
Lossless Circuit Layout Image Compression
Algorithms for Multiple Electron Beam Direct

Write Lithography Systems

by

Jeehong Yang

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering: Systems)

in The University of Michigan
2012

Doctoral Committee:

Associate Professor Achilleas Anastasopoulos, Co-Chair
Associate Professor Serap A. Savari, Texas A&M University, Co-Chair
Professor L. Jay Guo
Professor Andrew E. Yagle
Associate Professor Elizaveta Levina



c© Jeehong Yang 2012

All Rights Reserved



To my parents.

ii



ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Professor Serap A. Savari for her

extraordinary support and guidance during my graduate studies. She guided me with

patience and full-hearted support. She carefully reviewed all my works and write-ups

as well as connected me with people who helped me. None of my achievements would

have been possible without her.

I am also grateful to my committee members: Professor Achilleas Anastasopoulos,

Professor Andrew E. Yagle, Professor L. Jay Guo, and Professor Elizaveta Levina for

their valuable suggestions and comments. I am incredibly lucky to have them on my

committee.

I am thankful to Professor Sunil P. Khatri and Professor H. Rusty Harris at Texas

A&M University for their advice and help which initialized this research. I would also

like to thank Vito Dai and Alan Gu for their valuable comments towards the research

as well as sharing their source code with me.

My special thanks go to my family – my parents, my wife, and my daughter. I

am indebted to my family for their unconditional love and support throughout my

life. It would not have been possible to stand where I am now without them. Finally,

I am grateful to all my friends who prayed for me during all these years and thank

God for His grace and faithfulness.

iii



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . x

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Electron Beam Lithography . . . . . . . . . . . . . . . . . . . 4
1.1.1 Conventional Photolithography . . . . . . . . . . . . 4
1.1.2 Electron Beam Lithography . . . . . . . . . . . . . 5

1.2 Multiple Electron Beam Lithography . . . . . . . . . . . . . . 10
1.2.1 Reflective Electron Beam Lithography . . . . . . . . 11
1.2.2 MAPPER . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Data Delivery System Architectures for Multiple Electron Beam
Lithography Systems . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.1 Direct-Connection Architecture . . . . . . . . . . . 15
1.3.2 Memory Architecture . . . . . . . . . . . . . . . . . 17
1.3.3 Compressed Memory Architecture . . . . . . . . . . 17
1.3.4 Off-Chip Compressed Memory Architecture . . . . . 17
1.3.5 Off-Chip Compressed Memory with On-Chip Decod-

ing Architecture . . . . . . . . . . . . . . . . . . . . 18
1.4 Layer Image Generation . . . . . . . . . . . . . . . . . . . . . 19

II. Prior Work on Lossless Data Compression Algorithms for
Maskless Lithography Systems . . . . . . . . . . . . . . . . . . . 24

iv



2.1 Basic Properties of Layout Images . . . . . . . . . . . . . . . 24
2.2 Overview of C4 . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Overview of Block C4 . . . . . . . . . . . . . . . . . . . . . . 30
2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 32

2.4.1 Memory . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.2 BFSK . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Other Related Works . . . . . . . . . . . . . . . . . . . . . . 35

III. Corner2 Lossless Compression Algorithm . . . . . . . . . . . . 38

3.1 The Compression Algorithm . . . . . . . . . . . . . . . . . . 39
3.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.2 Frequent Pattern Replacement . . . . . . . . . . . . 40
3.1.3 Corner Transformation . . . . . . . . . . . . . . . . 43
3.1.4 Frequent Pattern Replacement + Corner Transfor-

mation . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.5 Entropy Coding . . . . . . . . . . . . . . . . . . . . 48

3.2 Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.1 Inverse Corner Transformation . . . . . . . . . . . . 51
3.2.2 Frequent Pattern Reconstruction . . . . . . . . . . . 52

3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 53
3.3.1 Memory . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.2 BFSK . . . . . . . . . . . . . . . . . . . . . . . . . 56

IV. FPGA Implementation of Corner2 Decoder . . . . . . . . . . . 60

4.1 Corner2 Decoder Architecture . . . . . . . . . . . . . . . . . 60
4.2 FPGA Synthesis Results . . . . . . . . . . . . . . . . . . . . . 62

V. Improving Corner2 Frequent Pattern Discovery . . . . . . . . 64

5.1 Problems of Corner2 Pattern Discovery Algorithm . . . . . . 65
5.2 Candidate Pattern Generation Algorithm . . . . . . . . . . . 66
5.3 Pattern Optimization . . . . . . . . . . . . . . . . . . . . . . 69
5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 71

5.4.1 Memory . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4.2 BFSK . . . . . . . . . . . . . . . . . . . . . . . . . 74

VI. Tailoring Corner2 for Multiple Electron Beam Direct Write
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.1 The Compression Algorithm . . . . . . . . . . . . . . . . . . 78
6.1.1 Block Separation . . . . . . . . . . . . . . . . . . . 79
6.1.2 Forward Transformation . . . . . . . . . . . . . . . 83
6.1.3 Frequent Pattern Discovery . . . . . . . . . . . . . . 88

v



6.1.4 Flatten Pixel Stream . . . . . . . . . . . . . . . . . 93
6.1.5 Entropy Encoding . . . . . . . . . . . . . . . . . . . 94

6.2 The Decompression Algorithm . . . . . . . . . . . . . . . . . 95
6.2.1 Block Reconstruction . . . . . . . . . . . . . . . . . 96
6.2.2 Inverse Transformation . . . . . . . . . . . . . . . . 97

6.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 102
6.3.1 Memory Circuit . . . . . . . . . . . . . . . . . . . . 104
6.3.2 BFSK Circuit . . . . . . . . . . . . . . . . . . . . . 106

VII. Conclusion and Future Works . . . . . . . . . . . . . . . . . . . 110

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

vi



LIST OF FIGURES

Figure

1.1 Conventional Photolithography Process . . . . . . . . . . . . . . . . 5
1.2 Electron Beam Lithography Systems . . . . . . . . . . . . . . . . . 6
1.3 Applications of Electron Beam Lithography . . . . . . . . . . . . . . 8
1.4 Basic design of blanker . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 REBL System Overview . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 REBL HVM Setting using Linear Stage . . . . . . . . . . . . . . . . 13
1.7 MAPPER System Overview . . . . . . . . . . . . . . . . . . . . . . 14
1.8 MAPPER Writing Strategy . . . . . . . . . . . . . . . . . . . . . . 14
1.9 Possible Data Delivery System Architectures for MEB . . . . . . . . 16
1.10 Generating Layer Images: From GDSII to Bitmap Image . . . . . . 20
1.11 Proximity Correction using Gray Tone Exposure . . . . . . . . . . . 21
1.12 Binary Image vs. Gray Image . . . . . . . . . . . . . . . . . . . . . 22
2.1 Circuit Layout Image Examples . . . . . . . . . . . . . . . . . . . . 25
2.2 2D-LZ Search Region . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 C4 Context Prediction Example . . . . . . . . . . . . . . . . . . . . 29
2.4 C4 Copy Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 C4 vs. Block C4 Segmentation . . . . . . . . . . . . . . . . . . . . . 32
2.6 Memory Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.7 Memory Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.8 BFSK Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1 Corner2 Encoder Overview . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 8-bit adder using two 4-bit adders . . . . . . . . . . . . . . . . . . . 41
3.3 Extracting Frequent Patterns from GDSII . . . . . . . . . . . . . . 41
3.4 Frequent Pattern Replacement . . . . . . . . . . . . . . . . . . . . . 42
3.5 Required decoder memory to reconstruct a line from (x1, y1) to (x2, y2). 44
3.6 Two-Symbol Corner Transformation . . . . . . . . . . . . . . . . . . 45
3.7 Handling width-1 lines . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.8 Handling FPR + Corner Transformation in a Unified System . . . . 48
4.1 Overview of the Corner2 Decompression Process . . . . . . . . . . . 61
4.2 Architecture of the Corner2 inverse transformation block . . . . . . 62
5.1 Frequent Pattern Discovery in Corner2 . . . . . . . . . . . . . . . . 65
5.2 Example of pattern mismatch due to rasterization . . . . . . . . . . 66

vii



5.3 Candidate Patterns for Corner2-BIP . . . . . . . . . . . . . . . . . 69
6.1 Corner2-MEB Compression Algorithm Overview . . . . . . . . . . . 79
6.2 The MAPPER writing strategy . . . . . . . . . . . . . . . . . . . . 80
6.3 The application of the MAPPER writing region to the wafer . . . . 82
6.4 The effects of block separation . . . . . . . . . . . . . . . . . . . . . 83
6.5 Frequent Pattern Replacement . . . . . . . . . . . . . . . . . . . . . 85
6.6 Corner transformation process of Corner2-MEB . . . . . . . . . . . . 86
6.7 Frequent Pattern Discovery from GDSII Layout Description . . . . 88
6.8 Example of pattern mismatch due to rasterization . . . . . . . . . . 89
6.9 Permute pixels corresponding to the writing strategy . . . . . . . . 94
6.10 Corner-MEB Decompression Algorithm Overview . . . . . . . . . . . 95
6.11 Reconstructing the forward transformed image blocks from the flat-

tened stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.12 Frequent Pattern Reconstruction Example . . . . . . . . . . . . . . 102

viii



LIST OF TABLES

Table

2.1 Block C4 Compression Ratio - Memory . . . . . . . . . . . . . . . . 35
2.2 Block C4 Compression Ratio - BFSK . . . . . . . . . . . . . . . . . 37
3.1 Corner2 Compression Ratio - Memory . . . . . . . . . . . . . . . . 54
3.2 Corner2 Encoding Time - Memory . . . . . . . . . . . . . . . . . . 55
3.3 Corner2 Decoding Time - Memory . . . . . . . . . . . . . . . . . . 56
3.4 Corner2 Compression Ratio - BFSK . . . . . . . . . . . . . . . . . 57
3.5 Corner2 Encoding Time - BFSK . . . . . . . . . . . . . . . . . . . . 58
3.6 Corner2 Decoding Time - BFSK . . . . . . . . . . . . . . . . . . . . 59
4.1 FPGA synthesis result of the Corner2 decoder . . . . . . . . . . . . 63
5.1 Corner2-BIP Compression Ratio - Memory . . . . . . . . . . . . . . 72
5.2 Corner2-BIP Encoding Times - Memory . . . . . . . . . . . . . . . 73
5.3 Corner2-BIP Decoding Times - Memory . . . . . . . . . . . . . . . 73
5.4 Corner2-BIP Compression Ratio - BFSK . . . . . . . . . . . . . . . 74
5.5 Corner2-BIP Encoding Time - BFSK . . . . . . . . . . . . . . . . . 75
5.6 Corner2-BIP Decoding Time - BFSK . . . . . . . . . . . . . . . . . 76
6.1 Compression Ratio (x) - Memory Array (Block size : 888× 17, 816) 104
6.2 Encoding Time (s) - Memory Array . . . . . . . . . . . . . . . . . 105
6.3 Decoding Time (s) - Memory Array . . . . . . . . . . . . . . . . . . 105
6.4 Compression Ratio (x) - BFSK Circuit (Block size : 888× 31, 624) . 106
6.5 Encoding Time (s) - BFSK Circuit . . . . . . . . . . . . . . . . . . 108
6.6 Decoding Time (s) - BFSK Circuit . . . . . . . . . . . . . . . . . . 109

ix



LIST OF ABBREVIATIONS

ASIC Application Specific Integrated Circuits

BFSK Binary Frequency Shift Keying

BIP Binary Integer Programming

C4 Context-Copy-Combinatorial Coding

CPU Central Processing Unit

CAD Computer Aided Design

DPG Digital Pattern Generator

DW Direct-Write

EBL Electron Beam Lithography

EOB End-Of-Block

FPGA Field Programmable Gate Array

FPR Frequent Pattern Replacement

GPU Graphics Processing Unit

GP-GPU General Purpose Graphics Processing Unit (GPU)

HCC Hierarchical Combinatorial Coding

HVM High Volume Manufacturing

JBIG Joint Binary Image Group

LER Line-Edge Roughness

LUT Look-Up Tables

LZ Lempel-Ziv

x



MEB Multiple Electron Beam

MEMS Micro-Electro-Mechanical Structures

ML2 Maskless Lithography

NGL Next Generation Lithography

OPC Optical Proximity Correction

REBL Reflective Electron Beam Lithography

RLE Run-Length Encoding

VLSI Very Large Scale Integrated Circuits

xi



ABSTRACT

Lossless Circuit Layout Image Compression Algorithms for Multiple Electron Beam
Direct Write Lithography Systems

by

Jeehong Yang

Co-Chairs: Achilleas Anastasopoulos and Serap A. Savari

As technology develops, electronic devices are becoming faster, more power effi-

cient, and smaller. All of these technological advances were possible because improve-

ments in photolithography processes enabled the fabrication of smaller microelectronic

circuits.

In order to continue these technological advances, many engineers have been

introducing alternative lithographical methods. Among them, Multiple Electron

Beam (MEB) is considered a strong candidate because of its high resolution as well as

cost efficiency. However, there are more problems that we have to solve before MEB

can replace conventional lithography systems, and one of these is the data delivery

issue. For MEB systems to maintain sufficient throughput, many bits must be trans-

mitted simultaneously to the electron beam writer array. This raises the question

of how to provide the massive layout image data (several hundred terabits) to the

MEB systems. Because of a bandwidth shortage between the storage where the layer

images are deposited and the MEB system, obtaining competitive throughput using

xii



a MEB system is not possible with conventional data delivery methods.

In this thesis, we introduce a data delivery system using lossless image compression

to solve the data delivery issue. By transmitting a compressed layout image and

quickly decompressing it on-the-fly at the e-beam writer array of an MEB system, we

can transmit the huge layout image through a bandwidth limited channel.

Our compression algorithm is inspired by the compactness of the GDSII/OASIS

format and is designed to take advantage of ideas like corner representation and the

copying of repeated structures. However, we avoid the complex flattening and ras-

terizing processes and offer a simple decoding process. In order to take advantage of

the repeated structures, we propose an algorithm that discovers the frequent struc-

tures from the layout description (GDSII) as well as the layout image and replace

the discovered structures with a simpler representation. In order to make an efficient

corner representation while maintaining a simple decoding process, we introduce a

transformation which represents the corner points efficiently combined with an en-

tropy encoder. The proposed compression algorithm provides a high compression

performance while having a simple decoder architecture which enables the decoding

process to be handled as an add-on hardware.

xiii



CHAPTER I

Introduction

As technology develops, we have been able to manufacture integrated circuits hav-

ing smaller features. That development means that we have been able to integrate

more transistors in the same area, run more complex computations at a time, and

enable the circuit to operate with less power. Because of these technology innova-

tions, we are now living in a world where mobile computing is everywhere. All of

these achievements would have been impossible without improvements in lithography

technologies. Conventional lithography technology is reaching its limit and for further

development alternative lithography technologies have been considered [1].

To overcome this issue and advance lithography technology, many scientists have

been investigating alternative lithographical methods. Among them, Electron Beam

Lithography (Electron Beam Lithography (EBL)) is considered as a useful candidate

[2]. EBL consists of three parts [3]: 1) a digital layout image which is stored at the

storage system, 2) a data delivery path through which the layout image is transmitted,

and 3) an electron beam writer which writes the transmitted layout image on the

photoresist using one or more electron beams. Unlike other lithographic methods

where the layout image has to be produced in a physical form such as physical masks,

EBL systems do not require physical masks. Instead of masking the layout image

patterns from the light source, an EBL system writes the layout image digitally

1



pixel-by-pixel using electron beams.

EBL is a strong candidate for the Next Generation Lithography (NGL) because

EBL systems have a number of advantages over conventional photolithography sys-

tems [4]: 1) EBL systems are well-known to obtain very high resolutions. By using

the electron beam as its light source, EBL offers far better resolution than what con-

ventional photolithography systems can offer. 2) EBL systems do not require physical

masks. Conventional photolithography requires high quality physical masks which

are very expensive [5] to fabricate and maintain [6]. However, EBL systems do not

require masks, and the software controlled e-beam writer instead writes the mask

pattern directly to the photoresist layer. Moreover, because of the maskless feature,

the circuit layouts EBL systems write can easily be modified resulting in simpler

prototyping [7].

However, EBL systems have a drawback over physical mask lithography systems:

they are very slow [1, 7]. Because EBL systems write layout images pixel by pixel

and writing each pixel requires some time for the photoresist to react, the throughput

of EBL is extremely low and is hence not suitable for the mass production of circuits.

Over the decades, scientists have been trying to solve this problem and are recently

attacking the problem by applying multiple electron beam writers to the system

[8, 9, 10]. By writing multiple pixels at a time, it is possible to decrease the writing

time and increase the throughput. Furthermore, by carefully selecting the number of

electron beam writers of the EBL systems, it is possible to match the throughput of

conventional photolithography systems. Many innovative concepts regarding multiple

electron beam lithography have been conceived and are being developed for various

applications, such as mask writing, prototyping, writing critical layers in High Volume

Manufacturing (HVM), and writing all layers in HVM. Recently, it was shown that

Multiple Electron Beam (MEB) systems targeting the Direct-Write (DW) application,

i.e., writing all layers of a circuit using MEB, is the most economical option for the

2



next generation lithography technology, especially for 450 mm wafer technology [2].

There are still a few more problems that we have to solve before MEB can replace

conventional photolithography systems, and one of these is the data delivery issue

[3]. For MEB systems to maintain sufficient throughput, many bits must be simul-

taneously transmitted to the array of electron beam writers. This raises a question

on how to provide the massive layout image data (which is typically several hundred

terabits per wafer) to the MEB systems. Because of a bandwidth shortage between

the storage where the layer images are deposited and the MEB system, obtaining

competitive throughput using a MEB system is not possible with conventional data

delivery methods.

In this thesis, we will approach the MEB data delivery problem using data com-

pression. Data compression is a classical way to deal with data transfer on bandwidth

limited channels and is a natural approach to this type of problem. Throughout the

thesis, we describe data compression algorithms that are tailored to compress layout

images that are to be used for MEB systems. In order to propose a data compression

algorithm, we start by analyzing the characteristics of layout images and design a

compression algorithm that could take advantage of such characteristics while en-

abling the decoder to decompress it with the restrictions it has.

This thesis consists of seven chapters. In the remaining part of Chapter I, we will

describe how EBL / MEB systems work, why data compression is necessary for the

data delivery system, and how layout images are generated. In Chapter II, we will

summarize the related work which motivated this research. We will discuss the prop-

erties of layout images and how others dealt with those properties. In Chapter III,

we introduce the Corner2 algorithm which was designed to compress binary layout

images using the characteristics we derived from Chapter II. In Chapter IV, we illus-

trate the proof-of-concept Field Programmable Gate Array (FPGA) implementation

of the Corner2 decoder verifying that Corner2 is suitable for the data delivery sys-

3



tem. In Chapter V, we introduce Corner2-BIP which improves the frequent pattern

discovery algorithm of Corner2 using binary integer programming. In Chapter VI,

we illustrate Corner2-MEB by modifying Corner2-BIP so that it is suitable for the

MAPPER [8] system. Finally, we conclude with future research directions in Chapter

VII.

1.1 Electron Beam Lithography

Before describing EBL, we will discuss conventional photolithography processes

and compare EBL processes to them; i.e., we explore the strengths and weaknesses

of EBL compared to conventional photolithography.

1.1.1 Conventional Photolithography

The conventional photolithography process is depicted in Figure 1.1. First the

wafer is coated uniformly using a chemical called “photo-resist.” Second, after the

photo-resist is covered with the mask of the circuit layout image that we wish to

fabricate, it is exposed to light. The photo-resist then undergoes a chemical change

making it soluble to a photo-resist developer. Third, this photo-resist developer is

applied to the photo-resist so that the photo-resist only covers the parts of the wafer

which were covered by the mask. Fourth, the uppermost layer of the substrate in

the areas that are not covered by photo-resist is removed (level change is shown with

light gray). Finally, the photo-resist is removed and the result of this process is a

wafer etched by the mask pattern. Since the photolithography process adds one layer

at a time to the wafer, the process is repeated for each circuit layer.

In short, conventional photolithography is much like letterpress printing where the

physical mask serve as the letterpress, the light source acts like ink, and exposure is

analogous to press. As letterpress printing requires separate letterpress for each page

of the book, a physical mask is required for each circuit layer in photolithography.

4



Figure 1.1: Conventional Photolithography Process

Similarly to letterpress printing, conventional photolithography is suitable for HVM

because the physical mask take cares of the complex pattern generation making the

entire printing process simple and fast.

However, conventional photolithography also has disadvantages: Producing phys-

ical masks for smaller circuits is becoming harder and more expensive. The current

mask set cost is over 5 million US dollars [5] because the physical mask itself has to

shrink and the mask pattern becomes more complex in order to handle the optical

proximity effect. Moreover, as we target smaller circuits, maintaining - cleaning and

storing - the physical masks becomes nontrivial [6].

Finally, conventional photolithography does not have limitless resolution as there

is a limit on the smallest feature size that we can print due to the optical proximity

effect [11]. Because of this limit, many researchers have been searching for alternative

lithography technologies. Among them, EBL is considered as a strong candidate.

1.1.2 Electron Beam Lithography

EBL consists of three parts as shown in Figure 1.2 [3]: 1) a digital layout image

which is stored at the storage system, 2) a data delivery path through which the

layout image is transmitted, and 3) an electron beam writer which writes the trans-

mitted layout image on the photoresist using an electron beam. Unlike conventional

5



photolithography where the layout image has to be made in a physical form such as

physical mask, EBL systems do not require a physical mask. Because of this reason,

EBL is sometimes called Maskless Lithography (ML2). Instead of masking the layout

image patterns from the light source, an EBL system writes the layout image digitally

pixel-by-pixel using the electron beam writer.

Wafer 

Circuit Layout 
Image 

e-Beam 
Writer 

10101101  

e

Photoresist 

Figure 1.2: Electron Beam Lithography Systems

In short, EBL is analogous to inkjet printing where the electron beam writer

serves as the nozzle and the electrons as the ink. As an inkjet printer controls the

nozzle whether to release ink to the paper or not, an electron beam writer controls

whether the electron beam should expose the corresponding photo-resist area or not.

Just as inkjet printers can print the digital input, EBL can print any layout image

transmitted to the electron beam writer. However, unlike inkjet printers, the EBL

tools are very expensive (around 50 million US dollars) [5].

EBL systems have a number of advantages over conventional photolithography

systems:

• EBL systems are well known to obtain very high resolutions. Unlike other lithog-

raphy technologies, the achievable minimum feature size of EBL is not limited

by light diffraction. Because of the property, it is well known that we can obtain

very high resolutions (or very small features) using EBL. For example, images

in resist of 10 nm have been demonstrated [12] and with alternative techniques

6



resolutions down to 3 nm have been demonstrated [13]. By using the electron

as its light source, EBL offers far better resolution than what conventional pho-

tolithography systems can offer. In fact, it gives the finest resolution among all

particle-based (e.g., photon, proton, ion, or plasma) lithography tools.

• EBL systems do not require physical masks. As we explained earlier, conven-

tional photolithography requires high quality physical masks which have high

costs to both fabricate and maintain. However, EBL writes the mask pattern

directly to the photo-resist using the software controlled e-beam writer. That

means as far as one sets up an EBL system, it can fabricate any circuit (target-

ing the same developing technology), just by changing the circuit mask image

in the input (or control) system. Moreover, because of the maskless feature,

EBL is suitable for rapid prototyping [7].

However, there is a significant drawback in EBL and that has so far prohibited EBL

to become the major lithography technology. That is its low throughput [1, 7]. For

this reason, most current EBL applications concentrate on prototyping sophisticated

devices as in Figure 1.3 [7]. The figure plots an EBL application as a function of

the minimum feature size and writing speed. Depending on these parameters the

applications can be categorized into four types:

1. high resolution research applications, including nanometer scale structures for

basic physics research, single electron devices, quantum dots, and quantum

wires,

2. the manufacturing of high frequency devices for communications, integrated

optics, and Micro-Electro-Mechanical Structures (MEMS),

3. Very Large Scale Integrated Circuits (VLSI) prototyping, manufacturing of

sparse critical levels, and Application Specific Integrated Circuits (ASIC), and

7



4. mainstream VLSI manufacturing.

Among these applications, all except the last application are widely practiced using

EBL [7].

Figure 1.3: Applications of Electron Beam Lithography

Traditionally, EBL draws the mask image to the resist pixel-by-pixel and this is

extremely slow when compared to conventional photolithography. Moreover, just as

the printing speed decreases when we increase the resolution (or DPI) of inkjet print-

ing, the EBL throughput likewise decreases when it targets smaller circuits because

as we increase the resolution by making the pixel size smaller, the number of pix-

els EBL has to write in the same area increases. Low throughput (or slow writing

speed) is because the electron dose must be high enough to affect the photo-resist

layer. For example, if the dose to resist is 2 µC/cm2, it means a 30 nm x 30 nm

pixel will become resist only if 180 nC or more charge hits the pixel area. Therefore,

the easiest way to increase the throughput of EBL is to make the photo-resist more

sensible and/or increase the writer current so that more charges hit the area at the

same time. However, neither of them is practical for real applications because a more

sensible photo-resist results in noisier image (just as high ISO pictures occur with

more noise in digital cameras) and increasing the writer current results in a blurry

8



beam by the physical phenomenon called the Coulomb interaction [14].

In order to produce a highly concentrated electron beam, EBL operates in high

voltage (5∼100kV). Since it is impossible to switch on and off a high voltage device at

the speed that is suitable for EBL applications, controlling the electron beam exposure

by turning it on and off is not desirable. Instead an electronically controlled blanker

[15] is used to pass or block the electron beam. This blanker can be considered as an

optical switch as shown in Figure 1.4 [15]. In Figure 1.4, the electron beam enters the

blanker from the top and exits from the bottom. If no electric field was induced in

the blanker, the electron beam simply reaches the bottom. But if an electric field is

induced, the electron beam makes a curve to reach the aperture which blocks it from

escaping the blanker.

Uniform 
electrostatic field

Aperture

-
-
-

-
-
-

-
-
-

-

-

+
+

+
+
+

+
+
+

+

+

Uniform 
electrostatic field

Aperture

-
-
-

-
-
-

-
-
-

-

-

+
+

+
+
+

+
+
+

+

+

Uniform 
electrostatic field

Aperture

-
-
-

-
-
-

-
-
-

-

-

+
+

+
+
+

+
+
+

+

+

(A) (B)

Aperture
(or knife edge)
Aperture
(or knife edge)
Aperture
(or knife edge)

Figure 1.4: Basic design of blanker

Because the blanker could operate at a high speed, it is possible to use it to control

the electron beam and obtain high throughput. However, at high speeds the electron

beam exposure time becomes too short for the photo-resist to react. Therefore a high

speed blanker combined with high sensitivity photo-resist and high current electron

beams is a direction of future research for EBL systems. Technically speaking, because

the blanker is sufficiently fast, if there exists a data delivery system that can support

the data rate the blanker requires, then the EBL throughput is limited by the photo-

9



resist sensitivity and the electron beam current. Because of that, these two parameter

contributes to the wafer writing time which is as follows [15]:

t = NAD/j (1.1)

where N is the number of chips per wafer, A is the area of a chip, D is the dose

to resist1, and j is the beam current density.

1.2 Multiple Electron Beam Lithography

As we have mentioned in the previous section, neither making the photo-resist

more sensitive nor increasing the current density is suitable for practical applications.

Therefore, the best way to reduce the EBL writing time is by adding more writers and

processing them in parallel. This is similar to Central Processing Unit (CPU) devel-

opment in that parallel architecture became critical when the CPU clock reached its

limit. By writing multiple pixels at a time, it is possible to decrease the writing time

and increase the throughput. Furthermore, by carefully selecting the number of elec-

tron beam writers of the EBL systems, Multiple Electron Beam (MEB) lithography

systems are anticipated to match the throughput of conventional photolithography

systems.

Because MEB inherits EBL, it has high resolution and is maskless, while it also

has high throughput making it a strong candidate for next generation lithography. In

fact, Lin [2] claims that for writing all layers of a circuit for HVM, MEB is the most

economical option for the next generation lithography technology especially when a

450 mm wafer is considered.

However, in order to do that, all the writers should work simultaneously in par-

allel: we have to generate e-beams, position the beams, and apply digital masking

1The charge dose that is required to change the photo-resist status. Usually in µC/cm2.

10



simultaneously. Generating an array of e-beams has been studied throughly [16] but

will not be discussed in detail in this thesis because it is outside of the main scope

of our work. In short, a single light source sprays the light and using a special lens,

the sprayed beams are focused to make an array of electron beams. Then each beam

passes through a digital masking circuit which decides whether the corresponding

pixel should be exposed or not.

There are two ways to control the writers and those controllers are called blanker

and Digital Pattern Generator (DPG). Blanker is used for MAPPER [8], and DPG

is used for Reflective Electron Beam Lithography (REBL) [10]. We concentrate here

these MEB systems because they represent the two main MEB system architectures

that are actively under development at present. Details of these systems are out of

scope of this thesis and only how the data is handled in the MEB systems will be

outlined in the following subsections.

1.2.1 Reflective Electron Beam Lithography

An overview of the Reflective Electron Beam Lithography (REBL) [10] system

is shown in Figure 1.5. REBL has an electron beam source called an electron gun.

The array of electron beams generated by the electron gun are masked by a Digital

Pattern Generator (DPG), and the masked electron beams hit the resist. The DPG

serves as an electron mirror where it can absorb the corresponding electron beam

or reflect it back to where it came from. Using the illumination optics, the electron

beam induced by the electron gun is turned to hit the DPG, and the electron beam

that was reflected by DPG goes straight down to hit the wafer. The DPG consists of

1 million pixels (4096×248) which control 1 million electron beams to simultaneously

write a block (corresponding to 4096 × 248 pixels) of each wafer. Note that REBL

does not write a block and stop, move the stage (or shift the wafer), and write a

block again. Instead, REBL writes the block continuously while the stage is moving.

11



Because of this reason, the wafer is covered multiple time (in an integral form) by

the REBL writer. In fact, the DPG was asymmetric in order to shorten the integral

effect on the writing direction.

 

Digital Pattern 
Generator: DPG 

Illumination 
Optics

Demag Optics

Electron Gun
Projection 
Optics

Multiple Wafers 

Linear Stages 

Figure 1.5: REBL System Overview

For HVM, a REBL system applies linear stage as in Figure 1.6. That is, there is

more than one REBL system with each writing more than one wafer. For the example

in Figure 1.6, there are six REBL platforms with each platform containing six REBL

writers covering some number of wafers. Each REBL platform is designed to write

multiple wafers because in order to cover the entire wafer using a REBL platform, the

stage has to move back-and-forth (or in this case, left-and-right). However, changing

direction requires the stage to reduce speed making the throughput lower. Therefore,

in order to prevent that throughput decrement, we write as many wafers as possible

before the stage changes its direction.

Currently the REBL system is targeting 45 nm nodes [10] at 5–7 wafer layers per

hour, and is extending the technology to 16 nm half-pitch nodes and beyond using

the HVM setting as in Figure 1.6. It is reported that the DPG would have to handle

12



Figure 1.6: REBL HVM Setting using Linear Stage

up to 20 Tbps of data [10] and with the help of a data compression algorithm [17]

they were able to reduce the required data rate to 1 Tbps.

1.2.2 MAPPER

An overview of the MAPPER system [8] is shown in Figure 1.7. An electron

source generates the array of electron beams and the beams are individually focused

by multiple lenses. Finally the e-beam array passes through the blanker array where

it is passed to hit the wafer or it is blocked depending on the control signal. Each

blanker of the blanker array is controlled by an optical sensor and the red lasers

reaching the blanker array diagonally in the Figure 1.7 are the control signals.

Unlike REBL systems where a group of (1 million) electron beams forms a large

writing region, MAPPER allows each electron beam to cover a region independently.

The blankers in the blanker array are aligned as in Figure 1.8. The blankers are

separated from each other in a staggered grid. This spacing is necessary to avoid

the Coulomb interaction and the staggering is used so that it has to consider fewer

stitching issues. Each blanker writes a stripe of 2 µm height from left to right in

13



!"#$%&'()*'+&$#

,'""-./%'&)"#(0

1#/.)1"/(2#&)3&&/4

1#/.)5#6"#$%'&)3&&/4
7&'8#$%-'()"#(0)3&&/4

!"#$%&'()*'+&$#

,'""-./%'&)"#(0

1#/.)1"/(2#&)3&&/4

7&'8#$%-'()"#(0)3&&/4

!"#$%&'()0'+&$#

,'""-./%'&)"#(0

39#&%+&#)/&&/4

1#/.)1"/(2#&)/&&/4

1#/.)5#6"#$%'&)/&&/4
7&'8#$%-'()"#(0)/&&/4

,'(:#(0'& "#(0)/&&/4

1#/.)*%'9)/&&/4

Electron source

Collimator lens

Aperture array

Beam blanker array

Beam de�actor array
Projection lens array

Condensor lens array

Beam stop array

Figure 1.7: MAPPER System Overview

zig-zag order (going up and down) because the blanker writing regions are staggered

by 2 µm as shown in the right part of Figure 1.8, the stripe continues until it reaches

the end of the wafer with the help of the moving stage. Within the height-2 µm

stripe, the electron beam is controlled by a 2.25 nm grid so that the lines it produce

are not rough.

Field

EO slit

300 mm wafer EO slit
13,000 beams

26
 m

m

26 mm

Figure 1.8: MAPPER Writing Strategy

Currently the MAPPER system is targeting 45 nm nodes [8] at 10–20 wafer layers

14



per hour, and is extending the technology to 16 nm half-pitch nodes and beyond using

multiple MAPPER clusters. It is reported that the blanker array requires 7.5 Gbps

for each channel, meaning a data rate of 97.5 Tbps has to be handled at the MAPPER

system.

1.3 Data Delivery System Architectures for Multiple Elec-

tron Beam Lithography Systems

As we have mentioned earlier, an MEB system has to handle a huge amount of

data. For example, in order to write a 10×20mm2 circuit on a 300 mm wafer targeting

a 45 nm node, we need 2.1 Tbits to represent a circuit layer and 735 Tbits for the

entire wafer layer [3]. Considering the requirement, Dai [3] argued that in order for

the MEB systems to match the throughput of conventional photolithography (which

is one wafer layer per minute), they would have to handle 12 Tbps of data for 45 nm

nodes.

This requirement will increase as the targeting nodes gets smaller. In the following

subsections, we will review Dai’s argument on what kind of data delivery systems

could be proposed and why data compression is necessary. Throughout the following

subsections, we will discuss the data delivery system transferring 12 Tbps of data for

45 nm nodes.

1.3.1 Direct-Connection Architecture

The simplest design is to connect the storage disks containing the circuit layer

directly to the writers as shown in Figure 1.9.(a). In order to match the throughput

requirement, the storage disks need to output data at a rate of 12 Tbps. Moreover,

the bus that transfers this data to the electron beam controller must also carry 12

Tbps of data. Clearly this design is infeasible because there exists no storage disk with

15



Storage Disks 
(2.1 Tbits) 

Memory 
 (2.1 Tbits) 

E-Beam 
Writers 

Storage Disks 
(Compressed) 

Memory 
(Compressed) Decoder E-Beam 

Writers 

Storage Disks 
(Compressed) 

Memory 
(Compressed) Decoder E-Beam 

Writers 

Storage Disks 
(Compressed) 

Memory 
(Compressed) Decoder E-Beam 

Writers 

(a) Direct-Connection Architecture 

(b) Memory Architecture 

(c) Compressed Memory Architecture 

(d) Off-Chip Compressed Memory Architecture 

(e) Off-Chip Compressed Memory with On-Chip Decoding Architecture 

Storage Disks 
(735 Tbits) 

E-Beam 
Writers 

12 Tbps 

12 Tbps 

12 Tbps 1.2 Tbps 

Figure 1.9: Possible Data Delivery System Architectures for MEB

this extremely high throughput. One can argue that using direct-connection on each

electron beam writer reduces the throughput requirement for each direct-connection,

but considering the number of electron beams in a MEB system (tens of thousands

∼ million), it is also infeasible.

16



1.3.2 Memory Architecture

Instead of taking the entire wafer layer, we can take advantage of the fact that

the circuit layer is replicated many times 2 over the wafer. So, in the second design,

rather than sending the entire wafer image in one minute, the storage disks only

transmit the circuit layer information. Then, this information is stored in the on-chip

memory fabricated on the same substrate as the writers as in Figure 1.9.(b). Because

the memory is placed on the same silicon substrate as the writers, the 12 Tbps data

transfer rate should be achievable between the memory and the writers. However,

now we need memory for one circuit layer, 2.1 Tbits of data, and considering the huge

memory requirement, this option is likely to be infeasible because of the extremely

large amount of memory that must be present on the same die as the writers.

1.3.3 Compressed Memory Architecture

We can apply compression to the circuit layer image that is to be stored in the on-

chip memory. Because the data is compressed, this data cannot be directly used by the

writers without further data processing. Therefore, we need to have an additional

on-chip decoder where the compressed circuit layer image is decompressed into its

original form to control the writers as in Figure 1.9.(c). However, this architecture is

still challenging because we still have to store the entire compressed circuit layer image

on the memory. Considering we have to implement the decoder and the memory on

the same die as the writer, this is infeasible.

1.3.4 Off-Chip Compressed Memory Architecture

To resolve the competition for circuit area between the memory and the decoder,

it is possible to move the memory and decoder off the writer chip onto a processor

board as in Figure 1.9.(d). Now multiple memory chips are available for storing

2For the example, the 10× 20mm2 circuit is repeated 350 times on a 300 mm wafer.

17



chip layer data, and multiple processors are available for performing decompression.

However, after the data is decoded, we still require 12 Tbps transfer rate from the

processor board to the writer circuits. Considering the anticipated state-of-the-art

board-to-chip communications is expected to be 1.2 Tbps, which can be achieved

using 128 pins operating at 6.4 Gbps [18], this architecture is still infeasible.

1.3.5 Off-Chip Compressed Memory with On-Chip Decoding Architec-

ture

The previous architecture was infeasible because of the bandwidth limit on trans-

ferring decompressed data from the processing board to the writers. By moving the

decoder back on-chip and leaving the memory off-chip as in Figure 1.9.(e), this board-

to-chip transfer is compressed, improving the effective throughput. It is possible to

achieve the 12 Tbps data transfer rate from the decoder to the writers because they

are fabricated on the same substrate. As we have mentioned earlier, the input to

the decoder is limited to 1.2 Tbps which is the communication bandwidth limit from

board to chip. Therefore, if the data entering the on-chip decoder is compressed

10 times, the decoder will be able to produce 12 Tbps given that the decoder is

implementable with high throughput.

The decoder has two limits:

1. It has to be small in size. Because the decoder and the writer has to be fabri-

cated on the same substrate, we expect the decoder circuit area to be limited

by the area of a single chip.

2. It must have extremely high throughput. We want the decoder to output 12

Tbps in total. So, the decoding circuit should not contain complex operation

and instead should have a simple architecture.

In order for this architecture to work, we need to have high throughput board-

18



to-chip communication (e.g., 1.2 Tbps), a compression algorithm always compacting

the circuit layer image at least by the factor of

Transfer rate of Decoder to Writer

Transfer rate of Memory to Decoder

and a decoder structure that is small and fast enough for the application.

Since the application is compress-once-and-decode-multiple-times, the encoding

cost is not that important. Therefore, the encoder does not have any limit as long

as the it can be compressed in a reasonable time on a reasonable computer system.

However, the compression algorithm has to have a decoding process in which the

decoder structure does not become too complex or slow.

1.4 Layer Image Generation

In this section, we will discuss how the circuit layer images are generated and use

these images throughout the following chapters.

Circuit layouts are typically stored in GDSII [19] or OASIS [20] formats. GDSII

and OASIS represent circuit features such as polygons and lines and describe them

by their corner points [19, 21]. GDSII and OASIS formatted data are far more

compact than the uncompressed image of a circuit layer. Therefore it may initially

appear that the GDSII and OASIS formats are good candidates for this particular

application. However, this is not the case because maskless writers operate directly

on pixel bit streams and GDSII and OASIS layout representations must be converted

into layout images before the lithography process begins. In general this conversion

requires (1) eliminating hierarchical structures by replacing all of the copied parts

with actual features, (2) arranging the circuit features such as polygons and lines into

the corresponding layers of the circuit, and (3) rasterizing (see Figure 1.10). As the

conversion usually takes hours using a complex computer system with large memory

19



it cannot be performed within the decoder chip.

• GDSII/OASIS 
Format 

Layout 

• Copied 
Struct.  
Actual feature 

Flatten 
• N-layered 

polygons/
lines 

Separate 
Layers 

• Polygons/
Lines  
Image pixels 

Rasterize 
• Multiple 

layered 
image 

Layout 
Image 

Figure 1.10: Generating Layer Images: From GDSII to Bitmap Image

Optical Proximity Correction (OPC) [11] is widely used for conventional lithogra-

phy systems to adjust the shapes of mask features, but it is not in general necessary

for EBL when the direct write application is considered because OPC is convention-

ally used to compensate for the image errors due to the diffraction effect, but this

is not an issue for EBL using electron beams. The only exception is when EBL is

used to make precise masks for the fabrication of circuits via photolithography. Since

mask making is not a high volume manufacturing application, we will focus on the

more interesting direct write applications only. Throughout the entire thesis we need

not worry about OPC.

We instead consider electron beam proximity correction for maskless lithography

systems to obtain good quality Line-Edge Roughness (LER). This is achieved by

applying a multi-level electron beam dosage to each pixel [22]. As shown in Figure

1.11.(a) and Figure 1.11.(b), uniform electron beam doses result in blurry boundary

edges because of the electron beam proximity effect. To compensate for that phe-

nomenon, a higher electron beam dosage was applied to the boundary pixels as in

Figure 1.11.(c) and the proximity effect has been corrected as in Figure 1.11.(d).

It is possible to represent the proximity corrected layout image using gray images

[22]. However, this data eventually has to be reinterpreted as a binary image because

the lithography writer does not produce a multi-level electron beam dose during a

20



(a) input: uniform dose

(c) input: PC’d dose

(b) output: uniform dose

(d) output: PC’d dose

Figure 1.11: Proximity Correction using Gray Tone Exposure

single write time. Instead the lithography writer utilizes an electron beam writer

to write the corresponding pixel multiple times so that the pixel is exposed with

the targeted electron beam dosage; i.e., each electron beam writer uses a proximity-

corrected layout image to write a portion of a gray image pixel which corresponds to

a block of binary pixels. This thesis considers an idealized pixel printing model as in

[3], however, this model can be applied to general proximity correction methods by

reinterpreting the proximity corrected gray image as a binary image.

Under the idealized pixel printing model, we generated the gray images by the

following process as in [3]. First, we start with the GDSII or OASIS layout. Second,

as illustrated in Figure 1.10, we rasterize the layout image in a 1 nm grid and output

a large binary image. Third, this binary image is segmented in blocks and quantized

21



with the appropriate gray level. For example, if we are targeting a 45 nm process

technology, the electron beam pixel size chosen would be 22 nm (half the minimum

feature size) and a block of 22× 22 binary pixels would make up a single gray pixel.

To obtain a 1nm edge placement Dai [3] suggested counting the number of fills in

every 22× 22 pixel block and quantizing that number to one among 32 levels.

The generated gray image is then reinterpreted as a binary image so that it directly

maps to the lithography writer control signal, by changing the grid size. For the

previous example, we want a 22 nm pixel to have a 1 nm edge replacement. That

means, we need at least 22 dose levels 3. Therefore, instead of 32 levels we can choose

a quantization of 25 (= 5× 5) levels. Since every electron beam dose will increase a

single level, each 22 nm pixel is written 25 times or, equivalently, that each control

signal covers a 4.4 nm (= 22 / 5) pixel size. For simplicity, we can recompute the

numbers so that each control signal covers a 4 nm (= 22 / 5.5) pixel size and is

one among 30 levels (≈ 5.5 × 5.5) for each 22 nm pixel. Finally, this new binary

representation can be obtained by rasterizing the layout GDSII or OASIS file to the

targeted grid (4 nm for the example).

(a) Binary layout image 
(1nm grid) 

0 0.33 0.33 0.33 0.33 0 

0.33 1 1 1 1 0.33 

0 0.67 1 1 0.67 0 

0 0.67 1 1 0.67 0 

0 0.67 1 1 0.67 0 

0.33 1 1 1 1 0.33 

(b) Gray level layout image 
(4nm grid, 4 levels) 

(c) Binary layout image 
(2nm grid) 

Figure 1.12: Binary Image vs. Gray Image

A simple illustration of this binary image to gray image and gray image to binary

3Note that 32-level was chosen for this example so that each pixel can be represented with five
bits, but 22-level is the requirement.

22



conversion is shown in Figure 1.12. Here the grid size of the gray image is set to 4 nm

and the grid size of the binary image is set to 2 nm. Figure 1.12.(a) shows the binary

rasterized image at a grid size of 1 nm. By grouping 4× 4 blocks of this image as a

pixel and quantizing the number of fills to 4 levels (2 bits), we obtain Figure 1.12.(b)

which corresponds to the gray image at a grid size of 4 nm. Because each gray image

pixel has 4 levels, we could interpret this as a 4 nm pixel written 4 times. Here a 4

nm gray pixel corresponds to a 2×2 block of binary pixels from a 2 nm binary grid as

in Figure 1.12.(c). Observe that Figure 1.12.(c) is not generated from Figure 1.12.(b)

but could be generated from Figure 1.12.(a) by forming the appropriate 2× 2 blocks.

We assume that all of the circuit layer images are binary images throughout the

thesis unless specifically mentioned.

23



CHAPTER II

Prior Work on Lossless Data Compression

Algorithms for Maskless Lithography Systems

In the proposed data-delivery path of Chapter I, compression is needed to mini-

mize the transfer rate between the processor board and the writer chip, and also to

minimize the required disk space to store the layout data. Since multiple decoders

should operate in parallel on the writer to achieve the projected output data rate,

it is crucial for any compression algorithm to have an extremely low decompression

complexity for the application. In this chapter, previous works on lossless layout

image compression will be reviewed.

2.1 Basic Properties of Layout Images

Even though circuit designers use computers to design complex circuits, they

are human designed, and hence, are not randomly designed. In fact, they are well-

structured and well-organized because the circuit designers build their circuits by their

building blocks which they call cells. Since there are more than a billion elements

in a modern microelectronic chip, this structured designed is inevitable. Instead of

designing new components every time, circuit designers design a cell and try to reuse

it whenever the same functionality is required in the circuit. Moreover, when they

24



embed the cells, the designers tend to align them so that the cells could be easily

managed and are efficiently positioned in the circuit area. Because of these reasons,

circuit layouts tend to be repetitive in some regions while irregular in other regions.

(a) Regular circuit (b) Irregular circuit 

Figure 2.1: Circuit Layout Image Examples

Figure 2.1 shows examples of circuit layout images. Figure 2.1.(a) was extracted

from a memory circuit while Figure 2.1.(b) was extracted from a Binary Frequency

Shift Keying (BFSK) transmitter. From the figure, we can notice three characteristics

of the layout image: First, most polygons in the layout image are Manhattan, i.e., all

of the polygon corners have right angles because of the circuit design space. Because

it is computationally infeasible to optimize a circuit element with an arbitrary shape,

it has been customary to restrict the design space to a rectilinear space making

the circuit elements Manhattan. In some cases, in order to relax this restriction

while having manageable optimization complexity, the design space is formed by two

rectilinear spaces - one regular and one tilted in 45 degrees - enabling diagonal lines

in the layout image, but these patterns can still be decomposed into Manhattan

polygons.

25



Second, it is easy to see there are patterns which are highly repetitive in Figure

2.1 because of the block-based design. Circuits are highly repetitive in a memory

region where an array of memory cells are perfectly aligned. Moreover, as parallel

processing develops, the number of processing blocks such as GPU blocks tend to

grow making the circuits more repetitive.

Third, layout images typically are black-and-white images. This can be interpreted

as the mask where the light source is blocked or passed as well as the electron beam

control signal where the electron beam is blanked or passed.

2.2 Overview of C4

Because of the circuit layout image properties derived in Section 2.1, Dai [3]

proposed the Context-Copy-Combinatorial Coding (C4) compression algorithms.

In this section, we will overview the C4 algorithm which is the base of the entire C4

compression algorithm family.

While investigating layout images Dai noticed their three main characteristics.

By applying a number of well known compression algorithms such as JBIG, ZIP, and

BZIP2 on example layout images, Dai found that the context prediction used in JBIG

enabled efficient compression for irregular Manhattan polygons while the Lempel-

Ziv (LZ)-style copying utilized in ZIP and BZIP2 resulted in a high compression

ratio for repetitive layout images. Based on this observation, Dai designed a lossless

compression that takes the advantage of context prediction and LZ-style copying.

First, Dai expanded the LZ77 algorithm [23] so that it is suitable for 2D images.

In the proposed 2D-LZ algorithm [24], pixels are encoded in raster order, i.e., each

row in order from left to right, and the linear search window which appears in LZ77

is replaced with a rectangular search region of previously coded pixels. This search

window is illustrated in Figure 2.2 [3].

As demonstrated in Figure 2.2, a match is now a rectangular region, specified

26



(x, y)

width (w)

height (h)

Match region

Previously coded

Not yet coded

Search region

Figure 2.2: 2D-LZ Search Region

with four coordinates: a pair of coordinates (x, y) specifying the match position and

another pair of integers (w, h) specifying the match dimension (width and height). In

order to find the largest match region, each pixel is exhaustively tested in the search

region (x, y). When a match is found at a particular (x, y), we increase the width

w as much as possible, while still ensuring a match; then we increase the height h

as much as possible. This procedure guarantees the widest possible match size for a

given match position. We then choose the match position that results in the largest

match size and store this as the match region. If a match of minimum size cannot be

found, then a symbol is output to represent a vertical column of pixels. A sequence

of control bits is also stored so the decoder can determine whether the output is a

symbol or a match. Finally, to further compress the output, each representation is

encoded with separate Huffman codes [25] which means five 1 Huffman codes are used

for 2D-LZ.

In order to decode 2D-LZ, the match region (x, y) and (w, h), or the mismatched

symbols are Huffman decoded. Similar to the encoder, the decoder also keeps a buffer

of previously decoded pixels. The size of this buffer must be large enough to contain

the height of the search window and the width of the image for matching purposes.

Each time a match is found, the decoder simply copies data from the corresponding

1One Huffman code is used for each of the match coordinates x, y, w, and h, and another Huffman
code is used for the symbols

27



match region (x, y) and (w, h) among the previously decoded pixels and fills it in the

current decoding area. If a mismatched symbol is read, the decoder simply fills in a

vertical column of pixels in the current decoding area. The decoder does not need to

perform any searches, and is therefore much simpler in design and implementation

than the encoder.

Second, in order to handle irregular patterns while making the context prediction

simpler, Dai simplified the 10-pixel context-based prediction model of JBIG to a 3-

pixel context-based prediction model (up-left, up, and left). In Figure 2.3, the first

column shows the 8 possible 3-pixel contexts, the second column shows the prediction,

the third column shows what a prediction error represents, and the fourth column

shows the empirical prediction error probability for an example layer image. From the

results, it is clear that this 3-pixel context prediction works extremely well. Since the

layer image is dominated by vertical edges, horizontal edges, and regions of constant

intensity, this simple 3-pixel context predicts all of these cases perfectly. Furthermore,

it is shown in [3] that using more pixels for the context does not improve the prediction

performance.

This type of prediction typically fails at the polygon corners, so the number of

prediction error pixels is proportional to the number of polygon corners. Therefore,

for sparse features, it is advantageous to apply prediction. On the other hand, for

dense or repetitive layouts, if the encoder can automatically find the repetition within

the image and code it appropriately, the copy error pixels, i.e., the pixels which can

not be copied, will be dramatically reduced. The compression efficiency is directly

related to the numbers of image error pixels, which is the sum of prediction error

pixels and copy error pixels.

By integrating the advantages of the two separate compression techniques – 2D-

LZ and context-based prediction, Dai proposed the C4 compression algorithm. In

order to use two different compression techniques for a layout image, the encoder

28



Context Prediction Error Error Probability
0.0055

0.071

0.039

0

0

0.022

0.037

0.0031

Figure 2.3: C4 Context Prediction Example

first divides the layout images into “predict” and “copy” regions, which are non-

overlapping rectangles. In a copy region, each pixel is copied from a pixel preceding

it in raster-scan order while each pixel inside a prediction region, i.e. not contained

in any copy region, is predicted from its neighboring context. However, since neither

predicted values nor copied values are 100% correct, error bits are used to indicate

the position of these prediction or copy errors. These error bits are compressed using

a technique called Hierarchical Combinatorial Coding (HCC) [26] which is a low-

complexity alternative to arithmetic coding. Finally, the copy regions and compressed

error bits are transmitted to the decoder so that the decoder can reconstruct the

image. By avoiding the redundant transmission of copied or predicted pixels, C4

achieves a high compression efficiency.

Finally, in order to reconstruct the original image, the decoder needs to store the

2D-LZ dictionary, keep track of the context model for prediction, and have Huffman

tables to decode five Huffman code streams. Dai reported that in order to search

maxdy previous rows for 2D-LZ, the decoder requires width × (maxdy + 1) + 3410

bits of memory. For the smallest decoding memory requirement, we set maxdy = 1

29



throughout the thesis and set the parameters of the proposed algorithms so that the

decoder memory requirements are similar.

It was shown that the C4 compression algorithm can efficiently compress both

regular and irregular circuits in [3]. However, the encoding complexity was tremen-

dous (∼ 18 CPU years), prohibiting it to handle the layout images of a full chip.

This encoding complexity is due to the complex segmentation algorithm partitioning

copy regions and prediction regions, and was mitigated by the improved Block C4

compression algorithm [27].

2.3 Overview of Block C4

The basic concept underlying both C4 and Block C4 compression is exactly the

same. Repetitive structures are better compressed using LZ-based copying, whereas

non-repetitive structures are better compressed using localized context-based predic-

tion techniques, described in Section 2.2. The task of both the C4 and Block C4

encoder is to automatically segment the image between repetitive copy regions and

non-repetitive prediction regions. The resulting segmentation map indicates which

algorithm should be used to compress each pixel of the image, i.e. either copy or

prediction. Once the segmentation is complete, it becomes a simple matter to encode

each pixel according to this segmentation map. Dai analyzed that the C4 encoding

process and found that over 99.9% of the encoding time is devoted to the segmen-

tation. In order to reduce the encoding complexity, the segmentation algorithm was

revised for the Block C4 encoder. By doing so, it was possible to speed up the

encoding process by 100–900 times [3].

In order to understand why the segmentation algorithm for C4 is too complex, it

is important to understand how the copy region is detected from the layout image be-

cause the segmentation is described as a list of rectangular copy regions. An example

of a copy region is shown in Figure 2.4.(a). Recall that each copy region is a rectangle,

30



 

w 

h 

d (x,y) 

(a) Copy Region Example (b) Possible Copy Regions

Figure 2.4: C4 Copy Region

enclosing a repetitive section of a layer, described by 6 values, the rectangle position

(x, y), (w, h), the direction of the copy (dir) which can be either left or above, and

the distance from the original copy (d). Finding the “best” segmentation is hardly

obvious. This is because even in such a simple example shown in Figure 2.4.(a), there

are many potential copy regions; a few of them are illustrated in Figure 2.4.(b) as

colored rectangles, e.g the dashed blue rectangle and a dot-dashed orange rectangle.

If we assume that the layout image is a N × N image, the number of all possible

copy regions is O(N5) where each copy region parameter (x, y, w, h, d) contributes as

O(N). Therefore, exhaustive search on this space is prohibitively complex and clearly

further complexity reduction of the segmentation algorithm is desirable.

Block C4 adopts an entirely different segmentation algorithm from C4 which is

far more restrictive, and hence, much faster to compute. While C4 allows for copy

regions to be placed in arbitrary (x, y) positions with arbitrary (w, h) sizes, Block

C4 restricts both the position and sizes to fixed M ×M blocks on a grid. Figure 2.5

illustrates the difference between Block C4 and C4 segmentation. Figure 2.5.(a) shows

a segmentation example for C4 which consists of three rectangular copy regions with

6 values (x, y, w, h, dir, d) describing each copy region. The same image is segmented

31



 

x1,y1,w1,h1 
dir1,d1 

x3,y3,w3,h3 
dir3,d3 

x2,y2 
w2,h2 
dir ,d  

(a) C4 Segmentation

dir1
d1 

dir2
d2 

P 

dir2
d2 

 
dir2
d2 

dir1
d1 

dir1 
d1 

dir1
d1 

dir1
d1 

dir1
d1 

P 

P 

dir3
d3 

dir3
d3 

dir3
d3 

dir3
d3 

P 

P 

P 

P M

M 

(b) Block C4 Segmentation

2 2

Figure 2.5: C4 vs. Block C4 Segmentation

for Block C4 as shown Figure 2.5 which consists of twenty M ×M tiles with each

tile marked as either prediction (P ) or the copy direction and distance (dir, d). This

simple change reduces the number of possible copy regions to O(N3/M2) which is a

substantial O(N2M2) reduction in search space compared to C4.

Dai reported that this simplified segmentation algorithm did not harm the com-

pression performance significantly and sometimes even improved it by covering more

small copy regions that the C4 algorithm missed.

2.4 Experimental Results

Since the data set used by Dai [3] was proprietary and unavailable to us, we tested

the Block C4 algorithm on two custom circuits that were available to us – a memory

circuit and a BFSK transmitter circuit. These circuits are the ones for which we

provide experimental results throughout the thesis. Block C4 was implemented in

C# and was provided by Vito Dai. Since we experienced a memory shortage for the

encoding process when we attempted to run Block C4 on the entire layout image,

we segmented the image into the largest components for which Block C4 could be

applied. We tested the compression algorithm on a laptop computer having a 2.53

GHz Intel Core 2 Duo CPU and 4 GB RAM.

32



Throughout the thesis, we define the compression ratio as

Input File Size

Compressed File Size
.

2.4.1 Memory

An overview of the memory circuit is shown in Figure 2.6. Since the memory

circuit is dense, we only show a small portion of the layout image with all of the

layers in different colors in Figure 2.6. The memory core was targeting 500 nm

lithography technology containing 13 layers with the memory cell structure in Figure

2.7 repeated 32,768 times throughout the layout image.

The compression ratio, encoding time, and decoding time of Block C4 are shown

in Table 2.1. Note that the last row of compression ratio is not the sum of preceding

rows, but the “net average” which is defined as

Total Input File Size

Total Compressed File Size
.

We can see that Block C4 is compressing the layer images by a factor of 24–148

with an average compression ratio of 57. We also see that each layer requires about

half an hour to be compressed while about a minute to be decompressed. Finally, the

Block C4 decompression algorithm required 4.9 kBytes of memory.

2.4.2 BFSK

An overview of the custom designed BFSK transmitter is shown in Figure 2.8. The

BFSK transmitter was targeting 250 nm lithography technology containing 19 layers

of mostly irregular features. The circuit consists of I/O pins (surrounding), large

antenna area (center square), active circuits (top), and BFSK transmitter circuitry

(bottom right).

33



Figure 2.6: Memory Circuit

Figure 2.7: Memory Cell

The experimental results of Block C4 are shown in Table 2.2. As we can see from

the table, Block C4 is compressing the layer images by a factor of 59–153 with an

34



Layer Compression Ratio (x) Encoding Time (s) Decoding Time (s)
1 147.78 1,874.79 55.44
2 79.80 1,890.78 54.99
3 147.78 1,787.97 52.90
4 54.12 1,814.79 53.70
5 133.22 1,830.77 53.55
6 133.22 1,796.32 54.48
7 31.58 1,846.09 54.63
8 24.40 1,885.01 54.79
9 38.17 1,817.26 54.83

10 25.31 1,917.07 54.07
11 75.70 1,794.59 56.43
12 121.69 1,775.43 51.50
13 141.02 1,761.72 51.88

Total 57.36 23,792.61 703.18

Table 2.1: Block C4 Compression Ratio - Memory

average compression ratio of 113. Since the size of the BFSK circuit was larger than

that of the memory circuit, it required much more time for encoding and decoding as

well as memory (8.4 kBytes) for the decoder.

2.5 Other Related Works

There are a number of works that are related to Block C4. Liu et al. [28] improved

Block C4 by applying a Golomb run-length code [29] to encode the error locations

instead of HCC for improved compression performance as well as simpler decoder

structure. Cramer et al. [17] tailored the compression algorithm for REBL systems

with rotary stages [10].

We initially introduced a compression algorithm named Corner [30] which rep-

resents the layout polygons using their corners. In order to restrict the decoding

complexity, we made sure that the corners do not produce arbitrary angle lines, but

only horizontal or vertical lines and described the direction of the lines the corre-

sponding corner point will reconstruct such as ‘right’, ‘right and down’, ‘down’, and

35



Figure 2.8: BFSK Circuit

‘stop.’ We later found a more efficient approach which we introduce in Section 3.1.3.

We also expanded the Corner2 compression algorithm which is illustrated in Chap-

ter III to gray level images to compare its performance against Block C4 in gray level

images. The Corner-Gray [31] algorithm utilizes the fact that for the layout images

we generated, the pixel intensity only changes at the boundaries (or edges of the

layout polygons). It encodes the boundaries using the corner transform which will

be discussed in Section 3.1.3 and encodes the boundary pixel values using an entropy

36



Layer Compression Ratio (x) Encoding Time (s) Decoding Time (s)
1 150.84 450.57 29.50
2 149.90 3,790.74 242.07
3 136.75 3,800.22 237.42
4 146.58 3,759.72 237.35
5 59.02 12,467.89 280.67
6 127.80 4,485.38 274.15
7 110.89 4,476.01 282.03
8 81.40 4,588.22 289.53
9 121.91 4,392.86 275.56

10 152.88 4,865.70 293.04
11 86.02 4,414.41 281.57
12 138.35 4,427.67 278.34
13 88.80 4,650.64 290.37
14 139.43 4,412.76 276.35
15 91.61 4,364.18 277.88
16 140.95 4,380.78 275.98
17 150.45 3,756.04 236.50
18 151.58 3,049.21 190.71
19 150.79 454.33 27.68

Total 112.97 80,987.33 4,576.71

Table 2.2: Block C4 Compression Ratio - BFSK

encoder. The experimental results shows that Corner-Gray had a marginal improve-

ment over Block C4 on average, but was not always outperforming Block C4. Since

Corner-Gray did not have a way to handle circuit regularities, there is room for im-

provement. We did not continue pursuing this direction because the low level electron

beam writer control signals are not gray level, but binary.

Krecinic et al. [32] introduced a vertex-based circuit layout image representation

format. Their research can be viewed as a variant of the corner transformation which

will be introduced in Section 3.1.3 along with a version of Run-Length Encoding

(RLE) to compress circuit layout images. However, they did not account for the

circuit regularity which will be illustrated in Section 3.1.2 and Section 5.2 or use

more advanced entropy encoding techniques to further compress the representation

as in Section 3.1.5.

37



CHAPTER III

Corner2 Lossless Compression Algorithm

As we have seen in Chapter II, when compressing circuit layouts we need a good

strategy to handle their regularities and irregularities. Block C4 [3, 27] used an LZ-

based region copy to handle the regularities and context prediction to handle the

irregular parts of the circuit layout images. However, there are some drawbacks with

these approaches. First, because the regularities are handled by LZ-based parsing

while the LZ-copy region was limited to the previous row only for a compact decoder

architecture, the approach can handle limited pattern repetitions.

Second, the context prediction mostly fails for the polygon corners. The 3-pixel

context prediction worked well for most cases with low error probability (∼ 0.07) as

shown in Figure 2.3, but it failed at the boundaries – i.e., polygon corners. Since

polygons are efficiently represented by their corners, having a good context predic-

tion inside/outside the polygons is not really impressive. Rather, it would be more

interesting if one can come up with more efficient ways to represent the polygon cor-

ners and reconstruct them without the complex rasterization process shown in Figure

1.10.

Our compression algorithm is inspired by the compactness of the GDSII/OASIS

format and is designed to take advantage of ideas like corner representation and

the copying of repeated structures. However, we avoid the complex flattening and

38



rasterizing processes and offer a simple decoding process. In the following subsections,

we will show how our compression / decompression algorithm works and why it is

superior to Block C4.

3.1 The Compression Algorithm

3.1.1 Overview

An overview of the compression algorithm, Corner2, is shown in Figure 3.1. We

begin by seeking frequently occurring patterns in order to handle circuit regulari-

ties. The Frequent Pattern Replacement (FPR) process is based on dictionary-based

compression which replaces the pattern embeddings that are in the dictionary with

a simple representation. By doing so, the encoder replaces roughly all embeddings of

frequently repeated cells over the layout image and is hence better suited than the

LZ-based region copy used in Block C4.

Input: 
Layer Image 

Frequent 
Pattern 

Replacement 

Corner 
Transformation 

RLE + EOB 
Coding 

Arithmetic 
Coding 

Output: 
Compressed 

bits 

Figure 3.1: Corner2 Encoder Overview

In order to handle circuit irregularities on the non-matched image regions, we

next apply a transform to extract polygon corners. This transformation generates

a transitional corner image 1 of the non-matched image regions. This transformed

image is designed so that it will be easy to rasterize without a complex decoding

1The transformed image is similar to the polygon corner image, but they are not exactly the
same.

39



system. Combined with the following entropy coding schemes, this transformation

can represent circuit irregularity more efficiently than Block C4.

Finally, we apply a series of entropy encoders such as RLE [29], End-Of-Block

(EOB) coding, and arithmetic coding [33] to produce a compressed bit stream of the

transformed image.

In Section 3.1.2 and Section 3.1.3, we will first describe how the FPR and corner

transform processes work as separate processes. In Section 3.1.4, we will illustrate

how we tweak them to work in a unified system, and in Section 3.1.5 we will describe

the entropy coding processes.

3.1.2 Frequent Pattern Replacement

GDSII/OASIS formats are designed to take advantage of the hierarchical structure

present within circuit layouts. In particular, if a substructure is repeatedly used

in a circuit layout, GDSII/OASIS identifies it and then refers to it whenever the

substructure occurs. For example, the GDSII/OASIS representation for an 8-bit

adder, which is implemented using two 4-bit adders, will consist of a definition of a

4-bit adder and the description of the 8-bit adder in terms of two 4-bit adders as in

Figure 3.2.

By searching the GDSII/OASIS file and counting the number of references for each

definition, we obtain a list of frequent patterns in the mask image. We could alter-

natively run a complex pattern matching algorithm to detect the frequent patterns,

but the outcome would not be significantly different due to the block-wise design of

typical circuits. Our approach is not efficient for compression purposes if the input

GDSII/OASIS file is unstructured, but this issue can be handled by a preprocessing

algorithm proposed by [34] which efficiently restructures input GDSII/OASIS files.

Figure 3.3 offers an overview of frequent pattern extraction from GDSII files.

The inputs to the procedure are the GDSII file and the layer number of the layout

40



8bit FA 

4bit FA 

4bit FA 

0 
1 
2 
3 

0 
1 
2 
3 

4 
5 
6 
7 

4 
5 
6 
7 

Cin 

Cout 

bgnstr 
  strname “4bit_FA” 
  boundary 
     layer ? 
     xy ? … … 
     endel 
   … … 
endstr 

bgnstr 
  strname “8bit_FA” 
  sref 
     sname “4bit_FA” 
     angle 0 
     xy 1 … … 
     endel 
  sref 
     sname “4bit_FA” 
     angle 0 
     xy 1 … … 
     endel 
  boundary 
     layer ? 
     xy ? … … 
     endl 
  … … 
endstr 

In Out 

Define 4bit FA 

Refer 4bit FA 

Define 8bit FA 

Figure 3.2: 8-bit adder using two 4-bit adders

Analyze 

Frequently 

Repeated 

Substructures 

GDSII File 

Layer # 

Freq SubStr #1  
@Layer # 

Frequent  
Pattern #1 Rasterize 

Frequent Pattern #1 

Figure 3.3: Extracting Frequent Patterns from GDSII

image, and the outputs of this process are the rasterized images of the discovered

frequent patterns. The first step of this frequent pattern extraction is to analyze

frequently repeated substructures and extract the substructures from the layout de-

scription. To do that, the encoder detects all of the substructures that are defined in

the GDSII/OASIS representation. Next, the encoder counts the number of references

of each substructure extracted in the previous step. The encoder proceeds to order

the substructures by the number of their occurrences and select the most frequent P

of them, where P is chosen so that the representation of the P substructures requires

less than Psize bytes of memory. Note that we are not fixing the number P , but Psize,

the memory that is required to store the P patterns. Also, note that because of the

decoder memory constraint, Psize is very small, and hence, we can only pick a small

number of patterns. Each of the P substructures undergoes the rasterizing process

41



to generate the corresponding pattern image 2.

Frequent Pattern 
Replacement 

Freq. Pattern 

Layer Image 

Encoded 
Image 

Figure 3.4: Frequent Pattern Replacement

Once the frequent patterns are generated, we replace the pattern embeddings

from the layout image. Figure 3.4 offers an example of the FPR process with one

frequent pattern. Given the binary layout image and the frequent pattern images,

the FPR encoder seeks the P patterns within the image. When the FPR encoder

seeks a pattern, it actually wraps the pattern around with empty rows (in the top and

bottom) and columns (in the left and right) so that the pattern embedding is isolated

(i.e., not connected to other polygons). We apply this to avoid interference with

corner transformation, which will be further discussed in Section 3.1.4. Whenever

one of the patterns is matched within the search region, the encoder will replace the

top left part of the corresponding part of the image with a string described below and

will replace the rest of filled pixels that have been matched with “0”s (or empty).

In order to restrict the decoder memory, the pattern is encoded using the following

symbol string format:

[$ Pattern#]

The symbol $ is a flag for a pattern. The choice of this flag will become clearer in

the next subsection. Pattern# is a length dlog2(P )e binary string representing the

pattern number. If P = 1, then Pattern# can be omitted.

2This rasterization process itself is quite complex, but it is much simpler than that of the entire
circuit because the size of the pattern is extremely small due to constraints on Psize. For example,
while it took several hours to generate a single layer image of a full example circuit, it only took
several seconds to generate the frequent patterns for the entire circuit layers.

42



Suppose the pattern p dimension is wp × hp. Then in order to make this encoded

stream fit in the top row of the image, we assume the original image width wp is no

shorter than

1 + dlog2(P )e+ dlog2(hp − qhp)e,

where qhp is one more than the number of empty bottom rows of the pattern. The

final term dlog2(hp− qhp)e is added because of the decoder memory restriction which

will be explained in Section 3.2.2.

In Figure 3.4, we illustrated an example where P = 1 and the rasterized layer

image of the frequent substructure is a 3 × 3 square. Since P = 1, Pattern# can

be omitted and the encoder outputs $ (depicted by one ‘gray’ pixel) for the pixel

corresponding to the top-left corner of each 3× 3 square pattern in the input layout

image and ‘white’ pixels for the remaining 8 pixels. For this pattern, wp = 3 and is

greater than 1 + dlog2 1e+ dlog2(3− 1)e = 2.

3.1.3 Corner Transformation

In the GDSII/OASIS representation of a structurally flattened single layer, the

layout polygons are represented in terms of their corner points. While this represen-

tation is efficient for a system in which decoder memory is large, it is infeasible when

the decoder memory is restricted because the decoder needs to access a memory block

of size (|x1 − x2|+ 1)× (|y1 − y2|+ 1) for the encoder to connect an arbitrary pair of

points (x1, y1) and (x2, y2) as in Figure 3.5.

However, if the angle of a contour line is constrained to a small set then there

can be considerable simplification in the rasterizing process. In our previous research

[30], we restricted the contour lines to be either horizontal or vertical and decomposed

an arbitrary polygon into a number of Manhattan polygons, i.e., polygons with right

angle corners. This decomposition is well-suited to this application because most

components of circuit layouts are produced using Computer Aided Design (CAD)

43



(x1,y1) 

(x2,y2) 

Figure 3.5: Required decoder memory to reconstruct a line from (x1, y1) to (x2, y2).

tools which design the circuit in a rectilinear space, and even the non-Manhattan

parts can be easily decomposed to Manhattan components.

If the contour lines are constrained to be either horizontal or vertical and the

decoder scans the image in raster order, i.e., each row in order from left to right,

then when the decoder encounters a corner it only needs to decide whether it should

reconstruct a horizontal and/or a vertical line. The raster order implies that a corner

is either the beginning of a line going to the right and/or down or the end of a

line. In our previous research [30], we specified this decoding decision by representing

each pixel with five possible symbols – ‘not corner,’ ‘right,’ ‘right and down,’ ‘down,’

and ‘stop.’ However, as we will see this five-symbol representation can be further

simplified.

To motivate the simplified transformation observe that a row (or a column) of the

original layout image consists of alternating runs of 1s (fill) and runs of 0s (empty). We

encode the pixels where there are transitions from 0 to 1 (or 1 to 0) using symbol “1”

and encode the other places using symbol “0.” Since most polygons are Manhattan,

after applying this encoding in the horizontal direction we obtain alternating runs

of 1s and 0s in the vertical direction as seen in Figure 3.6 (b). Therefore we can

re-apply this encoding in the other direction to produce the final corner image. We

call this encoding scheme the binary corner transformation because the final encoded

image is binary and the location of the “1”-pixels indicate the corners of the polygons.

In order to illustrate how the transform is applied, we will first discuss a two-step

44



transformation process and then introduce a one-step transformation process which

requires less memory during the encoding process and runs faster than the two-step

transformation process.

(a) Original Image (b) Horizontal coding of (a) (c) Vertical coding of (b) 

Figure 3.6: Two-Symbol Corner Transformation

The two-step transformation process consists of a horizontal encoding step and

a vertical encoding step. In the horizontal encoding step, we process each row from

left to right. For each row, the encoder initializes the previous pixel value to 0 (not

filled). If the value of the current pixel differs from the previous one we encode it

with a “1” and otherwise with a “0.” After the horizontal encoding is completed we

use the intermediate encoded result as input to the vertical encoding process. This

is identical to the horizontal encoding process except that instead of processing rows

we process each column from top to bottom.

The algorithm is summarized in Algorithm 1. In the algorithm, x is the column

index [1, · · · , C] of the image and y is the row index of the image [1, · · · , R].

As we can see from Line 13 of the algorithm, OUT(x, y) = 1 only if TEMP(x, y) 6=

TEMP(x, y − 1). That is, OUT(x, y) = 1 only if TEMP(x, y) = 1 and TEMP(x, y − 1) = 0,

or if TEMP(x, y) = 0 and TEMP(x, y−1) = 1. Since TEMP(x, y) = 1 only if IN(x−1, y) 6=

IN(x, y) as in Line 5, we can simplify the corner transform process as in Algorithm 2.

The preceding algorithm bypasses the need for intermediate memory. Here pixel

(x, y) is processed as a function of the input pixels (x−1, y), (x, y−1), and (x−1, y−1).

This simplification results in a much faster running time. Finally, note that the

45



Algorithm 1 Transformation : Two-Step Algorithm

Input: Layer image IN ∈ {0, 1}C·R
Output: Corner image OUT ∈ {0, 1}C·R
Intermediate: Temporary image TEMP ∈ {0, 1}C·R
{Horizontal Encoding}

1: Initialize TEMP(x, y) = 0, ∀x, y.
2: for y = 1 to R do
3: for x = 1 to C do
4: if IN(x, y) 6= IN(x− 1, y) then
5: TEMP(x, y) = 1.
6: end if
7: end for
8: end for
{Vertical Encoding}

9: Initialize OUT(x, y) = 0, ∀x, y.
10: for x = 1 to C do
11: for y = 1 to R do
12: if TEMP(x, y) 6= TEMP(x, y − 1) then
13: OUT(x, y) = 1.
14: end if
15: end for
16: end for

Algorithm 2 Transformation : One-Step Algorithm

Input: Layer image IN ∈ {0, 1}C·R
Output: Corner image OUT ∈ {0, 1}C·R

1: Initialize OUT(x, y) = 0, ∀x, y.
2: for y = 1 to R do
3: for x = 1 to C do
4: if IN(x− 1, y − 1) = IN(x, y − 1) and IN(x− 1, y) 6= IN(x, y) then
5: OUT(x, y) = 1
6: end if
7: if IN(x− 1, y − 1) 6= IN(x, y − 1) and IN(x− 1, y) = IN(x, y) then
8: OUT(x, y) = 1
9: end if

10: end for
11: end for

transformation can handle layout images with width-1 lines as shown in Figure 3.7.

46



(a) Original Image (b) Horizontal coding of (a) (c) Vertical coding of (b) 

Figure 3.7: Handling width-1 lines

3.1.4 Frequent Pattern Replacement + Corner Transformation

In the previous two subsections we separated the discussion of FPR and corner

transformation. Since the output of FPR is a ternary image ($, 0, 1), a modifica-

tion is needed to the corner transformation. Figure 3.8 illustrates the tweaking of

the FPR and the corner transformation processes when P = 1. The FPR process

now outputs two images, namely the matched pattern image and the residue image

produced by removing the matched patterns from the original layout image. In this

decomposition the pattern embeddings are compressed by the FPR and the residue

image is compressed by the corner transformation.

Note that the filled pixels in our “corner” image are more closely related to tran-

sitions than to actual corners in the original layout image. Therefore filled pixels in

the corner image can appear to the right, down, or right-down of the corresponding

actual corner in the layout image and can hence overwrite the frequent pattern stream

if the frequent pattern does not contain an empty top row or an empty left column.

Because we surrounded frequent patterns with empty rows and columns when pat-

tern matching was considered, we can add the matched pattern image and the corner

image to form the compressed image without any distortion.

Figure 3.8 illustrates the combination of the FPR and the corner transformation

processes. The FPR process now outputs two images, the matched pattern image

and the residue image produced by removing the matched patterns from the original

47



Frequent Pattern Replacement 

Pattern Image 

Layout Image 

Matched 
Pattern 

(Ternary) 

Residue 
Image 

(Binary) 

Corner Transformation 

Corner 
Image 

(Binary) 

Transformed Image (Ternary) 

Figure 3.8: Handling FPR + Corner Transformation in a Unified System

layout image. In this decomposition, the pattern embeddings are represented by the

FPR process and the residue image is represented by the corner transformation. The

outputs of the two processes are summed to obtain the transformed image. Observe

that two non-zero symbols are never summed, and so the summation is well-defined

and the transformed image is over the alphabet {0, 1, $}.

3.1.5 Entropy Coding

We next describe an entropy coding scheme to compress the transformed image.

We expect the transformed image to contain long runs of zeroes, and it is there-

fore effective to use a type of RLE [29] for compression. The nonzero pixels of the

48



transformed image are written as they are, but each run of zeroes is represented by

its run length which we encode with an M -ary representation. More specifically, we

introduce new symbols “2”, “3”, · · · , “M+1” to represent the base-M symbols “0M”,

“1M”, · · · , “(M − 1)M”. For example, if the transformed stream was “1 00000 00000

1 00000 0000 1 00000 00000 000” and M = 3, then the encoding of the stream is “1

323 1 322 1 333” because the run lengths are 10 (=1013), 9 (=1003), and 13 (=1113),

and 2/3/4 is used to represent 03/13/23.

These M symbols are to be encoded using arithmetic coding [33] for further com-

pression. For arithmetic decoding, we need to allocate memory for each symbol, and

hence, in our restricted decoder memory setting, we want to choose M as small as

possible. However, small M is not desirable since there are very long runs of zeroes.

These long runs of zeroes occur frequently if the circuit features are aligned in a grid

manner.

Therefore, in order to obtain a high compression ratio while restricting the size

of the decoder memory, we segment each line into k blocks of length L, and we

introduce a new “EOB” symbol “X”. If a run of zeroes ends after a block, instead of

representing the run length using an M -ary representation, we use the end-of-block

symbol X. Hence, we encode a line of zeroes with k X’s instead of roughly logM (kL)

symbols. Continuing the previous example, if M = 2, k = 5, and L = 7, then the

transformed stream “1000000 0000100 0000000 1000000 0000000” is represented as

”1X 3221X X 1X X,” where 2/3 (=02/12) is used for the binary representations of

runs of zeroes.

After applying EOB coding, there tend to be long runs of “X”s in the encoded

stream. Therefore, we can apply run length encoding to this stream by reusing the

M symbols for the initial runs of zeroes and introducing N new symbols for an N -ary

representation of runs of “X”s . Persisting with the previous example, if M = N = 2,

k = 5, and L = 7, then the next representation is the string “1 5 3221 54 1 54,” where

49



2/3 (or 4/5) is used for the binary representation of runs of zeroes (or “X”s).

Our last encoding step compresses the preceding stream with the implementation

of arithmetic coding provided by [35]. The decoder requires four bytes per alphabet

symbol, and since we used M + N + 2 symbols, 4(M + N + 2) bytes were used for

arithmetic decoding. Note that M symbols are used for runs of zeroes, N symbols

are used for runs of “X”s, 0/1 is used for the corner pixel, $ is used to handle the

frequent P patterns.

3.2 Decoder

The decoder consists of two parts: (1) an entropy decoder consisting of an arith-

metic, run length, and end-of-block decoder which outputs the transformed image,

(2) the transform decoder which reconstructs the layout image from the transformed

image. The transform decoder reconstructs the layout image using both inverse cor-

ner transformation and frequent pattern reconstruction with the help of the frequent

pattern dictionary which has been transmitted to the decoder. The ideas in the

implementation of the first part are standard, and we omit them.

For simplicity we will demonstrate how the layer image can be reconstructed from

the corner image and we will separately discuss the recovery of the frequent patterns.

However, these two processes are conducted in a row-by-row fashion because the

decoder has restricted memory and is executed as a single process because the corner

image and the matched pattern image do not overlap as explained in Section 3.1.4.

Since each part of the decoding procedure (arithmetic decoding, run length de-

coding, and vertical/horizontal decoding) processes each symbol based on the pre-

viously processed symbols, the entire decoding process can be pipelined to improve

the throughput. Observe also that the decoder can be implemented in hardware be-

cause the decoding process only requires simple branch and compare operations. For

example, arithmetic coding is widely implemented in microcircuits [36].

50



3.2.1 Inverse Corner Transformation

The corner transformation uses pixels from the previous row and column to decode

the current pixel. Because the decoding process depends on the previous row, we

designed the decoder to decode the corner image in a row-by-row manner instead of

in its entirety in order for this process to be compatible with the restricted memory

available to a maskless writer. In our transform decoder we use a row buffer (BUFF).

The buffer is used to store the status of the previous (decoded) row. It uses two

symbols, 0 and 1, to represent its status, and hence, the buffer requires width bits of

memory. “0” means ‘no transition’ while “1” means ‘transition’ which indicates the

starting/ending point of a vertical line. Using the current row of the corner image

and the buffer, we can reconstruct the layer image as in Algorithm 3. Note that the⊕
operation is a binary XOR operation, and is only applied to binary summands.

Algorithm 3 Inverse Transformation

Input: Corner image IN ∈ {0, 1}C·R
Output: Layer image OUT ∈ {0, 1}C·R
Intermediate: Row Buffer BUFF ∈ {0, 1}R

1: Initialize BUFF(x) = 0, ∀x.
2: Initialize OUT(x, y) = 0, ∀x, y.
3: for y = 1 to R do
4: Fill = 0
5: for x = 1 to C do
6: if BUFF(x) = 1 then
7: OUT(x, y) = 1
8: end if
9: if IN(x, y) = 1 then

10: Fill = Fill
⊕

1
11: end if
12: OUT(x, y) = OUT(x, y)

⊕
Fill.

13: BUFF(x) = BUFF(x)
⊕

Fill.
14: end for
15: end for

Line 4 initializes the status of the horizontal fill. Lines 6–8 process the buffer.

If the buffer is filled, i.e., if there is a vertical fill, then the corresponding pixel is

51



filled. Lines 10–16 process each column of the corner image from left to right. If

the pixel is a “1”, then the decoder makes horizontal/vertical changes to the image.

We first have to update the horizontal fill status (Line 10), fill the output pixel if

necessary (Line 12), and update the buffer if necessary (Line 13). If the pixel is “0”,

the decoder makes no horizontal/vertical changes to the image, but fills the output

pixels and updates the buffer according to the fill status. For example, if the decoder

was previously filling the horizontal line, it keeps filling the line (Line 12) and updates

the buffer (Line 13) in order to process the next row.

3.2.2 Frequent Pattern Reconstruction

If the decoder finds the string “$”, it starts the pattern reconstruction process.

Depending on the number P of patterns, the decoder reads dlog2(P )e pixels to deter-

mine which pattern p is used. Hence, the [$ Pattern#] stream specifies the pattern

to reconstruct.

In order to perform row-wise decoding of these patterns, we use a row buffer

(BUFF). When the decoder finds the pattern string [$ Pattern#], it places that string

into the corresponding frequent pattern dictionary location to specify what pattern

should be reconstructed. Furthermore, in order to specify which row of the pattern p

the decoder should next process the decoder adds Row# which is a dlog2(hp− qhp)e bit

binary representation of the next row number after the pattern string, where qhp is

one more than the number of empty rows on the bottom of the pattern. Observe that

if the bottom r rows of the pattern p are empty, then the decoder needs to reconstruct

hp − (r + 1) more rows. Recall that the width of the pattern p, wp, may be no less

than 1 + dlog2(P )e+ dlog2(hp − qhp)e.

For example, if we are decoding the compressed image in Figure 3.3, then the 3×3

square is stored in the decoder memory. After reading the $ symbol in the second

row, the decoder processes the first row of the 3 × 3 square pattern, and fills the

52



corresponding three pixels of the second row. Then, it updates BUFF to [$0] starting

from the leftmost corner of the pattern so that the decoder knows it should process

the second row of the 3 × 3 square pattern. (Here we are assuming that P = 1 and

so we can omit Pattern#. The last bit “0” indicates that the decoder now has to

reconstruct the second row of the 3 × 3 square pattern. Since hp = 3 and qhp = 1,

we only need 1 bit for the purpose.) When the decoder processes the third row, it

reconstructs the second row of the 3 × 3 square pattern by filling the three pixels,

and updates BUFF to [$1] so that the decoder knows it should process the last row of

the 3 × 3 square pattern for the next row. A similar procedure applies to the third

row, and after processing the fourth row, BUFF is updated to [00] which terminates

the reconstruction of the 3× 3 square pattern.

In order to operate this frequent pattern reconstruction along with the corner

transformation, the decoder requires dlog2(3) × widthe bits for the row buffer and

Psize bits to store the entire pattern table.

3.3 Experimental Results

We tested the algorithm on two benchmark circuits introduced in Section 2.4. For

the chips we studied we could run our algorithm Corner2 on the entire layout image.

We also considered the standard binary image compression algorithm Joint Binary

Image Group (JBIG) [37] as well as Block C4 [27] for comparison purposes. Note

that because JBIG utilizes 2–3 lines of context-based prediction as well as a well-tuned

arithmetic coding implementation, it requires keeping at least length 2 · width bits

of row buffer to apply row-by-row decoding. Furthermore, in order to update the

prediction table, JBIG may require up to 214 bytes of decoder memory which is larger

than the requirements for the Block C4 and Corner2 decoding processes.

In our experiment, Corner2 was written in C/C++ and JBIG was implemented

in C/C++ using JBIG-KIT [38] and LibTIFF [39]. All of the experiments ran on a

53



laptop computer having a 2.53 GHz Intel Core 2 Duo CPU and 4 GB RAM.

3.3.1 Memory

For the memory circuit, Corner2 used parameters M = 64, N = 64, k = 1, and

L = width. We found that given the nearly even distribution of memory cells among

the circuit layers a choice of k > 1 results in poorer performance than the choice

k = 1 because of the frequency of all-zero rows in the images. We chose different M ,

N , and Psize depending on the layer so that the required decoder memory is similar

to that of Block C4 while giving us the best compression performance. The decoder

memory sizes were 4.9 kBytes for Corner2 and Block C4, and 20 kBytes for JBIG.

Compression Ratio (x)
Layer Corner2 Block C4 JBIG

1 18,658 148 28,169
2 1,216 80 169
3 18,658 148 28,169
4 86 54 83
5 920 133 555
6 920 133 555
7 84 32 53
8 67 24 53
9 170 38 100

10 57 25 75
11 442 76 228
12 3,169 122 3,576
13 9,616 141 9,188

Average 192 57 149

Table 3.1: Corner2 Compression Ratio - Memory

Table 3.1 provides the compression ratios of the memory circuit layers for the

algorithms we tested. The compression ratios are defined as

Input File Size

Compressed File Size
.

54



Note that the last row of Table 3.1 is not the average of preceding rows, but the “net

average” which is defined as

Total Input File Size

Total Compressed File Size
.

Corner2, which utilizes a corner transform, attains compression ratios which are 1.2–

3.3 times higher than those for Block C4. Furthermore, Corner2 outperforms JBIG

by 29.3%.

Encoding Time (s)
Layer Corner2 Block C4 JBIG

1 4.29 1,875 7.15
2 26.36 1,891 7.56
3 4.29 1,788 7.16
4 48.93 1,815 7.51
5 26.85 1,831 7.24
6 26.86 1,796 7.24
7 25.27 1,846 7.90
8 109.97 1,885 7.93
9 30.18 1,817 7.47

10 78.49 1,917 7.90
11 80.22 1,795 7.30
12 4.16 1,775 7.24
13 4.16 1,762 7.04

Total 470.05 23,793 96.64

Table 3.2: Corner2 Encoding Time - Memory

Table 3.2 and Table 3.3 shows the encoding and decoding times of the algorithms

on the memory circuit layers. The last row of the tables offer the total run times of

the encoding and decoding processes. As we can see from Table 3.2, the encoding time

of Corner2 was 51 times faster than that of Block C4. While both Block C4 and

Corner2 utilize the frequent patterns, Corner2 runs much faster because it doesn’t

use the image to decide which patterns are frequent. Rather, it analyzes the input

GDSII file. The decoding time of Corner2 was 18 times faster than that of Block

55



Decoding Time (s)
Layer Corner2 Block C4 JBIG

1 2.53 55.44 2.94
2 3.34 54.99 3.32
3 2.53 52.90 2.94
4 3.20 53.70 3.31
5 3.05 53.55 3.01
6 3.05 54.48 3.00
7 3.23 54.63 3.68
8 3.51 54.79 3.67
9 3.05 54.83 3.28

10 3.44 54.07 3.66
11 3.04 56.43 3.12
12 2.49 51.50 3.07
13 2.48 51.88 2.89

Total 38.93 703.18 41.90

Table 3.3: Corner2 Decoding Time - Memory

C4 and 8% faster than that of JBIG as shown in Table 3.3.

Observe that the memory circuit is covered entirely with a single memory cell

pattern, and so P = 0 (which happens when the memory cell did not contain any

polygon in the corresponding layer) or 1.

3.3.2 BFSK

For the BFSK circuit, Corner2 was run with parameters M = 64, N = 64, k = 4,

L = 8192, and Psize = 10 bytes. These choices allowed for similar decoder memory

sizes for Corner2 and Block C4. For these parameter settings and this circuit the

decoder memory sizes for Corner2, Block C4, and JBIG were respectively 7.9 kBytes,

8.4 kBytes, and 16 kBytes.

Table 3.4 shows the compression ratios of the algorithms. Corner2 attain a 3.5–4.6

times higher compression ratio than Block C4. Block C4 relies on context prediction

and finding repeating regions within an image. By contrast, Corner2 use actual poly-

gon corners, and these corners cannot be predicted correctly by Block C4’s context

56



Compression Ratio (x)
Layer Corner2 Block C4 JBIG

1 9,226 151 11,103
2 6,760 150 10,855
3 1,186 137 1,985
4 3,270 147 5,503
5 1,033 59 1,560
6 580 128 902
7 390 111 600
8 167 81 128
9 452 122 1,044

10 195,365 153 109,570
11 200 86 151
12 1,006 138 2,025
13 203 89 151
14 1,093 139 2,228
15 230 92 169
16 1,296 141 2,605
17 6,656 150 10,923
18 19,579 152 22,939
19 9,173 151 11,027

Average 515 113 486

Table 3.4: Corner2 Compression Ratio - BFSK

predictor. Furthermore, Corner2 outperforms JBIG by 6%.

Table 3.5 and Table 3.6 show the run times of the algorithms on the BFSK circuit

layers. As we can see from Table 3.5, the encoding time of Corner2 was 196 times

faster than that of Block C4, which reduced the complexity of the earlier algorithm

C4 [40] by segmentation. The improvement over Block C4 is due to the relative com-

putational complexity of the context-based prediction and region copy components

of the C4 / Block C4 algorithms.

The decoding process for Corner2 is 29.6 times faster than that of Block C4. It

was also 1.4 times faster than than of JBIG as shown in Table 3.6.

57



Encoding Time (s)
Layer Corner2 Block C4 JBIG

1 2.41 451 2.41
2 17.88 3,791 20.92
3 18.31 3,800 22.74
4 17.21 3,760 21.54
5 28.07 12,468 23.05
6 26.43 4,485 24.09
7 37.09 4,476 29.68
8 17.91 4,588 31.17
9 35.56 4,393 30.12

10 20.73 4,866 22.97
11 17.90 4,414 29.65
12 33.20 4,428 27.16
13 17.88 4,651 29.56
14 34.38 4,413 27.02
15 17.80 4,364 29.03
16 38.54 4,381 25.61
17 15.74 3,756 20.72
18 14.26 3,049 16.09
19 2.42 454 2.41

Total 413.75 80,987 435.95

Table 3.5: Corner2 Encoding Time - BFSK

58



Decoding Time (s)
Layer Corner2 Block C4 JBIG

1 0.84 29.50 0.98
2 8.22 242.07 8.78
3 8.24 237.42 10.53
4 8.22 237.35 9.41
5 8.35 280.67 10.83
6 8.33 274.15 11.87
7 9.74 282.03 15.53
8 9.68 289.53 17.04
9 9.67 275.56 15.92

10 9.41 293.04 9.32
11 9.64 281.57 15.57
12 9.57 278.34 13.24
13 9.62 290.37 15.44
14 9.57 276.35 12.90
15 9.60 277.88 15.01
16 9.59 275.98 11.64
17 8.21 236.50 8.70
18 6.47 190.71 6.63
19 0.84 27.68 0.98

Total 153.81 4,576.71 210.33

Table 3.6: Corner2 Decoding Time - BFSK

59



CHAPTER IV

FPGA Implementation of Corner2 Decoder

To enable hardware implementation the Corner2 decoding process is designed to

operate in a row-by-row fashion. That is, instead of decoding the entire layout image

at once using large memory, the decoder is able to decode a row of the layout image

using limited memory. Because of these properties, we claimed that the Corner2

decoder can be implemented in hardware with limited decoder memory (or cache).

In this chapter, we present an FPGA implementation of the Corner2 decoder. The

rest of this chapter consists of two parts; we explain the Corner2 decoder architecture

in Section 4.1 and report the FPGA synthesis results in Section 4.2.

4.1 Corner2 Decoder Architecture

The Corner2 decompression process is shown in Figure 4.1. First, the compressed

bit stream is decoded at the arithmetic decoder. Second, the decoded symbol stream

goes through the run length and EOB decoding process reconstructing the (ternary)

transformed image. Third, the ternary image is handled by the inverse transformation

block to reconstruct the original image. The inverse transformation process handles

both frequent pattern reconstruction for the regular circuit parts and inverse corner

transformation for the irregular circuit parts. The entire inverse transformation pro-

cess is applied in a row-by-row fashion requiring limited decoder memory. This was

60



Input: 
Compressed 

bits 
Arithmetic 
Decoding 

RLE + EOB 
Decoding 

Inverse Transformation 
• Frequent Pattern Reconstruction 
• Inverse Corner Transformation 

Output: 
Reconstructed 

Image 

Figure 4.1: Overview of the Corner2 Decompression Process

possible because the FPR and corner transformation were designed specifically with

row-by-row decoding in mind.

As we have discussed in Chapter III, the decoder requires dlog2(3)×widthe bits to

keep intermediate information for row-by-row decoding, Psize bits of memory for the

frequent pattern dictionary, and 32(M + N + 2) bits for arithmetic decoding, where

width is the width of the layout image and M and N are RLE/EOB parameters.

Since the entropy decoding part is straightforward we are more interested in the

“inverse transformation” block of the Corner2 decoder. The inverse transformation

is applied to a row of the ternary transformed image to produce a row of the decom-

pressed layout image. The inverse transformation block has the following architecture

shown in Figure 4.2 [41]. It consists of two main processes - the inverse corner trans-

formation and the frequent pattern reconstruction. Both processes utilize the row

buffer for row-by-row decoding, and the frequent pattern reconstruction process re-

quires an additional frequent pattern dictionary which stores the frequent pattern

information such as each pattern’s width, height, and image.

61



Row of Ternary 
Image 

Inverse 
Transformation 

Row of layout 
image 

(decompressed) 

Row Buffer 

Inverse Corner 
Transformation 

Frequent Pattern 
Reconstruction 

Frequent 
Pattern 

Dictionary 

in out 

Inverse Transformation 

Decoder Memory 

Figure 4.2: Architecture of the Corner2 inverse transformation block

4.2 FPGA Synthesis Results

Since the Corner2 decoding algorithm [42] was implemented to simulate a de-

coder circuit implemented in hardware, we were able to design the decoder circuit

without major modifications. We used Impulse CoDeveloper [43] to generate hard-

ware description language (HDL) files from the Corner2 decoder source code and

used Xilinx CAD tools to design the FPGA circuit from the HDL files.

The designed Corner2 decoder consists of the RLE and EOB decoders and the

inverse transformation process of Figure 4.1. The arithmetic decoder was omitted

because we used a well-known implementation of arithmetic coding [35] and there are

various arithmetic decoders implemented in hardware [36, 44].

Table 4.1 shows our custom Corner2 decoder with 5 kbytes of decoder memory. It

was implemented on a Xilinx Spartan-3E XC3S500E FPGA board. It only required

187 slice flip flops and 236 four-input Look-Up Tables (LUT) which corresponds to

2% of the overall FPGA resources. Among the 236 four-input LUT, only 104 of them

were used for logic while the remaining 132 of them were used for dual port RAMs.

The system was tested at a 100 MHz clock rate, which accommodates the critical

62



Device Xilinx Spartan-3E XC3S500E

Number of slice flip flops 187 / 9,312 (2%)
Number of 4 input LUTs 236 / 9,312 (2%)

System clock rate 100 MHz

Table 4.1: FPGA synthesis result of the Corner2 decoder

data path of the system after the synthesis, which had a delay of 9.55 ns.

Considering an FPGA implementation of an MQ-Decoder - a variation of arith-

metic decoder - requires 813 slice flip flops out of 33,792 and 1,329 LUT out of 67,584

on a Xilinx Virtex II XC2V6000-6 FPGA board at a maximum system clock rate

of 146.5MHz [44], the effect of the Corner2 decoder excluding the arithmetic de-

coder is small. Since the Corner2 decoder circuit was designed using a C-to-FPGA

conversion tool, we expect that the FPGA circuit and its ASIC design can both be

improved, and hence the Corner2 decoder is suitable for delivering mask layout data

to the maskless lithography system.

As we have shown in Chapter III, the Corner2 compression algorithm has many

advantages over Block C4 [27]; it has a better compression ratio and a higher de-

coding throughput while requiring less decoder memory. We have shown here that

the Corner2 decoder can be implemented as an FPGA circuit. The FPGA imple-

mentation suggests that the Corner2 decoder only requires a small silicon area while

having high throughput. We expect its ASIC design would work fast enough to im-

prove the data delivery throughput and would be small enough to be added on to the

lithography writer.

63



CHAPTER V

Improving Corner2 Frequent Pattern Discovery

In Chapter III, we have introduced the Corner2 algorithm. The Corner2 algo-

rithm utilizes dictionary-based compression to handle repeated circuit components

and applies a transform which is specifically tailored for circuit layout images to deal

with irregular circuit components. It obtains high compression ratios and fast encod-

ing/decoding times while requiring limited decoder memory on the decoder hardware.

Moreover, we have shown in Chapter IV, the entire decompression is simple so that

it could be implemented in a hardware add-on to the lithography writer.

However, there is some room for improvement in how the dictionary is built to

handle frequent circuit patterns because the Corner2 patterns are extracted from the

layout description given in the GDSII or OASIS formats and not from the layout

image itself. Because the rasterization process can produce different bitmap image

patterns for the polygons that have the same layout description depending on the

rasterizing grid, polygon size, and polygon displacement, the patterns that Corner2

utilizes are far from perfect.

In this chapter, we will introduce an algorithm that discovers the polygons that

could be used as frequent patterns for the Corner2 encoding process. Moreover, we

will develop an algorithm to limit the number of patterns that can form the frequent

pattern dictionary to keep the dictionary small while replacing as many patterns as

64



possible for efficient compression.

This chapter consists of four sections: First, we point out the problem of Corner2

in Section 5.1. Second, we will introduce the candidate pattern generation algorithm

in Section 5.2. Third, we illustrate how we can choose the optimized frequent pattern

list from the candidate patterns in Section 5.3. In Section, 5.4 we show experimental

results on how the new patterns improve the Corner2 compression performance.

5.1 Problems of Corner2 Pattern Discovery Algorithm

The detailed frequent pattern discovery algorithm of Corner2 is shown in Figure

5.1. The layout description (GDSII) of the entire circuit and the layer number of

the targeting layout image is input to the algorithm. Then the encoder analyzes

the entire circuit to find the frequent substructures and rasterizes the corresponding

substructures at the specified layer.

Analyze 

Frequently 

Repeated 

Substructures 

GDSII File 

Layer # 

Freq SubStr #1  
@Layer # 

Frequent  
Pattern #1 Rasterize 

Frequent Pattern #1 

Figure 5.1: Frequent Pattern Discovery in Corner2

During the generation of binary layout images an image could be truncated if

there is a mismatch between the pixel grid and the GDSII grid. Considering the pixel

grid is much coarser than the GDSII grid, a pattern could be truncated when it is

realized as a binary image; i.e., a substructure could be repeated within the GDSII

domain but the corresponding pattern may not repeatedly match within the binary

image domain.

The example in Figure 5.2 shows how the rasterization process can produce such

results. In the example, two 5 nm× 5 nm squares are defined in the layout description

(GDSII). When we rasterize the image in a 4 nm grid (Figure 5.2. right), we are

65



actually gathering a 4 × 4 block as a single pixel from the 1 nm grid (Figure 5.2.

left) and fill the pixel if the number of filled pixels in the block is no less than 8.

The rasterized image shown in Figure 5.2. right has two different polygons, but they

came from the same polygon description. This pattern truncation problem occurs in

general because the layout description grid and the rasterizing grid do not perfectly

match, and this causes a performance deterioration in Corner2.

Layout Description (1nm grid) Bitmap Image (4nm grid) 

Polygon1 = (0,0)-(0,4)-(4,4)-(4,0)-(0,0) 
Polygon2 = (6,7)-(6,11)-(10,11)-(10,7)-(6,7) 

Figure 5.2: Example of pattern mismatch due to rasterization

5.2 Candidate Pattern Generation Algorithm

Unlike the Corner2 approach, we extract the patterns from the layout image itself

without the help of the layout description (GDSII). By searching the layout images,

we generate a list of candidate patterns and from the candidate patterns we later

determine which one should be included in the frequent pattern list. In this section,

we will illustrate the candidate pattern generation algorithm. As we explained in

Section 3.1.2, during the FPR process we match the pattern by isolating it; i.e.,

surrounding the pattern with empty rows on the top and bottom and columns on the

left and right. Because of this property, the patterns that can be used as the frequent

patterns should follow the following conditions:

66



1. the patterns should be defined in a rectangular region,

2. the patterns should never overlap with other patterns, and

3. the patterns should be isolated.

By isolating the patterns and avoiding pattern overlap, we prevent a polygon from

being partially covered by patterns. This is not required by the decoder, but if there

is partial pattern coverage, then the pattern usage will be less efficient and will harm

the compression performance. Therefore, we want to prevent this. Moreover, it also

helps to reduce the complexity of the candidate pattern generation algorithm.

We will explain how the candidate patterns are generated below. In the following

subsection, we determine which candidate patterns will be included in the frequent

pattern dictionary. The candidate pattern generation algorithm is shown in Algorithm

4 [45]. In the algorithm, x is the column index [1, · · · , C] of the image and y is the

row index of the image [1, · · · , R].

The algorithm starts by picking a pixel from the layout image in raster order, i.e.,

from top to bottom and then from left to right. If the pixel is filled (1), then we

define a rectangular region (x0, y0) − (x1, y1) so that all of the filled pixels that are

connected to (x, y) are covered by it (Line 6). Here, we say pixel (xi, yi) is connected

to pixel (xj, yj) if both pixels are filled and |xi − xj| ≤ 1 and |yi − yj| ≤ 1. We then

make the rectangular region (x0, y0)−(x1, y1) as the candidate pattern Pattern (Line

7) and search the list of candidate patterns PatternList (Line 8) to see whether the

pattern was already in the list or not. If Pattern was already in the PatternList, we

increase its frequency by 1 (Line 10). Otherwise, we put Pattern to the PatternList

and initialize its frequency to 1 (Line 12). Finally, we make sure that the region is

not searched again marking the region in Checked (Lines 14–18), and this prevents

the patterns from overlapping.

67



Algorithm 4 Candidate Pattern List Generation

Input: Layout image IN ∈ {0, 1}C·R
Output: List of patterns PatternList

Intermediate: List of patterns Checked ∈ {0, 1}C·R
1: Initialize Checked(x, y) = 0, ∀x, y.
2: Initialize P = 0.
3: for y = 1 to R do
4: for x = 1 to C do
5: if Checked(x, y) = 0 and IN(x, y) = 1 then
6: (x0, y0, x1, y1) = DefinePatternRegion(x, y)
7: Pattern = MakePattern(x0, y0, x1, y1)
8: p = PatternList.Find(Pattern)
9: if p 6= NOT FOUND then

10: PatternList[p].frequency += 1
11: else
12: PatternList.Insert(Pattern, 1)
13: end if
14: for yy = y0 to y1 do
15: for xx = x0 to x1 do
16: Checked(xx, yy) = 1
17: end for
18: end for
19: end if
20: end for
21: end for

While the patterns Algorithm 4 produces are isolated polygons, some of the pat-

terns that are extracted from the GDSII description in Figure 5.1 were groups of

isolated polygons. We found that for the case the candidate patterns generated by

Algorithm 4 were small compared to the patterns extracted from the GDSII lay-

out description and deteriorated the compression performance when they were used

solely. Therefore, along with the candidate patterns generated by Algorithm 4, we

use the frequent patterns discovered from the original Corner2 algorithm and use the

entire pattern list as the candidate patterns in order to ensure that the new algorithm

always outperform the original Corner2 algorithm.

To incorporate the GDSII extracted patterns with the Algorithm 4 patterns, we

first run the FPR algorithm of the original Corner2 algorithm using the GDSII ex-

68



GDSII Extracted 
Patterns 

Frequent Pattern Replacement 

Matched 
Pattern 

(Ternary) 

Residue 
Image 

(Binary) 

Candidate Pattern Generation Candidate Patterns 

Layout Image 

Figure 5.3: Candidate Patterns for Corner2-BIP

tracted patterns only as in Figure 5.3. Then we apply Algorithm 4 to the residue

image which is the image region that has not been matched by the FPR process.

By combining both the GDSII extracted patterns and the patterns generated using

Algorithm 4, we obtain the final candidate pattern list.

5.3 Pattern Optimization

Once the candidate patterns are discovered, we analyze them in order to decide

which patterns to keep and which patterns to discard. There are the two parameters

that we consider to make this decision. The first is gain, which provides information

on what improvement we should expect by using the pattern for the FPR process.

Since compression is related to the corners we remove by patterns as well as the

frequency of patterns, we define the gain of pattern p as :

69



Gainp = [N(Cp)− 1]×N(Fp),

where N(Cp) is the number of corners of pattern p and N(Fp) is the frequency of

pattern p.

The second parameter is cost which shows how much decoder memory is required

to keep the pattern in the decoder memory. For the pattern p whose dimension is

wp × hp, the decoder usually needs wp × hp bits of memory to store the pattern.

However, we can reduce the cost when the pattern is fully filled (except the top row

and leftmost column). For this case, since we already know all pixels are filled all we

need to store is the pattern dimensions. We allocate 16 bits for each dimension and

1 bit flag to specify whether or not it is a fully filled pattern. Therefore the cost of

pattern p with dimension wp × hp is defined as follows:

Costp =

 33, if pattern p is fully filled

33 + wp × hp, otherwise

To reduce the complexity of the optimization problem we initially discard the

candidate patterns whose gains were less than a preset threshold Threshold.

To choose the frequent patterns, we want to

maximize
∑
p

Gainp · xp such that
∑
p

Costp · xp ≤ Psize, (5.1)

where xp is a binary number indicating whether pattern p should be used as a frequent

pattern (1) or not (0), and Psize is the decoder memory in bits that can be used to

store the frequent pattern dictionary.

Optimization (5.1) is an instance of a standard Binary Integer Programming (BIP)

70



problem [46]

maximize cTx

subject to aTx ≤ b

and x ∈ {0, 1}

(5.2)

by setting c = [Gain1 Gain2 · · · GainG], b = Psize, and a = [Cost1 Cost2 · · · CostG].

Here G is the number of candidate patterns which are passed onto the BIP solver

after thresholding. By applying a widely used BIP solver [47], we are able to choose

the optimal frequent patterns from the generated candidate pattern list. In order to

keep the BIP solver efficient, we adaptively incremented the Threshold so that the

number of patterns the BIP solver has to consider is limited.

5.4 Experimental Results

We tested how the improved frequent pattern discovery algorithm affects the re-

sults on the benchmark circuits we introduced in Section 2.4.

In our experiment, we ran the Corner2 algorithm with two frequent pattern dic-

tionaries. The frequent patterns of C2-ORG were extracted from the layout description

(GDSII) as in the original Corner2 algorithm in Chapter III while those of C2-BIP

(or Corner2-BIP) were extracted by generating pattern candidates as in Section 5.2

and were chosen by solving the binary integer programming problem (5.1). Most of

C2-ORG and C2-BIP was written in C/C++. Only the binary integer programming

part was written in MATLAB using the MATLAB function bintprog [47]. All of the

experiments ran on a laptop computer having a 2.53 GHz Intel Core 2 Duo CPU and

4 GB RAM.

5.4.1 Memory

For the memory circuit there were relatively few candidate patterns because of

the circuit regularity, and hence, adaptive thresholding did not take place to discard

71



any of candidate patterns before the BIP solver. We set Psize for C2-BIP so that

the total decoder memory matches that of Block C4 while Psize for C2-ORG was set

by the layout description and cannot be controlled. As shown in the table, C2-BIP

outperforms C2-ORG and Block C4 on every layer.

Compression Ratio (x)
Layer C2-BIP C2-ORG Block C4

1 22,201 18,658 148
2 1,289 1,216 80
3 22,201 18,658 148
4 151 86 54
5 920 920 133
6 920 920 133
7 84 84 32
8 90 67 24
9 171 170 38

10 114 57 25
11 442 442 76
12 11,059 3,169 122
13 28,606 9,616 141

Average 261 192 57

Table 5.1: Corner2-BIP Compression Ratio - Memory

Table 5.1 shows the compression ratio of the algorithms for the memory circuit. On

average C2-BIP achieved 35.8% better compression than C2-ORG, which was already

3.3 times better than Block C4. We can also see that C2-BIP outperforms both

C2-ORG and Block C4 in all layers.

Moreover, as we can see from Table 5.2, even though the entire process was more

complex, the encoding process of C2-BIP is only 3.3% slower than that of C2-ORG

because Algorithm 4 was only applied to the region where C2-ORG failed to match

and that region was relatively small. Moreover, the BIP solver was efficient especially

when the candidate pattern set was small. Therefore, most of the encoding was

absorbed by the FPR algorithm of C2-ORG.

C2-BIP was also able to decode the compressed image 3.3% faster than C2-ORG as

72



Encoding Times (s)
Layer C2-BIP C2-ORG Block C4

1 18.89 4.29 1,875
2 26.48 26.36 1,891
3 18.36 4.29 1,788
4 49.02 48.93 1,815
5 25.26 26.85 1,831
6 25.28 26.86 1,796
7 23.07 25.27 1,846
8 97.32 109.97 1,885
9 25.37 30.18 1,817

10 84.16 78.49 1,917
11 70.68 80.22 1,795
12 6.23 4.16 1,775
13 6.52 4.16 1,762

Total 485.45 470.05 23,793

Table 5.2: Corner2-BIP Encoding Times - Memory

Decoding Times (s)
Layer C2-BIP C2-ORG Block C4

1 2.40 2.53 55.44
2 3.16 3.34 54.99
3 2.42 2.53 52.90
4 2.96 3.20 53.70
5 2.95 3.05 53.55
6 2.90 3.05 54.48
7 3.21 3.23 54.63
8 3.21 3.51 54.79
9 2.79 3.05 54.83

10 2.98 3.44 54.07
11 2.78 3.04 56.43
12 2.95 2.49 51.50
13 2.94 2.48 51.88

Total 37.67 38.93 703.18

Table 5.3: Corner2-BIP Decoding Times - Memory

shown in Table 5.3. This is mainly due to the increase in FPR and the decrease in

corner transformation. Since the application is compress-once-and-decode-multiple-

times, the decreased decoding time makes the algorithm more efficient.

73



5.4.2 BFSK

Tables 5.4 – 5.6 show the experimental results for the BFSK circuit. The BFSK

circuit had a large number of candidate patterns, and we had to discard some of

them to offer a small enough input to the BIP solver using adaptive thresholding.

As shown in the table, C2-BIP outperforms C2-ORG and Block C4 on every layer.

Similarly to the memory circuit, the encoding process of C2-BIP is slower than that

of C2-ORG. Most of the complexity is induced by the circuit irregularity. Because

the BFSK circuit was irregular Algorithm 4 took longer to run. Since most of the

candidate patterns had relatively small gains only a few patterns were passed on to

the BIP solver resulting in a slowdown of the entire encoding process by only 13.7%

over C2-ORG.

Compression Ratio (x)
Layer C2-BIP C2-ORG Block C4

1 20,874 9,226 151
2 7,432 6,760 150
3 1,596 1,186 137
4 3,745 3,270 147
5 1,125 1,033 59
6 609 580 128
7 399 390 111
8 173 167 81
9 474 452 122

10 460,192 195,365 153
11 206 200 86
12 1,082 1,006 138
13 209 203 89
14 1,170 1,093 139
15 236 230 92
16 1,368 1,296 141
17 8,019 6,656 150
18 26,467 19,579 152
19 20,773 9,173 151

Average 537 515 113

Table 5.4: Corner2-BIP Compression Ratio - BFSK

74



Encoding Times (s)
Layer C2-BIP C2-ORG Block C4

1 1.74 2.41 451
2 16.33 17.88 3,791
3 15.47 18.31 3,800
4 15.11 17.21 3,760
5 26.62 28.07 12,468
6 26.28 26.43 4,485
7 54.74 37.09 4,476
8 15.36 17.91 4,588
9 58.11 35.56 4,393

10 15.93 20.73 4,866
11 17.56 17.90 4,414
12 42.59 33.20 4,428
13 15.00 17.88 4,651
14 50.16 34.38 4,413
15 17.29 17.80 4,364
16 53.06 38.54 4,381
17 14.30 15.74 3,756
18 13.21 14.26 3,049
19 1.73 2.42 454

Total 470.59 413.75 80,987

Table 5.5: Corner2-BIP Encoding Time - BFSK

On average C2-BIP achieved 4.5% better compression than C2-ORG, which was

already 4.6 times better than Block C4. Since the difference between C2-BIP and

C2-ORG is on how C2-BIP detects the circuit regularity, we expected to achieve only a

marginal improvement for irregular circuits such as the BFSK circuit. Finally, C2-BIP

was also able to decode the compressed image 3.4% faster than C2-ORG.

75



Decoding Time (s)
Layer C2-BIP C2-ORG Block C4

1 0.80 0.84 29.50
2 6.77 8.22 242.07
3 6.63 8.24 237.42
4 6.57 8.22 237.35
5 7.29 8.35 280.67
6 7.26 8.33 274.15
7 12.08 9.74 282.03
8 9.71 9.68 289.53
9 10.91 9.67 275.56

10 7.61 9.41 293.04
11 10.10 9.64 281.57
12 10.89 9.57 278.34
13 10.32 9.62 290.37
14 10.46 9.57 276.35
15 9.33 9.60 277.88
16 9.34 9.59 275.98
17 6.49 8.21 236.50
18 5.23 6.47 190.71
19 0.79 0.84 27.68

Total 148.58 153.81 4,576.71

Table 5.6: Corner2-BIP Decoding Time - BFSK

76



CHAPTER VI

Tailoring Corner2 for Multiple Electron Beam

Direct Write Systems

Based on the data delivery system introduced by Dai and Zakhor [40], we de-

veloped in Chapter III a lossless compression algorithm, Corner2 that has better

compression performance than Block C4 [27] for both regular and irregular circuits.

In Chapter V, we improved the frequent pattern discovery algorithm of Corner2 by

using isolated polygons, i.e., polygons that are separated from each other, as candidate

patterns and by solving an integer programming problem. The result shows that the

Corner2-BIP algorithm obtains high compression ratios and fast encoding/decoding

times while requiring limited decoder cache on the decoder hardware. Moreover, we

have shown that the entire decompression is simple so that it could be implemented

as a hardware add-on to the electron beam writer in Chapter IV.

However, neither Corner2 nor Corner2-BIP were optimized for the MEB systems

that are currently under development. Corner2 and Corner2-BIP assume the decoder

can write in a row-by-row fashion with a raster order, i.e. from top to bottom and

from left to right, but neither MAPPER [8], IMS [9], nor REBL [10] utilizes raster

writing. In fact, REBL writes a 4096× 248 block at a time to produce a large pixel

with multilevel electron beam dosage, while MAPPER and IMS have electron beam

writers positioned in a lattice formation allowing each electron beam writer to write

77



a designated block in a zig-zag order.

In this chapter we introduce Corner2-MEB [48], which is a modified Corner2-BIP

algorithm suitable for MAPPER systems. We redesigned the algorithm to support

both block processing and a zig-zag writing order. The new algorithm can also be

applied to IMS systems, but it does not appear to perform well on them because of

their extremely small block size (16 × 16). The experimental results show that for

MAPPER systems there are performance deteriorations because of block processing,

but the Corner2-MEB algorithm still attains a high performance.

The rest of this chapter consists of three parts; in Sections 6.1 and 6.2 we describe

the Corner2-MEB encoding and decoding processes. We show experimental results in

Section 6.3.

6.1 The Compression Algorithm

Figure 6.1 shows an overview of the Corner2-MEB compression algorithm. First,

the layout image is separated into blocks so that each block is written by a single

electron beam writer. Second, we detect the frequent patterns within the blocks. In

order to do that, we first extract the frequent patterns from the GDSII description

of the entire layer image as in Section 3.1.2, generate candidate patterns from the

individual image blocks and choose the optimized frequent pattern list from all of

the candidate patterns as in Section 5.2. Third, each block goes through a forward

transformation process which replaces the frequent patterns from the image blocks

and applies the corner transform to the unmatched parts. Note this process is similar

to the FPR and corner transform processes in the original Corner2 algorithm in

Section 3.1, but it has been revised so that each image block is later reconstructed

by the decoder in a zig-zag order. Fourth, the pixels of the encoded image blocks are

flattened to form a pixel stream so that the decoder can at each time simultaneously

reconstruct a pixel for each block. Finally, the flattened pixel stream is compressed

78



to a bit stream using entropy coding technology - RLE, EOB coding, and arithmetic

coding - as in the original Corner2 algorithm shown in Section 3.1.5. In the following

subsections, we will explain each step in detail.

Input: 
Layout Image 

Block 
Separation 

Frequent Pattern 
Detection 

•GDSII Pattern Extraction 
•Candidate Pattern Generation 
•Pattern Optimization 

Forward 
Transformation 

•Frequent Pattern Replacement 
•Corner Transformation 

Flatten 
Transformed 

Image 
RLE+EOB 

Coding 

Arithmetic 
Coding 

Output: 
Compressed 

bits 

Forward 
Transformed 
Image Blocks 

Flattened 
Pixel Stream 

Image 
Blocks 

Frequent Pattern List 
 & 

Image Blocks 

Figure 6.1: Corner2-MEB Compression Algorithm Overview

In Figure 6.1, the Frequent Pattern Detection and Forward Transformation algo-

rithms refer to processes that are applied to individual image blocks as opposed to the

full layout image. Similarly, the input/output of those two components is an image

block and not the full image. For example, the forward transformation process is

applied independently to each image block to produce the corresponding transformed

image block.

6.1.1 Block Separation

Since each electron beam writer has a limited writing region, we need to make sure

the image that we pass to each electron beam writer corresponds to its writing region,

which is a block. Therefore, we segment the layout image into blocks. Figure 6.2

shows the writing strategy of the MAPPER lithography system [8]. In the right part

of the figure, the green pillars show the electron beam positions. While the electron

79



beams are moving in a horizontal zig-zag order and turned on or off depending on

the control signal, the stage where the wafer is fixed is moving vertically so that the

electron beams write a tall rectangular stripe region on the wafer. Each electron beam

writes a region which is 2 µm wide and the 26 mm tall in a horizontal zig-zag order.

Once the electron beams write 26 mm tall blocks, they continuously repeat writing

the blocks until they reach the end of wafer. That is, each electron beam writes a 2

µm wide stripe with the height of the wafer region that it covers.

The left part of the figure shows how the movement of the stage affects the writing

strategy on the wafer. By moving the stage in a vertical zig-zag order, the MAPPER

system with 13,000 electron beams writes a 26 mm wide stripe during a single vertical

scan. By writing these 26 mm wide stripes on the wafer in a vertical zig-zag order, we

are actually printing an upside down copies of the circuit layout image for the stripes

written from the bottom to the top. This could be a problem if a circuit layout image

has to be covered by multiple stripes. However, the 26 mm width of a stipe is wide

enough to cover most circuits; for example, the previous generation 45 nm Intel Core

i7-920 process had a die size of 263 mm2 [49].

Field

EO slit

300 mm wafer EO slit
13,000 beams

26
 m

m

26 mm

Figure 6.2: The MAPPER writing strategy

Observe that since MAPPER staggers its writing regions in the vertical direction

by 150 µm as shown in the right part of Figure 6.2, we cannot simply partition the

80



image into blocks and pass each block to the corresponding electron beam writer.

The writing strategy of the electron beam writers to create the circuit layout image

on the wafer is shown in Figure 6.3. Here, the starting position of each electron beam

in each writing is marked with a black square and the writing region of each electron

beam writer is illustrated as a tall rectangular block where the rows are successively

written from the top row to the bottom row in a horizontal zig-zag order. Whenever

an electron beam writer finishes writing a block, it repeats writing the same block

until it reaches the end of the wafer region. In the example of Figure 6.3, each electron

beam writer writes three copies of the blocks (represented by “Writings #1 – #3”),

and two copies of the circuit layout image (represented by “Circuits #1 and #2”) are

printed on the wafer.

In order to emphasize that some blocks can contribute to two different circuit

layout image copies, we used different coloring (light and dark) for the corresponding

blocks. For example, block #2 of Writing #2 consists of two parts block 2-2-1 and

block 2-2-2. While block 2-2-1 is part of Circuit #1 along with the second part of

block #2 of Writing #1 (block 2-1-2), block 2-2-2 is part of Circuit #2 along with

the first part of block #2 of Writing #3 (block 2-3-1). Finally, note that in Figure

6.3 all blocks with the same color are identical. That is, block 2-1-1, block 2-2-1, and

block 2-3-1 are identical and block 2-1-2, block 2-2-2, and block 2-3-2 are identical.

Therefore, the block separation process reinterprets the circuit layout image (or

Circuit) in the order of the Writings of Figure 6.3. Figure 6.4 shows how this pro-

cess changes the circuit layout image. The top of Figure 6.4 shows a “Circuit” of

Figure 6.3, which is a circuit layout image. To obtain the block separated image, we

first partition the circuit layout image. Then, we apply circular shifts to the blocks

that contribute to two different circuit layout image copies in the Figure 6.3 – the

corresponding blocks are blocks #2 – #4 and #6 – #8 – so that each block has its

electron beam starting point at the top left corner of the block, as in the second part

81



6-3-1 

7-3-1 

8-3-1 

3-3-1 

4-3-1 

2-3-1 

5-1 

6-1-1 

7-1-1 

8-1-1 

2-1-1 

3-1-1 

4-1-1 

5-2 

6-2-1 

7-2-1 

8-2-1 

2-2-1 

3-2-1 

4-2-2 

5-3 

2-1-2 

3-1-2 

4-1-2 

6-1-2 

7-1-2 

8-1-2 

2-2-2 

3-2-2 

4-2-2 

6-2-2 

7-2-2 

8-2-2 

1-1 

1-2 

1-3 

1-1 

2-1-1 

3-1-1 

5-1 

6-1-1 

7-1-1 

8-1-1 1 

2 

1 

1 1 1 1 

2 2 

1 

1-2 2 

2-2-1 

2-1-2 

5-2 2 

6-2-1 6-2-1 

6-1-2 2 

8-2-1 

2-2-2 6-2-2 

2 

1-3 1-3 

2-3-1 

3-3-1 

5-3 5-3 

6-3-1 

7-3-1 

8-3-1 8-3-1 

W
ritin

g
 #

3
 

W
ritin

g
 #

1
 

W
ritin

g
 #

2
 

2-3-2 

3-3-2 

4-3-2 

6-3-2 

7-3-2 

8-3-2 

C
irc

u
it #

1
 

C
irc

u
it #

2
 

Figure 6.3: The application of the MAPPER writing region to the wafer

of Figure 6.4. Note that the second part of Figure 6.4 corresponds to a “Writing” of

Figure 6.3. Throughout the discussion of the processes in Figure 6.1, when we refer

to image blocks we are referring to the blocks in the second part of Figure 6.4. The

reason that we concentrate on a “Writing” instead of a “Circuit” in the lower part of

Figure 6.4 is to emphasize the flow of decompressed data to the electron beams.

The frequent pattern discovery algorithm which is described in Section 6.1.2.1

searches each block to discover the frequent patterns used for all blocks. Then each

82



Circuit Layout Image 

MAPPER Block Image 

Figure 6.4: The effects of block separation

block is a separate input to the forward transformation process. Since it is important

to understand the FPR process in order to illustrate the frequent pattern discovery

process, in the next subsection we begin by explaining the forward transformation

process.

6.1.2 Forward Transformation

Once the blocks are separated and the frequent patterns are discovered, each block

separately goes through the forward transformation process. During the forward

transformation process, we first search the image block looking for embeddings of

predetermined frequent patterns. Whenever there exists an embedding of a frequent

pattern, we replace the embedding with a simple representation. After all of the

83



frequent pattern embeddings are replaced with simple representations, we apply the

corner transformation to the remaining image where no frequent pattern embeddings

were found. Throughout this process, we handle the regular circuit parts with FPR

and the irregular circuit parts with corner transformation.

In the following subsections, we will explain in detail the FPR and corner trans-

formation processes.

6.1.2.1 Frequent Pattern Replacement

Figure 6.5 offers an overview of FPR. The inputs to the FPR encoder are an

image block and the frequent pattern list, and the FPR encoder outputs a matched

pattern image and a binary residue image. The FPR process is applied to each image

block with the frequent pattern list fixed for all image blocks. The FPR encoder

seeks the patterns within the block. Whenever a pattern is matched within the image

block, the encoder will replace the first point of the pattern embedding with a pattern

symbol and will replace the rest of filled pixels that have been matched with “0”s

(or empty). Note that because of the zig-zag writing the first point of the pattern

embedding could be either the top-left corner or the top-right corner of the pattern

depending respectively on whether the first row of the pattern is odd or even. For

the example in Figure 6.5, the first 3 × 3 square pattern begins at the first row of

the image. Since the first row is written from left to right, the top left corner of the

pattern is replaced with the pattern symbol (gray pixel). Similarly, the second 3× 3

square pattern is found at the second row of the image and since the second row is

written from right to left, the top right corner of the pattern is replaced with the

pattern symbol.

Note the output matched pattern can have symbols from the set {0, S1, S2, · · · , SP},

where Si is the symbol used to represent frequent pattern i and P is the size of the

frequent pattern list. Finally note that when the FPR encoder seeks a pattern, it

84



Frequent Pattern Replacement Layout Image 

Matched 
Pattern 

Residue 
Image 

(Binary) 

Freq. 
Pattern 

writing 
direction 

Figure 6.5: Frequent Pattern Replacement

more precisely searches for the pattern surrounded by empty rows and columns so

that the pattern embedding is isolated, i.e., not connected to other polygons. This

is necessary to avoid interference with corner transformation and to prevent partial

pattern matching which could result in performance deterioration. Otherwise, the

3×9 rectangle at the bottom of Figure 6.5 can be represented by three 3×3 squares,

which is not desirable.

Once the FPR process is applied, the residue image block is passed to the corner

transformation process.

6.1.2.2 Corner Transformation

The input to the corner transformation process is the residue image block from the

FPR encoder, and the output is the corner transformed image block. As we indicated

earlier, like the FPR encoder the corner transformation process is only processing a

block of the layout image at a time.

Figure 6.6 illustrates the corner transformation process. First, we expand the

input image block by introducing two empty columns (shown as gray grids in the

85



!"

(a) Residue Image (b) Horizontal coding of (a) 

(c) Vertical coding of (b) 

writing 
direction 

(d) Left shifting of even 
numbered rows of (c) 

Figure 6.6: Corner transformation process of Corner2-MEB

figure) to surround the input image block in order to handle the zig-zag writing order.

Second, we apply horizontal and vertical bi-transitional encoding on the expanded

image block. This bi-transitional encoding marks the pixels (black) where the current

pixel value is different from the previous pixel read in the encoding direction; i.e., left

to right for horizontal encoding and top to bottom for vertical encoding. Next, we

left-shift the even-numbered rows; i.e., the rows which are written from right to left.

During this left-shift, the pixels from the surrounding right column could get inside

the image area. Finally, we discard the pixels in the expanded columns. By applying

this corner transformation, we represent the residue image block using its transitional

corners. We call these points transitional corners because they are similar to polygon

corners, but they are extracted by transitional coding. Similar to the FPR process,

the corner transformation is separately applied to each image block.

The algorithm is summarized in Algorithm 5. In the algorithm, x ∈ [1, · · · , C] is

the column index of the image block, y ∈ [1, · · · , R] is the row index of the image

86



block, and we will assume all odd rows are written from left to right and all even rows

are written from right to left. Note that R × C is the dimension of the block and is

predefined by the MEB DW system.

Algorithm 5 Corner Transformation Algorithm

Input: Layer image IN ∈ {0, 1}R·C
Output: Corner image OUT ∈ {0, 1}R·C

1: Initialize OUT(x, y) = 0, ∀x, y.
2: for y = 1 to R do
3: for x = 1 to C do
4: if y is odd then
5: if IN(x− 1, y − 1) = IN(x, y − 1) and IN(x− 1, y) 6= IN(x, y) then
6: OUT(x, y) = 1
7: end if
8: if IN(x− 1, y − 1) 6= IN(x, y − 1) and IN(x− 1, y) = IN(x, y) then
9: OUT(x, y) = 1

10: end if
11: else
12: if IN(x− 1, y − 1) = IN(x, y − 1) and IN(x− 1, y) 6= IN(x, y) then
13: OUT(x− 1, y) = 1
14: end if
15: if IN(x− 1, y − 1) 6= IN(x, y − 1) and IN(x− 1, y) = IN(x, y) then
16: OUT(x− 1, y) = 1
17: end if
18: end if
19: end for
20: end for

In Section 3.1.3, we introduced a one-step corner transformation algorithm where

pixel (x, y) is processed as a function of the input pixels (x − 1, y), (x, y − 1), and

(x − 1, y − 1). We modified that algorithm so that it applies a left-shift for the

even-numbered rows in Lines 12–16 of Algorithm 5.

Observe that the transitional corners can only appear at a polygon corner, right of

a polygon corner, left of a polygon corner, below the polygon corner, to the bottom-

right of a polygon corner, and to the bottom-left of a polygon corner. By matching

isolated patterns during FPR, we guarantee that the transitional corners produced by

Algorithm 5 do not overlap with any of the pattern symbols in the matched pattern

87



image block. We sum the pattern matched image block and the corner transformed

image block to form the forward transformed image block. By choosing the FPR

symbols (Si) to not overlap with corner symbols {0, 1}, we can always separate the

matched pattern image block and the corner transformed image block from the for-

ward transformed image block.

Finally, after all blocks have been forward transformed, they are input to the

Flatten Pixel Stream process which will be explained in Section 6.1.4 to produce a

one-dimensional (encoded) pixel stream.

6.1.3 Frequent Pattern Discovery

We next discuss the generation of the frequent pattern list. This process contains

three sub-processes: 1) pattern extraction from the GDSII layout description, 2)

candidate pattern generation, and 3) selection of the optimized pattern list. In the

following subsections we will offer a detailed description of these procedures.

6.1.3.1 GDSII Pattern Extraction

In Section 3.1.2, we extracted patterns that are frequently used in the entire

layout image by seeking the frequently used substructures in the original GDSII layout

descriptions since the layout image is rasterized from the GDSII representation. This

procedure, which can be effective, is illustrated in Figure 6.7.

GDSII File 

Layer # 

Analyze 
Frequently 
Repeated 
Structures 

Rasterize 

Frequent 
Pattern Image 

Figure 6.7: Frequent Pattern Discovery from GDSII Layout Description

However, as illustrated in Figure 6.8, this method has shortfalls because some

substructures could result in different image patterns depending on the rasterization

grid. In Figure 6.8, two 5 nm× 5 nm squares are defined in the layout description

88



(GDSII). When we rasterize the image in a 4 nm grid (Figure 6.8. right), we are

actually quantizing a 4 × 4 block from the 1 nm grid as a single pixel (Figure 6.8.

left) and we fill the pixel if the number of filled pixels in the original block is at least

8. The rasterized image shown in Figure 6.8. right has two different polygons, but

they came from the same layout description.

Layout Description (1nm grid) Bitmap Image (4nm grid) 

Polygon1 = (0,0)-(0,4)-(4,4)-(4,0)-(0,0) 
Polygon2 = (6,7)-(6,11)-(10,11)-(10,7)-(6,7) 

Figure 6.8: Example of pattern mismatch due to rasterization

Furthermore, since we have partitioned the image into blocks, the patterns ex-

tracted from the GDSII representation may not have matches. We therefore need to

search for frequent patterns within the block images.

6.1.3.2 Candidate Pattern Generation

In order to extract patterns that are frequently used for entire image blocks, we

search the blocks. We then generate a list of candidate patterns and later determine

which among these should be included in the frequent pattern list. In this section,

we discuss the candidate pattern discovery algorithm which is mainly described in

Section 5.2. As we explained in Section 6.1.2.1, during the FPR process we match

isolated patterns; i.e., we first surround the pattern with empty rows on the top

and bottom and empty columns to the left and right. We require that the frequent

patterns satisfy the following conditions:

89



1. the patterns should be defined in a rectangular region,

2. the patterns should never overlap with other patterns, and

3. the patterns should be isolated.

First, we will explain how the candidate patterns are generated. Later we de-

termine which ones will be included in the frequent pattern dictionary. The can-

didate pattern generating algorithm is shown in Algorithm 6. In the algorithm,

x ∈ [1, · · · , C] is the column index of the image block and y ∈ [1, · · · , R] is the row

index of the image block. Once again note that R× C is the block dimension which

is predetermined by the MEB DW system.

Algorithm 6 Candidate Pattern Generation

Input: Layout image IN ∈ {0, 1}R·C
Output: List of patterns PatternList

Intermediate: List of patterns Checked ∈ {0, 1}R·C
1: Initialize Checked(x, y) = 0, ∀x, y.
2: for y = 1 to R do
3: for x = 1 to C do
4: if Checked(x, y) = 0 and IN(x, y) = 1 then
5: (x0, y0, x1, y1) = DefinePatternRegion(x, y)
6: Pattern = MakePattern(x0, y0, x1, y1)
7: p = PatternList.Find(Pattern)
8: if p 6= NOT FOUND then
9: PatternList[p].frequency += 1

10: else
11: PatternList.Insert(Pattern, 1)
12: end if
13: for yy = y0 to y1 do
14: for xx = x0 to x1 do
15: Checked(xx, yy) = 1
16: end for
17: end for
18: end if
19: end for
20: end for

The algorithm starts by picking a pixel from the image block in raster order,

i.e., from top to bottom and then from left to right. If the pixel is filled (1), then

90



we define a rectangular region (x0, y0) − (x1, y1) so that all of the filled pixels that

are connected to (x, y) are covered by it (Line 5). We then make the rectangular

region (x0, y0) − (x1, y1) as the candidate pattern Pattern (Line 6) and search the

list of candidate patterns PatternList (Line 7) to see whether or not the pattern

was already in the list. If Pattern was already in the PatternList, we increase

its frequency by 1 (Line 9). Otherwise, we put Pattern into the PatternList and

initialize its frequency to 1 (Line 11). Finally, we make sure that the region is not

searched again by marking the region in Checked (Lines 13–17), and this prevents

the patterns from overlapping.

Once again, note that this frequent pattern discovery algorithm is applied sepa-

rately to each image block. By augmenting the discovered PatternList after pro-

cessing each block image, we obtain the final candidate pattern list. Moreover, to

incorporate the GDSII extracted patterns in Section 6.1.3.1 with the Algorithm 6

patterns, we first run the FPR algorithm of Section 6.1.2.1 on each image block using

only the GDSII extracted patterns. We next apply Algorithm 6 to the residue image

blocks which are the block image regions that have not been matched by the FPR

process. By combining both the GDSII extracted patterns and the patterns generated

using Algorithm 6, we obtain the final candidate pattern list.

6.1.3.3 Pattern Optimization

Once the candidate patterns are discovered, we analyze them in order to decide

which patterns to keep and which patterns to discard. The final patterns will be used

as the frequent patterns of the FPR encoder for every image block. As discussed in

Section 5.3, there are the two parameters that we consider to make this decision. The

first parameter is gain, which provides information on what improvement we should

expect by using the pattern for the FPR process. Since compression is related to the

corners we remove by patterns as well as to the frequency of patterns, we define the

91



gain of pattern p as :

Gainp = [N(Cp)− 1]×N(Fp),

where N(Cp) is the number of corners of pattern p and N(Fp) is the frequency of

pattern p.

The second parameter is cost, which shows how much decoder memory is required

to keep the pattern in the decoder memory. For the pattern p whose dimension

is wp × hp, the decoder usually needs wp × hp bits of memory to store the pattern.

However, we can reduce the cost when the pattern is fully filled. For this case, since we

already know that all pixels are filled all we need to store are the pattern dimensions.

We allocate 16 bits for each dimension and a 1 bit flag to specify whether or not

the pattern is fully filled. Therefore the cost of pattern p with dimension wp × hp is

defined as follows:

Costp =

 33, if pattern p is fully filled

33 + wp × hp, otherwise

To reduce the complexity of the optimization problem we initially discard the

candidate patterns whose gains were less than a preset threshold Threshold.

To choose the frequent patterns, we want to

maximize
∑
p

Gainp · xp such that
∑
p

Costp · xp ≤ Psize, (6.1)

where xp is a binary number indicating whether pattern p should be used as a frequent

pattern (1) or not (0), and Psize is the decoder memory in bits that can be used to

store the frequent pattern dictionary.

Optimization (6.1) is an instance of a standard Binary Integer Programming (BIP)

92



problem [46]

maximize cTx

subject to aTx ≤ b

and x ∈ {0, 1}

(6.2)

by setting c = [Gain1 Gain2 · · · GainG], b = Psize, and a = [Cost1 Cost2 · · · CostG].

Here G is the number of candidate patterns. By applying a widely used BIP

solver [47], we are able to choose the optimal frequent patterns from the generated

candidate pattern list.

Finally, note that this optimal frequent pattern set is used during the FPR process

of every image block. If we instead use a different frequent pattern set for each image

block, we can only assign a fraction of Psize for the FPR of each image block in order

to sustain the same decoder memory requirement. That results in discarding some

of the large patterns that are widely used in multiple image blocks, and hence, in

deteriorating the compression performance.

6.1.4 Flatten Pixel Stream

Once the forward transformed image blocks are generated, we “flatten” the for-

ward transformed image blocks into a one-dimensional pixel stream so that the MAP-

PER system receives an encoded pixel for each block at a time to match the current

placement of all of the electron beams. We obtain this stream by gathering the trans-

formed image blocks and reading one pixel from each block in a horizontal zig-zag

order.

An example of this permutation is shown in Figure 6.9 where each block has

dimension 5× 4 and each block is written in zig-zag order. For the example, we first

read the first (or top-left) pixels of each block in the order of the blocks. Then, we

read the second pixels in zig-zag order of each block and continue that until the last

pixels in zig-zag order of each block are read. The order in which the pixels are read

93



1 7 13 19 2 8 14 20 3 9 15 21 4 10 16 22 5 11 17 23 6 12 18 24 

43 37 31 25 44 38 32 26 45 39 33 27 46 40 34 28 47 41 35 29 48 42 36 30 

49 55 61 67 50 56 62 68 51 57 63 69 52 58 64 70 53 59 65 71 54 60 66 72 

91 85 79 73 92 86 80 74 93 87 81 75 94 88 82 76 95 89 83 77 96 90 84 78 

97 103 109 115 98 104 110 116 99 105 111 117 100 106 112 118 101 107 113 119 102 108 114 120 

Gray box: First pixel of each block (1st – 6th bit) 
Numbers: Writing order 

Dotted line : Block order 
Solid line  : In-block writing order 

Figure 6.9: Permute pixels corresponding to the writing strategy

in this example is marked in the image.

Finally note that this permutation operation inputs the forward transformed im-

age blocks and outputs a long one-dimensional stream to which the following entropy

coding schemes will be applied.

6.1.5 Entropy Encoding

We use the final entropy coding scheme of Section 3.1.5 to compress the final

flattened stream of pixels. Since the forward transformed images are very sparse, the

flattened stream contains long run of zeroes making RLE and EOB coding efficient

to compress it. Moreover, we also find long run of EOBs as the forward transformed

images are very sparse. We use an N -ary representation to encode runs of EOBs and

an M -ary representation to encode run of zeroes as in Section 3.1.5. Observe that

the output of RLE+EOB coding can have up to P + 1 + M + N symbols, where P

is the number of frequent patterns after the pattern optimization process in Section

6.1.3.3 and one symbol is needed for representing the transitional corners shown in

Section 6.1.2.2.

This P+1+M+N symbol string is compressed using arithmetic coding [33, 35] for

further compression. We followed the implementation of arithmetic coding provided

by Witten et al. [35]; for the implementation the decoder requires four bytes per

94



alphabet symbol, and since we used P + 1 + M + N symbols, 32(P + 1 + M + N)

bits were required for arithmetic decoding.

6.2 The Decompression Algorithm

The Corner2-MEB decoder decompresses the compressed bit stream to write the

circuit layout image using the electron beam arrays. Because of the memory con-

straints of the decoder, the same compressed bit stream is repeatedly retransmitted

to the decoder during each “Writing” of an electron beam.

Corner2-MEB Decoder 

Input: 
Compressed bits!

Arithmetic 
Decoding 

RLE + EOB 
Decoding 

Block 
Reconstruction 

•Inverse Transformation 
Data Queue 

Inverse Transformation 

•Frequent Pattern Reconstruction 

•Inverse Corner Transformation 

Electron Beam 
Writers 

Output: 
Wafer Image 

Blocks 

(P+1)-ary  

Flattened 

Pixel Stream 

Forward Transformed Image Blocks 

Reconstructed 

Image Blocks 

Inverse Corner 
Transformation #1 

Frequent Pattern 
Reconstruction #1 

Frequent 
Pattern 

Dictionary 
(Shared) 

in out 

Inverse Transformation Process Block #1 

Decoder Cache 

Row Buffer #1 

Inverse 

Transformation 

Data Queue #1 

Electron Beam 

Writer #1 

Figure 6.10: Corner-MEB Decompression Algorithm Overview

The Corner2-MEB decompression process is illustrated in Figure 6.10 and consists

of four major blocks: arithmetic decoding, run length and end-of-block decoding,

block reconstruction, and an inverse transformation process block for each electron

beam which is directly connected to it. The entire decoder is fabricated on the same

95



silicon as the electron beam writer (controller) array.

The first two steps, arithmetic decoding and run length and end-of-block decoding,

reverse the corresponding encoding procedures and output the (P + 1)-ary flattened

pixel stream of Section 6.1.4. In the block reconstruction process the input pixel

stream is separated into multiple pixel streams which each correspond to a forward

transformed image block. Each such block is converted back into a reconstructed

image block which is passed to an electron beam writer that writes the decoded block

onto the wafer as the stage moves. The different image blocks are processed and

written in parallel on the wafer by independent inverse transformation processes and

the corresponding electron beam writers.

The decoder requires dlog2(3)×widthe bits of cache for each inverse transformation

process block to keep intermediate information for the row-by-row decoding of each

block, Psize bits of memory for the frequent pattern dictionary, and 32(P+1+M+N)

bits for arithmetic decoding, where width is the width of the image block, P is the

number of total frequent patterns, and M/N are RLE/EOB parameters.

6.2.1 Block Reconstruction

Since arithmetic and RLE+EOB decoding are well-understood in data compres-

sion, we will next discuss the reconstruction of the forward transformed image blocks

of Section 6.1.2 from the flattened pixel stream of Section 6.1.4. As illustrated in

Figure 6.11, we can achieve this by wiring each symbol of the flattened pixel stream

to the corresponding inverse transformation data queue.

In the example shown in Figure 6.11, we are assuming there are six electron

beam writers and six inverse transformation processes working simultaneously for the

system. The information stored in the inverse transformation data queue is passed

onto the inverse transformation process where each row of a forward transformed

image block is reconstructed and decoded as a row of the reconstructed image block.

96



1 7 13 19 

43 37 31 25 

49 55 61  

Q1 Q2 Q3 Q4 Q5 Q6 

1 2 3 4 5 6 

7 8 9 10 11 12 

13 14 15 16 17 18 

19 20 21 22 23 24 

25 26 27 28 29 30 

31 32 33 34 35 36 

37 38 39 40 41 42 

43 44 45 46 47 48 

49 50 51 52 53 54 

55 56 57 58 59 60 

61 62 63 64 65 66 

      

1 2 3 4 5 6 7 8 9  

Input Stream 

Inverse Transformation Data Queues 

Forward 
Transformed 

Image Block #1 

Inverse 
Transformation 

1 7 13 19 

43 37 31 25 

49 55 61  

Reconstructed 
Image Block #1 

Figure 6.11:
Reconstructing the forward transformed image blocks from the flattened
stream

Since each inverse transformation process block is connected to the corresponding

electron beam writer, each reconstructed row is passed to the electron beam writer

to be written on the wafer.

6.2.2 Inverse Transformation

Inverse transformation is applied to each forward transformed image block to

reconstruct the original image block. The reconstructed image block is forwarded to

the associated electron beam writer. The inverse transformation performs Frequent

Pattern Reconstruction and Inverse Corner Transformation. Recall that the frequent

patterns are encoded using symbols S1, · · · , SP while the transitional corners are

marked by the symbol 1.

The bottom half of Figure 6.10 shows the detailed hardware architecture of an

inverse transformation block. As illustrated in the figure, both the inverse corner

transformation and the frequent pattern reconstruction processes require a row buffer

97



to keep track of the previous row’s status. The frequent pattern reconstruction process

also requires a frequent pattern dictionary. Note that this frequent pattern dictionary

is shared among all of the inverse transformation blocks.

Observe that since the electron beams write a pixel of each image block at the same

time, synchronization is needed among the inverse transformation processes. Here we

have the inverse transformation processes produce a row of each reconstructed image

block in parallel.

We next explain the operation of the inverse corner transformation and the fre-

quent pattern reconstruction processes for an image block.

6.2.2.1 Inverse Corner Transformation

The inverse corner transformation uses pixels from the previous row and column

to decode the current pixel. We designed the decoder to decode the input corner

transformed image block in a row-by-row manner instead of in its entirety in order

for this process to be compatible with the restricted memory available to the hardware

decoder. The inverse corner transformation process is as follows: First, the decoder

reads the input corner transformed image block in a zig-zag order. The zig-zag order

is the same as raster order except it reads the even rows from right to left. Second, the

decoder processes the current pixel by checking the status of the row buffer (BUFF).

The row buffer is used to store the status of the previous (decoded) row. It uses

two symbols, 0 and 1, to represent its status, and hence, the buffer requires width

bits of memory. “0” means ‘no transition’ while “1” means ‘transition’ and indicates

the starting/ending point of a vertical line. Third, whenever the read symbol is a

transitional corner point (“1”), the decoder starts reconstructing a horizontal line by

setting the horizontal line fill flag (Fill) until it reads another transitional corner

point from the input row and resets the horizontal line fill flag. For the even rows,

this line is written from right to left, while it is written from left to right for the odd

98



rows. Fourth, for every new horizontal line created by the transitional corners, the

row buffer (BUFF) is updated so that the decoder can take the status of the current

row into account while reconstructing the next row.

Note that because we are dealing with “transitional corners”, a horizontal line

starts from a transitional corner point and ends one pixel before the pairing transi-

tional corner point. In Figure 6.6, step (d) is applied to sustain the same decoding

rule for the even rows. If the encoder did not left shift the even rows, then in order

to reconstruct the horizontal lines of those rows the decoder has to start a horizontal

line one pixel after a transitional corner point and end it at the pairing transitional

corner point. However, there could be a problem reconstructing the horizontal line of

the even rows when the first pixel of the row (i.e., the rightmost pixel) has to be filled.

Since there is no pixel to the right of the rightmost pixel, the reverse line from right

to left can not be reconstructed using this decoding rule. By inserting an empty right

column and allowing the transitional corners to appear there and applying left shifts

to the even rows as in step (d) of Figure 6.6, we can always reconstruct horizontal

lines by starting from a transitional corner point and ending it one pixel before the

corresponding transitional corner point following the row direction.

Because the inverse corner transformation rule is independent of the row direction,

we have to make sure that the column index matches the row direction. Algorithm

7 describes the inverse corner transformation process. We assume the inverse corner

transformation decoder can randomly access the entire row buffer and the input corner

transformed image block is read in a zig-zag order. Note that the
⊕

operation is a

binary XOR operation, and is only applied to binary summands.

In Algorithm 7, the horizontal fill flag (Fill) is initialized for every row (Line 4).

Then we check the row number and update the column index (Lines 6–10). If the row

is odd numbered, then the column index starts from 1 to C (Lines 6–7), while the

order is reversed (from C to 1) if the row number is even. We update the column index

99



Algorithm 7 Inverse Corner Transformation

Input: Corner transformed image block IN ∈ {0, 1}R·C
Output: Reconstructed image block OUT ∈ {0, 1}R·C
Intermediate: Row Buffer BUFF ∈ {0, 1}R

1: Initialize BUFF(x) = 0, ∀x.
2: Initialize OUT(x, y) = 0, ∀x, y.
3: for y = 1 to R do
4: Fill = 0
5: for x = 1 to C do
6: if y is odd then
7: x′ = x
8: else
9: x′ = C + 1− x

10: end if
11: if BUFF(x′) = 1 then
12: OUT(x′, y) = 1
13: end if
14: if IN(x′, y) = 1 then
15: Fill = Fill

⊕
1

16: end if
17: OUT(x′, y) = OUT(x′, y)

⊕
Fill.

18: BUFF(x′) = BUFF(x′)
⊕

Fill.
19: end for
20: end for

if the row number is even (Lines 8–10). Lines 11–13 process the buffer. If the buffer is

filled, i.e., if there is a vertical fill, then the corresponding pixel is filled. If the input

pixel (read in zig-zag order) is a transitional corner (“1”), the decoder changes the

status of the horizontal fill flag (Lines 14–16). Finally, depending on the horizontal

fill flag (Fill), the output pixel (Line 17) and the buffer (Line 18) are updated if

necessary. If the input pixel is “0”, the decoder makes no horizontal/vertical changes

to the image, but it fills the output pixels and updates the buffer according to the fill

status.

6.2.2.2 Pattern Reconstruction

If the decoder finds symbols {S1, · · · , SP} within the forward transformed image

block, it starts the pattern reconstruction process. First, it reconstructs the first

100



row of the corresponding pattern according to its writing order. If the decoder is

processing an odd row, it will reconstruct the pattern row from left to right and

otherwise it will reconstruct the pattern row from right to left. Second, it updates

the corresponding buffer with the following string:

[$ Pattern# Row#]

Here $ is a special symbol used to indicate the start of FPR. If pattern p of

dimension wp × hp is to be reconstructed, then Pattern# is a dlog2(P )e-bit binary

representation of p and Row# is a dlog2(hp − 1)e-bit binary representation of one less

than the remaining number of pattern p rows the decoder has to reconstruct. Because

Pattern# determines which frequent pattern the decoder needs to reconstruct (and

its dimension), and Row# determines which row of the corresponding pattern it has

to reconstruct, the decoder can reconstruct the pattern. We could alternatively use

base-3 logarithms, but that would complicate the decoding hardware.

Note that this [$ Pattern# Row#] stream is updated depending on the writing

direction of the next row. An example of the frequent pattern reconstruction process is

demonstrated in Figure 6.12. When the first row is decoded, we update the row buffer

in the reverse direction starting at the 4th column because the next row is written

from right to left and the pattern involves the second, third, and fourth columns.

The [$ Pattern# Row#] stream is represented as [$ 1]1 in the reverse direction because

there is only one frequent pattern defined in the dictionary making dlog2(P )e = 0.

In the next row, the decoder has to process two more rows of the pattern. When the

second row is decoded, since the writing order of the next row is from left to right

and since we need to write one more row to the first pattern, the buffer of the first

pattern is updated to [$ 0] in the forward direction. Similarly, the buffer of the second

pattern is updated to [$ 1]. Finally, when the third row is decoded, we re-initialize

1In Figure 6.12, the $’s are represented by red pixels and the 1’s are represented by black pixels.

101



!

! ! !

Frequent 
Pattern 

Dictionary 

Row Buffer 

Frequent 
Pattern 

Dictionary 

Row Buffer 

(b) After processing the first row 

(d) After processing the third row 

Frequent 
Pattern 

Dictionary 

Row Buffer 

Frequent 
Pattern 

Dictionary 

Row Buffer 

(a) Input 

(c) After processing the second row 

writing 
direction 

Decoded 

Encoded 

Decoded 

Encoded 

Decoded 

Encoded 

Figure 6.12: Frequent Pattern Reconstruction Example

the buffer of first pattern to [0 0] to indicate that the frequent pattern reconstruction

is complete.

In order to combine this frequent pattern reconstruction and the inverse corner

transformation, the inverse transformation decoder requires dlog2(3)×Ce bits for the

row buffer for each inverse transformation block and Psize bits to store the pattern

dictionary. Given that the forward transformed image is a (P + 2)-ary array with

dimension R× C, this buffer requirement is comparatively small.

6.3 Experimental Results

We tested the algorithm on two benchmark circuits introduced in Section 2.4.

Most parts of Corner2-MEB were written in C/C++ with OpenMP support for pro-

cessing the forward and inverse transformation processes in parallel. For the decod-

102



ing process, the inverse transformation processes are synchronized so that the same

“Writing” row of each was processed in parallel. Because Corner2-MEB blocks can be

processed independently, we applied parallel processing for faster encoding / decod-

ing speed. The binary integer programming part was written in MATLAB using the

MATLAB function bintprog [47]. All of the experiments ran on a laptop computer

having a 2.53 GHz Intel Core 2 Duo CPU and 4 GB RAM.

We applied Corner2-MEB (C2-MEB) [48] and compared the results with Corner2-BIP

(C2-BIP) [45], Corner2 (C2-ORG) [42], and Block C4 (BC4) [27]. While Corner2-BIP,

Corner2, and Block C4 were applied to the entire layout image, Corner2-MEB was

applied in a block fashion. We set the MAPPER block size to be 888 × height be-

cause the MAPPER writing region is a width-2 µm stripe on a 2.25 nm grid [8].

Here, height is the height of the circuit layer image which was 17,816 for the memory

circuit and 31,624 for the BFSK circuit.

In the following subsections we show the compression results for both the memory

and BFSK circuits on the MAPPER system. In the following subsections, we defined

the compression ratios to be

Input File Size

Compressed File Size
.

Note that the total compression ratio is not the average of the preceding compression

ratios, but the “net average” which is defined as

Total Input File Size

Total Compressed File Size
.

To compare the result with Corner2-BIP, we used the same M , N , and Psize

setting as in Section 5.4.

103



Layer C2-MEB C2-BIP C2-ORG BC4
1 11,074 22,201 18,658 147.78
2 457 1,289 1,216 79.80
3 11,074 22,201 18,658 147.78
4 83 151 86 54.12
5 640 920 920 133.22
6 640 920 920 133.22
7 104 84 84 31.58
8 41 90 67 24.40
9 89 171 170 38.17

10 96 114 57 25.31
11 204 442 442 75.70
12 2,837 11,059 3,169 121.69
13 5,971 28,606 9,616 141.02

Average 164 261 192 57.36

Table 6.1: Compression Ratio (x) - Memory Array (Block size : 888× 17, 816)

6.3.1 Memory Circuit

Tables 6.1–6.3 show the experimental results for the memory circuit when the

MAPPER block separation was applied. Because of the block partitioning, C2-MEB

had 37.3% and 14.9% smaller compression ratio than C2-BIP and C2-ORG respec-

tively, which operated on the full layout image. However, C2-MEB was still 2.9 times

better than BC4 as shown in Table 6.1. The block partitioning resulted in fewer

pattern matches and introduced more corners in the block boundaries. Moreover, the

flattening process also deteriorated the RLE+EOB encoding by segmenting long run

of zeroes into smaller pieces. However, because Corner2-variations have better layout

image modeling, C2-MEB still resulted in better compression performance than BC4.

On average, C2-MEB encoding was 3% (or 0.3%) faster than C2-BIP (or C2-ORG)

while 50.8 times faster than BC4 as shown in Table 6.2. While C2-MEB generated

more candidate patterns due to block truncation which slowed down the encoding

process, it became faster than C2-BIP and C2-ORG because of parallel processing.

However, C2-MEB encoding could be further accelerated by using more paralleliza-

104



Layer C2-MEB C2-BIP C2-ORG BC4
1 23.12 18.89 4.29 1,875
2 30.84 26.48 26.36 1,891
3 23.74 18.36 4.29 1,788
4 43.47 49.02 48.93 1,815
5 15.40 25.26 26.85 1,831
6 15.55 25.28 26.86 1,796
7 25.88 23.07 25.27 1,846
8 92.07 97.32 109.97 1,885
9 32.57 25.37 30.18 1,817

10 68.83 84.16 78.49 1,917
11 64.58 70.68 80.22 1,795
12 15.64 6.23 4.16 1,775
13 17.20 6.52 4.16 1,762

Total 468.87 485.45 470.05 23,793

Table 6.2: Encoding Time (s) - Memory Array

tion. Since the Intel Core 2 Duo CPU only supports running 4 threads simultaneously,

we were not able to take advantage of processing all blocks in parallel. Distributed

computing over the grid or an application of General Purpose GPU (GP-GPU) based

parallel processing might enable this.

Layer C2-MEB C2-BIP C2-ORG BC4
1 2.81 2.40 2.53 55.44
2 3.57 3.16 3.34 54.99
3 2.81 2.42 2.53 52.90
4 3.55 2.96 3.20 53.70
5 3.22 2.95 3.05 53.55
6 3.24 2.90 3.05 54.48
7 3.52 3.21 3.23 54.63
8 3.87 3.21 3.51 54.79
9 3.44 2.79 3.05 54.83

10 3.58 2.98 3.44 54.07
11 3.40 2.78 3.04 56.43
12 3.46 2.95 2.49 51.50
13 3.58 2.94 2.48 51.88

Total 44.04 37.67 38.93 703.18

Table 6.3: Decoding Time (s) - Memory Array

105



On average, C2-MEB decoding was 17% (or 13%) slower than C2-BIP (or C2-

ORG) while 16.0 times faster than BC4 as shown in Table 6.3. Our decoding time

results do not include the time to reverse the flattening process because this procedure

would be unnecessary in a hardware implementation. The process was only used to

verify that the reconstructed image matches with the input image. Furthermore,

similarly to the encoding time, we expect the decoding time to be further reduced

when full parallelization is applied. Considering this is a compress-once-and-decode-

multiple-times application, C2-MEB is more realistic than C2-BIP and C2-ORG in

that it takes advantage of multiple electron beams, and it offers better compression

than BC4.

6.3.2 BFSK Circuit

Layer C2-MEB C2-BIP C2-ORG BC4
1 12,126 20,874 9,226 151
2 6,275 7,432 6,760 150
3 1,016 1,596 1,186 137
4 2,942 3,745 3,270 147
5 925 1,125 1,033 59
6 476 609 580 128
7 297 399 390 111
8 122 173 167 81
9 361 474 452 122

10 179,212 460,192 195,365 153
11 139 206 200 86
12 848 1,082 1,006 138
13 142 209 203 89
14 943 1,170 1,093 139
15 167 236 230 92
16 1,070 1,368 1,296 141
17 5,635 8,019 6,656 150
18 19,687 26,467 19,579 152
19 12,005 20,773 9,173 151

Average 385 537 515 113

Table 6.4: Compression Ratio (x) - BFSK Circuit (Block size : 888× 31, 624)

106



Tables 6.4–6.6 show the experimental results for the BFSK circuit when the MAP-

PER block separation was applied. Like the memory circuit, C2-MEB had a 28.4%

smaller compression ratio than C2-BIP and a 25.2% smaller compression ratio than

C2-ORG. This is mainly due to the new corners introduced and the shortened runs

of zeroes due to block separation. However, C2-MEB still offered a 3.4 times better

compression ratio than BC4. On average, C2-MEB was 58% slower than C2-BIP

and 79% slower than C2-ORG, while 109.0 times faster than BC4. Compared to

the memory circuit result, the improvements in encoding speeds were because more

candidate patterns had to be generated even though not so many of them were used.

Similarly, C2-MEB was 18% slower than C2-BIP and 14% slower than C2-ORG, while

26.1 times faster than BC4. However, this was because we only could run 4 inverse

transformation processes in parallel which could be further improved with the help

of massively parallel computing.

Although the compression performance of Corner2-MEB was inferior to that of

Corner2-BIP due to block processing, it is better suited to MEB DW systems because

it incorporated the actual writing strategy and because the inverse transformation

process can be parallelized for higher throughput. Moreover, the performance of

Corner2-MEB was still far better than that of Block C4. Hence handling regular

circuit parts using dictionary-based compression and irregular circuit parts using

corner-based (or vertex-based) representation as in Corner2 is far more effective than

handling regular circuit parts using LZ-based compression and irregular circuit parts

using prediction-based compression as is done in Block C4.

The decoder needs to be implemented in hardware, and we showed that the

Corner2 inverse transformation decoder along with the RLE+EOB decoder required

only 2% of a Xilinx Spartan 3E FPGA board even when using 5 kbytes of decoder

cache in Chapter IV. The Corner2-MEB decoder consists of an arithmetic decoder,

RLE+EOB decoder, and 13,000 inverse transformation blocks with each inverse trans-

107



Layer C2-MEB C2-BIP C2-ORG BC4
1 6.29 1.74 2.41 451
2 38.87 16.33 17.88 3,791
3 45.60 15.47 18.31 3,800
4 35.70 15.11 17.21 3,760
5 41.80 26.62 28.07 12,468
6 40.45 26.28 26.43 4,485
7 63.57 54.74 37.09 4,476
8 35.40 15.36 17.91 4,588
9 59.26 58.11 35.56 4,393

10 38.57 15.93 20.73 4,866
11 37.33 17.56 17.90 4,414
12 53.19 42.59 33.20 4,428
13 34.73 15.00 17.88 4,651
14 53.20 50.16 34.38 4,413
15 37.22 17.29 17.80 4,364
16 55.64 53.06 38.54 4,381
17 32.80 14.30 15.74 3,756
18 27.90 13.21 14.26 3,049
19 5.90 1.73 2.42 454

Total 743.41 470.59 413.75 80,987

Table 6.5: Encoding Time (s) - BFSK Circuit

formation block smaller than those we introduced in Section 4.2. Each inverse trans-

formation block consists of simple operations such as comparisons, branches, XORs,

and binary arithmetic. Since a GPU core can handle these operations and more ad-

vanced operations, we argue that the dedicated inverse transformation core will be

much smaller than a GPU core. The row buffer requirement for each inverse transfor-

mation block is dlog2(3) ·Bwidthe bits, where Bwidth is the block width. Therefore, the

entire Corner2-MEB system supporting 13,000 electron beams will require less than 3

MB of cache. Since current GPUs have over 3,000 cores [50] and previous generation

Intel CPUs have 8 MB of cache [49], the entire Corner2-MEB decoder can be built

using current silicon technologies.

One major concern is that we do not have an efficient hardware implementation

for the arithmetic decoder making the final arithmetic encoding less suitable for the

108



Layer C2-MEB C2-BIP C2-ORG BC4
1 1.09 0.80 0.84 29.50
2 9.35 6.77 8.22 242.07
3 9.20 6.63 8.24 237.42
4 9.23 6.57 8.22 237.35
5 9.76 7.29 8.35 280.67
6 9.66 7.26 8.33 274.15
7 11.37 12.08 9.74 282.03
8 10.91 9.71 9.68 289.53
9 11.34 10.91 9.67 275.56

10 10.47 7.61 9.41 293.04
11 10.80 10.10 9.64 281.57
12 11.05 10.89 9.57 278.34
13 10.79 10.32 9.62 290.37
14 11.11 10.46 9.57 276.35
15 10.81 9.33 9.60 277.88
16 11.26 9.34 9.59 275.98
17 9.08 6.49 8.21 236.50
18 7.24 5.23 6.47 190.71
19 1.05 0.79 0.84 27.68

Total 175.58 148.58 153.81 4,576.71

Table 6.6: Decoding Time (s) - BFSK Circuit

purpose. We can tackle this issue by using other standard compression techniques

and trading off part of the compression ratio for an efficient hardware decoder; since

Corner2-MEB has about 3 times better compression performance than Block C4, there

is some room for this trade-off.

109



CHAPTER VII

Conclusion and Future Works

MEB lithography has many hurdles to overcome before it can establish itself as an

alternative to conventional photolithography. In this thesis, we have examined one of

its challenges, designing a high throughput data delivery system.

As the technology develops, we fabricate circuits with smaller features on the

wafer. In order for the circuits to have smaller features using the MEB lithography

systems, the electron beam spot size has to reduce requiring more pixels over the

same wafer area. In order to write these pixels, a massive amount of data is required

to control the electron beam writers; For example, Dai [3] suggested 735 Terapixels

are required for a 300 mm wafer using 45 nm technology. Since this control data can

only be stored at a storage disk with limited throughput, we need a novel approach

for delivering such data.

The data delivery issue can be solved by adopting the data delivery architecture

Dai [3] proposed which was demonstrated in Figure 1.9.(e); storing the compressed

data on a processing board, transmitting the compressed data to the writer circuits,

and decoding the compressed data on-the-fly at the hardware decoder add-on to the

writer circuits. In order for this data delivery architecture to work, there are two

requirements that the compression algorithm should satisfy. First, the compression

algorithm should always obtain high compression ratio. In fact, the compression ratio

110



should always be no less than

Transfer rate of Decoder to Writer

Transfer rate of Processor Board to Decoder

for all layer images. Second, the compression algorithm should have a simple decom-

pression process requiring small cache so that the decoder can be implemented in

hardware with small area and high throughput.

In this thesis, we have introduced a family of Corner2 compression algorithms that

attains significantly better compression than Block C4 while requiring low decoding

complexity. The Corner2 compression is based on the observation that circuit layout

images have highly repetitive parts where a block of image is repeated over a certain

area and irregular parts that consists of Manhattan polygons. In order to deal with

the repetitive parts, we introduced a dictionary-based compression technique which

is widely used for text compression while we designed a corner transformation to

represent the irregular circuit parts using their polygon corners. By applying these

two schemes, we obtained sparse images which can be later compressed efficiently

using a series of entropy coding techniques such as RLE, EOB, and arithmetic coding.

We introduced two ways to extract frequent patterns from the layer images. The

first ways is to extract the frequent substructures from the layout description (such

as GDSII) rather than the layer image itself. While this technique alone gave impres-

sive performance, we improved it by analyzing the input layer image and generating

candidate patterns and choosing the optimized pattern set satisfying the restricted

memory requirement. For the candidate patterns, we used rectangular regions which

cover all the polygons inside them and for optimization, we solved a binary integer

programming (BIP) problem with the pattern cost, pattern gain, and the decoder

memory restriction. While there is room for improvement in choosing the pattern

gain function as the gain function we described in Section 5.3 is loosely related to the

111



compressed file size, this pattern detection algorithm could be used for compressing

any binary images given that the patterns have similar restrictions.

In order to decode the Corner2 compressed layout images, the decoder requires

log2(3)·width-bit cache for the row-by-row inverse corner transformation and frequent

pattern reconstruction, and Psize bytes of memory to contain the frequent pattern

dictionary. The decoder operation was standard and simple making it suitable for

hardware implementation. In fact, our proof-of-concept Corner2 decoder required

only 2% of the Xilinx Spartan-3E FPGA board [41].

Corner2 always outperformed Block C4 in compression ratio, encoding time, de-

coding time, and decoder memory requirements showing that we have improved the

way to model layout images compared to that of family of C4 compression algorithms.

However, there is still room for improvement: We need to test the algorithm on more

advanced (sub-65 nm) circuit layout images as well as on real control data that is

used for the corresponding MEB tool. Because most advanced circuit layout data

and their MEB control data are proprietary, we were not able to access these. How-

ever, since our approach improved the basic model of circuit layout images, we can

argue that our approach (maybe with modifications) will also provide better results

for other data types.

Finally, we need to implement the Corner2 decoder in an ASIC to really test

its performance. In order to satisfy the throughput requirement, we need to make

sure that the Corner2 decoder has enough throughput. In Corner2 decoding, the

arithmetic decoder has the highest complexity and the remainder has much lower

complexity than that of the Block C4 decoder. Considering the simplicity of the de-

coding algorithm (except the arithmetic decoder), we argue that the Corner2 decoder

will always have better performance than the Block C4 decoder. In the case where

the arithmetic decoding becomes too complex, we can always trade-off the encoder

complexity and the compression ratio by using a less complex entropy encoder such

112



as Huffman coding [25]. Because our average compression ratio is 4.6–4.8 times better

than that of Block C4, we have a wide trade-off range.

113



BIBLIOGRAPHY

114



BIBLIOGRAPHY

[1] B. J. Lin, Optical Lithography: Here is Why. Bellingham: SPIE Press, 2010.
[Online]. Available: http://spie.org/x648.html?product id=821000

[2] ——, “Future of multiple-e-beam direct-write systems,” in Proceedings of SPIE
8323, 2012, p. 832302. [Online]. Available: http://dx.doi.org/10.1117/12.919747

[3] V. Dai, “Data compression for maskless lithography systems: Architecture,
algorithms, and implementation,” Ph.D. dissertation, Department of Electrical
Engineering and Computer Science, University of California, Berkeley,
2008. [Online]. Available: http://www-video.eecs.berkeley.edu/papers/vdai/
phd-thesis.pdf

[4] N. Chokshi, Y. Shroff, and W. G. Oldham, “Maskless extreme ultraviolet
lithography,” Journal of Vacuum Science Technology B, vol. 17, no. 6, pp.
3047–3051, 1999. [Online]. Available: http://dx.doi.org/10.1116/1.590952

[5] L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho,
C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm
resolution,” Scientific Reports, vol. 1, no. 175, pp. 1–6, 2011. [Online]. Available:
http://dx.doi.org/10.1038/srep00175

[6] C. Jahnert and S. Fritsche, “High quality mask storage in an advanced
logic-waferfab,” in Proceedings of SPIE 8352, 2012, p. 83520Q. [Online].
Available: http://dx.doi.org/10.1117/12.923053

[7] T. R. Groves, D. Pickard, B. Rafferty, N. Crosland, D. Adam, and G. Schubert,
“Maskless electron beam lithography: prospects, progress, and challenges,”
Microelectronic Engineering, vol. 61-62, pp. 285–293, 2002. [Online]. Available:
http://dx.doi.org/10.1016/S0167-9317(02)00528-2

[8] E. Slot, M. J. Wieland, G. de Boer, G. F. ten Berge, A. M. C. Houkes,
R. Jager, T. van de Peut, J. J. M. Peijster, S. W. H. K. Steenbrink, T. F.
Teepen, A. H. V. van Veen, B. J. Kampherbeek, and P. Kruit, “MAPPER:
High throughput maskless lithography,” in Proceedings of SPIE 6912, 2008, p.
69211P. [Online]. Available: http://dx.doi.org/10.1117/12.771965

[9] E. Platzgummer, C. Klein, and H. Loeschner, “eMET POC: Realization
of a proof-of-concept 50 kev electron multibeam mask exposure tool,”

115

http://spie.org/x648.html?product_id=821000
http://dx.doi.org/10.1117/12.919747
http://www-video.eecs.berkeley.edu/papers/vdai/phd-thesis.pdf
http://www-video.eecs.berkeley.edu/papers/vdai/phd-thesis.pdf
http://dx.doi.org/10.1116/1.590952
http://dx.doi.org/10.1038/srep00175
http://dx.doi.org/10.1117/12.923053
http://dx.doi.org/10.1016/S0167-9317(02)00528-2
http://dx.doi.org/10.1117/12.771965


in Proceedings of SPIE 8166, 2011, p. 816622. [Online]. Available:
http://dx.doi.org/10.1117/12.895523

[10] P. Petric, C. Bevis, A. Brodie, A. Carroll, A. Cheung, L. Grella, M. McCord,
H. Percy, K. Standiford, and M. Zywno, “REBL nanowriter: Reflective Electron
Beam Lithography,” in Proceedings of SPIE 7271, 2009, p. 727107. [Online].
Available: http://dx.doi.org/10.1117/12.817319

[11] C. Mack, Fundamental Principles of Optical Lithography: The Science
of Microfabrication. New York: Wiley, 2007. [Online]. Available: http:
//www.wiley.com/WileyCDA/WileyTitle/productCd-0470018933.html

[12] A. N. Broers, A. C. F. Hoole, and J. M. Ryan, “Electron beam lithography
- resolution limits,” Microelectronic Engineering, vol. 32, pp. 131–142, 1996.
[Online]. Available: http://dx.doi.org/10.1016/0167-9317(95)00368-1

[13] N. Silvis-Cividjian, C. W. Hagen, P. Kruit, M. A. J. v.d. Stam, and H. B.
Groen, “Direct fabrication of nanowires in an electron microscope,” Applied
Physics Letters, vol. 82, no. 20, pp. 3514–3516, 2003. [Online]. Available:
http://dx.doi.org/10.1063/1.1575506

[14] G. H. Jansen, “Coulomb interactions in particle beams,” Journal of Vacuum
Science Technology B, vol. 6, no. 6, pp. 1977–1983, 1988. [Online]. Available:
http://dx.doi.org/10.1116/1.584148

[15] J. Ruan, “Electron beam lithography throughput and resolution enhancement
with innovative blanker design,” Ph.D. dissertation, University at Albany, State
University of New York, 2010. [Online]. Available: http://gradworks.umi.com/
3422427.pdf

[16] N. W. Parker, A. D. Brodie, and J. H. McCoy, “High throughput ngl electron
beam direct-write lithography system,” in Proceedings of SPIE 3997, 2000, pp.
713–720. [Online]. Available: http://dx.doi.org/10.1117/12.390042

[17] G. Cramer, H.-I. Liu, and A. Zakhor, “Lossless compression algorithm for
REBL direct-write e-beam lithography system,” in Proceedings of SPIE 7637,
2010, p. 76371L. [Online]. Available: http://dx.doi.org/10.1117/12.845506

[18] K. Chang, S. Pamarti, K. Kaviani, E. Alon, X. Shi, T. J. Chin, J. Shen, G. Yip,
C. Madden, R. Schmitt, C. Yuan, F. Assaderaghi, and M. Horowitz, “Clocking
and circuit design for a parallel I/O on a first-generation CELL processor,” in
International Solid-State Circuit Conference 2005 (ISSCC 2005), 2005, pp. 526–
527, 615. [Online]. Available: http://dx.doi.org/10.1109/ISSCC.2005.1494101

[19] S. M. Rubin, Computer Aids for VLSI Design, 2nd ed. Boston: Addison-Wesley,
1987, ch. Appendix C. [Online]. Available: http://www.rulabinsky.com/cavd/
text/chapc.html

116

http://dx.doi.org/10.1117/12.895523
http://dx.doi.org/10.1117/12.817319
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470018933.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470018933.html
http://dx.doi.org/10.1016/0167-9317(95)00368-1
http://dx.doi.org/10.1063/1.1575506
http://dx.doi.org/10.1116/1.584148
http://gradworks.umi.com/3422427.pdf
http://gradworks.umi.com/3422427.pdf
http://dx.doi.org/10.1117/12.390042
http://dx.doi.org/10.1117/12.845506
http://dx.doi.org/10.1109/ISSCC.2005.1494101
http://www.rulabinsky.com/cavd/text/chapc.html
http://www.rulabinsky.com/cavd/text/chapc.html


[20] Y. Chen, A. B. Kahng, G. Robins, A. Zelikovsky, and Y. Zheng,
“Evaluation of the new OASIS format for layout fill compression,” in
Proceedings of the 2004 11th IEEE International Conference on Electronics,
Circuits and Systems (ICECS 2004), 2004, pp. 377–382. [Online]. Available:
http://dx.doi.org/10.1109/ICECS.2004.1399697

[21] A. J. Reich, K. H. Nakagawa, and R. E. Boone, “OASIS vs. GDSII stream
format efficiency,” in Proceedings of the SPIE 5256, 2003, pp. 163–173. [Online].
Available: http://dx.doi.org/10.1117/12.518271

[22] F. Yesilkoy, K. Choi, M. Dagenais, and M. Peckerar, “Implementation of
e-beam proximity effect correction using linear programming techniques for the
fabrication of asymmetric bow-tie antennas,” Solid-State Electronics, vol. 54,
no. 10, pp. 1211–1215, 2010. [Online]. Available: http://dx.doi.org/10.1016/j.
sse.2010.05.009

[23] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,”
IEEE Transactions on Information Theory, vol. 23, no. 3, pp. 337–343, 1977.
[Online]. Available: http://dx.doi.org/10.1109/TIT.1977.1055714

[24] V. Dai and A. Zakhor, “Lossless layout compression for maskless lithography
systems,” in Proceedings of the SPIE 3997, 2000, pp. 467–477. [Online].
Available: http://dx.doi.org/10.1117/12.390085

[25] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” in Proceedings of the I. R. E., 1952, pp. 1098–1102. [Online]. Available:
http://dx.doi.org/10.1109/JRPROC.1952.273898

[26] L. Oktem and J. Astola, “Hierarchical enumerative coding of locally stationary
binary data,” Electronics Letters, vol. 35, no. 17, pp. 1428–1429, 1999. [Online].
Available: http://dx.doi.org/10.1049/el:19990969

[27] H.-I. Liu, V. Dai, A. Zakhor, and B. Nikolic, “Reduced complexity compression
algorithms for direct-write maskless lithography systems,” in Proceedings of SPIE
6151, 2006, p. 61512B. [Online]. Available: http://dx.doi.org/10.1117/12.656844

[28] ——, “Reduced complexity compression algorithms for direct-write maskless
lithography systems,” J. Micro/Nanolith. MEMS MOEMS, vol. 6, no. 1, p.
013007, 2007. [Online]. Available: http://dx.doi.org/10.1117/1.2435202

[29] S. W. Golomb, “Run-length encodings,” IEEE Transactions on Information
Theory, vol. 12, no. 3, pp. 399–401, 1966. [Online]. Available: http:
//dx.doi.org/10.1109/TIT.1966.1053907

[30] J. Yang and S. A. Savari, “A lossless circuit layout image compression
algorithm for maskless lithography systems,” in Proceedings of the 2010
Data Compression Conference, 2010, pp. 109–118. [Online]. Available:
http://dx.doi.org/10.1109/DCC.2010.17

117

http://dx.doi.org/10.1109/ICECS.2004.1399697
http://dx.doi.org/10.1117/12.518271
http://dx.doi.org/10.1016/j.sse.2010.05.009
http://dx.doi.org/10.1016/j.sse.2010.05.009
http://dx.doi.org/10.1109/TIT.1977.1055714
http://dx.doi.org/10.1117/12.390085
http://dx.doi.org/10.1109/JRPROC.1952.273898
http://dx.doi.org/10.1049/el:19990969
http://dx.doi.org/10.1117/12.656844
http://dx.doi.org/10.1117/1.2435202
http://dx.doi.org/10.1109/TIT.1966.1053907
http://dx.doi.org/10.1109/TIT.1966.1053907
http://dx.doi.org/10.1109/DCC.2010.17


[31] ——, “Transform-based lossless image compression algorithm for electron beam
direct write lithography systems,” in Recent Advances in Nanofabrication
Techniques and Applications, B. Cui, Ed. InTech, 2011, pp. 95–110. [Online].
Available: http://dx.doi.org/10.5772/21896

[32] F. Krecinic, S.-J. Lin, and J. J. H. Chen, “Data path development for multiple
electron beam maskless lithography,” in Proceedings of SPIE 7970, 2011, p.
797010. [Online]. Available: http://dx.doi.org/10.1117/12.881010

[33] A. Moffat, R. M. Neal, and I. H. Witten, “Arithmetic coding revisited,”
ACM Transactions on Information Systems, vol. 16, no. 3, pp. 256–294, 1998.
[Online]. Available: http://dx.doi.org/10.1145/290159.290162

[34] A. Gu and A. Zakhor, “Lossless compression algorithms for hierarchical IC
layout,” IEEE Transactions on Semiconductor Manufacturing, vol. 21, no. 2,
pp. 285–296, 2008. [Online]. Available: http://dx.doi.org/10.1109/TSM.2008.
2000282

[35] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data
compression,” Communications of the ACM, vol. 30, pp. 520–540, June 1987.
[Online]. Available: http://dx.doi.org/10.1145/214762.214771

[36] M. Peon, R. R. Osorio, and J. D. Bruguera, “A VLSI implementation of an
arithmetic coder for image compression,” in 23rd EUROMICRO Conference
’97 New Frontiers of Information Technology, 1997, pp. 591–598. [Online].
Available: http://dx.doi.org/10.1109/EURMIC.1997.617380

[37] (2007) JBIG official website. [Online]. Available: http://www.jpeg.org/jbig

[38] M. Kuhn. (2008) JBIG-KIT. [Online]. Available: http://www.cl.cam.ac.uk/
∼mgk25/jbigkit/

[39] (2009) LibTIFF library. [Online]. Available: http://www.libtiff.org

[40] V. Dai and A. Zakhor, “Lossless compression of VLSI layout image data,” IEEE
Transactions on Image Processing, vol. 15, no. 9, pp. 2522–2530, 2006. [Online].
Available: http://dx.doi.org/10.1109/TIP.2006.877414

[41] J. Yang, S. A. Savari, and X. Li, “Hardware implementation of Corner2 lossless
compression algorithm for maskless lithography systems,” in Proceedings of SPIE
8323, 2012, p. 83232O. [Online]. Available: http://dx.doi.org/10.1117/12.917581

[42] J. Yang and S. A. Savari, “Lossless circuit layout image compression
algorithm for maskless direct write lithography systems,” J. Micro/Nanolith.
MEMS MOEMS, vol. 10, no. 4, p. 043007, 2011. [Online]. Available:
http://dx.doi.org/10.1117/1.3644620

[43] (2012) Impulse CoDeveloper by Impulse Accelerated. [Online]. Available:
http://www.impulseaccelerated.com

118

http://dx.doi.org/10.5772/21896
http://dx.doi.org/10.1117/12.881010
http://dx.doi.org/10.1145/290159.290162
http://dx.doi.org/10.1109/TSM.2008.2000282
http://dx.doi.org/10.1109/TSM.2008.2000282
http://dx.doi.org/10.1145/214762.214771
http://dx.doi.org/10.1109/EURMIC.1997.617380
http://www.jpeg.org/jbig
http://www.cl.cam.ac.uk/~mgk25/jbigkit/
http://www.cl.cam.ac.uk/~mgk25/jbigkit/
http://www.libtiff.org
http://dx.doi.org/10.1109/TIP.2006.877414
http://dx.doi.org/10.1117/12.917581
http://dx.doi.org/10.1117/1.3644620
http://www.impulseaccelerated.com


[44] D. Lucking and E. Balster, “An increased throughput FPGA design of the
JPEG2000 binary arithmetic decoder,” in 2010 International Conference on
Digital Image Computing: Techniques and Applications (DICTA), 2010, pp.
400–405. [Online]. Available: http://dx.doi.org/10.1109/DICTA.2010.74

[45] J. Yang and S. A. Savari, “Improvements on Corner2, a lossless layout image
compression algorithm for maskless lithography systems,” in Proceedings of SPIE
8352, 2012, p. 83520K. [Online]. Available: http://dx.doi.org/10.1117/12.923205

[46] L. A. Wolsey, Integer Programming. New York: Wiley-Interscience, 1998.

[47] (2012) bintprog by MathWorks. [Online]. Available: http://www.mathworks.
com/help/toolbox/optim/ug/bintprog.html

[48] J. Yang, S. A. Savari, and H. R. Harris, “Data delivery system for multiple
electron beam lithography systems using image compression,” J. Micro/Nanolith.
MEMS MOEMS, 2012, submitted.

[49] (2011) Intel Core i7-920 Processor Specifications. [Online]. Available: http:
//ark.intel.com/products/37147/Intel-Core-i7-920-Processor-(8M-Cache-2
66-GHz-4 80-GTs-Intel-QPI)

[50] (2012) Nvidia GeForce GTX 690 GPU Specification. [Online]. Available: http:
//www.geforce.com/hardware/desktop-gpus/geforce-gtx-690/specifications

119

http://dx.doi.org/10.1109/DICTA.2010.74
http://dx.doi.org/10.1117/12.923205
http://www.mathworks.com/help/toolbox/optim/ug/bintprog.html
http://www.mathworks.com/help/toolbox/optim/ug/bintprog.html
http://ark.intel.com/products/37147/Intel-Core-i7-920-Processor-(8M-Cache-2_66-GHz-4_80-GTs-Intel-QPI)
http://ark.intel.com/products/37147/Intel-Core-i7-920-Processor-(8M-Cache-2_66-GHz-4_80-GTs-Intel-QPI)
http://ark.intel.com/products/37147/Intel-Core-i7-920-Processor-(8M-Cache-2_66-GHz-4_80-GTs-Intel-QPI)
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-690/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-690/specifications

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	ABSTRACT
	Introduction
	Electron Beam Lithography
	Conventional Photolithography
	Electron Beam Lithography

	Multiple Electron Beam Lithography
	Reflective Electron Beam Lithography
	MAPPER

	Data Delivery System Architectures for Multiple Electron Beam Lithography Systems
	Direct-Connection Architecture
	Memory Architecture
	Compressed Memory Architecture
	Off-Chip Compressed Memory Architecture
	Off-Chip Compressed Memory with On-Chip Decoding Architecture

	Layer Image Generation

	Prior Work on Lossless Data Compression Algorithms for Maskless Lithography Systems
	Basic Properties of Layout Images
	Overview of C4
	Overview of Block C4
	Experimental Results
	Memory
	BFSK

	Other Related Works

	Corner2 Lossless Compression Algorithm
	The Compression Algorithm
	Overview
	Frequent Pattern Replacement
	Corner Transformation
	Frequent Pattern Replacement + Corner Transformation
	Entropy Coding

	Decoder
	Inverse Corner Transformation
	Frequent Pattern Reconstruction

	Experimental Results
	Memory
	BFSK


	FPGA Implementation of Corner2 Decoder
	Corner2 Decoder Architecture
	FPGA Synthesis Results

	Improving Corner2 Frequent Pattern Discovery
	Problems of Corner2 Pattern Discovery Algorithm
	Candidate Pattern Generation Algorithm
	Pattern Optimization
	Experimental Results
	Memory
	BFSK


	Tailoring Corner2 for Multiple Electron Beam Direct Write Systems
	The Compression Algorithm
	Block Separation
	Forward Transformation
	Frequent Pattern Replacement
	Corner Transformation

	Frequent Pattern Discovery
	GDSII Pattern Extraction
	Candidate Pattern Generation
	Pattern Optimization

	Flatten Pixel Stream
	Entropy Encoding

	The Decompression Algorithm
	Block Reconstruction
	Inverse Transformation
	Inverse Corner Transformation
	Pattern Reconstruction


	Experimental Results
	Memory Circuit
	BFSK Circuit


	Conclusion and Future Works
	BIBLIOGRAPHY

