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ABSTRACT

A new etalon geometry: The spiral phase plate etalon

by

Yisa S. Rumala

Chair: Aaron E. Leanhardt

This dissertation reports on theory, simulations, and experiments that extend the con-

ventional Fabry-Perot etalon to a new geometry, namely the spiral phase plate etalon.

In the development of the theory, the spiral phase plate etalon is treated in the thin

plate approximation and thick plate approximation. The thin plate approximation

elucidates properties of the device such as the presence of a coherent superposition of

orbital angular momentum modes with different winding numbers in the device, and

an intensity pattern that varies as a function of angle. The thick plate approximation

captures additional angular interference phenomena in the high finesse limit of the

device not seen in the thin plate approximation. These are distinguishing features of

the spiral phase plate etalon compared to the conventional Fabry-Perot etalon, which

is treated for the first time in this dissertation.

In the experiment, optical transmission through the spiral phase plate etalon is

probed with a laser beam, and observed to have an intensity variation as a function of

angle. The angular intensity pattern is observed to rotate when the laser frequency is

varied. These properties of the spiral phase plate etalon are measured and experimen-

tally quantified for the first time. The experimental data is compared to theory, and

xxi



simulations of the optical intensity profiles in which the dominant source of noise is

shot noise. In each case, the statistical uncertainty of the parameters used to describe

the spiral phase plate etalon are determined, for which the phase sensitivity of the

angular intensity pattern to rotation is deduced. The simulations are also used to

understand systematic errors in the data.

In addition, the optimal parameters to design a spiral phase plate etalon for best

position and frequency resolution (sensitivity) of the optical angular intensity pattern

to rotation is obtained. This device is expected to have wide ranging applications,

including the possibility to serve as a unique tool in optical frequency metrology, as

well as in the study of atomic and molecular physics, quantum optics and quantum

information science.
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CHAPTER I

Introduction

In 1897, Charles Fabry and Alfred Perot reported on the invention of an inter-

ferometer consisting of two perfectly flat glass plates which can be mechanically var-

ied (1). This interferometer produced remarkable interference fringes. When the same

principle is applied to a single transparent plate with reflecting surfaces as opposed

to two reflecting glass plates, the device is called a Fabry-Perot etalon. A property

of the Fabry-Perot etalon is that it has longitudinal modes in the direction of beam

propagation. In this dissertation, a novel geometry of the etalon is studied in detail,

namely the spiral phase plate etalon. In this case, one surface is flat, and the other

surface has an azimuthally varying height. As light propagates through the device,

it creates interference fringes as a function of azimuthal angle, in addition to the lon-

gitudinal modes in the device. The reason for the beam having angular interference

fringes as a function of angle is because the device contains a coherent superposition

of orbital angular momentum modes on the output plane of the device. This is a

distinguishing feature of the spiral phase plate etalon compared to the conventional

Fabry-Perot etalon, and it is further discussed in chapter II of this dissertation.

The angular momentum carried by light can have distinct spin (2; 3) and orbital (4;

5; 6; 7) contributions, which originate from the polarization and spatial structure

of the electromagnetic field associated with light, respectively. The spin angular
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momentum is associated with circular polarization, and can take on values of either

+~ or −~ indicating right or left circularly polarized light, respectively. The orbital

angular momentum of light is independent of light’s polarization state, and can take

on any positive or negative integer value of ~. In recent years, there have been many

new and exciting applications of laser beams containing orbital angular momentum in

quantum information science (8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22; 23),

atom optics (24; 25; 26; 27; 28; 29; 30; 31), and optical tweezer experiments (32; 33;

34; 35; 36).

Light beams with orbital angular momentum, i.e. optical vortices, has rich struc-

ture, and have been produced via mode competition in laser cavities (37; 38), diffrac-

tion from holograms (39; 40; 41; 42), propagation through cylindrical lens mode con-

verters (43; 44; 45), and transmission through spiral phase plates (46; 47; 48). While

all these methods have been used to create optical vortices with great success, the spi-

ral phase plate, which was first demonstrated in 1994 (48), provides the simplest and

most intuitive explanation as to how a beam with uniform transverse phase acquires

orbital angular momentum as it propagates through the device.

An ideal spiral phase plate consists of a transparent material with uniform refrac-

tive index and an azimuthally varying thickness such that as light goes through the

material it acquires an azimuthally varying phase corresponding to a winding num-

ber. The winding number can be defined as the number of intertwined wavefronts

in the beam, and is a direct measure of the orbital angular momentum of light. In

all work up to now, transmission through a spiral phase plate has been treated in

the context of a device with zero reflectivity on both surfaces where a laser beam

propagates through the phase plate and acquires a winding number which depends

on the azimuthally varying thickness, wavelength, and refractive index of the spiral

phase plate. Due to diffraction, the intensity profile of the beam has a ring (or donut)

structure millions of light wavelengths far away from the device (diffraction far field),
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and a Gaussian structure within a few wavelengths of the device (diffraction near

field).

In this dissertation, I present the first detailed studies of a device with non-zero

reflectivity on both surfaces, i.e. a spiral phase plate etalon. As the beam propagates

through the device, the beam will make multiple round trips before exiting the device.

Each time the beam makes a round trip, it will acquire an additional azimuthally

varying phase. The sum of all the different phases will interfere constructively and

destructively to create intensity maxima and minima as a function of angle. This

work forms a new etalon geometry, and extends the operation of the conventional

Fabry-Perot etalon consisting of longitudinal modes, to include angular interference

fringes on the output plane of the device. As the conventional Fabry-Perot etalon has

been the work horse in many experiments involving precision frequency metrology,

the spiral phase plate etalon is expected to have applications in this area as well.

Furthermore, since the beam coming out of the spiral phase plate etalon also possess

orbital angular momentum, unlike the conventional Fabry-Perot etalon, it is expected

to have even broader applications in quantum information science, atom optics and

optical tweezer experiments. It may be especially advantageous in new experiments

that explore coherent control of atoms, molecules and solid state systems. Specific

examples are discussed in chapters V and VI of this dissertation.

From a quantum optics perspective, an intriguing and fascinating feature of the

spiral phase plate etalon is that it contains a coherent superposition of optical vortices

with different winding numbers, i.e. different orbital angular momentum modes of

the field. In addition, the optical intensity profiles presented in this dissertation does

not have a large vortex core (and in some cases both a large vortex core and large

azimuthal region with zero intensity) that appears in previous studies (10; 11; 12; 19;

49; 50; 51; 52; 53). This is because the optical intensity profile is imaged immediately

after the spiral phase plate etalon. The spiral phase plate etalon represents a unique
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geometry to generate these orbital angular momentum states as well as manipulate

these states by changing the frequency of light propagating through the device.

1.1 Overview of dissertation

This dissertation is written in manuscript form, and therefore the content in some

of the chapters may overlap.

• In chapter II, the theory of multiple beam interference in a spiral phase etalon

is developed. In particular, the theory is developed in the context of the thin

plate approximation and thick plate approximation, and the implications of

both approximations are discussed.

• Chapter III describes the optimal design parameters to fabricate a spiral phase

plate etalon for best position and frequency resolution (sensitivity) to rotation

of an optical angular interference pattern on the output plane of the device.

In addition, the chapter reports on tools to analyze the computer generated

optical intensity profile emerging from an ultra-low finesse spiral phase plate

etalon (i.e. a finesse of ∼ 1).

• In chapter IV, measurement of multiple beam interference effects in a spiral

phase plate etalon is reported, and the results are compared to theory and

simulation. Noise and error sources in the experiment which may limit the

sensitivity of the etalon are discussed.

• In chapter V, the rotation of the optical angular interference pattern as a func-

tion of laser frequency is experimentally quantified and compared to theory and

simulations.

• The dissertation concludes with chapter VI, where some of the exciting possibil-

ities of the spiral phase plate etalon as a useful tool in applied and fundamental
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research are discussed.

• The appendix contains additional calculations and discussions to complement

the work presented in the chapters.
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CHAPTER II

Theory of multiple beam interference in a spiral

phase plate

2.1 Introduction

In this chapter, optical transmission through a spiral phase plate is calculated for

a realistic device with nonzero reflectivity at both of its surfaces. The spiral phase

plate is modeled as a Fabry-Perot etalon with a pair of parallel, planar surfaces that

are separated by an azimuthally-varying distance. This is referred to as the thin

plate approximation. Multiple reflections within the device produce a transmitted

beam comprising of a coherent superposition optical vortices with different winding

numbers. Interference between the different optical vortex modes imprints a periodic,

azimuthal modulation onto the intensity profile. In addition, the average distance and

average lifetime of the photon counts in the spiral phase plate is estimated. Towards

the end of this chapter, the spiral phase plate in the thick plate approximation is

treated where one surface is assumed to be perfectly flat and the other surface has

an azimuthally varying height as opposed to parallel and planar surfaces.
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Figure 2.1: Multiple-beam interference. Approximating a spiral phase plate as a
Fabry-Perot etalon with an azimuthally varying thickness h(φ) yields re-
flected, uR = u1 +u3 +u5 + · · · , and transmitted, uT = u2 +u4 +u6 + · · · ,
waves that contain a coherent superposition of optical vortices with dif-
ferent winding numbers.

2.2 Spiral phase plates in the thin plate approximation

Transmission through a spiral phase plate is analyzed in cylindrical polar coor-

dinates for an incident electromagnetic wave propagating in the +ẑ direction with a

time-dependent electric field vector ~E(r, φ, z, t) ∝ <e{u(r, φ, z)e−iωtε̂}, where u(r, φ, z),

ε̂, and ω are the complex-valued amplitude, unit polarization vector, and angular fre-

quency of the wave, respectively. An ideal spiral phase plate comprises a medium of

refractive index n with an azimuthally varying thickness (Fig. 2.1) (38; 48; 46):

h(φ) = h0 + ∆h
φ

2π
(0 ≤ φ ≤ 2π). (2.1)

It is assumed that the incoming beam hits the input plane of the spiral phase plate

at normal incidence and that the device is surrounded by vacuum (n = 1).

Typically, optical transmission through a spiral phase plate is analyzed using the

thin plate approximation within scalar diffraction theory (57; 58; 59; 60) such that

the wave amplitudes at the input (z = 0) and output (z = h0 + ∆h) planes of the
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device are related by (64):

tthin(φ) =
u(r, φ, h0 + ∆h)

u(r, φ, 0)
= t0e

+iαφ, (2.2)

where t0 = e+inkh0e+ik∆h, α = (n − 1)∆h
λ

is the ‘winding number’ or ‘charge’ of the

spiral phase plate, and k = 2π
λ

is the vacuum wavevector of the light with vacuum

wavelength λ. The intensities, I(r, φ, z) ∝ |u(r, φ, z)|2, at the input and output planes

of the device are identical because |tthin(φ)|2 = 1.

The derivation of Eq. 2.2 assumes zero reflectivity from both surfaces of the spiral

phase plate. A realistic spiral phase plate can be approximated as a Fabry-Perot

etalon with an azimuthally varying thickness, i.e. a medium of refractive index n

with parallel surfaces separated by a position-dependent distance h(φ) (Eq. 2.1). It

has been assumed that the absorption by the material is zero. The complex-valued

amplitude transmittance function for the spiral phase plate then becomes

tthin(φ) =
u(r, φ, h0 + ∆h)

u(r, φ, 0)
(2.3a)

= t2t1t0e
+iαφ

∞∑
m=0

(
r2

2e
iβ(φ+φ0)

)m
(2.3b)

=
t2t1t0e

+iαφ

1− r2
2e

+iβ(φ+φ0)
(2.3c)

where β = 2n∆h
λ

, φ0 = 2π h0

∆h
, and the Fresnel reflection and transmission coeffi-

cients (58; 57) applicable for rays crossing from vacuum into the medium of refractive

index n and for rays crossing from the medium of refractive index n into vacuum are

{r1 = 1−n
n+1

, t1 = 2
n+1
} and {r2 = n−1

n+1
, t2 = 2n

n+1
}, respectively. The intensities at

the input and output planes of the device now have different profiles. Specifically,
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I(r, φ, h0 + ∆h) = |tthin(φ)|2I(r, φ, 0) with

|tthin(φ)|2 =
1

1 + 4|r2|2
(1−|r2|2)2 sin2

(
β(φ+φ0)

2

) , (2.4)

which has a periodic modulation as a function of azimuthal angle, β. Physically

speaking, β also determines the number of peaks in the angular interference pattern,

and the orbital angular momentum states present in the spiral phase plate, which is

described in the next section. r2 determines the modulation amplitude and the single

fringe width of the etalon, and φ0 determines the position of the angular interference

fringes. An alternative method for calculating Eq. 2.3 is in Appendix B. Since it

been established that the device is an etalon with a flat surface on one end and

an azimuthally varying surface on the other end, the device can be referred to as

a “spiral phase plate etalon”. For much of this dissertation, the term “spiral phase

plate etalon” and “spiral phase plate” will be used interchangeably.

0.0 0.5 1.0 1.5 2.0

Φ

Π

@radD

0.2

0.4

0.6
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ÈtthinHΦL 2

Figure 2.2: Transmission through an etalon for a hypothetical value of β = 6 and
Fresnel reflectivity of r2 = 0.2 (red), r2 = 0.5 (blue) and r2 = 0.99
(black). The value of β gives the number of transmission peaks in a 2π
rad azimuthal angle. The value of β also determines the orbital angular
momentum states present in the spiral phase plate as described in the
next section (section 2.2.1).
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2.2.1 Orbital angular momentum states in spiral phase plate

Precise control of the orbital angular momentum states in a spiral phase plate

may be of significance in experiments involving quantum information and networking

applications such as the ones in ref. (10) and ref. (12). This subsection describes the

states present in the etalon and a few implications of treating the spiral phase plate

as a Fabry-Perot etalon with an azimuthally varying thickness.

Quantum mechanics requires that the orbital angular momentum of a photon is

quantized in integer multiples of ~ (65; 66). In particular, by calculating the overlap

integral (67; 68; 69) of the spiral phase plate transmission function tthin(φ) with the

wave function, e−i`φ, the probability of detecting a “photon” with orbital angular

momentum having projection `~, ` = 0,±1,±2, . . ., along the z–axis is:

p` =
1

N`

∣∣∣∣∣∣
2π∫

0

tthin(φ)e−i`φdφ

∣∣∣∣∣∣
2

(2.5a)

=
1

N`

∣∣∣∣∣∣
2π∫

0

t2t1t0e
iαφ

∞∑
m=0

(
r2m

2 e+iβm(φ+φ0)
)
e−i`φdφ

∣∣∣∣∣∣
2

(2.5b)

=
1

N`

(
|t2t1t0|2

∣∣r2m
∣∣2) . (2.5c)

N` is a normalization factor which is N` = |t2t1t0|2
∑∞

m=0 |r2m|2 = |t2t1t0|2 1
1−r4

2
. For

a beam without orbital angular momentum incident on a spiral phase plate etalon

fabricated with integer values of α and β, the transmitted beam contains “photons”

having ` = α +mβ, m=0,1,2,. . . with detection probabilities

pm = (1− |r2|4)|r2|4m. (2.6)

For non-integer α and/or β, the transmitted electromagnetic field is frequently said

to contain “fractional vortices”. For the remainder of this dissertation, the term
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Figure 2.3: Calculated intensity profile of optical vortex on the output plane of the
device (diffraction near field) in the thin plate approximation for (a) non-
integer vortex of α = 0.99 and β = 5.55, (b) integer vortex of α = 1 and
β = 6.0, and (c) non-integer vortex of α = 1.16 and β = 6.5. The value
of β determines the number of intensity peaks in the angular intensity
profile. The reflectivity on both surfaces of the spiral phase plate is r2 =
0.2.

“fractional vortex” and “non-integer vortex” will be used interchangeably. Fig. 2.3

shows 2D intensity profiles immediately after the spiral phase plate etalon (diffraction

near field) for non-integer and integer optical vortices. The diffraction far field for

non-integer vortices are analyzed in refs. (10; 11; 12; 19; 49; 50; 51).

The implications of treating a spiral phase plate as a Fabry-Perot etalon with

an azimuthally varying thickness are summarized for a hypothetical charge–1 device,

e.g. a device with n = 1.5 and ∆h = 2λ yielding r2 = 0.2, α = 1, and β = 6. The

optical intensity profile immediately after such a spiral phase plate etalon would have

an angular modulation with peak-to-peak variation of ∼ 15% and period of ∆φ = π
3
.

The transmitted beam would contain “photons” with ` = 1, 7, 13, 19, . . ., [Fig. 2.4]

even though the probability of detecting “photons” in the transmitted beam having

` 6= 1 would be only p 6̀=1 = 0.0016. This indicates that there is a large azimuthally

varying modulation amplitude while less than 1% of the “photons” are projected

into higher orbital angular momentum states. As seen in the plot of Fig. 2.2, and

measured in chapter IV, these are measureable effects which may have to be taken
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Figure 2.4: Probability of detecting photons in the distribution with winding number,
` = 1, 7, 13, 19, . . .. The transmitted optical beam through the spiral
phase plate etalon is an infinite superposition of optical vortices with
winding number ` spaced by a parameter quantifying the relative phase,
β = 6. Even though m extends to infinity, only 0 ≤ m ≤ 5 is shown in
this figure.

into account when conducting quantum entanglement and correlation experiments

with spiral phase plates such as the ones in ref. (10) and ref. (12).

The Fabry-Perot etalon effects can be reduced (enhanced) by decreasing (increas-

ing) the reflectivity at the surfaces of the spiral phase plate, e.g. by adding dielectric

or metallic coatings directly to the surfaces of the device. However, the derivation of

Eq. 2.3 is not equivalent to placing an ideal spiral phase plate described by Eq. 2.2

between two parallel mirrors with amplitude reflectivity r2. In that case, the trans-

mitted beam would contain “photons” having ` = (2m + 1)α, m = 0, 1, 2, . . . with

detection probabilities, pm, still given by Eq. 2.6.
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Figure 2.5: Average lifetime of the beam in the spiral phase plate etalon calculated
in the thin plate approximation for different etalon base heights

2.2.2 Average distance and lifetime in the thin plate approximation

The average distance traveled by the beam in the the spiral phase plate etalon is

〈dthin〉 =
1

Nd

(
z + 3z(r2

2)2 + 5z(r2
2)4 + 7z(r2

2)6 + ...
)

(2.7a)

=

(
r4

2 + 1

1− r4
2

)
z|z=h0 (2.7b)

Nd = Nl is a normalization constant derived in the previous section, and h0 is the

thickness (or base height) of the spiral phase plate etalon. The average lifetime of

the device in the thin plate approximation is 〈τthin〉 = 〈dthin〉
c

, and it is illustrated in

Fig.2.5 for different base heights. The lifetime is of significance when using the device

for frequency metrology applications. The topic is further discussed in chapters III.
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2.3 Spiral phase plates in the thick plate approximation

As seen earlier in this chapter, the thin plate approximation assumes that the

two surfaces of the spiral phase plate etalon are parallel to each other and physical

effects due to the azimuthally varying thickness on one surface is neglected i.e. the

rays do not bend as it propagates from one refractive index to another. For a realistic

device, these physical effects become important as the beam makes multiple bounces

(i.e. high finesse etalon) and it leads to additional observable interference effects not

captured by approximations in the thin plate approximation. Taking these physical

effects into account will ultimately affect the design of the spiral phase plate for

the desired application. A potential application where this may be important is

in precision optical metrology such as designing new laser locking, and frequency

stabilization systems which depends on measuring the position of the optical angular

interference pattern accurately, as well as in more fundamental studies such as the

evolution of dynamic (or possibly geometric) phases in the device due to changes in

light frequency, refractive index, and/or azimuthal step height of the device.

In this section a calculation is performed in the thick plate approximation where

the effect of the azimuthally varying surface is included. It is seen that the results

for the thick plate approximation are much more complex compared to the thin plate

approximation. Strictly speaking, a numeric model of propagation through the phase

plate is required to fully understand problem. The analytic treatment presented here

calculates the electric field amplitude at a single point of the azimuthally varying

surface.

2.3.1 Transmission function in thick plate approximation

In the thick plate approximation, the device is modeled as a triangular wedge

were the azimuthally varying surface makes an angle γ with the flat surface as seen in

Fig 2.6. ∆h is the step height, h0 is the base height (or phase plate thickness) and 2πω0

14



Figure 2.6: Angular wedge to model transmission function in the thick plate ap-
proximation. The azimuthal step height goes from 0 to 2π over a
2πω0 circumference of the input optical beam. ω0 is the beam waist.
The transmitted beam is a superposition of electric field amplitudes,
uthick(r, φ, h0 + ∆h) = ut2 + ut4 + ut6 + .... The field is calculated at
a point where the light rays ut2 , ut4 , ut6 meet at a point on a uniform
output plane.

is the circumference of the laser beam which goes from φ = 0 to φ = 2π. A triangular

wedge to model the spiral phase plate etalon is expected to be valid for small angle

between the azimuthal surface and flat surface such that tan γ = ∆h
2πω0

≈ γ << 1,

where the spiral phase plate step height ∆h is on order the wavelength of light, λ.

The electric field is calculated by tracing the ray as it makes multiple reflections

within the device. The transmission function is a superposition of the electric field

amplitudes tthick (φ) = ut2 + ut4 + ut6 + ... at a point on the output plane as shown

in Fig 2.6. Note that the transmission function is calculated on a uniform output

plane, i.e. a point on the dashed line where all the light rays meet (See fig 2.6). A
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property of the angular wedge is that during each successive bounce in the etalon,

the angle of the beam increases by a value of γ. The small angle approximation is

made throughout this calculation, where sin θ ≈ θ and cos θ ≈ 1 − θ2

2!
, and Snell’s

law is used whenever the rays undergo a change in refractive index. The electric field

amplitude for the first ray which makes no bounce in the etalon will be

ut2 = t1t2e
ikd1einkd2 (2.8)

For conciseness, d1 = (∆h−∆h φ
2π

)(1 + (nγ−γ)2

2
) is the distance that the ray travels

in vacuum between the azimuthally varying height and uniform output plane; and

d2 = h0 + ∆h φ
2π

is the distance that the ray travels in the spiral phase plate. All

other terms have their usual meanings as seen earlier in this chapter.

ut4 = t1t2r
2
2e
ikd1(1+4(nγ)2)einkd2(3−4γ2)e

−ink6nγ2 d1

1+(
(nγ−γ)2

2!
) 2 bounces (2.9a)

ut6 = t1t2r
4
2e
ikd1(1+12(nγ)2)einkd2(5−20γ2)e

−ink20nγ2 d1

1+(
(nγ−γ)2

2!
) 4 bounces (2.9b)

ut8 = t1t2r
6
2e
ikd1(1+24(nγ)2)einkd2(7−56γ2)e

−ink42nγ2 d1

1+(
(nγ−γ)2

2!
) 6 bounces (2.9c)

The complex valued transmittance function of the electric field amplitude in the thick

plate approximation then becomes:

tthick(φ) =
uthick(r, φ, h0 + ∆h)

uthick(r, φ, 0)
= ut2 + ut4 + ut6 + ... (2.10a)

= t1t2e
ikd1einkd2

m=M∑
m=0

[
r2meikd122m(nγ)2

einkd2(2m−22γ2 2
3
m(m+1)(2m+1))

]
e
−ik2M(2M+1)

d1

1+
(nγ−γ)2

2!

(2.10b)
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= t1t2e
ik(∆h−∆h φ

2π
)(1+

(nγ−γ)2

2!
)eink(h0+∆h φ

2π
)

m=M∑
m=0

[r2meik(∆h−∆h φ
2π

)(1+
(nγ−γ)2

2!
)22m(nγ)2

eink(h0+∆h φ
2π

)(2m−22γ2 2
3
m(m+1)(2m+1))]e

−ik2M(2M+1)nγ2 (∆h−∆h
φ
2π )(1+

(nγ−γ)2

2!
)

1+
(nγ−γ)2

2! (2.11)

When γ = 0, the transmission function satisfies the thin plate approximation, and

Eq. 2.3 is reproduced. However, it is noticed that the transmission function does not

form a geometric series as in the thin plate approximation. This is evident by the

presence of nonlinear terms in m. The calculation presented in this subsection shares

similarities with previous wedge models [e.g. ref. (61), (62), and (63)] in that during

each successive reflection in the device, the angle increases by γ. However, the calcu-

lation differs from previous wedge calculations [e.g. ref. (61), (62) and (63)] in that

Eq. 2.11 represents the amplitude transmission function coefficient of a superposition

of electric field amplitudes at a single point on an azimuthally increasing surface of

the output plane [dashed line of Fig. 2.6] of the device, and not a wedge of mono-

tonically increasing height in the direction of beam propagation. In addition, beyond

the output plane of the spiral phase plate etalon, the field distribution evolves into

having a region of zero intensity in the middle of the intensity pattern, i.e. a vortex

core, which gets larger as the beam propagates far away from the device, and so a

calculation far away from the device will yield a different field amplitude. In order to

fully understand the problem, a numeric model for propagation through the device is

required.

In the ultra-low finesse regime (reflectivity r2 = 0.2178 and finesse F ∼ 1), the

transmission functions in the thick plate and thin plate appears to yield similar results

as shown in Fig. 2.7(a). The parameters used in generating the plots to check the

agreement between the thin and thick plate approximation are λ = 632.991nm, ∆h =

1.129µm, and 1
e2

beam radius of ω0 = 1.48mm, the reflectivity is r2 = n−1
n+1

= 0.217,

β = 2n∆h
λ

= 5.55 and γ = ∆h
2πω0

= 1.21 × 10−4rad. In principle, since γ << 1,
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Figure 2.7: (a) Transmission function with peak intensity thin (modulus square of
Eq. 2.3, Black dashed line) and thick plate (modulus square of Eq. 2.11,
Solid blue) approximation for a spiral phase plate of β = 5.55 and
γ = 1.21 × 10−4rad. The thin and thick plate approximation appears
to yield similar results for low values of reflectivity, i.e. r2 = 0.2 and
r2 = 0.5. However, for high reflectivity, i.e. r2 = 0.9, there appears to be
additional interference phenomenon captured in the thick plate approxi-
mation calculation, but not in the thin plate approximation calculation.
The width of the fringe for r2 = 0.9 also appear to be wider in the thick
plate approximation calculation compared to the thin plate approxima-
tion calculation. The peak intensity for r2 = 0.9 also reduces by approxi-
mately a factor of two in the thick plate approximation compared to the
thin plate approximation. (b) Transmission intensity peaks for intermedi-
ate reflectivity values, i.e. r2 = 0.6, r2 = 0.7, and r2 = 0.8. In these plots,
the point at which the thick plate approximation starts to deviate from
the thin plate approximation is around r2 = 0.7. This is characterized by
smaller peak heights and then at even higher reflectivity (r2 = 0.8) there
are additional fringes at the base of the main interference peaks.
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Figure 2.8: The transmission peak intensity is normalized to 1 in the thin plate
approximation. When r2 = 0.999, the interference fringes in the thick
plate (modulus square of Eq. 2.11, Solid blue) approximation is no more
visible compared to the thin plate approximation (modulus square of
Eq. 2.3, Black dashed line), for a spiral phase plate of β = 5.55, and
γ = 1.21× 10−4rad.

this validates the initial approximation in the thin plate approximation regarding

the etalon surfaces being parallel for an ultra-low finesse etalon (r2 = 0.2). Most

of the theory and experimental measurements in future chapters is described in the

context of the thin plate approximation since an ultra-low finesse etalon is used in

the experiments.

The calculations in the thin plate approximation are no more valid at the point

were the thin and thick plate approximation starts to yield different results. For a

wavelength of λ = 632.991nm, azimuthal step height of ∆h = 1.129µm and a phase

plate base height of h0 = 0.6cm, the thin and thick plate approximation appear to

yield similar results up until approximately r2 = 0.7, after which noticeable changes

between the two approximations starts to emerge. These changes are characterized

by the thick plate approximation calculations having a slightly smaller peak height

and additional interference effects at the base of the transmission peaks compared to
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the corresponding thin plate approximation calculations [see fig. 2.7(b)]. The peak

of the interference fringes is also slightly shifted compared to the fringes in the thin

plate case as calculated for r2 = 0.7, r2 = 0.8, and r2 = 0.9 in Fig. 2.7.

At high reflectivity, i.e. r2 = 0.9, the angular interference fringes appear to be

narrower in the thin plate approximation than in the thick plate approximation and

the additional interference effects captured in the thick plate approximation is clearly

visible [see fig. 2.7(a)]. The peak intensity of the interference fringes at r2 = 0.9 in

the thick plate approximately is also approximately half the value in the thin plate

approximation as seen in fig. 2.7(a). At an even higher reflectivity, i.e. r2 = 0.999,

the additional interference effects appear to be larger in magnitude compared to the

angular interference fringes and much smaller (by about a factor of 15) compared

to the transmission peaks in the thin plate approximation [See fig. 2.8]. In addition,

there are no well resolved angular fringes corresponding to an angular modulation of

β = 5.55 for an r2 = 0.999 spiral phase plate etalon in the thick plate approximation.

2.3.2 Beam walk around distance in spiral phase plate due to multiple

reflections

In a realistic spiral phase plate, the two surfaces are not parallel to each other.

Hence, as the beam makes multiple bounces in the spiral phase plate, the successive

rays exit at larger angles and travel in the direction of increasing azimuthal thickness.

As it is the field amplitude that makes multiple reflections with the azimuthally

increasing thickness that are in the higher orbital angular momentum modes, this

suggest that these field amplitudes should exit the device in such a way that it is bent

towards the direction of increasing azimuthal thickness from a ray optics perspective

(See fig. 2.9). The azimuthal distance traveled over a 2π radian angle before the

beam makes another azimuthal round trip or walks off the beam waist in the radial

direction is calculated in this section (See fig. 2.9).
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Figure 2.9: As the light rays makes multiple reflections with the azimuthally varying
surface, it comes out at larger angles and is bent towards the direction of
increasing thickness.

In the small angle approximation, the azimuthal distance traveled on the az-

imuthally varying surface after 2 reflections with the surface is La = 4γ
(
h0 + ∆h φ

2π

)
(See fig. 2.9). The azimuthal distance traveled after 3 reflections with the azimuthal

surface is Lb = 12γ
(
h0 + ∆h φ

2π

)
, and after 4 reflections is Lc = 24γ

(
h0 + ∆h φ

2π

)
.

Hence, the distance traveled on the azimuthal surface of the spiral phase plate etalon

after N + 1 (N = 1, 2, 3, ...) reflections with the azimuthal surface is

LN+1 =

(
h0 + ∆h

φ

2π

)
2N (N + 1) γ N = 1, 2, 3, ... (2.12)

Typically, the device is fabricated such that h0 >> ∆h, which gives rise to an az-
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imuthal travel distance of

LN+1 = h02N (N + 1) γ N=1, 2, 3,... (2.13)

As seen in Fig. 2.9, the total length of the spiral phase plate azimuthally varying

surface for a beam waist, ω0, is LT =
√

(2πω0)2 + ∆h2, and the angle between both

surfaces is related to the step height and beam waist given by tan γ = ∆h
2πω0

. By setting

LN+1 = LT , and solving for N, a geometric factor describing the number of reflections

that the beam makes with azimuthally increasing surface before it makes another

azimuthal round trip or walks off the initial input beam waist in the radial direction

can be obtained. For typical parameters such as 2πω0 = 2π×1.1mm,h0 = 6mm, and

∆h = 1.8µm, the beam makes 1.4 reflections with the azimuthally varying surface

before making another 2π radian azimuthal travel distance in the etalon or walk

off the initial input beam waist in the radial direction. It must be noted that the

calculation in this subsection does not explicitly include the role which the reflectivity

plays in determining the lifetime of photon counts in the etalon and hence the number

of reflections with the azimuthally varying surface. This calculation instead puts a

constraint on the number of reflections in the spiral phase plate etalon given the

geometry of the device and the optical beam input parameters.

2.4 Concluding remarks

The theory of transmission through a spiral phase plate etalon has been discussed

in the thin and thick plate approximation. In the limit of zero angle between the

flat surface and the azimuthal surface, γ = 0, the thick plate approximation repro-

duces the thin plate approximation. The calculations in the thin plate approximation

introduced a new phase factor not present in the current literature to describe the

number of transmission peaks as a function of angle and position of the interference
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peaks in a 2π radian angle. From this new phase factor, it is shown that the beam

emerging from the device contains a coherent superposition of orbital angular mo-

mentum modes and is expected to be of significance in quantum optics and quantum

information experiments.

The calculation in the thick plate limit showed additional properties of the spi-

ral phase plate etalon. That is, when a ray model is used to compute transmission

through the device, the rays are bent in the direction of increasing azimuthal thickness

and exits the device at larger angles after successive reflections with the azimuthal

surface. This suggests that the beam in the larger orbital angular modes (i.e. higher

winding number) will exit at larger angles. In addition, the calculation in the thick

plate approximation elucidates the presence of perturbations in the transmission func-

tion phase due to a non-zero angle between the azimuthal surface and flat surface.

These perturbations leads to additional interference effects in the high finesse case not

captured in the thin plate approximation. These perturbations may be of importance

when studying the evolution of phases (e.g. dynamic phases or geometric phases) in

the device which depends on the azimuthally increasing or decreasing step height.

As discussed in the chapter, understanding the device in the thin and thick plate

limit will ultimately affect the design of the the spiral phase plate etalon for the desired

application. For a low reflectivity device, the thin plate approximation describes the

device very well, and for a high reflectivity device, the thick plate approximation is

expected to better describe the device. In chapters III, IV, and V, the computational

tools and experiments are developed in the context of using a very low reflectivity

(r2 ∼ 0.2) device for optical metrology were the thin plate approximation is valid.
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CHAPTER III

Computed optical beam intensity and sensitivity

of spiral phase plate etalon

3.1 Introduction

A unique feature of the spiral phase plate etalon, unlike the conventional Fabry-

Perot etalon, is that the angular interference pattern consisting of a coherent super-

position of orbital angular momentum modes can be seen unambiguously at the same

time, and in real time and space on the charge coupled device (CCD) detector screen.

This is because the optical intensity profile has a modulation amplitude as a func-

tion of angle on the output plane of the spiral phase plate etalon. Thus, the photon

counts within the modulation amplitude of the angular interference pattern as well

as the width of the interference fringes will play a role in determining the minimum

resolution of the optical angular interference pattern to rotation.

In this chapter, the optimal design parameters to fabricate a spiral phase plate

etalon in which the optical angular interference pattern emerging from the device has

the best position and frequency sensitivity to rotation is discussed. In addition, this

chapter reports on simulations of the optical intensity profile to better understand

the effects of shot noise in estimating the parameters to quantify the behavior of the

spiral phase plate etalon. In the development of the simulations, analysis is performed
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on computer generated data in which the only source of noise in the simulation is

shot noise. This implies that other realistic sources of error or noise such as optical

beam distortions as the beam propagates through the device is neglected. Optical

beam distortions could result from spiral phase plate fabrication defects, or thin

layers/residue which may have accumulated on the device. Other more subtle effects

could be due to the mechanical effects induced by light on optical components such

as material heating, and vibrations of the experimental set-up during measurements.

The theory and simulations in this chapter is developed in the context of the thin

plate approximation described in chapter II.

An outline of this chapter is as follows:

• The chapter starts with section 3.2, in which the standard error of the photon

counts making position measurements on the CCD detector is estimated analyt-

ically for all reflectivity. This estimate provides insight into the optimal spiral

phase plate design parameters to improve the sensitivity of the optical angular

interference pattern to rotation. In this case the calculation does not include

random fluctuations in photon count from pixel to pixel on the CCD detector

due to shot noise.

• Section 3.3 describes simulations of optical transmission through the spiral

phase plate, where the dominant source of noise is shot noise due to photo-

detection. The details in developing the program as it relates to extracting

some of the relevant spiral phase plate parameters are discussed. It must be

noted that the term “simulations” and “computer generated” optical intensity

profile are used interchangeably through out this dissertation. Further more, in

this section and for the remainder of this dissertation, the spiral phase plate is

treated in the context of an ultra-low finesse device (i.e. a device with amplitude

reflectivity of r2 = 0.217, resulting in finesse of F ∼ 1).
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• Section 3.4 describes a method for estimating the statistical uncertainty due

to shot noise, and describes how an error bar is assigned to each data point.

This value will later be used to weight each data point when fitting the com-

puter generated optical intensity profile to extract the parameters describing

the optical angular interference pattern.

• Section 3.5 describes how to make the computer generated data more pre-

sentable by averaging out the statistical fluctuations of the photon counts due

to shot noise. The same principle will be applied to the experimental data in

the proceeding chapters to make it more presentable.

• In section 3.6, the shot noise limited parameters describing the spiral phase

plate is estimated through a weighted fit of a single shot computer generated

optical intensity pattern by minimizing χ2. These shot-noise limited parameters

are compared to the input parameters used to generate the optical intensity

profiles. Two different nonlinear minimization algorithms which provides the

central value and corresponding error bars on the computer generated intensity

profile is discussed. In this method, fluctuations in photon counts due to shot

noise from pixel to pixel on the CCD detector is assumed, and this method is the

most useful when quantifying the experimental data in the proceeding chapters.

In addition, analysis on the rotation of computer generated (simulated) optical

angular interference pattern is also quantified in the section. Another unique

feature of the spiral phase plate etalon is that the optical angular interference

pattern repeats itself at select laser frequencies, and is discussed in section 3.6.

• The chapter concludes with section 3.7.
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3.2 Calculated sensitivity of spiral phase plate etalon from

standard error

In this section, the etalon sensitivity is calculated from the transmission function

assuming there is no pixel to pixel photon count fluctuation, i.e. all the photon

counts making position measurements on the CCD detector are weighted equally.

The estimates in this section will enable a determination of the optimal parameters

to design the etalon in which the optical angular interference pattern will have the best

sensitivity (resolution) to rotation. This resolution is calculated from the standard

error,

δRmin =
δφFW√
Np

. (3.1)

δφFW is the width of a single etalon fringe, and Np is the number of photon counts en-

closed in the volume of the laser beam’s angular intensity modulation making position

measurements (See Fig. 3.1). The assumption is that a single fringe of the transmis-

sion function has Np
β

photon counts making position measurements on the detector

which forms a Gaussian distribution of width δφFW . Therefore, the minimum reso-

lution on Np measurements for β fringes in a 2π radian angle will be δφFW√
Np
β
β

= δφFW√
Np

as seen in Eq. 3.1. As derived in chapter II, the analytic transmission function (atf)

in the thin plate approximation is:

Tatf =
1

1 + 4|r2|2
(1−|r2|2)2 sin2

(
β(φ+φ0)

2

) (3.2a)

=
1

1 +
(

2F
π

)2
sin2 (ϕh)

. (3.2b)

The etalon finesse is F = πr2
1−r2

2
, and the maximums in the transmission function will

occur at β(φ+φ0)
2

= π. Thus, a parameter describing the spacing of the etalon peaks is

φF = 2π
β
− φ0 where φ0 ∈

[
0, 2π

β

]
, and so the single fringe width of the transmission
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function is approximated as

δφFW =
φF
F

=

(
2π

β

)
1− r2

2

πr2

(3.3)

δφFW decrease monotonically for increasing reflectivity [See Fig.3.2(a)]. A larger

value of modulation frequency, β, corresponds to higher azimuthal step heights, which

would result in an effectively smaller transmission function fringe width. The total

number of photon counts making position measurements on the CCD detector, Np,

in Eq. 3.1, is calculated by numerically integrating the transmission function in a

cylindrically symmetric coordinate system:

Np [r2, β] =

2π∫
0

ω0∫
0

I [r] (Tatf [r2, β, φ]− (1− Amod [r2])) rdrdφ (3.4)

I [r] = I0e
− 2r2

ω2
0 is the Gaussian laser beam spatial intensity distribution, Amod [r2] =

4r2
2

(1+r2
2)

2 is the modulation amplitude of the optical angular interference pattern, and

Tatf [r2, β, φ] is the spiral phase plate transmission function in the thin plate approx-

imation. A plot of the number of photon counts in the etalon making position mea-

surements on the CCD detector is in Fig. 3.2(b) with 1D, 2D, and 3D transmission

function plots in Fig. 3.1. The numerical results indicates that the maximum number

of photon counts making position measurements occur when r2 = 0.577, and the total

number of photon counts does not appear to depend on the modulation amplitude pa-

rameter, β, for a device of constant refractive index and light wavelength. For a spiral

phase plate etalon input parameters of n = 1.556, ∆h = 1.321µm, h0 = 0.6cm, and

λ = 632.991nm, the value obtained for reflectivity is r2 = n−1
n+1

= 0.217, which results

in an etalon finesse of F = πr2
1−r2

2
= 0.72 indicating an ultra-low finesse device. The an-

gular pattern modulation frequency of the transmission function is β = 2n∆h
λ

= 6.498,

giving rise to a minimum position resolution of δRmin = 1.07×10−4 rad as calculated
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from Eq. 3.1. The position sensitivity of the etalon as a function of reflectivity is

shown in Fig. 3.2(c). A factor to convert the position uncertainty to a frequency

uncertainty is now calculated.

As the laser beam makes multiple reflections with the azimuthally varying surface

of the spiral phase plate etalon fabricated with uniform refractive index, the phase

that it acquires is ϕh = β(φ+φ0)
2

= 2nk
(
h0 + ∆h φ

2π

)
. A change in laser frequency

δν with respect to the center laser frequency ν is equivalent to a small change in

transmission function phase, δϕh, with respect to the total phase acquired by the

beam, ϕh,

δνLaser
νLaser

=
δϕh
ϕh

. (3.5)

The base height, h0 is engineered such that it is much larger than the azimuthal

step height, h0 >> ∆h, and mathematically the base height does not change with

azimuthal angle, δh0 = 0, so the fractional change in frequency becomes

δνLaser
νLaser

=
∆h

h0

δφ

2π
(3.6)

Hence the interference pattern will rotate by an angle, δφ, as a function of a change

in laser frequency δνLaser:

δφ = 2π
h0

∆h

δνLaser
νLaser

. (3.7)

The angular position, δRmin, is converted to a frequency in units of Hertz using
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Figure 3.1: 1D, 2D, and 3D plots of theoretically calculated transmission through
spiral phase plate in the thin plate approximation for reflectivity, r2 = 0.2
(a)-(c), r2 = 0.6 (d)-(f), and r2 = 0.9 (g)-(i), respectively. The shaded
region in the 1D plots show the region of the transmission function making
position measurements on the CCD detector. The peak intensity used
to generate 2D and 3D theoretical profiles is I0 = 5 × 104 counts with
a 1

e2
beam waist of 1.9mm. The value of the modulation frequency is

β = 2n∆h
λ

= 6.498. The 2D plots is a view of the intensity profile in
which all the azimuthal fringes can be seen unambiguously at the same
time, and in real time and space on the CCD screen. Fig. 3.2 shows a
plot of the transmission fringe width as a function of reflectivity as well
as the number of photon counts making position measurements on the
CCD detector as a function of reflectivity, which is used to determine a
numeric value of the etalon sensitivity.
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Figure 3.2: (a) Fringe width of transmission function as a function of reflectivity for
different step heights which corresponds to different values of modulation
frequency, β of the angular interference pattern. (b) Number of photon
counts making position measurements on the CCD detector as a function
of reflectivity with a maximum at r2 = 0.577. (c) The minimum sensitiv-
ity of the etalon in units of radians for different phase plate etalon step
heights, ∆h, as calculated in Eq. 3.1. (d) Minimum frequency sensitiv-
ity of the etalon normalized with the free spectral range of the etalon as
calculated in Eq. 3.8. The frequency sensitivity does not appear to ex-
plicitly depend on β as seen in Eq. 3.8(d). It appears to have a stronger
dependence on reflectivity. These calculations are in the thin plate ap-
proximation, and as shown in section 2.3.1 of chapter II, the thin plate
approximation starts to breakdown at around a reflectivity of r2 = 0.7.
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Eq. 3.7 to obtain a theoretically calculated frequency sensitivity of the etalon,

δνmin =
δφ

2π

∆h

h0

ν (3.8a)

=
δRmin

2π

∆h

h0

ν (3.8b)

=
1√
Np

1− r2
2

πr2

2π

β

∆h

h0

ν (3.8c)

=
1√
Np

c

2nh0

1− r2
2

πr2

. (3.8d)

The free spectral range of the etalon is FSR = c
2nh0

. A plot of the frequency

sensitivity in Eq. 3.8(d) normalized with the free spectral range (FSR) of the etalon

is in Fig. 3.2(d). For the phase plate input parameters of ∆h = 1.321µm, h0 = 0.6cm,

λ = 632.991nm, and β = 6.498 and r2 = 0.217, the numeric value of the theoretically

calculated frequency sensitivity of the etalon is 2.47MHz. The frequency sensitivity

can also be related to the average lifetime of photon counts in the etalon derived in

section 2.2.2 of chapter II,

δνmin =
1√
Np

c

2nh0

1− r2
2

πr2

(3.9a)

=
1√
Np

1

2n

1

τthin

(
1 + r4

2

1− r4
2

)
1− r2

2

πr2

(3.9b)

=
1√
Np

1

τthin

(
1 + r4

2

1 + r2
2

)
1

π2nr2

. (3.9c)

As seen in Eq. 3.1, Eq. 3.8, Eq. 3.9, Fig. 3.1, and Fig. 3.2, the number of photon

counts within the modulation amplitude of the angular interference pattern as well

as the width of the etalon transmission fringes will play a role in determining the

sensitivity of the etalon to rotation of the optical angular interference pattern. It also

gives insight into the optimal phase plate parameters to improve the sensitivity of

the pattern to rotation. Even though the maximum number of photon counts making
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position (or frequency) measurements is at r2 = 0.577 as seen in Fig. 3.2(b), it appears

that this value does not necessarily correspond to the optimal sensitivity of the etalon.

The optimal value is determined by the lifetime of the photon counts in the etalon as

well as the number of photon counts making position (or frequency) measurements

on the CCD detector. These numbers can be improved by either going to a longer

etalon or increasing the reflectivity at the surfaces of the etalon. That is, with longer

“photon” lifetime in the etalon, the azimuthally varying fringes are narrower and

this enables the CCD detector to spatially distinguish a small rotation of the angular

interference pattern [See Fig. 3.1 for 1D, 2D and 3D intensity profile]. As a result, the

best values of sensitivity are obtained for large values of r2 and h0, as well as a very

small free spectral range of the etalon. It has been assumed that the transmission

function is in the thin plate approximation, and this approximation throughout this

chapter. As shown in section 2.3.1 of chapter II, this approximation is valid up on to

a reflectivity of r2 = 0.7, after which there are noticeable deviations in the angular

interference pattern described by the thick plate approximation. Hence, calculations

in the thin plate approximation may not describe the phase plate accurately beyond

a reflectivity of about r2 = 0.7 (see fig. 2.7 in section 2.3.1 of chapter II). It must

be noted that this applies to a fixed set of parameters, and it may be possible to

still obtain better sensitivity to rotation of the optical angular interference pattern

by going to higher reflectivity, but the device may not be described appropriately by

the thin plate approximation. For the remainder of this dissertation, the spiral phase

plate etalon is discussed in the context of an ultra-low finesse device in which the

calculations in the thin plate approximations appear to be valid as shown in section

2.3.1 of chapter II.
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3.3 Computer generated optical intensity

The optical intensity profile is simulated based on shot-noise limited assumptions

in a Mathematica program, i.e. a computer generated optical intensity profile is

produced based on shot-noise limited assumptions and analyzed. It is assumed that

there is no fluctuation in photon counts due to the field’s intensity and phase. Only

the unavoidable noise from a distribution of photon counts as a result of the sta-

tistical nature of the quantum-mechanical detection mechanism is considered. This

assumption is valid if each pixel of the CCD detector is integrated for a time that

is long compared to the characteristic time scale of the fluctuation in intensity and

phase such that the field’s noise is averaged out (70; 71; 72). Shot noise is generally

improved by using large number of photon counts on the CCD detector.

The optical vortex beam counts on the CCD are defined by the transmission func-

tion of the spiral phase plate etalon in the thin plate approximation and the spread

in photon counts arriving at a single pixel is described by a Poisson distribution,

P (µ, nc) =
µnc

nc!
e−µ. (3.10)

This is the probability of detecting nc photon counts with mean photon counts, µ =

TatfI0e
−2r2

ω2
0 , where Tatf is the etalon transmission function [See Eq. 3.2], I0 is the

peak intensity, and ω0 is the 1
e2

beam waist. A built-in random integer generator

in a Mathematica program is used to create the counts in each pixel. Similarly, the

Gaussian laser beam counts has a intensity distribution, I0e
−2r2

w2
0 , with a spread in

photon count fluctuation also described by a Poisson distribution.

Four sets of images are generated: Gaussian beam on top of background counts,

background counts alone, optical vortex beam on top of a background counts, and a

second background counts alone [See fig. 3.3]. The fluctuation in background counts is

described by Poisson statistics as well. The reason for generating background counts
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Figure 3.3: Computer generated data based upon shot noise limited assumptions.
(a) Optical vortex counts for β = 6.498 on top of uniform background
counts. (b) Uniform background counts. For actual analysis two sets of
background counts are generated, one for the optical vortex laser beam
and the other for the Gaussian laser beam. (c) Gaussian laser beam
counts on top of uniform background counts.

is because the CCD used in the experiment have a constant off-set in background

counts which needs to be subtracted out when analyzing the data. The 2D Gaussian

laser beam center (x0, y0) and 1
e2

beam waist, ω0, is found by integrating the row of

x pixels and fitting it to a Gaussian function Bkg+e

−2(y+y0)2

w2
0y to find y0 and w0y . Bkg

is the offset in background counts. Similarly, x0 and w0x is found by integrating the

column of y pixels and fitting to a Gaussian function, Bkg+e
−2(x+x0)2

w2
0x . For a well

characterized Gaussian laser beam, w0x = w0y .

As will be seen later, a pixel by pixel normalization is performed to the data,

were all the vortex beam pixels is normalized with the corresponding Gaussian beam

pixels. In order to do this effectively, vortex beam will have to be spatially overlapped

properly with the Gaussian beam. A quantitative way of doing this is to ensure that

the value of x0 (y0) of the Gaussian beam is the same as the value of x0 (y0) of

the vortex beam. Different x0 or y0 will lead to an asymmetry in the peak of the

modulation amplitude and modulation frequency of the angular interference pattern.

For the purpose of verifying that the analysis program is working well, the hand
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Figure 3.4: (a) 2D pixel by pixel normalization of transmission function described in
Eq. 3.11. (b) Counts as a function of azimuthal angle. The transmission
function, Tp, has a modulation frequency of β = 6.498 which corresponds
to the number of azimuthally varying peaks.

selected x0, y0, w0x and w0y parameters to generate the data is used in the optical

beam analysis program of this chapter.

In order to remove experimental artifacts or distortions in the input laser beam

going through the phase plate during the experiment, a pixel by pixel normalization

of the optical vortex laser beam with the Gaussian laser beam [See fig. 3.4 and fig. 3.5,

Bottom] is performed,

Tp =
NV −NBV

NG −NBG

. (3.11)

NV , NG, NBV and NBG are the counts in one pixel for the vortex beam, Gaussian

beam, vortex background and Gaussian background, respectively. In addition, the

optical angular modulation is generally clearly visible after performing the normal-

ization. An angle φ is assigned to each value of the transmittance, Tp, in Eq. 3.11 on

the CCD detector, and plotted as seen fig. 3.4(b).

For each beam, the transmission function in Eq. 3.11 is plotted as a function

of angle, φ. Caution is taken while assigning φ values to pixels close to the center

of the optical beam as there will be one undefined φ point at the center and the

neighboring pixels will have a large spread in angles for a few discrete φ values which
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p

Figure 3.5: Computer generated data based upon shot noise limited assumptions.
Top: 3D Optical vortex counts for β = 6.498 on top of uniform back-
ground counts. Contrast in angular fringes are sharper within the 1

e2

beam waist. Middle: 3D Gaussian laser beam counts on top of uniform
background counts. Bottom: 3D pixel by pixel normalization of trans-
mission function described by Eq. 3.11, which is integrated out to the the
1/e2 beam radius. The sharp contrast fringes can be seen clearly
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may introduce systematic errors. Even though 99% of the intensity lie whithin 1.5w0,

the data is integrated out to 1ω0 which contain 86% of the beam intensity. This is

because the interference fringes generally have sharper contrast within the 1
e2

beam

waist(See fig. 3.5). The following section (Section 3.4) describes a method for putting

error bars on each data point.

For the analysis in this chapter, the computer generated data has a 1
e2

Gaussian

beam waist of approximately 1.9mm, and peak photon counts of approximately 5×104

on top of an average uniform background counts of 1.18× 103. The integrated counts

for the Gaussian beam is
∑
NG = 1.12 × 109, Gaussian background is

∑
NBG =

6.99×107, optical vortex counts is
∑
NV = 1.03×109 and optical vortex background

is
∑
NBV = 6.99× 107. A parameter to quantify the ratio of counts making position

measurements to the total counts in the Gaussian laser beam is:

RV G =
(
∑
NG −

∑
NBG)− (

∑
NV −

∑
NBV )∑

NG −
∑
NBG

(3.12)

The modulation amplitude of the optical vortex interference pattern is Amod =

4r2
2

(1+r2
2)

2 = 0.1718 for a spiral phase plate etalon with uniform refractive index and a

reflectivity of r2 = 0.217. Since approximately 1
2
Amod = 0.0864 is reflected back into

the incoming Gaussian laser beam, and 1
2
Amod = 0.08649 is transmitted into the opti-

cal vortex beam, the ratio in Eq. 3.12 is expected to be RV G = 1
2
× 0.1718 = 0.08649.

For this set of computer generated data, the ratio is calculated to be RV G = 0.08713.

Deviation of RV G = 0.08649 from Amod in this set of computer generated data is ex-

pected to be from shot noise. This implies that if hundreds of images are generated,

the average RV G extracted from the optical angular interference pattern would agree

with Amod with a shot to shot fluctuation about the average RV G. The relationship

between Amod and RV G is used to determine the number of photon counts in the

etalon since the experiment generally measures Amod =
4r2

2

(1+r2
2)

2 from the depth of the
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optical angular interference pattern modulation.

To ensure that the program is working properly, analysis is performed on a non-

integer vortex, β = 6.498, (See Fig. 3.4) as opposed to an integer β vortex since a

non-integer vortex incorporates many of the interesting features of integer vortices.

In addition a spiral phase plate etalon with a non-integer β is most likely to be used

in the actual experiment.

3.4 Uncertainty in photon counts due to shot noise from each

pixel on CCD screen

In this section, the uncertainty (error bar) is calculated from the transmittance

of the spiral phase plate etalon. The counts in each pixel of the CCD camera for

the vortex laser beam is NV , Gaussian laser beam is NG, optical vortex laser beam

background is NBV and Gaussian laser beam background is NBG. The transmission

function for each pixel is computed as

Tp(NV , NBV , NG, NBG) =
NV −NBV

NG −NBG

(3.13)

If NV best, NBV best, NGbest, and NBGbest, are the best estimates for NV , NBV , NG,

and NBG, then the best estimate for the transmission function is expected to be

Tpbest(NV best, NBV best, NGbest, NBGbest). An estimate of the uncertainty is obtained by

expanding Tp about the point (NV , NBV , NG, NBG) in a Taylor series. The first term

in the Taylor expansion gives

Tp(NV + δNV , NBV + δNBV , NG + δNG, NBG + δNBG) ≈ Tp(NV , NBV , NG, NBG)+

∂Tp
∂NV

δNV +
∂Tp
∂NBV

δNBV +
∂Tp
∂NG

δNG +
∂Tp
∂NBG

δNBG (3.14)
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Where δNV , δNBV , δNG, δNBG are small increments in NV , NBV , NG and NBG. The

extreme probable values of NV , NBV , NG, and NBG are NV best±δNV , NBV best±δNBV ,

NGbest±δNG, and NBGbest±δNBG, respectively. Substituting into Eq. 3.14, and taking

the absolute values of the partial derivatives, the extreme values of Tp is

Tp(NV best, NBV best, NGbest, NBGbest)±
(∣∣∣∣ ∂Tp∂NV

∣∣∣∣ δNV +

∣∣∣∣ ∂Tp∂NBV

∣∣∣∣ δNBV +

∣∣∣∣ ∂Tp∂NG

∣∣∣∣ δNG +

∣∣∣∣ ∂Tp∂NBG

∣∣∣∣ δNBG

)
(3.15)

This means that the uncertainty of Tp(NV , NBV , NG, NBG) is

δTp ≈
∣∣∣∣ ∂Tp∂NV

∣∣∣∣ δNV +

∣∣∣∣ ∂Tp∂NBV

∣∣∣∣ δNBV +

∣∣∣∣ ∂Tp∂NG

∣∣∣∣ δNG +

∣∣∣∣ ∂Tp∂NBG

∣∣∣∣ δNBG (3.16)

If the uncertainties are random and independent, Eq. 3.16 is combined in quadra-

ture (73; 74), and the following is obtained

δTp =

√(
∂Tp
∂NV

δNV

)2

+

(
∂Tp
∂NBV

δNBV

)2

+

(
∂Tp
∂NG

δNG

)2

+

(
∂Tp
∂NBG

δNBG

)2

(3.17)

The equation describes the standard deviation of each pixel measuring the transmit-

tance of the spiral phase plate etalon on the CCD screen. For counts in the optical

intensity profile arriving at each pixel on the CCD screen and described by a Pois-

son distribution, the terms describing the uncertainty in Eq. 3.17 are δNV =
√
NV ,

δNBV =
√
NBV , δNG =

√
NG and δNBG =

√
NBG. The analysis assumes that the

standard deviation (uncertainty), δTp of each pixel (data point) is random with a

68% confidence level, i.e. δTp is to within 1 std. dev. of the “correct” value. The

analysis has also assumed that systematic errors such as finding the center of the

the optical vortex and gaussian laser beam is negligible compared to the random

statistical errors discussed above. If the systematic errors δTpSys are comparable to

random errors, then the standard deviation of each pixel will be
√
δT 2

p + δT 2
pSys. The

largest sources of systematic errors is expected to be from determining the center of
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the optical beam profile to make plots of the transmittance as a function of angle, as

well as from optical beam distortions.

3.5 Binning the raw data into angular wedges and estimating

the uncertainty of each binned data point

The vortex optical intensity profile normalized with a Gaussian intensity profile

shown in Fig. 3.4(b), is divided into angular wedges. The word “angular wedge”

has a different meaning compared to chapter II. Previously, it meant a device with

monotonically increasing thickness in a certain direction that has the shape of a

triangle. In this chapter, it means partitioning the optical intensity profile of the

beam as one would slice a round pizza into a series of triangular wedges. One slice

of the pizza is one angular wedge, and it will be shown later in this section that the

weighted sum of data points in an angular wedge represents one binned data point.

When the optical intensity profile is plotted as a function of angle without dividing

it into angular wedges, it is referred to as raw data. A plot of the binned data points

is in Fig. 3.6(b), and a plot of the raw data points is in Fig. 3.4(b) and Fig. 3.6(a).

The purpose of binning the raw data into angular wedges is to average out distortions

in the optical angular interference pattern so that the data looks more presentable.

This is especially advantageous when analyzing the experimental data as there are

generally distortions in the optical intensity profile.

The weight given to each data point in the distribution for the raw data (unbinned

data points) is wTpi = 1
δT 2
pi

, where δTpi is given by Eq. 3.17. The index i is used to

denote the ith pixel on the CCD detector. The uncertainty in the transmittance

through the spiral phase plate etalon containing NT total raw data points is

δTT =

√
1∑NT

i=1 wTpi
(3.18)
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The raw data points are partitioned into x bins along the φ axis. If there are k data

points in an angular wedge, the new binned data point, nj, is the weighted average

of the k data points,

nj =

∑k
i=1 TpiwTpi∑k
i=1wTpi

. (3.19)

The index j is to denote the jth angular wedge (binned data point). The uncertainty

of each binned data point (angular wedge) is

σnj =

√
1∑k

i=1 wTpi
(3.20)

The weight given to each binned data point (angular wedge) is 1
σ2
nj

, and will go into

the fitting routine to better quantify the data. This is discussed in section 3.6 of

this chapter. Since each binned data point (angular wedge) is a normal distribution

[Fig. 3.6] of the unbinned data points within an angular wedge (one bin), the mean

and standard error are reliable measures of random statistical uncertainties. If the

individual bins are a normal distribution around the center but deviates at the edges,

then analysis techniques such as the bootstrap method (75; 76; 77) is more reliable

in quantifying the uncertainty. A recent example applying this type of analysis is in

ref. (78) which reports on an improved measurement of the shape of an electron. The

uncertainty for the binned data distribution is the weighted sum of all the uncertain-

ties of the binned data points

δTnT =

√
1∑x

j=1
1
σ2
nj

(3.21)

Note that Eq. 3.18 and Eq. 3.21 should yield identical results if done appropriately.

The numerical value obtained from Eq. 3.18 or Eq. 3.21 can serve as a measure of

how close the experimental data is to its shot noise limited value by comparing the

value obtained for the experimental data to the computer generated data. It appears
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Figure 3.6: (a) Raw computer generated data from transmission function, Tp, with
central values and error bars (uncertainty) defined by Eq. 3.13 and
Eq. 3.17, respectively. (b) Raw data partitioned into 600 angular wedges
(600 bins) with central value and error bar defined by Eq. 3.19 and
Eq. 3.20, respectively. (c) Histogram of transmission function counts in
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and red line is a Gaussian fit to

the histogram with a 1 std. dev. width of 0.0107. (d) Square root of the
weighted sum of error bars, δTnT , as derived in Eq. 3.21 vs number of
bins (angular wedges).
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to be a robust way of determining the shot noise limited value of the measurement.

An alternative method to determine the shot noise limit of the experimental mea-

surements is to take a narrow angular slice of the transmitted counts through the

spiral phase plate etalon over an angle, φ, i.e. an angular wedge of the transmission

function, make a histogram of the counts within the angular wedge, and fit it to a

Gaussian function [See Fig. 3.6(c)]. The shot noise limit of the measurement can be

obtained by comparing the 1 std. dev. Gaussian width for the computer generated

data and experimental data. In this method, careful consideration must be taken in

the choice of the angular slice as there may be other artifacts in the experimental

data. In addition, the choice of bins used in constructing the histogram will affect its

1 std. dev. Gaussian width. In comparing the experimental and computer generated

histogram, broadening in the experimental histogram width could be as a result of

the detector not being shot noise limited or noise in the field’s intensity and/or phase

(See appendix C).

If the source of noise for photon counts in an angular wedge of the interference

pattern is periodic or deviations from randomness, it could lead to significant devia-

tions of the histogram of counts in an angular wedge resembling a normal distribution.

This effect has been observed in the experimental data when using the Thorlabs CCD

camera (DCU 200 series) (80) as a result of its digitization and read-out mechanism.

Chapter IV discusses another way of quantifying the shot noise limit of the experi-

ment through least square fitting of the computer generated data and comparing it to

the experimental data. Least square fitting is discussed in section 3.6 of this chapter.
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3.6 Spiral phase plate etalon sensitivity and parameters from

least square fitting routine

The central values of the individual parameters (r2, A, β, and φ0), and corre-

sponding error bars are obtained from weighted fit of the computer generated data

to the spiral phase plate etalon transmission function. The best fitting curve is de-

termined by minimizing the weighted sum of the deviations from the fitting function

through a Levenberg-Marquardt nonlinear least square minimization algorithm. A

custom version of this algorithm in a mathematica program is used to perform the

operation. The weights for each data point is determined from wTpi = 1
δT 2
pi

or in the

case of data points binned into angular wedges, the central value is given by Eq. 3.19

and weight is wnj = 1
σ2
nj

. As the bin size is changed, the individual fitting parameters

and error bars should not depend on the bin size. This is because for fewer binned

data points, the error bars will change by a similar factor. This serves as one of the

cross-checks to ensure the proper functioning of the fitting routine. A second critical

check is to ensure the reduced chi-square is χ2
ν ≈ 1. A value of χ2

ν >> 1 may indicate

poor measurements, incorrect assignment of uncertainty, or an incorrect choice of

probability function. A χ2
ν << 1 may indicate an error in the assignment of weights

to the data points or misunderstanding of the experiment (73).

The fitting function is

T (φ) =
ACalcFit

1 +
4|rCalcFit

2 |2
(1−|rCalcFit

2 |2)2 sin2
(
βCalcFit(φ+φCalcFit

0 )

2

) . (3.22)

The standard error on the raw data and the binned data is expected to be within

1 std. dev. of each other for an appropriately selected bin number. 600 bins is

selected in Fig. 3.7(b), for which the value is well within the 1 std. dev. level. The

reduced chi-squared is χ2
ν = 1.028, and it is a value close to 1 for all the reported

45



0.0 0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

Tp

0.0 0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

Tp

Estimate Standard Error Confidence Interval

0.999809 0.0000891321 {0.999749, 0.999869}

0.217739 0.0000848928 {0.217682, 0.217797}

6.4983 0.000425074 {6.49801, 6.49859}

0.0607692 0.0000733195 {0.0608187 ,0.0607197}

ACalcFit

r2
CalcFit

CalcFit




CalcFit

φ/π  [rad]

Estimate Standard Error Confidence Interval

0.999829 0.0000891338 {0.999741, 0.999918}

0.217761 0.0000848841 {0.217676, 0.217845}

6.49827 0.000425 {6.49784, 6.49869}

0.0607701 0.0000733036 {0.060843 , 0.0606972}

ACalcFit

r2
CalcFit

CalcFit




CalcFit

φ/π  [rad]

(a) (b)

Figure 3.7: Calculated transmittance as a function of angle for raw computer gen-
erated data, i.e. unbinned computer generated data (a) and computer
generated data which is binned into angular wedges(b). The error bars
is due to the presence of shot noise in the data. The fit is performed in
(a) to the raw computer generated data with fit parameters in the inset.
In (b), the raw data is binned into 600 angular wedges (600 bins) with fit
parameters in the inset. The red curve is a fit to the data. In the case
of the binned data, the fit curve covers the data points. Fit parameters
are in the 68% confidence interval. The fit parameters in both cases yield
consistent results indicating proper functioning of the fit routine.

values of the fitting routine in this chapter. The ACalcFit parameter can be normalized

to 1 without loss of generality. The fit parameters rCalcFit
2 = 0.2177 (1.1 std. dev.)

and βCalcFit = 6.4983 (0.85 std. dev.) are relevant in determining properties of the

spiral phase plate etalon. The quantity in parenthesis is the number of standard

deviations (std. dev.) of the output fit parameters from the input parameters used

to generate the shot-noise limited angular interference pattern. The position of the

azimuthally varying fringe is determined from φCalcFit
0 with a position sensitivity at the

7.3×10−5πrad level or converted to a frequency sensitivity of 3.98MHz using Eq. 3.8.

φCalcFit
0 = (−0.0607 + 0.0766)π is one of the minimums of the fitted transmission

function close to zero. More analysis of this fitted parameter is in the next sub-

section 3.6.1.

The sensitivity of the etalon is the error bar on the fitted parameter, φ0. As

the transmission function is periodic in angle, there are multiple minimization val-

ues reported by the Levenberg-Marquardt algorithm which depends on the initial

46



search parameters. For example, a βCalcFit = 6.5 will have 6 or 7 maximums in the

transmission function amplitude.

As the computer generated data is free from instrumental artifacts, the fit to the

transmission function of the shot to shot image is not expected to change by more than

3 std. dev. about the input central value. Furthermore, systematic errors resulting

from finding the x0 and y0 center position of the optical beam is not included in the

calculation of this chapter since the center position is known to a very high level of

precision (i.e. the center position is hand selected). However, in analyzing the actual

experimental data, such systematic errors will have to be considered in the error bar

estimation. This will be seen in the analysis of the measured optical intensity profile

of chapter IV.

3.6.1 Changing φ0

As φ0 is the parameter that is constantly being monitored in the experiment,

special attention is given to this parameter in this section. In the experiment, φ0

is varied by changing the laser frequency which causes the interference pattern to

rotate. It is important for φ0 to be reported within the predicted uncertainty as the

angular position changes. In order to verify this, the position φ0 reported by the fit

program is recorded as the hand selected input parameters is increased in steps of 0.1

rad from 0 rad to 2 rad for integer and non-integer values of β (see Fig. 3.8). Fig. 3.9

and Fig. 3.10 contains a few images of the 2D intensity profile showing the rotation

of the angular interference pattern. For integer values of β, the fitting routine reports

the hand selected input value to within the program’s uncertainty. However, for non-

integer β, the value of φCalcFit
0 had to be shifted by approximately 1

2
2π
β

to accurately

report its value within the program’s uncertainty ( Fig. 3.8 Top and Middle).

The minimums of the fitted transmission function is determined at a point φ0 =

0.1rad and subtracted from a point φ0 = 0rad as in Fig. 3.8 (Bottom). Since uncer-
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tainties add in quadrature, performing this operation effectively increases the error

bar on ∆φCalcFit
0 by at least a factor of

√
2. The central values is expected to be

within 1 to 3 std. dev. of the hand selected difference in input values of the computer

generated data. In Fig. 3.8 (Bottom), six independent minimization values of φ0 cor-

responding to the different modulation peaks are determined, all of which are within

1 std. dev. of the uncertainty. In the actual experiment, multiple measures of the

value of φ0 will be recorded to determine the central value and error bar. A random

distribution about the central value is expected as will be seen in the measurements

and analysis of chapter IV

The etalon transmission function with nr maximums in its modulation amplitude

is:

T (φ) =
1

1 + 4|r2|2
(1−|r2|2)2 sin2

(
β(φ+φ0)

2
+ nrπ

) (3.23a)

=
1

1 + 4|r2|2
(1−|r2|2)2 sin2

(
β(φ+φ0+ 2nr

β
)

2

) (3.23b)

=
1

1 + 4|r2|2
(1−|r2|2)2 sin2

(
β(φ+φ0nr

)

2

) . (3.23c)

If φ0 is the first maximum of the transmission function, the transmission peaks will

repeat itself at φ0nr = φ0 + 2nrπ
β

, where nr is an integer. An etalon with integer β

will have nr = β maximums and nr = β minimums, while an etalon with non-integer

β will have nr = Ceiling[β] maximums and nr = Floor[β] minimums, or vice versa.

For an appropriate shift in angular phase, φ0nr = φ0 + 2nrπ
β

, the interference pattern

reproduces itself within a 2π radian angle. This is one of the unique geometric features

of the spiral phase plate etalon that differs from the conventional Fabry-Perot etalon

consisting of longitudinal modes. Typically, the interference pattern rotates through a

2π radian angle when the laser frequency is changed by approximately δν ≈ 100GHz,
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Figure 3.8: Top: Value of φ0 for β = 6.49866 varied from 0 rad to 2 rad in increments
of 0.1rad. The values of φ0 is normalized by a factor of 120 to give a
closer look at the error bars. Middle: Same as top but for β = 6.0.
Blue dots are the hand selected input values and black is the output from
the fitting routine. In both cases, blue dots overlap very well with black
dots indicating very good agreement of fitting routine values and hand
selected values. Bottom: Verifying that a change in angular position of
∆φ0 = 0.1 radian in the computer generated data yields a similar change
of ∆φCalcFit

0 = 0.1 radian in the value reported by the fit program for 6
different minimization peaks in a single shot image. Blue line correspond
to hand selected theoretical change in φ0
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Figure 3.9: Pixel by pixel normalization of the optical vortex with Gaussian beam
(described by Eq. 3.13) for a β = 6.4986 when the value of φ0 is changed
from 0 rad to 0.5π radian. Beside each 2D image is data binned into 600
angular wedges and fit to Eq. 3.22, with the fit parameters in the inset.
A full rotation of the interference pattern corresponds to a change of φ0

by 2π radian. The red cross bar is used to find the center of the 2D image
to create the transmittance vs angle.
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Figure 3.10: Pixel by pixel normalization of the optical vortex with Gaussian beam
(described by Eq. 3.13) for a β = 6.0 when the value of φ0 is changed
from 0 rad to 0.5π radian. Beside each 2D image is data binned into
600 angular wedges and fit to Eq. 3.22, with the fit parameters in the
inset. A full rotation of the interference pattern corresponds to a change
of φ0 by 2π radian. The red cross bar is used to find the center of the
2D image to create the transmittance vs angle.
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with a free spectral range (i.e. frequency separation between two angular peaks) given

by δν
β

= 16GHz. For example, considering the parameters in this chapter to fabricate

a β = 6.4986 spiral phase plate etalon, the laser frequency changes by δν = 104GHz

to rotate the interference pattern by a 2π radian angle. As such, the etalon can be

tuned from a few MHz to 10’s of GHz indicating a wide tunability in frequency.

3.6.2 Nonlinear least square fitting

In this section, the nonlinear fitting routine which performs a weighted fit to the

optical angular interference pattern is described. The fitting routine calculates a value

of χ2 that minimizes the sum of deviations of the data from the transmission function

with respect to the parameters, r2, A, β and φ0,

χ2 =
∑

wi [Ti − T (φi)]
2 . (3.24)

The weight of each data point is wi = 1
σ2
i
, and it has been derived in section 3.5.

The derivatives to minimize χ2 are

∂χ2

∂A
= 0,

∂χ2

∂r2

= 0,
∂χ2

∂β
= 0,

∂χ2

∂φ0

= 0. (3.25)

A built in function in a Mathematica program is used to simultaneously solve Eq. 3.25.

When analyzing the data, the values of χ2, the central values, and parameter error

bars are obtained using two independent built-in functions in Mathematica: the Non-

linearModelFit routine and NMinimize routine, in which the Levenberg-Marquardt

algorithm and Differential Evolution method is used to find the fit parameters, respec-

tively. These two fitting methods serve as independent cross-checks to show that the

central values and error bars are consistent with the hand selected input computer

generated values. However, for large number of data points (e.g. 105 data points

which is generally the case for the raw data), the NonlinearModelFit routine tends to
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be computationally more time efficient. The central values and error bars reported

by both fitting routines generally agree with each other to well within 1 std. dev.

The built-in NonlinearModelFit fitting routine in Mathematica is:

nlm =NonlinearModelFit [Data, T (φ,ACalcFit, rCalcFit
2 , βCalcFit, φCalcFit

0 ), {{ACalcFit, 1.0},

{rCalcFit
2 , r2 }, {βCalcFit, β}, {φCalcFit

0 , φ0}}, φ, ConfidenceLevel→ 0.68, VarianceEsti-

matorFunction→ (1&), Weights→ wi, Method→ “LevenbergMarquardt”]

and the tabulated estimate of central values, standard errors and confidence intervals

are obtained with the built-in function:

nlm[“ParameterConfidenceIntervalTable”].

A few examples of sample output from the program is in Fig. 3.7, Fig. 3.9, Fig. 3.10

and Fig. 3.11(a). The command, “VarianceEstimatorFunction→ (1&)”, ensures that

the fit program calculates the standard error of the fit parameters from the weights

alone such that χ2
ν is normalized to 1. Similar fit parameters and standard errors are

obtained without this setting for the computer generated data.

The built-in NMinimize fitting routine in Mathematica is:

NMinimize[ {χ(, ACalcFit, rCalcFit
2 , βCalcFit, φCalcFit

0 )2, 1 − ε ≤ ACalcFit ≤ 1 + ε, r2 −

ε ≤ rCalcFit
2 ≤ r2 + ε, β − ε ≤ βCalcFit ≤ β + ε, φ0 − ε ≤ φCalcFit

0 ≤ φ0 + ε },

{ACalcFit, rCalcFit
2 , βCalcFit, φCalcFit

0 }, Method→ “DifferentialEvolution”]

ε is a small deviation from the input computer generated parameters r2, β and

φ0. The resulting fit parameters are ACalcFit, rCalcFit
2 , βCalcFit, and φCalcFit

0 . A sample

output from the NMinimize routine is

{612.803, {ACalcFit→ 0.999811, rCalcFit
2 →0.217742, βCalcFit→ 6.49828, φCalcFit

0 →-

0.0607764}}

where χ2 = 612.803, and the reduced Chi-Squared is χ2
ν = 1.028 for ν = 596 degrees of

freedom. It must be noted that in order to obtain the error bar from the NMinimize fit

routine, a fit will have to be performed on several optical angular interference patterns

and a histogram of the fit parameter distribution obtained. The 1 std. dev. width of
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the histogram is the error bar. When this is done, these central value and error bar

generally agree to well within the error bar generated by the NonlinearModelFit fit

routine.

For shot-noise limited computer generated data with no artifacts in the optical

intensity profile, it is not necessary to perform a weighted fit to the angular interfer-

ence pattern in order to improve the error on the parameters reported by the fitting

routine. This is because the angular interference pattern data points will have simi-

lar weights within 1
e2

beam waist of the vortex counts normalized with the Gaussian

intensity profile discussed earlier in the chapter, especially when the peak intensity

counts of the optical intensity beam profiles is as large as the ones reported in this

chapter. However, in the case of the experimental data analysis, the precision to

which the fit program reports the uncertainty of the fit parameters can be improved

by performing a weighted fit to the experimental data. This is because there are

generally artifacts in the measured optical intensity profile in which the weight on

each data point can vary significantly. The purpose of performing the weighted fit

is to ensure that the “good” data points have a higher weight than the “bad” data

points. This is implemented when analyzing the experimental data in chapter IV.

3.6.3 Correlation in fit parameters

The different parameters reported by the fitting routine are correlated with each

other. The correlation between the fit parameters is a measure of how much the mini-

mization of one fit parameter is affected by another fit parameter while minimizing χ2

in the nonlinear fitting routine. A correlation of 1 indicates perfect correlation, while

a correlation of 0 indicates no correlation. Typical central values, standard error, con-

fidence interval and correlation matrix reported by the fitting routine is in Fig 3.11.

There is a high degree of correlation between the amplitude parameters, ACalcFit and

rCalcFit
2 of 0.809. There is also a high degree of correlation between the phase param-
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Figure 3.11: (a) Weighted fit to the binned computer generated data, with the fit
parameters in the inset, and (b) correlation in the fit parameters. Cor-
relation between βCalcFit and φCalcFit

0 is 0.85, and correlation between
ACalcFit and rCalcFit

2 is 0.80. The other fit parameters are minimally cor-
related with each other.

eters βCalcFit and φCalcFit
0 of 0.8542. The other parameters appear to be minimally

correlated with respect to each other. Even though, βCalcFit and φCalcFit
0 are highly

correlated, it does not appear to affect the central values reported by the fitting rou-

tine to within its uncertainty (See fig. 3.8 Top and middle plots) as φ0 is varied. The

fit parameters in the sub-section on “Changing φ0”, assumes that φ0 is independent

of β. In the experiment, varying φ0 by changing the laser frequency changes β at the

level of δβ = β δν
ν

. Considering the parameters to fabricate a β = 6.498 phase plate, a

change in laser frequency of δν = 16GHz about the central frequency ν = 473.9THz,

will result in δβ ≈ β δν
ν

= 2.2× 10−4. The purpose of calculating the correlation in fit

parameters is to ensure that the program does not introduce additional dependences

of β on φ0 or vice versa during the χ2 minimization process which would make data

interpretation cumbersome.

While the correlation in the fit parameters merely contribute systematic errors

for the parameters that are highly correlated, these systematic errors appear to be

much smaller than errors due to shot noise, optical beam distortions, and finding the

center of the optical beam. The major source of systematic errors are expected to

be from finding the center of the beam to generate the azimuthally varying optical
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intensity profile, and optical beam distortions. Such systematic errors are analyzed

for computer generated data in section 4.2.6 of chapter IV.

3.7 Concluding remarks

In this chapter, a classical description of the minimum resolution to measure the

rotation of an angular interference pattern in a spiral phase plate etalon has been

discussed. In particular, the resolution of the angular pattern was estimated by:

1. Calculating the standard error of the number of photon counts making position

measurements on the CCD, and

2. Through a weighted nonlinear least square fit of the computer generated data.

Fitting the data appears to be the most robust way of determining the spiral phase

plate parameters and corresponding error bars, and it is used to estimate the ex-

perimental parameters and uncertainty in the proceeding chapters. A number of

cross-checks were performed on the experimental data to ensure that the analysis

programs are working properly. Two different custom algorithms (i.e. the Levenberg-

Marquardt algorithm and difference evolution algorithm) was used to obtain the fit

central values and error bars to ensure consistency of the values with hand selected

input values to generate the data. In addition, the correlation between the different

fit parameters was calculated to ensure that the fitting routine does not introduce

additional dependences on the different fit parameters which would make data inter-

pretation cumbersome. Systematic errors which the correlation in fit parameters may

introduce are much smaller than other sources of errors in the experimental data,

such as shot noise, etc.

Estimating the sensitivity of the device from a theoretically calculated standard

error provides insight as to how the device sensitivity to rotation could be improved.

In particular, the sensitivity of the angular interference pattern to rotation is expected
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