
to be improved with long “photon” lifetimes in the etalon and large number of photon

counts making position measurements, i.e. making a device with large reflectivity

r2, and large base height, h0. Nevertheless, the calculations have assumed the thin

plate approximation, and a realistic spiral phase plate etalon starts to deviate from

these approximations at around a reflectivity of r2 = 0.7 as shown in chapter II, for

parameters reported in this chapter and a base height of h0 = 0.6cm.

The computer generated optical intensity profile comprise of many photon counts

consisting of a coherent superposition of optical vortices in different orbital angular

momentum states (as shown in Chapter II), and hence are strictly classical beams.

This makes the spiral phase plate etalon unique in that there is an angular modulation

amplitude as a function of angle which can be seen at the same time and in real time

and space on the CCD detector screen. Another unique feature of the spiral phase

plate etalon is that as the laser frequency is varied, the angular interference pattern

rotates, repeating itself at select laser frequencies in a 2π radian angle. These are just

a few examples of the unique features of a spiral phase plate etalon compared to the

conventional Fabry-Perot etalon.

Additionally, the analysis undertaken in this chapter assumes that the CCD cam-

era is shot noise limited and there are no other sources of noise in the data. In the

actual experiment, other sources of noise or errors in the data can significantly de-

crease the sensitivity of the spiral phase plate etalon when taken into account. They

include noise in the amplitude and phase of the laser intensity, errors associated with

distortions of the optical intensity profile and finding its center, the other sources of

noise on the CCD detector such as read noise, electronic noise...etc. The error bar

on the fit parameters is expected to capture these sources of noise. Furthermore,

the analytical tools developed in this chapter is computationally time efficient (i.e.

Mathematica program takes less than 2 minutes to analyze a set of four images, each

partitioned into hundreds of angular wedges), and relatively straightforward to use.
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It will be employed to analyze the optical intensity profiles in the proceeding chapters.
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CHAPTER IV

Measurement of multiple beam interference in a

spiral phase plate etalon

4.1 Introduction

This chapter reports on the experimental observation and measurement of multiple

beam interference in a spiral phase plate etalon. The components of the experimental

apparatus is described. In addition, the experimental parameters with corresponding

statistical uncertainty used to describe the spiral phase plate etalon is quantified by

a weighted fit of the experimental data, and compared with theory and a computer

model of the experiment based on shot noise limited assumptions. Noise sources in the

experiment such as shot noise, read noise and dark noise are discussed. Systematic

errors which results from improperly determining the center of the optical beam

profile is also estimated from the simulations, in which the dominant source of noise

is shot noise. Many of the analytic tools and precautions developed in chapter III

are employed in quantifying the data. Furthermore, some of the theory developed in

chapter III is reproduced in this chapter as it relates to the experiment.
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4.2 Experiment

4.2.1 CCD camera description
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Figure 4.1: Dark counts on CCD camera. (a) 3D image of CCD showing presence of
artifact for an exposure time of 1ms at last row of CCD for a digitization
read-out rate of 5MHz. (b) Histogram of dark counts. Small histogram
peak is due to artifacts at the last row of CCD and large peak is from dark
count fluctuation on CCD. Both peaks fits well to a Gaussian function.

The charge coupled device (CCD) camera is an Acton photon max camera from

Princeton instruments (79). There are 512 by 512 pixels on the CCD with a pixel size

of 16µm by 16µm, and peak counts of 65000 on each pixel. The digitization readout

rate can be set to 10MHz, 5MHz, or 1MHz. For the experimental images, the data

have mostly been read out at either 5MHz (See fig. 4.1) or 1MHz (See fig. 4.2) for

low noise levels. There is a difference in the dark counts offset depending on whether

the data is read out at 5MHz (See fig. 4.1(b)) or 1MHz (See fig. 4.2(c)).

One of the sources of noise in the CCD camera is from build-up of charge on the

CCD chip over time. This charge is called dark charge and it results in noise called

dark noise. The CCD background will appear less uniform with longer exposure

time and warmer camera due to the presence of dark charge on the CCD. This can

cause loss of dynamic range (i.e. maximum light intensity that CCD can measure)
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Figure 4.2: (a) Measured standard deviation of CCD dark count noise for different
exposure times with a digitization read-out rate of 1MHz. The zero slope
data points are probably from read noise, and the non-zero slope data
points are probably from charge build-up on the CCD. (b) Measured
mean of CCD dark count noise for different exposure times. (c) A single
shot noise measurement for an exposure time of 30ms. The standard
deviation is σNoise = 5.33 counts and mean is µNoise = 1126.61 counts.
Red curve is a fit to the data.

in the CCD. For data collection, the charge accumulated on the CCD can be cleared

at specific times during which a sequence of images are taken. Nevertheless, if the

accumulation time of the CCD is long, residual “dark charge” builds up on the CCD

before the clearing options take effect (See fig. 4.2). The CCD dark noise is measured

with the CCD screen covered to prevent ambient room light and a histogram of

the “dark” counts is fitted to a Gaussian function [See fig. 4.2(c)]. The 1 standard

deviation (1 std. dev.) Gaussian width of the histogram is a measure of the dark noise

fluctuation on the CCD. There appears to be additional sources of noise (e.g dark

noise, electronic noise etc) on the CCD chip for exposure times over 100ms regardless

of CCD charge clearing option [See fig. 4.2(a)]. A dependence of the noise on exposure
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time is represented in fig. 4.2. As seen in Fig. 4.2(c), there is a built-in offset in the

CCD camera counts of approximately 1126.61 counts with a spread about the mean

of approximately σNoise = 5.33. Hence the shot noise limit of a single frame of the

CCD cannot be determined from the dark counts alone using standard methods such

as making sure that the ratio of the 1 std. dev. width of the histogram is the same

as the square-root of the mean. For the CCD to be shot noise limited, the mean

dark counts will have to be around µNoise = 26 counts since the measured standard

deviation is σNoise = 5.33, to give σNoise√
µNoise

≈ 1. When analyzing the experimental

data, each image is cropped by 5 to 10 pixels from the edges as there appears to be

additional artifacts at the last row of pixels that read out the data from the CCD

[See fig. 4.1].

Similar analysis to the one in Fig 4.2 can be used to examine the random photon

count fluctuation in the background counts (not dark counts) on the CCD detector as

a result of ambient room lights during the experiment. A typical background count

histogram is in Fig. 4.3 with a mean of 1239.83 counts and histogram 1 std. dev.

width of 6.48 counts. The background counts is approximately 1.54 std. dev. from

the dark count level in Fig 4.2, indicating very low background count level. A change

in noise standard deviation, σNoise, about the mean, µNoise, is expected if there are

changes in shot to shot measurements in the background counts. During the pixel by

pixel analysis of the data, a background subtraction is performed. The purpose of

the above analysis is to ensure that the background counts is minimal and does not

adversely affect the measurement of the optical angular interference pattern.

4.2.2 Spiral phase plate etalon parameters and imaging set-up

Optical transmission through a spiral phase plate etalon is probed using a well-

collimated Gaussian laser beam coming out of a single mode fiber with wavelength

λ = 555.8410 ± 0.0001 nm and a 1/e2 beam radius of ω0 = 1.056 ± 0.005 mm; and
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Figure 4.3: Histogram of background counts for a single shot image. The 1 std.
dev. width of the histogram is 6.48 with central value of 1239.83 counts.
Red curve is a Gaussian function. The background appears to be 1.54
standard deviations away from the CCD dark count noise indicating very
low background counts.

a commercial device (64) with a calculated refractive index n = 1.56 ± 0.02 (64)

and measured step height ∆h = 0.93 ± 0.05 µm (64), yielding r2 = 0.219 ± 0.008,

α = 0.94 ± 0.06, and β = 5.2 ± 0.3. The flat face of the device is mounted on a

borofloat glass substrate (n ≈ 1.47). The refractive index is calculated from the

dispersion equation in Eq. A.1 of appendix A, with the uncertainty estimated from

the wavelength dependence of the dispersion equation. The uncertainty in the step

height is provided by the phase plate etalon manufacturer. The pitched face of the

device and opposing surface of the substrate are exposed to air (n ≈ 1.00027).

The experimental set-up consist of a single lens imaging system with the spiral

phase plate etalon (CCD) placed 2 focal lengths before (after) the lens as shown in

Fig. 4.4(b), with a numerical aperture of NA ≈ 0.08. The purpose of the imaging

system is to probe the intensity pattern immediately after the spiral phase plate

etalon, i.e. the diffraction near field. Without the imaging lens, a vortex core emerges

as the beam propagates far away (diffraction far field) from the spiral phase plate
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Figure 4.4: (a) Spiral phase plate etalon. (b) Imaging set-up (Not drawn to scale).
A TEM00 Gaussian beam coming out from a single mode optical fiber
propagates through a spiral phase plate etalon with a 1 lens system to
image the optical beam immediately after the spiral phase plate etalon
onto the CCD camera. In other words, the 1 lens imaging system is used
to probe the diffraction near field of the spiral phase plate etalon. The
numerical aperture of the imaging lens is NA= D

2F
≈ 0.08. D = 25.4mm

is the diameter of the lens and F = 150mm is the focal length of the lens.

etalon for integer winding number (e.g. α = 1, 2, 3, etc) (13; 14; 24; 32; 53), and

for the case of non-integer winding number (e.g. α = 0.5, 1.5, 2.5, etc), a vortex

core and region of zero intensity in an azimuthal angle on the optical intensity profile

emerges (10; 11; 12; 19; 49; 50; 51). Here, α = 0.94 which is very close to 1, and

therefore the beam will have a ring (or donut) intensity profile in the far field. The

work in this chapter is focused on probing and analyzing multiple beam interference

effects in the diffraction near field of the device with the set-up shown in Fig. 4.4(b).

4.2.3 Experimental data and analysis

In the experiment, 280 frames of four set of images are taken on the CCD: Gaussian

laser beam without the spiral phase plate etalon present to characterize the optical

intensity profile on the input plane of the device [Fig. 4.5(c)], a first background

counts image [Fig. 4.5(e)], Gaussian laser beam after propagation through the spiral

phase plate etalon to characterize the optical intensity profile on the output plane
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Figure 4.5: Optical transmission through a spiral phase plate etalon. Computer gen-
erated optical intensity profile based on shot noise limited assumptions
on the input plane (a), and output planes (b) of the device. The cor-
responding experimental optical intensity profile at the input (c) and
output (d) planes of the device. The input optical intensity profile has
I(r, φ, 0) ∝ e−2r2/ω2

0 (Gaussian intensity profile) and the output inten-
sity profile has I(r, φ, h0 + ∆h) ∝ T (φ)e−2r2/ω2

0 (Optical vortex intensity
profile). The dark horizontal line in (d) is due to the sudden change in
material thickness at φ = {0, 2π} [as seen in Fig. 4.4 (a)]. (e) First exper-
imental background count image to subtract from Gaussian laser beam
background offset and (f) Second experimental background count image
to subtract from optical vortex beam background offset.
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Figure 4.6: 2D optical vortex intensity profile on output plane of device based on
shot noise limited assumptions normalized with Gaussian beam on input
plane of device for (a) computer generated data, and (b) Experimental
data. The red cross bar in the 2D profile is used to find the center of the
normalized beam profile in order to plot the transmission function, T (φ),
as a function of azimuthal angle, φ, in (c) and (d) for the raw data, and (e)
and (f) for binned data. The images in (a) and (b) are divided into a = 160
angular wedges [i.e. a = 160 bins] and the transmittance is calculated for
each angular wedge from Eq. 4.3 to give (e) and (f), respectively. The
data affected by the dark horizontal line in (b) and Fig. 4.5(d) are plotted
as open circles and excluded from the fit. The single image fit parameters
are in the inset of the raw and binned data plots. The 68% confidence
interval is reported by the fit routine. By comapring the single image
fit parameters of the computer generated data and experimental data, it
can be seen that the error on the experimental fit parameters is within a
factor of 5 of the error on the computer generated shot noise limited fit
parameters. An alternative way of obtaining the single image error bar
is in Fig. 4.8, which produces similar results as a single image analysis
output from a built-in Mathematica fit routine in the inset of (e) and (f).
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Figure 4.7: 3D plot of optical vortex normalized with Gaussian laser beam integrated
out to the 1

e2
beam radius for the Computer generated data (a), and

Experimental data (b). The dip in the intensity pattern in (b) is due
to the sudden change in material thickness at {0, 2π} of the spiral phase
plate etalon shown in Fig. 4.4 (a).
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of the device, i.e. optical vortex laser beam [Fig. 4.5(d)], and a second background

count image [Fig. 4.5(f)]. There is an offset in the CCD background per pixel of

approximately 103 counts and fluctuating with a 1 std. dev. width of approximately

7 counts (See fig. 4.3).

The experimental transmittance for each CCD pixel is computed as

Ti =
NVi −NBVi

NGi −NBGi

. (4.1)

NVi , NBVi , NGi and NBGi are the single pixel count for the optical vortex laser beam

on the output plane of the spiral phase plate etalon, optical vortex laser beam back-

ground, Gaussian laser beam without the spiral phase plate etalon present on the

input plane of the device, and Gaussian laser beam background, respectively. The

subscript i is used to denote the ith pixel. The random statistical error on each pixel

is

|δTi|2 =

(
∂Ti
∂NVi

δNVi

)2

+

(
∂Ti
∂NBVi

δNBVi

)2

+

(
∂Ti
∂NGi

δNGi

)2

+

(
∂Ti

∂NBGi

δNBGi

)2

(4.2)

where δNVi , δNBVi , δNGi and δNBGi is the single pixel standard deviation of the

280 frames taken for the optical vortex laser beam counts, optical vortex background

counts, Gaussian laser beam counts, and Gaussian laser beam background, respec-

tively. For each pixel, a weight wTi = 1
δT 2
i

is computed, and an angle φi is assigned.

The vortex beam frames normalized with Gaussian beam frames in Fig. 4.6(b) are

divided into a = 160 angular wedges as seen in Fig. 4.6(f). A circle of radius 80µm

is removed from the center of the beam as this corresponds to the part of the beam

for which there is no periodic modulation in the experimental frames [See fig. 4.6(b)].

The transmittance is computed for each angular wedge as the weighted average of k
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pixels in that particular wedge:

Ta (φ) =

∑k
i=1 TiwTi∑k
i=1wTi

. (4.3)

The weight of each angular wedge is wa =
∑k

i=1wTi , which goes into the least square

fitting routine. In this chapter, the index “a” represents the ath angular wedge of the

transmission function,

T (φ) =
AFit

1 +
4|rFit

2 |2
(1−|rFit

2 |2)2 sin2
(
βFit(φ+φFit

0 )

2

) , (4.4)

AFit and rFit
2 is the peak of the transmission function and its modulation depth, re-

spectively. βFit and φFit
0 is the modulation frequency and position of the transmission

function , respectively, with φFit
0 ∈ {0, 2π}. It should be noted that φFit

0 could be any

real number, but since it represents the position of the angular interference pattern, it

is normalized to a value between 0 and 2π. The fitting routine calculates a value of χ2

that minimizes the sum of deviations of the experimental data from the transmission

function,

χ2 =
∑
a

wa [Ta (φ)− T (φa)]
2 , (4.5)

Ta (φ) and T (φa) is the ath angular wedge of the experimental and calculated trans-

mission function, respectively, and computed from Eq. 4.3 and Eq. 4.4, respectively.

wa is the weight of the ath angular wedge. A weighted fit to the experimental data en-

ables the program to determine the single image experimental fit parameters [shown

in the inset of Fig. 4.6(d) and (f)] to greater precision, with a lower limit given by

the shot-noise limited values [shown in the inset of Fig. 4.6(c) and (e)].

While only one frame is shown in Fig. 4.5(c), Fig. 4.5(d), Fig. 4.5(e), and Fig. 4.5(f)

for the Gaussian laser beam counts, optical vortex beam counts, and two sets of

background counts, respectively, 280 of such frames are taken. Each set of these
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frames is computed from Eq. 4.1, binned into angular wedges according to Eq. 4.3,

and fit to Eq. 4.4 by minimizing χ2 in Eq. 4.5. An example of a single fit to the

experimental transmittance is in Fig. 4.6(d) and (f). A histogram is made for each

of the fit parameters (AFit, rFit
2 , βFit, and φFit

0 ) as shown in Fig. 4.8(e)-(h). The

single frame uncertainty is the 1 std. dev. width (68% confidence interval) of the fit

parameter distribution.

The experimental transmitted optical intensity displays a periodic modulation

as a function of azimuthal angle [Fig. 4.6(b), (d) and (f)]. The observed peak of

the transmission function is AFit = 0.99± 0.07 and agrees with the expected value of

A = 1 to within 0.48% (∼ 0.095 std. dev. in units of the experimental error bar). The

position parameter is φFit
0 = (0.044± 0.001)π, where φFit

0 ∈ {0, 2π}. The observed

modulation frequency, βFit = 5.012 ± 0.003, agrees with the predicted central value,

β, to within 4.01% (∼ 0.71 std. dev. in units of calculated error bar). The observed

modulation depth yields rFit
2 = 0.2067 ± 0.0004, which is 5.7% (∼ 1.66 std. dev. in

units of calculated error bar) below the predicted central value. By incorporating

the lower reflectivity of air-substrate interface into the calculations, better agreement

between experiment and theory is expected. In addition, the substrate is not expected

to modify the predicted modulation frequency, as shown in appendix B.

4.2.4 Computer generated data

A computer model of the optical intensity profile at the input [See fig. 4.5(a)] and

output planes [See fig. 4.5(b)] of the device is generated based upon shot noise limited

assumptions, i.e. the arrival of photon counts on the CCD detector and background

fluctuation in each pixel strictly follows Poisson statistics:

P (µ, nc) =
µnc

nc!
e−µ. (4.6)
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Figure 4.8: Histogram of fit parameters shows an approximate Gaussian distribution.
The central value and single frame uncertainty (1 std. dev. width of the
distribution) for the parameters is shown as follows. Computer gener-
ated data: (a) ACalcFit = 0.9996 ± 0.0002, (b) rCalcFit

2 = 0.2192 ± 0.0002,
(c) βCalcFit = 5.2218 ± 0.0008, (d) φCalcFit

0 = 0.9150π ± 0.0003π. Ex-
perimental data: (e) AFit = 0.99 ± 0.07, (f) rFit

2 = 0.2067 ± 0.0004, (g)
βFit = 5.012 ± 0.003, (h) φFit

0 = (0.044± 0.001)π. The uncertainty here
is not the fit error on a single image as in the inset of Fig. 4.6(e) and (f)
for simulated and experimental data, respectively, but determined from
fitting 280 simulated and experimental transmittance. Nevertheless, the
values reported by both methods appear to agree to within a factor of
two for r2, β, and φ0 parameters.
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Figure 4.9: Histogram of the angular position fit parameter, φ0, for the shot-noise lim-
ited computer generated data (Dark blue) and experimental data (light
blue) plotted on the same axis. This plot is the same as the φ0 histogram
in Fig. 4.8 (d) and (h), but plotted on the same axis, with an additive nor-
malization factor put on the central value of the computer generated data
so that the central value of the two histograms are well overlapped. The
red curve is a fit of the experimental histogram to a Gaussian function.
The error in the experimental angular position parameter, φ0, appears to
be within a factor of 3.04 of the shot noise limited value.
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This is the probability of detecting nc photon counts with mean photon counts, µ

arriving at the detector. The mean photon counts of the optical intensity profile at

the input plane of the device is µG = I0e
−2r2/ω2

0 [See fig. 4.5(a)] on top of fluctuating

background counts, and at the output plane of the device is µV = I0T (φ)e−2r2/ω2
0

[See fig. 4.5(b)] on top of fluctuating background counts, where I0 and ω0 is the peak

count of the optical intensity profile, and 1/e2 beam radius, respectively. A random

integer generator is used to create the counts in each pixel. Similarly, two sets of

fluctuating background counts is generated in order to subtract it from the computer

generated optical intensity profile for the Gaussian beam at the input and vortex

beam at the output planes of the device. The parameters for generating the optical

intensity profile are r2 = 0.2193, α = 0.939, and β = 5.2217. The peak counts for

the optical intensity profile is I0 = 3.72 × 104 counts and a 1/e2 beam radius of

ω0 = 1.06 mm. An offset in fluctuating CCD background of 1232 counts with 1 std.

dev. width of 7 counts is also incorporated in the analysis of the computer generated

data.

In the simulation of the data, 280 frames of the optical intensity profile is gener-

ated at the input (Gaussian beam) and output planes (vortex beam) of the device. In

addition, two sets of background counts is generated, each containing 280 frames. The

analysis performed on the experimental data in the previous section is the same anal-

ysis performed on the computer generated data. The transmission function through

each pixel is computed from Eq. 4.1 and the random statistical error is computed

from Eq. 4.2, where in this case the data is shot noise limited, i.e. δNVi =
√
NVi ,

δNBVi =
√
NBVi , δNGi =

√
NGi and δNBGi =

√
NBGi . The frames in Fig. 4.5(a) and

Fig. 4.5(b) are divided into 160 angular wedges and the transmittance is computed

for each angular wedge from Eq. 4.3 as shown in Fig. 4.6(e). By fitting each of the 280

computer generated transmittance, a histogram of the each of the fit parameters is

obtained as shown in Fig 4.8(a)-(d). The fit parameters are ACalcFit = 0.9996±0.0002
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(2.01 std. dev.), rCalcFit
2 = 0.2192± 0.0002 (1.12 std. dev.), βCalcFit = 5.2216± 0.0008

(0.008 std. dev.), and φCalcFit
0 = (0.9150± 0.0003)π. The value in parenthesis is the

number of standard deviations that the hand selected parameters used to generate

the data differs from the computer generated histograms as seen in Fig 4.8(a)-(d).

4.2.5 Comparison of experimental data and shot-noise limited computer

generated data

The central value and uncertainty is obtained by fitting each of the collected

280 frames of the CCD. A sample fit of the experimental optical intensity profile is

shown in Fig. 4.6(b). The distribution of experimental fit values for AFit, rFit
2 , βFit

and φFit
0 is in Fig. 4.8(e)-(h), with single frame value of AFit = 0.99 ± 0.07, rFit

2 =

0.2067 ± 0.0004, βFit = 5.012 ± 0.003, and φFit
0 = (0.044± 0.001)π. Similarly, the

distribution of fit values to the computer generated data for the parameters, ACalcFit,

rCalcFit
2 , βCalcFit and φCalcFit

0 , is in Fig. 4.8(a)-(d) which gives a single frame value of

ACalcFit = 0.9996± 0.0002, rCalcFit
2 = 0.2192± 0.0002 and βCalcFit = 5.2216± 0.0008,

and φCalcFit
0 = (0.9150± 0.0003)π. Comparing the 1 std. dev. error bar of the

experimental fit parameters to the computer generated data provides an estimate

of how close the experimental parameters are to its shot-noise limited value. The

experimental parameters, rFit
2 , βFit, and φFit

0 appear to be within 2.03, 3.75, and

3.04 of the shot-noise limited computer generated data, respectively. The width of

the experimental amplitude parameter can be wider or narrower depending on the

relative fluctuation of the laser beam intensity between the vortex beam and Gaussian

beam, and can be normalized to 1 as in Eq. 2.4 of chapter II without loss of generality.

4.2.6 Estimating systematic errors using computer generated data

Systematic errors in the analysis of the experimental data could cause further in-

crease of the uncertainty in the fit parameters. A possible source of systematic errors
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Figure 4.10: 2D optical intensity profile, and plot of transmission function vs angle for
a well centered beam (a)-(c), and an off-centered beam (d)-(f). When the
beam is off-centered there will be a systematic shift in the fit parameters.
In this case, the optical vortex beam is r0 = 7 pixels away from the center
position (black). The red cross bar is used to find the (x, y)=(0, 0) [i.e.
the r0 = 0] position on the 2D intensity profile. The red curve in the far
right column is a single image fit to the computer generated data with
the fit parameters in the inset.

may be from improperly determining the center position of the optical intensity pro-

file. The computer generated data is used to quantify this effect by picking positions

that are off-centered from the optical intensity profile and making plots of the fit

parameters as a function of the radial position away from the center of the optical

intensity profile (See fig. 4.11). The amplitude reflectivity, rCalcFit
2 decreases by up

to 11% and the modulation frequency, βCalcFit, by up to 6.69% for a position that is

approximately 7 pixels from the center of the optical intensity profile. Fig. 4.10 con-

tains systematic error analysis of a single image, and Fig. 4.11 contains single image

analysis for different off-centered positions of the vortex beam.

When the center position is properly determined, but a circle of radius between

80µm (i.e. 8% of the 1/e2 beam waist) and 0.36mm (i.e. 36% of the 1/e2 beam

75



r2
CalcFit

r0  [pixels]

ACalcFit

CalcFit

r0[pixels]

r0  [pixels]

r0  [pixels]

1 2 3 4 5 6 7

0.970

0.975

0.980

0.985

0.990

0.995

1.000

1 2 3 4 5 6 7

5.0

5.1

5.2

5.3

1 2 3 4 5 6 7

0.95

1.00

1.05

1 2 3 4 5 6 7

0.19

0.20

0.21

0.22




CalcFit

(a) (b)

(c) (d)

Figure 4.11: Plot show the dependence of the fit parameters on a radial distance, r0

from the center of the calculated optical intensity profiles. The error bar
is determined from a single image fit. In creating the plots above, a ra-
dius of 5 pixels is cropped from the middle of the optical intensity profile,
since there is no angular modulation in that region for the experimental
optical intensity pattern.

waist) is removed from the center of the optical intensity profile, the resulting central

value reported by the fitting routine does not appear to be affected to within the

single frame 1 std. dev. uncertainty. In the analysis of the experimental data, the

center position is chosen to keep possible systematic errors to a minimum. A radius

of 80µm is removed from the center of the experimental optical angular interference

pattern and so the same is done in the analysis of the computer generated optical

intensity profile. Other sources of errors that may contribute to the central value and

uncertainty in the experimental fit parameters are distortions in the optical intensity

profile.
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4.3 Concluding remarks

Multiple beam interference in a spiral phase plate etalon has been measured and

compared with analysis of computer generated data based on shot-noise limited as-

sumptions. The measured optical angular intensity arises through interference effects

in linear optics. Factors that contribute to random and systematic errors in the data

have also been discussed. A major source of random error is the unavoidable shot

noise, and a major source of systematic errors is expected to come from finding the

center of the optical intensity profile and distortions in the beam profile. The sys-

tematic errors are minimized in the experiment by properly overlapping the optical

vortex laser beam and Gaussian laser beam, and using the analysis program to find

its center. Other sources of errors resulting from dark charge build-up on CCD for

long CCD exposure times, electronic noise, background counts,... etc, are negligible.

The data has been quantified by a weighted fit to the transmission function, where

the central value of the fit parameters describing the spiral phase plate etalon and

error bar is obtained. The weighted fit of the experimental data points enables the

program to output the experimental fit parameters to a greater precision compared

to not weighting the experimental data points. In addition, the output from a math-

ematica program showing the single image fit parameters and error bar appears to

be consistent with the 1 std. dev. width of a histogram generated by minimizing χ2

for a set of approximately 300 different normalized images. The error on the relevant

experimental fit parameters (rFit
2 , βFit, and φFit

0 ) appears to be within a factor of 5 of

the shot noise limited value (rCalcFit
2 , βCalcFit, and φCalcFit

0 ).
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CHAPTER V

Rotation of an optical angular interference pattern

in a spiral phase plate etalon

5.1 Introduction

In this chapter, transmission through a spiral phase plate etalon with changing

laser frequency is studied experimentally and compared with theory and computer

generated data based on shot-noise limited assumptions. The optical angular interfer-

ence pattern emerging from the etalon is observed to rotate as the laser frequency is

varied and quantified. While the basic properties of the spiral phase plate etalon has

been described in chapter II, and analytic tools developed in chapter III, this chapter

is focused on a direct application of the device for optical metrology. Such a spiral

phase plate etalon may have the potential to play important roles as transverse opti-

cal mode filters, and in designing new laser locking and stabilization systems which

rely on the ability to accurately measure the rotation (displacement) of the optical

angular interference pattern.

These patterns can also form the basis for ultra-stable angular optical lattices to

control the rotation dynamics of atoms and micro-particles in the thermal and ultra-

cold state. This rotating optical lattice may find applications for building compact

inertial sensors and navigation systems such as very sensitive all optical gyroscopes,
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as well as in the building blocks of new quantum information processing hardware.

In order to use the spiral phase plate etalon for these potential applications, a de-

tailed understanding of the dependence of the phase and amplitude parameters of

the angular interference pattern on the laser frequency is required. This will aid in

tracking phases (e.g. dynamic or geometric phases) evolving in the device which will

ultimately be used in the development of the above mentioned ideas. The spiral phase

plate etalon treated in this chapter is an ultra-low finesse device (F = πr2
1−r2

2
∼ 1).

5.2 Theory

Some of the theory derived in chapter III is reproduced in this section. In order

to elucidate the dependence of the phase on the laser frequency, the transmission

function in the thin plate approximation can be written as:

T (φ) =
A

1 + 4|r2|2
(1−|r2|2)2 sin2

(
β(φ+φ0)

2

) (5.1a)

=
A

1 + 4|r2|2
(1−|r2|2)2 sin2

(
βφ+βφ0

2

) (5.1b)

=
A

1 + 4|r2|2
(1−|r2|2)2 sin2

(
βφ+

2πνLaser
FSR

2

) (5.1c)

=
A

1 + 4|r2|2
(1−|r2|2)2 sin2

(
βφ+φν

2

) (5.1d)

r2 is the reflectivity at the surfaces of the spiral phase plate etalon, β is the modu-

lation frequency of the angular interference pattern (or the number of peaks of the

interference pattern), and A is the peak of the interference pattern which is generally

normalized to 1. FSR = c
2nh0

is the free spectral range of the etalon, and νLaser is

the center frequency of the laser. Assuming uniform refractive index calculated from

the dispersion relation in Eq. A.1 of the appendix and a phase plate base height of

h0 = 0.6cm, the free spectral range is FSR = 3×108

2×1.56×0.6×10−2 = 16GHz.
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When the laser frequency is changed, there is a change in phase of the transmission

function. Any change in phase of the transmission function corresponds to a rotation

of the optical angular interference pattern. In other words, as the laser beam makes

multiple reflections with the azimuthally varying surface in the spiral phase plate

etalon of uniform refractive index, the phase that it acquires is ϕh = β(φ+φ0)
2

=

2nk
(
h0 + ∆h φ

2π

)
. A change in laser frequency δνLaser with respect to the center laser

frequency νLaser is equivalent to a small change in etalon transmission function phase,

δϕh, with respect to the total phase acquired by the beam, ϕh,

δνLaser
νLaser

=
δϕh
ϕh

. (5.2)

For the device reported in this chapter, the base height, h0 is engineered such that it

is much larger than the azimuthal step height, h0 >> ∆h, and mathematically the

base height does not change with azimuthal angle, δh0 = 0, so the fractional change

in frequency becomes

δνLaser
νLaser

=
∆h

h0

δφ

2π
(5.3)

Hence the interference pattern will rotate by an angle, δφ, as a function of a change

in frequency δνLaser:

δφ = 2π
h0

∆h

δνLaser
νLaser

. (5.4)

These calculations have assumed that the spiral phase plate etalon is fabricated with

uniform refractive index on a glass substrate with the same refractive index, and there-

fore the rotation angle does not depend on the refractive index. Since the spiral phase

plate etalon used in the experiment sits on a glass substrate with different refractive

index, the rotation angle vs laser frequency will have a different slope compared to

when the glass substrate and spiral phase plate etalon have the same refractive index

(See appendix B for further discussion). Furthermore, Eq. 5.4 does not take into

account temperature dependent effects which could cause changes in the refractive
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Figure 5.1: (a) Spiral phase plate etalon. (b) Imaging set-up (Not drawn to scale).
A TEM00 Gaussian beam coming out from a single mode optical fiber
propagates through a spiral phase plate etalon with a 1 lens system to
image the optical beam immediately after the spiral phase plate etalon
onto the CCD camera. In other words, the 1 lens imaging system is used
to probe the diffraction near field of the spiral phase plate etalon. The
numerical aperture of the imaging lens is NA= D

2F
≈ 0.08. D = 25.4mm

is the diameter of the lens and F = 150mm is the focal length of the lens.

index or length of etalon, and hence may result in additional changes in rotation of

the angular interference pattern on the output plane of the etalon.

5.3 Experiment

The rotation of the optical angular interference pattern as a function of laser

frequency is probed using a single lens imaging system with a spiral phase plate placed

2 focal lengths before the lens and the CCD placed two focal lengths after the lens as

shown in Fig. 5.1(b). The numerical aperture of the imaging lens is NA = D
2F
≈ 0.08.

The center frequency of the laser is νLaser = 539.384466 ± 0.0000091 THz, and 1/e2

beam radius, ω0 = 1.065 ± 0.004 mm. A commercial spiral phase plate (64) with

a calculated refractive index n = 1.56 ± 0.02 (64) and the measured step height

is ∆h = 0.93 ± 0.05 µm (64), yielding r2 = 0.219 ± 0.008, α = 0.94 ± 0.06, and

β = 5.2 ± 0.3. The flat face of the device is mounted on a borofloat glass substrate
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Figure 5.2: Optical transmission through a spiral phase plate etalon. Computer gen-
erated optical intensity profile based on shot noise limited assumptions
on the input plane (a), and output planes (b) of the device. The cor-
responding experimental optical intensity profile at the input (c) and
output (d) planes of the device. The input optical intensity profile has
I(r, φ, 0) ∝ e−2r2/ω2

0 (Gaussian intensity profile) and the output inten-
sity profile has I(r, φ, h0 + ∆h) ∝ T (φ)e−2r2/ω2

0 (Optical vortex intensity
profile). The dark horizontal line in (d) is due to the sudden change in
material thickness at φ = {0, 2π} [as seen in Fig. 5.1 (a)]. (e) First exper-
imental background count image to subtract from Gaussian laser beam
background offset and (f) Second experimental background count image
to subtract from optical vortex beam background offset.
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Figure 5.3: Shot noise limited simulation of experiment, i.e. Computer generated
data based on shot noise limited assumptions. (a)-(e): A few selected
snap shot normalized 2D images (described by Eq. 3.13 in Chapter III
or Eq. 4.1 in Chapter IV) of the angular interference pattern at differ-
ent laser frequencies showing rotation of the pattern. Red crossbar is
to determine center of image and orientation of the angular interference
pattern. (f)-(j): Raw data for normalized interference pattern vs angle
with corresponding images to left side. (k)-(o): 2D normalized intensity
profile binned into 160 angular wedges. Red curve is a single image fit
to the simulated transmission function binned into 160 angular wedges,
with the fit parameters in the inset. (a), (b), and (c) are selected from
the increasing frequency simulation, and (d) and (e) are selected from the
decreasing frequency simulation.
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Figure 5.4: Experimental data. (a)-(e): A few selected snap shot normalized (de-
scribed by Eq. 3.13 in Chapter III or Eq. 4.1 in Chapter IV) 2D images
of the angular interference pattern at different laser frequencies showing
rotation of the angular pattern. Red crossbar is to determine center of
image and orientation of angular interference pattern. The radial fringes
in the single shot images is due to etaloning on the CCD camera screen.
(f)-(j): Raw data for normalized interference pattern vs angle with cor-
responding image to left side. Red solid curve is a fit to the raw data.
(k)-(0): 2D normalized intensity profile binned into 160 angular wedges.
Red dashed curve is a single image fit of the experimental transmittance
binned into 160 angular wedges, with the fit parameters in the inset. The
circles at the edges are excluded from the experimental fit. (a), (b), and
(c) are selected from the increasing frequency measurements, and (d) and
(e) are selected from the decreasing frequency measurement.
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(n ≈ 1.47). The pitched face of the device and opposing surface of the substrate are

exposed to air (n ≈ 1.00027).

The experimental data analysis performed in this chapter is similar to the analysis

performed in chapter IV. Data is taken for an optical vortex beam, Gaussian beam

and two sets of background counts. A pixel by pixel normalization is performed

according to Eq. 4.1 in chapter IV, and the random statistical error for each data point

is computed from Eq. 4.2 in chapter IV. The raw experimental data is binned into 160

angular wedges according to Eq. 4.3 in chapter IV, and a weighted fit is performed to

the experimental data by minimizing χ2 described by Eq. 4.5 in chapter IV. Results

from a single image analysis is reported in this chapter. Only a single image analysis

is required here because the 1 std. dev. width (fit error bar) of the histograms for the

individual fit parameters (rFit
2 , βFit and φFit

0 ) appear to be within 3 std. dev. of the

single image fit error bar of the normalized vortex images as shown in chapter IV using

a custom fit routine in a Mathematica program. A set of experimental images are

taken approximately every 1GHz in the increasing frequency direction and decreasing

frequency direction over a frequency window of about 18GHz. This corresponds to a

shift in the angular interference pattern from one maximum to the next maximum. In

the language of the conventional Fabry-Perot etalon or cavity, this is the free spectral

range of the etalon. Fig. 5.4 shows a few selected images of the experimental angular

interference pattern, as well as the transmission through the etalon as a function of

angle for the raw data and binned data.

5.3.1 Computer generated data

Shot noise limited simulations are performed based on the experimental param-

eters. The method for generating these simulations is described in section 4.2.3 of

chapter IV, and section 3.3 of chapter III. In this case, however, the peak counts

for the optical intensity profile is I0 = 4 × 104 counts and the 1/e2 beam radius is
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ω0 = 1.07 mm. An offset in fluctuating CCD background of 1232 counts with 1 std.

dev. width of 7 counts is also incorporated in the analysis of the computer generated

data. The computer generated angular interference pattern is fit to Eq. 5.1(a) were

the normalized images, and angular interference patterns are shown in Fig. 5.3. A

comparison of the error bar of the single image experimental fit parameters and com-

puter generated data provides an estimate of the shot-noise limit of the experiment.

Some of the error on the experimental parameters could be as much as a factor of 12

above the shot noise limited value, but most of the parameters appear to be within

a factor of 5 of the corresponding shot-noise limited value. This can be seen by com-

paring the error on the simulated fit parameters in the inset of Fig. 5.3 to the error

on the experimental fit parameters in Fig. 5.4. It must be noted that the spiral phase

plate etalon sits on a glass substrate, in which the glass substrate has a different re-

fractive index than the spiral phase plate etalon, and the shot-noise limited computer

generated data does not take this into account. A calculation taking this effect into

account is in appendix B.

5.3.2 Results and discussion

Measurements of the transmittance through the spiral phase plate is performed

as the laser frequency is varied, where the transmission function is characterized by

the following parameter: φFit
0 , βFit, rFit

2 , and AFit. The angular position φFit
0 and

the modulation frequency βFit quantifies the phase of the transmission function. The

reflectivity parameter, rFit
2 , is related to the depth of the modulation (i.e. modulation

amplitude) and AFit is the peak of the normalized angular interference pattern, both

of which quantify the amplitudes in the transmission function. All these parameters

are determined by fitting the experimental data to Eq. 5.1(a). Identical fit parameters

are obtained when the data is fit to Eq. 5.1(d), with the exception of the parameter

quantifying the rotation of the optical angular interference pattern, φν , which is
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Figure 5.5: Shot-noise limited computer generated single image fit parameters φCalcFit
0

(a), βCalcFit (b), rCalcFit
2 (c), and ACalcFit (d) for decreasing (black) and in-

creasing (red) laser frequency direction. The computer generated analysis
of the data is reported in increasing and decreasing frequency direction
because this is the order in which which the data was taken. The laser fre-
quency is varied in the range between 539.372370THz to 539.387710THz.
The error bar on the data points for φCalcFit

0 , βCalcFit, rCalcFit
2 , and ACalcFit

are determined from the fitting routine used to fit the computer gener-
ated data to the transmission function in Eq. 5.1. The offset in φCalcFit

0

between the increasing and decreasing laser frequency direction calcula-
tion is because a different fit minimum is used to track the rotation of
the pattern. The horizontal black line in βCalcFit, rCalcFit

2 , and ACalcFit is
the average of both the increasing and decreasing measurements in each
plot. The slope of the φCalcFit

0 position parameter when the computer
generated data is analyzed in the increasing laser frequency direction is
dφCalcFit

0

dνLaser⊕
= (7.736± 0.004) × 10−11rad/Hz, and for the decreasing laser

frequency direction is
dφCalcFit

0

dνLaser	
= (7.747± 0.006)× 10−11rad/Hz. The two

slope appear to be within ∼ 0.14% (3 std. dev.) of each other, and within
3% of the theory slope calculated from Eq. 5.4. This suggests that the
computer program is working properly. The error bar in (a) is smaller
than the symbols to represent the data and so it is not visible. This
simulation does not take into account the difference in refractive index
between the spiral phase plate etalon and glass substrate.
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Figure 5.6: Experimental single image fit parameters φFit
0 (a), βFit (b), rFit

2 (c),
and AFit (d) for decreasing (black) and increasing (red) laser frequency
direction. The analysis is reported in increasing and decreasing fre-
quency direction because this is the order in which the data was taken.
The laser frequency is varied in the range between 539.372370THz to
539.387710THz. The error bar on the data points for φFit

0 , βFit, rFit
2 ,

and AFit are determined from the the fitting routine used to fit the ex-
perimental data to the transmission function in Eq. 5.1. The horizontal
black line in βFit, rFit

2 , and AFit is the average of both the increasing and
decreasing measurements in that plot. There are more photon counts
making position measurements at certain laser frequencies compared to
other laser frequencies as seen in the slope of the reflectivity parameter
curve. Over a wider laser frequency range, the reflectivity parameter is
expected to display a periodic oscillation. The slope of the φFit

0 experi-
mental position fit parameter in the increasing laser frequency direction

is
dφFit

0

dνLaser⊕
= (1.13± 0.02) × 10−10rad/Hz, and for the decreasing laser

frequency direction is
dφFit

0

dνLaser	
= (0.73± 0.03) × 10−10rad/Hz. The two

slopes are different by 36% (26 std. dev.) or 56% (128 std. dev.). The
error bar for φFit

0 (a) and AFit (d) is smaller than the symbols to represent
the data and so it is not visible.
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generally larger than the φ0 parameter (i.e. φv > φ0). As the laser frequency is

changed, the phase of the transmission function changes which induces a rotation of

the optical angular interference pattern. This is seen by keeping track of the phase

parameters φFit
0 and βFit, for different laser frequencies through a fit of the data to the

transmission function of the spiral phase plate etalon. Fig 5.6 shows the dependence

of the experimental fit parameters on laser frequency.

As shown in Fig 5.6(c), the reflectivity parameter, rFit
2 , as a function of laser

frequency is a periodic oscillation with one peak displayed (See appendix B for cor-

responding theory plot), unlike the relatively flat line expected from the simulations

shown in Fig. 5.5(c). This indicates that there are more photon counts in the spiral

phase plate etalon making position measurements on the CCD at certain laser fre-

quencies compared to other laser frequencies, and is a measure of the longitudinal

modes in the etalon. The reflectivity parameter derived from fitting the optical angu-

lar interference pattern could also serve as a measure of the etalon finesse or quality

factor of the device since it directly quantifies the number of photon counts in the

spiral phase plate etalon. The reason for there being more photon counts in the device

making position measurements on the CCD at certain laser frequencies compared to

other laser frequencies is because the spiral phase plate sits on a glass substrate with

different refractive index compared to the material used to fabricate the spiral phase

plate . This glass substrate leads to additional interference effects which affects the

amplitude parameters (AFit and rFit2 ) of the resulting fit. However, it does not affect

the angular interference pattern modulation frequency, βFit. Appendix B contains a

discussion of these items, which qualitatively agree with the experiment.

The φFit
0 parameter appears to have a linear dependence on the laser frequency

as predicted in Eq. 5.4. A linear fit to the angular position, φ0, is performed, where

the slope of the line is
dφFit

0

dνLaser
= 2π h0

∆h
1

νLaser
. The analysis of the experimental data

is reported in increasing and decreasing frequency direction because this is the order
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in which the experimental data was taken. The experimental slope for data taken in

the increasing laser frequency direction is
dφFit

0

dνLaser⊕
= (1.13± 0.02)×10−10rad/Hz, and

for the decreasing laser frequency direction is
dφFit

0

dνLaser	
= (0.73± 0.03)× 10−10rad/Hz,

where the error bar reported here is from the linear fit routine. This is a 36% (26 std.

dev.) or 56% (128 std. dev.) difference in the slope of the line for the data taken in

the increasing and decreasing laser frequency direction. Similar difference in slopes in

found when Eq. 5.1(d) is used to quantify the position parameter φν of the data, and

fit to a straight line, dφFitν

dνLaser
= 2π h0

∆h
1

νLaser
. In the simulation of the shot-noise limited

computer generated data, the single image slope in the increasing laser frequency and

decreasing laser frequency direction agrees to within ∼ 0.14% (3 std. dev.) as shown

in Fig. 5.5(a). This suggests that the analysis program is working properly, and these

are physical effects arising from the experimental data. It must also be noted that

the shot-noise limited simulations does not take into account the fact that the spiral

phase plate etalon sits on a glass substrate that does not have the same refractive

index as the spiral phase plate etalon.

The slope calculated from Eq. 5.4 and the spiral phase plate parameters are

dφ0

dνLaser
= (7.51± 0.05)×10−10rad/Hz, where the uncertainty in the calculated slope of

the line is derived from adding the error on the phase plate parameters in quadrature.

The largest sources of error comes from the uncertainty in the step height and base

height of the device. The calculated slope from Eq. 5.4 is 3.3% (0.51 std. dev.) and

33% (8 std. dev.) from the experimental slope when the data is taken for position

measurements on the CCD detector in the increasing laser frequency direction and

decreasing laser frequency directions, respectively. The shot-noise limited simulated

slope agrees with the calculated slope in Eq. 5.4 to within 3%. Thus, the experimen-

tal increasing laser frequency slope appears to be consistent with the slope based on

shot-noise limited simulations to within 6.37% (∼ 3.18 std. dev.). The increasing

frequency slope is also within 3% (∼ 2 std. dev. in units of the calculated fit error
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bar) of the calculated slope when the spiral phase plate etalon is on a glass substrate

with different refractive index as discussed in appendix B. However, the experimen-

tal decreasing frequency slope does not appear to be consistent with the increasing

frequency slope as evidenced by the 36% (∼ 26 std. dev.) difference in experimental

slopes. It must be noted that it is the absolute value of the theory, simulation and

experimental slope that is compared to each other. It is also important to note that it

is more appropriate to compare the experiment with the theory consisting of a spiral

phase plate etalon on a glass substrate with different refractive index as was done

above, and discussed in appendix B. Nevertheless, the shot-noise limited simulations

are important in that when a fit is performed on the generated data, it provides an

estimate of the error bar of the individual fit parameters.

5.4 Concluding remarks

As this work represents the first studies of rotation of an optical angular interfer-

ence pattern consisting of a superposition of orbital angular momentum modes in a

spiral phase plate etalon, it is interesting to note that while the reflectivity parame-

ter, rFit2 appear to produce consistent results in the increasing and decreasing laser

frequency direction, the position parameter, φFit
0 , appear to have a different slope

when it is measured for increasing laser frequencies compared to when it is measured

for decreasing laser frequencies. In fact, the slope could differ by more than 56%

(128 std. dev.). There does not appear to be a “systematic” error introduced by

the Mathematica program written to analyze the experimental data as seen from the

analysis of the computer generated shot-noise limited data.

A possible source of the inconsistency between the increasing and decreasing fre-

quency measurements for the phase parameters are the temperature dependences of

the refractive index and length of the etalon. Since the longitudinal modes resulting

from the glass substrate (length∼ 0.6cm) appear to produce consistent results for in-
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creasing and decreasing frequency direction measurements as seen from the frequency

dependence of the reflectivity parameter, it shows that the changes in refractive in-

dex and/or length of the glass substrate etalon is not statistically significant for this

measurement. However, these temperature dependent effects may be statistically

significant for the spiral phase plate etalon since the device has feature sizes on the

order of a micron and it is fabricated from a different material compared to the glass

substrate. The temperature changes close to the device was not measured and it is

not clear which polymer was used to fabricate the spiral phase plate etalon. Therefore

conclusions cannot be made as to whether this is a plausible cause of the inconsis-

tency in the measurement performed in the increasing and decreasing laser frequency

direction. Temperature dependent effects have been seen in various frequency sta-

bilization devices such as a wedge etalon (81) as well as many other micron scale

devices (82; 83; 84; 85).
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CHAPTER VI

Conclusion and outlook

In conclusion, this dissertation presented the first treatment of multiple beam

interference in a spiral phase plate etalon. These effects naturally leads to the creation

of a coherent superposition of orbital angular momentum states, which has been

studied theoretically in chapter II, and experimentally measured in chapter IV of the

dissertation. It has been particularly fascinating studying these effects and exploring

possible applications. While the work in the dissertation focused on the manipulation

of a classical light beam in an ultra-low finesse spiral phase plate etalon, it will

be particularly interesting to extend the work to the high finesse case and study a

superposition of orbital angular momentum states when:

1. A classical light beam is transmitted through the etalon and determine whether

the device can be made more sensitive to rotation, and

2. A non-classical light beam is transmitted through the etalon and determine the

fundamental limits to optical rotation of the angular pattern.

As the spiral phase plate etalon is a compact system and has a cylindrical sym-

metry, it may be possible to develop ultra-stable and very sensitive rotation sensors

such as a compact all optical gyroscopes, as well as new hardware for quantum infor-

mation science. For this purpose, a measurement of the angular interference pattern
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as a function of laser frequency was performed in chapter V. The angular interference

pattern was observed to rotate, and the longitudinal modes from the glass substrate

was probed. Future work in this direction will be to study the device for absolute laser

frequency measurements. These are just a few examples of the amazing possibilities

of this device as a useful tool for optical metrology in optics and photonics research.

From an atomic and molecular physics perspective, the diffraction near field of the

device can be projected onto atoms or molecules in the thermal or ultra-cold state,

and the interaction between the orbital angular momentum modes (OAM) of light

and the system explored. This includes the interaction between the OAM modes of

light and the center of mass motion of the system, or even more subtle couplings to

the rotational, vibrational, or electronic degrees of freedom in the system. Interesting

dynamics is expected to emerge.

While the experiments and theory in this dissertation has been primarily focused

on the study of multiple beam interference effects in a spiral phase plate etalon, I

have also extensively studied a variety of other items such as developing coreless

counter-rotating optical vortices in a modified Mach-Zehnder interferometer for an-

gular Kapitza-Dirac diffraction of ultra-cold atoms, laser spectroscopy of ytterbium

atoms as well as the design and construction of apparatus for making ultra-cold atoms.

In the course of working on these experiments, theory and simulations was also de-

veloped. A highlight of the work on counter-rotating vortices is that it provided an

alternative analysis method to quantitatively obtain the winding number of an optical

vortex directly without prior knowledge of the spiral phase plate fabrication param-

eters, as well as provided simple scaling laws to describe the propagation dynamics

of optical vortices. Even though this part of my PhD work is not included in this

dissertation write-up, the work was quite enjoyable and led to a number of interesting

research findings not present in the current published scientific literature.
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In closing, the discoveries presented in this dissertation are the result of a num-

ber of unexpected observations made while performing experiments with spiral phase

plates, thus reaffirming the fact that when doing science and engineering, it is impor-

tant to keep an open mind while investigating the various minute details of the work.

It may ultimately lead to new and exciting research findings!

95



APPENDICES

96



APPENDIX A

Spiral phase plate geometry

Figure A.1: Platform consisting of spiral phase plates with different azimuthally vary-
ing thicknesses, ∆h, on a glass substrate.

The spiral phase plate sits on a borofloat glass substrate of refractive index ng =

1.470, and it is fabricated by laser writing an azimuthally varying thickness into the

97



polymer which has the following dispersion equation

ns(λ) = 1.5375 +
8290.45

(λ× 109)2 −
2.11046× 108

(λ× 109)4 . (A.1)

The units of λ are in m. The platform of spiral phase plates consisting of different

azimuthally varying thickness were purchased from RPC photonics (64). The sudden

change in material thickness at φ0 = {0, 2π} causes a dark radial line of width on

order 20µm to appear in the intensity profile on the device output plane. Examples

of experimental images are in Fig. 4.5(d), Fig. 4.6(b) and Fig. 4.2.3 of chapter IV.

Figure A.2: 3D geometry of a single spiral phase plate with azimuthally varying height
∆h, base height h0, on a glass substrate of thickness dg.
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APPENDIX B

Transfer matrix for wave propagation through a

spiral phase plate etalon

The spiral phase plate etalon described in Chapter II and used in the experiments

of Chapters IV and V sits on a glass platform with a different refractive index which

will ultimately affect the amplitude and phase parameters of the interference pattern

on the output plane of the device. In order to take these physical effects into account,

the transmission function is computed using the wave transfer matrix formalism in

a multi-layered medium (60). The thin plate approximation is assumed in this ap-

pendix. The sign convention for the complex electric field amplitude is the same as

Chapter II.

For an ideal spiral phase plate etalon with uniform refractive index, the matrix

describing the transmission function and reflection function (as in Fig A.2 without

the glass substrate) is

 1
t∗spp(φ)

rspp(φ)

tspp(φ)

r∗spp(φ)

t∗spp(φ)
1

tspp(φ)

 =

eiϕa 0

0 e−iϕa

 1

2na

(na + ns) e
+iϕs (na − ns) e−iϕs

(na − ns) e+iϕs (na + ns) e
−iϕs



99



1

2ns

(ns + na) ns − na

(ns − na) (ns + na)

 (B.1)

tspp (φ) and rspp (φ) is the transmission and reflection function of the spiral phase

plate etalon, respectively. The third, second and first matrix in Eq. B.1 describes the

wave propagation from air to the base of the spiral phase plate etalon, the spiral phase

plate etalon to azimuthally varying surface, and the azimuthally varying surface to

the constant plane after the azimuthally varying surface, respectively. na and ns is

the refractive index of air and the spiral phase plate etalon material, respectively and

ϕs = nsk
(
h0 + ∆h φ

2π

)
were k = 2π

λ
. ϕa = nakda were da = ∆h

(
1− φ

2π

)
is the air gap

between the azimuthally varying surface and a uniform plane. After evaluating the

matrix, the following is obtained:

1

tspp (φ)
=

1

4nans

{
(na − ns) e+iϕse+iϕa (ns − na) + (na + ns) e

−iϕse−iϕa (ns + na)
}

(B.2)

Rearranging the terms in B.2 reproduces Eq. 2.3 in chapter II,

tspp (φ) =

4nans
(na+ns)

2e+iϕae+iϕs

1−
(
ns−na
ns+na

)2

e+2iϕs

=
t2t1t0e

+iαφ

1− r2
2e

+iβ(φ+φ0)
(B.3)

When a glass substrate of thickness dg and different refractive index ng as in

Fig. A.2 is included in the calculation, the transfer matrix becomes:

 1
t∗sppgs(φ)

rsppgs(φ)

tsppgs(φ)

r∗sppgs(φ)

t∗sppgs(φ)
1

tsppgs(φ)

 =

e+iϕa 0

0 e−iϕa

 1

2na

(na + ns) e
iϕs (na − ns) e−iϕs

(na − ns) eiϕs (na + ns) e
−iϕs



1

2ns

(na + ng) e
iϕg (ns − ng) e−iϕg

(ns − ng) eiϕg (ns + ng) e
−iϕg

 1

2ng

(ng + na) (ng − na)

(ng − na) (ng + na)


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ϕg = ngkdg where ng and dg are the refractive index and thickness of the glass

substrate respectively. The other phase terms have the same meaning as in Eq. B.1.

Upon simplifying, the transmission function is

tsppgs (φ) =
t0tagtgstsae

+ingkdge+iαφ

1 + rsargse+iβ(φ+φ0) + (rsae+iβ(φ+φ0) + rgs) e+2ingkdgrag
(B.4)

The Fresnel transmission coefficients are tag = 2na
ng+na

(from air to glass), tgs =

2ng
ns+ng

(glass to SPP etalon), tsa = 2ns
ns+na

(from SPP etalon to air), and the Fresnel

reflection coefficients are rag = na−ng
na+ng

(from air to glass), rgs = ng−ns
ng+ns

(glass to SPP

etalon), and rsa = ns−na
ns+na

(SPP etalon to air). t0 = e+inak∆he+inskh0 is the same as

in Chapter II. dg and ng is the thickness and refractive index of the glass substrate,

respectively.

In chapters IV and V, the experimental transmittance of the spiral phase plate is

fit to the modulus square of Eq. B.3:

T (φ) = |tspp (φ)|2 =
A

1 + 4|r2|2
(1−|rFit

2 |2)2 sin2
(
β(φ+φ0)

2

) , (B.5)

This equation does not include the role which the glass substrate of a different refrac-

tive index plays in determining the fit parameters of the optical angular interference

pattern. In order to understand the role which the glass substrate plays in deter-

mining the fit parameters of chapters IV and V, in this section, data is generated

using the transmission function with the glass substrate of different refractive index

present, i.e. |tsppgs (φ)|2 ( modulus square of Eq. B.4), and fit to Eq B.5. This is

done over a frequency window of about 35GHz as in chapter V. A spiral phase plate

etalon with dg = 6.00mm (64), k = 2π
632.991nm

, h0 ≈ 40µm (64), ∆h = 0.929µm,

ng = 1.470 and ns = 1.56 will have β = 2ns
∆h
λ

= 5.218, rsa = 0.219, rgs = −0.0303,

and rag = −0.1901. A plot of the transmission function at a single frequency with and

without a glass substrate can be seen in Fig. B.1, and a plot of the various fit param-
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Black line: Phase plate on glass substrate with different refractive index

Blue dashed line: Phase plate on glass substrate with same refractive index

Figure B.1: Numerically calculated spiral phase plate etalon transmission function
from transfer matrix with a glass substrate of the same (different) refrac-
tive index as SPP etalon which gives rise to a reflectivity of 0.219 (0.192)
and a modulation amplitude of 0.175 (0.161) when β = 5.218 at a laser
frequency of 539.372380THz. As the laser frequency is varied in the thin
plate approximation, the modulation frequency stay constant, but there
is a change in the modulation amplitude when the glass substrate sits on
a glass substrate with different refractive index. The fit parameters as
they depend on frequency is in fig. B.2.
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Figure B.2: Parameters of the spiral phase plate etalon when the calculated transmis-
sion function with a glass substrate of the same refractive index as the
SPP etalon (Blue dots), |tspp|2, is fit to the transmission function with the
glass substrate of a different refractive index as the SPP etalon (Black
circles), |tsppgs|2, when the laser frequency is varied from 539.360380THz
to 539.395750THz for (a) position of interference pattern, φ0, (b) angular
modulation frequency, β, (c) reflectivity, r2, and (d) peak of the angular
interference pattern, A. The modulation frequency, β, is not affected by
the difference in refractive index of the SPP etalon and glass substrate.
In addition, the position parameter does not appear to be affected sig-
nificantly by the presence of the glass substrate, i.e. the slope of the φ0

fit parameter for the two cases agree to within 0.18 standard deviations
in units of the fit error, dφ0

dνLaser
= (8± 2) × 10−11. However, the other

parameters are affected by the presence of a glass substrate with differ-
ent refractive index from the SPP etalon. The reflectivity parameter, r2,
displays a periodic oscillatory curve shown in (c). When a glass substrate
of different refractive index is present, the reflectivity parameter, r2, has
an upper limit in the neighborhood of the reflectivity parameter when
the SPP etalon and glass substrate has the same refractive index. This
result agrees qualitatively with the experimental data in Chapter V. The
amplitude parameter has a similarly shaped curve as the reflectivity pa-
rameter, but the upper limit can have a value larger than the case when
the SPP etalon and glass substrate have the same refractive index.
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eters (φ0, β, r2, A) as a function of laser frequency over a 35GHz range, (539.360380

THz to 539.395750THz THz), with increments of approximately 1GHz.

While the glass substrate of different refractive index introduces a constant phase

shift to the phase of the transmission function describing the angular interference

pattern and reduces the modulation amplitude, Amod =
4r2

2

(1+r2
2)2 , compared to the case

of a device with a glass substrate of the same refractive index as the SPP etalon, it

does not change the modulation frequency, β. An example to illustrate this effect is

in Fig. B.1 and B.2. As the laser frequency is changed, the value of the modulation

frequency is the same for both cases. The value of β changes at the level of δβ ≈

β δν
ν
≈ 10−4 over a 35GHz range. This value is much smaller than the shot noise

limited error bar of chapters IV and V. The position parameter, φ0 has comparable

slopes for the case of an SPP etalon on a glass substrate with same refractive index

as the glass substrate, and for the case of an SPP etalon of a glass substrate with

different refractive index. The agreement is at the level of 0.18 standard deviations,

where the slope is dφ0

dνLaser
= (8± 2)× 10−11. It must be noted that it is the absolute

value of the slope that is used to make a comparison between the experiment and

theory. When the theory is compared to the experiment in chapter V, the experiment

is found to be consistent at the 3% level (2 std. dev) for experimental measurements

taken in the increasing frequency direction.

The parameter quantifying the reflectivity and peak amplitude parameters dis-

plays a periodic oscillation as a function of laser frequency in Fig. B.2(c). The upper

limit of the reflectivity parameter is in the neighborhood for the case were the re-

fractive index of the glass substrate and SPP etalon are the same. The shape of

this curve is apparent in the experimental data presented in chapter V, which is in

qualitative agreement with the theory presented in this section. The calculated peak

amplitude parameter, A, displays a similar shaped curve for the reflectivity parame-

ter. Nevertheless, in the analysis of the experimental data, the peak of the angular
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interference pattern tends to be overwhelmed by the relative intensity fluctuation

between the vortex laser beam normalized with the Gaussian laser beam and it is

generally normalized to 1 or a value close to 1, and therefore a direct comparison

between experiment and Fig B.2(d) cannot be made.

In a way, the parameters obtained from fitting the experimental data to Eq. B.5

can be considered fictitious in nature since the fitting model does not explicitly take

into account physical effects arising from the glass substrate of a different refractive

index. Note that it is more appropriate to use these fictitious parameters to check

for agreement or disagreement between experiment and theory since the experimental

data is fit to Eq. B.5, |tspp|2, and not the modulus square of Eq. B.4, |tsppgs|2.
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APPENDIX C

CCD noise and error bar estimation due to

photo-detection

This appendix discuss the time average and ensemble average of photo-counts ar-

riving at the CCD detector, and discuss the origins of the error bar on the data. The

first paragraph of the section on “Computer generated optical intensity” in section

3.5 of chapter III describes the time average of photo-counts when the CCD integra-

tion time is long compared to the characteristic time scale of the fluctuations in the

intensity and phase. Hence the noise in the field’s intensity is averaged out. When an

ensemble of all the vortex counts normalized with Gaussian pixel counts (described

by Eq. 3.13 in Chapter III) on the CCD array is plotted as a function of angle (i.e.

Fig. 3.6 (a)), the noise in the field’s intensity and detector shows up as a broadening

in the histogram’s width (e.g. Fig. 3.6(c)) for an angular wedge of the transmission

function. This is because the counts in each pixel in the Gaussian shaped laser beam

fluctuates about the mean described by Eq. C.1, or in the case of data limited by

shot-noise, it fluctuates by
√
N =

√
η 〈I〉 τccd; where N is the number of counts in

each pixel, η is related to the efficiency of the detector, 〈I〉 is the average intensity,

and τCCD is the integration time of the CCD. An upper limit on the width of the

histogram for an angular wedge (single bin) of the transmission function is shown in

106



Fig. 3.6 (c), will scale as NV +
√
NV

NG−
√
NG
− NV −

√
NV

NG+
√
NG
∝ 1√

N
. It has been assumed that the

number of counts in the vortex pixels and Gaussian pixels are approximately equal,

and the number of counts in each pixel is N >> 1. These fluctuations in the noise

can be averaged out by dividing the optical intensity profiles into angular wedges,

and taking a weighted ensemble average of the data points in each wedge to repre-

sent one binned data point (e.g. Fig. 3.6 (b)). The noise will show up in the error

bar estimation of each bin. The fluctuation in number counts from a single pixel

is (70; 71):

∆m2 (τccd) = η 〈I〉 τccd + η2τ 2
ccd

[〈
I2
〉
− 〈I〉2

]
(C.1)

where the contribution from shot noise is η 〈I〉 τccd and the field intensity fluctuation is

η2τ 2
ccd

[
〈I2〉 − 〈I〉2

]
. η is related to the detector efficiency, τccd is the CCD integration

time, and I is the intensity. In the computer generated data, it has been assumed that

there is no fluctuation in the intensity of the laser beam, therefore the second term

in Eq. C.1 is zero. It is for this reason that it is called “shot-noise limited computer

generated data” or “shot-noise limited simulations”. In quantifying the experimental

data, it is the relative fluctuations between the vortex and Gaussian beam that is of

consequence since a pixel by pixel normalization of the vortex laser beam with the

Gaussian laser beam is performed. This fluctuation will show up in the fit parameter

error bars as seen in the experimental fit parameter histograms of chapter IV. In the

event that there are large fluctuations (> 1
2

the peak intensity) in the relative intensity

between the vortex and Gaussian beam, the 1
e2

beam radius will change from shot

to shot, and the histograms of the individual fit parameters is expected to be much

broader and could even deviate from resembling a normal distribution. Distortions

in the optical intensity profile could also result in the histograms deviating from a

normal distribution. Both of these items have been observed when analyzing some of

the experimental data.
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