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ABSTRACT

Network Motifs Provide Signatures that Characterize Metabolism
by
Erin Rachael Shellman

Chairs: Doctor Charles Burant and Professor Santiago Schnell

A motif is a small, repeated pattern that is over-represented in a network compared to
its abundance in a collection of random graphs. Motifs are of chief interest in network
theory and systems biology because their over-expression may determine the topo-
logical properties that give rise to dynamic behaviors in biological systems. Motifs
also provide novel functional evidence that can help unravel mechanisms of molecular
evolution. In this work, we analyze metabolic network motifs, where metabolites are
represented by nodes and biochemical associations are represented by edges. We find
that metabolic network motifs can be characterized by their enzyme class associations
and therefore, their biochemical functionality. Further, we demonstrate that cellular
organelles display motif distributions that can be distinct and likely reflect the or-
ganelle’s distinct metabolic role in the cell. We follow this analysis by assessing the
relationship between motif participation and the property of tolerance to random com-
ponent failure in the E. coli metabolic network. We find that the metabolic network
displays higher levels of failure tolerance than seen in Erdds-Rényi random graphs,
and that some motifs have unique structural properties in metabolism. Finally, we

apply the methodology of motif mining and analysis to assess specific hypotheses

xii



of Eukaryotic organelle evolution. Specifically, we present novel evidence suggesting
that an a-proteobacterium may not have been the ancestor of modern mitochondria.
We independently validate this result using phylogenetic analysis and find that mi-
tochondrial genomes tend to fall within the same clades as - and e-proteobacteria.
Based on this validation we propose a new hypothesis that modern mitochondria are
not derived from a-proteobacteria, but are instead derived from a member of the 4-

or e-proteobacterial families.

xiil



CHAPTER I

Introduction

Reductionism has been the predominant paradigm for accumulating scientific
knowledge for centuries and is an effective framework to conduct scientific inquiries.
The methodology of reducing complex systems to the interactions of their parts has
been successfully applied to the biological sciences and has resulted in the discovery
of individual components that, when taken together, yield massive, functioning sys-
tems [6]. Today it is commonplace to take biological measurements using microarray
technology that can yield tens of thousands of data points simultaneously. As a re-
sult, it has been estimated that the amount of data that would be collected for any
given molecular pathway in 2011 would equal the amount of data collected on that
pathway throughout history [20]. With this deluge of data has come the realization
that the majority of interesting biological problems cannot be answered by interro-
gating just one gene or one molecule, but instead must be approached by analyzing
the functionality of large systems of interacting genes and molecules. The methods of
reductionism must be redefined to meet the needs of 21%¢ century science, and in the

biological sciences these new methods are often found in the field of systems biology.



1.1 Systems Biology

“...It is about putting together rather than taking apart, integration rather than
reduction...”

~Denis Noble [94]

Systems biology is a framework for utilizing genome-level data to conduct pre-
dictive, hypothesis-driven science. It offers an experimental approach that is distinct

from that of classical biology.

High-throughput
“omics” data

New
Insights

p'S

Data
Integration

New Experiments

Figure 1.1:
& General work-flow of research in system biology. Starting with a com-

plex biological system, existing knowledge is integrated and then mod-
eled. Simulation results are then validated against experimental results
and either recapitulate them and provide new insights, or suggest novel
hypotheses and new experiments.

Rather than reducing complex systems to their simpler constituents, systems

methods are top-down and can generate novel hypotheses and fill gaps in knowledge.



Rather than trying to understand a single component and working up to contex-
tualize that component in a complex system, a systems methodology starts with a
complex system and work down towards the goal of predictive modeling (Figure [L.1)).
Starting with a system, the next step is to integrate the network with existing exper-
imental data, for example high-throughput data or observations from the literature.
Following data integration, the systems biologist would then model and simulate the
system. In the modeling phase it is important to establish clear outcomes that can
be compared to data from experiments in order to validate the system model. This
comparison identifies areas where the model fails to replicate experimental results and
also areas where the model makes new, novel predictions. If the model is inadequate
for predicting the desired outcomes it is necessary to hypothesize why, conduct addi-
tional computational and non-computational experiments, and gather data necessary
to further improve and refine the model. The methodology can be repeated indefi-
nitely until the model is able to adequately capture and predict all the behaviors of
the system under investigation.

Systems methods rely on data acquired by the reductionist paradigm, and are
thus not meant to replace reductionist methodologies. Instead systems biology is a
framework within which to contextualize and interpret new findings at the level of

whole systems.

1.1.1 An Application of the Systems Biology Work-flow

The iterative process of prediction and refinement can eventually expand to in-
corporate the entire system. Not surprisingly, one of the chief objectives of systems
biology is the construction and simulation of a complete cell [59]. This goal was re-
cently attained for the human pathogen Mycoplasma genitalium [50] and provides a
stellar example of an application of the systems biological work-flow. To begin, Karr

et al. identified the processes they were interested in modeling, all known cellular



processes of M. genitalium. No single modeling framework is applicable to all cellular
processes, so the authors divided the models of cellular processes into 28 modules
that were modeled separately and combined at each time step. In the data integra-
tion stage, they manually curated parameters from over 900 publications resulting
in over 1,900 parameter values. The parameters were validated by reproducing the
results of knock-out and knock-down experiments from the literature. Then, using
independent datasets they found that the model predicted accurate fluxes through
glycolysis and the pentose phosphate pathway. The model was able to incorporate the
function of each of the 525 genes in the M. genitalium genome, describe the complete
life cycle at the level of discrete molecules and predict measurable cellular behaviors
and phenotypes.

In addition to replicating known values, one of the key goals of systems biology
is to make novel predictions that can lead to new hypotheses and experiments. One
novel prediction made by Karr et al. was the rate of protein-protein collisions within
the cell, which is currently unmeasurable [50]. They further predicted that most
protein-protein collisions are initiated by either RNA- or DNA-polymerase, which
causes displacement of single-stranded binding proteins or structural maintenance of
chromosome proteins. This is a novel result of the model which can be used as starting
point for describing new hypotheses and designing new experimental protocols. If not
for the methodology of systems biology, it is possible that these measurements and

predictions would have taken many years to be measured, or may never have surfaced.

1.1.2 Metabolic Network Reconstruction

Metabolic network reconstructions are used to organize and contextualize high-
throughput molecular data. Reconstructions are networks of chemical reactions that
are often laboriously hand-curated from textbooks and literature then experimentally

and computationally validated. For example, the Human Metabolic Network Recon-



struction is a collection of metabolic reaction mechanisms and metabolic enzymes
compiled from many sources including Gene Ontology, Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways, and EntrezGene [28]. Data from these sources are
matched by overlapping identifiers and integrated into a complete model of metabolic
reactions.

The number of genome-level metabolic network reconstructions has sharply in-
creased from the first in 1999 [31] to well over 50 hand-curated reconstructions and
hundreds of in silico-generated reconstructions. There are five general categories of
applications of metabolic network reconstructions: contextualizing high-throughput
data, metabolic engineering, hypothesis-driven discovery, studying ecological rela-
tionships between organisms, and network property discovery [77]. The work in sub-
sequent chapters will focus on network property discovery, ecological relationships

between organisms and hypothesis-driven discovery.

1.1.3 Dynamic and Static System-level Models

Dynamic models, like that of M. genitalium, are essential contributions to the
field of systems biology, but it is also important to understand the “static” compo-
nent of biochemical networks [59, [70], that is, network structure and composition.
Static features do not capture cellular processes over time, but instead character-
ize the capacity and capabilities of the network. Many topological and architectural
characteristics of biological networks are shared with other complex networks, like the
World Wide Web, language and social networks [6], [70], and methodologies developed

for non-biological systems can often be applied to understand biological networks.

1.2 Network Theory

Networks are mathematical abstractions that describe the relationships between

discrete entities. A network can be represented as a graph containing nodes (vertices)



connected by edges. In this work, the words “network” and “graph” will be used in-
terchangeably. In biological networks we often discuss the relationship between local-
and global-properties of networks. Global properties are those that apply to the en-
tire graph (e.g. diameter, clustering coefficient and degree distribution), while local
properties often describe features of individual nodes (e.g., shortest path, degree and
centrality). The Human Metabolic Network Reconstruction (Human Metabolic Net-
work Reconstruction (RECONI) provides a clarifying example of global and local
properties (Figure . Although the network is dense and highly connected, there
is a hierarchical structure that is visually apparent. Nodes cluster into their respec-
tive organelles, and within those organelle clusters, certain metabolites cluster into
subgraphs with neighboring metabolites. One of the key goals of network biology is
to understand how the small, local clusters give rise to the emergent structure of the

complete graph.

1.2.1 Review of Relevant Graph Terminology

Graphs can be either directed or undirected. Undirected graphs iustrate asso-
ciative relationships but cannot convey sequential information (e.g., ) Directed
graphs contain information bout the direction and sequence of information flow
through the network (e.g. ) Both types of graphs have their applications. For
instance, in social networks it might be not obvious which way influence flows through
a group of friends, so using an undirected graph is appropriate. In a metabolic net-
work we typically know the direction of reaction pathways, so directed graphs are
appropriate.

Many interesting features of networks can be derived using a series of metrics such
as degree, closeness and betweenness centrality, and the clustering coefficient. The
degree of a particular node in a network is the total number of edges connected to the

node. For directed graphs, degree can be further reduced into in- and out-degrees.



Figure 1.2:

Graphical representation of the Human Metabolic Network Reconstruc-
tion [28]. Each node represents a metabolite and each edge indicates
directional association of metabolites to one another. Nodes are colored
by the organelle in which they reside.



The in-degree of a node is the total number of edges going into the node, and the
out-degree is the number of edges emanating fromthe node. In undirected graphs
the in-degree equals the out-degree. In the graph @*0 the out-degree of node C is 2,
while the in-degree is 0. The in-degree of node A on the other hand is 2, while the
out-degree is 0.

Another important graphical metric is centrality. Closeness centrality is the av-
erage distance from one node to all other nodes in the graph (also called the average
shortest path). The closeness centrality metric assigns large centrality to nodes with
the smallest path distance to the other nodes in the graph [0, §].

The previous two metrics, degree and closeness, provide good measurements of
the highly connected nodes in a graph, but they overlook intermediate nodes that
may be fundamental in connecting separate modules of the graph. The betweenness
centrality is the number of shortest paths between all nodes to all other nodes that
pass through a given node. In essence this metric captures the number of times a
particular node is passed through when traversing from one node to another, or how
often a particular node is between all other nodes [g].

The clustering coefficient is a measure of the tendency of a collection of nodes to
cluster into highly connected groups. Many non-random networks show high degrees
of nodal clustering when compared to random graphs. For instance, the metabolic
networks of 43 organisms had clustering coefficients that exceeded those of random
scale-free graphs by an order of magnitude [83].

Network properties such as average degree and average centrality describe the
global properties of engineered networks well, but the meaning and implications of
these measurements in biological networks must be demonstrated. Basler et al. eval-
uated properties of metabolic networks and found that many organizational network
properties, such as average path length and clustering coefficient, emerge as the re-

sult of positive evolutionary pressure [9]. This finding suggests that mathematical



network characteristics contain biological meaning and can provide insights into how

evolution has shaped the organization of and function of metabolism.

1.2.2 Biological Networks Display Modularity

Biological networks typically follow a scale-free degree distribution, which means
that the probabilty of observing a node with %k edges follows a power-law (i.e.,
P(K) ~ k=) [9, 70, 83]. A scale-free degree distribution implies the presence of
nodes with degrees that greatly exceed the average degree in the network, called
hubs. These hubs often serve as intermediaries that connect groups of nodes into mod-
ules, which are separable clusters that can primarily function independently [39, 51].
For example, modular features in [RECONI] are visually apparent by the manner in
which metabolites cluster into organelles and then into smaller groups within those
organelles (Figure [1.2)).

Like many biological networks, metabolic networks display modularity [83]. Mi-
choel et al. developed a network motif aggregation statistic to quantitatively test
whether modules in protein-protein interaction, post-translational modification and
transcriptional regulatory networks are the result of the aggregation of network motifs
[68]. They found that the Feed-Forward Loop structure ( ) significantly aggre-
gates into modules. The aggregation of motifs into modules was likewise observed by
Kashtan and Alon who tested the hypothesis that modules emerge spontaneously due
to changes in the environment [51]. Using an evolutionary algorithm they found that
networks spontaneously evolve modules when environments are added or removed in
silico. Evolved modular networks also showed higher fitness levels and enrichment of
several network motifs, again including the feed-forward loop motif. Finally, Basler
et al. found the clustering coefficient in metabolic networks to be under positive
selective pressure and not purely the result of thermodynamic constraints [9].

It is not clear why modularity occurs in biological networks, or by what mecha-



nisms modules evolve. Many have suggested that they evolve through duplication or
the benefits that they may confer such as robustness or stability [57]. It appears to
be the case that modules are beneficial because they allow for rapid adaptation to
changes in environments by making minimal changes to the module. For example,
in the process of chemotaxis many modules work independently including nutrient
sensing, cellular orientation and metabolism [51]. If the environment changes and a
new energy source emerges, only a few elements of each module need to be adjusted

to quickly respond and nothing needs to be built from scratch.

1.2.3 Network Motifs

A network motif (or simply “motif”) is a small, repeated pattern or subgraph
that is over-represented (enriched) in a network in comparison to its abundance in
a random graph [69, [70]. Under-represented (suppressed) motifs are often referred
to as “anti-motifs,” however in this work we will refer to enriched and suppressed
subgraphs simply as “motifs.” As previously described, many network motifs were

identified as aggregating in modules within biological networks.

1.2.4 Network Motifs May Imply Biological Function

Motifs are of chief interest in network theory and systems biology because sig-
nificantly enriched motifs may determine the dynamic properties of whole systems
[71]. Dynamic behaviors that have been linked to specific motifs include bistability
and ultrasensitivity [89], failure tolerance [71] and network stability [27, 62], 81]. In
addition, motifs provide a reduced, simplified framework in which to describe global
functionality without losing resolution [2 89, ©0, [I0T]. For instance, Vézquez et al.
showed in the transcription and metabolic networks of E. coli and S. cerevisiae that
motif abundances could be predicted from two global parameters describing modu-

lar and scale-free topology, demonstrating that global and local graph properties are

10



mutually defined [98].

Milo et al. showed that certain types of networks have unique motif distributions
[70]. Specifically, transcription and signal transduction networks had distinctive dis-
tributions when compared to non-biological networks like the World Wide Web and
social networks. One of the defining features of biological networks in comparison to
engineered networks is the enrichment of the Feed-Forward Loop motifs ( ). The
feed-forward loop structure is ubiquitous in biological networks and is associated with
a breadth of functions including decreased response time of gene expression after a
stimulus [71], pulsatility [70], and reliable information processing [55].

Above all, motifs are of interest because they provide a source of novel data that
provide insights into molecular evolution [6]. For instance, one could hypothesize
that motifs conferring advantages to the organism would be preferentially enriched,
whereas those that are potentially harmful would suppressed [82]. Conant and Wagner
showed that gene circuits have evolved independently and repeatedly in the transcrip-
tion networks of E. coli and S. cerevisiae resulting in the convergent evolution of two
motifs, the 4-node bi-fan and the 3-node feed-forward loop [22]. This finding provides
strong evidence that the feed-forward loop and bi-fan motifs are ideal structures for
their roles in transcription networks. This point is also made by Klemm and Bornd-
holdt who defined a measure of dynamic reliability of information processing and
showed that the enrichment of the feed-forward motif is correlated with the ability
of that structure to produce reliable signals [55]. A similar finding was made by Prill
et al. that motif enrichment and robustness to small perturbations were positively
correlated so that those motifs that were most stable were also the most abundant
[81].

When taken together, these studies highlight the crucial role motifs play in bi-
ological networks ranging from signal transduction to metabolism. Despite their

important roles, motif structure has not been extensively studied in metabolic net-
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works. In this work, we aim to describe the distribution of motif abundances in a
wide range of organisms, begin to characterize their role in the network property of
failure-tolerance and apply motif analysis to specific biological hypotheses. Our over-
arching hypothesis is that metabolic motifs capture relevant functional information
that can be used to compare the metabolism of different species and organelles. That
is, motifs provide a reduced, compact framework that can be used as a proxy for
metabolic functionality, and thus be employed to make inferences about species-level

differences in metabolism.

1.3 Specific Aims

Aim 1: Identify, characterize and compare the metabolic motifs present
in 21 distinct organisms and seven organelles. In this aim we compile the
metabolic networks of 21 organisms from their network reconstructions and mine
them for motifs of node-size three.

Hypotheses: We hypothesize that each organelle will have a unique significance
profile which is reflective of its distinct function in the cell. Further we hypothesize
that motifs can be characterized by their enzymatic associations.

Aim 2: Assess the metabolic network of E. coli for the property of
failure tolerance, and relate it to the relative abundances of particular
network motifs.

Hypothesis: We predict that the motifs that displayed enrichment in the cytosol
of E. coli as identified in Aim 1 (motifs 2, 3, 7 through 13), will have the property of
increased failure tolerance.

Aim 3: Apply the methodology of motif mining and analysis to test
specific hypotheses of organelle evolution.

Hypotheses: Based on the finding from Aim 1 that certain motifs can be mapped to

specific chemical and biological functions, we hypothesize that organelles most closely

12



related to their ancestral species will display similar significance profiles. Further, we
hypothesize that organelles derived from endosymbiosis will display distinct patterns

of enrichment compared with organelles derived from membraneous infolding.
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CHAPTER II

Network motifs provide signatures that

characterize metabolism

2.1 Introduction

Life can be studied at many different strata ranging from the molecular level
to the ecosystem. Regardless of the stratum, a fundamental characteristic of life
is a high degree of order which is divided into hierarchical levels of organization
and function [83]. Because metabolism is a fundamental process shared among all
living things, it directly influences every stratum of biological function. Molecules are
activated by metabolites, and ecosystems are forged to satisfy metabolic requirements.
Understanding the emergent, organizational properties of metabolism is one way to
unravel molecular evolution [62], and is thus a crucial goal in the field of systems
biology [6].

As a consequence of advances in the field of molecular biology, particularly in se-
quencing technology, it is now common to assemble genome-level metabolic networks
by integrating known biochemical pathways with genomic annotation [40]. These
large biochemical networks are often referred to as metabolic network reconstruc-
tions [77]. Many organizing principles of biological networks have been described

as a result of the availability of large biological networks, and commonalities among
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metabolic, signaling and transcription networks have emerged. For instance, biolog-
ical networks share global properties like scale-free degree distributions [9, 83] and
modularity [39, 51]. They also share local properties such as patterns of network mo-
tif enrichment that are unlike those of engineered networks [70]. A network motif (or
just “motif”) is a repeated pattern or subgraph that is over- or under-represented in a
network compared to its expected abundance in a collection of random graphs [33, [69].
Motifs are of chief interest in systems biology because their patterns of enrichment
may determine the dynamical properties of whole networks [71]. Dynamic behaviors
that have been linked to specific motifs include bistability and ultrasensitivity[89],
failure tolerance [71] and network stability [27, 62 81]. In addition, motifs provide a
reduced, simplified framework in which to describe global functionality without los-
ing resolution [2, 89 0, 101]. Vézquez et al. [08] demonstrated that local graphical
parameters could be used to predict global properties, and likewise that global prop-
erties could predict local network features in the transcription in metabolic networks
of E. coli and S. cerevisiae. This result demonstrates the possibility of making global,
organism-level inferences by characterizing local properties with motifs.

Since global properties of metabolic networks can be described using motif distri-
butions, it is possible to make inferences about molecular evolution and comparative
metabolic functionality. One method to measure functionality of motifs is with the
collection of enzymes associated with that motif. Most biological reactions require
enzymes for catalysis, and as a result the amount and type of enzymes associated
with a particular organism partially characterize the organism’s range of function.

In this work we characterized all 3-node motifs using Enzyme Commission num-
bers (EC) to show that in metabolism motif abundance is directly related to chemical
and biological function. Further, we present a comparative analysis of the distribu-
tions of 3-node motifs in the metabolic pathways of 21 species|I], 12}, 17, 2], 25| 28] 29|

30437, 441 53, 58], 641 84l 86, 911, 05, 6], 102] by compartmentalizing the metabolism in
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the cellular organelles: cytosol, endoplasmic reticulum (ER), Golgi, mitochondrion,
nucleus and peroxisome. Fully compartmentalized metabolic networks enabled us to
test whether the motif distribution is unique for each structure in the hierarchical or-
ganization of the cell. We found that each organelle has a unique metabolic signature
which is indicative of its role in the cell. Finally, we illustrated that motifs are able

to capture biological differences between species.

2.1.1 Hypotheses

We hypothesize that network motifs contain biochemical meaning and can be
uniquely characterized by the types of reactions and pathways in which they partici-
pate. Further, we hypothesize that metabolic processes are largely organelle-specific
and that each of the organelles under investigation will exhibit unique motif distri-

butions, reflecting their distinct roles in the cell.

2.2 Methods

2.2.1 Selection of Metabolic Network Reconstructions

All data in this work were from previously published metabolic network recon-
structions (Table [2.2.1). The networks include representative species from six king-
doms of life and six distinct organelles. Organelles were analyzed as separate net-
works so that the motif distributions of individual organelles could be described. The
network reconstructions were minimally processed, but several highly connected co-
factors (AT P, ADP, AMP, NAD, NADH, NADP, NADPH, NHs, CoA, HyO
and HT) were removed from each network for clarity. Reactions associated with
transports across membranes were also removed because they are not of metabolic

interest, and cannot be said to belong to only one organelle.
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Table 2.1: List of organisms analyzed in the present work,
and relevant network characteristics.

Species Kingdom Nodes FEdges Compartment
A. thaliana Plantae 1501 3411  Cytosol [25]
20 122 Mitochondrion
57 112 Peroxisome
C. reinhardtii Protista 660 2165  Cytosol [17]
25 58 Golgi
260 652 Mitochondrion
48 56 Nucleus
C. thermocellum  Bacteria 516 1604  Cytosol [84]
D. ethenogenes Bacteria 501 1498  Cytosol []
E. coli Bacteria 908 2863  Cytosol [36]
H. pylori Bacteria 400 1194  Cytosol [96]
H. salinarum Archaea 526 1269  Cytosol [44]
H. sapiens Animalia 779 2181  Cytosol [28]
184 402 ER
9234 591  Colgi
189 351 Lysosome
352 905 Mitochondrion
85 173 Nucleus
135 335 Peroxisome
G. sulfurreducens Bacteria 466 908 Cytosol [64]
M. acetivorans Archaea 697 1832 Cytosol [58]
M. barkeri Archaea 542 1602  Cytosol [37]
M. musculus Animalia 842 2399  Cytosol [91]
182 400 ER
262 643  Colgi
205 383 Lysosome
385 1019  Mitochondrion
85 176 Nucleus
140 342 Peroxisome
M. tuberculosis Bacteria 486 1417 Cytosol [35]
P. pastoris Fungi 571 1774 Cytosol [21]
19 22 ER
16 20 Golgi
225 576 Mitochondrion
36 62 Nucleus
74 161 Peroxisome
S. aureus Bacteria 549 1657  Cytosol [12]
S. cerevisiae Fungi 528 1657  Cytosol [29]
15 18 ER
11 17 Golgi
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214 531 Mitochondrion
30 45 Nucleus

73 186 Peroxisome
S. typhimurium  Bacteria 852 3102  Cytosol [95]
T. maritima Bacteria 727 2478  Cytosol [102]
V. vulnificus Bacteria 831 2494 Cytosol [53]
Z. mays Plantae 1418 2463  Cytosol [86]

60 78 Mitochondrion

50 51 Peroxisome

Criteria for inclusion in this study was that the reconstruction (1) must be curated
in the Systems Biology Mark-up Language (SBML]) and (2) readable by the COBRA
toolbox in Matlab [I1]. Neither COBRA nor Matlab were used for analysis, but these
criteria insured that the reconstructions were curated using similar protocols and
adequately formatted and vetted for typographical errors. Once each reconstruction
was read into Matlab, we exported relevant data as plain text files for the motif
mining procedure. Specifically, we extracted the stoichiometric matrix, the reaction
and metabolite names, a dummy variable indicating the reversibility of each reaction
and the subsystem to which the reaction belonged (e.g. “Folate Biosynthesis,” “TCA
Cycle,” “Salvage Pathway of ATP”).

2.2.2 Graph Construction

With the stoichiometric matrices from each of the 21 metabolic network recon-
structions, we generated a list of reaction equations. Reversibility of reactions was
considered so that all reverse reactions were included in the motif mining procedure.
The list of equations was used to generate a FANMOD input file according to FAN-

MOD specifications [100].

2.2.3 Identifying Enriched or Suppressed Motifs

A tool for fast network motif detection (FANMODI) was employed to identify mo-

tifs in metabolic networks [99]. [FANMODI enumerates all subgraphs of a specified
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size in a network rather than estimating frequencies. For computational and ana-
lytical tractability this work focused on 3-node motifs (Table . We estimated
enrichment of particular motifs by comparing them to 1,000 random networks of equal
node and edge size. If a motif appeared more often in the metabolic network than
in the random networks it was considered an enriched motif. The choice of 1,000
random graphs was based on the typical comparison size in literature, but results
did not change with 500 nor 5,000 random graphs. Following motif enumeration, we
calculated normalized z-scores to compare the number of motifs identified in each
metabolic network with the average number in the random graphs. The normaliza-
tion step is necessary because z-scores tend to increase with network size, resulting
in biased comparisons when network sizes vary [70]. The z-score is computed with

equation 2.1:

Zz' - Nmeti - ﬂ(Nrandomi)/a-(Nrandomi) (21)

where N, is the number of occurrences of motif 7 in a metabolic network and
Nyandom, 1s the number of occurrences of motif 7 in a random network. The resultant

z-scores are normalized and yield the Significance Profile (SPl) (motif distribution):

SP = Z;/\)) _ Z? (2:2)

Normalized z-scores range from —1 to 1 and any motif with a z-score greater
than 0 is considered enriched. Likewise, any motif with a z-score less than 0 is
considered suppressed. Motifs with z-scores equal to 0 appear in the network as
often as could be expected at random. To assess whether motifs were statistically
significantly enriched or suppressed, we calculated the mean and standard error of
the normalized z-scores for each motif using 1,000 bootstrap samples and constructed

95% Confidence Interval (Cll)s. [CIk not containing the null, z = 0, were statistically
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significantly enriched or suppressed at p < 0.05.
Motif mining is a computationally costly task which, in general, cannot be per-
formed on a personal computer. Motif mining was conducted on a high performance

computing cluster at the University of Michigan Center for Advanced Computing.

2.2.4 Choosing a Random Background

The results of any motif mining procedure are sensitive to the choice of random
background used for generating the random graphs used for comparison. In this
work, we generated random graphs of equal size and connectivity using the method
of edge switching along with the “global constant” randomization model [I00]. Global
constant randomization holds the total number of bidirectional edges constant, while
any particular node may gain or lose a bidirectional edge. A small comparison of
the three randomization models (‘local,” ‘global’ and ‘no regard’) was done, and the

results did not change appreciably.

2.2.5 Substrate Graphs

All motifs were represented as substrate graphs. Substrate graphs represent as-
sociativity of nodes, rather than mechanistic relationships like those of a bipartite
graph. Each graph type has its advantages and disadvantages. For instance, when
using bipartite graphs of size three, it is possible to generate motifs that contain no
biological meaning. For example a bipartite motif might contain two nodes that rep-
resent reactions and one that represents a metabolite, which is not a valid chemical
mechanism. Similarly, because substrate graphs are associative, we cannot know the

chemical mechanism from the motif structure.
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Table 2.2: Structure, FANMOD identifier and label for
all 3-node motifs.

Motif Structure Fanmod ID Name

6-000000110 V-Out

[\

36-000100100  V-In

12.000001100  3-Chain

=

o1 e

W

164.010100100 Mutual In

ot
L)

14.000001110  Mutual Out

’e

‘
N
e,/

78.001001110  Mutual V

e
e‘@

38000100110  Feed-forward Loop

0]

140.010001100 3-Loop

CN
@‘9

166_010100110 Regulated Mutual

\

=)
6‘6

10 46-000101110  Regulating Mutual
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102.001100110 Mutual and 3-Chain

174010101110  Semi-Clique

238.011101110 Clique

2.2.6 Metabolic Characterization of Motifs

As previously mentioned, one cannot immediately infer reaction mechanisms from
substrate graphs. To accomplish this, we enumerated every possible mechanism a—
pable of yielding each of the 3-node motifs. To illustrate, take the first motif ()
which has two possible mechanisms: It could be either C — A and C — B or
C — A+ B. In addition to enumerating both of the possible mechanisms, it is also
necessary to enumerate all the combinations of reversibility. That is, it is possible
that the correct mechanism for the first motif is C' — A and C — B, but that the
C' — B reaction is actually the reverse direction of a different reaction.

In order to characterize each motif, we used the stoichiometric matrices from
the E. coli, H. sapiens, M. barkeri and S. cerevisiae metabolic network reconstruc-
tions. Stoichiometric matrices contain integers that denote whether a metabolite is
produced, consumed or not a participant in a particular reaction. Negative integers
denote consumption, positive integers denote production, and zeros denote absence.
We generated a second stoichiometric matrix that contained the reverse mechanisms
for all reversible reactions. We searched for motif mechanisms using a series of con-

ditional tests in R. For example to find the reaction C' — A, we used:

which(Stoich[paste(motifi$nodeA[i]), ] > 0 &
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Stoich[paste(motifi$nodeB[i]), ] == 0 &

Stoich[paste(motifi$nodeC[i]), ] < 0)

The which function returns the stoichiometric matrix column indices for reactions
where node A is being produced (A > 0), node B does not participate (B == 0)
and node C' is being consumed (C' < 0). Similar conditionals were used for all other

combinations of reversibility.

2.3 Results

Prior to analysis we mined for motifs in the metabolic networks of 21 species (see
Methods). Motifs are numbered as previously presented in the literature [70] and
are roughly in order of increasing edge density. For example, motif 1 (V-out) has
only two, non-reversible edges, while motif 13 (Clique) has six edges (or three fully
reversible edges). Motif names briefly describe the biochemical relationship between

the three nodes, and motif names and numbers will be used interchangeably.

2.3.1 Motifs can be uniquely characterized by their enzyme functionality

The first two digits of EC numbers in the networks yielded a total of 47 enzyme
classes. For each enzyme class, we calculated the proportion of reactions associated
with each motif and found that each of the 13 motifs was associated with a distinct
catalog of enzymes (Figure [2.1)).

The number and type of enzymes associated with the V-Out, V-in, 3-Chain and
Feed-forward Loop motifs (motifs 1-3 and 7) was wide-reaching. In motifs one through
three, 43 of the 47 total enzyme classes had non-zero proportions. This result implies
that these motifs have a breadth of function, perhaps serving as intermediates between
other motifs. The Feed-forward Loop motif (motif 7) had EC proportions similar

to those of motifs 1-3, but was distinguished by increased proportions of EC 2.4
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EC data were obtained from the metabolic network recon-
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each motif.

Figure 2.1

structions of E. coli, H. sapiens, M. barkeri and S. cerevisiae. Red vertical

lines separate the six classes of EC number
hydrolases, lyases, isomerases and ligases.

oxidoreductases, transferases,
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(Glycosyltransferases) and EC 6.3 (Forming carbon-nitrogen bonds).

Mutual In (motif 4), Mutual Out (motif 5) and Mutual V (motif 6) had EC distri-
butions similar to one another. Enzymes that were key in characterizing these motifs
include 1.1 (Acting on CH-OH group of donors), 1.6 (Acting on NADH or NADPH),
1.8 (Acting on a sulfur group of donors) and 5.4 (Intramolecular transferases). Al-
though many of these enzymes are modestly represented, their presence remains a
relevant characteristic. For example, EC 1.8 constitutes 1% of all enzymes associated
with motifs 4-6, but was rarely found in all other motifs.

The EC distributions of Regulated Mutual (motif 9) and Regulating Mutual (motif
10) vary in key enzymes with respect to the other 11 motifs, but are similar to one
another. A distinguishing characteristic of Regulated Mutual is the high level of
EC 2.7 (Transferring phosphorus-containing groups) which comprises 20% of its total
collection of enzymes, and nearly double that of motif 10. This is also true for ECs
1.17 (Acting on CH or CH2 group) and 3.6 (Acting on acid anhydrides) which are
doubled in the Regulated Mutual motif versus the Regulating Mutual motif. The
enzyme that distinguishes motif 10 from motif 9 and all others is EC 6.1 (Forming
carbon-oxygen bonds) which comprises 9% of the enzymes associated with motif 10
and is twice to ten times the amount seen in all other motifs.

Mutual and 3-Chain (motif 11) and Semi-clique (motif 12) were similar in their
enzyme proportions. Enzymes that distinguish these two from all other motifs are
high proportions of glycotransferases (EC 2.4) and enzymes catalyzing carbon-oxygen
bonds (EC 6.2). They differ primarily in the amounts of EC 2.3 (acyltransferase)
which is four times greater in motif 12 compared to motif 11.

Finally, the motifs 3-Loop (motif 8) and Clique (motif 13) are particularly inter-
esting because their EC distributions are sparser than the other motifs, suggesting
a narrower range of function. The 3-Loop motif had non-zero proportions in just 19

of the 47 enzyme classes and Clique had non-zero proportions in only 17 of the 47.
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These two motifs also displayed enzymes distributions that were unlike all other mo-
tifs. The 3-Loop (motif 8) shows proportions of ECs 3.5 (Acting on carbon-nitrogen
bonds, other than peptide bonds) and 1.7 (Acting on other nitrogenous compounds
as donors) that are at least twice the amount in all other motifs. Motif 13 is lacking

any glycosyltransferases (EC 2.4) which are ubiquitous in every other motif.

2.3.2 Motif function recapitulates motif structure

Using the proportions of enzyme classes associated with each motif (Figure ,
we calculated a pairwise distance metric to quantify the level of similarity between
the motifs. In agreement with the previous section, we found that motifs with similar
structural features have similar proportions of enzyme classes in metabolic networks
(Figure 2.2). The feed-forward structures (motifs 1, 2, 3 and 7) fall within their
own cluster with motifs 1 and 2 showing more similarity with each other and less
similarity with motifs 3 and 7. Motifs 4, 5 and 6 cluster together, but the motifs that
share the structural property of one reversible edge and one non-reversible edge (4
and 5) cluster more closely to each other than to motif 6. This finding shows that
the addition of one edge to a motif can distinguish its enzymatic associations (this is
seen also in the clustering of motifs 3 and 7).

The findings depicted in figure[2.2]allowed us to conclude that motifs have chemical
signatures that can be quantified with the EC numbers corresponding to the reactions
in which they participate. Further, the similarity of the EC distributions is related
to the structural features of the motifs such that motifs that are structurally similar

also share similarities in their distributions of enzymes.
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e Dendrogram showing the distance between the proportions of EC numbers
each of the 13 motifs.

2.3.3 Each cellular organelle displays a unique significance profile indica-

tive of its unique role in the cell.

We used fully compartmentalized metabolic networks from 21 species to describe
average motif distributions for each organelle. Each of the six organelles displayed a
unique pattern of motif enrichment and suppression (Figure. Confidence intervals
not containing the null, z = 0, are statistically significantly enriched or suppressed.

In the cytosolic compartment, 11 of the 13 motifs achieved statistical significance
with the exception of Mutual Out (motif 5) and Mutual V (motif 6). The tightness
of the indicates relatively small variance between organisms and suggests that
the local structure in the cytosol is well conserved across all kingdoms of life in our
sample.

The ER had only two motifs that reached statistical significance, Regulated Mu-
tual (motif 9) and Regulating Mutual (motif 10), both of which were suppressed.

This is due primarily to inter-species variation in motif enrichment as seen from the
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scattered points in figure [2.3]

The Golgi showed enrichment in only one motif, Feed-forward Loop (motif 7), and
suppression or absence in all others. This profile suggests that, unlike the cytosol, the
Golgi performs a narrow set of metabolic functions, for example protein glycosylation,
and therefore one type of motif is sufficient.

The nuclear motif distributions also displayed significant enrichment of the Feed-
forward Loop motif (motif 7) and had high levels of inter-species variation (as seen
from the points in figure .

An intriguing finding is the similarity of the cytosol, mitochondrion and perox-
isome motif distributions. The profiles are remarkably similar with motifs 1 to 7
displaying the same pattern of enrichment and suppression (though not the same
pattern of statistical significance) among all three organelles.

It is notable that the V-In (motif 2) and 3-Chain (motif 3) motifs are enriched in
cytosol, mitochondrion and peroxisome but suppressed or non-significant in the ER,
Golgi and nucleus. Recall, that these motifs were associated with a wide range of
enzyme classes and had non-zero proportions for nearly all 47 enzyme classes. Because
the cytosol, mitochondria and peroxisomes contain a more varied and complex set of

metabolic reactions and roles, it is reasonable that we see this pattern of enrichment.

2.3.4 Within-species motif enrichment can be used as an indicator of

metabolic functionality.

The mitochondrial motif distribution provides an interesting example in which
to evaluate inter-species variation in motif enrichment. The mitochondrial sample is
reduced to include only seven species because prokaryotes do not contain mitochon-
dria. There is very little variation in mitochondrial motif distributions between the
two species in Animalia, H. sapiens and M. musculus (Figure . Likewise, the two

Fungi, S. cerevisiae and P. pastoris, show identical distributions to one another, and
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to those of Animalia. The two plants, A. thaliana and Z. mays, have motif distribu-
tions unlike those of any of the other kingdoms, showing enrichment of both Regulated
Mutual (motif 9) and Clique (motif 13) even while those motifs are primarily sup-
pressed in the other kingdoms. Similarly, Mutual V (motif 6), Feed-forward Loop
(motif 7), and Mutual and 3-Chain (motif 11) are suppressed in plants but primarily
enriched in other kingdoms. The motif distribution of the protist C. reinhardtii is
somewhat of a hybrid of the plant and the animal distributions, possibly reflecting

commonalities with plants due to the photosynthetic elements of their metabolism.
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Figure 2.4:
& Mitochondrial motif distribution. Each line corresponds to an organism,

and the line color denotes the kingdom of life to which the organism
belongs.

We should expect some variation in motif distributions between plants and other
organisms because the evolutionary history of plant mitochondria differs markedly
from that of Bacteria, Fungi and Animalia [52].

The Clique motif (motif 13) is enriched in plant mitochondria, but suppressed
in animals, fungi and protista. In the previous section, the Clique motif was found

to be characterized by the transferral of aldehyde or ketonic groups (EC 2.2) and
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intramolecular oxidoreductases (EC 5.3). Oxidoreductases are a class of enzymes
that catalyze the transfer of electrons from one molecule to another, and they are
common in the pathways of glycolysis and gluconeogenesis. In most organisms, the
pathways of glycolysis and gluconeogenesis occur in the cytoplasm, however in plants
these pathways are contained within the mitochondria [42]. Approximately 10% of the
reactions of the Clique motif are considered part of glycolysis/gluconeogenesis, and
this 10% constitutes the largest proportion for that motif (Figure[2.5)). The remaining
pathways of the Clique motif take place primarily outside of the mitochondria, which
helps account for the suppression of the Clique in all other kingdoms.

The Mutual V (motif 6) motif is suppressed in plants while enriched in animals
and fungi. Similarly, the Regulated Mutual (motif 9) motif is enriched in plants
while suppressed in animals and fungi. Interestingly C. reinhardtii, a photosynthetic
algae, follows the same pattern of suppression and enrichment as plants, suggest-
ing that these two motifs may vary in photosynthetic organisms. Both motifs are
associated with biochemical reactions in alternate carbon metabolism pathways (Fig-
ure , which vary between plants and animals due to the presence of chloroplasts
in photosynthetic organisms. Chloroplasts create a cellular environment that is rich
in carbohydrates, such as sucrose, fructose and glucose, and also rich in oxygen [76].

One of the many functions of a mitochondrion is fatty acid oxidation, which occurs
less in plants than in other organisms [88]. The Feed-forward Loop motif (motif 7)
is associated with fatty acid oxidation through the EC numbers 1.3, which refers to
various types of oxidases and hydrogenases used in the beginning steps of fatty acid
oxidation. Also, EC 1.1.1.35 and 1.1.1.211 which are dehydrogenases and 2.3.1.16
a acyltransferase involved in the conversion of coenzymes to acetyl-CoA. Because
fatty acid oxidation is relatively rare in plants, we could expect for there to be less

enrichment of the Feed-forward Loop motif in plants, which was the case here.
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2.4 Discussion

In this work, we have characterized motifs in terms of their enzyme associativities,
and we have estimated motif abundances in the metabolic networks of 21 organisms
and 6 organelles. However, evaluating the properties of metabolic networks is only as
useful as the reconstructions are valid. Many reconstructions are built using previous
versions as starting points and thus perpetuate errors and biases that may have been
present in previous incarnations of the networks. Due to high degrees of relatedness,
we expect that those biases are consistent across most reconstructions because of their
high degree of relatedness.

There is also a disconnect between the ever-growing number of fully sequenced
genomes and the number of validated, usable network reconstructions to accompany
these genomes. Currently, network reconstruction is massively time-consuming and
largely done via manual curation. As a result of the time-intensive process of creating
metabolic network reconstructions, our sample contained relatively few eukaryotes.
Despite this, we expect that while the ensemble of enzymes and pathways associated
with each motif will likely change as more reconstructions become available, motifs
will still be function-specific.

Notwithstanding the previously mentioned limitations, the findings presented here
improve on previous work [33],[97] on metabolic network motifs in two key ways. First,
our analyses were restricted to include only manually-curated metabolic network
reconstructions. We conducted a small analysis comparing the motif distributions
of automated versus manually generated reconstructions and found that automated
reconstructions systematically underestimate the number of reversible reactions in
metabolic networks (unpublished data). Underestimation of reversibility results in
underestimation of motifs with reversible edges (motifs 9-13) and overestimation of
simpler motifs (motifs 1-3). Second, as a consequence of the high-quality, compart-

mentalized reconstructions we were able to present motif distributions for six distinct
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Eukaryotic organelles which, to our knowledge, is a novel contribution.

2.4.1 Motifs with a breadth of associated enzyme classes could be inter-

mediaries

In section 2.3.1 we saw that the feed-forward structural motifs (motifs 1-3 and
7) displayed wide-ranging enzymatic associations. We proposed that these motifs
might be intermediaries connecting motifs of greater complexity (in terms of edge
connectivity) into modules. In networks, modules are semi-autonomous units that
can function primarily independently. It has been demonstrated in previous work
[26, [68, O8] that motifs aggregate into functional modules in metabolic networks.
Kashtan et al. showed that network modularity and motif aggregation evolve sponta-
neously in in silico networks exposed to changes in environment, and that the 3-Chain
(motif 3) and Feed-forward Loop motifs (motif 7) in particular aggregate in modules
[51]. We found that in metabolic networks, 3-Chain and Feed-forward Loop motifs
have a breadth of enzyme associativity, perhaps because they aggregate within many
metabolic modules. This is also supported by the motif enrichment levels seen in
section 2.3.3. Besides the ER and peroxisome, all organelles showed enrichment of
the Feed-forward Loop motif (motif 7). In the cytosol, mitochondrion and peroxiome
enrichment of the 3-Chain motif (motif 3) was observed. This suggests that high
abundances of motif 3 and 7 may contribute to the network modularity and perhaps
the benefits conferred by that feature such as stability and robustness [57].

In contrast with motifs 1, 2, 3 and 7, motifs 8 and 13 displayed the narrowest
range of enzymatic associativity with non-zero proportions in only 36-40% of all
enzyme classes (Figure . Interestingly, these cyclic motifs were only significantly
enriched in the cytosol and no other organelle. Cyclic motifs like 8 and 13 have been
shown to have dynamically unstable properties in biological networks (transcription,

signal transduction and neuronal signaling) [81] and to be unreliable in the context of
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information processing [55]. This could explain the lack of enrichment of these motifs

in networks where metabolites are used as signaling molecules.

2.5 Conclusions

In this work we have shown that in metabolic networks motifs can be uniquely
characterized by their enzymatic associations and therefore, their biochemical func-
tionality. Further, we found that similarities in enzyme class proportions are explained
by similarity in the structural features of the motifs. We also showed that cellular
organelles display motif distributions that are distinct from one another and likely
reflect their distinct metabolic roles in the cell.

Enzyme Commission numbers allowed us to uncover motif specificity at the chemi-
cal level, and pathway data allowed us to supplement the chemical information within
a biological context. We were able to make inferences about higher-level biological
function based solely on the structure of metabolic networks as described through mo-
tif distributions. This analysis demonstrates that network properties contain func-
tional information that can be used to describe differences in metabolism between
organismes.

The work presented here constitutes the first brush towards the goal of understand-
ing metabolic network features across many forms of life. In the following chapter,
we present an exploratory analysis if the E. coli metabolic network and assess the

property of failure tolerance.
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CHAPTER III

The metabolic network of E. col: displays distinct
properties compared to Erdés-Rényi random

networks

3.1 Introduction

In chapter [[I| we characterized each 3-node motif using enzyme class associations
and demonstrated that each organelle had a unique distribution of motif abundances.
In this chapter, we present an exploratory analysis to begin to address why motifs con-
tain evolutionary information, and what beneficial properties motifs may confer to an
organism. Our goal in this work is two-fold. First we are interested in characterizing
the network properties of the E. coli metabolic network. Second, we are interested in
assessing the effect of motif participation on the robustness of the network to random

component failure.

3.1.1 Motifs display many dynamic properties

The primary motivation for identifying motifs in biological networks is that their
presence may provide insight into the organizational properties and evolutionary pro-
cesses that gave rise to them [0, 8I]. Significantly enriched motifs in biological net-

works imply positive selection pressure in favor of that motif. Likewise a suppressed
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motif could be detrimental to the survival of the organism and therefore be under neg-
ative selection pressure. These hypotheses are partially supported by the observation
that topological features of biological networks differ markedly from those of random
or synthetic networks [66]. While evolutionary reasoning is intuitive, characterizing
the behaviors and beneficial features of motifs has proven a challenging task and re-
mains an area of active research. The difficulty of this question is exacerbated by
the need to select appropriate outcome measures with which to assess the behaviors
and benefits of motifs. For instance, Ma et al. evaluated the network property of
adaptation (or stability), which is a system’s ability to respond to changes in inputs
and then return to its pre-perturbed output level, even when the change persists [63].
Using a joint sensitivity and precision criterion, the authors found that incoherent
feed-forward loops, loops in which one input is an activator and one is a suppressor,
displayed adaptation more robustly than negative feedback loops, loops in which all
inputs are suppressors. This result suggested that the configuration of the incoher-
ent feed-forward loop was more sensitive to changes in input and therefore behaved
with greater precision than other feed-forward loop configurations. Further, Prill et
al. found that motif abundance was correlated with motif stability in metabolic,
signaling and neuronal networks [81]. Prill found that the most stable motifs were
the V-Out, V-In, 3-Chain and Feed-Forward Loop (motifs 1, 2, 3 and 7) motifs and
the least stable were the Mutual V, Mutual and 3-Chain, 3-Loop, Semi-clique, and
Clique (motifs 6, 11, 8, 12, and 13) motifs.

The ability of motifs to reliably transmit information has also been assessed.
Klemm et al. found that motifs with feed-forward structures (motifs 1, 2, 3 and 7)
always displayed reliable dynamics, while the least reliable motif is the 3-loop (motif
8) [55]. Like Prill et al. [81], Klemm et al. additionally found that motif abundance
was correlated with the level of reliability so that those motifs that were most reliable

were also most expressed.
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Studies like those summarized above have been met with criticism. Ingram et al.
argued that studies like those of Ma and Prill are too limited in scope and that the
dynamic behaviors of motifs are actually broad and complex [48]. Further, Doyle
and Csete argue that it is unclear that stability is even a property of the individual
elements in biological networks and may instead be an emergent global property of
networks [27]. If stability and robustness are primarily global properties, it is not
obvious why these measures would be of interest towards the goal of characterizing
motifs.

Despite these critiques, many have found that metabolic networks show a high
degree of relatedness to one another but display motif distributions that are unlike
those of other biological networks [33, [97]. This observation suggests that the design
principles of metabolic networks may not be comparable to those of other biological
networks like signal transduction or genetic networks. Van Nes et al. demonstrated
that when the stability analysis of Prill [81] was applied to metabolic networks, struc-
turally stable motifs were not enriched as previously reported [97]. The uniqueness
of metabolic networks compared with other biological networks necessitates an ex-
ploratory analysis of basic network properties before progress in the characterization

of metabolic motifs can be made.

3.1.2 Static properties of network motifs have not be adequately explored

Each of the above mentioned studies characterized dynamic behaviors of particular
motifs. In general, dynamic systems are difficult to study because they require a great
deal of data to inform parameter values in addition to knowledge about network
structure. In order to characterize stability, it is necessary to supply rate parameters,
initial conditions, and various levels of perturbation. In metabolism many of these
parameters are simply not known and must be assumed, posing a major limitation to

the generalizability of the results [48]. An alternative method that has not been well-
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studied is to characterize the static graphical features that are conferred by motifs.

When employed, static methods of analysis have uncovered many interesting fea-
tures of biological networks. For example, Michoel et al. developed a network motif
aggregation statistic to quantitatively measure whether modules in protein-protein
interaction, post-translational modification and transcriptional regulatory networks
were the result of the aggregation of network motifs [68]. They found that the feed-
forward loop structure significantly aggregated into modules. Further, Basler et al.
found the clustering coefficient in metabolic networks to be under positive selective
pressure and not purely the result of thermodynamic constraints [9].

In this study, we expand upon the static analysis of Mirzasoleiman and Jalili [71]
and assess local and global network properties following random component failure in
the metabolic network of E. coli. In previous work, Mirzasoleiman and Jalili demon-
strated that destruction of edges in protein and neuronal networks resulted in alter-
ations to the motif distributions in those networks. We expand on their methodology
and measure whether participation in network motifs causes the metabolic network of
E. coli to be more resistant to random edges failures. Further, to determine whether
the metabolic network responded to component failure in a manner distinct from
random networks, we compared it with 1,000 Erdés-Rényi random graphs of equal

node and edge size.

3.1.3 Hypotheses

We hypothesized that motifs that displayed enrichment in the metabolic network
of E. coli as identified in Aim 1 will have the property of increased failure tolerance
(green box in figure . Likewise, those motifs that were suppressed will display
decreased failure tolerance (red box in figure . Specifically, we hypothesize that
motifs 2, 3, and 7 - 13 will show increased failure tolerance, while motifs 1, 4, 5, and

6 will show decreased failure tolerance.
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18U Motif profile of the E. coli metabolic network. Green boxes enclose motifs

that are enriched in comparison with 1,000 random graphs, and red boxes
enclose the motifs that are suppressed in comparison to 1,000 random
graphs.

3.2 Methods

We used the E. coli metabolic network reconstruction version iAF1260 [36] as the
network to analyze because of its relative simplicity in terms of cellular compartments
and because of E. coli’s prevalence as a model organism in experimental research. The
methods associated with the transformation of the stoichiometric matrix, motif min-
ing with FANMOD, and determination of enrichment/suppression of network motifs

can be found in the methods section in chapter [[I]

3.2.1 Network Parameters
3.2.1.1 Global Network Parameters

Global network parameters are those that describe features of the entire network
rather than individual nodes or edges. We measured five global network parameters:

Size, global transitivity, diameter, average path length and the power-law fit. Size is
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the total number of nodes in the network before and after edge destruction. Global
transitivity, also called the global clustering coefficient, is the average ratio of fully
connected triads (triangles) to connected triads [7], and corresponds to the level of
connection between three nodes. The clustering coefficient ranges between 0 and 1,
where 0 denotes no clustering and 1 denotes full clustering.

The diameter of the graph is the maximum shortest path (geodesic). To find the
diameter, we first find the shortest paths from all nodes to all other nodes in the
network and the largest of these is defined as the diameter (Figure 3.2/ A). A similar
measure is the average path length, which is measured by computing the shortest

paths between all pairs of nodes and averaging them.
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Fi 3.2:
18U The diameter and degree distribution of the E. coli metabolic network.

(A.) The diameter is denoted by yellow nodes connected with enlarged
arrows. (B.) The complete degree distribution is displayed on the upper
half of panel B. The color scale on the right indicates the density of points
within the region. The majority of nodes have a degree near the average,
while relatively few nodes have extremely large degrees. The bottom
half of panel B contains more detail of the degree distribution below the
extreme values.

Finally, the power-law fit is an estimate of the parameter v which describes the
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exponential decay of the degree distribution:

P(K) ~ ck™ (3.1)

Biological networks typically have scale-free degree distributions in which have most
nodes have small degree, while few nodes have extremely high degree. The E. coli
metabolic network has a scale-free distribution (Figure B) with an average degree

of 10 and a maximum degree of 598.

3.2.1.2 Local Network Parameters

Local network parameters are measurements that characterize the structure of a
network at the level of the individual node or edge. We measured nine local network
properties to assess failure tolerance in the context of motif participation. Of primary
interest were the shortest out-paths and shortest in-paths which are measures of
distances between nodes. The shortest out-path is the average shortest path length
(or geodesic) from a reference node to all other nodes in the graph. Likewise, the
shortest in-path measures the average shortest paths into a reference node from all
other nodes in the graph.

Additionally we calculated the degree, closeness and betweenness centralities of
each node. Degree centrality is the total number of edges connected to a given node.
This measure was further divided into in- and out-degrees, which are the number of
edges going into a node and the number of edges emanating from a node, respectively.
Degree can be thought of as a measure of a node’s popularity in a network [75].

Closeness centrality is the inverse of the mean length of the shortest paths between
all nodes in a network [41]. The more central a node, the smaller its average distance
to other nodes, and thus the larger its closeness centrality. Closeness centrality is a

measure of how quickly information can spread from a given node to others in the
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network [75].

Betweenness centrality is a measure of the number of shortest paths from all
nodes in a graph to all other nodes that pass through a particular node of interest
[T4]. Betweenness centrality captures the influence a particular node has on the
network’s ability to spread information [75]. In the context of biochemical reaction
networks, metabolites with high betweenness centrality are intermediates that connect
potentially disjoint reaction pathways.

Finally, we measured two features that quantify the amount of local clustering in
the E. coli metabolic network: the local clustering coefficient, and Burt’s constraint.
The local clustering coefficient is defined similarly to the global clustering coefficient.
It is the ratio of complete triangles to connected triads. Burt’s constraint is a measure
that captures the extent to which a node connects modules that are not otherwise
linked [I5]. A constraint value near zero indicates that a particular node is a bridge.

The combination of low constraint and high betweenness centrality indicate bridging.

3.2.2 Generation of Random Graphs

One thousand Erdés-Rényi (ER) random graphs were generated for comparison
with the F. coli metabolic network using the library “iGraph” in R. To insure that
the random graphs were comparable, we simulated them to be identical in the number

of nodes and edges.

3.2.3 Edge Destruction

To assess the feature of failure tolerance, we randomly destroyed the edges of the
E. coli network and measured the effect on many graphical parameters. The biological
analogue of edge destruction is the random removal of a set of metabolic reactions.
We destroyed 1 to 10% of the edges and found that results did not change appreciably

within this range (see appendix . Destroying above 10% of the edges resulted in
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deterioration of the graph structure making the network structure unrealistic and
inference difficult. Since there was no appreciable difference in the results in the 1 to
10% range, we restrict our analysis to the 10% edge destructions.

Destruction was conducted by randomly sampling the edges without replacement
and deleting the sampled edges from the graph 10,000 times. Graphical parameters
were then averaged over these 10,000 runs.

To determine statistical significance of the differences between graphical parame-
ters before and after edge destruction, we calculated the mean and standard error of
each measurement with 1,000 bootstrap re-samples. Using the bootstrap estimated
standard errors, we calculated a 95% confidence interval for each network parameter.

All analyses in this work were conducted in R (version 2.15.1) with the library

“iGraph.”

3.3 Results

3.3.1 Global properties significantly vary between the E. coli metabolic

network and the ER random networks

The global clustering coefficent, diameter, mean path length and power law fit
were statistically significantly different between the E. coli metabolic network and
ER random networks in the case of 0% edge destruction (Table . As expected,
the E. coli metabolic network displayed higher levels of clustering compared (0.044)
to random (0.01), but lower levels compared to the values reported in the literature,
which typically range between 0.21 [46] and 0.40 [49]. The cause of this departure
is apparent in the distribution of the clustering coefficients (Figure . The E. coli
metabolic network has a large representation of metabolites with coefficients of zero.
These metabolites correspond to endpoint metabolites that reside on the perimeter

of the network (Figure [B.5). Ignoring nodes with zero values, the mean clustering

44



(ev1 ‘eh1)  sThl (171 °68°1)  OF'1 68T (97T ¥P'T)  SPT 1 MR 10MO0]
(0g'¢ ‘8z°¢) 62°€ (GGLY ‘TGLT) 8F cre (CLVy ‘LLVY)  LVY 18U IR Uea]y
(816 ‘ST°6) L1°6 (9z°0T ‘6T°0T) 1201 8 (€6 '926) 0£6 IojUeI(]
(617070 ‘ST¥0°0) 700 (100 ‘600°0)  600°0 700 (1T0°0 ‘0T0°0) 100 JuemIgeo)) SuLe)sny)
(L19°€€6 ‘126°€86) ¥65°¢¢6 (68F7¢6 ‘€8FE6) 989726 ce6 ce6 071G YIOMON
ID %G6  Wesy ID %G6 ey ID %G6 WedJy ID %G6 WedJy IojouIeIe |

JIOMION] DT[ORIDIN 202 4] JIOMION wopuey Y  JIOMION OIORIDIA 202 4  JIOMIdN wopury YH

uorona)so( 98pH %01 uo1ona)so 93pH %0

UOIIONIISOP 93P 90T SUIMO[[O]
puR UOIIPUOD SUI[ESR( O} UL 2J02 47 JO YIOMISU OI[oqeiaul o) Ypm syders wopurl AU -SOpIy Jo uostreduo)) ¢
-T'EPIq®L

45



coefficient in the E. coli metabolic network is 0.35, a value consistent with previous

findings.
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Figure 3.3:

Comparison of the clustering coefficients of the E. coli metabolic network
(top) and ER random networks (bottom). Red dashed lines indicate
the mean values, and the blue intensities indicate the density of points
contained in the bins.

The network diameter and mean path length were significantly higher in the ran-
dom network than in the E. coli metabolic network. This result is consistent with
the finding that ER random networks do not cluster and as a result have low edge
density. The lack of edge density increases the length of the paths between nodes in
random networks.

The degree distributions between the two network types varied dramatically (Fig-
ure . The E. coli metabolic network displayed a scale-free degree distribution
typical of biological networks. Scale-free biological networks are characterized by the
presence of nodes with degrees that greatly exceed the average degree, often acting
as hubs connecting separate modules [39, 51]. Conversely, the degree distribution of

the ER random networks displayed a bell shape curve and no nodes with extreme
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Comparison of the degree distributions of the E. coli metabolic network
(top) and ER random networks (top). Both networks have an average
degree of 9.80.
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3.3.2 The FE. coli metabolic network and ER random networks reveal

similar levels of failure tolerance in global network parameters

In general, the two network types displayed similar levels of failure tolerance (Ta-
ble . Both networks showed significant reductions in size following 10% edge
destruction. Further, the clustering coefficient was reduced by 9% in the random
networks, but only 7% in the metabolic network.

Conversely, the average diameter was increased by 15% in the metabolic network,
but only 10% in the random networks. This is likely due to the inherent modularity
of the E. coli metabolic network that implies a collection of hub nodes that serve as
bridges. If a path to or from a hub node is destroyed, the ability to reach all other
nodes in a graph could be severely reduced and increase the diameter.

These results suggest that while the topology of the E. coli metabolic network, as
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measured through the clustering coefficient and power law fit, was more tolerant to
failure than the random networks, the diameter and path lengths and therefore ability
of the network to disseminate metabolic information, were less tolerant to failure than

the random networks.

3.3.3 Perturbation of Local Features

In the previous sections we established that the E. coli metabolic network and
the ER random networks have fundamentally different structures. They vary in their
levels of clustering, degree distributions and diameters. We are now interested in
determining whether participation in particular network motifs confers the benefit
of tolerance to component failure independently of network structure. To accom-
plish this, we evaluated local, node-level network properties in the context of motif

participation before and after edge destruction.

3.3.4 The E. coli metabolic network displays higher levels of failure tol-

erance in local network parameters

To assess whether a graphical parameter displayed failure tolerance, it is neces-
sary to evaluate the statistical significance of the mean value of the parameter before
and after edge destruction. Recall that we are interested in assessing whether en-
riched motifs (motifs 2, 3 and 7 through 13) display higher levels of failure tolerance
compared to suppressed motifs (motifs 1, and 4 through 6).

All motifs except the 3-Loop (motif 8) and Clique (motif 13) motifs displayed
statistically significantly higher means in both their shortest out- and shortest in-
paths (Figure following edge destruction. This result was also found in the
ER random networks with every motif significantly higher following edge destruction
except for the Semi-clique motif (motif 12).

There was no relationship between motif participation and the change in shortest
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Figure 3.5:

Fold changes in shortest out- and in-paths by motif. The red dashed line
indicates the expected fold change if there is no change following 10%
edge destruction.
paths following edge destruction (Figure . However, the E. coli metabolic net-
work displayed significantly smaller increases in path length compared to the random
networks. On average, the metabolic network saw increases in path length of 4%,
while the random networks increased by 6%.

There was a positive relationship between degree and motif participation (Fig-
ure in the E. coli metabolic network. In the metabolic network, the average
degree for the first five motifs was approximately ten. For motifs 6 through 13, the
average degree was 23. The motifs with the highest degree were 3-Loop (motif 8)
and Clique (motif 13) with degrees of 36 and 40, respectively. This finding demon-
strates that motifs with greater edge density do not necessarily have greater degree.
For example, motif 8 has three edges and a degree of 36 while motifs 4 and 5 have
three edges but degrees of 10 and 11, respectively. Further, the relationship between

motifs and degree was not seen in the random networks, suggesting that degree is an
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1BHe Fold changes in three centrality measures by motif. The red dashed line

indicates the expected fold change if there is no change following 10%
edge destruction.
indication not of motif complexity, but of network structure.

In both the E. coli metabolic network and the ER random networks, degree was
reduced by approximately 10% following edge destruction (Figure . The effect of
edge destruction on both types of networks was additive. That is, the change was
constant across all motifs. The metabolic network and random networks displayed
equal reductions in degree on average.

Closeness centrality decreased by 9% in the metabolic network and approximately
30% in the random networks following edge destruction (Figure . This indicates
higher levels of failure tolerance, in the context of closeness, in the metabolic network
(Figure . Again, there was no relationship between motif participation and the
change in closeness.

The fold change of betweenness centrality displayed a relationship with motif
participation. Specifically in the metabolic network, the 3-Loop (motif 8) and Clique
(motif 13) motifs were more tolerant to failure than the other 11 motifs. The Mutual
V (motif 6) and Semi-clique (motif 12) motifs showed increased failure tolerance in the
random networks. In general, the metabolic network was more tolerant to destruction

than the random networks.
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Finally, we discovered several interesting relationships by evaluating two related
network parameters, the clustering coefficient and Burt’s constraint. The clustering
coefficient was largest in the Feed-forward Loop (motif 7), and Mutual and 3-Chain
(motif 11) motifs (Figure [3.7). This result is consistent with previous findings that
the Feed-forward Loop motif aggregates in biological networks creating dense modules
[68]. The Mutual and 3-Chain (motif 11) motif is similar in structure to the Feed-
forward loop but with an additional reversible edge. We also found a positive trend
of increasing clustering coefficients with increased edge density in both the metabolic
and random networks (Figure . In the random networks, motifs 1 through 6 had
an average clustering coefficient of 0.01 and 0.03 for motifs 7 though 12. In general,
this relationship was repeated in the metabolic network except in the case of motifs

8 and 13 which had relatively small clustering coefficients.
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Figure 3.7:

Fold changes in clustering coefficient by motif. The red dashed line indi-
cates the expected fold change if there is no change following 10% edge
destruction.

We observed a modest relationship between participation in the Semi-clique (motif
12) and Clique (motif 13) motifs and increased failure tolerance of the clustering

coefficient. In the metabolic network, participation in the Semi-clique motif resulted
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e Fold changes in Burt’s constraint by motif. The red dashed line indi-

cates the expected fold change if there is no change following 10% edge
destruction.

in a reduction in the clustering coefficient of only 5% compared with an average of
7% in the other motifs. Likewise, in the random network, participation of motif 12
resulted in an increase of 0.04% compared to an average decrease of 9% in the other
11 motifs. Again, the metabolic network was more tolerant to failure in general,
and showed an average reduction in the clustering coefficient of 6% compared to an
average reduction of 8% in the ER random networks.

Burt’s constraint is a measure that indicates the extent to which a particular
node is a bridge connecting clusters that would otherwise not be connected. A low
constraint indicates that a node is a bridge. We found that the 3-Loop and Clique
motifs (motifs 8 and 13) had the smallest constraints, suggesting that these motifs in
particular have specific structural roles in the metabolic network (Figure . Recall
that motifs 8 and 13 also had the largest betweenness centralities, demonstrating
that they have more shortest paths passing through their nodes than any other motif
structure. When taken together these results indicate that the metabolites partici-

pating in motifs 8 and 13 are structural metabolites connecting disparate metabolic
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modules or pathways.

This structural property is visible from the distribution of the Clique (motif 13)
motif in the metabolic network and the distribution of constraint values. Metabolites
that participate in the Clique motif do not aggregate, but instead appear uniformly
throughout the primary module of the network (Figure A). The nodes that par-
ticipate in the Clique motif also have the lowest constraint values (Figure B).

In the E. coli metabolic network there was a downward relationship between the
fold change in the constraint measurement and the motifs of greater edge density
(Figure [3.§8). The motifs with the lowest constraint values also tended to have the

most tolerance to failure.

3.4 Discussion

In this study we showed that, contrary to our hypothesis, participation in par-
ticular motifs did not, in general, have an effect on failure tolerance in response to
10% edge destruction. However, we discovered that the metabolic network of E. coli
displayed higher levels of failure tolerance overall compared to the ER random net-
works. Further, we discovered that certain motifs, specifically the 3-Loop (motif 8)
and Clique (motif 13) motifs, have specific structural roles in the E. coli metabolic
network.

As mentioned by Barabasi and Oltvai, a major impediment to the characterization
of the dynamic properties of motifs is that they never occur in isolation [6]. This
limitation applies to the present static analysis as well. Our mean and standard error
calculations were based on participation in a motif of interest, but ignored whether
a metabolite simultaneously participated in other motifs. This is an unavoidable
limitation in the study of real, biological networks due to their high levels of edge
density and clustering. It is a challenge to find metabolites that only participate in one

type of motif, and impossible to find metabolites that only participate in that motif
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once. In future work, additional simulation studies could be conducted to rigorously
characterize the relationship between component failure and motif participation, but
even then it would be unclear if the results would be generalizable to real, biological
networks.

For simplicity our analysis was restricted to the metabolic network of E. coli, but
this analysis could be expanded to include the 21 organisms and organelles inves-
tigated in the analysis of Aim 1. A broader analysis would allow us to investigate

whether our findings are generalizable to all metabolism.

3.4.1 The Feed-forward Loop, 3-Loop and Clique motifs indicate struc-

tural network properties

Although we did not find evidence to support our hypothesis that enriched motifs
would show higher levels of failure tolerance, we did uncover interesting structural
features of the FE. coli metabolic network.

First, we found that the clustering coefficient of the Feed-forward Loop motif (mo-
tif 7) was statistically significantly higher than all other motifs of equal edge density.
This finding is consistent with previous work that found that the Feed-forward Loop
aggregated into clusters [51), 68]. It is particularly striking when compared to the
ER random networks where the Feed-forward loop again displayed a statistically sig-
nificantly higher clustering coefficient compared to the first six motifs, but was no
greater compared to the 3-Loop motif (motif 8) or motifs of greater edge density. The
discrepancy between the metabolic network and random networks suggests that the
Feed-forward Loop motif did not aggregate in the random networks but did aggregate
in the metabolic network. It has been demonstrated that the transcriptional regu-
latory network of F. coli is enriched with Feed-forward Loop motifs that aggregate
into modules and define the topological structure of the network [26]. Our findings

suggest that the metabolic network of E. coli may share structural similarities with
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its transcriptional network, and that the structural features are responsible for its
tolerance to failure.

Second, we found that the 3-Loop (motif 8) and Clique (motif 13) motifs bridged
distinct clusters in the E. coli metabolic network. One explanatory example of this
finding is the metabolite pyruvate. Pyruvate is a participant in both motifs 8 and
13 and is a known hub in metabolic networks. It is the end metabolite in glycolysis,
the starting metabolite in gluconeogenesis, and can also be converted to alanine or
to ethanol and is therefore a unifying metabolite. Beyond being a hub in the E. coli
metabolic network, pyruvate has a small constraint value (0.04) indicating bridging
behavior.

Previously, Prill et al. found that the 3-Loop and Clique motifs displayed the least
stable dynamics and were the least abundant motifs in transcription, neuronal and
signaling networks [81]. Consistent with that analysis, we found that the 3-Loop and
Clique motifs are less abundant than the other 12 motifs, but are significantly enriched
in the E. coli metabolic network compared to what could be expected at random. This
indicates that these motifs are responsible for biological functionality, and in the case
of metabolism that functionality is bridging between pathways. The uniqueness of the
function of these two motifs suggests that a dynamic analysis that is appropriate for
the other 11 motifs may be inappropriate for the 3-Loop and Clique motifs because
they may behave in a fundamentally different manner. This point underscores the
value of rigorously characterizing static network features before addressing the more

challenging question of dynamic stability.

3.5 Conclusions

In this work we have shown that in the context of static network parameters,
there is no relationship between motif participation and failure tolerance, but that

the metabolic network of E. coli is more failure tolerant in general than Erdds-Rényi
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random networks. Further, we demonstrated that several motifs contribute structural
features to the metabolic network of E. coli.
In the following chapter, we present an application of motif analysis to test hy-

potheses in organelle evolution and phylogeny.
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CHAPTER IV

Metabolic network motifs provide novel evidence
of the evolutionary origin of six Eukaryotic

organelles

4.1 Introduction

In the previous chapters we demonstrated that metabolic motif distributions var-
ied by enzyme class and organelle localization. Furthermore, we found that motifs
could be uniquely characterized by the type of reactions in which they participate
(chapter [[I). This finding suggests that, beyond network characteristics, motifs also
contain biological information. We discovered the 3-Loop and Clique motifs are links
that connect distinct metabolic modules (chapter . In this chapter, we present an
application of motif analysis to the question of the evolutionary origin of Eukaryotic
organelles. We begin with a brief review of current theories, then present results and

discussion.

4.1.1 The history of organelle evolution is convoluted by horizontal gene

transfer

The sequence of events in the early history of the Eukaryotic cell remain as mysteri-

ous today as they were in 1967 when Lynn Margulis described the serial endosymbiosis
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hypothesis [85], a model of organelle evolution in which one microbe lives inside an-
other giving rise to organelles found in modern Eukaryotes. This hypothesis has had
support, however debate continues regarding the origin of nucleus [72], peroxisome
[87], mitochondrion and even the host-cell that served as the venue for endosymbiotic
events. Considerable progress has been made in the field of sequencing technology
that has enabled geneticists and evolutionary biologists to interrogate the genomes of
bacteria and mitochondria and discover commonalities between them [4, [67]. For ex-
ample, a comparison of the a-proteobacterium Rickettsia prowazekii and S. cerevisiae
indicated that R. prowazekit was the likely ancestor of modern mitochondria based
on the similarity of ribosomal RNA sequences [4]. Similarly, the genome sequence
of the red alga Cyanidioschizon merolae supports the hypothesis that plant plastids
derived from a single endosymbiotic event [67].

Despite the successes of sequencing technology, genetic methods are not with-
out limitations and controversies. For instance, alignment methods make many as-
sumptions regarding substitution rates and, more fundamentally, that homologous
genes even exist between divergent species [78]. There is a lack of consistency among
alignment methods that extends beyond distantly related organisms and occurs even
within well-studied organisms like mice [I§]. Beyond these methodological concerns,
horizontal gene transfer (HGT) makes interpretation of phylogenetic trees difficult be-
cause temporal relationships and ancestry are convoluted by the repeated exchange
of genetic information [3, 43]. It has been estimated that as much as 90% of pro-
teobacterial genes have been influenced by HGT at some point during their evolution
making ancestry difficult to determine even within closely related lineages [56].

As noted by Christian de Duve [24], modern methods for elucidating the evolu-
tionary history of the Eukaryotic cell tend to focus strictly on genetic arguments and
ignore other key cellular properties. This need not be the case. Today it is com-

mon to assemble genome-level metabolic networks by integrating known biochemical
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pathways with genomic annotation to yield networks describing functional properties
of organisms [40, [77]. Characterizing these biochemical networks using concepts bor-
rowed from graph theory, such as network motifs, has proven to be a fruitful method
to understand organism-level functional features. Network motifs are small, repeat-
ing patterns or subgraphs that are over- or under-represented in comparison to their
abundance in a random graph [69, [70]. Eom et al. showed that the distributions of
network motifs in 43 metabolic networks contained taxonomic meaning [33]. That
is, known taxonomic families could be reproduced using relative motif abundances
from metabolic networks. Additionally, in past work we showed that metabolic net-
work motifs could be characterized by their enzyme associations, suggesting that
in metabolism, motif abundance is related to enzymatic functionality (chapter .
These results are supported by the observation that many biological and engineered
networks, for example yeast transcription networks and Internet linking structure,
share global network properties, demonstrating that motif distributions contain key
information about system-level organization [70].

In this study we present novel evidence for the origin of six Eukaryotic organelles
by testing hypotheses of organelle origin using distributions of motif abundances.
Specifically we are interested in comparing the distributions of Eukaryotic organelles
with a-Proteobacteria and methanogenic Archaea because of their prominence in the
literature [80]. An a-Proteobacterium is generally accepted to be the ancestor of
modern mitochondria [4, 30, 34], while methanogenic Archaea are often hypothesized
to be the source of the host cell or of the nucleus [65] [72]. Further, we propose a new
methodology for constructing phylogenetic trees by incorporating metabolic signa-

tures to pinpoint regions of genomically estimated phylogenies that may be spurious.
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4.1.2 Hypotheses

Based on the finding from chapter [[I| that motifs can be mapped to specific chem-
ical and biological functions and therefore that motifs contain biological information,
we hypothesize that organelles will display motif distributions (profiles) that are more
similar to their ancestral microbes than to microbes that are non-ancestral. Further,
we hypothesize that organelles derived from endosymbiosis will show a distinct profile

compared to those organelles derived from membraneous infolding.

4.2 Methods

Many of the methods employed in this chapter are identical to those of chapter [T}
Specifically the construction of the graphs from metabolic network reconstructions,
motif mining in FANMOD and the z-score methodology for determining enrichment
of the motifs. The methods previously described will not be repeated here, and

interested readers should refer to the methods section of chapter [T}

4.2.1 Metabolic network reconstructions

In this application we are interested in testing specific mechanisms of organelle
evolution, specifically those relating methanogenic Archaea and a-Proteobacteria.
Because there are many more fully-sequenced genomes than there are genome-level
metabolic network reconstructions, we employed the in silico method of Chen and
Lin [19], Pipeline for Metabolic Nework Reconstruction (PEER), to generate a suffi-
cient sample of proteobacteria and Archaeal reconstructions for analysis. Briefly, the
reconstructions were generated by selecting ten representative species from each of
a-, B-, 0-, e-, y-Proteobacteria, as well as ten species of methanogenic Archaea (Ta-
ble . To supplement the in silico-curated reconstructions, the manually-curated

reconstructions used in chapter [[I] were included and yielded a total of 11 -, 10 -,
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10 4-, 11 e-, 13 y-Proteobacteria and 12 methanogenic Archaeal metabolic networks.

Table 4.1: List of additional mircrobes included in Aim
3 and relevant network characteristics.

Species Kingdom Class Nodes Edges
A. caulinodans Bacteria « 1502 2520
A. avenae citrulli Bacteria [ 1448 2394
A. baumannii Bacteria v 1421 2309
A. dehalogenans Bacteria ¢ 1299 2196
A. butzleri Bacteria ¢ 981 1626
B. bacilliformis Bacteria « 933 1417
B. bacteriovorus Bacteria ¢ 1215 2039
B. japonicum Bacteria « 1765 3026
B. bronchiseptica Bacteria 1481 2403
B. parapertussis Bacteria 1448 2374
B. pertussis Bacteria [ 1379 2185
B. petrii Bacteria 1534 2554
B. aphidicola Bacteria v 612 1108
B. cenocepacia Bacteria [ 1824 3128
B. cepacia Bacteria 1891 3227
B. malle: Bacteria (3 1615 2730
B. multivorans Bacteria [ 1687 2792
B. pseudomallei Bacteria [ 1699 2883
C. concisus Bacteria € 894 1488
C. curvus Bacteria € 906 1488
C. fetus Bacteria € 901 1492
C. hominis Bacteria € 874 1438
C. jejuni Bacteria ¢ 850 1433
C. ruthia magnifica Bacteria v 920 1550
C. crescentus Bacteria « 1522 2468
D. desulfuricans Bacteria ¢ 1024 1676
D. vulgaris Bacteria ¢ 786 1312
D. nodosus Bacteria v 792 1336
E. ruminantium Bacteria « 690 1011
G. diazotrophicus Bacteria « 1436 2297
G. sulfurreducens Bacteria ¢ 1090 1815
H. acinonychis Bacteria € 873 1434
H. hepaticus Bacteria € 874 1464
M. loti Bacteria « 1750 3012
Methanobacterium Sp. AL-21 Archaea 807 1312
Methanobacterium Sp. SWANI  Archaea 827 1338
M. smithi Archaea 832 1374
M. maripaludis Archaea 806 1340
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M. vannielii Archaea 784 1339
M. wvoltae Archaea 734 1204
M. mazer Archaea 921 1488
M. stadtmanae Archaea 710 1114
M. hungatei Archaea 830 1389
M. fervidus Archaea 740 1209
M. xanthus Bacteria ¢ 1449 2469
Nitratiruptor Bacteria € 931 1547
N. hamburgensis Bacteria « 1365 2310
P. carbinolicus Bacteria ¢ 1157 1946
P. propionicus Bacteria ¢ 1093 1820
P. aeruginosa Bacteria v 1640 2772
R. felis Bacteria « 771 1041
S. cellulosum Bacteria ¢ 1605 2755
S. amazonensis Bacteria v 1434 2442
S. putrefaciens Bacteria v 1390 2354
S. meliloti Bacteria « 1658 2848
Sulfurovum Bacteria € 1026 1723
S. aciditrophicus Bacteria ¢ 1024 1710
T. crunogena Bacteria v 1067 1735
X. campestris Bacteria v 1501 2522
Y. pestis Bacteria v 1381 2369

The in silico reconstruction procedure has three primary steps: pre-reconstruction,
automated curation and network revision. During pre-reconstruction, the pipeline
identifies the collection of metabolic reactions known to exist in the organism with
enzymes and proteins from genomic annotation. This first step produces a large pool
of reactions that can be removed or modified in the following step.

The automated curation step uses growth conditions to modify and constrain
the reactions proposed in the pre-reconstruction step. We curated nutrient data
from the literature via Google Scholar using species names and the search phrases
“culture conditions” and “isolation.” Each culture media was recorded as well as
growth temperatures, experimental conditions and pH. The automated reconstruction
step then provides a series of alternative reconstructions by constraining the original
reaction pool in light of the nutrient data.

Finally, network revision is performed to choose the “best” possible reconstruc-
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tion for a given organism by minimizing a network revision penalty parameter. Each
possible network revision, for example adding a reversible edge to a reaction mecha-
nism, is assigned a penalty parameter. A linear solver then selects the combination

of revisions that optimizes a particular criteria, such as biomass synthesis.

4.2.2 Determining statistically significant differences in enrichment

Similarly to chapter [[I} statistical significance was determined using 1,000 boot-
strap estimates of the mean and standard error of the normalized z-scores for each
organism and organelle. 95% [CIk are indicated on each relevant figure and non-

overlapping indicate statistically significantly different enrichment.

4.2.3 Calculation of distance metrics

To quantify similarity of motif profiles we calculated a Canberra distance metric
[61]. The Canberra metric is similar to a Euclidean or Manhattan distance, but is

better suited for data that scatter around the origin as in the case here.

4.2.4 Construction of phylogenetic trees and calculation of leaf-wise dis-

tances

To avoid the pitfalls of whole-genome multiple alignment, genomic phylogenies
were created using the alignment-free method of Feature Frequency Profiles (FED)
[93]. This method is appropriate when creating phylogenies from whole-genomes
where the amount of homology is potentially low. Additionally, [FEP] requires fewer
assumptions than multiple-alignment methods, which assume certain mutation rates,
various amounts of HGT and the presence of homologous genes that may not exist
[78].

is a method similar to text comparison methods that work on the premise that

like-texts (or genomes) use a like-vocabulary. Since genomes do not contain “words,”
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[FED uses the differences in I-mer frequencies to estimate inter-species distances. The
frequency of all [-mers of a particular length are assembled into a profile. The profiles
are compared to the Jensen-Shannon Divergence measure to estimate the dissimilarity
between genomes.

To employ [EFP] properly it is essential to select the appropriate [-mer resolution
(length). This was done following the guidelines provided by the authors in the
technical documentation. To find the lower limit, we count the number of features
for each feature length [. The most abundant feature length, [z, is the lower limit
of the optimal resolution. The maximum feature length, lcrEmin, can be found by
estimating the relative entropy error between an [ —2 Markov model and the observed
frequency of a particular l-mer [92]. Special care is needed in this case because the size
of mitochondrial genomes is much smaller than full nuclear genomes. The minimum
[-mer length was found to be 7 for mtDNA and 11 for nuclear genomes. The upper
limits were 16 and 26 for mtDNA and nuclear DNA respectively. An [-mer length of
14 was used to create the phylogenies in this work because it constitutes a value near
the middle of the range. Trees created with [-mers within the optimal range are not
expected to vary appreciably as demonstrated by bootstrap and jackknife resampling

Whole genomes from each of the 72 species were downloaded from the NCBI
genome database. Consensus trees were based on 1,000 bootstrap samples, and the
consensus phylogeny was generated using the “Consense” function in Phylip (v. 3.69)
[38], an open-source suite of programs for inferring and investigating phylogenies.

The metabolic phylogeny was created in R (v. 2.14.2) using the “ape” and “ade4”
packages. First, Canberra distances were calculated to measure the distance between
the motif profiles of each of the organisms. These distances were then used to con-
struct a tree in Newick format.

The nodal distance metric (or leaf-wise distance) measures the pairwise distances
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between one leaf on a phylogenetic tree to all other leafs [I3]. It was calculated
by counting the pairwise path length from one leaf to all other leafs in the tree.
This calculation was performed for each tree, the metabolically-derived tree and the
genomically-dervied tree and then the difference in the distances was measured. Dif-
ferences near zero indicate agreement of the relative position of a leaf in both trees,
while large differences indicate disagreement of the relative position of the leaf in both

trees.

4.3 Results

Prior to analysis we mined for motifs in the metabolic networks of 72 species and
calculated normalized z-scores to compare relative motif abundances across organisms
and organelles (see Methods). Motifs are numbered as previously presented in the lit-
erature [70] and are roughly in order of increasing edge density (Figure[4.1)). To evalu-
ate the statistical significance of motif enrichment, we calculated means and standard
errors of the normalized z-scores using bootstrap re-sampling and constructed 95%
confidence intervals (Figure . Based on the previous finding that taxonomic rela-
tionships could be replicated using motif distributions [33], we expect that endosym-
biotic organelles will display higher levels of similarity with their ancestor microbe

compared to other, non-ancestral microbes.

4.3.1 Motif distributions provide novel evidence of the origin of Eukary-

otic organelles.

The original host cell, within which serial endosymbiotic events are thought to
have occurred, has been posited to be a methanogenic Archaen [65], a Bacterium or
an early proto-Eukaryote [16] [79] with many of the features of a modern Eukaryote
(nucleus and membraneous structures such as the ER). We found the average motif

profile of the Eukaryotic cytosol to be dissimilar compared to the profiles of both
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a-Proteobacteria and methanogenic Archaea (Figure . Seven of thirteen motifs
were significantly different from Archaea, and six of thirteen were different from a-
Proteobacteria. The relative dissimilarity of the cytosolic motif profiles with the motif
profiles of the a-Proteobacteria and methanogenic Archaea suggests that neither are

good fits as an ancestor of the host cell.
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Motif distributions of six Eukaryotic organelles (solid black) compared

with the profiles of a-Proteobacteria (solid red) and methanogenic Ar-
chaea (dashed blue). Non-overlapping confidence intervals indicate sta-
tistical significance at p < 0.05.

To test whether the host cell might instead have been derived from a microbe in a
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different family of proteobacteria, we compared the cytosolic motif profile with that

of the -, 0-, e- and v-Proteobacterial motif profiles (Figure. We found again that

the proteobacterial motif profiles and cytosolic motif profile were relatively dissimilar,

but that the cytosolic profile appeared most like that of a v-Proteobacteria.
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Comparison of the motif distributions of the Eukaryotic cytosol and four
classes of proteobacteria, 3, d, € and . The cytosolic profile most resem-
bles a y-proteobacterium and is only signifincantly different in four of the
13 motifs: 3-Chain, Mutual V, Regulated Mutual and Semi-clique.

The origin of the peroxisome is nebulous. Schliiter et al. argued that since the

peroxisomal membrane is comprised entirely of Eukaryotic proteins, an endosymbi-

otic origin is unlikely [87]. Conversely, there is morphological and chemical evidence

supporting the hypothesis that peroxisomes are derived from an endosymbiotic event

that may have occurred before the evolution of the mitochondrion [23], 24]. We found

that the motif profile of the peroxisome shared many features with that of the cy-
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tosol and the mitochondrion, suggesting that it is metabolically akin to a former
free-living microbe (Figure . Specifically, under-expression of the V-Out (motif
1), Mutual In (motif 4), Mutual Out (motif 5), and Regulated Mutual (motif 9)
motifs and enrichment of the V-In and 3-Chain motifs (motifs 2 and 3). Like the
cytosol, the peroxisomal profile does not share many features with the profiles of the
a-Proteobacteria nor the methanogenic Archaea which suggest that these organisms
are not, metabolically speaking, good candidates for the origin of the peroxisome.

The nucleus, Golgi and lysosome share two general properties in their motif profiles
(Figure . First, all three displayed suppression in the first five motifs. This is in
contrast to the pattern of enrichment in the profiles of cytosol, mitochondrion and
peroxisome which displayed enrichment of the second and third motifs. Second, rather
than having several enriched motifs as in the cytosolic profile, the lysosome has four
and the nucleus and Golgi each have only one. This result supports the hypothesis
that each of these organelles is derived from membranous infolding and not from
endosymbiotic events. The consistency of these profiles, coupled with the fact that
there is strong evidence that the Golgi is a product of membraneous infolding [73]
suggests that both the nucleus and the lysosome are also membrane-derived organelles
and not former endosymbionts.

Lastly, we find an apparent dissimilarity of the mitochondrial motif profile with
that of the a-Proteobacteria (Figure . It is hypothesized that modern mito-
chondria are the product of an endosymbiotic event with a host cell and an early
a-Proteobacterium [4, 30) 34]. However, the mitochondrial motif profile instead
appears more like that of J- or e-Proteobacteria (Figure rather than an a-
Proteobacterium. Only four of the 13 motifs were significantly different compared
to either d- or e-Proteobacteria, while six of 13 were significantly different compared
to the a-Proteobacteria profile. This result is also apparent from the distances be-

tween the profiles (Figure , Panel A). The mitochondrial profile clusters with 6-

69



or e-Proteobacteria while the a- or 8- and ~-Proteobacteria cluster separately with
each other again suggesting that mitochondria are metabolically akin to d- or e-

Proteobacteria.

B . Mitochondrion
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Class Delta Pr ia == Epsilon P

|
<
®

|

Gamma-Proteobacteria J

Mito Metabolic Profile
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Epsilon-Proteobacteria J

Beta-Proteobacteria

Delta-Proteobacteria

Fi 4.3:
e Comparison of Mitochondrial motif distribution with - and -

Proteobacteria. Panel (A) contains a dendrogram of the distances be-
tween the motif profiles compared to the mitochondrial profile. The
mitochondrial profile clusters most closely with 0- and e-Proteobacteria
profiles and not the a-Proteobacteria profile. Panel (B) contains the mo-
tif distributions of the mitochondrion (solid black), J- (solid red) and
e-Proteobacteria (dashed blue).

4.3.2 Whole-genome phylogenies independently validate species similar-

ities predicted with motif distributions

To validate the finding that the mitochondrial motif profile is more similar to
that of a d- or e-Proteobacterial motif profile, we employed the method of feature
frequency profiles (FFP) to create a phylogenetic tree from the genomes of all or-
ganisms in our dataset (Figure 4.4). The dissimilarity between mitochondria and
a-Proteobacteria is also observed at the genomic level. The mtDNA of six Eukary-
otes (colored in gold) falls more closely within the clades of §- and e-Proteobacteria

than to a-Proteobacteria.
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4.3.3 Metabolic phylogenies provide an additional level of insight into

ancetral relationships

Because of the difficulties inherent in the interpretation of phylogenetic relation-
ships, we propose a second level of analysis to locate regions of trees where ancestral
relationships might be spurious. To produce a clear example, we have reduced the
species in this analysis from 67 to 18 to include only manually curated metabolic
networks (Figure 4.5). Manual curation insures that the metabolic information is
of the highest quality and is the most reliable. The first panel (A) contains a phy-
logeny based on whole genomes and the second (B) contains a phylogeny based on
comparative motif distributions in the cytosolic compartment.

A B

A. thaliana S. typhimurium
P. pastoris E E. coli
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Figure 4.5: . S
Phylogenies based on (A) whole genomes and (B) metabolic significance

profiles.

The genomic phylogeny constitutes three primary clades, the first containing the
only plant A. thaliana, the second containing both fungi, S. cerevisiae and P. pastoris,
as well as the protist C. reinhardtii and the majority of Bacteria, and the third con-

taining H. sapiens, M. musculus, three extremophilic Bacteria and both methanogenic
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Archaea, M. acetivorans and M. barkeri. The extremophilic bacteria C. thermocel-
lum, H. pylori and T. maritima likely share more adaptive genomic properties with
Archaea than with Bacteria since Archaea tend to favor harsh, hot environments [5].
For example, it is known that 7. maritima shares approximately 24% of its genome
with thermophilic bacteria [74], further demonstrating that HGT is largely a function
of environmental commonality, rather than ancestral relatedness.

The phylogeny based on motif abundances shows a distinct topology that includes
many more tightly paired clades. The kingdoms of life show high levels of congruence
among one another (For instance, H. sapiens and M. musculus cluster together),
suggesting that the motif distributions are capturing relevant metabolic similarity.

To assess the level of taxonomic congruence between the phylogenies, we calculated
pairwise node-distance matrices by counting the path lengths separating each leaf
from every other leaf in the tree [I3]. The heatmap in Figure[4.6|shows the differences
of the pairwise distances between the leafs of each of the phylogenies in Figure A
and B. The heatmap indicates the level of agreement in the leaf distances between
the two phylogenies, that is, how similar the trees are to one another.

The genomic-derived phylogenetic relationship between two Archaea, M. barkeri
and M. acetivorans, and the Bacteria, T. maritima, provides an example of a ma-
jor limitation of phylogeny construction using genetics alone. T. maritima shares
approximately 24% of its genome with Archaea [74 [80], so it is no surprise that
it appears genetically more similar to Archaea than to its Bacterial counterparts,
however this genetic connection can lead to spurious evolutionary conclusions when
viewed in isolation. Using the metabolic phylogeny, T. maritima falls next to H.
pylori, a fellow extremophile with which it likely shares stabilizing metabolic reac-
tion pathways crucial for living in mutagenic conditions such as high temperatures
or low pH. Conversely, M. tuberculosis has been shown to fall more closely to the

Proteobacterial rather than Actinobacterial clade in previous work [54], a result that
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is reproduced here with M. tuberculosis sharing a clade with E. coli, S. typhimurium
and V. vulnificus, all y-Proteobacteria, as well as R. etli, an a-Proteobacterium. The
unusual tree topology from the perspective of M. tuberculosis suggests one of two
possibilities: either than M. tuberculosis acquired many genes from early Proteobac-
teria via horizontal gene tranfer, or that Actinobacteria are actually more closely
related to Proteobacteria than was initally thought. The metabolic phylogeny sup-
ports the latter claim, because M. tuberculosis again falls within a clade shared by F.
coli and S. typhimurium. In this example the integration of both phylogenies clarified

a seemingly spurious relationship.

4.4 Discussion

In this work, we presented novel evidence of the origin of six Eukaryotic organelles
by quantifying metabolic similarity with relative motif abundances. Further, we used
these motif abundances to add an additional level of information in the construction
of phylogenetic trees.

The heterogeneity of motif distributions observed in the cytosol, mitochondrion
and peroxisome corresponds to the heterogeneity of function of these organelles. For
instance, the cytosol is the venue for primary metabolism, but it is also the chan-
nel through which many signaling molecules must pass. This heterogeneity can be
attributed to the fact that at one point, each of these organelles were independent
organisms, and relied on a collection of metabolic pathways which were imported into
the host cell. Conversely, the homogeneity of motifs in the nucleus, Golgi and lyso-
some suggests lower levels of metabolic complexity and that the range of tasks done
within them is relatively narrow. These organelles were never independently func-
tioning organisms, and thus lack many of the reactions found in microbes. Instead
they were evolved for isolating repetitive tasks, for instance recurrent glycosylation

reactions in the Golgi and hydrolytic reactions in the lysosome.
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The motif profile of the cytosolic compartment was unlike that of both a-Proteobacteria

and methanogenic Archaea, which supports the hypothesis that the original host cell
was a proto-Eukaryote. This proto-Eukaryote likely possessed many features of a
modern Eukaryote, including a nucleus, endoplasmic reticulum, Golgi body and the
cellular machinery necessary to engulf extracellular microbes.

It has been theorized that the nucleus may have been the first endosymbiont
[47,160]. For example, the syntrophic hypothesis for the origin of the nucleus describes

a symbiotic relationship between a methanogenic Archaea and §-Proteobacteria [72].

This mechanism involves a consortium of §-Proteobacteria surrounding one methanogenic

Archaea that eventually becomes engulfed to form the early nucleus. Others have pos-
tulated an ancestral Archaeon that acquired a Bacterial endosymbiont, although the
cellular machinery required to acquire this Bacterial partner has never been demon-
strated in any extant Archaea [24], B0] or Archaeal fossil evidence. A third hypoth-
esized source of the Eukaryotic nucleus is from a vesicle created from in-folding of
cellular membranes [60]. The in-folding mechanism is supported here due to the sim-
ilarity of the nucleus motif profile to that of the Golgi and lysosome. Unlike the
cytosol, mitochondria and peroxisome, the likely origin of the lysosome and Golgi
is invagination and in-folding of plasma membranes. The formation of vesicles was
evolutionarily advantageous because it allowed for internal digestion and isolation of
complex reaction pathways [24].

Our results further support the hypothesis proposed by de Duve that peroxisomes
were not a Eukaryotic product as has been suggested [87], but instead was an early
endosymbiont which perhaps predated the mitochondrion. The metabolic function-
ality of peroxisomes and mitochondria overlap, which helps explain why the motif

profile of the peroxisome looks more like that of the mitochondrion than the cytosol.

The postulation that mitochondria do not appear to be metabolically a-Proteobacterial

in nature is undoubtedly controversial, however inspection of the literature reveals
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that there is little definitive evidence in support of the a-Proteobacterial endosym-
biont model. For instance, two phylogenetic studies of yeast and other Eukaryotic
mitochondrial proteins showed that, respectively, only 10 and 14% of mitochondrial
proteins are attributable to a-Proteobacteria [30]. Additionally, phylogenetic analysis
of several glycolytic enzymes in Eukaryota and Proteobacteria showed greater likeness
in y-Proteobacteria, or an ancestor of 7, than to « [32]. There is also temporal sup-
port for the notion that mitochondria are dervied from d- or e-Proteobacteria. The
e and ¢ group is thought to have evolved first [45], at roughly 2.85 billion years ago
and the a at roughly 2.3 bya [10], giving the ¢§ and € groups more time to forge an en-
dosymbiotic relationship. Finally, our phylogeny based on the FFP of whole genomes
places mtDNA more closely with the  and e families, supporting the hypothesis that
the early mitochondrion was not an a-proteobacteria.

Although the motif distributions alone are a single line of evidence corresponding
to only one cellular system, we believe that our results justify further research into the
relatively mysterious lineage of ancient - and e-Proteobacteria as possible ancestors
of modern mitochondria. We believe that these results provide robust evidence of
organelle origin because they are based on known biological functionality and not on
genetic information, which can be difficult to interpret and which does not always
imply function. Further, through the complementary examples of 7. maritima and
M. tuberculosis we have shown that integrating a second level of cellular information
with genomic-based phlyogenies can improve inferences of evolutionary relatedness
and identify regions of trees where spurious connections may lie. Despite all this, it
is true that the validity of the evidence presented here is absolutely dependent on the
quality of the network reconstructions and the depth of knowledge of the reactions
on which the reconstructions are built. A limitation of this work is the relative lack
of representative organisms. There was only one plant and one protist available to

represent their entire kingdoms, however this relative dearth can only shrink as more
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high-throughput data become available.

In closing, it is worth stating that the majority of the 18 reconstructions used
in this research were assembled in different laboratories using various naming con-
ventions and curation protocols. The consistency of the emergent properties of the
organelles is remarkable and serves as a validation of the use of genome-level recon-
structions for evaluating molecular evolution. Metabolic network reconstructions are
revolutionizing the emerging field of comparative metabolomics in much the same way
that high-throughtput sequencing technology revolutionized comparative genomics,
and we have only just begun to uncover the role energy metabolism played in shaping

the world as we know it.

4.5 Conclusions

In light of our novel metabolic data and consistent with previous work, we support
the notion that a proto-Eukaryote containing a nucleus, which was not endoymbiotic
in origin, predated the first endosymbionts. Further, due to the relatively divergent
shape of the peroxisomal motif distribution, it seems likely that this organelle pre-

dated the mitochondrion.
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CHAPTER V

Concluding Remarks

5.1 Thesis Summary

In chapter [ we described the paradigm of systems biology as being the itera-
tive process of modeling, validation, and refinement (Figure . We applied this
framework throughout, with the ultimate goal of generating new insights about the
evolutionary origin of the Eukaryotic cell by analyzing and comparing the abundance
of metabolic network motifs between species and organelles.

In chapter [lI| we analyzed 21 genome-level metabolic network reconstructions and
demonstrated that motifs could be characterized by the ensemble of enzymes with
which they were associated. Further, we found that motifs with structural similarities
displayed similarity in enzyme association. We confirmed our hypothesis that each
organelle would display a unique distribution of motif abundances, supporting the
overarching hypothesis that network motifs can be used as a proxy for metabolic
function. Finally, we used the enzymatic associations to highlight an example of how
motif abundances could be applied to make inferences about biochemical functionality
in mitochondria.

Building upon the findings of chapter [[I| in chapter [[I]] we conducted an ex-
ploratory analysis of the metabolic network of E. coli. We found that there was no

relationship between motif participation and failure tolerance as measured by local
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network parameters such as centrality and shortest path-length in response to 10%
edge destruction. However, we found that the E. coli metabolic network was more
failure tolerant overall compared to Erddés-Rényi random networks. Further, we un-
covered two structural properties of the E. coli metabolic network: clustering of the
Feed-forward loop motif and bridging behavior in the 3-Loop and Clique motifs.
Finally, in chapter [V]we applied the methodology of motif mining and analysis to
test specific hypotheses of Eukaryotic organelle evolution. Specifically, we presented
novel evidence suggesting that a d- or e-proteobacterium may have been the ances-
tor of modern mitochondria rather than an a-proteobacterium. We also concluded
that, because the motif profile of the peroxisome was more like that of the cytosol
and mitochondrion, the peroxisome was an endosymbiont and not derived from the
cytosolic-ER matrix. We validated this finding using phylogenetic trees constructed
from whole genomes and found that, consistent with the motif profiles, mitochondrial
genomes tended to fall within the same clades as the - and e-proteobacteria. This in-
dependent validation led us to the new hypothesis that modern mitochondria are not
derived from a-proteobacteria, but are instead derived from a - or e-proteobacteria.
The next step in the systems biological work-flow is to conduct new experiments
to test the hypothesis that the ancestor of mitochondria is an d- or e-proteobacteria.
This experimentation is outside of the scope of this work, but is an essential element

that remains to be completed.

5.2 Future Work

In addition to experimental validation regarding the §- and e-proteobacteria, there
are many opportunities to expand on the work presented in this thesis. Our goal was
to thoroughly characterize three-node metabolic motifs, but these merely scratch the
surface of potential analyses.

With FANMOD it is possible to mine for motifs of up to size eight, yielding thou-
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Figure 5.1: 4-node motif distributions in seven organelles.

sands of additional patterns to interrogate for biological meaning. Increasing the
motif size by just one node creates a substantially more difficult analysis problem
as can be seen from the 4-node motif distributions in the metabolic networks (Fig-
ure . There are 13 motifs of size three, 199 motifs of size four, 8,427 motifs of size
five, and over 20,000 of size six. Increasing the node size substantially increases the
number motifs to assess for statistical significance and results in many more patterns
of enrichment. The dramatic increase in complexity resulting from increased motif
size necessitates a more complicated analysis plan that can be built on the results
of this thesis. Correction for multiple testing is a practical extension to the current
analysis that would improve statistical inferences and help avoid false positives in
enrichment. It would also be necessary to identify all motifs that are isoforms to
insure that abundances were correctly calculated.

A second extension of this work is to investigate motifs with node and/or edge
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coloring. Motifs with edge coloring expand upon non-colored motifs by allowing
motifs to contain structural and functional information. For instance, it is possible
to color motif edges using stoichiometric values (Figure [5.2)), which yields a more

detailed biochemical relationship.
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Figure 5.2:
& 3-node motifs with stoichiometric relationships encoded by edge coloring.

Because these are 3-node motifs there are still only 13 structural motifs,
but many more stoichiometrically functional motifs.

Qian et al. successfully applied the analysis of colored motifs to the C. elegans
neural network by using node color to describe the neuron type [82]. They discov-
ered that interneurons were over-represented within enriched motifs. This finding
supported the hypothesis that the motifs transduce messages from sensor neurons
towards muscles and thus control locomotion. Colored motifs combined two indepen-
dent sources of information and allowed Qian to make insights that were not possible
with either data source alone.

A parallel analysis could be done using metabolic networks and bipartite graphs.

The work presented in this thesis dealt strictly with substrate graphs in which all
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nodes are metabolites, and all edges are reactive associations. The analysis could also
be conducted using bipartite graphs in which nodes represent both metabolites and
reactions. Bipartite graphs are more realistic in the sense that their structures denote
actual biochemical reaction mechanisms, but they are more difficult to interpret. For
instance, in generating random background for comparison of bipartite graphs it is
possible to get a 3-node motif that contains two reaction nodes and one metabolite
node. This motif structure does not correspond to a realistic biological situation, and
convolutes interpretation of motif abundance.

All of the work presented here dealt with static network features, that is, features
that do not change over time. While analyses of this nature are analytically more
tractable than dynamic analyses, they do not provide a realistic representation of
actual biological processes which change over time in response to inputs from their
surroundings. There are many possible extensions of this work that could begin to
describe the dynamic properties of metabolic networks. For example, it is likely
that not all metabolic pathways in the network are continuously active. Thus, one
analysis could integrate the metabolic network with measurements of gene expression
levels. Through this analysis it would be possible to see how the structure of the
genetically active portion of the network changes over time in response to a stimulus.
The more layers of biological data we can integrate with the network, the greater the
insights to be gained from further contextualizing the network structure in terms of

its interactions with other cellular processes.

5.3 Implications

There are many important implications of this work. First, because motifs can be
associated with metabolic enzymes, we were able to make inferences about possible
higher-level biological function based solely on the structure of metabolic networks

as described through motif distributions. This finding suggests that it is possible

83



to assess metabolic similarity between two organisms by evaluating their relative
abundances of 3-node motifs. That is, the motif distributions provided a simple,
compact framework for assessing metabolic likeness that could be used to generate
insights into complex biological relationships like microbial communities, parasitic
behavior and symbiotic adaptation.

The characterization of 3-node motifs was limited by a lack of adequate species
diversity of the metabolic network reconstructions, particularly in the kingdom of Eu-
carya. In order to fully understand the organizational properties of metabolism that
may be shared among all life, it is essential that we increase attention to the devel-
opment of methods for computationally constructing high-quality metabolic network
reconstructions.

A goal in network research is the characterization of the roles of motifs and elu-
cidation of the reasons that motif structures are selectively enriched. We found that
two motifs, the 3-Loop and Clique motifs, that have been characterized as displaying
unstable dynamics in the literature [55, 81] have the unique structural property of
linkers between metabolic modules. The uniqueness of their role in metabolism im-
plies that analyses of their dynamics in the cell should be similarly unique. A major
implication of this work is that a one-size-fits-all approach to evaluating the dynam-
ics of motifs in real, biological networks is inappropriate. This partially explains why
dynamic studies like that of Prill et al. [81] have been unable to explain why motifs
with unstable dynamics persist in biological networks at levels exceeding what could
be expected by chance.

The results from our final aim have major implications in the field of evolutionary
biology. They suggest that there is evidence to support alternative hypotheses in
organelle evolution, specifically that the peroxisome was indeed an endosymbiont
and that modern mitochondria are not derived from an a-proteobacterium. These

findings suggest that new experimental research is necessary to unravel the history
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of all Eukaryotic organisms. Beyond the hypotheses generated, the use of motifs as a
proxy of metabolic function is a novel method for combining functional information
with traditional genetic methods. Using multiple levels of biological data improves
our picture of reality and reduces biases in our conclusions that occur as the result
of a limited cellular scope.

Using methods like mass spectrometry it is now possible to collect volumes of
metabolomic data at resolutions that were unthinkable even five years ago. However,
just like in the fledgling years of the genomic era, researchers in metabolism must
step back and thoroughly elucidate the fundamental organizational and structural

properties of metabolism. This work is meant to be a first brush towards that goal.

85



APPENDICES

86



APPENDIX A

Chapter 2 Supplement

A.1 Chapter 2 Supplemental Figures

87



Cytosol

ER
05 - . s _
© 00 —====----- A—nu—n/——*---f e e Golgi Kingdom
8 -0.5 - pe=—— ¥ > ¢ Animalia
(3 05 T 4 Archaea
§0.0——. ______ ! ________:__;__'__._ _____ o ecem = - - Lysosome = Bacteria
= 05~ T > + Fungi
S 2 = Plantae
S 05 - g , ] .
z 0.0 8 A ::_i_\_ A g_/_ LT = - _/_3. —% ==~ - Mitochondrion * Protista
05- = L]
+
0.5 - 7 7 ® s T
0_0__.___{_ __¥-_$-__* _____ Yoemempe = i m mfpmemmfm == - NUClEUS
05- * T
05- A I — 4
00— E o= tNnm g ey s of e o - Peroxisome
0.5- F
I I I I I I I I I I I I I
5 ¥ N R R PP @ ®
o0 \(\’0\0 Q}\Q 0% & (N W WP
- 0% T VT W A A8
S ,.D,O @&0 R ®& ‘b\b oy b@ o o NS
& & o
QO Q& NG
Q@eb Q@ Qg, &\)
Motif
Figure A.1:

Significance Profile of 3-node motifs by organelle. Line colors indicate
the kingdom of life to which each organism belongs.

88



ormalized z-Score

z

0.0 — RPN _ _ ey g S SC e A Cytosol

0.5 -
0.0 — a2 _ _ ___Ti N gy — ER

-0.5-

o
o
I
»

Golgi

o s o
1 [
1

I 0
1

: U
1

1

1

1

1

1

1

1

1

?

1

1

1

1

1

1

|

\

i

1

1

1

1

1

1

1

i

1

Lysosome

S o
» ©
ol
1
1
1
1
|
1
]
1
1
1
1
1
1
1
I
1
1
I
1
1
]
1
1
1
1
1
1
1
1
1
1
|
i
1
|
1
1

0.5 -
00— SN0 _ __eo_+ v/ _ N e g — Mitochondrion

-0.5-

0.5 -
00 ——-Z - - Na A AL e Sy — Nucleus

-0.5-

0.5 -
0.0 — F=2o o TR\ D nar e =  eme — Peroxisome

05-
| | | | | I | | | | | | |
Y . X N N .

O 3 (@ o O & R R PP

B [9 o CASRN
VTR P W B WS oS
Qo““ & & o
<<®Q’e> e o
Motif

Figure A.2: blarp

89

Species

A

N<A40o®m®nmox T IIIOMOOO

thaliana
reinhardtii
thermocellum
ethenogenes

coli

. sulfurreducens

pylori
salinarum

sapiens
acetivorans
barkeri
musculus

tuberculosis

. pastoris

etli

aureus
cerevisiae
typhimurium
maritima
vulnificus

mays



APPENDIX B

Chapter 3 Supplement

B.1 Chapter 3 supplemental results

The graph size was relatively invariant to destruction of edges (Figure . The
intact F. coli graph had a total of 935 nodes and was only reduced by one node on
average after 10% edge destruction.

The global transitivity decreased with each percent increase in edge destruction.
At 10% edge destruction, the global transitivity was reduced by 5% from 0.044 to
0.042. The maximum reduction following edge destruction was approximately 83%
suggesting that even with the destruction of 10% of the edges, the graph retains at
least 83% of its clustering structure.

The diameters of the E. coli metabolic networks were relatively sensitive to edge
destruction. The average fold change did not change until 5% edge destruction or
higher, but the range of fold changes was wide. For example the average fold change at
4% edge destruction was the null value of 1, however some of the graphs had increases
of diameter of as much as 50%. This was again seen at 10% edge destruction where

the average change in diameter was a 13% increase, but ranged to as much as a 75%
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increase. A 75% increase corresponds to a diameter of length 16 versus the original
diameter of 9.

The average path length from a starting node to all other nodes in the network
grew steadily on average with each percent increase in edge destruction. Despite
the consistent increase the magnitude was actually quite small, with a maximum
of approximately 7%. Like the graph size, this robustness to destruction is likely
attributable to the fact that most nodes have at least 10 associated edges suggesting
that they have alternate routes to all other nodes in the network.

Finally, the power law parameter v increases with each percent increase in broken
edges. Again the magnitude of the increases is very small with a maximum change
of about 2.5%.

In addition to the global properties investigated above, we measured nine local, or
node-level, properties (Figure . The shortest-out and -in paths increased steadily
with each percent increase in node destruction. There is a corresponding decrease
in the closeness centrality with each percent increase in edge destruction. This is a
logical result since closeness centrality is measured in terms of the shortest paths.

The mean betweenness centrality does not vary appreciably with increases in edge
destruction, but the variance does.

It is interesting that for many local measures, for example degree, there appeared
to be a threshold. The effect of breaking 1 or 2% of the edges was equal followed by

a steady trend after 3% edge destruction.

B.1.1 Failure Tolerance
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