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CHAPTER 1

Introduction

For patients with end stage renal disease (ESRD), kidney transplantation has become a
preferred treatment as compared with dialysis for it provides not only a higher survival
rate but also a better quality of life (Evans et al., 1985; Russell et al., 1992; Wolfe et al.,
1999). Kidney transplantation is also cost-effective as compared to continuing on dialysis
(Laupacis et al., 1996). However, due to a growing demand and limited supply of deceased-
donor kidneys, many patients who need a transplant must be placed on long waiting lists.
According to the Organ Procurement and Transplantation Network (OPTN), as of Decem-
ber 2010, more than 87,000 kidney transplant candidates in the U.S. were on a waiting
list; and in 2009, about 34,000 candidates in the U.S. were added to the list, whereas only
about 10,000 actually received a kidney transplant from a deceased donor. In response to
this shortage, candidates have increasingly undergone living-donor transplants. As a mat-
ter of fact, living-donor transplants have the advantage of both short and long term higher
graft survival rates than deceased-donor transplants (Terasaki et al., 1995; Hariharan et al.,
2000).

A major barrier to living-donor kidney transplantation is the unfortunate circumstance
that many patients with kidney failure recruit willing organ donors who, upon evaluation,
prove to be ABO blood type or Human Leukocyte Antigens (HLA) incompatible. With
regard to blood type compatibility, A and B donors can donate to candidates of the same
blood type or of type AB; AB donors can donate only to AB candidates; and O donors,
known as universal donors, can donate to candidates of any blood type, but can only receive
kidneys from another O donor. The HLA incompatibility results from the presence in the
blood of a candidate of pre-existing antibodies against the HLA antigens of a potential
donor. Both forms of incompatibility can lead to a rapid rejection of the transplanted organ
and thus prohibit transplant.

An evolving strategy in kidney paired donation (KPD) (Rapaport, 1986; Ross et al.,
1997) creates a pool of incompatible pairs and seeks to match one donor-candidate pair
to another pair with a complementary incompatibility, such that the donor of the first pair
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Figure 1.1: (A): A two-way exchange; (B): A three-way exchange; (C): An altruistic donor-
initiated chain.

donates to the candidate of the second, and vice versa; see Figure 1.1-A and Figure 1.1-B
for illustrations of a two-way exchange and a three-way exchange, respectively. This is
called a kidney paired donation program; when these are large, a computerized algorithm
is often used to identify appropriate exchanges. Although three-way or higher exchange
cycles increase the chance of identifying compatible matches, most individual transplant
centers restrict exchanges to at most three ways for two primary reasons. First, all trans-
plants on an exchange cycle must be performed simultaneously to avoid the possibility of
reneging — a requirement that would create substantial logistical difficulties of scheduling;
for example, eight surgeons and eight operating rooms are required at the same time for a
four-way exchange. Second, the greater the length of an exchange cycle, the less likely
the potential transplants will actually occur since, if any of the proposed transplants cannot
proceed, the whole cycle would collapse.

In recent years, KPD has also been extended to include living non-directed donors, or
altruistic donors; an altruistic donor donates to the candidate of an incompatible donor-
candidate pair with the understanding that the donor associated with the benefitted candi-
date in that pair will further donate to the candidate of a second pair, and so on; such a
process continues and thus forms an altruistic donor-initiated chain; see Figure 1.1-C for
an illustration of such a chain. Since the transplants along the chain are not required to be
performed simultaneously, the donor whose candidate received another donor’s kidney but
has yet to donate could make a donation to a future-arriving candidate; and hence the name
bridge donor. In this respect, the chain is open-ended and could potentially increase the
chance for a highly sensitized candidate to receive a compatible kidney.

A growing number of KPD programs have recently been established with regional pro-
grams in the U.S. including the New England Programs for Kidney Exchange, the Paired
Kidney Exchange Program at Johns Hopkins Medical Center, the Alliance for Paired Dona-
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tion (APD), the National Kidney Registry (NKR) Program, and the University of Michigan
Paired Kidney Exchange Program; internationally, KPD programs exist in the Netherlands
(Keizer et al., 2005) and South Korea (Park et al., 1999), among other countries.

In this thesis, we propose the following specific aims.

Aim 1: To develop optimization methods for selecting exchanges among incompati-
ble pairs in a KPD program that take account of utility and uncertainty, and compare
these new methods with those currently in use via microsimulation models based on
multiple data sources.

Aim 2: To develop optimization frameworks and approaches for decision making in
general KPD programs with altruistic donors.

Aim 3: To examine in greater detail some important aspects arising from the practical
management of a KPD program, and propose a general mathematical framework
based on Markov decision processes (MDPs) to formulate the KPD optimization
problem.

The rest of this dissertation is organized as follows. In Chapter 2, we propose novel or-
gan allocation strategies to arrange kidney exchanges under uncertainties with advantages,
including (i) allowance for a general utility-based evaluation of potential kidney transplants
and an explicit consideration of stochastic features inherent in a KPD program; and (ii) ex-
ploitation of possible alternative exchanges when the originally planned allocation cannot
be fully executed. This allocation strategy is implemented using an integer programming
(IP) formulation, and its implication is assessed via a data-based simulation system by
tracking an evolving KPD program over a series of match runs. Extensive simulation stud-
ies are provided to illustrate our proposed approach.

In Chapter 3, we propose a strategy to sequentially allocate the altruistic donor (or
bridge donor) so as to maximize the expected utility over a certain given number of moves.
Analogous to the way a computer plays chess, the idea is to evaluate different allocations
for each altruistic donor (or bridge donor) by looking several moves ahead along a derived
look-ahead search tree. Simulation studies are provided to illustrate our proposed method.

Chapter 4 synthesizes and builds upon the work from previous chapters. In this chapter,
we examine in greater detail two important aspects in the management of a KPD program
— robust organ allocations and operational uncertainties. We first extend the idea of using
exchange sets for planning organ allocations; the outcome of this extension is a more robust
allocation strategy derived from the concept of strongly connected components (SCCs).
We then study more carefully the operational uncertainties inherent in the management

3



of KPD programs. We also develop a general mathematical framework based on Markov
decision processes (MDPs), which can be use to rigorously and systematically formulate
the problem of managing KPD programs in the presence of altruistic donors. Finally, we
conclude with some discussion and future directions of this dissertation work.
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CHAPTER 2

Kidney Paired Donation (KPD) Programs with
Incompatible Pairs

In this chapter, we propose a novel approach to organizing kidney exchanges among in-
compatible pairs. This approach is implemented using an integer programming (IP) for-
mulation, and its implication is assessed via a data-based simulation system by tracking an
evolving KPD program over a series of match runs.

2.1 Introduction

A fundamental problem in managing KPD programs lies in selecting the “optimal” set of
kidney exchanges from among the many possible alternatives. This problem has been mod-
eled and analyzed by economists using a game-theoretic approach (Roth et al., 2004), in
which they organized donor-candidate pairs as a “housing market”, a concept first proposed
by Shapley and Scarf (1974), and produced an efficient organ exchange mechanism using
Gale’s Top Trading Cycles (TTC) algorithm. Roth et al. (2005) and Segev et al. (2005)
applied a maximum cardinality matching algorithm (Edmonds, 1965) to select exchanges
that allow the maximum number of transplants, in the case where only two-way exchanges
are considered. More general approaches have been developed to undertake such a prob-
lem by an integer programming (IP) formulation. This novel IP-based formulation was first
proposed by Roth et al. (2007), where each potential transplant was assigned equal weight,
resulting in an allocation strategy that enables the greatest number of transplants to be po-
tentially implemented. This IP problem can be efficiently solved by finding a maximum
weight perfect matching when no restriction is placed on the cycle length. If, however, only
cycles of length up to k are considered, this IP problem is NP-hard when k is larger than
two but less than the number of participating pairs (Roth et al., 2007). To address this issue,
Abraham et al. (2007) have recently developed an algorithm to reduce the computational
complexity of managing large KPD programs.
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This chapter extends and improves upon the research described above. Our proposed
kidney allocation strategy is innovative in several respects. First, it allows for a quality-
oriented evaluation of a potential kidney transplant through medical-outcome-based utili-
ties such as post-transplant graft and recipient survival. In addition, it explicitly takes into
consideration the probability that a predicted compatible transplant will result in an actual
transplant operation. Third, our approach allows for one or more contingency allocations
should the originally planned exchanges fail to be executed. We also suggest a data-based
simulation system for studying an evolving KPD program to evaluate different kidney allo-
cation strategies, to compare their impact on performance outcomes, and to assess different
choices of utility assignments. The knowledge learned from such simulation studies should
provide invaluable guidance in implementing an actual clinical KPD allocation system.

The rest of this chapter is organized as follows: in Section 2.2, we introduce the repre-
sentation and formulation of a KPD program and present a procedure for arranging kidney
exchanges according to the maximum utility cycle-based allocation. In Section 2.3, we ex-
plore some important issues and features in a KPD program that have not been addressed by
previous studies and further propose a kidney allocation strategy based on the maximum
expected-utility set-based allocation. In Section 2.4, we present a data-based simulation
system for studying an evolving KPD program. Section 2.5 illustrates the application of
the proposed simulation system and reports simulation results for comparing different al-
location strategies. We conclude with some discussion in Section 2.6.

2.2 Problem formulation and the maximum utility cycle-
based allocation

In this section, we first present a graph representation of a KPD program and then describe
two IP formulations for organizing kidney exchanges. We also introduce a procedure for
arranging organ exchanges according to the maximum utility cycle-based allocation.

2.2.1 Graph representation

We represent a KPD program as a directed graph, G = (V , E), where the vertex set, V ≡
V(G) = {1, 2, · · · , n}, is the set of n incompatible donor-candidate pairs, and the edge set,
E ≡ E(G) is a binary relation on V , consisting of ordered pairs of vertices in V . An edge
from i to j, denoted as (i, j), indicates that the donor of pair i is predicted to be compatible
with the candidate of pair j. This predicted compatibility is based on a virtual crossmatch,
which involves computer cross-checking for blood type compatibility as well as comparing
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candidate antibodies against donor HLA antigens. Before a predicted compatible transplant
can be considered for an actual surgical operation, it must be confirmed by a labor intensive
laboratory crossmatch to assure histocompatibility, which involves incubating the serum
of a candidate with the white blood cells of a prospective donor. It is worth noting that
prior research on KPD has not taken into consideration this uncertainty, and instead has
proceeded as though a negative virtual crossmatch would guarantee, if selected, an actual
transplant operation.

In such a directed graph, an exchange cycle of length k (or a k-way exchange cycle),
k ≥ 2, is defined as a sequence of distinct vertices in V , denoted as 〈c1, c2, · · · , ck〉,
such that (ck, c1) ∈ E and (cj−1, cj) ∈ E ,∀j = 2, 3, · · · , k. For an exchange cycle
C = 〈c1, c2, · · · , ck〉, we denote its vertex set as V(C) = {c1, c2, · · · , ck} and its edge

set as E(C) = {(ck, c1), (cj−1, cj), j = 2, 3, · · · , k}. In Figure 2.1 are shown one two-way
exchange cycle, 〈2, 4〉, and two three-way exchange cycles, 〈1, 2, 3〉 and 〈2, 4, 5〉. Ex-
change cycles form a disjoint collection if their corresponding vertex sets are disjoint. A
cycle-based allocation for a KPD program G is defined as a collection of disjoint exchange
cycles, and further denoted as C(G). An alternative set-based allocation, denoted as S(G),
will be introduced and discussed in Section 2.3.4.

3

1 2

5

4

Figure 2.1: Two three-way exchange cycles, C1 = 〈1, 2, 3〉 and C2 = 〈2, 4, 5〉, and
one two-way exchange cycle, C3 = 〈2, 4〉; two exchange sets of size three, S1 =
({1, 2, 3}, {(1, 2), (2, 3), (3, 1)}) and S2 = ({2, 4, 5}, {(2, 4), (4, 5), (5, 2), (4, 2)}), and
one exchange set of size two, S3 = ({2, 4}, {(2, 4), (4, 2)}).

For an edge e ≡ (i, j) ∈ E , let ue or uij denote an nonnegative utility associated with
a kidney transplant from the donor in pair i to the candidate in pair j; see more discussion
on assigning edge utilities in Section 2.3.1. The utility of an exchange cycle, C, is the
sum of its edge utilities, i.e. UC =

∑
e∈E(C) ue, and the utility of a cycle-based allocation,

C(G), is the sum of the utilities of its cycles, i.e.
∑

C∈C(G) UC . In this setting, the optimal
cycle-based allocation which we denote by C∗(G) is the one with the maximal utility. Roth
et al. (2007) proposed two IP formulations to determine C∗(G). One formulation encodes
each exchange cycle as a decision variable, and the other one encodes each edge as a
decision variable. We first look at the cycle formulation in Section 2.2.2 and then the edge
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formulation in Section 2.2.3.

2.2.2 Cycle formulation

Let Ck be the set of exchange cycles with lengths at most k. For each i ∈ V , Ck(i) denotes
the exchange cycles in Ck that involve pair i, i.e. Ck(i) = {C ∈ Ck : i ∈ V(C)}. Define a
decision variable YC for each cycle C ∈ Ck, such that YC is 1 if organ exchanges indicated
by C will be arranged, and YC = 0 otherwise. The problem of selecting C∗(G) can then be
formulated as the following IP problem,

max
{YC}

∑
C∈Ck

YCUC , (2.1)

subject to
∑

C∈Ck(i)

YC ≤ 1,∀i ∈ V . (2.2)

Note that the constraint (2.2) codifies the fact that each pair cannot be allowed in more than
one exchange cycle simultaneously. Each feasible solution to this IP problem corresponds
to one C(G), and the optimal solution corresponds to C∗(G). As a special case in this IP
problem, when the utility of an exchange cycle is defined as its length, i.e. UC = |V(C)|,
the resulting objective is to maximize the total number of transplants. Most KPD studies
have focused on this simplified utility assignment; see more discussion in Section 2.3.1.

Solving this IP optimization problem in general requires increased computation time
as k grows, though in practice most KPD programs restrict k to be three or smaller due to
logistical difficulties. Some particular values of k are worth mentioning. When k is equal
to two, the optimization problem could be solved in polynomial time using a maximum
weighted matching algorithm, which is an extended version of Edmonds’ classical maximal
cardinality matching algorithm. When k is equal to |V|, i.e. no restriction is placed on the
length of an exchange cycle, this problem can be efficiently solved by finding a maximum
weight perfect matching. As noted in Roth et al. (2007), this IP problem is NP-hard for k
greater than two but less than |V|, which poses associated computational challenges when
the number of incompatible pairs is large.

2.2.3 Edge formulation

Let Yij be a decision variable for each (i, j) ∈ E , such that Yij is 1 if edge (i, j) is chosen
for a transplant and 0 otherwise. When no restriction is placed on the length of an exchange
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cycle, we solve the following IP problem:

max
{Yij}

∑
(i,j)∈E

Yijuij, (2.3)

subject to
∑

j:(i,j)∈E

Yij ≤ 1,∀i ∈ V (2.4)

∑
j:(i,j)∈E

Yij =
∑

j:(j,i)∈E

Yji,∀i ∈ V . (2.5)

This IP problem could be solved efficiently in polynomial time by finding a maximum
weight perfect matching. If the exchange cycle length is restricted to be at most k, an
additional set of constraints has to be added, i.e.∑

e∈E(C)

Ye ≤ k,∀C ∈ Ck. (2.6)

The number of additional constraints in (2.6), even when k = 3, is usually enormously
large in a realistic KPD program with several hundred incompatible pairs, which makes it
impossible to even store all the constraints in a typical IP solver such as CPLEX 1 or Gurobi
2. Therefore, the cycle formulation is usually preferred.

2.2.4 The maximum utility cycle-based allocation

We summarize below a procedure for arranging kidney exchanges according to the maxi-
mum utility cycle-based allocation. Given a KPD program G = (V , E),

(i) Define u : E → R+, where ue is the utility assigned to an edge e ∈ E .

(ii) Enumerate Ck and find UC for each C ∈ Ck.

(iii) Determine C∗(G) by solving an IP problem.

(iv) Arrange kidney exchanges according to C∗(G).

In (ii), we enumerate Ck by developing an algorithm based on depth-first search (DFS),
which essentially prioritizes the direction of search always to offspring vertices and then to
sibling vertices.

1http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
2http://www.gurobi.com/
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2.3 Optimal kidney allocation in a KPD program

In Section 2.2, we have introduced a graph representation of a KPD program and presented
an allocation strategy based on C∗(G). In this section, we focus on issues in managing KPD
programs that have not been previously addressed and further explore two alternative organ
allocation strategies.

2.3.1 Utilities and uncertainties in a KPD program

Much of the prior work has focused on a simplified edge utility, namely ue = 1, ∀e ∈ E . As
a result, the utility UC of an exchange cycle, C, equals its length, and the objective function
in the IP problem is the total number of arrangeable transplants. Some recent developments,
however, have emerged in assigning rule-based utilities determined by pair attributes, such
as degree of candidate sensitization or the age difference between the candidate and donor,
so that they better evaluate potential transplants. For example, in an operational guideline
recently posted by the U.S. national KPD pilot program, each potential transplant is initially
assigned a base utility of 200 points. Extra points are added as bonuses to edges that, say,
have zero antigen mismatches, or that involve a donor and a candidate in the same transplant
center; on the other hand, a certain number of points are deducted, for example, when a
donor has one or more of the candidate’s other antibody specificities.

For potential transplants in a KPD program, it is also desirable to examine outcome-
based utilities derived from medical outcomes such as the expected graft or patient survival.
To this end, we propose to associate with edge, (i, j), a utility quantifying the medical out-
come from a potential kidney transplant involving the donor in pair i and the candidate in
pair j. This outcome could be, for example, graft survival, post-transplant recipient sur-
vival, or the incremental years of recipient life that would accrue with a kidney transplant
as opposed to remaining on dialysis. By incorporating this outcome-based utility, we are
able to evaluate and compare competing kidney allocations with a quality-oriented view,
and therefore provide kidney transplant candidates with organs that are not only compati-
ble, but that could potentially maximize opportunities to achieve good quality of life after
transplants.

Prior research on KPD has implicitly assumed that a predicted compatible transplant,
if attempted, would yield an actual transplant operation. In reality, predicted compatible
transplants have to be confirmed by laboratory crossmatches, and hence may or may not
lead to actual transplant operations. This uncertainty is a necessary ingredient since labora-
tory crossmatches cannot be undertaken on all possibly compatible donors and candidates
due to labor and resource limitations. Further, even if the laboratory crossmatch is negative
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(non-reactive), an actual transplant operation may not occur due to other friction including,
for example, pair preference, illness, and death. Throughout the rest of the dissertation, we
use the term “is viable” to indicate that the edge actually results, if chosen, in a completed
transplant operation. An exchange cycle is viable if each of its edges is viable.

Ignoring this uncertainty can result in a situation in which long exchange cycles are
evaluated more favorably than short ones, despite the fact that longer cycles are much less
likely to be implemented. To partially incorporate this uncertainty into the arrangement of
kidney exchanges, the operational guidelines for the national KPD pilot program proposed
a deduction of 30 points for a three-way exchange cycle, but not for an exchange cycle that
is two-way.

To further address this stochastic feature inherent in a KPD program, we associate with
each edge a probability corresponding to the chance of that edge being viable. This proba-
bility depends on factors such as the number of mismatched antigens, the donor-candidate
travel distance, and age difference. For each e ∈ E , let Xe be a Bernoulli random variable
with Xe = 1 if e is viable, and Xe = 0 otherwise. By defining pe as P (Xe = 1), an
exchange cycle, C, is then viable with probability equal to PC ≡

∏
e∈E(C) pe, under the

assumption that edges in an exchange cycle have an independence relationship. More for-
mally, this assumption is regarded as having a collection of independent random variables,
{Xe, e ∈ E(C)}. Though this independence relationship can be further relaxed, it is a
reasonable assumption when the rate of pair withdrawal (due to factors such as pregnancy,
illness, or death) is not high. In the rest of this chapter, we proceed by assuming in general
that Xe, e ∈ E are independent. It is worth pointing out that a set of common factors could
affect both the edge probability and utility.

As we should discuss later in Section 2.3.3, incorporating these probabilities into the
management of a KPD program also opens up the opportunity to identify and implement
possible alternative fall-back options if the originally planned exchanges cannot be fully
executed.

In this chapter, we focus on the development of an allocation strategy for the man-
agement of a KPD program with certain desired properties that will be introduced in the
remaining of this section. Our attention, however, is not on the estimation of utilities and
probabilities associated with potential transplants, although Section 2.3.5 presents a dis-
cussion of some aspects of this.
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2.3.2 The maximum expected-utility cycle-based allocation

One natural way to evaluate an exchange cycle is to use its expected utility, namely EUC ≡
UCPC . Utilizing expected utilities in the management of a KPD program provides a way
to incorporate uncertainty into the selection of kidney exchanges. For example, expected
utility recognizes that a longer exchange cycle has a smaller chance of being viable, which
counterbalances the fact that such a cycle might potentially contribute greater utilities and
allow for more transplants.

The expected utility of a cycle-based allocation, C(G), is the sum of the expected utili-
ties of its exchange cycles, i.e.

∑
C∈C(G) EUC . Among all cycle-based allocations, the one

with the largest expected utility is the maximum expected-utility cycle-based allocation,
which we denote as C∗(G). The following procedure generates C∗(G) in a KPD program
G = (V , E) and arranges exchanges accordingly.

(i) Define u : E → R+, where ue is the utility of an edge e ∈ E , and p : E → [0, 1],
where pe is the probability that e is viable.

(ii) Enumerate Ck and calculate EUC for each C ∈ Ck.

(iii) Find C∗(G) by an IP-based approach as in Section 2.2, with UC replaced by EUC .

(iv) Arrange kidney exchanges according to C∗(G).

In (iii), the cycle formulation generalizes in a straightforward manner, but the edge
formulation cannot be extended; this is because the edge formulation represents each edge
as a separate decision variable and hence cannot describe EUC . Notice that the above
procedure and the one in Section 2.2.4 are both fixed in that they do not specify how to
proceed if a chosen exchange cycle is not viable.

2.3.3 Contingency plans

Let us begin with a motivating example. In a small KPD program as represented in Fig-
ure 2.1, there are two three-way exchange cycles, C1 = 〈1, 2, 3〉 and C2 = 〈2, 4, 5〉, and
one two-way exchange cycle, C3 = 〈2, 4〉. We assume that EUC1 > EUC2 > EUC3 , and
thus conclude C∗(G) is {C1}. A further examination, however, reveals that pairs in C3 are
part of the pairs in C2, i.e. V(C3) = {2, 4} ⊂ V(C2) = {2, 4, 5}. This observation might
suggest that, when C2 is selected but could not be completed because of problems in either
(4, 5) or (5, 2), the two-way exchange cycle C3 could still be selected. Therefore, the con-
tribution from this back-up exchange cycle C3 would add some extra value to the exchange
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cycle C2. Does this extra value make {C2} a preferred allocation to {C1}? How should
we evaluate {C2} so as to correctly recognize {C3} as a possible back-up allocation? To
address these questions in this specific example and address other related issues in general,
we propose the following.

First, we give two definitions from graph theory: (i) a graph G ′ = (V ′, E ′) is a subgraph

of G = (V , E), if V ′ ⊂ V and E ′ ⊂ E , and (ii) a graph G ′ = (V ′, E ′) is an induced subgraph

of G = (V , E), if G ′ is a subgraph of G, and in addition, E ′ = {(u, v) ∈ E : u, v ∈ V ′}.
In the context of a KPD program, G = (V , E), we then define an exchange set as an
induced subgraph of G, denoted by S = (V ′, E ′), with the requirement that it admits at
least one exchange cycle of length |V ′|, where |V ′| is defined as the size of this exchange
set. Figure 2.1 illustrates two exchange sets of size three, S1 and S2, and one exchange set
of size two, S3.

By definition, an exchange set would allow for one or more cycle-based allocations;
if there is indeed more than one and not all of the exchange cycles in the first attempted
allocation are viable, we might still have the option to select another allocation, which is
called a contingency. Therefore, the expected utility generated from arranging exchanges
in an exchange set depends on the order in which the possible cycle-based allocations
are utilized. Such an ordering defines a more general procedure, which includes the two
previously introduced procedures as special cases. For example, in an exchange set, S =

(V ′, E ′), if C∗(S) is adopted as top priority with no allocation assigned as a contingency,
this in fact corresponds to the procedure presented in Section 2.2.4, and in consequence,
the corresponding expected utility is

∑
C∈C∗(S) EUC . Similarly, the procedure described in

Section 2.3.2 corresponds to selecting C∗(S) as a first priority but again with no contingency
at all, and hence generates an expected utility of

∑
C∈C∗(S) EUC . According to what we

have discussed, both of these two procedures are fixed in the sense that they each select an
allocation only for S = (V ′, E ′), but do not specify how to proceed on (V ′, E ′ \ Ef ), where
Ef ≡ {e ∈ E ′ : Xe = 0} is observed when executing that chosen allocation. In contrast,
the following “greedy” procedure is sequential and generates the largest expected utility.

(i) Find C∗(S) in S = (V ′, E ′) by applying the procedure presented in Section 2.2.4.

(ii) If all cycles in C∗(S) are viable, finish with a claimed utility of
∑

C∈C∗(S) UC ; if,
however, certain edges, which we denote as Ef , fail to be carried forward to actual
operations, abort the original allocation and go back to (i) with E ′ ← E ′ \ Ef .

Return to Figure 2.1, where both the three-way exchange cycle, C2 = 〈2, 4, 5〉, and the
two-way exchange cycle, C3 = 〈2, 4〉, could be selected in the exchange set S2. If UC2 is
larger than UC3 , C2 should be chosen as the first priority. When edge (4, 5) and/or edge
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(5, 2) in C2 are not viable, C3 could be tried as a contingency plan. On the other hand, if
UC2 is less than UC3 , then the cycle C3, backed up by C2, should be selected as the first
priority.

In light of this and similar examples, we quantify the potential value of selecting an
exchange set S by applying the above greedy procedure for S. This potential value actually
defines EUS , the expected utility of S. Such an approach takes into consideration the full-
potential contributions from all possible back-up allocations. Note that the expected utility
of an exchange set can be exactly formulated as follows. For an exchange set, S = (V ′, E ′),
let 2E

′ denote the collection of all subsets of E ′, and for each Ẽ ∈ 2E
′ , let

P (Ẽ) ≡
∏
e∈Ẽ

pe
∏

e∈(E ′\Ẽ)

(1− pe), (2.7)

which is the probability that the edges in Ẽ are viable whereas those in E ′ \ Ẽ are not.
Consider S̃ ≡ (V ′, Ẽ), and let

U(Ẽ) ≡
∑

C∈C∗(S̃)

UC . (2.8)

It follows that

EUS =
∑
Ẽ∈2E′

U(Ẽ)P (Ẽ). (2.9)

In Figure 2.1, S2 would be preferred to S1 if EUS2 > EUS1 .

2.3.4 The maximum expected-utility set-based allocation

We have introduced a cycle-based allocation as a collection of disjoint exchange cycles.
Among all such allocations, the procedure in Section 2.2.4 arranges kidney exchanges ac-
cording to the allocation with the maximum utility, while the procedure in Section 2.3.2
arranges kidney exchanges according to the one with the maximum expected utility.

In this subsection, we define a set-based allocation as a collection of disjoint exchange
sets, and further denote it as S(G) for a KPD program G. Following the way in which
the expected utility of an exchange set is defined in Section 2.3.3, the expected utility of
a set-based allocation S(G) is, therefore,

∑
S∈S(G) EUS . Among all set-based allocations,

the following procedure arranges kidney exchanges according to the maximum expected-
utility set-based allocation, which we denote as S∗(G).
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(i) Define u : E → R+ and p : E → [0, 1] as in Section 2.3.2.

(ii) Enumerate Sk, the set of all exchange sets of size at most k, where 2 ≤ k ≤ |V|.

(iii) For each S ∈ Sk, calculate its expected utility as EUS =
∑
Ẽ∈2E′ U(Ẽ)P (Ẽ).

(iv) Select S∗(G) by forming an IP problem similar to the one discussed in Section 2.2.2.

(v) Apply the aforementioned greedy procedure to each S ∈ S∗(G).

Arranging kidney exchanges according to the above procedure allows for a more flexi-
ble utility-based evaluation of potential transplants, takes into consideration the uncertain-
ties inherent in a KPD program, and provides fall-back options when possible. Several
remarks follow. In (ii), a reasonable k, say three or four, is required in practice due to logis-
tical concerns as in Section 4.1. Enumerating Sk could be accomplished by a DFS-based
algorithm similar to the one presented in Section 2.2.4. In (iii), calculating EUS involves a
summation over |2E ′ | terms, which poses no computational difficulties in practice for small
k.

2.3.5 Estimation of utilities and probabilities

So far in this chapter, we have assumed that we are given a utility function, u : E → R+, and
a probability function, p : E → [0, 1]. In practice, however, these utilities and probabilities
are not available and have to be estimated.

In the literature, modeling of outcome-based utility has been considered in deceased-
donor kidney transplants by Wolfe et al. (2008), Schaubel et al. (2006), and Schaubel et al.
(2009). Such models could be adopted relatively easily to living-donor kidney transplants.
On the other hand, the model for probability can be established via a logistic modeling
approach, based on clinical data from the Scientific Registry of Transplantation Recipients
(SRTR), and multiple KPD programs including the Alliance for Paired Donation (APD)
and the University of Michigan Transplant Center. In this logistic model, some primary
predictors include, for example, the percentage of current panel reactive antibody (PRA)
and the cross reactivity of antibody specificities.

Thus, in practice, all three procedures previously discussed for selecting the cycle-based
or set-based allocations can be easily adopted by replacing the u and p with their estimated
versions.

2.3.6 A KPD match run and an evolving KPD program

We consider a match run as a series of operations on a collection of incompatible pairs V:
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(i) Form G = (V , E), where E is determined by checking virtual crossmatches on V .

(ii) Assign for each e ∈ E an estimated utility ûe and an estimated probability p̂e accord-
ing to the models discussed in Section 2.3.5.

(iii) Arrange kidney exchanges according to C∗(G), C∗(G), or S∗(G).

(iv) Recycle any donor-candidate pair that does not proceed to an actual transplant oper-
ation back to the KPD pool awaiting future matches.

Every KPD program is constantly evolving in that successfully transplanted pairs leave
and new incompatible pairs arrive over time. In addition, existing pairs in the pool could
withdraw due to circumstances such as donor or candidate pregnancy, illness, or death.
Such an evolving KPD program is managed by repeatedly executing match runs and up-
dating the KPD pool on a regular basis over time. See Figure 2.2 for an illustration.
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Directed 
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transplants

Virtual
crossmatch
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Laboratory
crossmatch

Final
work-up

λ new 
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Not included in the
optimal allocation

Positive 
crossmatch

Friction

Figure 2.2: A flow diagram of an evolving KPD program

2.4 KPD simulation system

In Sections 2.2 and 2.3, we have presented three organ allocations for a KPD program G,
namely C∗(G), C∗(G), and S∗(G). A comparison among them and other potential ones
is certainly of great interest with respect to the practical management of a KPD program.
Such a comparison, however, cannot be accomplished by traditional clinical trials due to
the nature of kidney transplantation or any transplantation for that matter. Therefore, sim-
ulation plays an important role for achieving this purpose. In this section, key ingredients
of such a simulation system will be discussed.
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2.4.1 Generating incompatible pairs

To create an incompatible pair, we generate its donor and candidate separately according
to their own population distributions. Candidates are sampled at random with replacement

from databases of candidates presenting with a willing but incompatible donor. One such
database is derived from the University of Michigan KPD program, in which candidates
are described by variables of blood type, PRA, intensity of candidate antibody specificities,
and so on. Currently, the UM database consists of 187 incompatible pairs, and additional
databases from other KPD programs (as they become available to us through data-usage
agreements) will be incorporated for wider variation in candidates. Donors, on the other
hand, are generated by separately sampling their blood types and HLA haplotypes. Pre-
cisely, blood types are drawn from the U.S. population distribution: O, 44%; A, 42%; B,
10%; and AB, 4% (Stanford Blood Center, 2010). HLA haplotypes are sampled accord-
ing to their frequencies in the U.S. population, which is derived from an extensive public
database on potential bone marrow donors (Maiers et al., 2007).

A simulated donor-candidate pair is regarded as an incompatible pair and hence includ-
ed in the KPD pool if either their ABO blood types are mismatched, or the donor’s HLA
haplotypes contain any of the candidate’s antibody specificities (with mean fluorescence
intensity > 5, 000), or both. In this chapter, we do not consider KPD programs that include
compatible pairs.

2.4.2 Simulating a match run and an evolving KPD program

We simulate a KPD match run on a collection of incompatible pairs, V , by simulating each
of its four steps, as discussed in Section 2.3.6.

(i) Determine E by checking the simulated blood types and HLA haplotypes.

(ii) Estimate both ue and pe based on generated pair characteristics.

(iii) Apply C∗(G), C∗(G), or S∗(G) to arrange kidney exchanges.

(iv) Since a potential transplant may not be viable, we simulate such uncertainty via a
Bernoulli trial with the probability of success equal to that edge probability; the real-
ization of such a Bernoulli trial will indicate if a pair proceeds to an actual transplant
and hence leaves the pool, or remains in the pool and awaits future matches.

To address the feature that a KPD program is evolving over time as discussed in Sec-
tion 2.3.6, we first generate an initial KPD pool of N incompatible pairs as described in
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Section 2.4.1. Further, we assume that the arrival of new incompatible pairs follows a Pois-
son process with a rate λ. This rate may be governed by a log-linear model with covariates
of age, candidate illness, and the relationship between donor and candidate, among others.
Also, we assume that the withdrawal of existing pairs from the KPD pool follows another
Poisson process with a rate µ; and the log-linear model for µ could include other relevant
covariates.

2.5 Simulation results

The proposed simulation system in Section 2.4 enables us to investigate various aspect-
s associated with the management of a KPD program, among which comparing different
allocation strategies is certainly of special interest. Simulation results including such com-
parisons are presented in this section. We implement the simulation system using the C++
programming language, and the related IP problems are solved by Gurobi Optimizer.

2.5.1 Problem complexity

The number of exchange cycles or sets can be enormous in a reasonably large KPD pool of,
say, several hundred pairs, even though the size of exchange cycles or sets is restricted to
at most three. Such complexity causes solving related IP problems computationally rather
expensive. Table 2.1 summarizes the averaged numbers (over 200 rounds of simulations)
of exchange cycles and sets of up to three pairs in pools of various sizes, 100, 200, 300,
400, and 500, where incompatible pairs are generated according to Section 2.4.1.

Table 2.1: The averaged numbers of exchange cycles or exchange sets up to three pairs in
KPD pools of various sizes; standard deviations are given in the parentheses; the summary
is calculated over 200 rounds of simulations.

exchange cycles (length 2 & 3) exchange sets (size 2 & 3)
pool size mean (standard deviation) mean (standard deviation)
100 388 (237) 383 (229)
200 2,659 (998) 2,630 (977)
300 9,413 (3,164) 9,305 (3,100)
400 21,076 (6,140) 20,829 (5,992)
500 40,290 (9,337) 39,815 (9,120)
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2.5.2 Simulation setup

We perform a total of 600 simulations, in which {pe, e ∈ E} is generated from a uniform
distribution, U(0.1, 0.5); this distribution gives, for a virtual-crossmatch compatible trans-
plant, an average successful rate of 30%, a reasonable number according to our experience
at the University of Michigan and the Alliance for Paired Donation. In order to obtain a
set of utilities for illustrative purpose, we generated utilities from two uniform distribution-
s, U(10, 20) and U(10, 30); these are used to generate {ue, e ∈ E}. Each distribution of
utilities is used for 200 simulations; edge utilities are fixed at 1 for the remaining 200 sim-
ulations. Notice that these simulation parameters are chosen in such ways to illustrate the
application of our proposed simulation system; in practice, these utilities and probabilities
should be estimated based on real data as we have discussed in Section 2.3.5.

We start each round of simulation by generating an initial pool of N = 200 incompat-
ible pairs. Additionally generated pairs then enter the pool according to a Poisson process
with λ = 10 pairs per month over a period of m = 24 months. For simplicity, we assume
no existing pairs drop out of the pool.

A match run is executed at the end of each month on this evolving pool, starting with
the initial 200 pairs. Pairs that arrive during the time of a match run will not participate
in the current run, but wait for the next one. For each simulation, we make three copies
of the evolving KPD program and execute each of the three match runs, which arrange
kidney exchanges according to C∗(G), C∗(G), and S∗(G)), on each copy such that we can
directly compare these allocation strategies. At the end of each match run, the KPD pool is
updated with some pairs leaving or staying. We record several important measures needed
for comparison, such as cumulative claimed utilities, cumulative number of transplants,
and blood types of candidates receiving transplants.

The above description provides a simple simulation setup that enables us to examine
and compare different allocation strategies. More realistic models will be further explored
by incorporating more comprehensive data on pair characteristics and actual transplant
operations, when such data become available to us via data-usage agreements.

2.5.3 Results

First, we report on the cumulative number of transplants over a period of 24 months across
three allocation strategies, C∗(G), C∗(G), and S∗(G), and under three different models of
utilities, U(1, 1), U(10, 20), and U(10, 30); see Figure 2.3, which unveils a consistent pat-
tern regardless of utility models that S∗(G) results in the greatest number of transplants,
whereas C∗(G) leads to the fewest number of transplants. Take Figure 2.3-C as an exam-
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ple. When the edge utility is fixed at 1, allocation strategy S∗(G) results in a median of 50

(over 200 simulations) transplants after match run 10 (at the end of month 9); in contrast,
for exactly the same evolving KPD program, strategy C∗(G) only leads to a median of 34
transplants over the same period of time. Results from simulation also show that allocation
strategy C∗(G) allows for a much higher number of transplants than C∗(G) does, though it
performs worse than S∗(G).
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Figure 2.3: Cumulative number of transplants over 12 or 24 months across three allocation
strategies, under three utility generating mechanisms (results are based on 200 simulations).
Edge utilities are generated from U(1, 1), U(10, 20), and U(10, 30); and edge probabilities
are generated from U(0.1, 0.5). The numbers at the top of each panel indicate match runs.

Figure 2.4 demonstrates that S∗(G) is advantageous over both C∗(G) and C∗(G) in that
S∗(G) on average achieves the largest cumulative claimed utility. Notice that when edge
utilities are fixed at 1, the cumulative claimed utility is the same as the cumulative number
of transplants; therefore, we only compare these allocation strategies under two other utility
models, i.e. U(10, 20) and U(10, 30).

We can also examine via the proposed simulation system other aspects of a KPD pro-
gram. For example, we are interested in exploring how the chance of having a transplant
is associated with blood types. In practice, candidates with blood type O are usually in
a disadvantageous position due to the limitation that they can only receive kidneys from
blood type O donors, who, however, can donate to candidates of any blood type. This phe-
nomenon is clearly observed in Figure 2.5, where about 60% of the incoming candidates
are of blood type O, while only about 40% of the performed transplants involve a blood O
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Figure 2.4: Cumulative claimed utilities of transplants over 24 months across three alloca-
tion strategies, under two utility generating mechanisms (results are based on 200 simula-
tions). Edge utilities are generated from U(10, 20), and U(10, 30); and edge probabilities
are generated from U(0.1, 0.5). The numbers at the top of each panel indicates match runs.

candidate. As a consequence, candidates of the other blood types (A, B, and AB) are more
represented among all candidates receiving a transplant. One possible solution to this diffi-
culty is to assign a bonus utility to a potential transplant that involves an O donor giving to
an O candidate, or prohibit the option of an O donor being allocated to a non-O candidate.

2.6 Concluding remarks

In this chapter, we have proposed a novel approach to organizing kidney exchanges in an e-
volving KPD program. Our approach identifies the maximum expected-utility set-based al-
location that not only allows for a more general outcome-based evaluation of kidney trans-
plants, but also takes into consideration stochastic features in managing a KPD program.
Further, this approach exploits possible back-up exchanges when the originally planned
allocation cannot be fully executed. Being able to provide such back-up exchanges is even
more valuable considering that in practice utilities that relate to expected outcomes could
usually decrease over time; it is generally better for a transplant to be performed sooner
than later.

We have also suggested a data-based simulation system that enables us to examine
various aspects of an evolving KPD program. This simulation system allows us to emulate
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Figure 2.5: Summaries of the percentage of candidates with certain blood type among all
candidates joining the KPD pool and that percentage among all candidates who received a
transplant (results are based on 200 simulations). Similar pattern are observed under three
utility generating mechanisms, i.e. U(1, 1), U(10, 20), and U(10, 30).

genetic and demographic data from existing KPD programs, and to derive statistical models
that mimic actual KPD programs. In particular, we have suggested (i) models for donor and
candidate characteristics as well as their arrival in and withdrawal from a KPD pool; (ii)
models for the estimation of the outcome-based utility of a potential transplant; and (iii)
models for the prediction of the probability that a planned transplant would indeed occur.
Utilizing such a simulation system, we are able to quantitatively compare different kidney
allocation strategies; and results shed light on decision support applicable to actual KPD
programs.

We have illustrated the proposed simulation system to compare several kidney alloca-
tion strategies. Results from simulation studies suggest advantages of adopting the max-
imum expected-utility set-based allocation over the other two allocation strategies. Such
advantages are attributive to the introduction of an exchange sets, in which uncertainties in
a KPD system are properly incorporated and possible contingency allocations are allowed
should the planned exchanges fail to be executed. In future work, we plan to base our sim-
ulation on more realistic models that will be developed by incorporating additional KPD
program source data.

Another possible future investigation is to consider exchanges initiated by an altruistic
donor (Rees et al., 2009). An altruistic donor does not arrive with a designated candidate,
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but instead volunteers to donate a kidney to a pool of waiting candidates. Figure 2.6 gives
an illustration of a chain of transplants initiated by an altruistic donor. Since transplants
along the chain are not required to be performed simultaneously, a bridge donor (namely
the donor whose incompatible candidate received a kidney but has yet to donate) at the
end of the chain could later donate to a candidate who will arrive in the future, whose
willing but incompatible donor then becomes a new bridge donor. In this respect, the
chain is open-ended and increases the chance for a highly sensitized candidate to receive a
compatible kidney. The proposed work could be easily extended to include altruistic donors
as participants in a KPD program. More specifically, a chain of kidney transplants can
be viewed as a special exchange cycle, in which the bridge donor “donates” to a phantom
candidate associated with the altruistic donor who first initiated that chain, and hence forms
a hypothetical “edge” (denoted by dashed arrowed lines in Figure 2.6). Future research on
KPD with altruistic donors is certainly of high importance and great interest; we will report
those results in a future publication.

donor 1

candidate 2

candidate 1

altruistic donor

donor 2

bridge donor

1

2

A

Figure 2.6: A chain of transplants initiated by an altruistic donor. The dashed arrow indi-
cates a hypothetical “edge”, which represents a “donation” to a phantom candidate associ-
ated with the altruistic donor.
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CHAPTER 3

Decision Making in KPD Programs with
Additional Altruistic Donors

In this chapter, we focus on the management of KPD programs with altruistic donors. We
propose a strategy to sequentially allocate the altruistic donor (or bridge donor) so as to
maximize the expected utility over a certain given number of moves.

3.1 Introduction

In recent years, KPD has also been extended to include living non-directed donors (LND-
s), or altruistic donors; these are donors who have no designated candidate and decide to
donate voluntarily. In this context, an altruistic donor may donate to the candidate of an
incompatible pair with the understanding that the donor of that pair will become a bridge

donor, and further donate to the candidate of a second pair, and so on; such a process
continues and thus forms an LND-initiated chain. One advantage to such chains as com-
pared to two-way or higher order exchange cycles is that transplants along the chain do
not need to be performed simultaneously (Montgomery et al., 2006; Roth et al., 2006). As
a consequence, the donor whose incompatible candidate received another donor’s kidney
but has yet to donate could later donate to a candidate who will arrive in the future, hence
the name “bridge donor”. For this reason, this LND-initiated chain is sometimes called
a non-simultaneous extended altruistic donor (NEAD) chain (Rees et al., 2009). Kidneys
from altruistic donors used to be designated to patients with no living donors and who
therefore are placed on a deceased-donor waiting list. A NEAD chain, however, allows
for passing the altruism beyond saving just one patient, to an extent that would potentially
benefit a greater number of patients. Such an advantage has already been demonstrated via
simulation studies by Gentry et al. (2009) and Ashlagi et al. (2011).

In this chapter, we consider a strategy for developing a NEAD chain under uncertainties
in a KPD program with one altruistic donor. We also discuss in general some possible
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extensions of this strategy in order to incorporate multiple altruistic donors. Analogous
to the way a computer plays chess, we propose an approach to sequentially allocate the
altruistic donor (or bridge donor) so as to maximize the expected utility over a certain
given number of moves. The idea is to evaluate different allocation options available for
each altruistic donor (or bridge donor) by looking several moves ahead along a derived
look-ahead search tree, and then proceed with the allocation evaluated most favorably.

The rest of the chapter is organized as follows: in Section 3.2, we introduce a graph rep-
resentation for KPD programs with altruistic donors. With this representation, we define the
optimal policy in the context of managing a KPD program with one altruistic donor. This
optimal policy can be obtained in general by following a standard decision tree analysis,
which we briefly illustrate in Section 3.3. The computation associated with this decision
tree-based approach, however, is very expensive for large KPD programs. To address this
issue, we propose, in Section 3.4, a more efficient and practical approach which sequential-
ly extends a NEAD chain according to the calculation performed along a look-ahead search
tree. Section 3.5 provides simulation studies to illustrate our proposed strategy and reports
some simulation results. In Section 3.6, we conclude with some discussion on possible
extensions to incorporate multiple altruistic donors.

3.2 Problem formulation

In this section, we first describe a graph representation for KPD programs that include
incompatible pairs as well as altruistic donors. Utilizing this graph representation, we then
define the optimal policy in the management of a KPD program with one altruistic donor.

3.2.1 Graph representation

We represent a KPD program as a directed graph, G = (V , E), where the vertex set, V ≡
V(G) = {1, 2, · · · , n}, consists of m altruistic donors and n − m incompatible donor-
candidate pairs, where m ≤ n. We denote by, Va ≡ Va(G) = {1, 2, · · · ,m}, the collection
of altruistic donors, and Vp ≡ Vp(G) = V \ Va, the set of incompatible pairs. The edge

set, E ≡ E(G), is a binary relation on V , consisting of ordered pairs of vertices in V .
An edge from i to j, denoted as (i, j), implies that the donor in pair i (or the altruistic
donor i) is predicted to be compatible with the candidate in pair j. Such a prediction
is based on a virtual crossmatch test, which involves computer cross-checking for blood
type compatibility as well as comparing candidate antibodies against donor HLA antigens.
Before a predicted compatible transplant can be further considered for an actual surgical
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operation, it must be confirmed by a labor-intensive laboratory crossmatch test to assure
histocompatibility, which involves incubating the serum of a candidate with the white blood
cells of a prospective donor. Figure 3.1 illustrates such a graph representation for a two-way
exchange, a three-way exchange, and a NEAD chain.

1 2

3

1 2

1 2

3

(A) (B) (C)

Figure 3.1: (A): A graph representation of a KPD program with a two-way exchange cycle,
where Vp = {1, 2} and E = {(1, 2), (2, 1)}; (B): A graph representation of a KPD program
with a three-way exchange cycle, where Vp = {1, 2, 3} and E = {(1, 2), (2, 3), (3, 1)};
(C): A graph representation of a NEAD chain, where Va = {1}, Vp = {2, 3} and E =
{(1, 2), (2, 3)}; donor 3 at the end of the chain becomes a bridge donor.

The virtual crossmatch test is necessary because in practice the laboratory crossmatch
test cannot be undertaken on all possibly compatible donors and candidates due to labor
and resource limitations. Further, even if the laboratory crossmatch result is negative (non-
reactive), an actual transplant operation may not occur due to other friction including, for
example, donor refusal and illness or death of the candidate. To incorporate such stochastic
features, we associate with each edge, e = (i, j), a probability (denoted as pe or pij) that
e, if chosen, could result in an actual transplant operation (Li et al., 2011). Throughout the
rest of the chapter, we use the term “is viable” to indicate that an edge could lead to an
actual transplant.

In addition, we associate with each edge (or potential transplant) a general utility (Li
et al., 2011). Such utilities are often rule-based and determined by various attributes such
as degree of sensitization of the candidate against the potential donor pool, or time since
enrolment in the KPD. These utilities could also be based on predicted medical outcomes
such as the estimated graft or patient survival, or the incremental years of recipient life that
would accrue with a kidney transplant as opposed to remaining on dialysis. For each po-
tential transplant e = (i, j), we denote such an assigned utility as ue or uij . In this chapter,
our attention is not on the estimation of edge utilities and probabilities. It is worth noting
though that research along this line is important and needed in the practical management of
a KPD program; see more discussion on this aspect in Wolfe et al. (2008), Schaubel et al.
(2009), and Li et al. (2011).
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3.2.2 The optimal policy

The problem of selecting a long NEAD chain and then arranging transplants accordingly
is that in practice this long chain can rarely be fully implemented. This is because the
chain would break as soon as one transplant cannot proceed as planned. In this chapter,
we propose to extend a NEAD chain sequentially in a near optimal way by selecting one
potential transplant recipient at each time. In subsequent discussion, we note how this can
be used as the basis of more general approaches.

Consider a KPD program with only one altruistic donor, i.e. Va = {1}. This naturally
implies (i, 1) /∈ E , for all i ∈ V . For j ∈ V such that j = 1 or (1, j) ∈ E , let G(j) ≡ (Vj, Ej)
be a subgraph of G = (V , E), where

Vj = {v ∈ V : v is accessible from j},

Ej = {(v1, v2) ∈ E : v1 ∈ Vj, v2 ∈ Vj, v2 6= j}.

In this chapter, a vertex j is said to be accessible from a vertex i if i = j or if there exists
a set of edges in E , denoted as {(ik, ik+1), k = 0, 1, · · · , n} such that i0 = i and in+1 = j.
In general terms, G(j) represents the resulting KPD graph if the transplant according to
(1, j) ∈ E is arranged and j becomes a bridge donor.

Managing a KPD program with one altruistic donor could then be viewed as a sequen-
tial decision problem, in which we start with U = 0 and G = G(1), and then repeat the
following steps until |V(G)| = 1:

(i) choose one edge from A ≡ {(1, j) : (1, j) ∈ E}, say (1, b).

(ii) if (1, b) is viable, set

U ← U + u1b,

G ← G(b),

1← b;

if, however, (1, b) is not viable, set

G ← G−(1,b)(1), where G−(1,b) = (V , E \ {(1, b)}) .

The above iterative procedure actually defines a policy in the context of managing a
KPD program by specifying what action from A to take in step (i) at each loop; some
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sample policies are,

b = argmax
j:(1,j)∈A

u1j

b = argmax
j:(1,j)∈A

u1jp1j.

For any given policy on G = (V , E), the value of U after the loop terminates can be
interpreted as the cumulative claimed utility. This value, which we denote by U∞, is ran-
dom; and its expectation could then be naturally used to evaluate the corresponding policy.
Among all policies defined in the above way, the optimal policy refers to the one that gener-
ates the highest value of E(U∞). This way of defining the optimal policy provides a formal
framework that will prove convenient in later discussions, even though in general one rarely
follows this optimal policy through until the iterative procedure ends. This is an important
issue, arising due to various practical concerns, that we will revisit in Section 3.4.2.

Figure 3.2-A provides an illustrative example, where G represents a KPD program with
four incompatible pairs (vertices 2, 3, 4 and 5) and one altruistic donor (vertex 1). Starting
from G, the action space is A = {(1, 2), (1, 3)} and suppose we proceed by selecting (1, 2).
If it is viable, this would lead to G(2), denoted as G9 in Figure 3.2-A, and the resulting value
of U∞ is u12; if (1, 2) is not viable, we end up with G1, at which the updated action space
becomes A = {(1, 3)}. We then continue by selecting (1, 3), and if it is not viable, we stop
at G2; if (1, 3) is viable, we then proceed to G3, at which the updated action space becomes
A = {(3, 4), (3, 5)}; and we continue this process by selecting one allocation from A.

3.3 Standard decision tree analysis

The optimal policy introduced in the previous section can be obtained by conducting a
standard decision tree analysis, which we briefly illustrate below using a small example.
The computation associated with such an analysis, however, can be rather complicated for
large problems. We will return to this computational issue in Section 3.4.

The structure of G in Figure 3.2-A cannot be used directly for a standard decision tree
analysis due to the existence of various fall-back options; for example, if edge (1, 3) is se-
lected but not viable, we could fall back to (1, 2). The complete analysis is instead provided
by a derived decision tree (oriented from left to right) as in Figure 3.2-B, where squares
represent decision nodes and circles indicate chance nodes. Each decision node is followed
in this tree by a fixed number of chance nodes associated with all actions available at that
decision node. Each chance node is then followed by two decision nodes corresponding to
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Figure 3.2: (A): A KPD program G with one altruistic donor and four incompatible pairs as
well as various subgraphs of G; (B): A standard decision tree analysis for a KPD program
G as in (A), with squares representing decision nodes and circles indicating chance nodes;
the decision node G3 (which is shaded) appears twice in the tree and hence is only drawn
once.

the two possible outcomes of choosing that chance node: one outcome is that the chosen
transplant e ∈ E is viable, resulting in a utility of ue, whereas the other is that e is not
viable, for which zero utility is generated. These two utilities are associated with the edges
from the chance node to the two corresponding decision nodes. For example, in Figure 3.2-
B, starting from the decision node G, two actions are available, either arrange a transplant
according to edge (1, 2) leading to chance node a or according to edge (1, 3) leading to
chance note e. In the case where (1, 2) is chosen, associated with the chance node a are
two possible outcomes, G1 and G9, which occur with probabilities 1 − p12 and p12 respec-
tively. If G9 occurs, we claim a utility of u12, and zero utility is generated if G1 occurs, for
which we continue on this analysis from chance node b.

The Expected value (EV) associated with a chance node or a decision node is calculated
alternately in a backward direction along the tree from the right to the left. Precisely, (i)
the EV at a leaf decision node is 0 (this could be set to some non-zero number to represent
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the potential value associated with the corresponding bridge donor; see more discussion on
this in Section 3.6); (ii) the EV at a chance node is computed by taking a weighted average
of the sums of the utilities along the edges originating at this chance node and the EVs
at the corresponding successor decision nodes; (iii) the EV at a non-leaf decision node is
calculated by taking the maximum of the EVs of its children nodes.

For example, in Figure 3.2-B, the EVs at decision nodes G5 and G8 are EV [G5] =

EV [d] = p35u35 and EV [G8] = EV [h] = p34u34 respectively. The EVs at chance nodes
c and g are EV [c] = p34u34 + (1 − p34)EV [G5] and EV [g] = p35u35 + (1 − p35)EV [G8]

respectively. This indicates that EV [c] ≥ EV [g] if and only if u34 ≥ u35, and the action
taken at G3 is therefore (3, 4) or (3, 5) depending on which one has the larger edge utility.
The EV at node G3 is then calculated as

EV [G3] = max{EV [c], EV [g]}

= max{p34u34 + (1− p34)p35u35, p35u35 + (1− p35)p34u34}. (3.1)

After computing EVs associated with all decision and chance nodes in this way, the
optimal policy is then to adopt, at each decision node, the action associated with the chance
node that has the maximum EV. This procedure starts from the root decision node.

3.4 A look-ahead search tree-based strategy

The structure of the derived decision tree in Figure 3.2-B is much more complicated than
the structure of G itself in Figure 3.2-A. As a result, the standard decision tree analysis
as introduced in Section 3.3 results in substantial computational difficulties when the KPD
graph is large. To address this issue, we propose in this section a more efficient and practical
approach that relies on evaluating different allocations for each altruistic donor (or bridge
donor) according to a derived look-ahead search tree.

3.4.1 Identifying the optimal policy via a search tree

First, we observe the following fact: consider a KPD program, G = (V , E), where Va =

{1},Vp = {2, 3, · · · , n}, and E = {(1, i) : i = 2, 3, · · · , n}. Without loss of generality,
assume u12 ≥ u13 ≥ · · · ≥ u1n. For this specific KPD program, the optimal policy to
follow at G is to try transplant (1, 2), and if it fails then try (1, 3), then (1, 4) and so forth.
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The associated EV of this policy is

EV [G] =
n∑
k=2

{
u1kp1k

k−1∏
i=2

(1− p1i)

}
. (3.2)

Based on this fact, we could then select the optimal action to take from G directly and hence
avoid explicitly constructing a decision tree and calculating the EV associated with each
node of the tree, as required by the standard decision analysis in Section 3.3. For example,
applying formula (3.2) at the decision node G3 in Figure 3.2-B would lead to the optimal
action of taking (3, 4) or (3, 5) depending on which one has a larger utility; and the EV at
G3 is therefore computed as

EV [G3] = 1[u34≥u35] {p34u34 + (1− p34)p35u35}+ 1[u34<u35] {p35u35 + (1− p35)p34u34} .
(3.3)

Note that formula (3.3) is exactly equal to the one calculated via a standard decision anal-
ysis as in formula (3.1), which, however, requires calculating EVs at additional nodes G5

and G8.
Further, the following result holds. For a KPD program, G = (V , E), where Va = {1},

let A ≡ {(1, j) : (1, j) ∈ E} and u∗1j ≡ u1j + EV [G(j)], for all (1, j) ∈ A. Without loss
of generality, we assume A = {(1, j) : j = 2, 3, · · · , l} and u∗12 ≥ u∗13 ≥ · · · ≥ u∗1l. Then
the optimal decision to take at G is to attempt transplant (1, 2); and if it fails, try (1, 3) and
then (1, 4), and so on; the associated EV is

EV [G] =
l∑

k=2

{
p1ku

∗
1k

k−1∏
i=2

(1− p1i)

}
. (3.4)

Based on this result, we could evaluate various choices in A by u∗1j and then proceed with
the one having the largest value. We repeatedly apply this procedure from terminal nodes
up to sequentially form a NEAD chain, with formula (3.4) evaluating the expected utility
in this process.

To identify the optimal action to take at G, we recursively apply formula (3.4), which in
fact does not require calculating EVs associated with all decision nodes and chance nodes,
but only a fraction of them. These requited ones can then be organized according to their
dependence relationship as in (3.4) to form a search tree. In this tree, the node on the left
hand side of (3.4) is the parent while the nodes on the right hand side denote children;
and edges connecting them represent the corresponding actions. The structure of this tree
therefore allows us to compute EVs associated with its nodes recursively in a backward
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manner from the leaf nodes to the root.
Figure 3.3 provides an example of a search tree and illustrates calculating EVs associ-

ated with its nodes; the search tree in this figure only involves 5 nodes, much less than that
of the decision tree in Figure 3.2-B. The optimal action to take at G in this example is edge
(1, 3) if u∗12 = u12 is smaller than u∗13 = u13 + EV [G3] or edge (1, 2) if otherwise; the EV
at G is therefore computed as

EV [G] = 1[u∗13≥u∗12] {p13u
∗
13 + (1− p13)p12u

∗
12}+ 1[u∗13<u

∗
12] {p12u

∗
12 + (1− p12)p13u

∗
13} .

Clearly, the decision analysis according to this search tree is much simpler than the one by
a standard decision tree as in Figure 3.2-B.

G
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u*13=u13+EV(G3)

EV(G)

Figure 3.3: A search tree-based analysis for a KPD program G.

In general, the search tree associated with a KPD program can be constructed by an
algorithm based on the classic depth-first search (DFS). We developed such an algorithm
that also computes the EVs while performing a DFS on the KPD graph. The optimal policy
is then determined by the following iterative procedure:

(i) for G = (V , E), construct the corresponding search tree by following a DFS-based
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algorithm, and compute the EV associated with each node of this search tree; this is
done recursively from the terminal nodes up to the root node.

(ii) update the current action space A ≡ {(1, j) : (1, j) ∈ E(G)}, and calculate u∗1j =

u1j + EV [G(j)] for (1, j) ∈ A.

(iii) choose (1, b) ∈ A with b = argmaxj:(1,j)∈A u
∗
1j .

(iv) if (1, b) is viable, set

G ← G(b), i.e. update the KPD graph,

1← b, i.e. set the bridge donor b as the new altruistic donor;

if, however, (1, b) is not viable, set

G ← G−(1,b)(1), where G−(1,b) = (V , E \ {(1, b)}) .

(v) go back to (ii) until |V(G)| = 1.

3.4.2 A depth-k search tree

Although the search tree-based approach allows for a much more efficient analysis than
the analysis produced by a standard decision tree, constructing such a search tree, is still
NP-hard for a general KPD graph, even without considering the effort entailed in comput-
ing EVs associated with nodes along that tree. This unfortunate fact poses a substantial
difficulty in identifying the optimal policy when the KPD program is large.

Further, a more important issue is that the optimal policy (assuming it is readily com-
putable) will very likely turn out to be not thoroughly implementable in practice. This is
mainly because in practice the process of initiating and extending a NEAD chain would
require a relatively long period of time, during which the KPD pool would constantly up-
date itself in that new pairs might arrive and existing ones might withdraw; patients in the
pool might also be transplanted via exchanges among incompatible pairs, which could be
arranged in parallel with the NEAD chain mechanism. Thus, looking a long way down the
tree in assessing strategies from the root node is generally not that useful.

To alleviate such problems, we propose to proceed by first deriving a subtree from the
original search tree, which we call a depth-k search tree. Such a subtree can be readi-
ly obtained by the same DFS-based algorithm as introduced in Section 3.4.1, by simply
restricting the depth of the search from the root note to k. We then follow the recursive
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relationship as in formula (3.4) to calculate the EVs associated with corresponding nodes
in the subtree. We start this calculation from the leaf nodes at depth k and work up through
the tree to the root node. The EV of a leaf node is set to zero or some reasonable measure-
ment of the value of the corresponding bridge donor (see Section 3.6 for more discussion).
Notice that at this stage the iterative procedure presented in Section 3.4.1 could be similarly
applied, but with one modification that — if the chosen action (1, b) is viable, we regener-
ate a depth-k search tree rooted at G(b) and compute EVs associated with the nodes of this
new tree.

In exchange for the optimality that exists only in a rather idealized scenario, the policy
obtained according to a depth-k search tree provides a more practical evaluation of potential
bridge donors and a greatly reduced computational complexity. Further, our simulation
results (see Section 3.5) suggest that the allocation strategy derived from a search tree
performs reasonably well for a moderate depth of, say, 3 or 4. Notice that the depth-1
search tree constructed according to formula (3.2) provides the same analysis as the one
via a standard decision tree of depth 2n+ 1.

3.5 Simulation studies

So far in this chapter, we have explored a look-ahead search tree-based approach to manage
KPD programs with one altruistic donor. This approach sequentially extends a NEAD
chain by selecting one potential bridge donor at one time, taking into consideration the
operational uncertainties and the long-term consequences associated with various possible
selections. In this section, we provide simulation results of applying such an allocation
strategy to manage a simulated KPD program.

3.5.1 Simulating incompatible pairs and altruistic donors

We simulate incompatible pairs and altruistic donors as in Li et al. (2011). For an in-
compatible pair, we simulate its candidate and donor separately from their own population
distributions. Candidates are sampled at random (with replacement) from a database of
incompatible pairs, which is derived from the University of Michigan KPD program. This
database currently consists of 115 transplant candidates, each having at least one willing
but incompatible donor. We aim to incorporate additional databases from other KPD pro-
grams for the purpose of having a wider candidate variation. Donors, on the other hand,
are simulated by sampling their blood types and HLA haplotypes respectively. Blood type
is drawn from its U.S. population distribution: O, 44%; A, 42%; B, 10%; and AB, 4%
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(Stanford Blood Center, 2010). Then, donor’s HLA haplotypes are sampled according to a
population frequency table derived from a public database on potential bone marrow donors
(Maiers et al., 2007).

We consider a simulated donor-candidate pair as an incompatible pair and hence include
it in the KPD pool, if either their blood types mismatch or the donor’s HLA haplotypes
overlap with some of the candidate’s antibody specificities. Finally, an altruistic donor
is generated in the same way as we have described above for generating a donor in an
incompatible pair.

3.5.2 Simulation setup

In the KPD graph representation as in Section 3.2.1, each potential transplant (which is
predicted to be compatible by a virtual crossmatch test) is assigned a probability to reflect
the inherent uncertainty in the system and a general utility to quantify the rule-based or
outcome-based evaluation of that potential transplant. As we have mentioned, estimation
of these probabilities and utilities is an important aspect in the practical management of a
KPD program. This also forms an independent line of research in parallel with the work of
developing KPD allocation strategies. For illustrative purpose, our approach here is to ob-
tain these utilities and probabilities according to certain simplified probability distributions,
and then use them to study the method proposed in Section 3.4.2.

We perform a total of 3, 000 simulations. In all simulations, edge probabilities are
generated from a uniform distribution, U(0.1, 0.5), which suggests an average successful
rate of 30% for a predicted compatible (by virtual crossmatch test) transplant. This rate
is in line with our experience at the University of Michigan KPD program and the Al-
liance for Paired Donation. For edge utilities, we fix them at 1 for 1, 000 simulations, draw
them from uniform U(10, 20) and U(10, 30) respectively for the remaining 2, 000 simula-
tions (with 1, 000 each). For each simulation, we execute an allocation strategy based on
depth-k search tree for k equal to 1, 2, 3, 4, and 5 respectively. We then record impor-
tant performance measures such as cumulative claimed utilities and cumulative number of
transplants. Note that when k is equal to 1, the allocation strategy simply corresponds to
selecting, among all possible choices available for the altruistic donor, the one that has the
largest edge utility.

3.5.3 Simulation results

First, we report on the cumulative number of transplants achieved in simulated KPD pro-
grams with one altruistic donor and 100 incompatible donor-candidate pairs. We compare
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the average number of transplants across different values of k and under the three utility
generating distributions. Table 3.1 provides summary comparison, in which we observe a
consistent pattern where the number of transplants performed increases with k. This is true
regardless of which distribution is used to generate edge utilities.

ue = 1 ue ∼ U(10, 20) ue ∼ U(10, 30)
depth-k mean N mean N mean U∞ mean N mean U∞

k = 1 3.16 3.18 55.99 3.18 80.22
k = 2 8.17 6.65 112.21 6.19 149.58
k = 3 8.70 7.87 128.93 7.63 176.78
k = 4 8.74 8.26 133.54 7.99 181.92
k = 5 8.89 8.41 134.45 8.29 185.43

Table 3.1: Summary of the averaged number of transplants performed (denoted by N )
and the averaged cumulative utilities claimed (denoted by U∞), by implementing a depth-
k search tree-based allocation strategy on a simulated KPD program (with one altruistic
donor and 100 incompatible pairs). Edge utilities are generated from U(1, 1), U(10, 20),
and U(10, 30); and edge probabilities are generated from U(0.1, 0.5). The summary is
calculated over 3, 000 rounds of simulations, with 1, 000 simulations for each utility gener-
ating distribution.

Another observation is that the extra benefit in the number of transplants through in-
creasing k is diminishing as k gets large. For example, when edge utilities are generated
from U(10, 20), increasing the value of k from 1 to 4 would almost triple the total number
of transplants (on average from 3.18 to 8.26); however, further increasing k (from 4 to 5)
appears to have very limited effects.

In terms of comparing the cumulative claimed utility, Table 3.1 also demonstrates simi-
lar patterns to those observed above for comparing the number of transplants. These results
suggest that k = 3 or 4 would provide a satisfactory solution in practice. Further investiga-
tion, however, with data from more KPD programs could be useful. Notice that when edge
utilities are fixed at 1, the cumulative claimed utility is the same as the cumulative number
of transplants.

Finally, we take a look at the correlation matrix among five variables; each variable
represents the number of transplants performed when k is equal to each one of the five
values. We anticipate that the correlation between variable 4 (the number of transplants
achieved when k = 4) and variable 5 would be higher than the correlation between variable
1 and variable 5. Table 3.2 exactly unveils such a pattern in three correlation matrices (with
each one corresponding to one utility generating distribution). Similar observation is noted
as well in correlation matrices for the cumulative claimed utility.
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1 .34 .34 .33 .31
− 1 .67 .67 .66
− − 1 .79 .73
− − − 1 .81
− − − − 1

1 .27 .29 .26 .29
− 1 .50 .51 .48
− − 1 .66 .58
− − − 1 .72
− − − − 1

1 .29 .27 .29 .29
− 1 .46 .48 .48
− − 1 .58 .57
− − − 1 .72
− − − − 1

Table 3.2: Three correlation matrices for the total number of transplants performed in a
depth-k search tree-based allocation strategy across different values of k. The entry at
the ith row and the jth column represents the correlation between the total number of
transplants when k = i and that when k = j when managing the same simulated KPD
program (with one altruistic donor and 100 incompatible pairs). Matrix on the left: ue = 1;
matrix in the middle: ue ∼ U(10, 20); matrix on the right: ue ∼ U(10, 30).

3.6 Concluding remarks

In this chapter, we have studied the problem of managing a KPD program with one altruistic
donor. One important yet challenging part of this problem is to recognize various friction
(as discussed in Section 3.2.1) inherent in the system and to guide the decision-making
process accordingly by taking into account these uncertainties. Realizing the fact that a
long pre-specified NEAD chain in practice can almost never be implemented as planned,
we propose to initiate and extend such a chain in a sequential way by selecting potential
transplant recipients one at a time. Each selection is made keeping in mind the associated
long-term consequences so as to maximize the expected gain over a certain given number
of moves. In order to do this efficiently and practically, we construct a depth-k search tree
for a KPD graph using a DFS-based algorithm. We then evaluate various choices available
for each altruistic donor (or bridge donor) according to the calculation performed along
that search tree, and recommend the choice with the greatest evaluation.

In the process of extending a NEAD chain, the bridge donor at the end of the current
chain might be incompatible with a majority of the candidate population, which would
significantly prolong the waiting time for that bridge donor to be matched with a present or
future candidate. Furthermore, this hard-to-match bridge donor may also be more likely to
withdraw from the KPD pool and so terminate the NEAD chain. This is because in general
the longer the waiting time to match a bridge donor, the higher the probability that this
bridge donor may reconsider the original promise of making a donation. To partially avoid
this unfortunate circumstance, some KPD programs have not allowed a blood type AB
donor to become a bridge donor unless an immediate match is available. Actually, this issue
can be paretically addressed by our proposed sequential allocation strategy, because when
evaluating various choices available for an altruistic donor, our strategy, by incorporating
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the long-term consequences associated with each choice, would in general very unfavorably
assess the choice that could lead to a hard-to-match bridge donor. One way to further
address this issue, as we have briefly mentioned in Section 3.3 and Section 3.4.2, is to
assign each possible bridge donor a reasonable base utility. This base utility represents
the potential “contribution” from a bridge donor; naturally, a hard-to-match bridge donor
would be assigned a small base utility and an easy-to-match one would be given a large
value.

Although this chapter has focused on managing a KPD program with one altruistic
donor, the proposed approach can be generalized to incorporate multiple altruistic donors.
One way to achieve this is for each altruistic donor to construct a depth-k search tree and use
this tree to evaluate various allocations options available for that altruistic donor according
to the method in Section 3.4.2. Among all allocations possible for these altruistic donors,
we select a disjoint collection such that the overall expected utility can be maximized. More
specifically, let Va ≡ {1, 2, · · · ,m} be m altruistic donors in a general KPD program. We
denote by A ≡ ∪mi=1{(i, j) ∈ E} the possible allocations available for these m altruistic
donors. Each potential transplant, (i, j) ∈ A, can be evaluated by its expected utility,
which is calculated as u∗ij = uij + EV [G[i](j)], where G[i] ≡ G(i). We then select from
A a disjoint collection of edges (or transplants), in the sense that no two edges can share
a common vertex, so as to maximize the sum of expected utilities. For those selected
transplants, viable ones would result in actual operations and generate new bridge donors,
and altruistic donors and incompatible pairs involved in non-viable transplants are recycled
back to the KPD pool.

Notice that the above way of allocating multiple altruistic donors can be arranged in
parallel with the way of selecting exchange sets (or cycles) among incompatible pairs. Let
Sk the collection of all exchange sets of size up to k among (n − m) incompatible pairs.
For each S ∈ Sk, EUS represents its expected utility and YS is a decision variable equal to
1 if S is selected and 0 if not; for each (i, j) ∈ A, Zij is another decision variable whose
value is 1 if (i, j) is chosen for a transplant and 0 otherwise, and this potential transplant
(i, j) is evaluated by u∗ij . We then manage such a KPD program by solving the following
IP problem:

max
{YS},{Zij}

∑
S∈Sk

YSEUS +
∑

(i,j)∈A

Ziju
∗
ij

 , (3.5)

subject to
∑

S∈Sk(l)

YS +
∑

(i,j)∈A(l)

Zij ≤ 1,∀l ∈ V , (3.6)
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where, in (3.6), Sk(l) represents the exchange sets in Sk that contain l and A(l) similarly
denotes a subset of transplants in A that involve l.

The solution to this IP problem specifies in a systematic way which transplants to
choose for those m altruistic donors as well as how to arrange exchanges among the re-
maining (n − m) incompatible pairs. With regard to altruistic donors, we proceed by
selecting a set of transplants according to {(i, j) ∈ A : Zij = 1}. On the other hand, to
organize exchanges among incompatible pairs as determined by {S ∈ Sk : YS = 1}, we
arrange transplants according to the cycle within a chosen exchange set that has the largest
utility, and fall back to the next largest one (when possible) if the initial targeted cycle is not
viable. Therefore, this strategy of simultaneously allocating altruistic donors and selecting
exchange sets is particularly useful, at least in the practical sense, for the management of
large KPD programs with a moderate number of altruistic donors.

The mechanism of a NEAD chain allows the altruism from a single altruistic donor to
benefit a potentially large number of patients, but it does so exclusively for patients recruit-
ing a willing but incompatible living donor. This mechanism excludes patients without
a designated living donor and who are therefore placed on a deceased-donor waiting list.
Among those patients who would benefit from this NEAD chain, approximately 73% of
them are white; whereas those who would not benefit from this mechanism form a 52%

non-white population (Segev et al., 2008). On the other hand, not all altruistic (or bridge)
donors are well suited for initiating and extending chains among a pool of incompatible
pairs. For example, consider a KPD pool in which an altruistic donor may not be in a
good position (because of either incompatibility or poor utility) to be matched up with any
candidate. In this case, rather than placing this altruistic donor in a waiting “mode” for a
potentially long time, redirecting him/her to a deceased-donor waiting list, where a com-
patible patient with potentially good transplant outcomes might be identified rather easily,
appears a more suitable alternative.

To decide whether an altruistic donor is better off initiating a NEAD chain or donating
directly to someone on a deceased-donor waiting list, we suggest to evaluate an altruistic
donor by the utility expected to achieve if this donor is chosen to initiate a chain. To be
precise, we may first perform the calculation according to formula (3.4) as in Section 3.4.1
to evaluate the expected utility for each altruistic donor, i.e. {EV [G(i)] : i ∈ Va}. The
result from this evaluation could then be used to assess the suitability of assigning each
altruistic donor to a deceased-donor waiting list; a relatively high value of EV [G(i)] would
recommend reserving altruistic donor i for extending a NEAD chain while a comparatively
low value of EV [G(i)] would indicate a transplant to someone waiting for a deceased-
donor kidney. It is worth pointing out that different ways of assigning edge utilities and
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probabilities could be adopted in calculating {EV [G(i)] : i ∈ Va}. This would provide
extra benefit in allowing more control over what kidneys in general are distributed to a
deceased-donor waiting list. For example, if each edge is assigned an equal utility while
the edge probability remains representing the likelihood of that edge being viable, then
altruistic (or bridge) donors who are less compatible with candidates in the current KPD
pool would be more likely to be directed to a deceased-donor waiting list.
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CHAPTER 4

On Various Aspects of Managing KPD Programs

In this chapter, we examine in greater detail two important aspects in the management
of a KPD program — robust organ allocations and operational uncertainties. We then
propose a general mathematical framework based on Markov decision processes (MDPs)
to systematically formulate the problem of managing KPD programs in the presence of
altruistic donors. Finally, we conclude with some discussion and future directions of this
dissertation work.

4.1 Introduction

This chapter synthesizes and builds upon the work from previous chapters. One major aim
is to extend approaches introduced in earlier chapters to more general and practical situa-
tions. We first extend the idea of using exchange sets for planning organ allocations; the
outcome of this extension is a more robust allocation strategy derived from the concept
of strongly connected components (SCCs). We then study more carefully the operational
uncertainties inherent in the management of KPD programs. To better describe these s-
tochastic features, we propose to differentiate them as the uncertainty on the edges and
the uncertainty on the vertices. As a consequence, the independence assumption (among
edges) adopted in previous chapters can be relaxed, and accordingly the method of com-
puting expected utilities can be further generalized.

Another contribution of this chapter is in the development of a general mathematical
framework, which can be used to rigorously formulate the problem of managing KPD pro-
grams with altruistic donors. This framework is derived from theories of Markov decision
processes (MDPs). MDP-based approaches have been widely and successfully used in
many industrial and operational applications, but are underutilized in the field of medical
decision making (Alagoz et al., 2010). In this chapter, we present this MDP framework for
KPD programs with one altruistic donor, in which the goal is to specify a desired action
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for each state of the program such that the expected utility would be maximized. We then
generalize this framework to incorporate multiple altruistic donors. Finally, we conclude
with some discussion and potential future directions.

4.2 Strongly connected components

In Chapter 2, we have developed three allocation strategies for organizing organ exchanges
in a KPD program; two of them are cycle-based approaches — choosing disjoint exchange
cycles according to different criterion, and the third one, in contrast, is set-based, aim-
ing to select a collection of mutually exclusive exchange sets. The benefit of considering
exchange sets as opposed to cycles, as we have discussed earlier in this dissertation, lies
in that doing so would allow us to exploit potential fall-back options when the originally
planned allocation cannot be fully executed due to various uncertainties in a KPD program.

Actually, being able to provide such fall-back options can go beyond the idea of using
exchange sets to plan for organ allocations. An exchange set requires that there is a cycle
involving all elements of that set; this restriction is somewhat arbitrary and can be relaxed.
Consider, for example, Figure 4.1, which consists of three incompatible pairs and two two-
way cycles. According to our previous definitions, this structure is neither an exchange
set nor an exchange cycle; therefore, it would not be selected as part of a cycle-based
or set-based allocation. On the other hand, considering this structure while planning for
organ allocations does provide advantages: if all edges are viable, we could simply arrange
transplant operations according to one of the two cycles that has a larger utility; if certain
edges are not viable, we could still fall back to a back-up cycle provided that both edges of
that cycle are viable.

1

23

Figure 4.1: Three incompatible pairs forming two two-way cycles; this structure is an SCC
of size three, denoted as S = ({1, 2, 3}, {(1, 2), (2, 1), (1, 3), (3, 1)}).

For a KPD program G = (V , E), the above example leads us to define a strongly con-

nected component (SCC) as an induced subgraph (see the definition in Chapter 2) of G
such that within this subgraph every vertex is accessible from all other vertices. In this
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dissertation, a vertex j is said to be accessible from a vertex i if i = j or if there exists a set
of edges in E , denoted as {(ik, ik+1), k = 0, 1, · · · , n} such that i0 = i and in+1 = j. The
size of an SCC is simply the number of its vertices.

It is straightforward to notice that every exchange set is indeed an SCC, but not vice
versa. In fact, the only SCC of size three that is not an exchange set is the one in Figure 4.1.
The expected utility associated with an SCC could be calculated in a way similar to that for
evaluating exchange sets; for example, the SCC in Figure 4.1 has an expected utility of

p12p21p13p31 max {u12 + u21, u13 + u31}+

p12p21(1− p13p31)(u12 + u21) + p13p31(1− p12p21)(u13 + u31).

Clearly, this way of measuring an SCC takes into consideration various operational un-
certainties in a KPD program as well as possible contingent plans. We then define an
SCC-based allocation as a disjoint collection of SCCs of size up to k; and the correspond-
ing optimal allocation (i.e. the SCC-based allocation with the largest expected utility) can
be found by adopting an IP formulation that is similar to those used previously. In prac-
tice, we only consider SCCs of size, say three or four, due to similar logistical concerns as
discussed earlier in this dissertation.

In addition to planning organ exchanges by SCCs, the structure of an SCC could be
further explored to reduce the required computation in managing a KPD program. We have
observed in Chapter 2 that the computation associated with organizing kidney exchanges
is rather expensive when managing large KPD programs. As Table 2.1 in Chapter 2 has
suggested, the number of exchange sets increases exponentially with the size of a KPD
graph. Therefore, it would take a substantial amount of computing time to even enumerate
and store this huge number of exchange sets in a large program, not to mention that for-
mulating and solving the corresponding IP problem would require even more computing
power according to our experience from simulation studies.

This exponential growth rate, on the other hand, implies that managing two KPD pro-
grams of size n each would actually involve fewer computational resources than managing
one KPD program of size 2n. In other words, if a large KPD program can be divided into
several smaller “separated” pieces, we could first work on each piece individually and con-
currently and then combine together their results. This strategy would offer a significant
amount of computational benefit; and the main idea is to divide a large KPD graph into
several disjoint strongly connected regions. Below, we briefly describe this “divide-and-
conquer” strategy.

We call two vertices u and v of a directed graph G = (V , E) connected if u is accessible
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from v, and v is accessible from u. It is straightforward to check that this relation between
vertices is reflexive, symmetric, and transitive; and hence it is an equivalence relation on
V . Further, this equivalence relation partitions V into disjoint sets, the subgraph induced

by which are called strongly connected regions of the graph G. In Figure 4.2, there are four
strongly connected regions.

region 1

region 2
region 3

region 4

Figure 4.2: A KPD graph with four strongly connected regions.

In the management of KPD programs, the following two approaches actually produce
exactly the same set-based (or cycle-based or SCC-based) allocation: (i) enumerate all
exchange sets (or cycles or SCCs) of G with certain size restriction, and then formulate
and solve the corresponding IP problem; (ii) partition G into disjoint strongly connected
regions, and apply the former approach to each one of the regions. However, approach
(ii) would greatly reduce the required computation, as we have previously discussed, if in
practice, a large KPD program can indeed be divided into several smaller regions.

The number of strongly connected regions and the size of each region vary from one
KPD program to another. We should also notice that no gain in reduced computation can
be achieved if a large KPD graph itself is a strongly connected region, or the gain is rather
limited if there is a single region involving most of the pairs in the graph. In these cases,
an approximate approach may be employed, which is to first remove some edges from the
KPD graph according to certain criteria; for example, an edge will be removed if its as-
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sociated utility is less than certain value or its associate probability is smaller than some
number, or both. These threshold values should be determined in advance with expert guid-
ance from clinicians. We then partition the resulting graph into disjoint strongly connected
regions, and, for each region, adopt a set-based (or SCC-based) allocation with those re-
moved edges reinstalled. It is worth noting that the trade-off between such an approximate
(and ad hoc) strategy and reduced computation is not clear at this stage. Further examina-
tion with data from other KPD programs would certainly be useful to address these aspects.

4.3 Uncertainties in a KPD program

In Chapter 2, we have proposed allocation strategies to take into consideration various un-
certainties inherent in the management of a KPD program. One such uncertainty arises
when performing a confirmatory laboratory test on predicted compatible pairs, because the
result from this laboratory test might disprove what an earlier-performed computer test has
suggested. Uncertainty can also arise due to the fact that a candidate might develop new
antibodies against the allocated donor after the laboratory test but before the actual trans-
plant operation, or that a donor-candidate pair may not accept the proposed assignment. For
differentiation purpose, we call this type of uncertainty the uncertainty on the edges. The
other type of uncertainty could arise, for example, when a candidate or donor becomes ill
before a scheduled transplant can be carried forward or when a candidate dies or a donor is
(temporarily) not available due to scheduling conflict. These events would affect any organ
assignment involving that donor-candidate pair. We, therefore, call this type of uncertainty
the uncertainty on the vertices.

To explicitly recognize these stochastic features, we have associated with each edge (or
potential transplant) in a KPD graph, e ∈ E , a probability pe; this probability corresponds
to the chance that the edge e, if chosen, would actually result in a transplant operation
(i.e. the chance of edge e being viable). Then the probability that an exchange cycle C is
viable can be computed as

∏
e∈E(C) pe, assuming that edges in a cycle have an independence

relationship. Formally speaking, this assumption states that {Xe : e ∈ E(C)} forms an
independent collection of random variables, where Xe is a Bernoulli variable taking value
1 if e is viable, and 0 otherwise. In this section, we first argue that this independence
assumption is reasonable if the uncertainty on the vertices is negligible.
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4.3.1 Ignoring the uncertainty on the vertices

Consider, for example, a three-way exchange cycle, denoted as C1 = 〈i, j, k〉, in which
all six donors and candidates are guaranteed to be available for transplant operations in
the next scheduled match run. Put in other words, assume that no pair sickness, death, or
scheduling conflict is involved in the process of arranging transplants according to this
three-way cycle. In this example, where the uncertainty on the vertices is eliminated,
whether Xeij is equal to 1 or 0 will only be affected by characteristics of donor i and
candidate j. These characteristics determine whether the laboratory crossmatch test would
disprove the compatibility predicted by a computer crossmatch test or whether candidate
j would develop new antibodies against donor i after the laboratory test but before the ac-
tual transplant operation. Similarly, the value of Xejk is only affected by characteristics of
donor j and candidate k; and the value of Xeki is determined by characteristics of donor k
and candidate i. Therefore, in this setting, it is reasonable to assume that {Xeij , Xejk , Xeki}
forms an independent collection of Bernoulli variables.

In practice, the uncertainty on the edges mostly depends on the quality of a computer
crossmatch test. Thanks to recent advances in technologies of antibody identification, the
virtual computer test can serve as a good tool to predict the actual HLA compatibility
between donor and candidate. According to a recent study by Tambur et al. (2009), the
false-negative (i.e. the computer test predicts a non-reactive or negative result whereas the
laboratory test result is reactive or positive) rate could reach a level that is lower than 10%,
and the false-positive rate could be as low as 15%. It is worth mentioning that these rates
vary among transplant centers depending on what antibody identification method is used in
the computer test.

However, for KPD programs with a moderate level of uncertainty on the vertices, the
independence assumption is no longer valid. As a result, we need a more general way
to calculate the probability that an exchange cycle or an exchange set is viable. In what
follows, we discuss these aspects in detail.

4.3.2 Considering uncertainties on both the edges and the vertices

We first illustrate that the independence assumption would no longer hold when the un-
certainty on the vertices cannot be ignored. Consider again a three-way exchange cy-
cle, C1 = 〈i, j, k〉; and assume that the false-negative rate of a computer crossmatch
test is 20%. We also assume that with probability equal to 50% respectively, patient i
and patient j would become really sick and so unavailable for a transplant in the next
scheduled match run. Further, assume that with probability equal to 50%, pair k would
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be able to find a kidney or a compatible match elsewhere outside this particular KPD
program and so could also be unavailable. In this setup, where all numbers are cho-
sen for illustrative purpose, we can calculate the probability of edges eij being viable as
Pr(Xeij = 1) = 0.8 × 0.5 × 0.5 = 0.2. Clearly, this calculation relies on a reasonable as-
sumption that whether pair i will be ready for a transplant, whether pair j will be ready for
a transplant, and the outcome of a laboratory crossmatch test on eij are independent with
each other. Similarly, the probabilities of edges ejk and eki being viable can be calculated
as Pr(Xejk = 1) = Pr(Xeki = 1) = 0.8× 0.5× 0.5 = 0.2.

By assuming independence among Xeij , Xejk , and Xeki , we would calculate the prob-
ability of cycle C1 being viable as 0.23 = 0.8%. Notice, however, that these Bernoulli
variables are indeed dependent on one another, since knowing Xeij = 1 actually increases
Pr(Xejk = 1) from 0.2 to 0.4, i.e. Pr(Xejk = 1 | Xeij = 1) = 0.5 × 0.8 = 0.4; and
similarly Pr(Xeki = 1 | Xeij = 1) = 0.5 × 0.8 = 0.4. Therefore, we should compute the
probability that cycle C1 is viable as

Pr(Xeij = 1, Xejk = 1, Xeki = 1) = Pr(Xeij = 1)× Pr(Xejk = 1 | Xeij = 1)

× Pr(Xeki = 1 | Xeij = 1, Xejk = 1)

= (0.5× 0.5× 0.8)× (0.5× 0.8)× 0.8 = 6.4%,

which is much larger than 0.8%, the number calculated previously under the independence
assumption.

It is actually more natural to compute the above probability as

Pr(Xeij = 1, Xejk = 1, Xeki = 1) = Pr({Xeij = 1, Xejk = 1, Xeki = 1} ∩ A)

= Pr(A)× Pr(Xeij = 1, Xejk = 1, Xeki = 1 | A),

where A refers to the event “pairs i, j, and k are guaranteed ready for transplant operations
in the next scheduled match run”; notice that {Xeij = 1, Xejk = 1, Xeki = 1} is a subset of
A. It is clear from this interpretation that Pr(A) measures the uncertainty on the vertices,
and Pr(Xeij = 1, Xejk = 1, Xeki = 1 | A) quantifies the uncertainty on the edges. In the
above example, it is straightforward to see that Pr(A) = 0.53 and Pr(Xeij = 1, Xejk =

1, Xeki = 1 | A) = 0.83.

4.3.3 Computing expected utilities

In general, for pair i in a KPD program, G = (V , E), let qi denote the probability that pair
i will be ready for a transplant operation in the next scheduled match run, i.e. {qi | i ∈ V}
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quantifies the uncertainty on the vertices. For a potential transplant e = (i, j) ∈ E , we
redefine pe as the conditional probability of having a viable transplant given that pair i
and pair j are guaranteed available when this transplant is indeed operated. Therefore,
{pe | e ∈ E} measures the uncertainty on the edges.

An exchange cycle, C, is viable with probability equal to

P (C) :=
∏

i∈V(C)

qi ×
∏

e∈E(C)

pe,

according to this general independence assumption as discussed in Section 4.3.2. Then the
expected utility of cycle C can be calculated as EU(C) = P (C)U(C), where U(C) =∑

e∈E(C) ue represents the cycle utility. This way of calculating the expected utility of an
exchange cycle extends the method we have introduced in Chapter 2; and similarly the
maximum expected-utility cycle-based allocation introduced there could be easily general-
ized by adopting this new way of calculating EU(C).

Next, we see how this method can be extended to compute expected utility of an ex-
change set. Let S := (V(S), E(S)) be an exchange set of size |V(S)|. For a subset of V(S),
Ṽ ⊂ V(S), define

P (Ṽ) :=
∏
i∈Ṽ

qi ×
∏

i∈V(S)\Ṽ

(1− qi),

which is the probability that pairs in Ṽ will be ready for transplant operations in the next
match run while those in V(S)\ Ṽ will not be. Then consider the subgraph of S induced by
Ṽ , which we denote as S̃ := (Ṽ , Ẽ). This subgraph basically represents what the original
exchange set, S, would turn out to be if the uncertainty on the vertices can be determined
beforehand. The expected utility of this subgraph can be calculated by adopting a similar
formulation as introduced in Chapter 2. To be precise, for each Ẽ ′ ⊂ Ẽ in S̃ = (Ṽ , Ẽ),
define

P (Ẽ ′) :=
∏
e∈Ẽ ′

pe ×
∏

e∈Ẽ\Ẽ ′

(1− pe).

For S̃ ′ := (Ṽ , Ẽ ′), let U(Ẽ ′) :=
∑

C∈C∗(S̃′) U(C), where C∗(S̃ ′) indicates the maximum
utility cycle-based allocation on S̃ ′, and U(C) represents the utility of cycle C. Then, the
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expected utility of S̃ can be computed as

U(Ṽ ) =
∑
Ẽ ′⊂Ẽ

U(Ẽ ′)P (Ẽ ′).

Finally, it follows that the expected utility of the original exchange set, S, is

EU(S) =
∑
Ṽ⊂V

P (Ṽ )U(Ṽ ). (4.1)

We have generalized the method of computing expected utilities for exchange cycles
and sets; and this can be done in a very similar way to SCCs as well. For simplicity,
we provide below an illustrative example to demonstrate such an extension. Consider an
SCC of size 3 as in Figure 4.1, denoted by S1 = ({1, 2, 3}, {e12, e21, e13, e31}). In S1,
uncertainties on the vertices are characterized by q1 = q2 = q3 = 0.5, and uncertainties
on the edges are quantified by pe12 = pe21 = pe13 = pe31 = 0.8. Further, assume that
u12 = u21 = 10 and u13 = u31 = 15. According to formula (4.1), Table 4.1 illustrates the
way of computing expected utility associated with S1.

Ṽ P (Ṽ ) U(Ṽ )

{1, 2, 3} 0.53 30× 0.82 + 20× (1− 0.82)× 0.82

{1, 2} 0.53 20× 0.82

{1, 3} 0.53 30× 0.82

other subsets of {1, 2, 3} 0.53 0

Table 4.1: Illustration of computingEU(S1) for S1 = ({1, 2, 3}, {e12, e21, e13, e31}), where
q1 = q2 = q3 = 0.5, pe12 = pe21 = pe13 = pe31 = 0.8, and u12 = u21 = 10 and
u13 = u31 = 15.

4.4 MDP framework for KPD programs with one altruis-
tic donor

KPD programs with altruistic donors can be more generally analyzed using a Markov de-
cision process (MDP), which provides a rigorous mathematical framework to formulate
the problem. In this section, we present this MDP framework for KPD programs with
one altruistic donor. The full framework is involved, and we first start with an illustrative
example.
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4.4.1 An illustrative example

In Figure 4.3, the initial state is taken as the altruistic donor (denoted as vertex 1) and three
possible actions, namely “1 to 2”, “1 to 3”, and “1 to 4”. The task at this initial state is to
select one action from these three; assume that the action “1 to 2” is chosen. If this chosen
action leads to actual completed transplant, the resulting state is then a chain (from 1 to 2)
and three new associated actions, namely “2 to 5”, “2 to 6”, and “2 to 7”; if, however, the
action “1 to 2” fails to be implemented, the next state would then be defined as an altruistic
donor 1 and the other two actions, “1 to 3” and “1 to 4”. Thus, each state in the MDP is
specified by a set of completed transplants and a set of currently allowed actions. With the
state space so specified, we seek a policy (a mapping from the state space into the action
space) that specifies an action to be taken for each possible state. Our goal is to find the
optimal policy that gives the maximum expected utility.

1

42 3

75 6

Figure 4.3: An illustrative example with one altruistic donor and six incompatible pairs.

4.4.2 Notation

We adopt the notation introduced in Chapter 3, where a KPD program is represented as
a directed graph, G = (V , E). In this graph, V ≡ V(G) = {1, 2, · · · , n} consists of m
altruistic donors, denoted as Va ≡ Va(G) = {1, 2, · · · ,m}, and n−m incompatible pairs,
denoted as Vp ≡ Vp(G) = V \ Va; and E ≡ E(G) is a binary relation on V , indicating
predicted compatibilities among donors and candidates.

We consider a KPD program with one altruistic donor, i.e. Va = {1}. This naturally
implies that (i, 1) /∈ E , for all i ∈ V . For this KPD program, we define an altruistic donor-
initiated path (of length k, where k ≥ 1), as a sequence of distinct vertices in V , denoted
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by

h ≡ 〈h1, h2, · · · , hk〉,

such that h1 = 1 and (hj−1, hj) ∈ E , for j = 2, 3, · · · , k. Further, let

V(h) ≡ {h1, h2, · · · , hk}

and

E(h) ≡ {(hj−1, hj), j = 2, 3, · · · , k}.

Note that E(h) = ∅, if |V(h)| = 1.
Let H be the collection of all these altruistic donor-initiated paths in G, and for h =

〈h1, h2, · · · , hk〉 ∈ H , define

Eh ≡ {(hk, v) ∈ E : v ∈ V \ V(h)}.

To better explain these notations, we provide below an illustrative example. Consider
a small KPD graph G = (V , E), with Va = {1}, Vp = {2, 3}, and E = {e12, e13, e23, e32},
where, for notational convenience, eij represents (i, j). In this KPD graph, we notice that

H = {〈1〉, 〈1, 2〉, 〈1, 2, 3〉, 〈1, 3〉, 〈1, 3, 2〉},

and for h = 〈1〉, we have V(h) = {1}, E(h) = ∅, and Eh = {e12, e13}; for h = 〈1, 2〉, then
V(h) = {1, 2}, E(h) = {e12}, and Eh = {e23}.

4.4.3 MDP formulation

In this subsection, we propose a MDP framework for KPD programs with one altruistic
donor. The state space is defined by

S ≡ {(h, A) : h ∈ H,A ⊂ Eh}.

Further, we observe that S could be partitioned as

S = ∪h∈H{(h, A) : A ⊂ Eh} = ∪h∈HSh,

where Sh ≡ {(h, A) : A ⊂ Eh}.
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For the example mentioned in the last subsection, we have

S〈1〉 = {(〈1〉, {e12, e13}), (〈1〉, {e12}), (〈1〉, {e13}), (〈1〉, ∅)}.

We call (h, A) ∈ S an end state if A = ∅; and let

S∅ ≡ {(h, ∅) : h ∈ H}

be the set of all end states.
For a state s = (h, A) ∈ S \ S∅, where h = 〈h1, h2, · · · , hk〉, an action ekk′ ∈ A on

s would lead to the next state (i) s′ = (h′, Eh′), where h′ = 〈h1, · · · , hk, hk′〉, if ekk′ is
viable; or (ii) s′ = (h, A \ {ekk′}), if ekk′ is not viable. In this sense, the set A consists of
all allowed actions on s. For an end state s = (h, ∅), we define a special “action”, denoted
as ∅, which leads to the same state s as the next state. The action space is therefore denoted
as Ẽ ≡ ∪h∈HEh, which is a subset of (not necessarily equal to) E ∪ {∅}.

A policy on managing a KPD program (with one altruistic donor) can then be defined
as a mapping,

π : S → Ẽ ,

such that

π(s) ∈ A for s = (h, A) ∈ S \ S∅,

π(s) = ∅ for s ∈ S∅.

In general terms, π((h, A)) specifies what action from A to take for the state (h, A) in
S \ S∅; for s ∈ S∅, π(s) = ∅ represents the special action that would lead to the same s as
the next state. We denote the collection of all policies by Π.

Consider a stochastic process, or a discrete Markov chain in particular, on the state
space S, {Xn : n ≥ 0}, with initial state

X0 = s0 ≡ (〈1〉, E〈1〉).

Further, a given policy, π, specifies such a process by specifying its transition probabilities
as follows: (i): for a state s = (h, A) ∈ S \S∅, where h = 〈h1, h2, · · · , hk〉, if π(s) = ekk′ ,
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then for n ≥ 0,

Pr(Xn+1 = s′|Xn = s) = pkk′ , for s′ = (h′, Eh′), where h′ = 〈h1, · · · , hk, hk′〉;

Pr(Xn+1 = s′|Xn = s) = 1− pkk′ , for s′ = (h, A \ {ekk′}).

(ii): for a state s ∈ S∅,Pr(Xn+1 = s|Xn = s) = 1, for all π ∈ Π. We denote this process
as {Xπ

n : n ≥ 0} when it is necessary to emphasize its dependence on π.
In the previous example, where X0 = s0 = (〈1〉, {e12, e13}), if π(s0) = e12, then

Pr(X1 = s|X0 = s0) = p12, where s = (〈1, 2〉, {e23}), and Pr(X1 = s|X0 = s0) =

1 − p12, where s = (〈1〉, {e13}); if π′(s0) = e13, then Pr(X1 = s|X0 = s0) = p13, where
s = (〈1, 3〉, {e32}), and Pr(X1 = s|X0 = s0) = 1− p13 when s = (〈1〉, {e12}).

Let R(s) be the reward received at a state s = (h, ∅) ∈ S∅,

R(s) ≡
∑
e∈E(h)

ue.

Further, let Nπ be the first time the process (specified by π ∈ Π) is in S∅, i.e.

Nπ = min{n : Xπ
n ∈ S∅}.

The expected reward is then defined as

ERπ = E[R(Xπ
Nπ)].

Finally, the optimal policy, π∗, is the one among all policies that gives the largest ex-
pected reward, i.e.

π∗ = argmax
π∈Π

ERπ.

Solving for the optimal policy is simple for small KPD (or MDP) problems, but is com-
putationally difficult for large or even moderate ones, which makes it difficult to develop
practical algorithms based on this MDP framework. This is because the size of the state
space grows exponentially with the number of vertices in a KPD graph; see Section 4.6 for
more discussion on the utility of this MDP formulation.
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4.5 MDP framework for KPD programs with multiple al-
truistic donors

The MDP framework for a single altruistic donor can be extended to incorporate multiple
altruistic donors. This extension closely resembles the approach introduced in the previous
section.

We consider a general KPD program G = (V , E) with multiple altruistic donors. Let
Va ≡ Va(G) = {1, 2, · · · ,m} be the collection of m altruistic donors in V; and Vp ≡
Vp(G) = V \ Va represents the set of incompatible pairs. For example, Figure 4.4 lists a
KPD program with Va = {1, 2}, Vp = {3, 4} and E = {e13, e14, e24}.

1

43

2

Figure 4.4: A KPD program with two altruistic donors and two incompatible pairs.

As in Section 4.4, let Hi be the collection of all paths initiated by altruistic donor i,
where i = 1, 2, · · · ,m. Further, define

H ≡ {(h1,h2, · · · ,hm) ∈ H1 ×H2 × · · · ×Hm : V(hi) ∩ V(hj) = ∅,∀i 6= j}.

In Figure 4.4, we see that

H = {(〈1〉, 〈2〉), (〈1〉, 〈2, 4〉), (〈1, 3〉, 〈2〉), (〈1, 3〉, 〈2, 4〉), (〈1, 4〉, 〈2〉)}.

For h ∈ H , let

Eh = {(v, v′) ∈ ∪mi=1Ehi : v′ /∈ ∪mi=1V(hi)}.

In Figure 4.4, if h = (〈1〉, 〈2〉), then Eh = {e13, e14, e24}; if h = (〈1, 4〉, 〈2〉), then Eh = ∅.
The problem of managing KPD problems with multiple altruistic donors could then be

formulated as follows:
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The state space is defined as

S ≡ {(h, A) : h ∈ H,A ⊂ Eh}.

Further, S could be partitioned as

S = ∪h∈H{(h, A) : A ⊂ Eh} = ∪h∈HSh,

where Sh ≡ {(h, A) : A ⊂ Eh}. (h, A) is an end state if A = ∅; and let S∅ ≡ {(h, ∅) :

h ∈ H} be the set of all end states.
For a state s = (h, A) ∈ S\S∅, where h = (h1,h2, · · · ,hm), with h1 = 〈h11, · · · , h1k1〉,

h2 = 〈h21, · · · , h2k2〉, · · · , and hm = 〈hm1, · · · , hmkm〉, an action, ekjk′j ∈ A, on s

leads to the next state (i) s′ = (h′, Eh′ ∩ A), where h′ = (h1, · · · ,h′j, · · · ,hm) with
h′j = 〈hj1, · · · , hjkj , hjk′j〉, if ekjk′j is viable; or (ii) s′ = (h, A \ {ekjk′j}), if ekjk′j is not
viable. In this sense, the set A consists of all allowed actions. For a state s = (h, ∅), we
define a special “action”, denoted as ∅, which leads to the same s as the next state. The
action space is therefore denoted as Ẽ ≡ ∪h∈HEh, which is a subset of (not necessarily
equal to) E ∪ {∅}.

A policy on managing a KPD program (with multiple altruistic donors) can then be
defined as a mapping,

π : S → Ẽ ,

such that

π(s) ∈ A for s = (h, A) ∈ S \ S∅,

π(s) = ∅ for s ∈ S∅.

In general terms, π((h, A)) specifies what action from A to take for a state (h, A) ∈ S \S∅.
For s ∈ S∅, π(s) = ∅ is the special action mentioned earlier that leads to the same s as the
next state. The collection of all policies is denoted by Π.

Consider a stochastic process, or a discrete Markov chain in particular, on the state
space S, {Xn : n ≥ 0}, with initial state

X0 = s0 ≡ (h, Eh),

where h = (〈1〉, 〈2〉, · · · , 〈m〉). Further, a given policy, π, specifies such a process by
specifying its transition probabilities as follows: (i): for a state s = (h, A) ∈ S \S∅, where
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h = (h1,h2, · · · ,hm), with h1 = 〈h11, · · · , h1k1〉, h2 = 〈h21, · · · , h2k2〉, · · · , and hm =

〈hm1, · · · , hmkm〉, if π(s) = ekjk′j , then for n ≥ 0, Pr(Xn+1 = s′|Xn = s) = pkjk′j , for
s′ = (h′, Eh′ ∩ A), where h′ = (h1, · · · ,h′j, · · · ,hm) with h′j = 〈hj1, hj2, · · · , hjkj , hjk′j〉;
Pr(Xn+1 = s′|Xn = s) = 1 − pkjk′j , for s′ = (h, A \ {ekjk′j}). (ii): for a state s ∈
S∅,Pr(Xn+1 = s|Xn = s) = 1, for allπ ∈ Π. We represent this process as {Xπ

n : n ≥ 0}
when it is necessary to emphasize its dependence on π.

Let R(s) be the reward received at a state s = (h, ∅) ∈ S∅,

R(s) =
m∑
i=1

∑
e∈E(hi)

ue.

Further, let Nπ be the first time the process (specified by π ∈ Π) is in S∅, i.e.

Nπ = min{n : Xπ
n ∈ S∅}.

The expected reward is then defined as

ERπ = E[R(Xπ
Nπ)].

Finally, the optimal policy π∗ is the one among all possible policies that gives the max-
imal expected reward, i.e.

π∗ = argmax
π∈Π

ERπ.

We have defined above a particular class of policies that share one common feature:
each policy assigns one transplant at one time for only one altruistic donor though multiple
altruistic donors are actually available in a KPD program. A natural generalization to
consider is a collection of policies that would allow more than one transplant to be planned
simultaneously; each transplant involves one altruistic donor. Below, we rigorously define
these generalized policies and examine their associated properties. We then demonstrate
the relationship between this new class of policies and the old class.

Consider another collection of policies on managing a KPD program, which is defined
via

γ : S → 2Ẽ ,
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such that

γ(s) ∈ 2A \ ∅ for s = (h, A) ∈ S \ S∅,

γ(s) = ∅ for s ∈ S∅.

Notice that we require edges in γ(s) are “disjoint” for s ∈ S.
In general terms, γ((h, A)) specifies what disjoint edges from A to select for (h, A) ∈

S \ S∅. For s ∈ S∅, γ(s) = ∅ is the special action that leads to the same s as the next state.
The collection of all such policies is denoted by Γ.

Consider a stochastic process, or a discrete Markov chain in particular, on the state
space S, {Yn : n ≥ 0}, with

Y0 = s0 ≡ (h, Eh),

where h = (〈1〉, 〈2〉, · · · , 〈m〉).
Further, such a process is specified by γ ∈ Γ as follows: (i): for a state s = (h, A) ∈ S\

S∅, where h = (h1,h2, · · · ,hm), with h1 = 〈h11, h12, · · · , h1k1〉, h2 = 〈h21, h22, · · · , h2k2〉,
· · · , and hm = 〈hm1, hm2, · · · , hmkm〉, w.l.o.g., let γ(s) = {ekjk′j : j = 1, 2, · · · , J} ⊂ A.
Consider

H ′ ≡ {(h′1, · · · ,h′J ,hJ+1, · · · ,hm) :

h′j = hj or 〈hj1, hj2, · · · , hjkj , hjk′j〉, j = 1, 2, · · · , J},

and for h′ ∈ H ′, let

δjh′ ≡ 1[h′j 6=hj ], j = 1, 2, · · · , J,

Ah′ ≡ Eh′ ∩ A \ {ekjk′j : δjh′ = 0}.

It follows that the set of all possible next states is

S ′ ≡ {(h′, Ah′) : h′ ∈ H ′},

and

Pr(Yn+1 = (h′, Ah′)|Yn = s) =
J∏
i=1

(pkjk′j)
δj
h′ (1− pkjk′j)

1−δj
h′ ,

for (h′, Ah′) ∈ S ′.
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(ii): for a state s ∈ S∅,Pr(Yn+1 = s|Yn = s) = 1,∀γ ∈ Γ.
We represent this process as {Y γ

n : n ≥ 0} when it is necessary to emphasize its
dependence on γ.

Then the following result holds: for any γ ∈ Γ, there always exists at least one π ∈ Π,
such that

Y γ
0 = Xπ

0 = s0 and

Y γ
1 = Xπ

k a.s. for some k ≤ m (actually point-wise) .

Basically, this result informs us that in theory it is enough to only consider policies in
Π. To be precise, we have: for any γ ∈ Γ, there always exists at least one π ∈ Π, such that

Y γ
Nγ = Xπ

Nπ a.s.(actually point-wise) .

Solving for the optimal policy in this case is even more complicated than that in the sin-
gle altruistic donor case. This issue poses a substantial challenge for obtaining the optimal
policy within a reasonable amount of computing time for KPD programs even of moder-
ate size, similar to the issue mentioned at the end of Section 4.4. However, near-optimal
policies may be obtained to approximately solve this large MDP problem. We will briefly
discuss this aspect in Section 4.6.

4.6 Discussion and future directions

In this Chapter, we have proposed an SCC-based approach to arrange organ exchanges
among incompatible pairs. This approach builds upon previously introduced set-based and
cycle-based allocation strategies — it allows for both a general utility-based evaluation of
potential transplants and an explicit incorporation of various operational uncertainties. This
SCC-based approach also extends previous approaches — it takes into consideration further
additional fall-back options while planning for organ exchanges and hence provides a more
robust allocation strategy. This robustness is a desired property in the management of a
KPD program because in practice utilities related to medical outcomes usually decrease
over time; it is in general better for a transplant to be performed sooner than later.

It is anticipated that the benefit of considering SCCs of size up to three in the planning of
organ exchanges would be relatively limited as compared with that of considering exchange
sets of size up to three. This is because, as we have mentioned in Section 4.2, there is
only one additional SCC structure that is not an exchange set when restricting attention to
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exchanges among three incompatible pairs. However, if we count SCCs of size four that are
not exchange sets, many more structures would arise; for example, Figure 4.5 shows two of
them. This observation would imply that a greater amount of gain could be expected when
considering SCCs of size up to four in kidney exchanges. To further explore this SCC-
based allocation strategy, simulation studies similar to the ones done in Chapter 2 could
be conducted. Notice that it makes practical sense in these simulation studies to somehow
take into account that a transplant is better to be performed sooner than later.

1 4

3

2
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Figure 4.5: Two of the many SCCs of size four that are not exchange sets

In this chapter, we have also proposed to differentiate the operational uncertainties in
a KPD program as the ones on the edges and the ones on the vertices. In addition, we
have relaxed the independence assumption adopted in previous chapters, and generalized
the way of computing expected utilities. In practice, in order to accurately estimate {qi |
i ∈ V(G)}, {pe | e ∈ E(G)} and {ue | e ∈ E(G)}, appropriate statistical models with
relevant clinical data from donors and candidates are needed. The development of these
models, however, is not the focus of this dissertation. On the other hand, it is worth noting
that incorporating these uncertainties on the vertices and edges, even in a rudimentary way,
should be encouraged in the management of a KPD program; we would expect a substantial
amount of gain by properly assigning even a single average number to {qi | i ∈ V(G)} and
{pe | e ∈ E(G)} respectively.

We have also built a general MDP framework to rigorously formulate the problem of
managing KPD programs with altruistic donors. This MDP formulation was first developed
for KPD programs with a single altruistic donor and then generalized to allow multiple
altruistic donors. As we have mentioned at the end of Section 4.4 and 4.5, it requires an
enormous amount of computational resources to acquire the optimal policy for large KPD
programs. This computational challenge poses a serious impediment to the development
of practical algorithms based on the MDP framework. In this sense, to manage large KPD
programs, we would still recommend the allocation method derived from a depth-k search
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tree (See Chapter 3). The purpose of this MDP formulation, however, is to consider, from a
different perspective, the problem of optimally forming an altruistic donor-initiated chain,
and create the link between this optimization problem and the MDP framework. Notice
that near-optimal policies can be obtained in the broader context of solving general MDP
problems with very large number of states (Kearns et al., 2002; Chang et al., 2005). This
line of research is a rich territory, and may shed light on some future development of our
work. This direction will not be further explored in this dissertation.

In accessing the management of KPD programs, one criterion is the total number of
transplants achieved. This number itself, however, does not reveal the whole picture. For
example, suppose that executing match runs once per two months would result in, on aver-
age, 20 transplants for each match run, while executing match runs more frequently, at the
rate of once per month, could generate about 10 transplants for each run. In this case, both
strategies would produce about 60 transplants during the first half year and hence performs
equally well according to this criterion. On the other hand, the second strategy of monthly
executing match runs shortens the patient’s waiting time as compared with the first strate-
gy. Different from utilities associated with potential transplants, which could be outcome
based in some centers while rule based in other centers, time to transplant has a natural
interpretation and itself is certainly of great interest to both patients and transplant centers.

The investigation of time to transplant therefore provides, from another perspective,
the necessity of exploring various other aspects associated with the management of a KPD
program, such as how the waiting time is affected by allocation strategies, the percentage
of current panel reactive antibody (PRA) values, donor and candidate blood types, and so
on. It is also important to understand how the frequency of executing match runs would
affect outcomes such as time to transplant. Further, in KPD programs with altruistic donors,
their arrival rate certainly would affect time to transplant for those incompatible pairs in the
pool; this could be examined in detail via simulation studies by varying the altruistic donor
arrival rate and then comparing various outcomes.

Another important issue to consider lies in that some pairs tend to wait in a KPD pool
for a relatively long time due to their rare blood types and specific HLA antibodies. One
way to address this issue is to increase their corresponding edge utilities proportionally
with their waiting time; for instance, the edge utility may get a 20% increase after each
match run. Effectiveness of this strategy could then be accessed via simulation studies.
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Roth, A. E., Sönmez, T., Ünver, M. U., Delmonico, F. L., and Saidman, S. L. (2006). U-
tilizing list exchange and nondirected donation through ‘chain’ paired kidney donations.
American Journal of Transplantation, 6(11):2694–2705.

Russell, J. D., Beecroft, M. L., Ludwin, D., and Churchill, D. N. (1992). The quality of life
in renal transplantation-a prospective study. Transplantation, 54(4):656–660.

62



Schaubel, D. E., Wolfe, R. A., and Port, F. K. (2006). A sequential stratification method
for estimating the effect of a time-dependent experimental treatment in observational
studies. Biometrics, 62(3):910–917.

Schaubel, D. E., Wolfe, R. A., Sima, C. S., and Merion, R. M. (2009). Estimating the
effect of a time-dependent treatment by levels of an internal time-dependent covariate:
Application to the contrast between liver wait-list and posttransplant mortality. Journal
of the American Statistical Association, 104(485):49–59.

Segev, D. L., Gentry, S. E., Warren, D. S., Reel, B., and Montgomery, R. A. (2005). Kidney
paired donation and optimizing the use of live donor organs. Journal of the American
Medical Association, 293(15):1883–1890.

Segev, D. L., Kucirka, L. M., Gentry, S. E., and Montgomery, R. A. (2008). Utilization and
outcomes of kidney paired donation in the united states. Transplantation, 86(4):502–510.

Shapley, L. and Scarf, H. (1974). On cores and indivisibility. Journal of Mathematical
Economics, 1(1):23–37.

Tambur, A., Ramon, D., Kaufman, D., Friedewald, J., Luo, X., Ho, B., Skaro, A., Caicedo,
J., Ladner, D., Baker, T., Fryer, J., Gallon, L., Miller, J., Abecassis, M., and Leventhal,
J. (2009). Perception versus reality?: Virtual crossmatch–how to overcome some of
the technical and logistic limitations. American Journal of Transplantation, 9(8):1886–
1893.

Terasaki, P. I., Cecka, J. M., Gjertson, D. W., and Takemoto, S. (1995). High survival rates
of kidney-transplants from spousal and living unrelated donors. New England Journal
of Medicine, 333(6):333–336.

Wolfe, R. A., Ashby, V. B., Milford, E. L., Ojo, A. O., Ettenger, R. E., Agodoa, L. Y. C.,
Held, P. J., and Port, F. K. (1999). Comparison of mortality in all patients on dialysis,
patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant.
New England Journal of Medicine, 341(23):1725–1730.

Wolfe, R. A., McCullough, K. P., Schaubel, D. E., Kalbfleisch, J. D., Murray, S., Stegall,
M. D., and Leichtman, A. B. (2008). Calculating life years from transplant (lyft): Meth-
ods for kidney and kidney-pancreas candidates. American Journal of Transplantation,
8(4p2):997–1011.

63


	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Kidney Paired Donation (KPD) Programs with Incompatible Pairs
	Introduction
	Problem formulation and the maximum utility cycle-based allocation
	Graph representation
	Cycle formulation
	Edge formulation
	The maximum utility cycle-based allocation

	Optimal kidney allocation in a KPD program
	Utilities and uncertainties in a KPD program
	The maximum expected-utility cycle-based allocation
	Contingency plans
	The maximum expected-utility set-based allocation
	Estimation of utilities and probabilities
	A KPD match run and an evolving KPD program

	KPD simulation system
	Generating incompatible pairs
	Simulating a match run and an evolving KPD program

	Simulation results
	Problem complexity
	Simulation setup
	Results

	Concluding remarks

	Decision Making in KPD Programs with Additional Altruistic Donors
	Introduction
	Problem formulation
	Graph representation
	The optimal policy

	Standard decision tree analysis
	A look-ahead search tree-based strategy
	Identifying the optimal policy via a search tree
	A depth-k search tree

	Simulation studies
	Simulating incompatible pairs and altruistic donors
	Simulation setup
	Simulation results

	Concluding remarks

	On Various Aspects of Managing KPD Programs
	Introduction
	Strongly connected components
	Uncertainties in a KPD program
	Ignoring the uncertainty on the vertices
	Considering uncertainties on both the edges and the vertices
	Computing expected utilities

	MDP framework for KPD programs with one altruistic donor
	An illustrative example
	Notation
	MDP formulation

	MDP framework for KPD programs with multiple altruistic donors
	Discussion and future directions

	Bibliography

