting residuals

to produce “robust”, or so-called “sandwich”, variance estimates.

We note that Artes et al. (2000) and Song (2007) have both discussed the appli-

cation of GEE to correlated circular outcomes. However, both of those approaches

focused upon the large-sample properties of GEE and did not examine settings with

a small or moderate number of subjects. Through our work, we have found that

the robust variance estimates produced by GEE are quite biased in the sample sizes

seen with most periodontal studies and lead to inflated Type I error rates. Thus, we

propose the use of a bias-corrected robust variance estimator based on the methods of

Mancl and DeRouen (2001). We now present details of GEE and the bias-correction

methods that are pertinent to outcomes with marginal von Mises distributions.

The von Mises distribution, specified by equation (2.1), falls under the general

family of dispersion models having unit deviance function d(z;µ) = 2[1− cos(z − µ)]

(Jorgensen, 1997). The deviance score and the unit variance function are related

to the unit deviance function as δ(z;µ) = −1
2
∂(d(z;µ))
∂(µ)

= sin(z − µ) and V (µ) =

2[ ∂
2

∂µ2
d(z;µ)|z=µ]−1 = 1 respectively. For dispersion models, residuals are generally

defined as the scaled deviance scores and are formulated as r(z;µ) = V (µ)δ(z;µ).

Since the von Mises distribution has a unit variance function V (µ) = 1, the residuals

are equal to the deviance scores.

We define the vector of score residuals for subject i as ri = (ri1, ri2, ..., rini
)T where

the residual corresponding observation j is defined as rij = sin[yij − 2 arctan(ηi)]. It

can be shown that Var(rij) = κ−1A1(κ), where A1(κ) = I1(κ)/I0(κ) is the mean

resultant length and Ip(κ) is the modified Bessel function of the first kind of order

p (Abramowitz and Stegun, 1965). As we assume that the observations, and hence

16



the residuals, from a subject are independent, we use the working covariance matrix

Σi = A1(κ)κ−1Ini
, where Ini

is an ni × ni identity matrix. Based upon the basic

methodology for GEE, we estimate β from the equation:

Ψ(β) =
m∑
i=1

DT
i ri = 0 (2.3)

where DT
i = X iZi, X i is a design matrix of order p×ni and Zi=(1 + η2i )

−1Ini
. The

working covariance matrix Σi being a constant multiple of an identity matrix does

not directly appear in the estimating equation (2.3).

The model based variance estimator of β̂, i.e. the variance estimator of β̂ as-

suming the correlation has been correctly specified is given by V arMB(β̂) = S(β̂)−1

where S(β) = E[Ψ′(β)] = A1(κ)
∑
i

DT
i Di. However, because Σi is misspecified,

making V arMB(β̂) inconsistent, an alternative is the robust, or so-called “sandwich”

variance estimator V arR(β̂) = S(β̂)−1V (β̂)S(β̂)−1, where V (β) = E[Ψ(β)Ψ(β)T ] =∑
i

DT
i cov(ri)Di. Usually cov(ri) is estimated by rir

T
i and thus V (β) =

∑
i

DT
i rir

T
i Di.

However, the robustness property of V arR(β̂) to the misspecification of the work-

ing covariance matrix is a large-sample concept, and the working covariance matrix

may still negatively influence V arR(β̂) in finite samples, which is what we discov-

ered in our simulations. As result, we propose the use of the bias-corrected robust

variance estimator, computed using a first order Taylor series expansion of the resid-

ual vector ri, as in Mancl and DeRouen (2001). If we denote V1(β) =
∑
i

DT
i (I i −

H ii)
−1rir

T
i (I i−H ii)

−1Di, in which H ii = Di

(∑
i

DT
i Di

)−1
DT

i , the bias-corrected

robust variance estimator of β̂ is given by V arBC(β̂) = S(β̂)−1V1(β̂)S(β̂)−1. In com-

parison to the uncorrected variance estimator, the bias-corrected variance estimator

uses an additional term (I i − H ii)
−1 which serves to inflate the robust variance,

making V arBC(β̂) more likely to yield a consistent variance estimate than V arR(β̂).

We note that in our setting, the methods of Mancl and DeRouen (2001) require
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the computation of the first derivative of the deviance function with respect to the

mean function. Due to the computational complexity of this first derivative, we

chose to use the expected value of the corresponding derivative as a very accurate

approximation that was much simpler to compute. Existing literature (Paik, 1998;

Lipsitz et al., 1994) has suggested the use of Student’s t or F -distribution as a reference

distribution instead of the asymptotic normal or chi-square distribution applied to a

Wald statistic. However, the choice of the degrees of freedom to be used is rather

subjective. As suggested by Mancl and DeRouen (2001), we have chosen to use a

t-distribution with degrees of freedom equal to the difference between the number of

subjects and the number of parameters in the regression model, as it leads to a Wald

test with approximately nominal size in our simulations.

In order to get starting parameter values for the GEE algorithm, we assume that

the data are uncorrelated. We fit the von Mises distribution (2.1) to the data and

obtain the maximum likelihood estimates (MLE) of µ and κ, as described in Fisher

(1993) and Jammalamadaka and SenGupta (2001). We choose the MLE of κ as

its starting value for our algorithm, and the MLE of µ is not used further. From

equations (2.1) and (2.2), the value of β that maximizes the log-likelihood, assuming

independent observations, is equal to the value that maximizes

l(β) =
m∑
i=1

ni∑
j=1

cos{θij − 2 arctan(β0 + β1Xi1 + β2Xi2 + ...βKXiK)}

Over a fixed grid of values, we find the value of β0 that maximizes l(β) when we

restrict β1, β2, ..., βK to be zero. We use this estimate of β0 to find the value of β1

that maximizes l(β), over a fixed grid of values, when we restrict β2, β3, ..., βK to be

zero. We carry on this procedure until we get initial estimates for all the elements of

β.

Once the starting values are computed, estimates of β and κ are computed re-
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cursively. Since the estimating equation (2.3) cannot be solved analytically, we use a

standard Newton Scoring algorithm for estimating β. We obtain the updated β̂new

from the previous estimate β̂old using

β̂new = β̂old − S(β̂old)
−1

Ψ(β̂old)

The updated estimate, κ̂, is computed using the inverse of the relation

A1(κ̂) =

(
m∑
i=1

ni∑
j=1

cos(θij − 2 arctan(η̂i))

)
/(

m∑
i=1

ni)

2.3 Numerical Examples

2.3.1 Simulation of Data

We now examine the performance of our methods using simulations of periodontal

data motivated by a study described in Ramseier et al. (2009). We are interested in

determining the ability of our methods to identify mouth-level covariates that are sig-

nificantly associated with the location of periodontal disease. Our simulations focus

upon two mouth-level covariates: (i) the proportion of sites in the mouth that expe-

rience bleeding on probing (BOP), and (ii) the percentage of total plaque bacterial

pathogen load (PL) belonging to the red complex pathogen group. We assume that

the number of diseased teeth in a person follows a Poisson distribution with mean

λ = 5.81, which is the mean number of diseased teeth i.e. teeth having average CAL

greater than 3mm, at baseline for the data described in Ramseier et al. (2009). The

99th percentile of this Poisson distribution is 12, which is also a realistic upper bound

on the number of diseased teeth expected to occur in a person.

For a given subject i, i = 1, 2, . . .m, there are ni diseased teeth. We denote Bi

as the proportion of sites experiencing BOP for subject i and Pi as the mouth level

PL for subject i. Without loss of generality, we have assumed that if subject i has ni
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diseased teeth, those diseased teeth occur at teeth numbered 1, 2, . . . ni, which means

that in our simulations periodontal disease is occurring more frequently on one side

of the upper jaw. We simulate Bi and Pi using the linear mixed effects models:

logit(Bi) = µB + γ1ni + ui + eBi and Pi = µP + γ2ni + ui + ePi where µB is the mean

log odds of proportion of sites experiencing BOP and µP is the mean PL in subjects

having at least one diseased tooth. We incorporate a random subject effect ui that has

a normal distribution with mean 0 and variance τ 2, denoted ui ∼ N (0, τ 2), to create

correlation among measures from the same subject. The error terms eBi ∼ N (0, σ2
B),

and ePi ∼ N (0, σ2
P ) are mutually independent of each other and the random subject

effect ui.

In our simulation algorithm the parameter τ 2 denotes the random subject effect

variance. The strength of the association of the two mouth-level covariates with the

location of periodontal disease is quantified by the parameters γ1 and γ2. Thus when

τ = γ1 = γ2 = 0 there is no dependence between the covariates and the affected

teeth locations, and the observations from a subject are independent. In this setting,

mouth level BOP and PL values are distributed randomly throughout the mouth and

neither is associated with where periodontal disease is occurring. We refer to this one

as our “null setting”. Non-zero values of γ1 and γ2 indicate that BOP and PL have

an association with the location of periodontal disease. Furthermore, the dependence

of the mouth level covariates on the location of periodontal disease is incorporated

using the number of diseased teeth as we assume the diseased teeth to be occurring

at consecutive tooth numbers starting with tooth numbered one. The values of the

parameters presented above were chosen such that the distribution of the simulated

data were similar to the baseline data in Ramseier et al. (2009), resulting in µB = 0.04,

µP = 3.6, τ = 0.2, σB = 0.4, σP = 0.6.

Although our approach for simulating data does not match the model we chose

to analyze the data, we chose to simulate the data with consecutive teeth as diseased
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for several reasons. First, our approach was a simple way to generate unimodal

periodontal data. Second, as we know that affected teeth occur on only one side

of the mouth, we can get an idea about average direction of affected teeth in our

simulated datasets. Hence we will be able to calculate the mean direction of affected

teeth in the simulated datasets and compare it to the estimated direction at the mean

value of the covariate(s) using our fitted model. Thus, our approach provides a way to

assess the performance of our estimation method and check if we are able to predict

the mean location well when we correctly assume the unimodality of periodontal

disease. Third, we are able to examine the performance of our methods in settings

where the data is generated from a model different from that used to analyze the

data.

2.3.2 Simulation Results

We first focus on modeling the marginal association between the proportion of

sites with BOP and location of periodontal disease. We simulated 2,000 sets of data

in four different settings and three different sample sizes of m ∈ {30, 50, 100}. The

first setting is our “null” setting in which both γ1 = 0 and τ 2 = 0, so that BOP occurs

randomly throughout the mouth. The remaining three settings examine increasing

magnitudes of association between BOP and the location of periodontal disease. In

each simulated set of data, we fit the regression model µi = 2arctan(β0 + β1Bi)

and record β̂1, the estimate of β1, as well as the bias-uncorrected and bias-corrected

standard error estimates of β̂1. Among the 2,000 simulation results, we computed the

empirical mean and standard deviation of the estimates of β1. For each simulation, we

also performed a Wald test for β1 = 0 using the bias-corrected standard error estimate

and recorded whether or not the test indicated rejection based upon a t-distribution

with (m− 2) degrees of freedom. For the “null” setting, we expect the Wald test to

have nominal size of 0.05, indicated by the observed proportion of simulations with
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rejection lying in the interval (0.040, 0.060). The results are shown in Table 2.1.

Table 2.1 Table showing the mean of estimated parameters and corresponding test
sizes obtained on fitting the model: µi = 2arctan(β0 + β1Bi) for 2,000 simulated
datasets. The test sizes were calculated using bias-corrected standard error estimates
assuming that the resulting Wald statistic followed a t-distribution with (m − 2)
degrees of freedom; E=empirical; UC=uncorrected; BC=bias-corrected.

Sample SE of β̂1
Setting Size (m) Mean β̂1 E UC BC TestSize

γ1 = 0.00; τ = 0.00 30 0.05 2.51 2.09 2.55 0.05
50 0.02 1.85 1.68 1.90 0.05
100 -0.01 1.30 1.22 1.30 0.05

γ1 = 0.03; τ = 0.2 30 1.70 2.26 1.87 2.30 0.11
50 1.68 1.69 1.49 1.69 0.17
100 1.64 1.16 1.09 1.17 0.27

γ1 = 0.05; τ = 0.2 30 2.74 2.23 1.84 2.28 0.21
50 2.72 1.67 1.47 1.68 0.36
100 2.69 1.17 1.08 1.16 0.63

γ1 = 0.07; τ = 0.2 30 3.71 2.20 1.80 2.27 0.36
50 3.69 1.65 1.43 1.66 0.60
100 3.67 1.16 1.05 1.14 0.90

For the null model, we see that the bias-corrected standard error estimate is

close to the empirical standard error of β̂1. However, the uncorrected standard error

estimate is negatively biased, with the amount of underestimation being greater for

smaller sample sizes. Thus, inference should be based on the bias-corrected variance

estimator instead of the robust variance estimator. Histograms and quantile-quantile

plots of the Wald statistics, calculated using the bias-corrected standard error, showed

that the distribution was symmetric but had heavier tails than expected for a standard

normal distribution. The empirical variance and kurtosis of the Wald statistics were

close to that of a t-distribution with (m− 2) degrees of freedom, thereby supporting

the proposal of Mancl and DeRouen (2001).

In the three settings where an association exists between proportion of sites ex-

periencing BOP and location of periodontal disease, we continue to see that the

bias-corrected standard error estimate is close to the empirical standard error of β̂1,
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with the uncorrected standard error continuing to underestimate the true standard

error. We note that γ1 values of 0.03, 0.05 and 0.07 correspond to average Spearman

rank correlations of 0.07, 0.11 and 0.15 between the proportion of sites experiencing

BOP and the direction of diseased teeth, respectively. Thus, our proposed algorithm

has good power for moderately sample sizes even when the correlation between the

proportion of sites experiencing BOP and the location of periodontal disease is mod-

est.

In order to study the marginal association between bacterial pathogen load (PL)

in the mouth and location of periodontal disease, we fit the regression model µi =

2arctan(β0 + β2Pi). We simulated data using the same approach that we used for

assessing the marginal association of mouth-level BOP with location of periodontal

disease. The results are presented in Table 2.2 where γ2 values of 0.05, 0.07, 0.09

correspond to average Spearman rank correlations of 0.08, 0.11, 0.14 between PL

and direction of diseased teeth respectively. As with mouth-level BOP, the results in

Table 2.2 show the improvement of the bias-corrected standard error in comparison

to the bias-uncorrected standard error in all the four scenarios.

Furthermore, in order to study the association between proportion of sites expe-

riencing BOP and location of periodontal disease conditional on the value of mouth-

level PL we consider the model µi = 2arctan(β0 + β1Bi + β2Pi). Inference using

simulation results, presented in Table 2.3, are analogous to those presented in Tables

2.1 and 2.2. However, the test sizes are now calculated in reference to a t-distribution

with (m − 3) degrees of freedom. Here, the three settings which examine increasing

association between the covariates and the location of diseased teeth correspond to

average Spearman rank correlations of 0.16, 0.19, 0.23 between the covariates BOP

and PL respectively.

We also note that we found that across all simulation settings and both covariates,

our fitted regression models tended to predict the mean direction of diseased teeth to
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Table 2.2 Table showing the mean of estimated parameters and corresponding test
sizes obtained on fitting the model: µi = 2arctan(β0 + β2Pi) for 2,000 simulated
datasets. The test sizes were calculated using bias-corrected standard error estimates
assuming the resulting Wald statistic followed a t-distribution with (m − 2) degrees
of freedom; E=empirical; UC=uncorrected; BC=bias-corrected.

Sample SE of β̂2
Setting Size (m) Mean β̂2 E UC BC Test Size

γ2 = 0.00; τ = 0.00 30 0.01 0.40 0.34 0.42 0.05
50 0.00 0.30 0.27 0.31 0.05
100 -0.01 0.21 0.20 0.21 0.05

γ2 = 0.05; τ = 0.2 30 0.31 0.36 0.30 0.38 0.12
50 0.31 0.27 0.24 0.28 0.19
100 0.32 0.19 0.18 0.19 0.37

γ2 = 0.07; τ = 0.2 30 0.42 0.35 0.29 0.37 0.19
50 0.42 0.26 0.23 0.27 0.33
100 0.43 0.19 0.17 0.19 0.61

γ2 = 0.09; τ = 0.2 30 0.51 0.34 0.28 0.36 0.29
50 0.52 0.25 0.22 0.26 0.48
100 0.52 0.18 0.16 0.18 0.82

be -2.50 radians which corresponds to tooth number four. This is to be expected, as

we had simulated the data assuming that the number of diseased teeth in a subject

follows a Poisson distribution with mean 5.81, with diseased teeth numbered in an

ascending order starting from tooth number one. Since the circular mean of the

directions corresponding to tooth numbers 1 to 6 is -2.55 radians, our regression

models give a good prediction of the mean direction of diseased teeth.

We also fitted our methods to bimodal data such that when a tooth is affected, the

tooth on the contralateral side, i.e. on the opposite jaw, is also affected. We simulated

2,000 sets of data of 30 subjects each, similar to the data summarized in Tables 1-3,

such that the affected teeth occur around modes at teeth 15 and 18, i.e. on the left

side of the mouth, and there are more affected teeth at and adjoining tooth numbered

18 along the lower left jaw. Our algorithm resulted in a mean direction corresponding

to edge between teeth 17 and 18 (results not shown). This suggests that with bimodal

data, our algorithm will produce a mean direction that is close to the mean of the
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Table 2.3 Table showing the mean of estimated parameters and corresponding test
sizes obtained on fitting the model: µi = 2arctan(β0+β1Bi+β2Pi) for 2,000 simulated
datasets. The test sizes were calculated using bias-corrected standard error estimates
assuming the resulting Wald statistic to follow a t-distribution with (m− 3) degrees
of freedom; E=empirical; UC=uncorrected; BC=bias-corrected.

Sample SE of β̂1
Setting Size (m) Mean β̂1 E UC BC Test Size

γ1 = 0.00, γ2 = 0.00; τ = 0.00 30 0.06 2.62 2.09 2.74 0.05
50 0.02 1.92 1.67 1.97 0.04
100 -0.02 1.31 1.22 1.32 0.05

γ1 = 0.03, γ2 = 0.05; τ = 0.2 30 1.42 2.35 1.86 2.47 0.07
50 1.39 1.73 1.48 1.76 0.11
100 1.34 1.18 1.09 1.19 0.19

γ1 = 0.05, γ2 = 0.07; τ = 0.2 30 2.30 2.31 1.83 2.46 0.14
50 2.28 1.72 1.45 1.74 0.26
100 2.21 1.18 1.06 1.18 0.45

γ1 = 0.07, γ2 = 0.09; τ = 0.2 30 3.08 2.28 1.79 2.43 0.23
50 3.05 1.69 1.42 1.72 0.41
100 2.98 1.16 1.04 1.16 0.73

Sample SE of β̂2
Setting Size (m) Mean β̂2 E UC BC Test Size

γ1 = 0.00, γ2 = 0.00; τ = 0.00 30 0.01 0.42 0.34 0.45 0.04
50 0.001 0.31 0.27 0.32 0.05
100 -0.01 0.21 0.20 0.21 0.05

γ1 = 0.03, γ2 = 0.05; τ = 0.2 30 0.27 0.38 0.30 0.41 0.10
50 0.28 0.28 0.24 0.29 0.15
100 0.28 0.19 0.18 0.20 0.29

γ1 = 0.05, γ2 = 0.07; τ = 0.2 30 0.35 0.36 0.29 0.40 0.13
50 0.35 0.27 0.23 0.28 0.23
100 0.35 0.19 0.17 0.19 0.45

γ1 = 0.07, γ2 = 0.09; τ = 0.2 30 0.40 0.35 0.28 0.38 0.18
50 0.40 0.26 0.22 0.27 0.31
100 0.40 0.18 0.16 0.18 0.60

two modes and skewed towards the mode with a greater propensity of the data. We

confirmed these conclusions by simulating data in three additional settings with the

modes located at two different teeth and found that our conclusions held with these

settings as well (results not shown). However, we emphasize in settings like these
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that a simple plot of the resulting residuals (as presented in the next section) would

indicate that an assumption of a unimodal distribution of periodontal disease would

be suspect.

2.3.3 Data Analysis

We applied our methods to the data motivating our simulations, which came

from the clinical trial described in Ramseier et al. (2009) and Kinney et al. (2011).

This non-randomized observational study, conducted at the Michigan Center for Oral

Health Research, involved 50 periodontally healthy and 50 periodontally diseased

subjects, based upon entry criteria specified in Ramseier et al. (2009). Investigators

gave periodontal exams and collected saliva samples from each of the 100 subjects at

baseline, as well as six and twelve months after enrollment. Among the data recorded

for each subject, we focus upon the tooth-level mean CAL, proportion of sites in

the mouth experiencing BOP, and the total percentage of the bacterial pathogens P.

gingivalis, T. denticola, and T. forsythia present in the saliva.

We wish to use our methods to examine if the mean location of diseased teeth is

associated with mouth level BOP and/or pathogen levels at baseline or six months.

At baseline, there were 42 subjects with at least one diseased tooth (mean CAL > 3

mm) contributing a total of 244 teeth. At six months, there were 33 subjects with at

least one diseased tooth contributing a total of 199 teeth. The decrease in sample size

is due to the loss of a few subjects during the first six months of the study, as well

as the Hawthorne effect (Braunholtz et al., 2001) common in observational studies,

i.e. patients in the study naturally improved their oral health behaviors slightly once

enrolled in the study. The maximum likelihood estimate of the mean location of

periodontal disease at baseline is -0.33 radians, which corresponds to tooth number

15 in Figure 2.1. These results supported our cursory exam of the data, in which we

saw periodontal disease occurring at molars and other teeth at the back of the mouth.
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We then applied our algorithm to study both the marginal and joint associations

of mouth-level BOP and PL on the mean location of periodontal disease. We fit

the models µi = 2arctan(β0 + β1Bi) and µi = 2arctan(β0 + β2Pi) in order to study

the marginal association with proportion of BOP and percentage of red complex

pathogen level separately. We also fit the model µi = 2arctan(β0 + β1Bi + β2Pi)

which quantifies the joint dependence of the predictors with the diseased locations.

As in earlier sections, we consider inference using the bias-corrected standard error

estimate and assuming the Wald statistic follows a null t-distribution. The results

are tabulated in Table 2.4. We find that neither proportion of sites with BOP nor

percentage of red complex pathogens at baseline have an association with location of

periodontal disease at the beginning of the study (baseline). However, we see a much

stronger association of both factors at six months with location of periodontal disease

at six months, with a slightly stronger association for percentage of red complex

pathogens than proportion of sites with BOP whether modeled alone or jointly.

Table 2.4 Estimated parameters and bias-corrected standard error estimates ob-
tained on fitting the models: (i)µi = 2arctan(β0 + β1Bi) (ii)µi = 2arctan(β0 + β2Pi)
(iii)µi = 2arctan(β0 + β1Bi + β2Pi). ‘ ∗ ∗′ denotes significance with p-value < 0.05
and ‘∗′ denotes significance with 0.05 ≤p-value ≤ 0.10. The p-values are based on
a t-distribution with (m − p) degrees of freedom where ‘m’ denotes the number of
subjects and ‘p’ the number of parameters in the regression model.

Affected teeth locations at Affected teeth locations at
baseline (m = 42) month 6 (m = 33)

Predictors β̂1(se) β̂2(se) β̂1(se) β̂2(se)
(i) BOP only -0.33(1.54) n/a -1.31(1.25) n/a
(ii) PL only n/a 0.08(0.12) n/a -0.34(0.21)∗

(iii) BOP and PL 0.06(1.55) 0.08(0.13) -1.61(1.15)∗ -0.39(0.19)∗∗

We examined the standardized residuals from our model to assess our assumption

of a marginal von Mises distribution using the approach of Song (2007). For Yij ∼ von

Mises (µi, κ), the standardized residual for observation j from the subject i is defined

as êij = [A1(κ̂)/κ̂]−1/2 sin(Yij − µ̂i). A plot of the standardized residuals êij against
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the estimated mean direction µ̂i can be used to check for the validity of the marginal

distributional assumption. Ideally we would expect all the points to be randomly

scattered around zero and about 95% of the points to be between -2 and 2. For our

baseline data, the residual plots obtained from modeling the predictors separately, as

shown in Figure 2.2, and using the joint modeling of the two predictors show that

there is no obvious violation of our assumption.
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Figure 2.2: Standardized residual plots corresponding to the baseline data analysis
in Section 2.3.3. Left plot displays the residuals calculated using average
BOP and right plot displays the residuals calculated using average PL as
predictors.

2.4 Discussion

Our methodology provides an improvement over the current state of art as there

is no formal statistical approach designed for specifically determining the location

of periodontal disease. Existing literature usually considers observations on a priori

selected specific regions of the mouth and then compares the frequency of affected

28



teeth across these regions in the mouth without any formal modeling. Furthermore,

most of the existing work fails to account for multiple measurements from a sub-

ject and considers summary information aggregated over the selected mouth regions.

Nonetheless, there are issues with our methods that motivate further research. One

could consider fitting mixtures of unimodal von Mises distributions or a generalized

von Mises distribution (Gatto and Jammalamadaka, 2007) to allow for the analysis

of multimodal periodontal data and methods for determining the appropriate num-

ber of modes. However, such generalization is not immediately straightforward, as

Gatto (2008) states a number of theoretical challenges with using a mixture of von

Mises distributions. A major issue is that the likelihood function of the mixture of

von Mises(µ1, κ1) and von Mises(µ2, κ2) distributions is unbounded. Thus an overall

supremum of the likelihood of a von Mises mixture does not give a consistent estimate

although some other local supremum do so.

Although we chose to use the bias-corrected variance estimator of Mancl and

DeRouen (2001), alternate approaches have been proposed by Fay and Graubard

(2001) and Kauermann and Carroll (2001). It can be shown that the methods of

Mancl and DeRouen (2001) and Fay and Graubard (2001) both lead to the same

bias-corrected standard error estimator with von Mises marginal distributions. Via

simulations, we also found that the degrees of freedom estimators of Fay and Graubard

(2001) led to an underestimated size for the Wald test (results not shown). We also

applied the methods of Kauermann and Carroll (2001) to the simulation settings

presented in Section 2.3.1 and found slight improvement to the uncorrected robust

standard errors, but not as much as the methods of Mancl and DeRouen (2001),

which is expected given the findings of Lu et al. (2007). Thus, we recommend the use

of the approach of Mancl and DeRouen (2001) in our methods.

In our motivating dataset, subjects had few missing teeth, and of the few teeth

for which measures were missing, there was no discernible pattern in the missing-
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ness at baseline nor at six months, and no tooth that was diseased at baseline was

missing at six months. In reality, subjects with existing periodontal disease may

previously had other teeth removed, some of which may have been due to chronic

periodontal disease. Such missing data poses a challenge, as the missing teeth are not

missing at random (MAR), which is a necessary assumption for the validity of the

robust standard errors produced by marginal approaches such as GEE (Kenward and

Molenberghs, 1998). Thus, the investigation of the performance of our methods for

data with greater numbers of non-randomly missing teeth is certainly an important

future area of research.

30



CHAPTER III

Analysis of Periodontal Data using Multimodal

Circular Statistics

3.1 Introduction

In the previous chapter, we modeled the mean direction of affected teeth in the

mouth as a function of mouth-level covariates using the symmetric, unimodal von

Mises distribution. Recently various dental studies (Tomasi et al., 2007; Reich and

Bandyopadhyay, 2010) have suggested that periodontal disease is most common par-

ticularly at the back of the mouth and thus it is possible that the distribution of

affected teeth is multimodal. However, there have been no formal attempts to deter-

mine the exact distribution of affected teeth nor methods to verify if the distribution

of diseased teeth is multimodal. We propose methods to address these questions.

We consider the same setting as that in the previous chapter. We assume the

mouth as a circle and the teeth as points on the circumference of a circle as shown in

Figure 3.1. We use the Universal Numbering System adopted by the American Dental

Association, in which the 32 teeth in an adult are numbered sequentially from 1 to

32, with the numbers 1-16 referring to the teeth in the upper jaw (maxillary) and the

numbers 17-32 referring to the sixteen teeth in the lower jaw (mandibular). As wisdom

teeth (teeth 1, 16, 17 and 32) are often removed in most adults even when healthy,

these teeth are usually omitted from periodontal studies, leading to a maximum of

28 teeth measured in each subject. These numbers allow us to designate a specific
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direction for each tooth, in radians, corresponding to its location in the mouth. If

we assume that all 32 teeth are uniformly distributed among the circumference of a

circle covering 2π radians ranging from 0 to 2π, tooth number t, t = 1, 2, . . . 32, is

associated with a direction of π(2t − 1)/32 radians. Hence, the corresponding angle

(in radians) associated with a tooth are higher for higher tooth numbers. A location

of zero radian lies between teeth 1 and 32, designating maxillary teeth with radians

ranging from 0 to π and mandibular teeth with radians ranging from π to 2π.

 

 
 

 
 

      
 

 
 

 

 

 

 
 

 
 

      
 

 
 

 

 

 

 

o
o

o
o

o o o o o o o o
o

o
o

o

o
o

o
o

o o o o o o o o
o

o
o

o

32

31

30
29

28
27 26 25 24 23 22

21
20

19

18

17

1

2

3
4

5
6 7 8 9 10 11

12
13

14

15

16
Upper LeftUpper Right

Lower LeftLower Right

Figure 3.1: Diagram showing orientation of teeth in the mouth including numbering
according to the Universal Numbering System

We classify the disease status of a tooth using its mean clinical attachment level

(CAL) value. We consider a tooth to be diseased if its mean CAL value, averaged

over six sites of the tooth, is 3 mm or more, as in Hoffman et al. (2001). Since we are

solely interested in studying the distribution of diseased teeth, teeth not diseased with

periodontal disease (mean CAL less than 3 mm) are noninformative for our purpose
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and therefore will not be a part of the data to be analyzed.

3.2 Statistical Methods

Suppose we have m subjects in our study and subject i, i = 1, 2, . . .m has 1 ≤ ni ≤

28 diseased teeth. Let Yij denote the location of diseased tooth j, j = 1, 2, . . . ni in

subject i. We assume that the responses Yij have the same marginal distribution and

observations from the same subject are correlated while observations from different

subjects are uncorrelated. Since the response variable Yij denotes an angle on a

circle, we assume Yij to be a realization from the Generalized von Mises distribution

of order k, denoted as GvMk, where the order k reflects the maximum number of

modes possible for the distribution.

The Generalized von Mises distribution (GvM) is a probability distribution on

a circle flexible enough to accommodate multiple modes and asymmetry. It is a

generalization of the von Mises distribution (Mardia, 1972; Fisher, 1993), a symmetric

unimodal distribution widely used in directional statistics to model circular data. The

Generalized von Mises distribution originates from Maksimov (1967) and a bivariate

analogue of the distribution was proposed by Yfantis and Borgman (1982). Recently,

Gatto and Jammalamadaka (2007) and Gatto (2008) have studied the distribution in

details, stating theoretical properties, simulation algorithms and applications to an

actual dataset.

The density for a random variable Z following a Generalized von Mises distribution

of order k, denoted as Z ∼ GvMk(µ1, ..., µk, κ1, ..., κk) is

f(z) =
1

2πG
(k)
0 (δ1, ..., δk−1, κ1, ..., κk)

exp
[ k∑
j=1

κj cos j(z − µj)
]

(3.1)

where κ1, .., κk > 0, µ` ∈ [0, 2π/`), ` = 1, 2, ...k and G
(k)
0 (δ1, ..., δk−1, κ1, ..., κk) =
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1
2π

∫ 2π

0
exp

[
κ1 cos(z) +

k∑
`=2

κ` cos `(z + δ`−1)
]
. The shape, skewness and modality of

the distribution depends on the values of the parameters and the GvMk distribution

can have a maximum of k modes. The location parameters (µ1, µ2, ..., µk) determine

the location of the modes while the concentration parameters (κ1, κ2, ..., κk) determine

the peakedness of the distribution around the modes. From equation (3.1), we note

that k = 1 corresponds to a von Mises distribution.

An important feature of the GvMk distribution is that it can be reparameterized,

leading to a canonical exponential family form. If we define λ2`−1 = κ` cos(`µ`) and

λ2` = κ` sin(`µ`), ` = 1, 2, ..k, the density of a GvMk distribution can be expressed as

f(z) = exp[λTT (z)−K(λ)] (3.2)

in which

λ = (λ1, λ2, ..., λ2k)
T

T (z) = (cos z, sin z, cos 2z, sin 2z, ..., cos kz, sin kz)T

K(λ) = log(2π) + logG
(k)
0 (δ1, ..., δk−1, ‖λ(1)‖, ..., ‖λ(k)‖),

where ‖λ(`)‖ denotes the Euclidean norm of λ(`) = (λ2`−1, λ2`)
T and δ`−1 = (argλ(1)−

argλ(`)/`) mod (2π/`). The reparameterization of the GvMk density corresponds to

a 2k parameter exponential family. Thus, in this setting T (z) is a complete sufficient

statistic for λ.

As computing the normalizing constant G
(k)
0 (δ1, ..., δk−1, κ1, ..., κk) for higher val-

ues of k is tedious, the aforementioned manuscripts have considered inference based

on a Generalized von Mises distribution of second order. Gatto (2008) derived the

score function and calculated the covariance matrix of the parameters of a GvM2

distribution. Furthermore, they proposed Akaike’s Information Criterion (AIC) and
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other model selection criteria in order to determine the appropriate order of GvM

distribution which gives the best fit to the data. Their inference was based on inde-

pendent observations.

A complication arises in our setting as observations from a subject are correlated

due to various subject-level characteristics some of which may be latent or unobserv-

able. Thus in our situation, the challenges are twofold. We need to calculate valid

parameter and standard error estimates to a dataset of correlated angular responses.

We also need to compute a model selection criterion in order to determine the appro-

priate order of the Generalized von Mises distribution to be fitted. From the fitted

GvM distribution we can calculate the modes of the fitted distribution and thus de-

termine the number and locations of teeth which are most likely to have periodontal

disease.

3.2.1 Parameter estimation

White (1982) and Boos (1992) derived the “robust” variance estimator for an unbi-

ased estimating function based on independent observations having the same marginal

distribution. Liang and Zeger (1986) proposed inference based on generalized estimat-

ing equations (GEE) for correlated observations having the same marginal distribu-

tion. The advantage of GEE is that it does not require the correlation structure to be

correctly specified in order to produce consistent parameter estimates, assuming that

mean structure of the locations have been correctly specified. Moreover, GEE can

produce consistent variance estimates for the parameter estimates even if the correla-

tion structure is misspecified, although incorporating a correctly-specified correlation

structure leads to improved efficiency (Lipsitz et al., 1994). The variance estimators

for the parameter estimates are called “robust” or “sandwich” variance estimators as

they are robust to misspecification of the correlation structure. Since it is difficult

to assess the correct correlation structure to be used for periodontal outcomes, for
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simplicity, we assume an independence working correlation structure i.e. we assume

all the observations to be uncorrelated. We derive the corresponding likelihood, re-

ferred to henceforth as quasi-likelihood, and the quasi-score function for independent

GvMk observations. Based upon the “robust” variance estimator proposed by Liang

and Zeger (1986), we obtain a valid covariance matrix of our parameters estimates.

Assume that the angular direction of affected tooth j in subject i follows a

marginal GvMk distribution i.e. Yij ∼ GvMk(λ1, λ2, ..., λ2k); j = 1, 2, ..., ni and

i = 1, 2, ...,m. The density of Yij can be expressed as f(Yij;λ) as in equation (3.2)

where λ = (λ1, λ2, ..., λ2k) is the vector of parameters.

f(Yij) = exp[λTT (Yij)−K(λ)]

We are interested in calculating valid estimates and covariance matrix of λ. As-

suming the observations to be independent, the quasi-likelihood function is given

by L(λ) =
m∏
i=1

ni∏
j=1

f(Yij;λ) and the log-quasilikelihood function is l(λ) = logL(λ) =

m∑
i=1

ni∑
j=1

log f(Yij;λ). Hence the corresponding score function is S(λ) =
m∑
i=1

ni∑
j=1

s(Yij;λ),

where s(Yij;λ) = ∂

∂λ
log f(Yij;λ) = ∂

∂λ
[λTT (Yij) −K(λ)]. Thus the unbiased esti-

mating equation is given by

S(λ) =
m∑
i=1

ni∑
j=1

s(Yij;λ) =
m∑
i=1

Si(λ) = 0

where Si(λ) =
∑ni

j=1 s(Yij;λ).

The model based covariance matrix of λ is obtained as the inverse of the observed

Fisher information matrix and is thus expressed as V arMB(λ̂) =
( m∑
i=1

Ai(λ)
)−1

,

where Ai(λ) = − ∂

∂λ
Si(λ) is the negative of the hessian matrix for observations from

the i th subject. Note that

Ai(λ) = − ∂

∂λ
Si(λ) =

∑ni

j=1(−
∂

∂λ
s(Yij;λ)) =

∑ni

j=1

(
∂

∂λλT K(λ)
)

= ni
(

∂

∂λλT K(λ)
)
.
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Hence the Fisher information matrix for the quasi-likelihood function is given by
m∑
i=1

Ai(λ) =
m∑
i=1

ni
( ∂

∂λλT
K(λ)

)
= n

( ∂

∂λλT
K(λ)

)
where n =

m∑
i=1

ni is the total

number of observations from all subjects in the dataset. Hence, the model based

covariance matrix of λ is V arMB(λ̂) =
(
n ∂

∂λλT K(λ)
)−1

.

However, the model based estimator V arMB(λ̂) fails to give a valid standard error

estimate for correlated data. Hence we come up with a “robust” variance estimator

along the lines of Liang and Zeger (1986) denoted as

V arR(λ̂) = V arMB(λ̂)
( m∑
i=1

Si(λ)Si(λ)T
)
V arMB(λ̂)

For uncorrelated data, the variance estimator V arR(λ̂) is equivalent to the variance

estimator stated in White (1982) and Boos (1992) which is robust to model misspec-

ification.

In order to determine the parameter estimate λ̂ we follow the following pro-

cedure. Ideally the gradient of the log-likelihood function evaluated at λ̂ should

be close to zero i.e. S(λ̂) ≈ 0 and it should yield a valid covariance matrix i.e.

det(V arMB(λ̂)) > 0. Usually for the fitted GvM2 distributions studied by Gatto and

Jammalamadaka (2007) and Gatto (2008) the parameter estimates were obtained us-

ing the “fminsearch” function in Matlab which yields the unconstrained minimum of

the negative log-likelihood function. We also adopted a similar approach in order to

obtain parameter estimates. However, a caveat of the approach is that the algorithm

is a direct search algorithm, i.e. an algorithm which does not use the derivative of

the likelihood function. Hence we calculated the gradient of the log-likelihood func-

tion and the determinant of the information matrix at the estimated value of the

parameters and chose those parameter estimates to be valid for which the gradient

of the log-likelihood function were close to zero i.e. S(λ̂) ≈ 0 and the determinant

of the information matrix was positive i.e. det
(

∂

∂λλT K(λ)
)
> 0 (so as to yield a
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valid covariance matrix). Furthermore, we used Newton Scoring algorithm to update

the parameter estimates obtained using the “fminsearch” algorithm. However, the

results obtained using both the methods were very similar.

3.2.2 Model Selection Criterion

Akaike (1973) proposed a likelihood-based quantity for model selection, commonly

referred to as Akaike’s Information Criterion (AIC). Gatto (2008) had proposed the

use of AIC in order to determine the appropriate order of the Generalized von Mises

distribution to be fit to uncorrelated angular responses. However in our setting, we

do not formally have the joint likelihood of the data due to their correlation, making

AIC unsuitable as a measure of model fit. Pan (2001) proposed a modification of AIC,

termed as QIC, which is appropriate for quasi-likelihood based inference as in GEE.

Due to our use of an independence working correlation matrix, we use the criterion

QIC = −2l(λ̂) + 2 trace(V arMB(λ̂)−1V arR(λ̂))

where l(λ̂), V arMB(λ̂), V arR(λ̂) are defined as in Section 3.2.1. For different values

of k, we fit the corresponding GvMk and we will choose the GvMk distribution that

has the smallest value of QIC.

3.2.3 Calculation of Modes

Although we will have produced parameter estimates and their corresponding

variance estimates for the best-fitting GvMk distribution, interpretation of these pa-

rameters is difficult. A more interesting quantity is what the corresponding value of

the density for each angle will be. Thus, after we have determined the appropriate

order of the distribution to be fitted and obtained the parameter estimates as de-

scribed in Sections 3.2.1 and 3.2.2, we can obtain density estimates at each angle.
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In our setting, this translates to the density estimates for each tooth and leads to

an indication of the relative frequency of periodontal disease at each tooth, with the

modes occurring at teeth with the largest density estimates.

3.3 Simulation Examples

3.3.1 Simulation Algorithm

We consider various simulation settings to examine the performance of our meth-

ods. We simulate correlated angular observations having marginal GvMk distribution

for different values of the order k. In one particular simulation scenario, we then fit

varying orders of Generalized von Mises distribution to the correlated angles and cal-

culate QIC values for each of the fitted distributions. We then choose the best fitting

distribution as the one having minimum QIC value. Ideally the fitted distribution

having the minimum QIC value should match with the marginal distribution of the

simulated angles and thus validate our methods. In our simulation examples, we

consider simulation settings where the marginal distribution of the angles follow von

Mises (GvM1), GvM2, GvM3 or GvM4 distributions. We restrict our simulations to

Generalized von Mises distributions of fourth order as a mouth has four quadrants

which are mirror images of each other and thus it is natural to assume that the dis-

tribution of affected teeth is unlikely to have more than four modes. Furthermore, it

should be noted that a GvMk distribution has 2k parameters and 2k(2k+1)/2 distinct

elements in the corresponding variance covariance matrix. Hence, given a subject is

unlikely to have more than 10 or 12 affected teeth, we might run into the problem of

overfitting if we intend to fit a Generalized von Mises distribution of higher order.

Gatto (2008) mentions detailed steps for simulation of independent marginal

GvM2 observations using the ratio-of-uniforms algorithm and also discusses the sim-

ulation algorithm for higher order. We extend the approach to simulate correlated
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GvMk; k = 1, 2, 3, 4 observations. We simulate observations from a marginal GvMk

distribution and induce correlation among observations from the same subject us-

ing a random effects approach. Lets consider a study of m subjects with subject i;

i = 1, 2, ...,m having ni observations. Let Yij denote the angular response for ob-

servation j from the subject i; i = 1, 2, ..m; j = 1, 2, ...ni. Hence for our research

problem, we can consider Yij to be the the angle (in radians) of the affected tooth j;

j = 1, 2, 3..., ni in subject i; i = 1, 2, 3, ...,m. We assume that the observations follow

a marginal Generalized von Mises distribution i.e. Yij ∼ GvMk(λi) , k = 1, 2, .. where

λi = λ + ui and ui ∼ N(0, τ 2). Thus observations for subject i; i = 1, 2, ..,m are

correlated due to the presence of the random subject effect ui.

Our simulations are motivated by a clinical trial studied in in Ramseier et al.

(2009) and discussed in Section 3.4. In our motivating dataset there were data on

287 affected teeth from 46 subjects. Thus on the average there were 287/46 ≈ 6

affected teeth in each subject. Hence in our simulation examples, we consider 1000

simulated datasets comprising of observations from m = 100 subjects with ni = 6

observations from each subject correlated using subject-level random effect. However,

it should be noted that the primary goal of our study is to determine regions of the

mouth that are most susceptible to periodontal disease which a population averaged

measure. Hence though we simulate correlated angles using random effect approach,

we analyze the correlated responses using marginal modeling approach. In order to

analyze the correlated angular observations we fit Generalized von Mises distributions

of varying order and use GEE approach to obtain valid standard errors. Furthermore,

we calculate the QIC values of the fitted distributions and determine the distribution

that provides the best fit to the data.
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3.3.2 Simulation Results

We consider three simulation settings to illustrate the performance of our meth-

ods. In each of the settings, we examine the performance of our methods on datasets

comprising of independent observations i.e. random effect variance parameter τ = 0

as well as datasets comprising of correlated observations from a subject (correspond-

ing to τ = 0.6). We consider 1000 simulations and in each simulated dataset we have

six angular observations from each of the 100 subjects. For the uncorrelated case, we

would expect both the model based and robust standard errors to be close to the em-

pirical standard errors. For the correlated case we would expect the robust standard

errors to provide an improvement to the model based standard errors and be closer

to the empirical standard errors. In each simulation setting, we fit varying orders

of GvM distributions to the simulated angular observations θ and get the density

estimates fθ(θ). Furthermore, we convert the simulated angles θ to affected tooth

numbers t ranging from 1 to 32, using the formula t = (32θ/π + 1)/2 and rounding

it to the nearest integer. Using the jacobian of transformation, the density of t can

be calculated as gt(t) = fθ(h(t))|∂θ/∂t| = fθ(h(t))π/16. We plot the simulated an-

gles (in radians), simulated affected tooth numbers and the corresponding estimated

densities for the various orders of the fitted GvM distributions.

In our simulations, the location parameters (µ1, µ2, ..., µk) are chosen such that

there are distinct non-overlapping modes and the values of the concentration param-

eters (κ1, κ2, ..., κk) are chosen so that none of the modes are too peaked compared to

the other modes. We choose a relatively small value of the random effect variance pa-

rameter τ = 0.6 as the parameter values for the underlying marginal distribution are

also relatively small and we do not want to distort the original underlying marginal

distribution by inducing too much variation between subjects. In order to examine

the performance of our methods we focus on the following simulation examples.

Example 1: We simulate from marginal GvM4 distribution having parameters
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λ=(0.14, -0.48, 0.48, -0.14, -0.49, 0.07, -0.33, -0.38) which corresponds to θ=(µ1=5,

µ2=3, µ3=1, µ4=1, κ1=0.5, κ2=0.5, κ3=0.5, κ4=0.5). We compare the parameter

estimates, estimated densities and QIC values while fitting GvM4, GvM3, GvM2, von

Mises (vM) distributions. The results for τ = 0 (uncorrelated case) and τ = 0.6

(correlated case) are stated in Tables 3.1 and 3.2 respectively. Figures 3.2 and 3.3

show the plot of the simulated angles, simulated affected tooth numbers and the

corresponding estimated densities for the various fitted distributions under τ = 0

and τ = 0.6 respectively. In both the scenarios, from the plots and the QIC values

it is seen that GvM4 distribution gives the best fit to the data. This validates our

methods as the angles were also simulated from a marginal GvM4 distribution. Under

independence, the estimated parameter values of the GvM4 distribution are λ̂=(0.07,

-0.79, 0.78, -0.42, -0.39, 0.39, -0.37, -0.53) or equivalently θ̂=(4.80, 2.89, 0.79, 1.03,

0.79, 0.89, 0.55, 0.65) which is close to the values of the parameters of the marginal

distribution from which the data were simulated.

Example 2: We simulate from marginal GvM3 distribution having parameters

λ=(0.14, -0.48, 0.48, -0.14, -0.49, 0.07) which corresponds to θ=(µ1=5, µ2=3, µ3=1,

κ1=0.5, κ2=0.5, κ3=0.5). We compare the parameter estimates, estimated densities

and QIC values while fitting GvM3, GvM2, vM distributions. The results for τ = 0

(uncorrelated case) and τ = 0.6 (correlated case) are stated in Tables 3.3 and 3.4

respectively. Figures 3.4 and 3.5 show the plot of the simulated angles, simulated af-

fected tooth numbers and the corresponding estimated densities for the various fitted

distributions under τ = 0 and τ = 0.6 respectively. In both the scenarios, from the

plots and the QIC values it is seen that GvM3 distribution gives the best fit to the

data. This is to be expected as the angles were simulated from a marginal GvM3

distribution. Under independence, the estimated parameter values of the GvM3 dis-

tribution are λ̂=(0.12, -0.64, 0.58, -0.22, -0.42, 0.30) or equivalently θ̂=(4.90, 2.96,

0.84, 0.65, 0.62, 0.52) which is close to the values of the parameters of the marginal
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distribution from which the data were simulated.

Example 3: We simulate from marginal GvM3 distribution having parameters

λ=(0.14, -0.48, 0.48, -0.14, 0, 0) which corresponds to θ=(µ1=5, µ2=3, µ3=0, κ1=0.5,

κ2=0.5, κ3=0). Note that in this setting we are actually simulating from a GvM2

distribution with parameters λ=(0.14, -0.48, 0.48, -0.14) or θ=(µ1=5, µ2=3, κ1=0.5,

κ2=0.5). We are interested in seeing if our methods are able to determine the true

distribution of the simulated data in this situation. We compare the parameter esti-

mates, estimated densities and QIC values while fitting GvM3, GvM2, vM distribu-

tions. The results for τ = 0 and τ = 0.6 are stated in Tables 3.5 and 3.6 respectively.

Figures 3.6 and 3.7 show the plot of the simulated angles, simulated affected tooth

numbers and the corresponding estimated densities for the various fitted distributions

under τ = 0 and τ = 0.6 respectively. In both the scenarios, the results obtained

on fitting GvM3 or GvM2 are similar. The QIC values obtained on fitting the two

distributions are close, though the one corresponding to GvM3 is slightly lower. Also,

from the plot it can be seen that there is no appreciable difference in the estimated

densities obtained on fitting the two distributions. For the independence case, and

for the best fitting GvM3 distribution, the estimated value of the parameter λ̂=(0.15,

-0.54, 0.53, -0.16, 0.06, -0.08) or equivalently θ̂=(4.98, 2.99, 1.79, 0.56, 0.55, 0.10)

which is close to the values of the parameters of the marginal distribution from which

the data are simulated. It should be noted that here we are unable to get the correct

estimate of µ3 which was fixed to be zero in our simulations. This is because for all

finite orders of j, µj is indeterminate if κj = 0 (Gatto, 2008). For the independence

case, and for the best fitting GvM2 distribution, the estimated value of the parameter

λ̂=(0.14, -0.48, 0.48, -0.14) or θ̂=(5.0, 3.0, 0.5, 0.5) which matches the values of the

parameters of the marginal GvM2 distribution from which the data are actually sim-

ulated. Note that a GvM2 distribution requires the estimation of 4 parameters and

10 unique variance, covariance parameters while a GvM3 distribution requires the
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estimation of 6 parameters and 21 unique variance, covariance parameters. In this

setting, from both the plots and the QIC values it can be seen that both GvM2 and

GvM3 distributions give equivalent model fits. However fitting a GvM2 distribution

requires estimation of fewer number of parameters. Hence in this situation we can

choose GvM2 distribution to give the most parsimonious fit.
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Table 3.1 Table showing the results obtained on fitting GvM4, GvM3, GvM2, vM
distributions for 1000 simulated datasets. Each dataset comprises of 100 subjects
with each subject having 6 observations and within subject correlation is induced
via random effect variance τ 2. Angles are simulated assuming a marginal GvM4

distribution with parameters λ=(0.14, -0.48, 0.48, -0.14, -0.49, 0.07, -0.33, -0.38) (or
equivalently θ=(µ1=5, µ2=3, µ3=1, µ4=1, κ1=0.5, κ2=0.5, κ3=0.5, κ4=0.5)) and
τ = 0 (i.e. independence).

GvM4 GvM3 GvM2 GvM1

λ̂1 0.07 0.17 0.10 0.18

λ̂2 -0.79 -0.45 -0.41 -0.35

λ̂3 0.78 0.46 0.38

λ̂4 -0.42 -0.32 -0.34

λ̂5 -0.39 -0.33

λ̂6 0.39 0.14

λ̂7 -0.37

λ̂8 -0.53

Empirical se (λ̂1) 0.11 0.08 0.06 0.07

Empirical se (λ̂2) 0.21 0.11 0.07 0.05

Empirical se (λ̂3) 0.17 0.07 0.05

Empirical se (λ̂4) 0.15 0.10 0.07

Empirical se (λ̂5) 0.10 0.11

Empirical se (λ̂6) 0.19 0.19

Empirical se (λ̂7) 0.10

Empirical se (λ̂8) 0.12

Model Based se (λ̂1) 0.06 0.06 0.06 0.06

Model Based se (λ̂2) 0.11 0.08 0.07 0.06

Model Based se (λ̂3) 0.10 0.07 0.06

Model Based se (λ̂4) 0.08 0.07 0.06

Model Based se (λ̂5) 0.06 0.06

Model Based se (λ̂6) 0.07 0.05

Model Based se (λ̂7) 0.05

Model Based se (λ̂8) 0.06

Robust se (λ̂1) 0.09 0.06 0.06 0.06

Robust se (λ̂2) 0.20 0.11 0.07 0.05

Robust se (λ̂3) 0.17 0.07 0.06

Robust se (λ̂4) 0.14 0.08 0.06

Robust se (λ̂5) 0.09 0.06

Robust se (λ̂6) 0.11 0.06

Robust se (λ̂7) 0.08

Robust se (λ̂8) 0.09
Mean QIC 1952 2041 2086 2159

45



Figure 3.2: Figures showing the simulated angles (left), simulated affected tooth num-
bers (right) and the corresponding estimated densities for the various
fitted distributions. The angles are simulated from a marginal GvM4 dis-
tribution with parameters λ=(0.14, -0.48, 0.48, -0.14, -0.49, 0.07, -0.33,
-0.38) (or equivalently θ=(µ1=5, µ2=3, µ3=1, µ4=1, κ1=0.5, κ2=0.5,
κ3=0.5, κ4=0.5)) and we consider independence model i.e. τ = 0.
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Table 3.2 Table showing the results obtained on fitting GvM4, GvM3, GvM2, vM
distributions for 1000 simulated datasets. Each dataset comprises of 100 subjects
with each subject having 6 observations and within subject correlation is induced
via random effect variance τ 2. Angles are simulated assuming a marginal GvM4

distribution with parameters λ=(0.14, -0.48, 0.48, -0.14, -0.49, 0.07, -0.33, -0.38) (or
equivalently θ=(µ1=5, µ2=3, µ3=1, µ4=1, κ1=0.5, κ2=0.5, κ3=0.5, κ4=0.5)) and
τ = 0.6.

GvM4 GvM3 GvM2 GvM1

λ̂1 0.84 0.66 0.58 0.76

λ̂2 -0.59 -0.45 -0.36 -0.33

λ̂3 0.79 0.67 0.52

λ̂4 -0.16 -0.26 -0.20

λ̂5 -0.59 -0.20

λ̂6 0.21 -0.05

λ̂7 -0.42

λ̂8 0.26

Empirical se (λ̂1) 0.20 0.09 0.07 0.09

Empirical se (λ̂2) 0.32 0.11 0.08 0.07

Empirical se (λ̂3) 0.19 0.11 0.07

Empirical se (λ̂4) 0.22 0.13 0.09

Empirical se (λ̂5) 0.33 0.29

Empirical se (λ̂6) 0.30 0.24

Empirical se (λ̂7) 0.19

Empirical se (λ̂8) 0.22

Model Based se (λ̂1) 0.08 0.06 0.06 0.06

Model Based se (λ̂2) 0.13 0.09 0.08 0.06

Model Based se (λ̂3) 0.10 0.07 0.07

Model Based se (λ̂4) 0.09 0.07 0.06

Model Based se (λ̂5) 0.08 0.05

Model Based se (λ̂6) 0.07 0.05

Model Based se (λ̂7) 0.06

Model Based se (λ̂8) 0.06

Robust se (λ̂1) 0.18 0.08 0.08 0.09

Robust se (λ̂2) 0.32 0.12 0.08 0.08

Robust se (λ̂3) 0.21 0.09 0.07

Robust se (λ̂4) 0.22 0.13 0.10

Robust se (λ̂5) 0.19 0.06

Robust se (λ̂6) 0.16 0.09

Robust se (λ̂7) 0.15

Robust se (λ̂8) 0.14
Mean QIC 1829 1899 1939 2020
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Figure 3.3: Figures showing the simulated angles (left), simulated affected tooth num-
bers (right) and the corresponding estimated densities for the various
fitted distributions. The angles are simulated from a marginal GvM4 dis-
tribution with parameters λ=(0.14, -0.48, 0.48, -0.14, -0.49, 0.07, -0.33,
-0.38) (or equivalently θ=(µ1=5, µ2=3, µ3=1, µ4=1, κ1=0.5, κ2=0.5,
κ3=0.5, κ4=0.5)) and correlation is induced via random effect variance
parameter τ = 0.6.
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Table 3.3 Table showing the results obtained on fitting GvM3, GvM2, vM distribu-
tions for 1000 simulated datasets. Each dataset comprises of 100 subjects with each
subject having 6 observations and within subject correlation is induced via random
effect variance τ 2. Angles are simulated assuming a marginal GvM3 distribution with
parameters λ=(0.14, -0.48, 0.48, -0.14, -0.49, 0.07) (or equivalently θ=(µ1=5, µ2=3,
µ3=1, κ1=0.5, κ2=0.5, κ3=0.5)) and τ = 0 (i.e. independence).

GvM3 GvM2 GvM1

λ̂1 0.12 0.03 0.09

λ̂2 -0.64 -0.51 -0.41

λ̂3 0.58 0.42

λ̂4 -0.22 -0.25

λ̂5 -0.42

λ̂6 0.30

Empirical se (λ̂1) 0.07 0.06 0.07

Empirical se (λ̂2) 0.12 0.07 0.05

Empirical se (λ̂3) 0.09 0.06

Empirical se (λ̂4) 0.07 0.06

Empirical se (λ̂5) 0.05

Empirical se (λ̂6) 0.06

Model Based se (λ̂1) 0.06 0.06 0.06

Model Based se (λ̂2) 0.09 0.07 0.06

Model Based se (λ̂3) 0.07 0.06

Model Based se (λ̂4) 0.07 0.06

Model Based se (λ̂5) 0.06

Model Based se (λ̂6) 0.05

Robust se (λ̂1) 0.06 0.06 0.06

Robust se (λ̂2) 0.12 0.07 0.05

Robust se (λ̂3) 0.09 0.06

Robust se (λ̂4) 0.08 0.06

Robust se (λ̂5) 0.06

Robust se (λ̂6) 0.06
Mean QIC 2018 2085 2152
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Figure 3.4: Figures showing the simulated angles (left), simulated affected tooth num-
bers (right) and the corresponding estimated densities for the various
fitted distributions. The angles are simulated from a marginal GvM3

distribution with parameters λ=(0.14, -0.48, 0.48, -0.14, -0.49, 0.07) or
equivalently θ=(µ1=5, µ2=3, µ3=1, κ1=0.5, κ2=0.5, κ3=0.5) and we con-
sider independence model i.e. τ = 0.

50



Table 3.4 Table showing the results obtained on fitting GvM3, GvM2, vM distribu-
tions for 1000 simulated datasets. Each dataset comprises of 100 subjects with each
subject having 6 observations and within subject correlation is induced via random
effect variance τ 2. Angles are simulated assuming a marginal GvM3 distribution with
parameters λ=(0.14, -0.48, 0.48, -0.14, -0.49, 0.07) (or equivalently θ=(µ1=5, µ2=3,
µ3=1, κ1=0.5, κ2=0.5, κ3=0.5)) and τ = 0.6.

GvM3 GvM2 GvM1

λ̂1 0.55 0.41 0.52

λ̂2 -0.67 -0.45 -0.36

λ̂3 0.74 0.45

λ̂4 -0.06 -0.07

λ̂5 -0.61

λ̂6 0.36

Empirical se (λ̂1) 0.08 0.08 0.09

Empirical se (λ̂2) 0.13 0.09 0.08

Empirical se (λ̂3) 0.09 0.07

Empirical se (λ̂4) 0.11 0.09

Empirical se (λ̂5) 0.07

Empirical se (λ̂6) 0.06

Model Based se (λ̂1) 0.06 0.06 0.06

Model Based se (λ̂2) 0.10 0.07 0.06

Model Based se (λ̂3) 0.08 0.06

Model Based se (λ̂4) 0.08 0.06

Model Based se (λ̂5) 0.06

Model Based se (λ̂6) 0.05

Robust se (λ̂1) 0.08 0.08 0.08

Robust se (λ̂2) 0.13 0.08 0.08

Robust se (λ̂3) 0.09 0.07

Robust se (λ̂4) 0.11 0.09

Robust se (λ̂5) 0.07

Robust se (λ̂6) 0.06
Mean QIC 1921 2033 2090
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Figure 3.5: Figures showing the simulated angles (left), simulated affected tooth num-
bers (right) and the corresponding estimated densities for the various
fitted distributions. The angles are simulated from a marginal GvM3

distribution with parameters λ=(0.14, -0.48, 0.48, -0.14, -0.49, 0.07) or
equivalently θ=(µ1=5, µ2=3, µ3=1, κ1=0.5, κ2=0.5, κ3=0.5) and corre-
lation is induced via random effect variance parameter τ = 0.6.
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Table 3.5 Table showing the results obtained on fitting GvM3, GvM2, vM distribu-
tions for 1000 simulated datasets. Each dataset comprises of 100 subjects with each
subject having 6 observations and within subject correlation is induced via random
effect variance τ 2. Angles are simulated assuming a marginal GvM3 distribution with
parameters λ=(0.14, -0.48, 0.48, -0.14, 0, 0) (or equivalently θ=(µ1=5, µ2=3, µ3=0,
κ1=0.5, κ2=0.5, κ3=0)) and τ = 0 (i.e. independence).

GvM3 GvM2 GvM1

λ̂1 0.15 0.14 0.21

λ̂2 -0.54 -0.48 -0.38

λ̂3 0.53 0.48

λ̂4 -0.16 -0.14

λ̂5 0.06

λ̂6 -0.08

Empirical se (λ̂1) 0.06 0.06 0.07

Empirical se (λ̂2) 0.09 0.07 0.05

Empirical se (λ̂3) 0.08 0.06

Empirical se (λ̂4) 0.07 0.06

Empirical se (λ̂5) 0.08

Empirical se (λ̂6) 0.17

Model Based se (λ̂1) 0.06 0.05 0.06

Model Based se (λ̂2) 0.08 0.07 0.06

Model Based se (λ̂3) 0.07 0.06

Model Based se (λ̂4) 0.06 0.06

Model Based se (λ̂5) 0.04

Model Based se (λ̂6) 0.04

Robust se (λ̂1) 0.06 0.05 0.06

Robust se (λ̂2) 0.09 0.07 0.05

Robust se (λ̂3) 0.08 0.06

Robust se (λ̂4) 0.07 0.06

Robust se (λ̂5) 0.04

Robust se (λ̂6) 0.05
Mean QIC 2069 2080 2150
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Figure 3.6: Figures showing the simulated angles (left), simulated affected tooth num-
bers (right) and the corresponding estimated densities for the various fit-
ted distributions. The angles are simulated from a marginal GvM3 distri-
bution with parameters λ=(0.14, -0.48, 0.48, -0.14, 0, 0) (or equivalently
θ=(µ1=5, µ2=3, µ3=0, κ1=0.5, κ2=0.5, κ3=0)) and and we consider in-
dependence model i.e. τ = 0.
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Table 3.6 Table showing the results obtained on fitting GvM3, GvM2, vM distri-
butions for 1000 simulated datasets. Each dataset comprises of 100 subjects with
each subject having 6 observations and within subject correlation is induced via ran-
dom effect variance τ 2. Angles are simulated assuming a marginal GvM3 distribution
with parameters λ=(0.14,-0.48,0.48,-0.14,0,0) (or equivalently θ=(µ1=5, µ2=3, µ3=0,
κ1=0.5, κ2=0.5, κ3=0)) and τ = 0.6.

GvM3 GvM2 GvM1

λ̂1 0.52 0.48 0.60

λ̂2 -0.57 -0.48 -0.37

λ̂3 0.63 0.52

λ̂4 -0.01 -0.01

λ̂5 -0.09

λ̂6 0.10

Empirical se (λ̂1) 0.09 0.08 0.09

Empirical se (λ̂2) 0.11 0.09 0.08

Empirical se (λ̂3) 0.09 0.07

Empirical se (λ̂4) 0.10 0.08

Empirical se (λ̂5) 0.20

Empirical se (λ̂6) 0.16

Model Based se (λ̂1) 0.06 0.06 0.06

Model Based se (λ̂2) 0.08 0.07 0.06

Model Based se (λ̂3) 0.07 0.06

Model Based se (λ̂4) 0.07 0.06

Model Based se (λ̂5) 0.05

Model Based se (λ̂6) 0.04

Robust se (λ̂1) 0.09 0.08 0.09

Robust se (λ̂2) 0.11 0.08 0.07

Robust se (λ̂3) 0.09 0.07

Robust se (λ̂4) 0.10 0.08

Robust se (λ̂5) 0.07

Robust se (λ̂6) 0.07
Mean QIC 1975 1995 2068
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Figure 3.7: Figure showing the simulated angles (left), simulated affected tooth num-
bers (right) and the corresponding estimated densities for the various
fitted distributions. The angles are simulated from a marginal GvM3

distribution with parameters λ=(0.14, -0.48, 0.48, -0.14, 0, 0) (or equiva-
lently θ=(µ1=5, µ2=3, µ3=0, κ1=0.5, κ2=0.5, κ3=0)) and correlation is
induced via random effect variance parameter τ = 0.6.

In all the simulations, it is seen that the robust standard error estimates are

close to the empirical standard errors and provide improvement to the model based

standard error estimates for the correlated case. Thus the use of GEE approach for

obtaining robust standard error estimates is recommended for analyzing correlated

angular observations. From the plots, it should be noted that the QIC value is

minimum for that order of the GvM distribution which provides the best fit to the

simulated data. In both the first two simulation examples, our algorithm is able

to detect the correct order of the GvM distribution from which it is simulated as

that yields the minimum QIC value. In the third simulation example when we are

simulating from a GvM3 distribution but with λ5 = λ6 = 0, we can see that GvM3

and GvM2 distributions provide equivalent fits and the corresponding QIC values
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are also similar. Hence our methods are capable of identifying the order of GvM

distribution that provides the best fit to the simulated angular data. Furthermore,

we are able to obtain valid parameter and standard error error estimates for that

distribution.

It should be noted that in Table 3.1 the model based and the robust standard error

estimates fail to match the empirical standard error estimates well for certain param-

eter estimates. We attribute that to the problem of estimating too many parameters

relative to the number of observations in the dataset. For a GvM4 distribution the

covariance matrix will have 36 unique elements in the covariance matrix and since

there are 600 observations in one simulated dataset we might be estimating too many

parameters relative to the number of observations.

Also, we had tried simulating from a lower order GvM distribution and fitting a

higher order GvM distribution to the data i.e. simulating from marginal GvM3 or

GvM2 and fitting GvM4 distribution to the data. In such situations, we often run into

the problem of overfitting i.e. fitting a model which tries to estimate a higher number

of modes than what is inherent in the data. In such a situation the results of the

direct search algorithm are misleading and thus we run into convergence issues. We

feel that in such a situation we are actually fitting an overly complicated model while

a relatively simpler model might be more appropriate to that particular dataset. We

mostly encounter this issue while fitting GvM3 or GvM4 distributions to observations

generated from marginal GvM2 or von Mises distributions.

3.4 Data Analysis

We apply our methods on data obtained from the clinical trial described in Ram-

seier et al. (2009) and also analyzed in Chapter II. In this non-randomized obser-

vational study 100 subjects, 50 periodontally healthy and 50 periodontally diseased,

were administered periodontal exams at baseline. Via our methods, we intend to
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determine the distribution of affected teeth and thus quantify the locations of teeth

that are most susceptible to be periodontally diseased. Hence the dataset to be an-

alyzed should comprise of teeth and their corresponding locations (in radians) that

are affected at baseline.

The diseased status of an individual tooth is determined using the tooth averaged

clinical attachment level (CAL) value as in Chapter II. Recall that though CAL is

measured at six sites of each tooth we are primarily interested in a tooth-level measure

i.e. determining locations of affected teeth in mouth. Hence we focus on affected teeth

only. We take the mean value of CAL (in mm) at each of the six sites of a tooth

and calculate the tooth averaged CAL value. A tooth is considered to be affected if

its tooth-level CAL value is greater than 3 mm. In our motivating dataset, there are

information on 2646 teeth corresponding to 100 subjects. At baseline, there are 287

affected teeth corresponding to 46 subjects and thus on average there are 6 affected

teeth in each subject. Furthermore, since subjects in the study has their wisdom

teeth extracted beforehand, each subject has a maximum of 28 teeth and hence we

do not have any information about teeth numbered 1, 16, 17, 32.

For our endeavor, we convert the affected tooth numbers into radians assuming

all the teeth to be uniformly distributed in a circle of 2π radians as described in

Section 3.1. Thus tooth number t, t = 1, 2, . . . 32, is associated with a direction

of π(2t − 1)/32 radians. Hence the data to be analyzed comprises of 287 affected

teeth and its corresponding locations (in radians) from 46 subjects. We fit various

orders of the Generalized von Mises distribution and calculate valid parameter and

standard error estimates using the GEE algorithm in order to account for multiple

measurements from a subject. We calculate the corresponding QIC values and choose

the order of the Generalized Von Mises distribution that has the minimum QIC value.

The results are shown in Table 3.7.

From Table 3.7 we see that the QIC values obtained on fittingGvM3 andGvM4 are
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Table 3.7 Table showing the parameter estimates, robust standard error estimates
(in parentheses) and the QIC values obtained on fitting GvM4, GvM3, GvM2, vM
distributions for the clinical data described in Ramseier et al. (2009)

GvM4 GvM3 GvM2 GvM1

λ̂1 -0.10 (0.002) -0.09 (0.01) -0.10 (0.11) -0.09 (0.10)

λ̂2 0.09 (0.003) 0.09 (0.01) 0.11 (0.12) 0.11 (0.12)

λ̂3 -0.09 (0.02) -0.08 (0.02) -0.10 (0.16)

λ̂4 0.01 (0.02) 0.02 (0.003) 0.03 (0.10)

λ̂5 0.04 (0.001) 0.04 (0.004)

λ̂6 0.36 (0.03) 0.35 (0.05)

λ̂7 0.02 (0.001)

λ̂8 -0.01 (0.001)
QIC 1032.66 1032.76 1050.40 1052.03

very close and are lower than the corresponding QIC values obtained on fitting GvM2

and GvM1 distributions. Thus on observing the QIC values, it seems that GvM3

distribution might provide the best fit to the data. However, the robust standard

error estimates corresponding to the GvM4 and GvM3 are very small. This might

be because in such a situation we might be fitting a model where the number of

parameters to be estimated might be too many relative to the number of observations

in the dataset. In order to fit aGvM4 distribution we have to estimate eight parameter

values and 36 unique elements in the corresponding covariance matrix. This might

be difficult given that we have to base our inference on only 287 observations.

We fit varying orders of GvM distributions to the angular observations corre-

sponding to directions of affected teeth and get the density estimates. We can

calculate the density estimates of affected tooth by transforming the density esti-

mates corresponding to the angles. Let us denote t as the affected tooth number and

θ = π(2t−1)/32 = h(t) as the corresponding direction. We estimate the density fθ(θ)

by fitting a GvM distribution. Using the jacobian of transformation, the density of t

can be calculated as gt(t) = fθ(h(t))|∂θ/∂t| = fθ(h(t))π/16.

Figure 3.8 shows the plot of the affected teeth numbers, affected teeth locations (in
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radians) and the corresponding estimated densities for the various orders of the fitted

GvM distributions. The plot shows that there are three modes in the motivating

dataset and GvM4 or GvM3 distributions give the best fit to the data. Furthermore,

the estimated densities obtained on fitting GvM4 and GvM3 distributions are iden-

tical. Hence GvM3 distribution is the most parsimonious model to be fitted to our

motivating dataset. The three modes roughly correspond to region of the mouth hav-

ing teeth numbered 2, 3, 4; teeth numbered 13, 14, 15 and teeth numbered 23, 24,

25. Thus referring to the Figure 3.1 we can infer that in the clinical data stated in

Ramseier et al. (2009) there are three regions in the mouth where periodontal disease

is most pronounced and they correspond to the upper right corner, upper left corner

and middle of the lower jaw. Thus in our motivating dataset we find that the distri-

bution of periodontal disease has a symmetry between the left and right sides of the

mouth, as shown in some previous studies (Mombelli and Meier, 2001; Darby et al.,

2012).
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Figure 3.8: Figures showing the affected teeth locations (left), affected teeth numbers
(right) and the corresponding estimated densities for the different orders
of GvM distributions fitted to the clinical data described in Ramseier
et al. (2009).

3.5 Discussion

Our methods are primarily motivated to address the issue of quantifying the num-

ber and location of modes of periodontally affected teeth. Based on the Universal

numbering system and assuming the mouth as a circle, we are able to convert the

affected tooth numbers into directions of affected teeth. Our methods allow us to

fit various orders of Generalized von Mises distributions to these angular responses.

As an extension to existing literature we propose a methodology to obtain valid pa-

rameter and standard error estimates by fitting GvMk; k = 1, 2, 3, 4 distributions to

model correlated angular responses. Furthermore, using the QIC measure we are able

to identify the order of Generalized von Mises distribution that provides the best fit

to the correlated angular data and thus are able to detect the number and locations

of periodontally diseased regions of the mouth.
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An alternative approach for detecting multiple modes in circular distributions

would be to use a mixture of a number of unimodal von Mises distributions. However,

Gatto (2008) has stated some disadvantages of adopting such an approach and have

recommended the use of Generalized von Mises distribution in such situations. The

main disadvantage is that the likelihood of the mixture of vM(µ1, κ1) and vM(µ2, κ2)

distributions might be unbounded and thus the overall supremum of the likelihood of

a von Mises mixture does not always yield a consistent estimator.

Fisher (1993) had proposed methods to model marginal von Mises observations

as a function of covariates. Artes et al. (2000), Song (2007) had extended that to

correlated outcomes. We had followed such an approach in the previous chapter as

well. However we are unaware of any such approach for modeling marginal Gener-

alized von Mises observations. Thus we are unable to formally model periodontal

disease locations as a function of covariates assuming the angular responses to follow

a marginal GvM distribution. The major complication is that though the von Mises

distribution belongs to the family of dispersion models the GvMk distribution for

values k > 1 do not belong to this family of models. Hence derivation of regression

models in such a context presents an interesting research problem.

Our methods allow us to detect the number and location of modes of periodontally

affected teeth. Furthermore, our methods can be readily extended to do inference

on the density estimates and the resulting modes. It would seem possible to use

the Delta method to produce a variance estimate for the density estimate for any

angle, although we can also attempt to use resampling methods as an alternative to

estimating the variability of the density. Such methods would allow us to calculate

confidence interval at each tooth and thus obtain a confidence band around our fitted

density estimates. We are developing these extensions in our future work.
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CHAPTER IV

Detecting association between clinical periodontal

measures using Gibbs point process models

4.1 Introduction

There are 32 teeth in an adult individual. They can be classified into four broad

types from the back to the front of the mouth as: molars (grinding teeth), bicuspids,

cuspids and incisors (biting teeth). We consider the Universal Numbering System,

in which the teeth are numbered sequentially from 1 to 32, with the numbers 1-16

referring to the teeth in the upper jaw (maxillary) and the numbers 17-32 referring

to the sixteen teeth in the lower jaw (mandibular). Note that usually the wisdom

teeth (teeth 1, 16, 17 and 32) are often removed in most adults and thus periodontal

exams usually give us data on 28 teeth. Figure 4.1 shows the orientation of teeth in

the mouth with tooth numbers according the Universal Numbering System and the

different tooth types classified according to position and functional groupings.

The periodontal status of an individual tooth is determined using a number of

clinical measurements most common of which are clinical attachment level (CAL)

and alveolar bone level (BL). The point where the crown of the tooth connects with

the root of the tooth is known as the cementoenamel junction (CEJ). Any detachment

of the gingiva from the cementum produces a periodontal pocket. CAL quantifies the

vertical distance (in whole millimeters) from the base of the pocket to the CEJ and

represents a measure of disease severity in terms of loss of support for the tooth. Peri-
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Figure 4.1: Diagram of teeth numbered according to the Universal Numbering Sys-
tem and showing the types of teeth according to position and functional
groupings.

odontists detect pockets and thus measure CAL by periodontal probes at each of the

mesiobuccal, mid-buccal, distobuccal, mesiolingual, mid-lingual and distolingual sites

of every tooth. The bone that surrounds and supports the root of the tooth is called

the alveolar bone. Alveolar bone level (BL) quantifies the length (in millimeters)

from the CEJ to the crest of alveolar bone.

BL is measured using radiographs usually taken at each of the two surfaces, namely

distal (comprising of the distobuccal and distolingual sites) and mesial (comprising

of the mesiobuccal and mesiolingual sites) surfaces of the tooth. Because there are

no radiographic measurements for buccal and lingual surfaces of a tooth, we discard

the CAL values for buccal and lingual sites of each tooth. We then average the

BL and CAL values for the distal and mesial sites of each tooth and thus consider

tooth-level averaged values. Both these clinical measures are used to determine the
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health status of an individual tooth with a high value indicating deterioration of

periodontal health which ultimately translates into a high risk of the disease. Thus

researchers have been interested in studying the association between these clinical

measures and how the association varies according to different types of teeth. It

is also of interest to know how the association of BL and CAL measurements vary

among different kinds of teeth. Renvert et al. (1981) found high correlation between

attachment level and radiographic bone length measures. Goodson et al. (1984)

proposed that attachment loss precedes radiographic bone loss particularly during

periods of periodontal disease activity. Jeffcoat (1992) and Hausmann et al. (1994)

showed that there was a significant concordance between changes in bone level and

attachment level. The results from the above-cited studies were based on either

Pearson’s correlation coefficients or two-way contingency tables and were based on

subject-level data. To complement these existing approaches, we propose to assess

the association of CAL and BL using spatial point pattern data analysis methods,

and our approach allows for the incorporation of multiple tooth-level measurements

from each subject.

The primary motivation arises from the distribution of BL and CAL values in

different types of teeth as shown in Figure 4.2. The values are obtained from the data

for all subjects in the study conducted by Ramseier et al. (2009) where each point

represents the tooth-level BL and CAL values, averaged over the distal and mesial

sites of each tooth. The data studied in Ramseier et al. (2009) had information on 16

teeth in an individual corresponding to 8 molars and 8 bicuspids. Figure 4.2 shows

scatter plot of CAL and BL values for these two types of teeth. We use spatial

statistics in order to model the spatial orientation of these points and thus study

the association between BL and CAL. Considering the location of the points in the

scatter plot as random, we treat the observations as point pattern data.

We are interesting in studying the joint association of the clinical parameters BL
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and CAL by modeling the orientation of the points in Figure 4.2. We are particularly

interested in seeing if the points in the figure tend to be close to one another or repel

each other and how the association varies according to different types of teeth. Our

methods have the practical implication of determining if the BL and CAL measures

of one tooth provide substantial information about the BL and CAL of other teeth,

which our methods would model as strong attraction between points. If the level of

attraction is strong enough to suggest that knowing the BL and CAL of one tooth

is representative of other teeth, then one might consider not measuring the BL and

CAL of every tooth. Doing so would appreciably reduce the time and cost associated

with a periodontal exam and could impact the design of future periodontal studies.

Such findings would also justify the approach of the National Health and Nutrition

Examination Survey (NHANES), which collects periodontal measures on only one-

half of each jaw of each subject (Dye et al., 2007a; Dye et al., 2007b).
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Figure 4.2: Diagram showing association between bone level (BL) and clinical attach-
ment level (CAL) for different types of teeth at baseline in the study of
Ramseier et al. (2009)
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This chapter is organized as follows. Section 4.2 explains the theory behind point

pattern data analysis methods and the modeling framework for studying the overall

association and how that association varies between molars and bicuspids. Section 4.3

describes the performance of our methods on simulated data and Section 4.4 shows

the application to the data that motivated our analysis. In Section 4.5, we discuss the

potential extensions of our methods and the other scenarios to which our modeling

approach can be applied.

4.2 Statistical Methods

Spatial statistics usually involve three types of data: geostatistical or point-

referenced data, areal or lattice data and point pattern data. Point-referenced data

refer to observations collected at finite number of points located in a spatial domain

D; lattice data refer to observations collected over a fixed grid or lattice with well

defined boundaries. Observations where the locations of the points, the variables of

interest, are random are regarded as point pattern data. Banerjee et al. (2004) discuss

different methods of analysis of point-referenced and areal data while an overview of

current research on spatial statistics is stated in Gelfand et al. (2010).

As shown in Figure 4.2, the locations of the points with coordinates BL and

CAL values can be treated as randomly distributed over the window of observations

W = [0, a] × [0, b]. As the maximum tooth level BL and CAL values for the baseline

data in Ramseier et al. (2009) are 13 mm and 8 mm respectively, we consider points

to be randomly distributed in a rectangular window of dimension a = 13 × b = 8.

Moller and Waagepeterson (2007) and Illian et al. (2008) each contain an overview

of models and methods for analyzing point pattern data, the most common of which

are Cox models and Gibbs process models. Aggregation in point processes can be

attributed to two primary types: (i) clustering of the points around points arising

from another process and (ii) interactions between points. Broadly, Cox processes
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focus on type (i) while Gibbs point processes focus on type (ii). For Cox process

models, the observations follow a Poisson process conditional on a random intensity

function, so that although the observations arising from a Cox process are aggregated,

they are conditionally independent given the intensity function. A difficulty of Cox

process models is that the density function typically cannot be expressed in closed

form, making evaluation of the likelihood involve a complicated integral.

Gibbs process models are more flexible than Cox process models as they can be

used for modeling independence, repulsion and attraction between points. They can

model the spatial intensity as a function of covariates and also allow for interac-

tion between points. Gibbs point process models, defined inside a bounded window,

have closed form densities. However, given that the density frequently involves an

unknown normalizing constant, likelihood inference based on Markov Chain Monte

Carlo (MCMC) methods is common for parametric Gibbs point process models. How-

ever, an alternative is to directly model the conditional intensity function because it

can be easily derived from the corresponding density and does not involve the nor-

malizing constant. The conditional intensity of a point can be loosely interpreted as

the conditional probability of the point to be in the point pattern given the rest of

the points are already in the point pattern dataset. Hence, the conditional intensity

is the preferred modeling tool for Gibbs point processes.

As a result, we focus on modeling point patterns using Gibbs process models.

Baddeley and Turner (2000) proposed a simplified approach based on a pseudolikeli-

hood using a loglinear model that has been implemented in the R package “spatstat”

(Baddeley and Turner, 2005). However, the usual variance estimates, i.e. information

matrix, derived from the pseudolikelihood are inconsistent as they are not based upon

an actual likelihood. The only recourse for finding standard error estimates has been

using the bootstrap and other resampling techniques in order to obtain consistent

standard error estimates. We propose use of a “sandwich” standard error estimator
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that is straightforward to implement with loglinear models and is computationally

faster than the resampling techniques considered in existing literature.

4.2.1 Gibbs Point Processes

Let x = {x1, x2, ..., xn} be a point pattern of n points, which is a realization of the

point process X. Let W denote the window containing all possible realizations of X.

The conditional intensity λ(u; x) of x at a location u ∈ W can be loosely interpreted

as the conditional probability that X has a point at u given the rest of the process

coincides with x. For any Gibbs point process on W with density f , the conditional

intensity (Papangelou, 1974) at a point u ∈ W is

λ(u; x) =

 f(x ∪ {u})/f(x) (u 6∈ x)

f(x)/f(x \ {u}) (u ∈ x)

where x \ {u} = {v : v ∈ x, v 6= u}, is the collection of all elements of x apart from u.

With Gibbs point processes, we typically model the conditional intensity with a

loglinear model as

λθ(u; x) = exp(θTS(u; x)) (4.1)

where S(u; x) is a vector of spatial covariates defined at each point u in W . This

includes exponential family likelihoods with canonical parameter θ. The two pri-

mary types of Gibbs models are Poisson processes and pairwise interaction models.

The inhomogenous Poisson process with intensity function λ(.) has conditional in-

tensity λ(u; x) = λ(u) at all points u. The fact that this does not depend on x is a

consequence of the independence properties of the Poisson process.

Pairwise interaction models are used to model interpoint interaction or stochastic

dependence between points and can be constructed depending on whether the points
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tend to be far from one another (repulsion) or tend to be clustered together (attrac-

tion). Strauss process (Strauss, 1975) is commonly used to model repulsion between

points while Area Interaction process (Baddeley and Van Lieshout, 1995) or Geyer’s

saturation process (Geyer, 1999) are used to model repulsion or attraction. Note that

in our setting, repulsion is biologically implausible because given the BL and CAL

value of one tooth, it is unlikely that there cannot be another tooth having a similar

BL and CAL value. Furthermore, we want a model flexible enough to determine if

there is an attraction, repulsion or independence between the points. Hence, for our

purpose we will adopt an Area Interaction point process.

4.2.2 Area Interaction Point Process

The Widom-Rowlinson model (Widom and Rowlinson, 1970) or Area Interaction

process (Baddeley and Van Lieshout, 1995) with disc radius r, intensity parameter κ

and interaction parameter γ is a point process having probability density

f(x) = ακn(x)γ−A(x) κ, γ > 0

where x = (x1, x2, ..., xn) represent the points of the pattern, n(x) is the number of

points in the pattern, A(x) is the area of the region formed by union of discs of radius

r centered at point x and α is the normalizing constant. Thus an isolated point, i.e. a

point lying outside a distance 2r from any of the points in the pattern, contributes a

factor κγ−πr
2

to the density. Hence the parameters fail to have a ready interpretation.

Considering the parameterization C(x) = B(x) − n(x), β = κγ−πr
2
, η = γπr

2
and
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B(x) = A(x)/πr2, the above density can be re-expressed as:

f(x) = ακn(x)γ−A(x)

= ακn(x)(γπr
2

)−A(x)/πr
2

= ακn(x)(γπr
2

)−B(x)

= α(κγ−πr
2

)n(x)(γπr
2

)−B(x)+n(x)

= αβn(x)η−C(x)

When an additional point is added to an existing point pattern x, it contributes

a factor βηδ, 0 ≤ δ ≤ 1, to the density. For a point that is outside a distance 2r from

each point in the pattern, δ = 0, and its contribution to the density is β. On the other

hand, if the new point coincides with any of the existing points in the pattern, then

δ = 1. For all other cases, when the new point is within a distance 2r of any other

point in the pattern, 0 < δ < 1. Thus based on the reparameterization β = κγ−πr
2

is

the intensity parameter, η = γπr
2

is the interaction parameter, C(x) is the interaction

potential, and B(x) = A(x)/πr2 is the normalized area covered by the point pattern

x.

Thus the corresponding conditional intensity of an Area Interaction process for

u 6∈ x with interaction radius r is given by:

λβ,η(u,x) = f(x ∪ {u})/f(x)

= αβn(x∪{u})η−C(x∪{u})/αβn(x)η−C(x)

= βηC(x)−C(x∪u)

= βη−D(u,x) β, η ≥ 0 (4.2)

where D(u,x) = C(x∪u)−C(x) = (A(x∪u)−A(x))/πr2− 1. For an isolated point

u, ‖ u − xi ‖≥ 2r for all xi ∈ x, we get A(x ∪ u) = A(x) + πr2, so that D(u,x) = 0

71



and λβ,η(u,x) = β. For any coincident point u = xi for any xi ∈ x, A(x∪ u) = A(x),

D(u,x) = −1 and λβ,η(u,x) = βη. For all other points u, ‖ u− xi ‖< 2r for at least

one xi ∈ x, −1 < D(u,x) < 0.

Depending upon the parameter values, the Area Interaction process is flexible

enough to model a regular or an inhibitive pattern or an attractive or clustered

data pattern. If η = 1, the model reduces to a homogenous Poisson process with

intensity β while η < 1 indicates a regular and η > 1 indicates clustered point pattern

respectively. The interaction radius r is referred to as an “irregular” parameter while

the parameters β, η, which are directly estimated based on the data, are referred to

as “regular” parameters.

4.2.3 Pseudolikelihood and Parameter Estimation

Assuming data points to be realizations from an Area Interaction process, we use

maximum pseudolikelihood method of estimation to estimate β and η. Since this

method uses a likelihood that is not the actual likelihood of the data, the resulting

standard error estimates derived by taking the inverse of the information matrix using

the pseudolikelihood would fail to provide valid standard error estimates. Hence the

standard errors derived using our methods should be “robust” to the misspecifica-

tion of the correct likelihood function. As a result, we use a generalized estimating

equation (GEE) approach. Liang and Zeger (1986) proposed the use of GEE to pro-

duce consistent parameter and standard error estimates for correlated data assuming

the marginal mean model is completely specified. We use the resulting residuals to

produce “robust”, or so-called “sandwich”, variance estimates. The GEE approach,

though non-likelihood based, is defined for an unbiased estimating equation and thus

should yield valid parameter and standard errors in our setting.
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Besag (1977) defined the pseudolikelihood of a point process with conditional

intensity λ(u; x) over a subset A ⊆ W , the window or grid of all observations to be

PLA(x) =
∏
xi∈A

λ(xi; x)exp(−
∫
u∈A

λ(u; x)du) (4.3)

Consider m subjects in which the point pattern of subject k = 1, 2, ...,m is

xk=(xk1, xk2, ..., xknk
). Thus subject k has nk data points. Denote the aggregation

of point patterns for all the subjects as X = (x1,x2, ...,xm). From equation (4.3),

taking A = W , the pseudolikelihood of a point process for subject k is

PL(θ;xk) =
∏

xki∈W

[λθ(xki;xk)exp(−
∫
W

λθ(u;xk)du)]

Hence the log-pseudolikelihood of the point process for subject k is given by

logPL(θ;xk) =
∑
xki∈W

logλθ(xki;xk)−
∫
W

λθ(u;xk)du

=

nk∑
i=1

logλθ(xki;xk)−
∫
W

λθ(u;xk)du (4.4)

Assuming mk quadrature points, including data and dummy points which span the

window W , we can approximate the above integral by a finite summation as

∫
W

λθ(u;xk)du ≈
mk∑
j=1

λθ(ukj;xk)wkj
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where wkj is quadrature weight j = 1, 2, ...,mk for person k = 1, 2, ...,m. Thus, we

can write the log-pseudolikelihood of the point process for subject k as

logPL(θ;xk) =

nk∑
i=1

logλθ(xki;xk)−
mk∑
j=1

λθ(ukj;xk)wkj

=

mk∑
j=1

(ykjlogλkj − λkj)wkj

where λkj = λθ(ukj;xk) and ykj = zkj/wkj and

zkj =

 1 if ukj is a data point in xk ;ukj ∈ xk

0 if ukj is a dummy point in xk ;ukj /∈ xk

For a fixed xk, the above is equivalent to a log-likelihood of weighted independent

Poisson random variables Ykj with mean λkj and weight wkj. Assuming all the point

patterns generated from the m subjects are independent, the pseudolikelihood for all

the subjects is

PLW (θ;X) =
m∏
k=1

PLW (θ;xk) =
m∏
k=1

∏
xki∈W

[λθ(xki;xk)exp(−
∫
W

λθ(u;xk)du)]

=
m∏
k=1

nk∏
i=1

[λθ(xki;xk)exp(−
∫
W

λθ(u;xk)du)]

We can write the log-pseudolikelihood for all the subjects as

logPLW (θ;X) =
m∑
k=1

logPLW (θ;xk) =
m∑
k=1

mk∑
j=1

(ykjlogλkj − λkj)wkj (4.5)

The above equation represents the weighted log-likelihood of marginally independent

Poisson random variables. For our purpose, we apply a GEE approach for inference

on the parameter θ using a loglinear model. The GEE methodology for marginal

Poisson data is briefly discussed below.
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From equation (4.1) note that λkj = f(xTkjθ). Thus for subject k, λk = fk(θ) =

(λk1, λk2, ..., λkmk
) = [f(xTk1θ), f(xTk2θ), ..., f(xTkmk

θ)]. For marginally Poisson dis-

tributed random variables, the generalized estimating equation can be written as:

m∑
k=1

∆T
kΛ−1k Wk[Yk − fk(θ)] = 0

where ∆k is a mk by p matrix whose (j, s) element is the derivative of λkj with respect

to θs, s = 1, 2, ..., p. Λk is the working covariance matrix andWk = diag(wk1, wk2, ..., wkmk
)

is the weight matrix having the quadrature weights in the diagonal. It is to be re-

called that we use a working independence correlation matrix for applying the GEE

methodology i.e. we assume the observations from a subject to be uncorrelated and

use GEE to obtain “robust” standard errors. Thus, for marginally Poisson random

variables, the “working” covariance matrix is Λk = Gk = diag(λk1, λk2, ..., λkmk
). Fur-

thermore, it can be shown that ∆k = GkXk where Xk is the design matrix of order

mk by p. Hence the generalized estimating equation can be expressed as:

m∑
k=1

∆T
kΛ−1k Wk[Yk − fk(θ)] = 0

m∑
k=1

XT
k GkG

−1
k Wk[Yk − fk(θ)] = 0

m∑
k=1

XT
kWk[Yk − λk] = 0

The model based variance estimator of θ is given by VMB(θ) = S(θ)−1 where

S(θ) =
m∑
k=1

∆T
kΛ−1k Wk∆k =

m∑
k=1

XT
kWkGkXk
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The robust variance estimator of θ is given by VR(θ) = S(θ)−1V (θ)S(θ)−1 where

V (θ) =
m∑
k=1

∆T
kΛ−1k Wkrkrk

TWkΛ
−1
k ∆k

=
m∑
k=1

XT
kWkrkrk

TWkXk

and rk = Yk − λ̂k is the vector of estimated residuals.

There are a number of ways to calculate the quadrature weights. For our purpose,

we generate dummy points spanning the entire observation window and divide the

rectangular window into tiles of equal area, say squares of unit area each. To each data

or dummy point ukj of the k th subject we assign a weight wkj = a/bkj where a = 1

is the area of each tile and bkj is the total number of quadrature points, including

data and dummy points, of the k th subject in the same tile as ukj.

From equation (4.2), the conditional intensity of an Area Interaction process at a

point ukj ∈ xk is

λkj = λβ,η(ukj;xk) = βη−D(ukj ;xk) = βη−Dkj (4.6)

where Dkj = D(ukj;xk). Hence the conditional intensity can be written in a loglin-

ear form as: log(λkj) = log(β)−Dkj log(η) = θ1 − θ2Dkj. Thus, λkj = λθ(ukj;xk) =

exp(θTS(ukj;xk)) = exp(θTSkj) where θ = (θ1, θ2)
T = (log(β), log(η))T and S(ukj;xk) =

Skj = (1,−Dkj)
T = (1,−D(ukj;xk))T . Using our algorithm we intend to compute

valid parameter and standard error estimates of θ, which is a function of the regular

parameters β and η. The parameter θ quantifies the overall association between the

clinical parameters CAL and BL. The irregular parameter r, the interaction radius,

can be obtained by choosing the corresponding values which maximize the profile

pseudolikelihood over a fixed grid of r values (Baddeley and Turner, 2000).
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4.2.4 Inference for Multitype Point Patterns

Each point in a spatial point pattern may carry additional information called a

‘mark’. Point pattern data with categorical marks are referred to as a multitype

point pattern. For our purpose, we can classify the points in the point pattern shown

in Figure 4.2 according to bicuspids and molars and treat these types of teeth as

“marks” associated with the point pattern dataset.

Consider m subjects with the point pattern of the k th subject as

vk = {(xk1, zk1), (xk2, zk2)..., (xknk
, zknk

)}; xkj ∈ W, zkj ∈ M ; j = 1, 2, ..nk. We

consider the categorical or discrete mark for tooth j of subject k as

zkj =

 1 if tooth j is a molar

2 if tooth j is a bicuspid

Hence M = {1, 2}. Similar to equation (4.4), the log-pseudolikelihood of a multitype

point process for subject k is given by

logPL(θ;vk) =
∑
zki∈M

∑
xki∈W

logλθ((xki, zki);vk)−
∑
zki∈M

∫
W

λθ((u, zki);vk)du

=
2∑
l=1

nkl∑
i=1

logλθ((xki, l);vk)−
2∑
l=1

∫
W

λθ((u, l);vk)du

Assuming mkl quadrature points for person k and points of mark l, we can ap-

proximate the above integral by a summation as

∫
W

λθ((u, l);vk)du ≈
mkl∑
j=1

λθ((ukj, l);vk)wkjl

where wkjl is the quadrature weight corresponding to quadrature point j for person

k and points of mark l. Thus, we can write the log-pseudolikelihood of the point

77



process for subject k as

logPL(θ;vk) =
2∑
l=1

nk∑
i=1

logλθ((xki, l);vk)−
2∑
l=1

mkl∑
j=1

λθ((ukj, l);vk)wkjl

=
2∑
l=1

mkl∑
j=1

(ykjllogλkjl − λkjl)wkjl

zkjl =

 1 if ukjl is a data point in vk of type l ;ukjl ∈ vk

0 if ukjl is a dummy point in vk of type l ;ukjl /∈ vk

For a fixed vk, the above is equivalent to a log-likelihood of weighted independent

Poisson random variables Ykjl with mean λkjl and weight wkjl.

Denote the aggregation of point patterns for all the subjects as V = (v1,v2, ...,vm).

Thus, we can write the log-pseudolikelihood of the point process for all subjects is

logPLW (θ;V ) =
m∑
k=1

logPLW (θ;vk) =
m∑
k=1

2∑
l=1

mkl∑
j=1

(ykjllogλkjl − λkjl)wkjl (4.7)

For categorical marks, the log-pseudolikelihood (4.7) can be expressed in the form

of the log-pseudolikelihood (4.5) using categorical predictors in the corresponding

design matrix. Thus the GEE algorithm described in Section 4.2.3 can be applied in

a similar manner.

The conditional intensity of a two-type Area Interaction process for quadrature

point j in the two-type marked point pattern vk for person k is

λθ((ukj, l); vk) = βlη
−D1((ukj ,l);vk)
l1 η

−D2((ukj ,l);vk)
l2 (4.8)

whereD1((ukj, l);vk) = B1((ukj, l);vk)/πr2−1, D2((ukj, l);vk) = B2((ukj, l);vk)/πr2−

1 and Bl′((ukj, l),vk) is the area of the disc of radius rll′ centered on ukj (having mark

78



l) that is not covered by discs of radius rll′ centered at other points of the kth person

vk = {(xk1, zk1), (xk2, zk2)..., (xknk
, zknk

)} having mark l′. In our setup, r12 = r21

and η12 = η21.

The model may be cast in loglinear form (4.1) with the parameter vector θ =

(log β1, log β2, log η11, log η12, log η22) and the corresponding predictors I1(l), I2(l),

−D11((u, l);v),−D21((u, l);v)−D12((u, l);v),−D22((u, l);v) respectively where

D11((u, l);v) = D1((u, l);v)I1(l), D21((u, l);v) = D2((u, l);v)I1(l), D12((u, l);v) =

D1((u, l);v)I2(l), D22((u, l);v) = D2((u, l);v)I2(l) and Im(l) = 1{m = l}. Using

the parameter θ we can quantify the difference in association between BL and CAL

according to different types of teeth. The parameters β1, β2 controls the overall inten-

sities for the two types of points while the interaction parameters η11, η12, η22 govern

the interaction or dependence between the points. η11 quantifies the association be-

tween any point of mark 1 and any other point having the same mark i.e. mark 1.

η11 < 1 denote that any two points having mark 1 tend to repel each other while

η11 > 1 denote that any two points having mark 1 tend to be close one other and thus

there is a clustering between points. Similarly, η12 = η21 quantifies the association

between any point of type 1 and another point of type 2 and vice versa. η12 < 1

denote that two points having marks 1 and 2 tend to be far from one another while

η12 > 1 denote that any two points having marks 1 and 2 tend to be close one other

and thus there is a clustering between points of different marks.

4.3 Simulation Examples

4.3.1 Simulation of unmarked point pattern data

We assume that the observations arising from subject k follow an Area Interac-

tion process with intensity parameter β and interaction parameter η. It can also

be expressed in loglinear notation as: log(λkj) = log(β) −Dkj log(η). For each sub-
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ject, we simulate data points having this conditional intensity and generate dummy

points spanning the entire window. The data points are generated using a Metropolis-

Hastings algorithm starting with 200 randomly generated points and is run for 100,000

iterations. These points, consisting of both data and dummy points, constitute the

quadrature points that are used to compute the quadrature weights, responses and

the covariate D as defined in equation (4.6). We simulate points using the algorithm

for all subjects in the dataset. We consider different settings for varying values of the

parameters β and η.

We use generalized estimating equations (GEE), assuming a “working” indepen-

dence correlation structure, to get valid parameter and standard error estimates, for

the model log(λkj) = α0 − α1Dkj where α = (α0, α1) are the parameters of interest.

Also, note that we would expect exp(α̂0) ≈ β and exp(α̂1) ≈ η.

We consider two simulation settings. In each setting, we simulated data for 30 sub-

jects in each of 500 datasets. In each simulated dataset, we simulated an unmarked

point pattern for every subject from an Area Interaction process with intensity pa-

rameter β, interaction parameter η and interaction radius r = 0.5 on a square window

of dimension 13 × 13. We chose β = 0.1, η = 1.6 and β = 0.2, η = 1.6 for the two

simulation settings, respectively. The results are displayed in Table 4.1.

The parameters for the simulation settings were chosen such that the simulated

data might mimic actual periodontal data. However, in order to examine the perfor-

mance of the algorithm for point pattern data, we need to have a sufficient number of

points per subject, although realistically a subject can have no more than 28 points.

Thus, we chose to use β = 0.1, η = 1.6 for one setting and β = 0.2, η = 1.6 for the

other setting which on average contributed 17 and 36 observations per subject on

a window of dimension 13 × 13 units in our simulated datasets. Since repulsion is

unlikely in our setting, we chose to make η > 1 indicating interpoint attraction or

clustering between the points. The value of the irregular parameter r = 0.5 implies
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that points interact only if the distance between them is less than 2*0.5=1 unit, which

is realistic as we are focusing on a window of dimension 13 × 13 units.

Table 4.1 Table showing the mean of estimated parameters and corresponding stan-
dard error estimates for 500 simulated datasets of 30 persons each where points from
each subject follow an Area Interaction process with intensity parameter β, interac-
tion parameter η and radius of interaction r = 0.5.

Standard Error
Setting Parameter Mean Exp(mean) Empirical Model Based Robust

β = 0.1, η = 1.6 α̂0 -2.31 0.10 0.06 0.06 0.06
α̂1 0.38 1.46 0.42 0.28 0.41

β = 0.2, η = 1.6 α̂0 -1.63 0.20 0.05 0.04 0.05
α̂1 0.45 1.57 0.22 0.15 0.22

From Table 4.1 note that exp(−2.31) = 0.10, exp(0.38) = 1.46 and exp(−1.63) =

0.20, exp(0.45) = 1.56 respectively which are close to the values of the parameters

β, η which denote the intensity and interaction parameters for the Area Interaction

process from which the data are simulated. Thus our algorithm yields valid estimates

of the intensity and the interaction parameters. In both the scenarios, the model

based standard errors calculating using pseudolikelihood are inconsistent as the cor-

rect likelihood function is not used. Furthermore, the robust standard errors are closer

to the empirical standard errors for all the scenarios. The model based standard er-

rors are negatively biased while the robust standard errors give valid estimates. In

our setting, apart from bootstrapping and other resampling techniques there are no

analytic formulas to calculate the standard errors of the parameter estimates. Thus

our methods provide an alternative and relatively straightforward approach to obtain

valid standard error estimates for modeling point pattern data.

4.3.2 Simulation of two type point pattern data

The simulation of multitype point pattern data having an Area Interaction condi-

tional intensity is challenging as there is no straightforward algorithm for generating
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such observations. Hence, to simulate observations for two types of points (pertain-

ing to two types of teeth) in an individual we follow an approach similar to the one

adopted in the previous section. Let us denote the two types of points as points having

marks 1 and 2. For every subject, we simulate observations corresponding to an Area

Interaction process with regular parameters (βi, ηi) and interaction radius ri; i = 1, 2.

Based on this conditional intensity, we simulate data points corresponding to each

mark for each subject. We also generate dummy points spanning the entire window

for each of the two marks. These two types of quadrature points are used to calculate

the corresponding quadrature weights and the responses. Using the location of the

two types of points we calculate the covariates D11, D12, D21, D22 as defined in Section

4.2.4. Thus in our simulations though we know the intensity parameters: β1, β2 of

the two types of points apriori, we do not know the true value of the interaction

parameter η12 corresponding to the interaction between the two types of points.

We simulate points using the algorithm for different values of the intensity and

interaction parameters. We fit a marginal model to the simulated data and use GEE

to get valid parameter and standard error estimates. We fit the model:

log(λkj) = log(λ(ukj, l);vk)) = αm0 +αm1 I2(l)−αm2 D1kjI1(l)−αm3 (D1kjI2(l)+D2kjI1(l))−

αm4 D2kjI2(l) where αm = (αm0 , α
m
1 , α

m
2 , α

m
3 , α

m
4 ) are the parameters of interest. We

would expect exp(α̂m0 ) ≈ β1, the overall intensity parameter for the type 1 points and

exp(α̂m0 + α̂m1 ) ≈ β2, the overall intensity parameter for the type 2 points.

In each of the two settings, we consider 500 simulations each consisting of 30 per-

sons with data on a rectangular window of dimension 10 × 10. In the first simulation

example, we chose β1 = 0.06, β2 = 0.08, η1 = η2 = 1.6 and r1 = r2 = 0.5. In

the second simulation example, we choose β1 = 0.08, β2 = 0.10, η1 = η2 = 1.6 and

r1 = r2 = 0.5. The results are shown in Table 4.2.

As in the simulation settings for unmarked point pattern data, here also the

parameter values for the simulations were chosen such that the simulated data might
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be similar to what we would expect for periodontal data. On an average, intensity

parameter values of 0.06, 0.08 and 0.1 contributed 6, 8 and 10 observations per subject.

The values of the interaction parameters η1 = η2 = 1.6 and irregular parameters

r1 = r2 = 0.5 imply that there is a clustering between the points and any two points

interact only if the distance between them is less than 2*0.5=1 unit.

Table 4.2 Table showing the mean of estimated parameters and corresponding stan-
dard error estimates for 500 simulated datasets of 30 persons each where points
from each subject follow a two-type Area Interaction process with parameters (i):
β1 = 0.06, β2 = 0.08, η1 = η2 = 1.6, r1 = r2 = 0.5 and (ii): β1 = 0.08, β2 = 0.10, η1 =
η2 = 1.6, r1 = r2 = 0.5.

Standard Error
Setting Parameter Mean Empirical Model Based Robust

β1 = 0.06, β2 = 0.08 α̂m0 -2.83 0.11 0.10 0.16

α̂m1 0.30 0.14 0.13 0.21

α̂m2 0.29 1.12 0.68 0.94

α̂m3 -0.09 0.63 0.43 0.60

α̂m4 0.39 0.72 0.48 0.69

β1 = 0.08, β2 = 0.10 α̂m0 -2.54 0.10 0.09 0.14

α̂m1 0.22 0.13 0.12 0.18

α̂m2 0.42 0.68 0.48 0.68

α̂m3 -0.01 0.42 0.33 0.46

α̂m4 0.42 0.58 0.39 0.56

From Table 4.2, we note that exp(−2.83) = 0.06, exp(−2.83 + 0.30) = 0.08,

exp(−2.54) = 0.08 and exp(−2.54 + 0.22) = 0.10, all of which are equal to the

values of the parameters β1, β2 which denote the intensity parameters for the two

Area interaction processes pertaining to the two types of points. Thus our algorithm

yields valid estimates of the intensity parameters. However we are unable to compare

the estimates of the interaction parameters since we are not simulating from a two-

type Area Interaction process directly. Note that the model based standard errors

are negatively biased while the robust standard errors are closer to the empirical

standard errors in both the situations. The results are consistent with those obtained

for an unmarked point pattern data considered in Tables 4.1. Hence, in both the
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scenarios our proposed standard error estimator yields an estimate which is close to

the empirical standard error estimate and thus our approach can be considered as an

alternative to resampling methods currently used in practice for inference on point

pattern data using Gibbs process models.

4.4 Data Analysis

We apply our methods to the baseline data described in Ramseier et al. (2009). We

are interested in studying the overall association between BL and CAL and also how

the association varies according to different types of teeth. Recall that we discarded

the CAL values corresponding to the buccal and lingual sites of each tooth, and

averaged the BL and CAL values on the distal and mesial sites of each tooth to

compute tooth-averaged values. Overall, we have data on 99 subjects and 16 teeth

(bicuspids and molars) which correspond to 1,364 observations. A scatter plot of the

data is shown in Figure 4.2.

In order to compute the overall association between CAL and BL, we need to

estimate the irregular parameter r as well as the intensity and interaction parameters.

We used profile pseudolikelihood to estimate the interaction distance r. For each

subject, we considered a range of possible values of r from 0 to 1 with increments of

0.1. For each candidate value of r, we fitted the point process model and computed the

log-pseudolikelihood value. We chose the value of r with the largest value of the log-

pseudolikelihood and used that value in determining the covariate D corresponding

to the points for that subject.

We used the same model as that used in Section 4.3.1. Based on the fitted

model, the estimated parameters are α̂0 = −4.93 (SE= 0.70) and α̂1 = 5.96 (SE=

0.83). Thus, the estimated values of the intensity and interaction parameters are

exp(−4.93) = 0.01 and exp(5.96) = 387.61 respectively. We can infer that the overall

intensity of the points is low but there is a very strong interpoint interaction between
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the points and hence the points tend to be clustered together as supported in Figure

4.2. Therefore we expect one point to be closer to another point or in other words,

given a tooth with a particular BL and CAL value, we would expect another tooth

to have a similar BL and CAL value.

Furthermore, we are interested in studying the intensity and interaction between

BL and CAL according to different types of teeth. Thus, we mimic the approach in

Section 4.3.2, using the marginal model log(λkj) = log(λ(ukj, l);vk)) = αm0 +αm1 I2(l)−

αm2 D1kjI1(l)− αm3 (D1kjI2(l) +D2kjI1(l))− αm4 D2kjI2(l)

where αm = (αm0 , α
m
1 , α

m
2 , α

m
3 , α

m
4 ) are the parameters of interest. The results are

shown in Table 4.3.

Table 4.3 Table showing the estimated parameters and corresponding standard error
estimates assuming the points, obtained from tooth-level averages of BL and CAL
measurements in the study of Ramseier et al. (2009), to be realizations of a two-type
Area Interaction process corresponding to observations for two types of teeth.

Estimate Robust se

α̂m0 -4.81 0.61

α̂m1 -0.53 0.77

α̂m2 3.69 0.69

α̂m3 2.00 0.84

α̂m4 4.48 0.84

Thus the estimate of the intensity parameters for the points corresponding to

molars (i.e. points of type=1) and bicuspids (i.e. points of type=2) are exp(−4.81) =

0.01 and exp(−4.81 − 0.53) = 0.01, respectively. Note that exp(3.69) = 40.04 and

exp(4.48) = 88.23 quantifies the association between the clinical measures CAL and

BL in the molars and bicuspids respectively. This signifies that there is a strong

interpoint attraction and clustering within each type of tooth so that values of CAL

and BL tend to be similar within the molars and within bicuspids separately. Also,

the association between CAL and BL is slightly stronger in bicuspids than in molars.

There is a high interpoint attraction between the molars and bicuspids, indicated by
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exp(2.00) = 7.39. Thus given the BL and CAL values of one molar we would expect

another bicuspid to have similar BL and CAL values and vice versa. This might

be expected as the molars and bicuspids, though different in terms of morphology

(molars are multi-rooted while bicuspids usually have single roots), are similar in

function and also adjacent to each other in the mouth. Since we found that the

BL and CAL values of any two molars and bicuspids are similar to one another,

this would suggest that we can take measurements from any molar or bicuspid and

consider it to be representative of the measurements from any other tooth of the same

type. Such findings would be appealing to periodontists, as fewer measures might be

taken during a periodontal exam thereby reducing the time and manpower involved

in conducting periodontal exams.

4.5 Discussion

Our motivating dataset, described in Ramseier et al. (2009), does not have mea-

surements on cuspids and incisors, and we focused our inference to molars and bicus-

pids. However, our methods can be readily extended to accommodate data on other

types of teeth and similar statistical models can be easily implemented. Furthermore,

our methods can be applied to other research areas involving marked point pattern

data like modeling the dependence between two species of trees in mixed forest stands

considered in Eckel et al. (2009) or analyzing the dependence between tree locations

and measures of tree sizes as studied in Schlather et al. (2004). The methods for

obtaining parameter estimates using maximum pseudolikelihood approach are im-

plemented in the R package “spatstat” (Baddeley and Turner, 2005) and thus are

appealing to non-statisticians. However, the package does not contain any readily

available method to obtain valid standard errors appropriate for our setting. Via

our methods we propose a variance estimator which can be easily applied using the

R package “gee” (Carey et al., 2011) or “geepack” (Hojsgaard et al., 2006) and thus
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might be of interest for non-statisticians too. Our proposed variance estimator is com-

putationally faster in comparison to bootstrapping and other resampling techniques

proposed in existing literature.

For our research problem of understanding the association between BL and CAL,

various other statistical methods can be implemented. The easiest approach would be

to calculate the correlation coefficient between CAL and BL and calculate a confidence

interval based on the bootstrap standard error estimate. However, such an approach

fails to model the association between the CAL and BL for different types of teeth.

An alternative approach would be to use various copulas (Nelsen, 2006) to model the

association and to determine the parameters which govern the association between

the clinical measures and this presents an interesting research problem. We intend to

pursue this interesting area for future research and study the correspondence between

point pattern data methods and copulas.
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CHAPTER V

Conclusion

We have proposed novel statistical approaches to model periodontal data and our

methods provide an improvement to the current state of art in periodontal literature.

In Chapters II and III, we studied the distribution of affected teeth in the mouth

and quantified the locations of the mouth that are most susceptible to periodontal

disease. In contrast to previously published studies, we were able to base our inference

on correlated observations from multiple teeth of subjects and our methods did not

require any prior knowledge about which specific mouth locations to be included. In

Chapter II, via a regression approach we were able to quantify the mean direction

of affected teeth i.e. determine the location of the mouth which is most prone to

periodontal disease. We modeled the directions of affected teeth as a function of

various patient-level characteristics and obtained valid standard error estimates using

a bias corrected variance estimator which is shown to perform well for moderate

sample sizes common to periodontal studies. In Chapter III, we generalized the

methods in Chapter II and studied the distribution and number of modes of affected

teeth assuming Generalized von Mises (GvM) distribution. In our motivating dataset,

we were able to detect three most periodontally susceptible regions: the upper right

corner, the upper left corner, and the middle of the lower jaw. This supports a cursory

exam of the data and corroborates the conjecture that there is a symmetry among the

left and right sides of the mouth with respect to the distribution of periodontal disease.
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To the best of our knowledge, ours is the first attempt to specifically model correlated

periodontal outcomes using circular statistical methods and thus our methods also

present an interesting application of circular statistics.

Modeling of marginal multimodal circular outcomes as a function of covariates

presents an interesting future research problem. Such a methodology would not only

help researchers quantify the number and location of modes but also help assess the

importance of any patient characteristic eg. pathogen level, smoking status etc. in

determining their effect on the distribution of affected teeth. However, this would ne-

cessitate developing a regression approach for GvM distributions. It should be noted

here that though the von Mises family belongs to the class of dispersion models, the

Generalized von Mises distribution does not belong to this family. Hence developing

a circular regression model for marginal Generalized von Mises outcomes presents

an interesting research problem to statisticians and can be applied to model various

kinds of multimodal angular observations.

In Chapter IV we used spatial point pattern data analysis methods in order to

model the association between CAL and BL. We extended existing methods for Gibbs

point process models by proposing a standard error estimator which can be used as an

alternative to bootstrapping and other resampling techniques. This would appreciably

reduce computational time and is also relatively easy to implement using standard

statistical softwares. Our methods show that the BL and CAL values are similar for

molars and bicuspids, which imply that the clinical measures obtained on any tooth

can be considered to be representative of the measures obtained from any molar or

bicuspid. This would imply that periodontists could take measures on any specific

tooth and consider them to be representative of measures obtained from that tooth

type. Thus periodontists may not need to take measurements from all the molars and

bicuspids, thereby reducing the time needed for a periodontal exam.

Our methods have relied on the assumption that missing observations are missing
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completely at random (MCAR) or missing at random (MAR). Fortunately, in our

motivating dataset, subjects had few missing teeth, and of the few teeth for which

the measures were missing, there was no discernible pattern in the missingness at

baseline or at six months. Also, in our data, there was no tooth that was diseased at

baseline and missing at six months. However, it is likely that subjects with existing

periodontal disease may have had some teeth removed due to chronic periodontal

disease. This is referred to as informative missingness (Reich and Bandyopadhyay,

2010). Our methods need to be extended to be applicable in such a scenario. In such

a situation, a complication is that missing teeth are not missing at random (MAR),

which a necessary assumption for the validity of the robust standard errors produced

by marginal approaches such as GEE (Kenward and Molenberghs, 1998). Thus, the

extension and application of our methods to periodontal data with greater numbers of

non-randomly missing teeth presents a future area of research and such an extension

would make our methods more readily applicable to most periodontal studies.
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