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ABSTRACT

Metabolic Network Reconstruction and Modeling of Microbial Communities

by

Yu Chen

Chair: Xiaoxia Nina Lin

In nature, most microorganisms live in synergistic communities performing

important biological functions and ecological roles, such as polysaccharide

utilization in the gastrointestinal tract of mammalian hosts. In the past decade,

metagenomics has advanced rapidly, providing detailed information of population

structures and genetic sequences for microbial communities. In this dissertation, my

goal is to develop community-wide metabolic network models to understand the

cellular metabolic properties and inter-species relationships in microbial

communities.

Metabolic network reconstruction at the (meta)genome scale requires

tremendous efforts and time. To address this challenge, we started by developing a

bioinformatic pipeline for automated reconstruction of high-quality genome-scale

metabolic networks using annotated genomes. It was tested with model bacterium

Escherichia coli. The results agreed well with a benchmark network manually

curated for over a decade. Furthermore, we applied the pipeline to twelve strains of

the most abundant cyanobacterium on earth, Prochlorococcus marinus, and defined

xv



pan and core metabolic networks of the species, demonstrating the utility of the

tool.

Next, we extended our bioinformatic pipeline to community-wide metabolic

network reconstruction and investigated two types of microbial communities. First,

we studied the metagenomes of acid mine drainage biofilms, which cause water

pollution in many mining areas. Both individual metabolic networks and

community-wide metabolic networks were reconstructed to study the metabolism

and inter-species interactions related to biofilm formation. Several essential

interactions were predicted. For example, Leptospirillun Gp III was predicted to fix

nitrogen for the whole community, which was supported by experimental data.

Second, we examined two synthetic gut microbiomes to explore their metabolic

capabilities and microbe-microbe-host interactions. For each system, we

reconstructed community-wide metabolic networks considering all the species using

annotated genomes and transcriptomes through a three-step curation process. With

these metabolic networks, we could explain mechanistically metabolic phenotypes

and predict inter-species interactions. For instance, for a ten-species microbiome, a

number of molecules, including urea, citrate and agmatine, were revealed to be

cross-fed.

This dissertation demonstrates that metagenome-scale metabolic network

reconstruction and analysis is a promising tool for studying intracellular metabolism

and inter-species interactions of microbial communities, which can advance

fundamental understanding and provide valuable hypothesis for experimental

testing.
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CHAPTER I

Introduction

1.1 Genome-scale Metabolic Network Reconstruction

1.1.1 In silico Reconstructed Metabolic Networks and Their

Applications

Biochemists and biologists have long been occupied by the view of metabolic

pathways, which provides researchers an intuitive perspective of cellular

metabolisms. In the past decade, the emergence of genomic data has enabled a

different approach, metabolic network modeling, for the study of cellular

metabolism at a larger genome or even meta-genome scale. Rather than examining

individual pathways, genome-scale metabolic network modeling considers cellular

metabolism as a whole, which means metabolic reactions are no longer classified by

defined pathways. Genome-wide metabolic networks can provide a more

comprehensive representation of not only individual metabolic reactions in the

organism but also their connections and interactions. In 1999, Edwards and Palsson

developed the first genome-scale metabolic network for bacterium Haemophilus

influenzae, the first free-living organism to have its whole genome sequenced

(Edwards and Palsson, 1999) . In the years that followed, the number of

genome-scale metabolic network reconstructions has increased quickly. To date,
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genome-scale metabolic networks have been manually reconstructed for 56

organisms (http://gcrg.ucsd.edu/InSilicoOrganism/OtherOrganisms, retrieved

on July 27, 2012) These metabolic networks have greatly advanced system-level

knowledge of cellular metabolism and have led to useful models and predictions that

can be used to guide experimental studies, e.g. design of mutation strains for

fermentation products (Burgard et al., 2003) and prediction of metabolic fluxes in

isotopic labeling experiments (Wiechert , 2001).

Metabolic reactions link metabolites together to form a metabolic network

(Palsson, 2006). Therefore, a genome-scale metabolic network represents

comprehensive metabolic mechanisms in the cell at the molecular level, together

with the associated components, including enzymes, substrates, and products.

Figure 1.1 illustrates the genome-scale metabolic network of Escherichia coli. As

shown in the figure, metabolites are represented by nodes and they are connected by

metabolic reactions. The arrows indicate directions and reversibility of the

metabolic reactions. If enzymes are involved, the corresponding metabolic reactions

are labeled by the EC numbers or enzyme names in the figure. Reaction

stochiometry together with reaction directions determine the primary topological

properties of the metabolic network. The stochiometry of a metabolic reaction is

usually invariant between organisms. In addition, this property should not change

with conditions, including pressure, temperature and pH. There are only a few

exceptions, including the variable proton efficiency in oxidative phosphorylation

caused by proton leakage (Chance and Williams , 1955; Divakaruni and Brand ,

2011). Special attention should be given to these reactions when they are included

in metabolic networks.

A genome-scale metabolic network is an integration of several levels of

knowledge about cellular metabolism, and has proven to be an effective tool for

studying metabolic properties of organisms. Flux Balance Analysis (FBA) is one of
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Figure 1.1: Overview of the genome-scale metabolic network of Escherichia coli.
Adapted from Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Nodes
represent metabolites and edges represent metabolic reactions. Cofactors and some
small molecules such as water are omitted for simplicity.

the tool that is commonly applied to genome-scale metabolic network, especially for

bacteria. In 2001, Edwards et al. applied FBA to the first genome-scale metabolic
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network reconstruction of Escherichia coli and accurately predicted the growth rate

under different conditions (Figure 1.2). In 2004, Almaas et al. used the

genome-scale metabolic network of Escherichia coli and the FBA model to study

the organization of global metabolic fluxes by predicting the flux distributions

(Almaas et al., 2004). FBA model have also been applied to predict the lethality

(Ghim et al., 2005) and robustness of Escherichia coli (Edwards and Palsson,

2000b). Besides Escherichia coli, FBA have been applied to other bacteria after

their genome-scale metabolic networks were reconstructed, such as Helicobacter

pylori (Schilling et al., 2002), Bacillus subtilis (Oh et al., 2007), and Pseudomonas

putida (Pucha lka et al., 2008).

Figure 1.2: Growth of Escherichia coli K-12 on malate (Ibarra et al., 2002). a. The
line of optimality (LO, in red) predicted by FBA for Escherichia coli under malate-
oxygen condition. Open circles are data points collected in separate experiments. b.
Three-dimensional representation of growth rates. The x and y axes represent the
same variables as in a. The z axis represents the cellular growth rate (h−1). OUR,
oxygen uptake rate; MUR, malate uptake rate.

FBA has been applied to eukaryotic microorganisms and even multicellular

organisms. The metabolic network of Saccharomyces cerevisiae has been

reconstructed and revised several times. Different from metabolic networks of

bacteria, multiple compartments were considered, including cytosol, mitochondria,

extracellular peroxisome, nucleus, golgi apparatus, endoplasmic reticulum and

vacuole (Duarte et al., 2004). All the metabolites and metabolic reactions were

assigned to one of the eight compartments. Exchange reactions were included to
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enable the transport of metabolites across compartments. Based on these metabolic

networks, FBA model were applied to predict the metabolic capabilities (Förster

et al., 2003) and in silico gene deletion analysis (Duarte et al., 2004). Metabolic

network of part of multicellular organisms has been reconstructed and studied. For

example, metabolic network of Homo sapiens mitochondria were reconstructed and

analyzed FBA framework to predict the candidate metabolic network states in

human mitochondria under the impacts of diabetes, ischemia, and diet (Thiele

et al., 2005). The complete metabolic network of the Homo sapiens has already

been reconstructed and revised (Duarte et al., 2007; Hao et al., 2012). Similar to

Saccharomyces cerevisiae, eight compartments (vacuole was replaced by lysosome)

were identified in the metabolic network of Homo sapiens. This metabolic network

has been used to analyze high-throughput biological data sets, e.g. gene expression

data. By integrating tissue-specific gene and protein expression data, Shlomi et al.

predicted human tissue-specific metabolic behaviors under FBA framework.

Tissue-specific uptake and secretion of metabolites can be predicted based on this

metabolic network (Shlomi et al., 2008).

Utilizing reconstructed genome-scale metabolic networks, Flux Balance Analysis

(FBA) type of models can successfully predict cellular behaviors under various

conditions. However, the accuracy of FBA models can be greatly improved by

considering regulatory information. In 2004, Covert et al. analyzed metabolic

network of Escherichia coli together with the regulatory network (rFBA) and made

accurate predictions of growth phenotypes of this bacterium (Covert et al., 2004).

In the rFBA framework, the regulatory network was converted into Boolen

equations which were used to determine the metabolic-regulatory steady state

(MRS). Similarly, Christian Barrett et al., used metabolic network reconstruction

with regulatory network of Escherichia coli to determine the different states of

metabolism under different environmental conditions (Barrett et al., 2005). Along
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the same direction, Shlomi et al. developed steady state regulatory FBA (SR-FBA)

(Shlomi et al., 2007). In the SR-FBA framework, the Boolen equations in the rFBA

model were converted into linear equations and embeded into the FBA model.

SR-FBA is used to predict the activity of reactions that are directly or indirectly

controlled by the transcriptional factor. Different from the regulatory flux balance

analysis (rFBA and SR-FBA), integrated flux balance analysis (iFBA) applies

ordinary differential equations (ODEs) to represent signal pathways and integrate

these ODEs into the constraints of FBA (Covert et al., 2008). Another approach

researchers have developed to model metabolic network with cellular regulation is

probabilistic regulation of metabolism (PROM) (Chandrasekaran and Price, 2010).

In this method, gene expression data collected from various conditions are used to

predict the effects of cellular regulation. With the curation of gene expression data,

PROM model can accurately predict the growth phenotypes of mutated Escherichia

coli under different growth conditions.

Based on the FBA approach, several other methods have been developed to

utilize genome-scale metabolic networks. For example, the Minimization of

Metabolic Adjustment (MOMA) method (Segrè et al., 2002) was developed to

predict metabolic fluxes after certain gene knockouts. Similar to FBA method,

MOMA is also a constraint-based model, which assumes the metabolic states of

mutated organisms are closed to the wild-type strains under the same condition.

Therefore, in MOMA model, the target organisms are no longer assumed to fully

adapted to maximize the growth, which is assumed in FBA model. In a lot cases,

the mutated strains have not been evolved enough, so the MOMA model can

provide better prediction than FBA. Dynamic FBA (dFBA) is another

constraint-based model that can predict cell growth qualitatively (Mahadevan et al.,

2002). In the dFBA framework, FBA model is applied to predict the quasi steady

growth rates in small time periods, which provide the change of both cell density
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and concentrations of nutrients and products. Flux variability analysis (FVA) is

another method derived from FBA method. The FVA method have been applied to

genome-scale metabolic networks of Escherichia coli to determine the variability of

fluxes for the identification of reactions that are relatively important (Reed and

Palsson, 2004). Flux Coupling Finder (FCF) framework has been developed to

study the topological and flux connectivity features of genome-scale metabolic

networks by classifying flux coupling that is indicated by predicted flux values

(Burgard et al., 2004).

There are certain applications of genome-scale metabolic networks that are not

based on FBA methods. A method of singular value decomposition (SVD) of extreme

pathways have been developed and applied to studied the regulation of a human

red blood cell metabolism (Price et al., 2003). Handorf et al. applied a method

of network expansion to predict all possible metabolites that can be produced from

defined compounds according to the structure of a metabolic network. Similar method

have been utilized to predict possible environmental conditions of a organism based

on its metabolic networks (Handorf et al., 2008). Csaba Pal et al. examine the

evolution of minimal metabolic networks by predicting contingency-dependent loss of

alternative pathways of Escherichia coli using in silico metabolic reconstructions (Pál

et al., 2006). Wunderlich and Mirny utilized structure (topology) of genome-scale

metabolic network of Escherichia coli to predict the viability of the mutant strains.

By directly examining the co-occurrence of metabolites in metabolic networks, Becker

et al. was able to prdict the metabolic relationships between metabolites. Very

similarly, conservation relations between metabolites were predicted based on genome-

scale metabolic networks Escherichia coli and applied to predict the novel growth

media (Imielinski et al., 2006).
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1.1.2 Metabolic Network Reconstruction Methods

Before the genomic era, metabolic network reconstruction was mainly achieved

manually and also required expertise on the knowledge of cellular metabolism for

the specific organisms. Without genome-scale gene annotations, researchers tried to

reconstruct the whole-cell-scale metabolic network of several organisms just based

on primary literature and biochemical characterizations of identified enzymes. The

earliest metabolic network reconstructions, including Clostridium acetobutylicum

(Papoutsakis , 1984), Bacillus subtilis (Papoutsakis and Meyer , 1985a) and

Escherichia coli (Papoutsakis and Meyer , 1985b; Majewski and Domach, 1990;

Varma et al., 1993b,a), all belong to this category. For some model organisms that

are studied in this way, their metabolic reconstructions have been created and

revised for a considerable period of time. One example is the genome-scale

metabolic network of Escherichia coli, which was created and refined several times

in the past ten years (Edwards and Palsson, 2000a; Almaas et al., 2004; Feist et al.,

2007; Orth et al., 2011). These manually reconstructed metabolic networks provide

valuable datasets about cellular metabolism, such as collections of metabolic

reactions that are being used when reconstructing metabolic networks for other

organisms (Henry et al., 2010). Beyond the metabolic reaction sets, researchers also

accumulated experiences in reconstructing metabolic networks and summarized

them into standard procedures (Thiele and Palsson, 2010).

After great amounts of annotated genome sequences became available, the

reconstruction process mainly relies on these genomic data. Despite some recent

developments, the reconstruction process is still labor intensive and time consuming.

In a suggested protocol, there are 98 steps involved to reconstruct a high-quality

metabolic network for the genome data (Figure 1.3), which might cost years for a

well studied, medium sized bacterial genome (Thiele and Palsson, 2010). The

situations will become even worse if the organism is not well studied and even not
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cultivable, for which only limited experimental data are available. Another

limitation that constrains the application of manual reconstruction is the

inconsistency between different databases and datasets. A important task in the

manual reconstruction process is reconciliation of model predictions with

experimental data. The inconsistency between different databases and datasets

collected manually makes this task much more difficult.

Figure 1.3: The procedure to iteratively reconstruct metabolic networks as described
in the protocol suggested by Thiele and Palsson(2010). The iterative steps should
continue until the model predictions are close to the experimental phenotypic
characteristics of the organism.

To overcome the limitations of manual reconstruction, automated or

semi-automated procedures that directly generate metabolic reconstructions from

annotated genome are of great interest. A number of user-friendly resources have

been developed to facilitate this demanding process. Some of these tools are

designed for helping manual metabolic network reconstruction. For example,
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MetaFluxNet (Lee et al., 2003) provides an interface for users to manually input

information of metabolic networks and then carries out metabolic flux analysis

(MFA). Similarly, MetNetMaker (Forth et al., 2010) allow users to select metabolic

reactions from reaction databases by EC number or other information and then

generate a metabolic network. METANNOGEN (Gille et al., 2007) and rBioNet

(Thorleifsson and Thiele, 2011) are effective tools for data management for

metabolic network reconstruction process. YANAsquare (Schwarz et al., 2007)

provide a interface that connect to KEGG database and allow user to select

metabolic reactions in each pathways that are associated with annotated genes. By

combined those selected reactions, the tool can generate draft genome-scale

metabolic networks.

A number of methods and tools have been developed to facilitate metabolic

network curation and gap filling. In 2004, Green and Karp designed a Bayesian

based method for identifying missing reactions in database. In the same year,

Kharchenko et al. published an algorithm that is able to fill metabolic gaps in a

metabolic network using expression information. Along this line, Kumar et al.

developed an optimization based procedure that can find and fill metabolic gaps by

searching all downstream no-production metabolites and minimizing the number of

added reactions. COBRA Toolbox (Becker et al., 2007; Schellenberger et al., 2011)

also provides the metabolic gap-filling functions for metabolic network

reconstruction. Recently, rBioNet, a COBRA toolbox extension for metabolic

network reconstruction, was developed by Thorleifsson and Thiele. rBioNet enables

users to combined metabolites and reaction database from different sources during

the curation process. This function is important when the metabolic gaps are filled

by reactions in another database or model. In 2009, Kumar and Maranas developed

GrowMatch algorithm that can reconcile in silico/in vivo growth predictions and

revise the metabolic reconstruction at the same time. GrowMatch has been
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implemented in COBRA toolbox v2.0 (Schellenberger et al., 2011), which provides a

more power platform for both metabolic network reconstruction and network

analysis.

Several tools have been developed for network analysis and curation rather than

creating a new metabolic network. BioMet (Cvijovic et al., 2010), a web-based

resource for stoichiometric analysis and integration of transcriptome and

interactome data, has been developed. BioMet contains a tool that can convert

metabolic networks written in system biology makeup language (SBML) into its

own data framework. Acorn (Sroka et al., 2011) is another web tool providing

constraint based modeling and visualization for existing genome wide metabolic

networks written in SBML. In addition to BioMet and Acorn, OptFlux (Rocha

et al., 2010) and SBRT (Wright and Wagner , 2008) both provide comprehensive

software platform for in silico metabolic modeling and engineering.

All these tools support increasingly sophisticated network analyses, but rely

largely on existing network models and have very limited capabilities for creating

new networks. To our best knowledge, There are two tools available that can

reconstruct metabolic network automatically from genome sequence or annotation,

including Model SEED (Henry et al., 2010) and GEMSiRV (Liao et al., 2012),

which is based on MrBac (Liao et al., 2011). The Model SEED, based on an

automated genome annotation tool RAST (Aziz et al., 2008), first compares the

annotated genome with a self-maintained database contain both metabolic reactions

and associated genes to generate a draft metabolic reconstruction. This draft

metabolic network is then refined with minimal modifications to meet the growth

requirements pre-assumed in the model (Satish Kumar et al., 2007). However, users

cannot specify the growth condition and biomass compositions during the

automated curation, which limits its application. The gene candidates of the filled

metabolic gaps are not provided by Model SEED, which is important information in
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metabolic network reconstruction process.

Different form SEED, GEMSiRV (Liao et al., 2012), which is based on MrBac

(Liao et al., 2011), can generate a new metabolic network by comparing the genome

sequences to a known organism with reconstructed metabolic network. Therefore,

those metabolic reactions in the reference metabolic network will be added into the

new one if there are genes that are similar to the genes that associated with the

metabolic reactions in the reference genome. Sequence alignment is applied to identify

these genes by setting a threshold of sequence identify or E value. This method

can only apply to those organisms that are close to model organisms, the metabolic

network of which have been reconstructed. Otherwise, this method cannot provide

reliable metabolic networks due to the diversity of cellular metabolism. Another

limitation of this method is it cannot make use the efforts spending in the manual

curation of gene annotation because only sequence alignment results are utilized to

identify reactions.

All these methods and tools developed for different purposes enable researchers

to generate metabolic networks automatically or semi-automatically. However, two

major challenges need to be addressed before we can automatically reconstruct high-

quality metabolic networks. The major challenge is current automated gap-filling

methods can not satisfy the quality requirement. This is because the quality of

metabolic networks can be easily affected by a few incorrect gap-filling. Therefore,

new gap-filling methods should be developed when we develop automated tools for

metabolic network reconstruction. Another challenge is the reconstruction method

should be able to apply to not only model organisms but also other species. Therefore,

both the assumptions that are true for all the organisms and the assumptions that

can only be applied to specific organisms should be accepted and considered. The

reconstruction methods must allow users to add their system-specific assumptions,

which have not been incorporated in current tools. We are going to address these two
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issues in Section 2.2.

1.2 Metabolic Network Modeling of Microbial Communities

1.2.1 Meta-genomics on Microbial Communities

Our knowledge about microbial diversity has been explosively expanded by

cultivation-independent sequencing methods, such as phylogenetic analysis of 16S

rRNA sequences, in the past few decades. According to records of the National

Center for Biotechnology Information (NCBI), more than 11,000 bacterial species

have been identified, which has doubled in the past 10 years. Based on some

estimation, the total number of microbial species is 106, which is almost 100 fold

more than what has been identified. Most of these natural microorganisms live in

various microbial communities, which perform important biological functions and

ecological roles.

Sequence-based approaches, such as meta-genomics, have been widely utilized to

study microbial communities and reveal the complexity of these systems. More and

more meta-genomes have been sequenced for microbial communities from various

environments and ecosystems, such as marine environment, soil environment, and

even higher organisms as hosts. There are 334 complete or on-going metagenomic

projects have been carried out (www.genomesonline.org, 08/29/12). More than one

half of the meta-genomic projects focus on environmental samples, while another

30% is based on host related samples. 28 projects, less than 10% in total, study

the engineered microbial communities, such as wastewater treatment plant microbial

communities.

The marine environment is the largest habitat on Earth as 70% of the earth

surface is covered by oceans. The marine environment is also extremely diverse, e.g.

the temperature and pressure are quite different in tropical sunlit surface and ocean
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trenches 11,000 m deep. Marine microorganisms have been adapted to all of these

divergent environments and are believed to carry up to 98% of marine primary

productivity (Sogin et al., 2006). To study the diversity and abundance of marine

microorganisms, both 16S rRNA based and total meta-genomic analyses have been

carried out. Different marine environments, including ocean surface water (Venter

et al., 2004; Rusch et al., 2007), mesopelagic water (Giovannoni et al., 1996), deep

sea (Sogin et al., 2006), water columns (DeLong et al., 2006) and sea subfloor

sediments (Biddle et al., 2008), have been studied by these sequence-based methods.

According to one of the earliest metagenomic sequences of surface waters of

Sargasso Sea, the microbial community is composed by nine bacterial phyla

(Proteobacteria, Actinobacteria, Cyanobacteria, Firmicutes, Bacteroidetes,

Chloroflexi, Spirochaetes, Fusobacteria and Deinococcus-Thermus) and two archaeal

phyla (Crenarchaeota and Euryarchaeota). One of the application for these

microbial and metagenomic sources is to identify novel enzymes. Till now, a number

of important marine enzymes have been identified from these sequences, including

esterase, lipase, cellulose, chitinase, amidase, amylase, phytase, protease, xylanase

and alkane hydroxylase (Kennedy et al., 2010).

Meta-genomic methods are also widely applied to host related microbial systems,

such as microbial communities live on various body sites of human, which may

massively affect human health (Turnbaugh et al., 2007). The diversity and

complexity of these microbial are extremely high. For example, there are more than

600 prevalent taxa at the species level have been identified from human oral cavity

and shown to cause diverse oral diseases (Dewhirst et al., 2010). In human skin

microbiome, the species number is up to 1000 (Grice et al., 2009), which se both the

functions of protection and infection (Cogen et al., 2008). In a similar scale, human

gut microbiota consists of about 500 species which carry out various functions

related to human metabolism including nutrient digestion, development of immune
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system and repression of pathogenic microbial growth (Gill et al., 2006b).

Fewer metagenomic projects focus on engineered microbial communities.

Activated sludge in waste water treatment plants is one such system. For example,

Hector Martin et al. used the metagenomic analysis to study two lab-scale enhanced

biological phosphorus removal (EBPR) sludge communities (Garcia Martin et al.,

2006). Later, Mads Albertsen et al. applied metagenomic analysis to microbial

community in a full-scale EBPR process (Albertsen et al., 2012). Microbial

communities are also widely used in food industry even before they are noticed. Ji

Young Jung et al applied metagenomic analysis to microbes in Kimchi, a traditional

Korean fermented food, to study temporal changes of the microbial community,

including cell populations and metabolic potential (Park et al., 2012).

In all these works, metagenomic analysis provides very detailed information about

the microbial communities, which not only covers compositions of population that

can be retrieved by 16s rRNA sequences, but also genetic information about these

organisms. The genetic information enables researchers to study the metabolism

and function of the microorganisms in community level, which sometimes is more

interesting than knowing what organisms are there. One challenge for functional

analysis based on metagenomic sequences is the quality of the data. As demonstrated

by simulated datasets, the completion of metagenomic sequences of dominant species

will be less than 80% for a microbiome with medium complexity, and this number

will decrease significantly when the complexity increases (Mavromatis et al., 2007).

These significant gaps of genetic information lead us to develop alternative methods

for functional analysis besides direct mapping of genes with reference pathways.

1.2.2 Metabolic Modeling of Microbial Communities

Taking advantage of high-throughput cultivation-independent methods for

microbial community analysis, such as meta-genomics, meta-transcriptomics, and
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meta-proteomics, researchers are able to capture the community-wide genetic

information efficiently. However, we still lack of methods to interpret the metabolic

contributions of organisms in the microbial community, as well as the cross-species

communications. As discussed in Section 1.1, metabolic network reconstruction can

provide comprehensive metabolic models for microorganisms according to their

genomic sequences and some other data. Therefore, community-wide metabolic

network reconstruction in provides a possible solution to study the metabolisms and

interactions of microbial community.

Recently, researchers already started to generate metabolic reconstruction for

simple artificial microbial consortia. Metabolic network reconstruction for a

mutualistic microbial community, composed by Desulfovibrio vulgaris and

Methanococcus maripaludis (Stolyar et al., 2007), was firstly introduced by Sergey

Stolyar et al. by integrating the two individual metabolic network reconstructions

that are generated separately. In this model, the two microorganisms are treated as

separate compartments with proposed exchange fluxes. To predict the fluxes of

metabolic reactions, a linear combination of individual growth rates of the two

organisms was used as objective function in the FBA framework. Experimental data

were used to constrain nutrient uptake rates and byproduct production rates. This

model can successfully predict the mutualistic relationship between the two

organisms, that is, Methanococcus maripaludis removes the byproducts of

Desulfovibrio vulgaris that inhibits its growth by using these byproducts as

nutrients. In addition, relatively accurate growth rates of the two organisms can

also be predicted, which are only slightly affected by the ratio of the two growth

rate in the objective function. The same method was applied to the co-culture of

Clostridium butyricum and Methanosarcina mazei, which is designed for converting

glycerol into 1,3-propanediol (Bizukojc et al., 2010). The interaction between the

two organisms are the same as the Desulfovibrio vulgaris and Methanococcus
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maripaludis system. That is, Methanosarcina mazei is able to utilized the

byproducts of Clostridium butyricum that inhibits its growth.

Different to mutualistic interaction, some negative interactions, such as

competition, cannot be modeled in FBA framework as there is no single objective

function can describe this type of interaction. Kai Zhuang et al. made use of

dynamic flux balance analysis (dFBA) (Mahadevan et al., 2002) to model the

competition between Rhodoferax ferrireducens and Geobacter sulfurreducens in an

anoxic subsurface environment (Zhuang et al., 2011). In this modified dFBA

framework, the uptake rates of the nutrients for the two species are subjected to

different dynamic equations, representing the efficency of the transporters. Then the

growth rates were predicted from these uptake rates and the two independent

metabolic networks. Ali Zomorrodi and Costas Maranas developed a different

strategy to model both positive and negative interactions through a model called

OptCom (Zomorrodi and Maranas , 2012). Bi-level optimization is applied in

OptCom, in order to trade off optimization of individual organisms versus the whole

microbial community. The inner level of the bi-level model is the common FBA

model for each organism separately but with exchange fluxes to connect them. The

outer level is the summation of all the growth rates which indicate the maximum

growth of the whole community.

Researchers are also interested in microbial co-cultures of different mutants from

of same organism. For example, Tzamali et al. applied a graph-theoretic approach

to look for microbial communities of non-lethal Escherichia coli mutants, and

simulated their growth phenotypes using dFBA method (Tollis and Reczko, 2009).

In their following work, their methods were applied to describe the growth

phenotypes of pairs of Escherichia coli mutants utilizing different carbon sources

(Tzamali et al., 2011). Wintermute and Silver tried to utilize MOMA model on

different pairs of Escherichia coli auxotroph mutants, and identified mutualistic
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relationships between them (Wintermute and Silver , 2010). From a different view,

Klitgord and Segre developed Search for Exchanged Metabolites (SEM) algorithm

that is able to predict growth environments that will promote potential interactions

between different organisms (Klitgord and Segrè, 2010). They applied the SEM

algorithm to different mutants of Escherichia coli and some other organisms. Shiri

Freilich et al. utilized this SEM algorithm to identify potential competitive and

cooperative metabolic interactions between 6,903 bacterial pairs (Freilich et al.,

2011).

There are several metabolic models for microbial communities that are not based

on FBA type model. Reed Taffs et al. published three different methods based on

elementary model analysis (EMA) (Taffs et al., 2009) to study the phototrophic

mat communities containing three distinct microbial guilds: oxygenic phototrophs,

filamentous anoxygenic phototrophs, and sulfate reducing bacteria. The three

different methods, with different compartment strategies, can be applied to systems

with different complexity levels. Using a different approach, Erwin Frey et al.,

integrated evolutionary game theory, nonlinear dynamics, and the theory of

stochastic processes to develop mathematical tools that can model various

properties of ecological systems, such as stability (Frey , 2010).

1.3 Dissertation Overview

Previous studies have demonstrated the potential of applying metabolic network

reconstruction to microbial communities. However, there are some fundamental

challenges that limit the application of these community-wide metabolic models in

community-scale. In this dissertation, I will address some of the critical challenges

and provide solutions that can solve or partly solve these issues.

To study metabolism and interaction in microbial communities, high-quality

metabolic network reconstructions are needed, because these community-wide
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models are even more sensitive to the accuracy of the data than single organism

models. To meet this requirement, most of current community-wide metabolic

models utilize only existing metabolic networks of single organisms, which are

limited for artificial microbial communities in many cases. An alternative solution

researchers are using is to utilize existing metabolic network reconstructions of

different strains of the same or similar species. This method disregards strain

variations existing in the same species, which have been observed even in the same

type of samples collected from close but different locations (Lo et al., 2007).

Another limitation of this method is that there have been only 56 organisms

(http://gcrg.ucsd.edu/InSilicoOrganism/OtherOrganisms, retrieved on July 27,

2012) for which high-quality genome-scale metabolic network reconstructions have

been curated. The limited number of high-quality metabolic network

reconstructions means not all the organisms in a microbial community are with

high-quality metabolic network. This difference in the quality of metabolic network

reconstruction can lead to false predictions, especially when modeling interactions in

microbial communities.

In this dissertation, I am interested in applying metabolic network reconstruction

on microbial communities to model the metabolism and interaction. We will answer

the following questions:

• How to automatically reconstruct high-quality metabolic networks from

annotated genomes?

• How to reconstruct community-wide metabolic networks from metagenomic

datasets?

• What are the essential interactions for the formation of the AMD biofilm, which

causes severe water pollutions?

• How to integrate -omics datasets to model the intracellular metabolism and
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interspecies interactions?

• What are the metabolic capabilities and interspecies relationships in gut

microbiome that is directly related to host health, e.g. polysaccharide harvest

in diet?

In order to generate high-quality metabolic network reconstructions, we need to

develop a tool that can handle the reconstruction processes automatically due to the

complexity of microbial communities. In Chapter II, we will introduce a

bioinformatic pipeline that can automatically generate high-quality genome-scale

metabolic networks. We applied this tool to the model organism Escherichia coli

K12 and compared the results with metabolic network reconstructions in the

literature, which have been developed for a long time. We further applied this tool

to cyanobacterium Prochlorococcus marinus and generated metabolic network

reconstructions for its twelve strains. Pan and core metabolic network of

Prochlorococcus marinus were defined and the biosynthesis functions of the core

metabolic networks were studied.

In Chapter III, we further explore the community-wide metabolic network

reconstruction for an Acid Mine Drainage (AMD) biofilm from its meta-genomic

sequences. After finishing the metabolic network reconstruction for individual

organisms, we developed multi-organism metabolic network reconstructions for both

abundant species and the whole biofilm. Then the multi-organism metabolic

network reconstructions were used to predict potential interactions among the

species in the community, which are essential for biofilm formation. In addition, we

incorporated meta-proteomic dataset to verify and improve the metabolic network

reconstruction.

In Chapter IV, we are interested in developing metabolic models for host-related

microbial communities, such as the gastrointestinal microbial community. First, we
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investigated a two-species system in mice designed to capture interactions of two

major phyla in human gut microbiota, which was designed to study the plant

polysaccharide utilization. Using meta-genomic sequences, meta-transcriptome and

meta-proteome, we developed a multi-step metabolic network reconstruction process

that can utilize and integrate these datasets. We examined the metabolism and

interactions in this two-species community utilizing annotated genomes and

microarray expression data. Then we studied a ten-species model community, which

could more accurately mimic the real human gut microbiome on studying the

community changes in response to diets. By reconstructing community-wide

metabolic networks utilizing annotated genomes and sequence-based expression

data, we were able to predict the metabolic potentials, cross-species interactions and

metabolic responses in gut microbiota.

Besides building metabolic models, in Chapter V, we also explore the integration

of metabolic and regulatory network. We introduced a computational framework for

metabolic and regulatory network design. This frameworks was applied to model

organism Escherichia coli for over-production of fatty acid derived hydrocarbons.

Strains for different products under different growth conditions were designed. Some

of the results can be verified by literature data and strains for fatty acid

overproduction have been partly implemented experimentally in our lab.
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CHAPTER II

Bioinformatic Pipeline for Automated

Genome-scale Metabolic Network Reconstruction

2.1 Introduction and Background

As mentioned in the Chapter I, a metabolic network reconstruction contains

potential molecular mechanisms (metabolic reactions) in the cell, and the associated

molecular components, such as enzymes, substrates, and products. As the

development of genome sequencing methods, researchers are no longer satisfied with

simplified or small scale metabolic network reconstructions. Genome-scale metabolic

network reconstructions have gained more attentions because they can provide more

comprehensive sketches about cell metabolism and bring more accurate phenotypic

predictions. In the Section 1.1.2, we mentioned two tools that generate

genome-scale metabolic networks automatically from annotated genomes. In this

section, we will review the two methods with more details.

Model SEED (Henry et al., 2010), one of the best automated metabolic network

reconstruction tools, can generate genome-scale metabolic networks on the basis of

genomic sequences in the aid of automated gene annotation server RAST (Aziz RK,

et al., 2008). A draft model will be firstly generated by comparing the gene

annotations with the genes associated with metabolic reactions that are collected
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from different resources. After this draft metabolic network is generated, an

optimization based curation process (Satish Kumar, et al., 2007) will be applied to

the draft. The basic assumption made in this curation process is the cell can

synthesize all the biomass components from the compounds in the medium, and the

curation with minimal number of changes that can enable this biosynthesis will be

accepted. The number of the changes is weighted in the algorithm according to the

type of changes. Therefore, model SEED can provide functional metabolic network

reconstructions. However, researchers are not totally satisfied by the model SEED.

One of the reasons is it does not enable user to customize the biomass components

and mediums used in the model, which are sometimes critical in the reconstruction

process. Another limitation of model SEED is the accuracy of the metabolic

network reconstruction. Take the Escherichia coli for example, the metabolic

network automated reconstructed without manual curation cannot correctly predict

the phenotype-phase-plane of the strains, which is an important property of a

metabolic network. We also noticed that the metabolic reactions contained in the

self-maintained dataset were collected from different databases or metabolic network

reconstructions of model organisms. This integration definitely makes the dataset

more complete but also takes the risk due to the inconsistency among different

databases. Model SEED does not enable recursive refinements for the metabolic

reconstruction, which is normally applied in the manual reconstruction process. All

these issues limit a wider application of this tool because high-quality metabolic

network reconstructions are required in a lot of scenarios.

GEMSiRV (Liao et al., 2012) is a software platform for genome-scale metabolic

simulation, reconstruction and visualization developed after model SEED. In this

software, a automated metabolic network reconstruction tool is embedded, which is

the same as MrBac (Liao et al., 2011). Different for model SEED and some other

methods, it reconstructs metabolic network by comparing the genome of the strain

23



with a genetically close strain with a metabolic reconstruction already. Sequence

alignment is applied to identify these genes by setting a threshold of sequence

identify or E value. This method can only apply to those organisms that are close

to model organisms, the metabolic network of which have been reconstructed.

Otherwise, this method cannot provide reliable metabolic networks due to the

diversity of cellular metabolism. Furthermore, the quality of the new metabolic

network reconstruction largely depends on the referenced metabolic network and

normally the quality decreases due to the lacks of curation processes. The quality of

reconstructed metabolic networks also affected significantly by the parameter

settings, which are arbitrary. Another limitation of this method is it cannot make

use the efforts spending in the manual curation of gene annotation because only

sequence alignment results are utilized to identify reactions. Besides draft metabolic

network reconstruction, GEMSiRV can convert the reconstructed metabolic network

into mathematical models and provide FBA type analysis based on this runnable

model.

Automated metabolic network reconstruction tool is necessary for

community-wide metabolic modeling for microbial communities, because there are a

large number of organisms existing in one microbial community, and it is impossible

to manual reconstruct metabolic networks for all of them. Due to the limitation of

current automated metabolic network reconstruction tools, we want to develop a

bioinformatics pipeline for automatically reconstruct high-quality metabolic network

from annotated genomes. Towards this goal, we will discuss the following questions

in the next several sections.

• How can we automatically reconstruct high-quality metabolic network from

annotated genomes?

• How accurate is the metabolic network for model organism Escherichia coli
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reconstructed by the tool?

• Whether the tool can work with a large number of organisms? And if yes, what

benefits we can get from the high throughput bioinformatic pipeline?

2.2 Pipeline for Metabolic Network Reconstruction (PEER)

To reconstruct metabolic network efficiently, we developed an automated

bioinformatics pipeline to generate complete and reliable metabolic reconstruction

based only on the genome and gene annotations of the organisms. In addition, we

design this tool for community-wide metabolic network reconstruction from

meta-genomic data. Different from single organism genome project, meta-genomic

sequences cannot provide complete genomes for all the organisms. Only for the

dominant organisms, nearly complete genome sequences can be derived. The

incomplete genome sequences require this pipeline be able to fill the metabolic gaps

which have not been identified in the genomes. Another challenge is the quality of

gene annotation. Because most of the species in the environmental samples are not

cultivable, there is litter information available for the enzymes and proteins in these

cells besides the sequences data. Thus, the gene annotations have not been verified

as those in model organisms. Further, due to the scale of meta-genome, the gene

annotations are always only based on automated annotation methods, without

manual curations. All these factors make the quality of gene annotation for

meta-genomes not as good as in single genome projects. To overcome these

problems, PEER must be able to bare the deficiency of the genomic sequence and

annotation method, which may takes place in all the steps along the sampling,

sequencing, assembling, and annotating process. Also, the pipeline needs to be

flexible enough to deal with the organism that is not well studied and with limited

information. We designed the pipeline (as shown in Figure 2.1) with three major
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components: automated metabolic network pre-reconstruction, probability of

metabolic network prediction, and automated curation with function completion

inspection.

Figure 2.1: Flow chart for Pipeline for Metabolic Network Reconstruction (PEER)

As shown in the figure, to generate the output metabolic networks, three steps

must be finished. First, the pre-reconstruction will provide the metabolic reactions

whose corresponding enzymes have been identified. This pre-construction will be

further revised and results with some defects are still acceptable, so this

pre-reconstruction step is more flexible when inputting data from different

databases. Second, automated curation process, is based on the assumption that
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any individual organisms (species) have to accomplish pre-defined functions, such as

producing biomass and generating energy to sustain life. By imposing mass balance

constraints and other information, such as reversibility of reaction and growth

conditions, the automated curation process can provide a set of alternative

reconstructions for the organisms, each of which contains a set of reactions that

have not been identified in the pre-reconstruction. Evaluating the probability of the

existence of these added reactions in the organisms would provide a quantitative

measurement of the overall risk for the alternative reconstructions. Third, by

defining an objective function which contains the discrete decision variables

representing the revision in the solution, we can establish an optimization based

algorithm to minimize the risk of making revisions in the reconstruction, which can

finally return the most possible reconstruction according to the known information.

This optimization process is under the mixed integer linear programming

framework, because all the constraints and objective function can be written in

linear format, including mass balance, reaction reversibility (thermodynamics),

nutrients availability, and defined function completeness. Also the information that

come from searching from gene candidates are also considered in the model by

adjusting the weights of the discrete decision variables in the objective function,

which is also linear. In addition to the reconstruction, the enzyme candidates for

the added reactions are also implied. If this pipeline is applied to microbial

communities, the microbe-microbe and microbe-environment interactions will also

be considered and predicted. The details about all the steps will be discussed in the

next three sections.

2.2.1 Preliminary Network Generation

The major goal of the first step, automated metabolic network

pre-reconstruction, is to generate a draft metabolic network. Provided the genomic
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sequence and annotation of genes, the pipeline is able to identify the metabolic

reactions existing in each organism by identifying the corresponding

enzymes/proteins in the genome or annotations. In this matching process, we use

EC number as the primary information. For example, reaction R00220 (L-serine

ammonia-lyase) can be catalyzed by two enzymes, L-serine ammonia-lyase

(EC:4.3.1.17) and L-serine dehydratase (EC:4.3.1.19). If any of the enzymes are

identified in the species by matching the two EC number, reaction R00220 is added

into the draft metabolic network. Because we only match the EC number, we can

avoid the effects caused by the inconsistency of enzyme names used in different

databases and annotation tools. However, if a gene annotated with correct enzyme

name but not assigned EC number in the annotation, we will miss the

corresponding metabolic reactions. This common problem takes place frequently

when using gene annotations without manual curation. In our pipeline, the

automated gap filling process in step II and step III can greatly reduce the risk of

incorrect/inconsistent annotations and we will discuss this function later.

The transport reactions are another essential component in the metabolic

network which represents the communication and interaction between organism and

environment. However, it is different to identify a transport reaction compared to

common enzymatic reactions because the methods for identification of the

transporter in a community are less understood. TransportDB (Ren et al., 2007)

provides reasonable estimations for the transport reactions, but they are always not

enough. To solve the problem, we will also add the transport reactions for the

known nutrient uptakes or byproduct secretes, if they are not included in the

substrate list of transporters.

After that, the stoichiometric matrix of the entire set of metabolic reactions and

transport reactions is defined through matching the reactions with a reaction set, in

which all the reactions have detailed and balanced reaction formulas. Both the
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reaction pool and the enzyme information of the reactions used in this project are

collected from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database

(Goto, Nishioka and Kanehisa, 1999; Goto, Nishioka and Kanehisa, 2000; Goto et

al., 2002). Reactions whose reaction formulas are not specified or cannot be

balanced are not included in the reaction set, and manual revisions have also been

applied to the reaction formula and their reversibility. We spent great efforts to

refine the problematic reactions in this reaction set as just a few errors in it may

ruin the whole metabolic network reconstruction in certain analysis. In Figure 2.2,

we demonstrate two simplified cases in which one mistake can cause significant

changes in the whole metabolic network with either infinite energy (ATP) or

reduced force (NADH) generation cycles. These problematic reactions sets can be

much more complex than the two examples and difficult to identify. To avoid these

problems, we looked for all the possible reaction sets that can either generate

infinite energy or other resources. Then we manually corrected these reaction sets.

Besides the common enzymatic reactions, there are still a certain number of

non-enzymatic reactions and spontaneous reactions, which are also included in the

reaction pool. These reactions are automatically added into the stoichiometric

matrix of the organisms without requirement for enzymes.

Figure 2.2: Two examples of problematic metabolic reactions that commonly happen
during the metabolic reconstruction process.

After these three steps, we are able to generate a draft metabolic network with
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both metabolic reactions and exchange reactions. The gene associations for all the

enzymatic reactions are also provided. As mentioned, this pre-reconstruction cannot

be perfect due to the errors or format issues in gene annotations. Another potential

error source is those metabolic reactions that have not been well identified, such as

reactions catalyzed by orphan enzymes (Lespinet and Labedan, 2005). To correct

these errors and fill the metabolic gaps, an optimization based automated curation

process is introduced, which aims to generate the most plausible metabolic networks.

2.2.2 Mixed Integer Linear Programming (MILP) Based Network

Curation

The optimization based metabolic network gap filling is employed in both step II

and step III to find the potential metabolic gaps under different criteria. One basic

assumption made in this gap filling model is the metabolic network should be able

to achieve all of the pre-assumed metabolic functions. If not, revisions must be

made to accomplish them. However, there is no restriction about the revision, which

means any possible changes of the network which do not go against the part of

network that has been confirmed are feasible. Two types of changes could easily be

expected, including adding new reactions into the metabolic network and changing

the reversibility of existing reactions in the network. By comparing all the feasible

revisions, it is possible to identify the ”best” one according certain criteria, such as

minimal changes or most likelihood changes, which will be discussed in following

section. Besides the enforced constraints about the assumed functions, other factors

will also restrain the space of feasible revisions, such as the flux balance constraints

and reversibility of reactions. We are employing a Mixed Integer Linear

Programming (MILP) (Floudas , 1995) based model to predict the best metabolic

network as described. Figure 2.3 demonstrated the major components in this model

and detailed model descriptions were contained in Appendix B.
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Figure 2.3: Demonstration of the MILP model for metabolic network gap filling.
Red: binary variables, blue: continuous variables, black: parameters. Complete
model descriptions can be found in Appendix B.

We assumed the probabilities of all metabolic gap filling are independent and

can be evaluated by comparing the genome of target organism with the genes that

were known to catalyze these putative reactions. In this model, all the revisions to

the metabolic network will be assigned penalty parameters according to the

corresponding probability. Further, a set of binary variables are assigned to

represent these revisions. The MILP model is designed to search for a subset of the

revisions that accomplish the defined functions, such as biomass syntheses, and also

with the minimal sum of the penalties. The metabolic network with these revisions

is the most plausible reconstruction under this framework. However, the

mathematically optimal solution does not guarantee to be the biologically optimal

one. Therefore, practically suboptimal solutions are also calculated and integrated

with the optimal one to derive a reliable metabolic network.

There are certain optional constraints that can further improve the curation

process. We can introduce a constraint that define the minimal growth rate

vgrowth ≥ vminimalgrowth. Along this line, we can define the maximum and minimum

yields of elements in the biomass. These constraints can further reduce the solution

spaces and provide more accurate prediction. For example, by setting minimal
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growth rate, alternative low efficient pathways will not be considered even if they

may contain less metabolic gaps.

We implemented this model in both IBM Ilog Cplex platform and FICO

XPRESS platform. In the IBM Ilog Cplex platform, branching method based on

pseudo costs together with best-bound node searching method are chosen. The MIP

emphasis indicator is set to emphasize feasibility over optimality. In the FICO

XPRESS platform, the same branching method is used and the local first node

selection strategy is chosen for node searching method. The parameters are chosen

based on the best results in test runs and are maintained when solving all the

problems.

2.2.3 Probability of Metabolic Network Prediction

To evaluate the uncertainty of a predicted metabolic network caused by the two

types of curation, the probability of each individual change is first defined. If an

enzymatic reaction is added into the metabolic network, this probability should

represent the possibility that an enzyme that can catalyze the reaction exists in the

species. If we assume the genome/metagenome used is correct or partly correct and

all the sequences of the corresponding enzymes are known, this probability could be

evaluated by the sequence alignment between the assigned enzymes sequences and

the genome sequence. As the definition of the p-value in the common BLAST

algorithm (Altschul et al., 1990), it is the probability (in the range of 0-1) of a given

sequence occurring by random chance, which means the risk of taking the searching

result as the target sequence. At the same time, for one enzymatic reaction, there

may be more than one isoenzyme, and the sequences of them are varied in different

organisms. So the overall probability of reaction (r) is defined as the minimal value

of all the probabilities that the corresponding enzymes (e ∈ E) exist in the species,
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that is,

p(r) = min
e∈E(r)

p(e) = min
e∈E(r)

(1− P-value(e))

in which E(r) represents the set of enzymes that catalyze reaction r and P-value(e) is

the best p-value in the sequence alignment results for enzyme e in the genome of the

species. After the probability of adding one reaction is defined, the probability of one

reconstruction which contain a set of reactions (r ∈ R) can be easily calculated as

P =
∏

r∈R

P (r)

In order to cooperate with the MILP frame work used in the automated curation

process, the logarithm of the probability is employed in the model, that is,

logP = log
∏

r∈R

P (r) =
∑

r∈R

logP (r)

=
∑

r∈R

log min
e∈E(r)

(1− P-value(e))

≈ −
∑

r∈R

min
e∈E(r)

log P-value(e)

However, the P-value from the blast is varied from 0.9 to 10−299 and in the annotation

a threshold 10−30 is used to predict gene functions. Therefore, to consider the non-

linear property and large scale distribution of P-value, another practical definition of

overall risk of a reconstruction is applied, which scale the probabilities by their average

value, making them center at one. This definition also fit the MILP framework, and

the scaled risk of added reaction is taken as weight parameter in the optimization

process, denoted as

weight(r) =
nmine∈E(r) log P-value(e)

∑

r∈R mine∈E(r) log P-value(e)
(2.1)
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2.2.4 Online Tool for Automated Metabolic Network Reconstruction

An online tool, http://ccdu.ccmb.med.umich.edu/LinLab/, is designed to carry

out this bioinformatics pipeline for metabolic network reconstruction. For

simplification, the pre-defined function that the organism must achieve is biomass

synthesis. However, other alternative functions that can be expressed in a similar

form are also acceptable for this online tool, such as enforcing byproducts.

Furthermore, the gene annotation and other knowledge of different organisms can

vary dramatically, which means the input data have different qualities. Thus, this

online tool is designed to adapt to these different situations by accepting optional

input data. Because of the limitation of computational resources, the online tool in

current version does not allow the submission of multi-organism problems

(meta-genome), which will be provided in future.

2.3 Automated Metabolic Network Reconstruction for

Model Organism Escherichia coli

Escherichia coli is one of the most studied organisms and the genome-scale

metabolic network of Escherichia coli is the best metabolic network reconstruction

existing currently. Similar to most other organisms, there is no perfect gene

annotation for Escherichia coli, and we can obtain different versions of its gene

annotations from various sources. This situation bring us a new question when

applying automated metabolic network reconstruction; that is whether the datasets

collected from different data sources have any effects and if yes, how significant the

effects are. Another interesting question we will explore is that how good the

quality of automated metabolic network reconstruction is when comparing with

manual curated ones and whether it can satisfy the requirements of common

applications. To address these issues, we generated metabolic network
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reconstructions of Escherichia coli based on three different datasets and compared

them with manual curated metabolic networks.

2.3.1 Automated Metabolic Network Reconstructions of Escherichia coli

from Three Datasets

To explore the effects of input datasets to the final metabolic network

reconstructions, we apply the PEER to three datasets of Escherichia coli from

different databases, including NCBI (U00096, 28-JUL-2009), Kyoto Encyclopedia of

Genes and Genomes (KEGG, T00007, 15-Sep-2009) and Integrated Microbial

Genomes (IMG, 637000106, 26-Sep-2009). All the three datasets are processed

separately according to the algorithm mentioned. Besides the ORF sequences and

function annotations, biomass composition of Escherichia coli K12 MG1655 is

another parameter that may affect the final solution, because the pre-assumed

function is defined as biomass synthesis. In this model, the biomass is composed of

twenty basic amino acids, eight nucleotides (NTP and dNTP), four coenzymes

(NAD, NADP, FAD, COA), and other seven metabolites. The detailed composition

of biomass is listed in supplementary materials. The compositions of metabolites in

the biomass used in PEER are the same as those in the iAF1260 model. Growth

condition is another factor that needs to be considered; in this model we test the

mediums with two different carbon sources (L-glucose and L-malate) separately in

both anaerobic and aerobic conditions.

The input data from different databases are in different formats and with varied

gene function annotation. These differences in input data may lead to artificial

variances of the final results, which should be avoided as much as possible. However,

we still observed slight disagreements among the metabolic networks reconstructed

based on three input datasets. We show in Table 2.1 that the pipeline identified

about fifty more metabolic reactions from the data from KEGG and IMG than

35



those from GenBank. At the same time, the number of identified metabolic enzymes

from KEGG is about one hundred more than those from IMG while the identified

reactions of the two datasets are quite similar. This result may be explained by the

quality of gene function annotation. Furthermore, the pipeline is focusing on the

metabolic related enzymes, so the quality of these genes will affect the result the

most. We also found that the reconstructed metabolic networks based data from

IMG and KEGG are almost the same, even though results from IMG and GenBank

have a similar number of putative reactions. Despite of the differences of metabolic

networks, the active parts for biomass, especially putative reactions, are very

conservative. All the six putative reactions from the network based on KEGG

dataset are shared by the other two, and all the ten putative reactions from the

network based on GenBank datasets are included in the results based on IMG

dataset. Further, by investigating the other active reactions, we found that the

different metabolic reactions are sometimes with the same functions among the

three datasets but with different coenzymes (e.g. NADH vs. NADPH) or different

forms (e.g. one-step reaction vs. multi-step reaction). Therefore, the differences

among the three reconstructed networks are much less than observed directly if we

consider these reactions with different equations but the same roles in metabolism.

Table 2.1: Metabolic network reconstructed from different input data of Escherichia
coli K12 MG1655.

Source of
input data

Number of
protein genes

Number
of genes
encoding
metabolic
enzymes

Number of
identified
reactions

Number of
putative
reactions
for
biomass

Number of
putative
reactions
with gene
candidate

KEGG 1 4148 1410 1147 6 4
NCBI 2 4321 1106 1091 10 8
JGI/IMG 3 4391 1311 1141 11 9
1: http://www.genome.jp/kegg/, retrieved in 2009/9.
2: http://www.ncbi.nlm.nih.gov/genbank/, retrieved in 2009/7.
3: http://img.jgi.doe.gov/w/,retrieved in 2009/9.
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2.3.2 Comparison of Automated Metabolic Network Reconstruction

With Reference Metabolic Networks

There are several versions of genome-scale metabolic networks of Escherichia coli

K12 MG1655, which are in different scales and details of metabolic reactions. Here

we are using the iJR904 and iAF1260 model as reference models to verify the

metabolic network reconstructed by this pipeline. Three versions of results based on

different input datasets have been generated, and here we mainly use the one based

on the KEGG dataset to compare, which requires the least putative reactions.

According to the results, 1153 (6 of them are putative) intracellular metabolic

reactions have been identified, while there are 745 unique reactions in iJR904 model

and 1339 (1187 cytoplasmic reactions) in iAF1260 model. In terms of scale, this

automated reconstructed metabolic network is close to the iAF1260 model and

better than the older one. Furthermore, all the reactions in the automated

reconstructed metabolic network are either gene associated or no association

required because of the mechanism of the pipeline, while 5% and 6% of the

metabolic reactions are not associated with genes in iJR904 and iAF1260 model

respectably.

The accuracy and reliability of putative reactions are also very important for the

final reconstructions, even though the fraction of these reactions in this Escherichia

coli model is very low. This is mainly due to the extensive research on the metabolism

of this organism, which cannot be applied to other organisms. Table 2.2 demonstrates

the metabolic gaps identified based on the KEGG dataset. There are six metabolic

gaps in total and four of them can be assigned with certain gene candidates. R04292

is one of the two metabolic gaps without gene candidates, which is mainly due to lack

of gene templates for this reaction. According to the latest version of annotation of

Escherichia coli in KEGG, gene b0750 is annotated as 2.5.1.72, which is in agreement

with the gene association in iAF1260 model. For the other reaction without gene
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candidate, R04457, enzyme lumazine synthase(EC:2.5.1.78) is required. In iAf1260,

gene b1662, which is annotated as riboflavin synthase(EC:2.5.1.9), was assigned to

this reaction.

Table 2.2: Metabolic gaps for metabolic network reconstruction Escherichia coli of
based on KEGG dataset.

Reaction Required Enzyme Required
Enzyme
(EC)

Candidate
Gene

P-value Annotation
in KEGG

R04457 Lumazine
synthase

EC:2.5.1.78 NA NA NA

R04554 Transferases EC:2.4.2.- b2407 9.1E-185 ec:2.4.2.-
R04655 Carbon-carbon

lyases
EC:4.1.3.- b0352 4.6E-223 ec:4.1.3.-

R07280 Phosphoric
monoester
hydrolases

EC:3.1.3.- b4016 0.0E+00 ec:2.7.11.5/
3.1.3.-

R00188 Phosphoadenylate
3’-nucleotidase

EC:3.1.3.7 b4214 7.8E-159 NA

R04292 Quinolinate
synthase

EC:2.5.1.72 NA NA NA

The four metabolic gaps that have been associated with gene candidates are

mainly due to the non-specificity of the enzyme annotation or association to

metabolic reactions (missing the last digit in EC number). Take reaction R07280 for

example, Phosphoric monoester hydrolases (EC:3.1.3.-) is required to catalyze this

reaction and gene b4016 is assigned as the gene candidate. This gene candidate

b4016 can be annotated as multi-function enzyme ( EC:2.7.11.5/3.1.3.-). For

reaction R00188, enzyme phosphoadenylate 3’-nucleotidase (EC:3.1.3.7) is required

and assigned with gene b4214 as gene candidate, which is annotated as EC:3.1.3.7

in the latest gene annotation. There is another type of metabolic gaps that are

caused by in-consistency between different databases or datasets. For example,

according to KEGG, the reaction that is catalyzed by 4-phospho-D-erythronate:

NAD+ 2-oxidoreductase (EC: 1.1.1.290) is required but missing in the metabolic
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networks generated from IMG dataset before the gap filling. The suggested gene

candidate in the IMG dataset is annotated as D-erythrose 4-phosphate

dehydrogenase (EC: 1.1.1.-) but in KEGG database the gene is correctly annotated.

In conclusion, the metabolic gaps filled by our automatic gap filling algorithm

can be either real metabolic gaps or caused by inconsistence/inaccuracy of gene

annotation. And if the metabolic gaps are caused by annotation, gene candidates

with very low p-value can be assigned to these gaps automatically by our

bioinformatic pipeline, which indicates it can utilize inaccurate/incomplete input

data and still can generate metabolic network reconstructions with high quality.

2.3.2.1 Phenotype Phase Plane (PPP) of the Reconstructed Metabolic

Networks of Escherichia coli K12 MG1655

One application of reconstructed metabolic networks is to predict the phenotype

phase plane, which represents the optimal growth conditions (Ibarra et al., 2002).

Phenotype phase planes provide the information of the growth rates of a organism

under different fixed uptake rates of major nutrients. Here we test the metabolic

network of Escherichia coli K12 MG1655 based on the KEGG dataset with two

different growth conditions, malate-oxygen condition and glucose-oxygen condition.

The lines of optimality (LO) for these two conditions are demonstrated in Figure

2.4. The same phenotype phase planes have been investigated before. By comparing

our results with the reference line of optimality and their experimental data, we

can find that the predicted lines of optimality (LO) are quite close to the published

data. However, the growth rate in these predicted lines of optimality are slightly

higher than the reference data, which is mainly due to the difference of biomass

composition. These reasonable predictions of phenotype phase plane can further

verify the metabolic networks reconstructed by the bioinformatics pipeline.
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2.4 Automated Metabolic Network Reconstruction for

Twelve Strains of Prochlorococcus marinus

Prochlorococcus marinus is a marine cyanobacterium that dominates

phytoplankton communities in most tropical and temperate open ocean area

(Partensky et al., 1999). These widely distributed cells are the smallest

photosynthetic organisms known, and abundant efforts have been paid to

investigate them. A number of strains of Prochlorococcus marinus, including two

different ecotypes (high-light-adapted and low-light-adapted), have been collected

throughout the world and sequenced. Here we applied the bioinformatics pipeline to

twelve sequenced strains of P. marinus (Kettler et al., 2007), including P. marinus

AS9601, P. marinus MIT 9211, P. marinus MIT 9215, P. marinus MIT 9301, P.

marinus MIT 9303, P. marinus MIT 9312, P. marinus MIT 9313, P. marinus MIT

9515, P. marinus NATL1A, P. marinus NATL2A, P. marinus marinus CCMP1375,

and P. marinus pastoris CCMP1986. The genome sequences for these strains are

also collected from IMG database and annotations are generated through RAST

annotation server (Aziz et al., 2008). Because there are no details about the

biomass compositions for these twelve strains, we used a basic list of metabolites to

represent the biomass, which contains amino acids, nucleotides, and certain common

coenzymes. Some detailed information about the reconstructions can be found in

Table 2.3.

From the table, the numbers of metabolic reaction in the twelve metabolic

networks of P. marinus vary from 636 to 693, including 17 to 23 putative reactions.

Further, the numbers of putative reactions show non-negative correlation with the

numbers of identified reactions, which was not expected. The distribution of the

metabolic reactions in the twelve strains, including putative reactions, is shown in

Figure 2.5.a. The metabolic reactions that are related to biomass synthesis are also
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Table 2.3: Automated metabolic network reconstructed for twelve strains of P.
marinus.

Strains Number
of protein
genes

Number
of genes
encoding
metabolic
enzymes

Number of
identified
reactions

Number of
putative
reactions
for
biomass

P. marinus AS9601 1939 537 618 21
P. marinus MIT 9211 1856 536 625 23
P. marinus MIT 9215 2014 552 631 22
P. marinus MIT 9301 1921 537 627 22
P. marinus MIT 9303 3075 611 669 23
P. marinus MIT 9312 1811 543 624 18
P. marinus MIT 9313 2275 602 673 22
P. marinus MIT 9515 1992 534 619 17
P. marinus NATL1A 2204 555 633 22
P. marinus NATL2A 1896 548 645 22
P. marinus marinus
CCMP1375 (SS120)

1833 544 628 24

P. marinus pastoris
CCMP1986(MED4)

1719 543 622 19

indicated in the figure, and take a significant fraction in the overall metabolic

networks (38.5%), which might be explained by their compact genomes.

According to the figure 2.5, the major components of the metabolic networks are

maintained in all the strains and the variations occur only on part of the network

(34%). The clustering of the metabolic networks of the strains is also shown in the

figure. Not surprisingly, the two ecotypes, high-light-adapted and low-light-adapted,

are clearly separated by the structures of their metabolic networks, indicating their

metabolisms have adapted to the environments. We also carried out t-test to

identify those reactions that are either enriched in high-light adapted or low-light

adapted strains. We found 16 reactions enriched in low-light adapted strains while 7

reactions enriched in high-light adapted strains (P < 0.05). For example, one

reaction involved in converting sulfate to sulfite exists in almost all the in low-light

adapted strains but none in high-light adapted strains. This enrichment can be
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explained by the low concentration of sulfate on the top layer of ocean (Likens and

Likens , 1981). Another two reactions, involved in citric-acid cycle (CAC) converting

2-oxoglutarate to Succinyl-CoA, are enriched in low-light adapted strains. This

observation may suggest that the low-light-adapted P. marinus are not obligate

autotrophy as the high-light-adapted ones which only contain incomplete CAC

(Huynen et al., 1999). This hypothesis is in agreement with what Zubkov et al

discovered in their experiments, which also suggests the low-light-adapted strains

are mixotrophic P. marinus when comparing to high-light-adapted strains (Zubkov

et al., 2004). However, we did not observe any enrichment of reactions for nitrite

utilization in low-light adapted strains. Researchers used to believe only low-light

adapted strains can use nitrite while the major nitrogen source on top layer of ocean

is ammonia. Recently, researcher found widespread metabolic potential for nitrite

and nitrate assimilation among both two Prochlorococcus ecotypes (Martiny et al.,

2009), which agrees with our observations. Phosphorus resources also show

difference for the water layers the two ecotypes live in. For high-light adapted

strains organic phosphorus are the major sources while inorganic phosphate are the

major sources for low-light adapted strains (Rocap et al., 2003). We also did not

observe any differentially existing metabolic reactions regarding this environmental

change, which might be explained by that the phosphorus in organic phosphorus

chemicals is still in phosphate form.

The corresponding pathway distributions are also shown in Figure3.b, and

several pathways are enriched in the metabolic network of P. marinus, including

purine metabolism, pyrimidine metabolism, porphyrin and chlorophyll metabolism,

peptidoglycan and fatty acid biosynthesis and several amino acid synthesis

pathways. All these pathways are involved in cell growth process. For instance,

purine, pyrimidine, and amino acids are common compositions for biomass;

porphyrin and chlorophyll are essential for photosynthesis; and peptidoglycan and
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fatty acid are important for membrane and cell wall formation.

2.4.1 Pan and Core Metabolic Networks of P. marinus

This bioinformatics pipeline enables us to reconstruct metabolic networks of

sequenced organisms efficiently, which makes it possible to compare the metabolic

networks of different strains belonging to the same species. Here we integrate the

metabolic networks of these strains to predict the pan and core metabolic network

of P. marinus, and further interpret the functions of them. The pan metabolic

network, which contains 881 metabolic reactions, is mainly divided into two regions,

conservative region and variable region (denoted as A, B in Figure3.a). Region B

represents the variable metabolic reactions in strain level. From the Figure 3.b,

there is only one pathway enriched in this region, xenobiotics metabolism, which

represents the adaptation of strains to their local environments.

We consider the conservative region A of the pan metabolic network as the core

metabolic network (588 metabolic reactions), which should contains the common

features of P. marinus. The major function of the core metabolic network is still

biomass synthesis, taking more than 44% metabolic reactions. To investigate more

details of the functions and metabolic products of core metabolic network, we force

a certain percentage of the core metabolic network to be connected and active, and

then define the functions according to the byproducts of the active network. Certain

metabolites, besides of biomass compositions, are predicted to be produced as

byproducts by the core metabolic network, including indole, acetate, xanthine,

nicotinamide and some other compounds.

2.5 Discussion and Conclusions

From the results of these metabolic reconstructions, we are able to evaluate the

quality and reliability of this pipeline. The analysis of Escherichia coli K12 MG1655
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indicates the metabolic reconstruction for a well studied organism from this

automated pipeline can be comparable to some of the manually refined metabolic

reconstructions. This is not surprising as the information for those well studied

organisms is also well organized and recorded in databases. Furthermore, to make

the metabolic network reconstruction more accurate, only the metabolic reactions

without undefined parameters and not problematic are included in the pipeline,

making the overall numbers of metabolic reactions contained in the networks

smaller than it could be. One benefit of this filter is to improve the quantitative

predictions, such as phenotype phase plane (PPP), which are sensitive to both

false-negative and false-positive errors in the reconstruction.

We also demonstrated that the sources of input datasets have certain effects to

the final results, even though these effects are alleviated greatly for Escherichia coli

K12 MG1655. The metabolic reconstructions of twelve strains of P. marinus

generated from annotations from different databases are separated clearly

(Supplementary Materials 1), which indicates that the biological properties can be

buried by the quality of annotation methods. Therefore, consistent inputs are

essential for fair comparison of metabolic networks of organisms.

The automated gap filling process in this bioinformatics pipeline mainly

introduces two types of revisions, revising incorrect or inaccurate function

annotations and introducing additional metabolic reactions that are not well

understood. The first type of revisions also includes introducing those reactions that

are not captured in the pre-reconstruction process just because the pipeline does not

recognize the annotation of corresponding enzymes. Some revisions in the second

types can be explained by the existence of orphan enzymes, which are widely

distributed (Lespinet and Labedan, 2005). Because the automated gap filling is an

optimization based process, the optimal predictions may not be the biological

correct ones. To improve the accuracy of the metabolic reconstructions, we can
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integrate multiple reconstructions including optimal and suboptimal solutions from

the pipeline to further generate the final metabolic reconstructions.

Compared to previous automated metabolic network reconstruction methods, like

SEED and GEMSiRV, PEER has three major advantages.

• PEER uses a more curated reaction data. Similar to SEED, we generate the

draft metabolic network by matching the gene annotations of the target

organism to a metabolic reaction database, which was developed based on

KEGG. However, we want to eliminate potential problematic reactions in our

metabolic reaction database (see Section 2.2.1) rather than including as many

metabolic reactions as possible, which is how SEED generate its reaction

database. One reason for this strategy is that the false positive errors in the

reconstructed metabolic network are harder to remove from the draft

metabolic network reconstruction when comparing to false negative errors.

• PEER contains gap filling methods considering gene candidates. The gap filling

method used in PEER is different from that in SEED or COBRA toolbox, which

considers sequence alignment results and biomass yield when fill the gaps. This

improvement can increase the accuracy the gap filling, and provide the best

gene candidates for those metabolic gaps if possible. Another advantage of this

gap filling method is PEER is able to provide gene candidates for the metabolic

gaps as soon as they are identified. Therefore, not only the putative reactions

for these metabolic gaps are provided but also potential target genes in the

genome are predicted, which is important for further manual curation.

• PEER allows customized input data. The interface of PEER allows user to

customize the growth condition, biomass compositions and biomass yield,

which cannot be changed in SEED. Therefore, users can utilize

organism-specific growth condition, nutrients information and experimental
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biomass yield to improve the reconstructed metabolic networks using PEER.

One limitation of PEER is PEER does not provide genome annotation tools as

SEED dose. Thus the quality of genome annotation provided by user can affect the

quality of final results; even through the curation steps in PEER can mitigate some

of errors caused by miss annotations. GEMSiRV or MrBac used BLAST results

rather than gene annotation to avoid these issues, which makes the methods highly

rely on the choice of reference organism. Therefore, unless there is one reference

organism very similar to the target organism and the metabolic network of the

reference organism has been generated accurately, the draft metabolic network

derived by these methods is not trustable before extensive manual curations.

In this work, we demonstrate that through this bioinformatics pipeline we are

able to reconstruct the metabolic networks of multiple strains of the same species,

which can bring extra information about the metabolism of those organisms in

comparison to single organism metabolic reconstructions. The pan and core

metabolic networks of P. marinus are established and their metabolic capabilities

are also predicted, which may provide another scope to investigate these organisms.

Further, recent researches (Freilich et al., 2011) also indicate that by reconstructing

metabolic networks with high-throughput we are able to anticipate potential

interactions among species, including both cooperation and competition. Thus,

automatic metabolic network reconstruction methods that are able to generate

accurate and complete predictions would benefit these fields by providing high

throughput.

In conclusion, we developed a bioinformatics pipeline that can automatically

reconstruct metabolic networks for organisms or microbial communities based on

their genome sequences and gene annotations. A web tool of this pipeline has been

developed. We also test this pipeline with Escherichia coli K12 MG1655 and apply

it to twelve strains of P. marinus. The reconstructed metabolic network of
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Escherichia coli was compared with reference metabolic network and demonstrated

the quality of the automated reconstructed metabolic network. The pan and core

metabolic networks of P. marinus were established. By mapping the variable part

of metabolic networks of the twelve strains with the environmental conditions, we

identified several factors that shaped the metabolism of strains, including light and

sulfur sources; as well as factors that have little effects on differentiating metabolic

networks of the two ecotypes, including nitrogen sources and phosphorus source.

Through these results, we illustrate that high-throughput metabolic reconstructions

pipeline can bring extra information besides what is contained in the input genomes

and annotations.
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Figure 2.4: Phenotype phase plane (PPP)(a) and lines of optimality (LO)(b)
for Escherichia coli K12 MG1655 predicted by automated metabolic network
reconstruction.
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Figure 2.5: a) Metabolic reactions and b) pathway information for twelve strains of
P. marinus predicted by automated metabolic network reconstruction.
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CHAPTER III

Metabolic Network Reconstruction of Acid Mine

Drainage Biofilms

3.1 Introduction

Acid mine drainage (AMD) is a worldwide environmental problem caused largely

by the microbes in the biofilm (Singer and Stumm, 1970). Extensive efforts have been

made to understand the role of this biofilm and the ways to eliminate it. Figure 3.1

demonstrates the interactions between the AMD biofilm with its environment. By

utilizing the oxygen in air and the ions in the AMD solution, the biofilm is able to

gain energy by oxidizing the Fe2+ to Fe3+. The natural oxidization of Fe2+ to Fe3+

is much slower. Therefore the reaction taking place in the solution is accelerated by

those regenerated Fe3+. The energy harvested from the ions oxidization can be used

to nitrogen fixation and carbon fixation, enabling the growth of AMD biofilm in this

environment with poor nutrients.

Growing interests in microbial communities and the power of metabolic network

modeling for single organisms naturally lead to a hypothesis that reconstructing the

metabolic network of a whole microbial community might provide new systems-level

insights of its complex metabolic interactions and functions (Stolyar et al., 2007).

On the other hand, emerging metagenomic sequencing data provide almost all the
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Figure 3.1: The ecological roles of Acid Mine Drainage (AMD) biofilm in AMD
formation.

information necessary for the reconstruction. However, in contrast to genome data

of individual organisms, environmental shotgun sequencing data might not provide

complete genetic information for all the organisms in the communities, which poses

tremendous challenges for network reconstruction based on the metagenomic

sequence. According to the work of Mavromatis et al., over 20% of all the genes in a

dominant microorganism co-existing with others in a community could not be

identified from the metagenomic sequences. For organisms that are not dominant in

the community, even fewer genes can be identified.

One of the AMD biofilm communities (5wayCG site) was sequenced by Tyson

et al. in 2004, and further revised later (Goltsman et al., 2009). Five major species

was identified: LeptospirillunGp II (75%), Leptospirillun Gp III (10%), Ferroplasma

acidarmanus I & II (10%), and Thermoplasmatales archaeon Gp(less than 5%). Table

3.1 summarizes this metagenomic dataset. Subsequent works also provided more

information about the genomes and proteomes of organisms in this or closely related

communities (UBA site) (Ram et al., 2005; Lo et al., 2007; Goltsman et al., 2009).

Due to the relatively simple structure, most of the metagenomic sequences can be

classified into one of the five organisms, and nearly complete genomes of them were
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collected.

Table 3.1: Summary of metagenonic dataset of AMD biofilm. Data collected from
work of Tyson et al. in 2004.

Organism
Population
fraction

Genome
size

Gene
number

Gene with functional
annotation

AMD biofilm 100% 10.8M 12820 7095 (55%)
Leptospirillun Gp II 75% 2.2M 2573 1320 (52%)
Leptospirillun Gp III 10% 2.6M 2877 1564 (54%)
F. acidarmanus I

10%
1.5M 1702 1122 (62%)

F. acidarmanus II 1.8M 2588 1325 (51%)
T. archaeon Gp1 <5% 2.6M 3608 1578 (57%)

The aforementioned Pipeline for Metabolic Network Reconstruction (PEER)

provides us powerful tools for high-quality metabolic network reconstruction from

annotated genomes. To apply this tool for community-wide modeling, we want to

use PEER to generate community-wide metabolic model for AMD biofilm from the

metagenomic datasets, which can predict the intracellular metabolism and

interspecies interactions in the AMD biofilm. This information might provide

information for AMD treatments. More specifically, there are three major objectives

we want to achieve.

• Reconstruct individual metabolic networks for the major organisms in the AMD

biofilm from metagenomic datasets.

• Provide mechanisms about the metabolism of the five organisms in the AMD

biofilm using reconstructed metabolic networks.

• Develop multiple-organism metabolic models to predict the interspecies

interactions that are essential for AMD biofilm formation.
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3.2 Metabolic Network Reconstruction and Modeling

Methods

3.2.1 Metabolic Network Reconstruction for Individual Organisms in

AMD Biofilm

For individual metabolic network reconstruction, we assumed all the organisms

must be able to grow independently in the AMD environment. This assumption was

the same as in PEER. Therefore, we could apply the PEER to the metagenomic

data of the Acid Mine Drainage (AMD) microbial community to derive the

metabolic networks of five major species. All three steps in the PEER were applied

and briefly described here. First, a draft network is constructed using metabolic

reactions whose corresponding enzymes have been identified in the existing

metagenome annotation. At this step, the main data sources include existing

functional annotations of genes and the reaction/pathway database from

KEGG(Goto et al., 1999, 2000, 2002). Because of the complexity of the metabolic

network in a microbial community and the relatively low accuracy of annotation,

this preliminary network is far from completeness, concerning the capability of

fulfilling certain essential metabolic functions.

The subsequent automated curation step is based on the assumption that each

species (or subdivision) requires biomass and energy for growth. Furthermore, all

the metabolites involved must obey mass conservation. At the second step, by

imposing these constraints and other information, such as reversibility of reactions,

our automated curation process, based on the mixed-integer linear programming

(MILP) framework (Floudas , 1995), provides a set of alternative metabolic

networks, each of which contains specific putative reactions that have not been

identified in the existing annotation. Then a comprehensive gene-search process

based on BLAST (Altschul et al., 1990) is carried out, to evaluate the probability of
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existence for these putative reactions in the genome . Here, nucleotide sequences of

the (meta)genome and those from the KEGG database of previously known genes

for each desirable putative reaction are utilized.

Finally, at the last step, the resulted probability estimates are incorporated in

the MILP optimization model to generate the most reliable networks with the

minimum risk of utilizing non-existing putative reactions. The model contains both

binary decision variables, which determine whether to include a reaction in the

network or not, and continuous variables representing the fluxes (reaction rates).

Constraints include mass balances of all metabolites, reversibility of reactions,

availability of nutrients from the environmental, and specifications of network

functionality such as biomass generation. The objective is to minimize the overall

risk of adding putative reaction in the network, which is represented by a function

of the binary decision variables and the probability of each putative reaction

estimated from the previous step.

3.2.2 Prediction of Pathway Probability

To calculate the probability of pathways, parallel solutions with different gap

filling results are integrated. Equation 3.1 demonstrates the way different solutions

integrate, in which nr represents the number of occurrences of reaction r in all

solutions. Applying this strategy, the probabilities of each pathway can be

predicted, which provides more insight than only considering the number of

reactions. The pathway information used for calculation comes from Kyoto

Encyclopedia of Genes and Genomes (KEGG)(Goto et al., 1999, 2000, 2002)

(http://www.genome.jp/kegg/).

Ppathwayi =
∏

r∈i

p1/nr

r (3.1)
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3.2.3 Multiple-organism Metabolic Model of Microbial Community

To integrate the metabolic networks of the five organisms into community-wide

models, we assumed certain molecules can exchange between the organisms. To model

these interactions, all organisms form compartments separately in the model just like

single organism model. Then a list of metabolites can transfer across species through

transport proteins or membrane, which are represented by exchange reactions in the

model. However, only limited metabolites are allowed to exchange between organisms.

This set of exchange fluxes are predicted based on the transporter prediction from

Transporter Automatic Annotation Pipeline(TransAAP) in TransportDB (Ren et al.,

2007).

We assumed the interactions with accurate transporter predictions were more

likely to take place. Therefore, we predicted the metabolic gaps and potential

interaction simultaneously, and modified the objective function as in Equation 3.2,

in which badd is the binary variable indicates metabolic gap and bexchange is the

binary variable indicates uptake flux. The objective function can be divided into

two parts. The first part is the same as in PEER, reflecting the metabolic gap

filling. The second part indicates the penalty for exchange fluxes. The penalty levels

for exchange fluxes(Weightexchange) are determined by the specificity of the

transporter prediction, and the absolute values do not affect the results as another

parameter, overall penalty ratio, is used to balance the two parts in the objective

function.

obj : min
v,badd,ve,bexchange

∑

r∈R

badd(r) ·Weight(r)− ratio ·
∑

re∈Re

bexchange(re) ·Weightexchange(re)

(3.2)

We tested three different values for the penalty ratio, range from 1 to 20. For each

setting, both optimal and suboptimal solutions were collected to predict the potential
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interactions. Because we only give penalties to uptake fluxes, the model emphasizes

more on the uptake than secretion. Therefore, the uptake interactions predicted by

the model were more accurate than secretion. However, for the two-species model,

we only need to predict the uptake interactions.

3.3 Reconstructed Metabolic Networks of Individual

Organisms in AMD Biofilm

3.3.1 Metabolic Network of the Five Organisms

The metabolic networks of the five organisms were generated by PEER. The

pre-assumed function that all the species must achieve is the synthesis of biomass,

which includes twenty amino acids, nucleotides, and some chosen coenzymes. Not

surprisingly, the preliminary metabolic networks, based only on the metagenomic

annotation, is not sufficient for this basic function, and none of them would be able

to grow, which is obviously incorrect as certain strains have already been isolated

and cultivated (Tyson et al., 2005; Baumler et al., 2005). The refined results from

the automated curation process suggest that a significant number of metabolic

reactions are missing in the annotations, which means either these reactions have

been abandoned by the species or were not identified correctly during the

sequencing and annotating process. Metabolic networks reconstructed from the

bioinformatic pipeline provide alternative solutions to understand these missing

reactions (gaps). The optimization based algorithm attempts to fill all the gaps in

the metabolic network with the best putative reactions, of which gene candidates

can be found in the genomes with the lowest p values. As a result, the final

metabolic reconstruction is one with the lowest risk of adding non-existing reactions

according to current knowledge of the AMD community.

The metabolic network of the whole community and the major species of both
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UBA site (Tyson et al., 2004) and 5wayCG site (Goltsman et al., 2009) are

generated by the pipeline, and the summary of the individual networks for UBA

dataset is listed in the Table 3.2. From the results, it is clear that only part of the

metabolic reactions ( 30%) are actively involved in biomass synthesis, which is

similar to the observation made in the metabolic network model of E .coli. The

metabolic networks generated from 5wayCG dataset are in the same situation. Even

through the added reactions only take a small fraction of the overall reactions, they

make up a significant proportion in the active reactions, which implies only some of

the missing components in the whole network have been identified by our algorithm.

These missing components suggest the sequence data and gene annotations still

require careful review before directly usage, especially for these analysis that mainly

rely on local information in the datasets.

Table 3.2: Summary of the individual organism metabolic network reconstruction in
the AMD community in UBA site

Species Proteome
coverage

Reactions
identified in
genome

Putative
reactions

Active
reactions

Active reactions
confirmed by
proteome

Leptospirillum
Gp II

64.6% 574 57 476 421 (88.4%)

Leptospirillum
Gp III

44.9% 585 51 493 373 (75.7%)

The differences between the metabolic networks in different species could be

easily observed, even if we only look at the overall or active reaction number. In

addition, we found if two species are close phylogenetically, their metabolic network

will also be similar, which can be further supported by detailed analysis of these

metabolic networks. Figure 3.2a demonstrates the existence of these active reactions

among the five organisms in 5wayCG dataset. There are four major groups of

reactions that can be identified from the figure: reactions always exist in all the
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species, reactions only exist in the two dominant bacteria, reactions only exist in the

three archaea organisms, and reactions that are missing in the dominant species

(Leptospirillum Gp II) but exist in other species. About 34% reactions belong to

the first group, and about half of those haven’t been identified or specified in the

draft annotations. The most conservative reactions in this group are the reactions

that belong to the basic amino acids biosynthesis pathways, like transaminase

reactions, and the reactions in the central carbon pathways such as

phosphoglycerate kinase reactions. The reactions related to nucleotides biosynthesis

also belong to the first type, such as nucleoside-diphosphate phophatransferase

reactions. Therefore the first group of reactions may be marked as essential

reactions. About 15% of the reactions exist in the two dominant species but not in

the other species, including some reactions involved in the carbon fixation pathways

and sulfur metabolism pathways. Besides that, certain reactions in the purine and

urea metabolism pathways are completely missing in the Leptospirillum Gp II but

exist in Leptospirillum Gp III or other species. It must be pointed out that

reactions in the same pathways may belong to different groups, which might be

caused by the variation of metabolism pathways or cooperation between species.

Figure3.2b is an example of a reconstructed metabolic network, which

demonstrates the complexity of these metabolic networks. From the figure, it is

clear that certain metabolites are involved in many more reactions than others, such

as NADH, ATP and proton, whose concentrations are always well regulated. On the

other hand, there are types of metabolites that only appear in some linear

pathways, which are sometimes the precursors of biomass components.

3.3.2 Network Gap Filling in the Reconstructed Networks

In general, there is more than one network that can complete the required

functions and more than one set of putative reactions could be used to fill the gaps.
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Figure 3.2: Metabolic network of the species in a AMD microbial community. a)
Darkness of each bar represents the probability of existence. Both the reaction
(column) and the species (row) were grouped by dendrogram. b) Metabolic network
of Leptospirillum Gp II with 283 intracellular reactions and 288 metabolites, drawn
by Pajek (Bategeli and Mrvar , 2003).

Furthermore, the gene candidates could be annotated differently, which means these

candidates could be assigned different functions with different probabilities based on

sequence similarities. In this situation, it is inaccurate to annotate these enzymes
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based only on sequence similarity as it treats all the target functions equally, which

is not true when some functions are more desirable according to the functionality

requirements. To deal with this situation, the final choices of the gene candidates

are actually coupled with the choice of metabolic network gaps, representing the

maximization of the overall conditional probability of the existence of the enzymes

(reactions), given the occurrence of the other part of the metabolic network with

required functions. All the network gaps are also demonstrated in Figure 3.2a, in

which the brightness represents the probability of existence.

Table 3.3: Network gaps filling and the gene candidates of metabolic network
reconstruction of individual organisms in the AMD community in UBA site

Organism All missing
reactions

New
annotated

gene

Better
Annotations

Worse Annotations

< 10−30 > 10−30

Leptospirillum
Gp II

57 14 15 14 10

Leptospirillum
Gp III

51 8 18 15 7

Table 3.3 summarizes the network-gap-filling results for 5wayCG dataset and the

gene candidates with low or comparable p-values (Altschul et al., 1990) in the five

major species in the community. As described above, it is still possible that because

the new assigned functions are highly desired certain gene candidates are chosen

whose p-value is larger than the one of the current functions and 10−30. According

to the results more than half of the putative reactions in Ferroplasma acidarmanus I,

II and Thermoplasmatales archaeon Gp1 belong to this type, which means they are

difficult to identify directly from the sequence alignment if the functionality of the

whole network is not taken into account. In Table 3.4, some examples of the gene

candidates are listed, and the details of all the network gaps and gene candidates can
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be found in supplementary materials.

Table 3.4: Examples of the network gaps and the gene candidates of the AMD
microbial community in UBA site

Network gap Gene
candidate

P-value
of

candidate

Previous annotation P-value in
previous

annotation
Reduced
ferredoxin:dinitrogen
oxidoreductase

UBAL2
82410013

9.80E-73 Putative ATP
binding protein,

mrp like

NA

ATP:pantothenate
4‘-
phosphotransferase

UBAL2
80270023

5.90E-18 Transcriptional
acitvator, Baf family

NA

L-Cystathionine L-
homocysteine-lyase

UBAL2
82410105

2.50E-74 Cystathionine
gamma-synthase

1.00E-84

L-arogenate:NAD+
oxidoreductase

UBAL2
81350086

1.80E-87 3-phosphoshikimate
1-

carboxyvinyltransferase

1.0E-115

L-Valine:2-
oxoglutarate
aminotransferase

UBAL2
82410307

5.00E-92 Branched-chain
amino acid

aminotransferase

2.00E-77

ATP:nucleoside-
phosphate
phosphotransferase

UBAL2
82410600

8.40E-83 Uridylate kinase 8.00E-12

Three types of gene candidates have been found in the metagenome: genes which

have not been assigned a function in the existing annotation, genes which could

be assigned new functions with better sequence similarities, and genes that might be

assigned alternative functions with comparable sequence similarities. One explanation

for these three types of candidates is that the gene database used in the annotation

process (e.g. COGs) only contains enzymes from limited organisms (26 in 2004),

which may be phylogenetically far from some species in the community. In that case,

a good sequence match does not guarantee similar enzyme function, which could also

explain the existence of third type candidates. More enzymes and genomes have

been sequenced and understood currently, and using a updated enzyme database in
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candidate searching could make the reconstructed metabolic network more reliable

when dealing with the previously identified metagenomes and annotations. Certain

gene candidates have been assigned similar functions as in the previous annotation but

with different details, such as co-enzymes, which can specify the metabolic reactions.

We also notice that certain gene candidates have been assigned the same functions

as in previous annotation, which indicate these metabolic gaps identified through

our pipeline might not be real gaps just not recognized by the algorithm. This can

be caused by inconsistence of enzyme names and annotation across databases or

annotation methods.

These results show that most of the metabolic network gaps can be filled with

relatively high probability of existence (dark gray bars in Figure 3.2); however, there

are certain selected metabolic reactions cannot be filled with good gene candidates,

which are still reasonable. Unknown enzymes, unexpected mechanisms, and incorrect

metagenome sequencing all may cause these low probability network gaps. Even

though they are the best choices based on current knowledge, these filled gaps should

be carefully reviewed in further studies.

3.3.3 Carbon Flows in the AMD Biofilm

Figure 3.3 illustrates central carbon flows in the dominant organisms,

Leptospirillum Gp II and III, according to the metabolic network reconstructions. It

must be noticed that more than one solution is used to generate these pathway

maps for each organism and we are trying to capture those features that are

consistent among solutions, even through some diversities are also reflected.

The major carbon fixation in Leptospirillum Gp II and III is completed by

reductive carboxylate cycle, which agrees with some recent studies (Goltsman et al.,

2009). However, not all of the reactions are essential for them. There might be a

break between succinyl-CoA and 2-Oxoglutarate, without which the carbon fixation
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Figure 3.3: The carbon flow of the two dominant species in the AMD microbial
community. The seven potential metabolic reactions directly related to carbon
fixation in Leptospirillum groups are highlighted.

can also be made. An alternative carbon fixation may be carried out by formate

dehydrogenase (fdh), which fixes the CO2 into formate and through a long pathway

then fixes another CO2 into glycine. The fraction of this carbon fixation varies from

0 to 20% in different solutions, and the two pathways are connected by pyruvate.

Ferroplasma acidarmanus I and II have similar pathways regarding carbon

fixation when we required them to do so (Figure 3.4.a), which might be inaccurate

when considering interspecies interactions and will be discussed further in

multiple-organism model section. Under the autotrophic assumption, one difference

of Ferroplasma acidarmanus I and II carbon fixation is the carbon fixed through

formate is essential for the organisms and can take up to 50% of the overall carbon
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fixation. Another difference is the gap between succinyl-CoA and 2-Oxoglutarate is

not filled by any solutions, indicating they are abandoned by the organisms. There

are also slight variations of the reactions that transfer acetate to acetyl-CoA. At the

same situation, Thermoplasmatales archaeon Gp1 mainly fixes carbon through the

incomplete reductive carboxylate cycle (Figure 3.4.b). The aceyl-CoA is generated

through a set of reactions belong to lysine biosynthesis and threonine biosynthesis

pathways, which are both essential to meet the amino acid requirement for biomass

synthesis. Compared to the other four organisms in the microbial community, the

efficiency of this type of carbon fixation is very low, which implies that

Thermoplasmatales archaeon Gp1 should rely or partly rely on external organic

carbon sources.

Figure 3.4: The carbon flow of Ferroplasma acidarmanus I and II (a) and
Thermoplasmatales archaeon Gp1 (b). The five potential metabolic reactions
directly related to carbon fixation in Ferroplasma acidarmanus and three in
Thermoplasmatales archaeon are highlighted (Continued on next page).
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Figure 3.4: The carbon flow of Ferroplasma acidarmanus I and II (a) and
Thermoplasmatales archaeon Gp1 (b). The five potential metabolic reactions
directly related to carbon fixation in Ferroplasma acidarmanus and three in
Thermoplasmatales archaeon are highlighted.

3.3.4 Pathway Distribution in the AMD Biofilm

Based on the metabolic network reconstructions of the five species, it is possible

to predict the existence of each active pathway. Furthermore, the network

reconstructions from this pipeline contain two types of reaction, identified and

putative. The later ones may be assigned coefficients representing probabilities,

which should also be considered. The information from multiple solutions of

individual organisms can be integrated and then provides more reliable results. As

shown in Figure 3.5, different pathways have different fractions that are active for

biomass synthesis. Furthermore, the calculated probabilities of these active parts

are quite diverse among species, implying potential interactions between them. All
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the pathways can be divided into three categories, pathways with high probabilities

in all the organisms, pathways with high probabilities in part of the organisms while

medium probabilities for the rest, and pathways with extremely low probabilities in

part of the organisms but with medium or high for the rest. Glutamate metabolism

belongs to the first group and most of essential reactions in this pathway are active

and well identified. There is another type of pathways also belong to the first group,

in which only a small fraction of reactions in the pathways are active. These active

reactions are not likely be able to complete the functions of those pathways but

provide necessary paths for other pathways, like reactions in porphyrin and

chlorophyll metabolism pathway. Both citrate cycle and reductive carboxylate cycle

pathway belong to the second type, which does not mean they are not active in

certain organism, oppositely the result suggests that these pathways maybe active

in all the organisms but some enzymes in this pathway need further identification or

certain variations exist in the pathways. This finding is coincident with the carbon

flow results. Histidine metabolism and valine, leucine and isoleucine metabolism

pathway also belong to the second group, indicating there might be interactions

taking place. The methionine metabolism and lysine biosynthesis pathway belong to

the third group, which suggest one or more organisms might completely rely on the

external supply of these amino acids.

It is interesting that the pathway distributions between the two dominant

species in UBA dataset are much less diverse (Figure 3.6), indicating the major

interspecies interactions in this microbial community may not take place between

the dominant organisms, as their metabolic functions are very similar. The UBA

dataset was collected in the downstream of 5wayCG site. This may explain the

increasing similarity of the two organisms as they are co-evolving along the river.
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Figure 3.5: a)Number of active reactions in pathways of the AMD biofilm. b) Active
metabolic pathway distribution in 5wayCG dataset of AMD microbial community.

3.4 Multiple-Organism Metabolic Modeling of AMD Biofilm

3.4.1 Two-species Model for Major Organisms in the AMD Biofilm

Even through biomass synthesis is a basic function that all the organisms should

complete, it is possible that organisms may rely on external supplies of certain

components from the biofilm, which is also suggested by the pathway distribution

analysis. Mean-while, more information must be taken into account when predicting

this type of interaction in addition to the intracellular metabolic network of each

organism. To achieve this prediction, a multiple-organism metabolic network

reconstruction model is developed, which simultaneously considers the intracellular

metabolic network together with intercellular exchange fluxes among multiple

organisms in the microbial community. One of the major difficulties in this model is
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Figure 3.6: Active metabolic pathway distribution in UBA dataset of AMD microbial
community.

to predict the potential transporter proteins and corresponding specific substrates

list with reasonable confidence level. To get further support for these predictions,

analysis of the transporters and transmembrane proteins in the organisms is made

with specified method (Transporter Automatic Annotation Pipeline(TransAAP) in

TransportDB (Ren et al., 2007)). From the results, more detailed transporters are

predicted, for example, uptake of glutamate, aspartate, and proline in

Leptospirillum Gp II could be supported by finding the amino acid

(glutamine/glutamate/aspartate) transporters and proline/betaine transporter.

Also the cationic amino acid transporter in Leptospirillum Gp III is identified,

which is coincident with the predicted uptake of lysine, arginine and histidine. The

ammonium transporters are found in all the five species, which are necessary for the

predicted relation in ammonium metabolism. Some other transporters whose

substrates have not be specified with enough detail might also be correlated to the

predicted interactions, such as the general amino acid transporters. By evaluating
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all this information, a set of numerical coefficients are defined for all the potential

exchange fluxes (Supplementary Materials S4).

This multiple-organism model was first applied to the two bacterial organisms

Leptospirillum Gp II and III, which account for 80% of biofilm, in both UBA

dataset and 5wayCG dataset. Different from the single organism model, the

intercellular exchange fluxes rather than the intracellular metabolic reactions are

the most important determination variables with more interest. Therefore, the

overall objective function in this method contains two parts, the penalty of adding

uncertain metabolic reactions and the penalty of adding uncertain intercellular

exchange fluxes. As a result, the optimization needs to balance these two parts of

uncertainness and a separate parameter was assigned to represent this compromise.

The prediction of exchange fluxes is partly dependent on this separate parameter,

representing the overall penalty level of exchange fluxes. Thus this parameter

should be able to reflect different factors, including the mass transfer resistance, the

distance between organism clusters and the quality of transporter prediction

compared with intracellular enzyme annotation. Because of the complexity, it is

almost impossible to calculate this parameter accurately. To solve this problem, a

set of penalty levels, distributed in three magnitudes, were arbitrarily set and tested.

Figure 3.7a demonstrates the interactions between the two organisms and the

environment, the results are derived from one solution of 5wayCG dataset in 5 fold

penalty level. To understand these predicted interactions, we also analysis the related

metabolic pathways for these interactions, which can also testify the predictions. Two

examples are shown in Figure 3.7b. From the figure, we can find that the predicted

interactions are caused mainly by the diversities of the metabolic networks. If the

pathway to synthesize one necessary metabolite is more complete in one organism than

in the other one, and at the same time this metabolites can be exchanged between

the organisms, the interaction may take place through this metabolite, which can
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reduce the uncertainty of the metabolic networks. Figure 3.8 is the prediction of

interactions between Leptospirillum Gp II and III at three different penalty levels in

both the two datasets. In all these solutions, every uptake flux requires secretion flux

from the other organism but not every secretion flux has corresponding uptake flux,

which is reasonable because we only consider dominant organisms in this model and

there may be other heterotrophs exist. In addition, we found that the interactions

predicted based on 5wayCG site is more stable than those based on UBA site crossing

the different penalty levels. This finding is coincident with the previous results of

pathway distributions. One explanation is the multiple-organism model will be more

sensitive to the parameter of penalty level when the metabolisms of the different

organisms are more similar, and as consequence, the predicted interactions will be

less reliable as we cannot provide an accurate estimation of the penalty level in most

cases.

Not surprisingly, as the increasing of the penalty levels, fewer interactions are

found. Even through the interactions exist at high penalty level means more

important or efficient for the microbial community, directly relating the penalty

level with confidence level of prediction is incorrect, because ideally there is a “true”

value for the penalty level in a specific system, which means either direction of the

perturbation can introduce false negative or positive errors. In extremely cases,

when the metabolism of two organisms are the same or highly similar, for example

two strains of one genus, a relative high penalty level might still lead to certain

number of putative interactions. According to the results, generally Leptospirillum

Gp II will rely on Leptospirillum Gp III for organic nitrogen supply through

ammonium or amino acids and Leptospirillum Gp III also takes in certain amino

acids, such as tyrosine and lysine. This prediction is coincident with the knowledge

that Leptospirillum Gp III is the only nitrogen fixation organism in the AMD

microbial community(Goltsman et al., 2009; Tyson et al., 2004, 2005). Amino acids
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(a) Interactions between Leptospirillum Gp II/III and the environment

(b) Examples of the interactions and related pathways

Figure 3.7: The interactions in AMD microbial community in 2-organism model.
a) Summary of predicted interactions between the two dominant organisms and
interactions between microorganisms with the environment. b) Pathways related to
three predicted interactions, which can explain the mechanisms for these interactions.
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Figure 3.8: The interactions in AMD microbial community in 2-organism model.
Complete predictions of interactions between Leptospirillum Gp II and III. Left for
UBA dataset and right for 5wayCG dataset.

can also be potential carriers of organic carbon, which was also observed in the

solutions. If these interactions are verified, the two dominant organisms form a

cross-feeding mutualistic relation. Furthermore, according to the solutions, there are

always more interactions than necessary, even through at relatively high penalty

levels. This finding might be explained by the stability of mutualistic communities

is positively related to the species connectivity(Okuyama and Holland , 2008) and

the redundant interactions may improve the stability of the microbial community.

72



3.4.2 Five-species Model for All the Organisms in the AMD Biofilm

To fully capture the structural interactions in this AMD system, a model

containing all the five identified organisms was made. Compared to the

two-organism model, the five-organism model is more complex and requires more

computational effort. On the other hand, because the less abundant organisms may

also play important roles in natural microbial systems, it is still worth employing

five-organism model to explore the interactions among the five organisms. Different

from the simplified case, the interactions in the five organism model are asymmetric

and more metabolites may get involved. A similar strategy was applied to

determine the proper penalty level for interactions (shown in Figure 3.9). From the

figure, it is clear that higher penalty level can reduce nonessential interactions,

which is that same as two organism model. One difference is distinguishing the role

of each organism becomes much more difficult due to the high connectivity between

organisms, which might be true in real cases. Attentions should also be paid to the

unstable interactions observed in the results, which suggests different phenotypes of

one species might have similar roles in the microbial community and all of them

have comparable uncertainness according to current information. This

computational diversity suggests there may be more than one genotype of one

species in the same microbial community, which have been observed in the AMD

microbial community (Allen and Banfield , 2005). As same as found in two organism

model, amino acids are used as carbon source and nitrogen source for some

organisms, on the other hand ammonium is another nitrogen source for organisms

other than Leptospirillum Gp III. The top choices of exchanged amino acids were

predicted from these result, including lysine, tyrosine, and phenylalanine. The

biosynthesis pathways of these amino acids are also distributed diversely in the

microbial community, which are suggested in the pathway distribution analysis.

However, only part of these pathways indicated in previous analysis are finally
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interacted in the multiple-organism model, which are more specific and trustable.

Figure 3.9: Potential interactions among five organisms in the AMD microbial
community of 5wayCG site under three penalty levels in 5-organism model. The
darkness of colors represents the probability of the prediction. For example,
the darkest interactions shown in the highest penalty level are those most likely
interactions predicted by the 5-organism model.

This five-organism model can provide more comprehensive intracellular

metabolic network reconstructions for all the five organisms (Table 3.5). Different

from the reconstructions in the single-organism model, these results take the

intercellular interactions into account when making the reconstruction, during which

the less probable reactions and functions would be eliminated. Thus these
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reconstructions may reflect the real situation better than those from single organism

model. Furthermore, the objective function values in multiple-organism models are

always less than the summation of five objective values in single organism model,

which indicates less uncertainness of the putative reactions. Therefore, the

metabolic networks of five individual species reported in the supplementary

materials are derived from these reconstructions. The pathways that contain these

metabolic reactions provide another scope to interpret the metabolic network at

higher level. We found that certain pathways are conservative in the whole

microbial community, including the purine metabolism and phenylalanine, tyrosine

and tryptophan biosynthesis pathway. However, there are a few pathways that parts

of the pathways are conservative while some other parts only exist in some species.

For example, about one third of the valine, leucine and isoleucine biosynthesis

pathway is mostly contained by the there archaea while the rest part is still

conservative. There is another type of pathways that does not contain major

conservative part in this microbial community, such as glycolysis, pentose

phosphate, and Citrate cycle (TCA cycle) pathway. This also indicates the diversity

of carbohydrate metabolism within this microbial community, which is consistent

with the predicted carbon flow based on single organism model.

3.4.3 Incorporation of Proteome Data in Metabolic Network

Reconstruction

Proteome data can provide further information about metabolism of microbial

organisms, which can partly project the active metabolic reactions. The proteome of

Leptospirillum Gp II has become available and more than 48% of the ORFs identified

in the genome have been confirmed (Ram et al., 2005; Lo et al., 2007). In a more

recently dataset, another AMD microbial community in a different location (UBA

site) (Goltsman et al., 2009) has been sequenced and its proteome dataset has also
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Table 3.5: Summary of community-wide metabolic network reconstructions of the
AMD microbial community in 5wayCG site. The putative reactions and active
reactions of suboptimal solutions within 5% optimality gap were reported.

Species Genome
(Mbp)

Identified
reactions

Putative
reactions

Active
reactions

Exchange
reactions

Leptospirillum
GP II

2.22 569 38(72) 258(306) 44

Leptospirillum
GP III

2.66 549 35(65) 253(285) 44

F.acidarmanus I 1.48 454 60(91) 238(281) 33
F.acidarmanus
II

1.82 468 58(92) 250(290) 46

T. archaeon 2.64 539 42(66) 251(272) 38

become available. In this proteome dataset, the coverage of Leptospirillum Gp II and

Gp III have reached to 64.6% and 44.9%. These identified ORFs provide another

perspective of the metabolism within the microbial community.

This meta-proteome data contains information about the two dominant

organisms in the biofilm, and with even higher coverage of the proteins. Even

through the two organisms are also belong to Leptospirillun sp. Gp II and

Leptospirillun sp. Gp III, we still reconstruct the metabolic networks of the the

dominant species based on the metagenome from the same location using the

descried method, to derive more accurate results. Some details of the metabolic

network reconstruction are listed in Table 3.2. From the results, we notice that the

reconstructed metabolic network is with higher quality than the earlier one, as both

the number of additional reactions and the penalty of adding these reactions are

reduced. We believe this improvement is due to the better gene annotations in the

latest dataset. The two organism model is also applied to this microbial community

to predict the interactions. The reconstructed metabolic networks are compared

with the proteome dataset, and part of the network is confirmed by the proteome

data (Table 3.2). Compared to the coverage of the proteome dataset, the fraction of
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confirmed metabolic reactions is significantly higher (p values < 10−200 in binomial

test), indicating the confirmed reactions are enriched in the reconstructed networks.

This enrichment of identified proteins or reactions partly validates the metabolic

network reconstructed by the pipelines and provides some other indicators about

the quality of the reconstruction, which is hard to evaluate before. In the proteome

dataset the identified proteins have different confidence levels, for example the

number of peptides identified is different. Not surprisingly, the corresponding

enzymes of the active reactions are also distributed in different confidence levels,

and some of these proteins that are highly recommended by the model might only

have one or two peptides been identified, which might be able to provide another

scope of protein identification in proteome dataset. We also summary the number of

peptides that are confirmed in the dataset for those active reactions (Table 3.6).

From the results, it is surprising that the fractions of confirmed putative reactions

are not significantly lower than these of overall active reactions. One explanation

can be there is no difference in difficulties between identifying putative enzymes and

other proteins, even through the former ones are more difficulty in function

annotation.

We investigate the proteins which were observed in the proteome data but not in

the metabolic networks. These proteins may conduct other functions rather than the

biomass synthesis and growth, for example, secondary metabolisms. Part of these

metabolic enzymes are selected and forced to be active in the model, which will lead

the model to predict the other functions besides growth, which are also interesting. By

comparing the byproducts of the new results with the ones without these enzymes,

we are able to predict a list of secondary metabolites or their precursors that are

potentially produced by these organisms. This list contains some signal molecules,

cofactors and even antibiotics. These results indicate another approach that can

connect the proteome data with the metabolism of the organisms, especially for those
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pathways in which the enzymes are expressed in low level and difficult to identify.

Table 3.6: Number of peptides identified in the proteome dataset for the active
reactions

Species Active reactions
for biomass

Confirmed
Active reactions

Putative
reactions

Confirmed
putative
reactions

Leptospirillum Gp
II

476 421 57 47

Leptospirillum Gp
III

493 373 51 40

3.5 Discussion and Conclusions

Metagenomic DNA sequencing as well as proteomic studies provides a huge

amount of data about the metabolism and structure of microbial communities.

However, analysis and synthesis of these data poses substantial challenges in

practical applications. For instance, the accuracy and coverage of the data always

limit further interpretations. Furthermore, the large scale of the dataset makes it

almost impossible to curate manually. Therefore, the automatic curation steps in

our metabolic network reconstruction pipeline are essential for successful

reconstructions. The algorithms used in the pipeline and the multiple-organism

model also allow modifications of the metabolic networks based on the functionality

analysis and gene candidate search results. These two strategies make it easier to

directly employ the metagenomic sequences and proteomic dataset, even though

modifications suggested by these methods not necessarily be true. As discussed

before, the mathematically optimal solution does not guarantee a best biological

prediction, thus during this work a large amount of suboptimal solutions are also

employed to make a final conclusion, which means even if none of these solutions are

absolutely correct deriving a conclusion with high confidence is still possible. By
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analyzing a series of solutions rather than the theoretical optimal one, these

methods are able to capture the major properties of the intracellular metabolism

and intercellular interactions. At the same time, this diversity of metabolic

networks of the same species suggested by the different solutions, which cannot be

eliminated during natural selection, implies that certain variation of the metabolic

network may not hurt the role of the microbe in the microbial community.

As observed in many works, metabolic network reconstruction may also indicate

some inaccurate information within the original dataset, such as improper or

uncertain annotations of gene functions. Different from directly manual curation of

the metabolic network, we defined a rigid procedure for the automatic curation in

the bioinformatic pipeline for metabolic network reconstruction. According to this

algorithm, the pipeline will search for the most probable perturbations of the

metabolic network and then evaluate the overall uncertainness of the new metabolic

network, which is used as penalty in the following optimization process. As a result,

the modifications calculated by the pipeline are the most necessary and likely ones.

The probability of existence, which is used to calculate the uncertainness of

additional reactions, is derived from the sequence alignment results. It is also

possible to combine other gene annotation methods to define a better penalty

parameter, which can be a direction for further research. As long as the evaluation

of uncertainty can capture the major profiles, this algorithm will generate an

acceptable metabolic network with reasonable modifications, which can be further

improved by applying proteomic data.

One basic assumption made in the algorithm is that all organisms need to

acquire all the components of the biomass, either by making them or ingesting

them. However, the detailed biomass composition of natural microbial communities

is not as available as other information, making it is necessary to predict a

reasonable biomass composition. In the AMD project, the predicted biomass
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compositions simply include the common components, such as amino acids and

nucleotides. However, lipids, another major component, are highly specific in

different organisms and not included in current methods. Besides the biomass

components, some other metabolites such as secondary metabolites, which are not

required in the current model, should also be synthesized by the microbial

community. Therefore, the assumed biomass requirement is only a conservative

prediction of the essential functions that the organisms should achieve, which can be

modified if any other functions have been observed and specified. On the other

hand, this assumption does not consider the interactions among organisms, which is

one of the drive forces for us to develop multiple-organism model. Meanwhile, these

metabolic reconstructions under isolated conditions provide important information

for the follow analysis. For example, large varied pathway distributions among

species may indicate a highly interdependent interaction of the whole community.

Proteome data of organisms together with the metabolic network reconstruction

process provides another approach that can integrate information at the whole cell

(or community) level. Compared to genomic sequence data, the proteomic data are

less accurate and with lower coverage, which limits their applications and makes it

impossible to reconstruct whole cell scale metabolic network direct from proteomic

data. Taking the proteomic data as supplementary in the method can avoid the

risk of using incorrect data and provides a cross-examination approach to validate

the predictions, which is important when the direct experimental validations are

difficult. In the current model, we enforced some metabolic reactions that are verified

by the proteomic data to be active in the network, which may still be problematic

if the proteins are identified incorrectly. To avoid this risk, in this work only the

proteins that are confirmed by multiple peptides are considered, which might be an

underestimation of the real case. However, the perturbations allowed by the algorithm

can retrieve some of those metabolic reactions (enzymes) that are ignored due to the
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quality of proteome data. As a result, a conservative prediction is made by the model

when incorporating the proteomic data, which generates the metabolic network that

are capable for both biomass synthesis and some secondary metabolites production.

In addition to the reconstructed metabolic networks of the microbial community,

the interactions among the organisms have also been predicted. These predicted

interactions are focus on the exchanges of major metabolites, which make the

organisms interdependent. Even through the final predictions are partly dependent

on the candidates of metabolites that can exchange, we still can capture some

meaningful results based on the prediction of transporter proteins. A complex

network among the organisms is suggested by the multiple-organism model, and it

become more difficult to identify the roles of different species in the community.

From the results, we also find that the Leptospirillun sp. groups are more like

autotroph while the Ferroplasma acidarmanus groups and Thermoplasmatales

archaeon are more like heterotroph in the view of carbon source. The heterotrophic

growth of Ferroplasma acidarmanus I has been observed (Baumler et al., 2005) and

because there is no other organic carbon supply we can predict the major organisms

in the microbial community Leptospirillun sp. groups to be autotrophic, which is

supported by our prediction. In view of nitrogen usage, the solutions suggest

Leptospirillun sp. Gp.III is the only organism that can fix nitrogen and all other

organisms will make use of the ammonium or some amino acids as nitrogen sources.

This results can also be supported by the experimental results (Tyson et al., 2005),

which demonstrated a strain belong to Leptospirillun sp. Gp.III is the key nitrogen

fixer in the microbial community. The results from the multiple-organism model

also suggest the metabolites that carry these interactions, such as amino acids. Due

to the poor predictions of transporter proteins, the quality of these predicted

interactions are not as good as reconstructed intracellular metabolic reactions, thus

more solutions are required to make a fair conclusion. We also develop a strategy to
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analyze the quality of the prediction by comparing the results under different levels

of penalty for exchanges. The most stable interactions suggested by multiple

solutions can be the most conservative predictions, even through the solutions may

become less connected under very high levels of penalty. We also observed that if

two organisms with pretty similar pathway distributions, the interaction predicted

by the multiple-organism model will become less stable due to the mathematic

property of the model. Thus, we should pay more attentions to these results.

Careful review is needed to make final conclusions about these interactions and

experiments can be designed to examine them directly or indirectly.

In conclusion, we proposed a metabolic network based framework to investigate

the metabolism of individual species and their interactions in microbial

communities, by building metagenome-scale metabolic networks of the whole biofilm

based on metagenomic sequences and annotations. This framework was applied to

datasets of two similar Acid Mine Drainage (AMD) microbial communities from

different locations. Both metabolic network of individual organisms and whole

microbial community have been reconstructed and analyzed. These metabolic

networks provide detailed mechanisms about the cellular metabolism of this

organism. For example, three different types of carbon utilization were identified.

The microbe-microbe and microbe-environment interactions were predicted based

on a multiple-organism model, which is able to consider multiple species

interactively at the same time. Extensive interactions have been observed according

to the results, forming highly interdependent relationships. These results indicate a

potential treatment for AMD formation by blocking these interactions because these

interactions are predicted to be essential for the biomass synthesis of these

organisms. According to the model prediction, amino acids and ammonia are the

major molecules involved in these interactions, which are the potential targets when

blocking the interactions. Proteomic data of the dominant species were also
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incorporated to verify the metabolic network reconstruction. The fractions of

confirmed metabolic reactions in the metabolic reconstructions of the two dominant

species are over 88.4% and 75.7% respectively, which are significant higher than the

coverage of proteomic datasets.
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CHAPTER IV

Metabolic Network Modeling of Gastrointestinal

Microbial Communities

4.1 Introduction

Mammals, including human beings, have co-evolved with complex microbial

communities inhabiting the surfaces and alimentary tract of the host (Ventura

et al., 2009). Researchers predict the number of these germ cells to be about ten

fold of that of their host’s cells. (Hooper et al., 1999). For example, the human gut

environment is considered one of the largest and most dense niches, supporting 1013

to 1014 microorganisms. The number of genes in these abundant microorganisms is

estimated to be at least 100-fold more than that of human genome (Gill et al.,

2006a). This microbiota is believed to be critically important for many gut

functions, including dietary energy harvest, regulation of host fat storage, vitamin

and amino acid biosynthesis, stimulation of intestinal angiogenesis, inflammatory

immune response and protection against pathogens (Petrosino et al., 2009;

Greenblum et al., 2012). These mutually beneficial relationship between the

microbiota and host have been co-evolved and contribute to the fitness of the host

(Hosokawa et al., 2006). However, many of these interactions and conclusions were

taken directly from the macroscopic ecology, which are needed to be formulated
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more precisely at molecular level as well (Brüls and Weissenbach, 2011).

One of the major interests about the gut microbiota is its composition. In order

to measure the composition of population, culture-based methods as well as

culture-independent methods based on amplification or direct sequencing have been

extensively applied to the intestinal microbiota (Ventura et al., 2009).

Metagenomics is one of the culture-independent approaches that is able to provide

researchers with both ribosomal RNA and genome sequences in the niches.

Currently, due to the importance and complexity of gut microbiota, a large number

of metagenomic projects have been focused on this ecosystem (Brüls and

Weissenbach, 2011). These metagenomic projects provide detailed information

about the composition of the gut microbiota. According to these works, several

anaerobic genera constitute the major part of the gut microbiome, including

Bacteroides, Eubacterium, Bifidobacterium, Ruminococcus, Clostridium, and

Faecalibacterium (Eckburg et al., 2005; Turroni et al., 2008). Studies have also

shown that the proportion of Bacteroidetes and Bifidobacteria is relatively stable

within individuals; however, the compositions of Clostridium group show much

higher level of variations (Lay et al., 2005). Researchers also classified the hosts

according to the compositions of gut microbiota. Interestingly, three stable clusters

(enterotypes) have been identified (Arumugam et al., 2011), even though the causes

of this clustering is still unclear.

Several factors that might shape the composition of gut microbiota have been

identified and studied. The genotype of host is one of the factors that can explain

some variations between individuals. For example, different genes involved in immune

system of host can affect the gut microbiota through the host-microbiome interactions

(Ley et al., 2006). The composition of the initial colonizing microbial community is

another important factor, which is evident from animal studies. For example, the

composition of mouse gut microbiota can be controlled by maternal transmission (Ley
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et al., 2005). Another dominant factor shaping the gut microbiota is the diet. The

correlations between diet composition and microbiota composition were generated

from model systems on mice (Faith et al., 2011). Studies also indicate that metabolic

activity of gut microbiota can also be affected by diet (Martin et al., 2008). Other

factors, such pH and antimicrobial compounds, are also important in determining gut

microbiota composition.

Host-microbiome interaction is another interesting research area on this

ecosystem. As mentioned, the host immune system affects the microbiota directly;

however, the immune system of host matures with the gut microbiota. The

microbiota shapes the development of the host immune system beginning at birth

and the developing immune system also shapes the composition of the microbioata

in return (Nicholson et al., 2012). The chemical communications between host and

gut microbiota are essential for these interactions. Regarding metabolism, organisms

composing the microbiota alter their metabolic networks resulting in co-metabolism

with the host. Many of the products identified in gut are synthesized through these

chemical communication, including short-chain fatty acids (SCFAs), bile acids, and

choline (Peterson et al., 2008). Some of those products directly or indirectly

involved in health disorders of host, such as obesity and inflammation (Hooper et al.,

2012; Blumberg and Powrie, 2012). Understanding the roles and metabolic functions

of the gut microbiota is therefore crucial to reveal these profound interactions.

Culture-independent metagenomics provides us with not only the information

about microbiota composition but also the genetic information of the organisms.

Therefore, metagenomics became one of the most powerful tools to study the

metabolism of microbial communities. Taking advantage of next-generation

sequencing (NGS) techniques, more accurate and comprehensive metagenomic data

have been collected. This has allowed researchers to answer the questions “what can

the microorganisms do together?” after knowing “what is there?”. For example,
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Candela et al. found the intestinal microbiota is enriched in several metabolism

pathways, including carbohydrate metabolism, energy metabolism, biosynthesis of

short-chain fatty acids, amino acid metabolism, biosynthesis of secondary

metabolism and metabolism of cofactors and vitamins. As part of MetaHIT

(Metagenimics of Human Intestinal Tract) project, the datasets collected by Qin

et al. also indicated a functional group of genes, named as “minimal gut

metagenome”. According to the data, about 45% of the minimal gut metagenome is

present in less than 10% of the sequenced bacterial genomes. More recently,

Greenblum et al. studied the topological variations of the metabolic functions in

human gut microbiome and linked them to community species composition and host

state, e.g. obesity and inflammatory bowel disease. All these works demonstrate the

potential of utilizing metabolic network and modeling in studying gut microbiota.

Currently, two fundamental challenges limit further studies in the metabolism

and metabolic interactions of gut microbiota. The most direct one is the difficulty

in generating high-quality metabolic networks and models at the community level.

Even though there are effective tools and resources that can link the metagenomic

data to functional analysis, e.g. KEGG database and MetaCyc database, accurate

and complete metabolic networks of both individual organisms and whole

microbiome are still missing, mainly due to the complexity of the ecosystem and

scale of data. The second challenge is the lack of tools able to study the metabolism

and metabolic interactions at the community level. Currently, statistical methods

are the most commonly used tools, which normally cannot provide detailed

mechanisms in molecular level.

In Chapter III, we reconstructed the community-wide metabolic networks for

AMD biofilm for metagenomic datasets. To study the model gut microbiome,

transcriptomic data are more frequently collected because the genomic sequences of

the microorganisms in model microbial communities are pre-defined before they are
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inoculated. Therefore, we will present two case studies to demonstrate several

strategies in reconstructing and modeling community-scale metabolic networks for

model microbial communities by integrating genomic and transcriptomic data.

There are three major objectives we will achieve.

• Community-wide metabolic model for a two-species model gut microbial

community by integrating genomic data, growth test results, and

genechip-based transcriptomic data.

• Community-wide metabolic model for a ten-species model gut microbial

community by integrating genomic data and sequence-based transcriptomic

data.

• Prediction of potential interactions between the organisms in model gut

microbial communities.

4.2 Metabolic Network Modeling of a Two-species Model

Microbial Community

4.2.1 Background

The complexity of the natural gut microbial community is one of the major

difficulties in studies of gut microbiota. To simplify the ecosystem, model microbial

communities have been constructed to study specific questions. Gnotobiotic mice

colonized with defined model microorganisms provide these simplified in vivo model

systems. Because the microbiome is developed by inoculating know strains,

complete genome sequences of all the organisms are available. Together with other

detection methods, such as transcriptomics and proteomics, researchers are able to

monitor both composition and metabolism of the microbiota. Mahowald et al.,
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developed a model system with two species and characterized metabolism and

interactions genechip analysis and proteomic analysis.

To represent the human gut microbiota, this two-species model microbial

community contains species from two bacterial phyla, Firmicutes and Bacteriodetes.

These two phyla commonly dominate the gut microbial microbiota (Turnbaugh

et al., 2009). Bacteroides thetaiotaomicron VPI-5482 from Bacteroidetes and E.

rectale ATCC 33656 from Clostridium are the two strains inoculated into the

gnotobiotic mice. According to the genome of B. thetaiotaomicron, it contains a

large repertoire of genes involved in polysaccharide acquisition and metabolism,

including glycoside hydrolases (GHs) and polysaccharide lyases (PLs), myriad

paralogs of SusC and SusD, and related environmental sensors and regulators

(Shipman et al., 2000; Xu et al., 2007). Figure 4.1 demonstrates the numbers of

genes in relative categories for both B. thetaiotaomicron and E. rectale. From the

figure, it is clear that B. thetaiotaomicron is enriched in genes of polysaccharide

related metabolism. This enrichment also indicates the potential interactions of

monosaccharides and other carbon sources from B. thetaiotaomicron to E. rectale.

To study the in vivo interactions of the two organisms, both genechip based

transcriptional analysis and tandem mass spectrometry based proteomic analysis

were applied to both mono-inoculated samples and co-inoculated samples. Table 4.1

summarizes the results of the two sets of data. For both organisms, transcriptional

data have much higher coverage than the proteomic data, and there are only very

few genes that can only be observed in proteomic data. Therefore, expression data

are more appropriate for genome-wide analysis.

The gnotobiotic mice were fed with different diets, low-fat and high plant

polysaccharide chow, high fat and high-sugar Western-style chow, and

corresponding control low fat and high-sugar chow. By comparing the expression

data from the three diets, Mahowald et al. hypothesized that B. thetaiotaomicron
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Figure 4.1: Genes involved in carbohydrate metabolism and energy production for B.
thetaiotaomicron and E. rectale (adapted from Mahowald et al., 2009). Red, enriched;
blue, depleted; darker color P ≤ 0.001 and light color P ≤ 0.05 relative to the average
of all Firmicute genomes.

with enriched PUL-associated GHs functions utilizes complex dietary plant

polysaccharides and distributes carbon sources to E. rectale, which synthesizes a

large amount of butyrate.
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Table 4.1: Summary of proteins detected by mass spectrometry and GeneChip for B.
thetaiotaomicron and E. rectale.

E. rectale B. thetaiotaomicron
Mono-
inoculated

Bi-
inoculated

Total
Mono-
inoculated

Co-
inoculated

Total

Detected by
MS/MS

661 453 680 1608 1367 1687

Detected by
GeneChip

2139 2010 2150 3798 3865 3995

GeneChip-/
MS/MS+ ∗

7 7 8 40 21 23

MS/MS-
/GeneChip+
∗

1608 1638 1603 2280 2569 2357

∗: + means identified in any proteomic datasets or in ≥ 75% of GeneChip datasets.

Provided with comprehensive expression data and annotated genomes, we

believe this 2-species model microbial community is a good model system. With

much simplified structure, we are able to reconstruct the genome-wide metabolic

networks for all the organisms in the microbial community. Further, the expression

data enable us to identify the active metabolic networks in various conditions, e.g.

mono-inoculation or co-inoculation. By specifying these active metabolic networks,

we can predict the potential metabolic interactions between the two organisms,

which are not only determined by the metabolic capabilities but also the metabolic

responses to each other. Therefore, we designed a three-step modeling procedure for

the 2-species microbial community (Figure 4.2). In this model, we first

reconstructed the metabolic networks for individual species using their annotated

genomes and growth test results. Based on these individual metabolic networks, we

build a two-species model, which considers both metabolic gaps and expression

data. This two-species model allows exchange of all the metabolites between the

two organisms. Therefore, in the third step, a two-species model with minimal

exchange fluxes was built. Utilizing this three-step modeling procedure, we can

reconstruct the community-scale metabolic model for this two-species model
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microbial community by integrating annotated genomes, growth test results,

expression data, and transporter predictions. This model is able to predict not only

metabolic capabilities, but also the metabolic interactions and responses of the two

organisms in the gut environment with more detailed molecular mechanisms.

Figure 4.2: Flow chart of three-step modeling procedure for the 2-species microbial
community. The methods used in the three steps are briefly described. Detailed
information is provided in Section 4.2.2.
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4.2.2 Three-step Metabolic Network Reconstruction and Modeling

Method for Two-Species Model

4.2.2.1 Individual Metabolic Networks of the Two Species

The first step in this three-step modeling procedure is reconstruction of individual

metabolic networks of the two species. We applied a modified PEER to reconstruct

the two metabolic networks. We made several modifications based on the algorithms

described in Section 2.2. First, we collected the gene annotations of the two species

from three resources, manual curated annotation (http://gordonlab.wustl.edu/

modeling_microbiota/), RAST automated annotations tools (http://rast.nmpdr.

org/), and annotations in KEGG database (T00122 and T00909, downloaded on Oct-

26,2011). Unsurprising, there are disagreements among the three annotations. The

RAST annotations generated its own gene identifications while the other two datasets

use the same one as GenBank, which contain the locus tags. To compare the three

annotations, we used sequence alignment method to match the genes identified by

RAST with the genes identified in the other two annotations. We removed all the

conflicts among the three annotations, meaning only the annotations that are the

same in the three annotations will be accepted. The reason for this strategy is that

PEER can fill the metabolic gaps caused by inconsistent annotations.

Another modification we made to PEER for this two-species ecosystem was that

we assumed a minimal growth rate (0.05 1/h) on those carbon sources that can be

utilized according to the growth test results. To achieve this, we used one

compartment in the model for each growth condition, which shares the same

metabolic gap filling but do not share the flux values and environmental conditions

(Figure 4.3). Therefore, we were able to find the metabolic network for the

organism which could agrees with the growth test results as accurately as possible.

We collected 14 growth tests on different carbon sources together with the gut
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environmental conditions. We used a simplified biomass compositions to represent

the growth function, which is the same as the biomass composition used in the

metabolic network of Prochlorococcus marinus (Section 2.4).

Figure 4.3: Demonstration of the multi-condition MILP model for metabolic network
gap filling. Red: binary variables, blue: continuous variables, black: parameters

The whole reconstruction process is the same as in PEER. A draft metabolic

network was generated based on the combined annotations. All potential putative

reactions were then predicted based on the multi-condition MILP model for metabolic

network gap filling and evaluated with sequence alignment results. The final metabolic

network was reconstructed using the same multi-condition MILP model for metabolic

network gap filling together with the weight parameters calculated according to the

sequence alignment results. Differently from what was used in PEER, we implemented

these steps with the IBM ILOG CPLEX Optimizer (v12), which performs better than
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XPRESS for large-scale MILP problems.

4.2.2.2 Community-Wide Model of the Two-Species Model Microbial

Community

After the individual metabolic networks were reconstructed, we integrated them

into a two-species model, which contains exchange fluxes between the two

organisms. Furthermore, we utilized the gene expression data to indicate active and

inactive metabolic reactions. Thus, we can not only capture the metabolic

potentials of this model microbial community but also the metabolic responses

between the two organisms in the gut environment. The genechip-based gene

expression data were carried out in both co-inoculation and mono-inoculation

conditions. The absolute values of gene expression level from genechip-based data

for a specific condition cannot accurately identify the activity of gene transcription

due to the varied background signals and non-specific bindings. Therefore, we

utilized the changes of gene expression levels between the co-inoculation and the

mono-inoculation conditions rather than the absolute values in the two conditions.

The active and inactive genes in the two conditions were identified according to

these changes.

We assumed if the gene expression change was more than one fold, then the gene

in the condition with higher expression would be marked as active and the one with

lower gene expression would be marked as inactive. To eliminate the genes with highly

fluctuating expression levels among the biologic replicates, the standard deviations of

fold changes of gene expression were calculate using Equation 4.1 (Emono represents

the expression value in mono-inoculation condition and Eco represents the expression

value in co-inoculation condition).
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σlog(Eco/Emono) = σlog(Eco)−log(Eco)

=
√

(σlog(Eco))
2 + σlog(Emono))

2 (4.1)

If the calculated standard deviations σlog(Eco/Emono) > 0.608 ∗ log(Eco/Emono), we

removed the corresponding gene from the list of differentially expressed gene and the

activity of this gene was not considered due to the low quality of the gene expression

data. The metabolic reactions associated with these genes were marked as the same

activities as the gene.

To consider the active and inactive reactions suggested by genechip data, we

developed a two-species model that considered the co- and mono-inoculation

conditions simultaneous. In this two-species model, the activity of metabolic

reaction was determined by the flux value. We assumed the active reactions carry

flux more than 1 mmol/(gDCW · h). To work with MILP framework, the

relationship was linearized with two binary variables as shown in Equation 4.2 (vr is

the reaction flux, P (r) and N(r) are the binary variables representing whether vr is

positive or negative).

vr ≥ P (r)− 1000N(r)

vr ≤ (−1)N(r) + 1000P (r)

1 ≥ P (r) +N(r) (4.2)

We assumed the minimal flux for active reactions is 1 mmol/h/g DCW in this two-

species model. Therefore, if reaction r is active, P (r) +N(r) = 1; otherwise, P (r) +

N(r) = 0. In order to utilize the reaction activities predicted from genechip data,
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the objective function in this two-species model was divided into two parts. The first

part was the metabolic gaps, which is same as the objective function in the individual

metabolic network reconstruction model. The second part was the agreement of

the reaction activities predicted by model versus calculated from expression data.

Equation 4.3 is the formula of this two-part objective function, which contains a

ratio parameter to balance the two parts of the objective function. The parameters

IActive(r) and IInactive(r) indicate whether the reaction is predicted to be active or

inactive according to the expression data. For reactions lacking activity data, the

two parameters were set to zero.

obj : min
v,badd,P,N

ratio ·
∑

r∈R badd(r) ·Weight(r)

−
∑

r∈R [(P (r) +N(r))IActive(r)− (P (r) +N(r))IInactive(r)] (4.3)

The ratio parameter in the equation balances the two parts of the objective

function. For lower values of this parameter, the model will emphasize more the

expression data compared to the metabolic gaps. When the ratio parameter is set to

higher level, the model fills less metabolic gaps and the agreement between

expression data and model prediction is reduced. Three different level of the ratio

parameters were tested and combined. The discovery rate of each putative reaction

under one ratio setting was calculated based on the suboptimal solutions within 5%

optimality gaps. Only the putative reactions discovery rates with higher than 50%

in at least two ratio settings were considered. The active and inactive reactions for

both mono- and co-inoculation conditions were calculated using the model by fixing

these selected putative reactions.
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4.2.2.3 Prediction of Potential Interactions in Microbial Community

In addition to the community-wide metabolic network reconstruction and

reaction activity prediction, we applied a two-species model with minimal uptake

fluxes to predict potential interactions. In this two-species model, the metabolic

gaps were fixed according to the results generated by the two-species model that

balances expression data and putative reactions. The reaction activities were also

derived from the co-inoculation condition results. The objective function of the new

two-species model is minimization of uptake fluxes as shown in Equation 4.4, in

which Iuptake is the binary variable indicating whether the corresponding uptake

reaction is active and weightuptake is the weight for the uptake reaction.

obj : min
v,ve,Iuptake

∑

re∈Re

Iuptake(re) ∗ weightuptake (4.4)

We tried to identify the interactions that were necessary due to growth

requirement or expression data. The objective function (Equation 4.4) can eliminate

unnecessary uptake reactions, which enables us to predict the most desired

interactions. The weightuptake used in the objective function reflects the probability

of the uptake reaction, which is predicted based on transporter predictions. We

utilized the data in TransportDB (http://www.membranetransport.org/) to

identify transporter. Only the transporter prediction of B. thetaiotaomicron was

identified in the TransportDB. For metabolites associated with identified

transporters, the weightuptake was set to 0.1. For metabolites associated with

transporters not identified in B. thetaiotaomicron, the weightuptake was set to 0.9,

while if no transporters are associated, the weightuptake was set to 1. Therefore, the

parameter weightuptake can help the model identify necessary interactions that are

associated with transporter predictions.
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4.2.3 Results

4.2.3.1 Individual Metabolic Network Reconstruction

We used the multi-step method to reconstruct the metabolic network of this two-

species gut microbiome utilizing the genome sequences; three annotations from KEGG

database, RAST automated annotation tool and authors’ manual annotations; growth

phenotypes on carbon sources; expression data of gut microbiome in individual and

mixed inoculation conditions. By integrating these data and information, we were able

to reconstruct the most plausible metabolic networks for Bacteroides thetaiotaomicron

and Eubacterium rectale, together with their active metabolic reactions in the gut

environment. Table 4.2 provides a overview of the reconstructed metabolic networks.

Table 4.2: Summary of the reconstructed metabolic networks of B. thetaiotaomicron
and E. rectale.

Species
Genome size
(Gene)

Identified
metabolic
reactions *

Putative
metabolic
reactions

Total
metabolic
reactions

B. thetaiotaomicron 6.3Mbp (4917) 681 69 750
E. rectale 3.4Mbp (3693) 538 74 612
∗: Based on the annotations that are consistent in all the three annotations.

From the results, we found B. thetaiotaomicron has a larger genome than E. rectale

and the metabolic network of B. thetaiotaomicron is also larger, this translates into a

higher number of identified metabolic enzymes in B. thetaiotaomicron. Furthermore,

E. rectale has a higher percentage of putative reaction (12%) than B. thetaiotaomicron

(9%). This finding indicates that either the annotation of E. rectale genome is of

poorer quality than the annotation of B. thetaiotaomicron, or the metabolism of

E. rectale is different from that of known organisms. Because we only used the

annotations that are consistent in all of the three annotations, we might be able to

evaluate the quality of the annotations by comparing the annotations from different

sources. Table 4.3 lists the number of annotated genes in the three sets of annotation
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and the comparison between them. It is clear that author’s annotation contains more

annotated genes and both KEGG and RAST annotate fewer genes. Furthermore,

the annotated genes in RAST annotations of E. rectale is much less than that of the

other two annotations, which might explain the higher number of metabolic gaps in

the metabolic network of E. rectale.

Table 4.3: Comparison of the gene annotations from author’s annotation, KEGG
annotation and RAST annotation.

Species
Author’s
annotation

KEGG
annotation

RAST
annotation

Consistent
annotation
in 3
annotations

B. thetaiotaomicron 2290 1094 804 424
E. rectale 1818 1055 571 333

We classified the metabolic reactions according to the pathways they belong to,

as shown in Figure 4.4. Purine and pyrimidine metabolism pathways are the most

abundant pathways, which is not surprising. The third abundant pathway is the

galactose metabolism pathway, which is relevant to polysaccharide and

monosaccharide utilization. This observation is in agreement with the functional

genome analysis of the two species, which indicates that both of the two organisms

have many genes involved in acquisition and utilization of poly- and mono-

saccharide (Mahowald et al., 2009). We also found that E. rectale has more putative

reactions (7 reactions) in glycolysis/gluconeogenesis pathway than B.

thetaiotaomicron (2 reactions), some of which are essential for certain carbon

sources utilization. B. thetaiotaomicron has much more metabolic reactions in

pentose and glucuronate interconversions pathway. Many of these reactions are

involved in pectin utilization. In human nutrition, pectin is one of the most

important sources of dietary fiber which is almost completely utilized by the gut

microflora (Titgemeyer et al., 1991; Dongowski et al., 2000). B. thetaiotaomicron is

one of the organisms that can utilize pectin (Dongowski et al., 2000) while E. rectale

100



cannot (Mahowald et al., 2009), which can explain why B. thetaiotaomicron

contains more metabolic reactions in pentose and glucuronate interconversions

pathway. Interestingly, E. rectale has more metabolic reactions in porphyrin and

chlorophyll metabolism, even though the reason is still unknown.

Figure 4.4: Pathway analysis of the reconstructed metabolic network of Bacteroides
thetaiotaomicron and Eubacterium rectale. Ordered by the abundance of the
pathways.

B. thetaiotaomicron and E. rectale have different capabilities in terms of carbon

source utilization, as studied by Mahowald et al.. Table 2 lists the experimental

101



growth phenotypes together with the model predictions based on the reconstructed

metabolic networks. According to the table, there are only two false positive

predictions and no false negative predictions in the simulated results (accuracy is

93%). However, according to the work of Tannock , B. thetaiotaomicron is capable

of utilizing cellobiose, which is consistent with our model prediction.

Figure 4.5: Growth phenotypes of B. thetaiotaomicron and E. rectale on different
carbon sources. BTH: Bacteroides thetaiotaomicron, ERE: Eubacterium rectale. Two
false positive predictions are highlighted.

4.2.3.2 Metabolic Network Modeling with Expression Data

According to the expression data, we are able to predict the active metabolic

networks for B. thetaiotaomicron and E. rectale in both mono- and co- inoculation

conditions. As described in the methods, we set the threshold to 1 fold change to

distinguish the active and inactive genes. By balancing the agreement of expression

data and penalty of putative reactions we are able to determine the active and

inactive parts of the two metabolic networks. Table 4.4 summarizes the agreement
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of expression data of the model results. The accuracy of the model prediction

ranges from 63% to 72%, the false positive error and false negative error contribute

equally to the overall accuracy, indicating there is no bias to either of the two errors

in the model.

Table 4.4: Summary of the agreement of model prediction with expression data.
BTH: B. thetaiotaomicron , ERE: Eubacterium rectale. Mixed: co-inoculation, mono:
mono-inoculation.

Inoculated
Species

Active
Reaction

True
Positive

False
Positive

True
Negative

False
Negative

Accuracy

Mixed (BTH) 350 38 3 13 17 0.72
Mixed (ERE) 282 31 18 31 16 0.65
Mono (BTH) 297 7 17 38 9 0.63
Mono (ERE) 242 31 16 31 18 0.65

We found the accuracy of the model prediction is not sensitive to the penalty

parameter, indicating most of the disagreements cannot be fixed by simply adding a

few putative reactions. We mapped the two types of errors into pathways and the

most abundant pathways are shown in the Figure 4.6. Seven metabolic reactions in

arginine and proline metabolism pathway are predicted to be active in

mono-inoculated condition but suggested to be inactive according to expression

data. Most of these reactions are involved in urea cycle, which may be explained by

the nitrogen cycling between gut microbiota and the host that is not considered in

our model. According to the figure, the model predicts the metabolism of E. rectale

less accurately than that of B. thetaiotaomicron, which is reasonable because the

metabolism of B. thetaiotaomicron is better understood.

Besides these metabolic reactions with significant changes of corresponding gene

expressions, the active fraction of each pathway was also calculated (shown in

Figure 4.7). It is interesting that the pathway active states are clustered according

to inoculation status rather than species. This clustering indicates that the

environmental conditions of the gut microbiota shape the metabolism of the
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Figure 4.6: False positive and negative predictions of the model. BT: Bacteroides
thetaiotaomicron; ER: Eubacterium rectale; Mix: co-inoculated; Iso: mono-
inoculated.

microbes in the microbiome. For riboflavin metabolism and phenylalanine, tyrosine

and tryptophan biosynthesis pathways, both organisms have lower active fractions

in co-inoculated condition compared to mono-inoculated condition. This

phenomenon can be explained by the interactions between the two organisms, which

allow the two to cooperate. In contrast, certain pathways were up-regulated in the

co-inoculated condition, including folate biosynthesis, Nicotinate and nicotinamide

metabolism and fatty acid metabolism in Eubacterium rectale. These changes reflect

the response of E. rectale to B. thetaiotaomicron. For example, the biosynthesis of

short chain fatty acid (SCFA) is up-regulated in E. rectale when B.

thetaiotaomicron presents, such results have been observed by Mahowald

et al.(2009).
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Figure 4.7: Pathway activities in both mono- and co- inoculated conditions. BTH:
Bacteroides thetaiotaomicron; ERE: Eubacterium rectale; Mixed: co-inoculated; Iso:
mono-inoculated.

4.2.3.3 Interaction Predictions

Utilizing reconstructed community-wide metabolic network of this gut

microbiome, we were able to predict the active metabolic reactions according to the

transcriptome data. The metabolic networks and the active metabolic reactions

were further used to predict potential necessary interactions between the two

species. These interactions were predicted based on not only the biosynthetic

capability of the microbiome (represented by metabolic networks) but also their

cellular regulations (represented by transcriptome). Therefore, these predicted
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interactions reflect either the metabolic synergy between the two bacteria or the

metabolic responses to each other. Figure 4.8 demonstrates the interactions

predicted by our model, the darkness of color indicates the probability of the

interaction.

Figure 4.8: Interactions between E. rectale and B. thetaiotaomicron predicted by
2-species model. The grayscale indicates the probability of the predictions.

One of the predicted interaction between the two species is E. rectale providing

stachyose to B. thetaiotaomicron. According to the work of Salyers and Pajeau,

stachyose can function as growth enhancer for B. thetaiotaomicron. The microarray

data indicates the expression of stachyose synthase(GH36, EUBREC 0489 and

EUBREC 3387), which is involved in the synthesis of stachyose in Eubacterium

rectale. The direct enzyme utilizing stachyose in B. thetaiotaomicron is

alpha-galactosidase (BT 3065 and BT 3133), which can covert stachyose to raffinose

and D-galactose. These genes are also expressed according to the expression data.

All these experimental data support the hypothesis that E. rectale synthesize

stachyose for B. thetaiotaomicron.

106



Another interaction predicted by the model is B. thetaiotaomicron providing

pantothenate to E. rectale. Pantothenate is one of the vitamins used in cultivation

of anaerobic faecal flora (Wensinck et al., 1981; Van de Merwe et al.; Faith et al.,

2011). According to expression data and reconstructed metabolic networks, enzyme

involved in pantothenate synthesis, pantothenate synthetase (BT 4308) and

2-oxopantoate reductase (BT 3117) in B. thetaiotaomicron are expressed.

Pantothenate kinase (EUBREC 0060) and phosphopantothenoylcysteine

synthetase(EUBREC 0828), the enzymes involved in utilizing pantothenate in

Eubacterium rectale, are also found to be expressed in co-cultivation conditions.

Therefore it is reasonable to hypothesize the B. thetaiotaomicron provides

pantothenate to Eubacterium rectale.

Carbon dioxide or bicarbonate was predicted to be transferred from B.

thetaiotaomicron to Eubacterium rectale. Research indicate that E. rectale has the

capability of fixing carbon dioxide to produce propionic acid through dicarboxylic

pathway (Purwani et al., 2012). According to the metabolic networks, the enzymes

involved in fixing CO2 are phosphoenolpyruvate carboxykinase (EUBREC 2002)

and acetyl-CoA carboxylase (EUBREC 3141). Both of the two were expressed in

the co-inoculation conditions. Therefore, carbon dioxide is another potential

interaction between the two organisms in the gut environment, which was also

predicted by Mahowald et al..

Both false positive and negative prediction of interactions are possible due to the

inaccuracy of either reconstructed metabolic networks or expression data.

Therefore, the predicted interactions by the two-species model provide researchers

with a list of candidates of metabolic interactions and should be reviewed in further

research. The interactions predicted by the two-species model provide possible

mechanisms to explain the observations in the experiments, especially for those

expressed enzymes that catalyze reactions requiring metabolites that cannot be
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synthesized by the organism in the experimental condition. Metabolic response to

other organisms is another reason that can cause these interactions, e.g. the

inactivation of certain enzymes in the expression data. Thus, this two-species model

can be used as a framework to interpret these gene expression data.

4.3 Metabolic Network Modeling of a Ten-species Model

Microbial Community

4.3.1 Background

To further study the relationships between diets and the structure of gut

microbial communities, a ten-species model community has been established (Faith

et al, 2011). By inoculating 10 sequenced human gut bacteria into gnotobiotic mice

and tracing the changes in response to the diets, the authors were able to develop a

statistical model that can predict over 60% of the variations in the population

structure changes. The 10 sequenced human gut bacteria can be divided into four

classes: i) bacteria that can utilize complex dietary polysaccharides, including B.

thethaiotaomicron, B. ovatus and B. caccae; ii) bacteria consuming oligosaccharides

and simple sugar, including E. rectale, M. formatexigens, C. aerofaciens, and E. coli;

iii) bacteria that can ferment amino acids, including E. coli and C. symbiosum; iv)

H2-consuming bacteria, including D. piger and B. hydrogenotrophica.

To study the changes in structure of this ten-species model community, sequence-

based transcriptome was applied to measure the gene expression levels. Table 4.5

lists the coverage of the transcriptome for these ten species. Besides E. rectale, the

coverage of the transcriptomes for the remaining nine organisms were higher than

60%. The inoculated strain names are also listed in the table. According to these

sequence-based transcriptomes, the expressed genes were predicted by the number

of reads for all the genes. Both unique reads and non-unique reads were counted.
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However, the non-unique reads only contribute to the gene expression levels partly,

which is proportional to the number of unique reads of the corresponding genes.

After normalization, if more than 64 sequences have been identified for one gene, this

gene is considered as expressed. Compared to the genechip based expression data,

sequence-based expression is more reliable in terms of absolute value of individual

gene expressions. Therefore, the sequence-based transcriptomes can be applied to

predict the gene activity for individual conditions and datasets.

Table 4.5: Strains inoculated in the 10-species model community and the
transcriptome coverages. The gene with more than 64 sequencing reads were
considered as expressed.

Species
Gene
identified in
transcriptome

Total genes in
genome

Transcriptome
coverage

B. thethaiotaomicron VPI-5482 3696 4498 77%
B. ovatus ATCC 8483 3785 5536 68%
B. caccae ATCC 43185 3375 3855 88%
E. rectale ATCC 33656 453 3621 13%
M. formatexigens DSM 14469 3173 4896 65%
C. aerofaciens ATCC 25986 1779 2367 75%
E. coli K-12 MG1655 2969 4132 72%
C. symbiosum ATCC 14940 3141 5128 61%
D. piger GOR1 1660 2487 67%
B. hydrogenotrophica DSM 10507 2612 3869 68%

Utilizing a three-step modeling procedure that was similar to the one used in

the two-species model microbial community, we could reconstruct the community-

wide metabolic network for this ten-species model microbial community (Figure 4.9).

We made three major modifications to fit the data of ten-species model microbial

community. First, there were no comprehensive growth test results for the ten species

inoculated. Therefore, in the first step, the growth model was only applied in the

diet environment. Second, the sequence-based expression data can provide accurate

prediction of reaction activity and there were no data considering mono-inoculated
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cases. To make use of these expression data, only the co-inoculated condition was

considered. Third, in the last step, the ten-species MinExchange model did not fix the

reaction activities predicted in the second step. In opposite, the reaction activity was

still a variable which was considered in the objective function together with potential

exchanges.

4.3.2 Three-step Metabolic Network Reconstruction and Modeling

Method

4.3.2.1 Metabolic Reconstruction for Growth Model of the Ten Species

The first step in this three-step modeling procedure is the reconstruction of

metabolic networks for the growth model of the ten species. First, we collected the

gene annotations of the ten species from three resources, manual annotations

(http://gordonlab.wustl.edu/modeling_microbiota/), RAST automated

annotations tools (http://rast.nmpdr.org/), and annotations in KEGG database

(http://www.genome.jp/kegg/). Only the annotations that were consistent in all

three datasets were selected, which was the same as in two-species model. Because

there were no extra growth test results, we applied the growth requirement only to

the diet conditions. There were numbers of similar diets with different amounts of

nutrients used in the ten-species model microbial community; however, the

compositions of these diets were not changed. Therefore, we can identify the

potential nuterients from the controlled diet.

We assumed all metabolites were freely exchanged in the growth model, which

will be refined in the third step. We made this assumption because there were no

individual inoculation studies in the work of Faith et al. All the other assumptions

and methods were exactly the same as in the two-species model (Section 4.2.2).
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Figure 4.9: Flow chart of three-step modeling procedure for the ten-species microbial
community. The methods used in the three steps are briefly described. More details
are in Section 4.3.2

4.3.2.2 Ten-Species Model Considering Sequence-based Expression Data

In the second step, the sequenced-based expression data was used to further

refine the metabolic networks of the ten species. Equation 4.2 demonstrates the
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constraints that determine the activity of reactions. Only co-inoculation condition

was considered, the same as in the first step. All the other constraints used in this

step were the same as in two-species model(Section 4.2.2.2).

We made an assumption that if a reaction with higher expression level, it is more

likely to be active in the tested condition. Therefore, a different objective function was

developed to fit the new expression data. Equation 4.5 is the objective function. In

the objective function, P (r) and N(r) are the binary variables representing whether

vr is positive or negative; badd(r) indicates whether reaction r is a putative reaction.

Weight(r) is the penalty level of putative reactions as defined in Equation 2.1.

obj : min
v,badd,P,N

ratio ·
∑

r∈R

badd(r) ·Weight(r)−
∑

r∈R

(P (r) +N(r)) ·D(r) (4.5)

In this objective function, D(r) is a new parameter that is correlated to the

expression level. Due to the large range of expression level, D(r) must be

normalized. Here we chose a stable definition, 10th-quantiles (deciles) of the

expression value (Equation 4.6). Therefore, if the gene catalyzing reaction r is

among the highest 10% average expression level, D(r) is set to 1. If the reaction r

cannot be identified in the expression data, D(r) is set to 0. The ratio parameter in

the objective function balances the two parts in it. With a higher ratio value, the

model will emphasize the metabolic gap filling, and oppositely, the model will

emphasize the expression data for lower ratio value. In this work, four values of the

ratio parameter were chosen (0.08, 0.8, 8, and 8). The discovery rate of each

putative reaction under one ratio setting was calculated based on the suboptimal

solutions within 5% optimality gaps. Only the putative reactions with higher than

50% discovery rates in at least two ratio settings were considered. The active and

inactive reactions for both mono- and co-inoculation conditions were calculated
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using the model by fixing these selected putative reactions.

D(r) = deciles(Expression(r)) (4.6)

4.3.2.3 Prediction of Potential Interactions in Microbial Community

To predict potential interactions, we assumed all the metabolites can be exchanged

across the species and if the exchanged molecules are required either because of the

expression data or the growth requirement, we considered them as minimal required

exchanges. The MinExchange model used in the two-species model was modified and

applied to the ten-species model microbial community. The major modification from

the 2-species model was MinExchange does not fix the active reactions that were

predicted in the second step. One reason for this modification was the interactions

in the ten-species model were much more complex than in the two-species model.

To capture the most significant interactions, we relaxed the constraints on reaction

activity and balanced this relaxation with the number of interactions. Therefore,

the objective function for this MinExchage model contains two parts (Equation 4.7).

In this objective function, Iuptake is a binary variable indicating whether re is an

uptake flux. weightuptake(re) represents the probability of the uptake flux, which was

calculated based on transporter predictions.

obj : min
v,badd,P,N,Iuptake

ratio ·
∑

re∈Re

Iuptake(re) ·Weightuptake(re)−
∑

r∈R

(P (r) +N(r)) ·D(r)

(4.7)

We assumed that the interactions with more specific transporter prediction in the

genome or the genome of similar organisms in the phylogenetic tree will be more

likely to take place. To predict this probability, we used TransportDB (http://www.

membranetransport.org/) for transporter predictions. However, only part of the ten
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species has been analyzed by TransportDB. According to the assumption, to predict

the transporters for the strains not in TransportDB, the Weightuptake parameters

were calculated based on some strains in TransportDB close to the target strains

in the phylogenetic tree. Table 4.6 lists the strains that were chosen to calculate

the weight parameters. The minimal byproducts can be predicted using the same

methods, which gives penalty to secretion rather than uptake.

Table 4.6: Strains in TransportDB used forWeightuptake calculation in the ten-species
model. If more than one strains was chosen, theWeightuptake was calculated according
to all the transporters identified in the reference strains.

Species in ten-species model Strains for Weightuptake calculation

B. caccae ATCC 43185
G. forsetii KT0803 and P. vibrioformis
DSM 265

B. ovatus ATCC 8483
G. forsetii KT0803 and P. vibrioformis
DSM 265

B. thetaiotaomicron VPI-5482 B. thetaiotaomicron VPI-5482

B. hydrogenotrophica DSM 10507
E. faecalis V583 and C. acetobutylicum
ATCC 824

M. formatexigens DSM 14469
E. faecalis V583 and C. acetobutylicum
ATCC 824

C. symbiosum ATCC 14940
E. faecalis V583 and C. acetobutylicum
ATCC 824

C. aerofaciens ATCC 25986 B. longum NCC2705
E. coli str. K-12 substr. MG1655 E. coli str. K-12 substr. MG1655

E. rectale ATCC 33656
E. faecalis V583 and C. acetobutylicum
ATCC 824

D. piger GOR1 D. piger GOR1

4.3.3 Results

4.3.3.1 Individual Metabolic Networks of Microbial Community

We used the three-step modeling procedure to reconstruct the metabolic

networks of all the ten species simultaneously. Two types of automated curations

were carried out in the first two steps, including growth requirements and expression

data curations. In the second step, four ratio parameters were utilized, from a low
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penalty level to a high penalty level. We integrated the solutions under different

level of penalty and generated the final metabolic networks for all the ten species.

Table 4.7 contains the information of the final metabolic network reconstructions.

Table 4.7: Summary of the reconstructed metabolic networks of the ten species in
the model microbial community.

Species
Number of
genes

Identified
reaction

Putative
reaction

B. thethaiotaomicron VPI-5482 4498 880 75 *
B. ovatus ATCC 8483 5536 901 19
B. caccae ATCC 43185 3855 861 19
E. rectale ATCC 33656 3621 688 76 *
M. formatexigens DSM 14469 4896 778 26
C. aerofaciens ATCC 25986 2367 665 25
E. coli K-12 MG1655 4132 1162 17
C. symbiosum ATCC 14940 5128 847 20
D. piger GOR1 2487 687 26
B. hydrogenotrophica DSM 10507 3869 775 26

*: Metabolic gaps identified in 2-species model were included

Besides the two species studied in the two-species model, the number of putative

reactions for one species is around 3%. However, this number can simply increase to

10% when decreasing the penalty level. These results indicate that part of the

reactions identified in the expression data are isolated from the rest, or belong to

incomplete pathways. Thus, more putative reactions are needed to activate these

reactions. In this work, these isolated reactions were not considered because the

metabolic networks integrated from four penalty levels were very close to the

solutions with high penalty level. In all of the putative reactions, 19.5% of them can

be found in one of the annotation. Therefore, these metabolic gaps are caused by

inconsistent gene annotation. Another 33.4% of the putative reactions can be

assigned to gene candidates with P value less than e−30. Figure 4.10 demonstrates

the most abundant pathways of the metabolic networks for the ten species,

including putative reactions. Purine metabolism, pyrimidine metabolism, and

nucleotide sugars metabolism are the most abundant pathways for all of the ten
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species. Across the species, the differences in pathway level are almost neglectable.

This similarity in abundant pathways indicates that these functions are all essential

for these organisms.

4.3.3.2 Metabolic Network Modeling with Expression Data

The sequence based expression data provide direct information about the

activity of individual genes and associated reactions. In the work of Faith et al

(2011), a threshold (64=26) was chosen to identify active genes. This threshold was

decided arbitrarily and may not be accurate for all the genes and organisms in the

microbiome. To avoid the arbitrarily determined threshold, the 10th-quantiles were

used to indicate the activity of the genes. Four values of the ratio parameter, from

lower penalty to high penalty of metabolic gaps, were tested. As shown in Figure

4.11, the fractions of active reactions in the reactions predicted to be active by the

expression data decreased when the ratio parameter was increased. This is because

the model emphasizes more metabolic gaps than gene expression data. After

integration of the four sets of solutions, the final prediction is between the solutions

from ratio equal to 0.8 and 8. Furthermore, we found that the active fractions from

the top 10% to 80% of the highly expressed reactions did not decrease significantly,

but the active fractions for the 10% lowest expressed reactions was significantly

lower than the rest. These results indicate that there was no bias in the model for

the reactions with expression above one threshold. This finding was consistent with

the assumption Faith et al made. Compared to the results obtained without

curation of gene expression data, all the four sets of results have much higher active

fraction for all active reactions. Therefore, the curation of gene expression was

essential in this community-wide metabolic model.

Based on the model prediction after curation of gene expression data, we can

calculate the activities of pathways for all the ten species in the gut environment
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Figure 4.10: The most abundant metabolic pathways in the metabolic networks of
the ten species. Putative reactions (metabolic gaps) are also included. The species
are ordered by the total number of reactions in these pathways.

(Figure 4.12). From the results, we found that the purine and pyrimidine

metabolism pathways were the two pathways with the highest number of active
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Figure 4.11: Fractions of predicted active reaction in the total active reactions
accroding to expression data. The results predicted under four ratio parameters
were shown. The results without gene expression data are provided for comparison.

reactions, which was consistent with the total number of reactions identified in the

microbial community. However, the average active fraction for these two pathways

were significant lower than some other pathways, such as glycolysis, phenylalanine

tyrosine tryptophan biosynthesis, and valine, leucine and isoleucine biosynthesis

pathways. these results indicate the most active pathway in the gut microbiota are

those related to carbon utilization and amino acid metabolism. Compared to the

pathway distributions of all the metabolic reactions, including both active and

inactive, fatty acid biosynthesis, folate biosynthesis and pantothenate and CoA

biosynthesis biosynthesis were new in this active pathway list. Therefore, these

pathways play important roles in the gut microbial community. For the four

pathways with an active fraction higher than 70%, two of them were carbon

utilization related. These results indicate that the carbon utilization is the most

important function for certain organisms, which can be explained by the

host-microbiome interactions.

From the figure, we found that the activities of certain pathways vary
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Figure 4.12: Active metabolic pathways in the metabolic networks of the ten species.
The pathway active fraction is the fraction of active reactions in all the reaction
associated with the pathway. The 20 pathways with most active reactions were listed.

significantly across the ten species. For example, folate biosynthesis and

pantothenate and CoA biosynthesis biosynthesis both have higher active fractions in

all the three Bacteroidetes strains but lower in all the four Firmicutes strains. For

valine, leucine and isoleucine biosynthesis pathway, nine of the ten species have

significantly high active fraction, but not in C. aerofaciens. This indicates that C.

aerofaciens may not synthesize these amino acids by itself. Arginine and proline

metabolism pathways have low active fractions in all the ten species, indicating the

microbiome have extrageneous sources for them, such as host diet.

4.3.3.3 Metabolic Interactions

The metabolic gaps and activities of reactions have been predicted by the

ten-species metabolic network reconstruction with gene expression data curation.

However, we assumed that all the metabolites can exchange across the species,

which is not accurate. In Section 4.3.2.3 we described the methods we used to
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predict potential interactions among the ten species. Similar to the reaction activity

prediction, one parameter was introduced to balance the two parts of objective

function: potential interactions and curation of gene expression data. With a lower

penalty level, the model requires less interactions but with less active fractions

according to gene expression data. As shown in Figure 4.13, the average active

fraction decreased from 55% to 47% when the ratio parameter was increased from

0.1 to 10. We calculated the error bars based on all the suboptimal solutions within

a range for which the objective values increased slowly. We observed a significant

decrease of predicted interactions when the ration parameter increased from 1 to 10

but the average active fraction of reaction were almost the same for the two set of

solutions when considering the error bars. Therefore, the range of ratio parameter

from 0.1 to 1 includes most of the variations of active fractions and we focused on

this range.

Figure 4.13: Fractions of active reaction in the reaction predicted to be active
accroding to expression using MinExchange method under four ratio parameters
and compared with complete mixed condition. Error bars were calculated from the
selected suboptimal solutions.

Different numbers of interactions were predicted for the four settings of ratio

parameter (Figure 4.14). When ratio parameter was set to 10, four molecules were

predicted to be exchanged between the organisms. One of the molecule was citrate

120



and there were only two strains, M. formatexigens and C. symbiosum, utilizing

citrate. Antranikian et al. tested 44 species in Clostridium and found C. symbiosum

was able to utilize citrate. This experiment supports our prediction. According to

Figure 4.14, the uptake fluxes that can be confirmed by metabolomic data were

consistent for all of the three set of solutions. As discussed, the ratio parameter

from 0.1 to 1 contributes most to the variations in reaction active fractions.

Therefore, the results from these three sets of solution were most representative of

this microbial community. Agmatine is an important intermediate for polyamine

synthesis. Research indicate that C. aerofaciens lacks polyamine biosynthesis

function and was a polyamine auxotroph. This conclusion is consistent with our

prediction of C. aerofaciens requiring agmatine uptake. Urea was another molecule

found to be utilized by some of the strains, including B. thetaiotaomicron, E. rectale

and C. aerofaciens. Kinetics data from human and pig indicate that the gut

microbiome utilizes almost 25% of urea synthesized by the host. The predicted

interactions in this 10-species metabolic model provide three candidates that may

contribution to the urea utilization in gut.

The minimal byproducts that were produced by the microbial community were

predicted in addition to uptake fluxes (Figure 4.15). For example, citrate must be

secreted by B. hydrogenotrophica. Citrate was produced by the highly expressed

citrate synthase (RUMHYD00774 and RUMHYD00862), but isocitrate

dehydrogenase, an enzyme utilizing isocitrate, was not identified in this strain.

Therefore either citrate or isocitrate was secreted by B. hydrogenotrophica. Because

C. symbiosum needs citrate uptakes, the model predicts citrate to be the byproduct

of B. hydrogenotrophica. Glutathione was predicted to be another byproduct

produced in this model microbial community. Escherichia coli was predicted to

produce glutathione because both gamma-glutamylcysteine synthetase (b2688) and

glutathione synthase (b2947) have been identified in the transcriptome of
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Figure 4.14: Predicted uptake fluxes under four settings of ratio parameter in 10-
species model. The complete predictions are reported for ratio = 10, and for the
rest three settings, only molecules found in gut environment were reported, which are
almost constant under all three settings.

Escherichia coli. Therefore, Escherichia coli produces glutathione from cysteine and

glutamate. Gamma-glutamyltransferase (b3447) and glutathione peroxidase

(b1710), the enzymes utilize glutathione, was predicted to be inactive due to the low

expression level. This is another reason for predicted glutathione secretion.

Metabolomic studies also indicate glutathione play roles in response to oxidative

stress through the host-microbiome interactions (Musso et al., 2011; Matsumoto
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et al., 2012). As predicted by the model, urea is produced by Escherichia coli and

secreted. The agmatine amidinohydrolase (b2937) was identified in the

transcriptome of Escherichia coli, which converts agmatine to putrescine and urea

in the arginine metabolism pathway. However, urease (EC:3. 5. 1. 5) was not found

in Escherichia coli, which forced Escherichia coli to secrete urea. Morris and

Koffron observed Escherichia coli secreted urea when it converted arginine to

putrescine using isotopic labeling experiments. This experimental result confirmed

this secretion of urea in Escherichia coli.

Figure 4.15: Predicted minimal byproducts in the ten-species microbial community.
The uptake fluxes predicted under 0.1 ratio setting were reported.

4.4 Discussion and Conclusions

In this chapter, we introduced two cases studies applying metabolic network

reconstruction in community-wide modeling of model gut microbial communities.
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For the two-species model microbial community, comprehensive growth tests and

genechip based transcriptomes were included in the study of Mahowald et al.. These

data enabled us to reconstruct high-quality metabolic networks for both individual

organisms and the whole microbial community following the multi-step modeling

procedures.

The three-step metabolic network modeling procedure for two-species microbial

community took advantage of these data and refined the metabolic networks

sequentially. There were several reasons for this sequential procedure. First, the

accuracies of these datasets were different. The growth tests provided accurate

indications to determine the capability of utilizing different carbon sources. In

contrast, genechip based expression data provide quantitative measurements about

the changes of gene expression levels under mono- and co- inoculated conditions. A

threshold was chosen to predict the active and inactive metabolic reactions based on

the level of changes. Therefore, the predicted activities of genes and reactions were

not as accurate as the growth phenotypic data. Non-specific binding and

background noises were some other factors that decreased the accuracy of gene

expression data. To represent the differences in data quality and accuracy, we first

curated the metabolic networks with growth test results and then expression data.

The transporter predictions completely rely on computational calculations from

genomic sequences, which was less inaccurate than the remaining two datasets.

Thus, interaction predictions, which considered the exchange fluxes between the two

organisms, were applied in the last step.

Similar to the two-species microbial community, the three-step metabolic

network modeling procedure used in ten-species microbial community followed the

same sequences. The draft metabolic networks for all the ten species were

reconstructed and refined with growth model. However, there were no

comprehensive growth tests for the ten-species microbial community. Thus, we
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applied a community-wide growth model to enforce the growth requirements. In the

second step, sequence-based gene expression data were used to curate the metabolic

networks. The sequence-based gene expression data provided more accurate

measurements about gene expression levels than genechip based methods.

Therefore, the absolute values of the gene expression data were utilized rather than

the changes between conditions used in two-species model. The model predictions

indicated nearly constant active fractions for the top 80% expressed genes and

reactions. These results suggested the absolute values of sequence-based gene

expression levels did not affect the gene activity predictions once the absolute values

were above a threshold. This observation confirmed the existence of such a

threshold, which was used in many works.

We observed that the active fractions of metabolic reactions predicted to be

active by expression data was in the range of 60% to 80% for different organisms

and parameter settings. Even at the highest level, there were still 20% reactions not

connected to the active metabolic networks. These inactive reactions were caused

mainly by two reasons. First, metabolic gaps in the metabolic networks were not

identified completely. In our models, the agreement between model predictions and

expression data was balanced by ratio parameters. Therefore, the false negative

predictions of metabolic gaps can be controlled but not eliminated under the

framework we developed. Another reason for those inactive reactions was the

incomplete metabolic pathways in reaction database. The knowledge on cellular

metabolism is increasing rapidly. Therefore, the inconsistency caused by incomplete

metabolic pathways will decrease as the knowledge grows.

The interactions, for both uptake and secretion, between the ten species were

predicted based on the reconstructed metabolic networks and activity predictions.

These interactions were predicted to be the minimal requirements to meet certain level

of agreement with gene expression data, which was governed by the ratio parameter.
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These minimal predictions might not cover some interactions that could be carried out

by more than one species but was not necessary for any of these species. Therefore, to

predict the interaction more comprehensively, we applied both minimal uptake model

and minimal secretion model to the ten-species microbial community. The situation

was different for the two-species model. Because there were only two species, the

interactions were symmetric and only one of the two directions was needed.

Part of the predicted interactions in two-species model and ten-species model

can be supported by experimental data in literature. However, the number of these

confirmed interactions is still small compared to the total number of predicted

interactions. This phenomenon reflects some of the challenges we are facing today in

studying microbial community. The culture-independent methods provide

researcher with a great amount of data about the population structure and

metabolism of the microbial community. However, characterizations of the

organisms in microbial communities still largely rely on cultivation of the

microorganisms. Community-wide models provide a possible path to resolve this

issue. As demonstrated by our results, the metabolic network models can not only

predict the known properties of the microbial community but also provide

hypotheses about unknown metabolic functions and interactions. The power of

model prediction might become more important as more culture-independent data

are collected, and our work provides a promising direction to model microbial

community by integrating -omics data.

In this work, the complexities of the two model gut microbial communities were

relatively low compared to natural gut microbiota. Directly modeling the natural

microbial community definitely will bring more comprehensive understanding of the

metabolic functions and interactions of these microbial communities. However, the

complexity and scale of the data will bring new challenges in both metabolic network

reconstructions and computation requirements. In the future, in order to apply the

126



community-wide metabolic models to natural microbial communities, we need more

simplifications during the modeling process. We will discuss some of the possible

simplifications and assumptions in Chapter VI.
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CHAPTER V

Metabolic and Regulatory Network Design for

Biochemical Production

5.1 Introduction

5.1.1 Metabolic and Regulatory Network Design

Metabolic engineering has emerged as an effective method to improve

biosynthesis of different products, including biofuels. Localized modifications of

metabolic pathways, such as eliminating competing branches and over-expressing

enzymes of rate-limiting steps, have been commonly applied and provide significant

improvements. However, these modifications can also cause changes on the cell

metabolism in those pathways which are not directly relevant. Another limitation of

these modifications is that they may fail to re-engineer cell metabolism as expected

due to the complex regulation of cell metabolism. As a result, systematic designs of

modifications of metabolic networks are desired, which may resolve or partly resolve

the issues mentioned above.

Researchers have been developing computational tools for systematic designs of

modifications of metabolic networks, and many works have demonstrated the

advantages of applying such an optimization process. Some of the early algorithms

required detailed enzyme kinetics (Fell, et al. 1996) that are largely missing for
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most systems. Metabolic control analysis (MCA) (Domach et al., 2000), based on

flux control coefficients, provides a different way to predict cell metabolism changes

based on experiment-based data, and can include both effects of enzyme kinetics

and cellular regulation. However, MCA type models require a large amount of

experimental data, which is still not available for most organisms and pathways.

To avoid the requirements of either enzyme kinetics or experimental data,

constraint-based models that can help researcher for strain design have been

developed and widely used. Alper et al. used flux balance analysis to screen single,

double and triple gene knockouts that can increase the lycopene biosynthesis in

Escherichia coli (Alper et al., 2005). Jin Hwan Park et al. used a similar strategy to

verify their designed Escherichia coli strain for L-valine production by carrying out

in silico gene knockout simulation before they applied the design in the lab (Park

et al., 2007). Besides these models, more systematic design models have been

developed for better performance. For example, Kiran Patil used one evolutionary

programming method to design Saccharomyces cerevisiae strains for acid, glycerol

and vanillin production (Patil et al., 2005). Using a different strategy, OptKnock

(Burgard et al., 2003) is able to predict gene knockouts for better biochemical

production after adaptive evolution by solving a bi-level Mixed Integer Linear

Programming (MILP) problem, which can provide optimized designs for different

purposes. In the OptKnock algorithm, the whole problem has two levels. In the

inner level, cell metabolism is modeled by flux balance analysis (FBA) model, and

genetic manipulations (gene knockouts) are included in the model by forcing the

corresponding reactions to carry zero flux. In the outer lever, the best choice of

genetic manipulations is searched according to desired functions, e.g. maximum of

production. The bi-level problem is converted into single level MILP according to

duality theory and then solved. After the OptKnock was developed, a number of

models utilizing this bi-level optimization framework were introduced. For example,
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OptStrain (Pharkya et al., 2004), allows both gene knockouts and gene knock-ins,

which represents expressing novel heterogeneous enzymes into the designed strains.

By doing so, functions that do not exist in wildtype strains can be achieved in the

designed strain, which enlarges the design space. Along this line, OptReg was

developed by Pharkya and Maranas (2006), which considers up- and down-

regulation of metabolic reactions in addition to gene knockouts. Using this method,

researchers want to further improve the performance of the strains which cannot be

achieved by simply removing or adding reactions.

Cellular regulations always play important roles in cell metabolism, which

should not be neglected when designing strains. Regulatory flux balance analysis

(rFBA)(Covert et al., 2004) was developed to model the effects of regulatory

network on metabolic network. In the rFBA model, logic rules that represent

regulatory networks are used to predict the inhibited metabolic reactions under

different conditions. Along the same line, integrated flux balance analysis (iFBA)

Covert et al. (2008) was developed to model effects of cellular regulation by utilizing

ordinary differential equations (ODEs) to represent signal pathways and then

integrating these ODEs into the constraints of FBA framework. Differently,

Chandrasekaran and Price introduced a probabilistic regulation of metabolism

(PROM) model (Chandrasekaran and Price, 2010), using the state of regulatory

factors to predict the expression level of the genes and then to predict the fractions

of activity of the corresponding reactions. The expression levels of transcriptional

factors are estimated based on transcriptome data from various conditions.

Researchers are not satisfied by merely predicting the effects of regulatory

network on cellular metabolism. Joonhoon Kim and Jennifer Reed developed a

computational framework, OptORF(Kim and Reed , 2010), to design both metabolic

and regulatory perturbations under bi-level MILP framework by embedding the

linear regulatory constraints within the design model. In this model, linear
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regulatory constraints are used to represent the regulatory network, which will

identify inhibited reactions. Thus, besides gene knockouts, removal of inhibition is

another type of perturbation that the model allows. Because the model considers

cellular regulation, it is able to search for strains that can retrieve certain functions

which are not available normally in designed conditions. A different type of model,

OptForce (Ranganathan et al., 2010), was developed to identify sets of

genes/reactions that should be down/up regulated, or eliminated by predicting

desired metabolic flux values in optimal conditions. Even though this algorithm

does not suggest the elimination of transcriptional factors to remove inhibition,

similar suggestions can be derived when reviewing the reactions that require a

increase of flux from zero.

5.1.2 Fatty Acids As Potential Biofuel Precursors

Biodiesel, methyl esters of fatty acids, is one of the major types of biofuels that

are commercially available. Currently, biodiesel is exclusively produced from plant

oils, which are mainly composed of triacylglycerols. Therefore, glycerol, an undesired

byproduct during the production of biodiesel from triacylglycerols, presents a major

problem in biodiesel manufacture. To avoid glycerol, direct production of fatty acid

ethyl esters or free fatty acids followed by conversion into biofuel molecules is an

alternative choice. As presented in Schirmer et al., C13 to C17 mixtures of alkanes and

alkenes can be synthesized in Escherichia coli by introducing an alkane biosynthesis

pathway (Schirmer et al., 2010). Similarly, Steen et al., engineered Escherichia coli

to produce fatty acid ethyl ester leading to a yield of 674 mg/L (Steen et al., 2010).

All these works demonstrate the potential of biosynthesis of fatty acids for biofuel

production.

Fatty acids are important precursors for the biosynthesis of cell envelopes, and

most bacteria have the function of biosynthesis of fatty acids. However, challenges
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remain for practical production of fatty acids or derived biofuels. One of these

challenges is the efficiency and yield of free fatty acid production. One explanation

for the low efficiency and yield is that the anabolic and catabolic processes involved

in fatty acid metabolism are strongly regulated in bacteria transcriptionally and

post-transcriptionally (Magnuson et al., 1993). Through these regulated pathways,

cells are able to produce and consume these molecules precisely, indicating

significant re-programming of these functions is required to produce and accumulate

free fatty acids in cells. To achieve this, mechanisms for fatty acid metabolism and

their regulations are required. Fatty acid metabolism in bacteria has been

extensively studied. In Escherichia coli, for instance, fatty acids synthesis starts

exclusively from acetyl-CoA, which is the same as in plants. Acetyl-CoA and

bicarbonate are first converted into malonyl-CoA by Acetyl-CoA carboxylase(ACC)

with the requirement of ATP, which is believed to be the rate-limiting step for fatty

acid synthesis. Malonyl-CoA is then converted into fatty acyl-ACPs (acyl carrier

proteins) by fatty acid synthase (FAS). These acyl-ACPs can be either used to

synthesize phospholipids by glycerol-3-phosphate acyl transferase and other

transferases or converted to free fatty acids by acyl-ACP thioesterases which can be

further degraded to acetyl-CoA through β oxidation pathway. The biosynthesis of

fatty acids or phospholipids requires both ATP and NADPH(NADH), which is a

energy consuming process and is well regulated.

Researchers have tried different ways to enhance the biosynthesis of fatty acids

and redirect fatty acid metabolism to improve the production of free fatty acids (Lu

et al., 2008). These localized optimizations for fatty acid production reach titers of

2.5g/L with 4.8% carbon efficiency, suggesting both opportunities and challenges in

synthesizing fatty acids for biofuel production. One possible reason for the low

conversion is that engineered cell metabolism is still far from the optimal state for

producing free fatty acids, even though the biosynthesis pathway is enhanced.
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Therefore, we hypothesize if cell metabolism and regulation can be further

optimized globally, the production of fatty acids can be more efficient. To achieve

this goal, we need to develop a method that enables us to design a metabolic

network and regulatory network at the same time.

The reconstructed metabolic networks contain comprehensive information about

cellular metabolism. One application for these metabolic networks is strain

optimization for specific purpose, e.g. biofuel molecules production. In this chapter,

we will utilize both metabolic network and regulatory network in a bi-level

optimization framework to design strains for biofuel molecules production. Two

specific objectives should be achieved in this chapter.

• Develope a bi-level optimization framework for metabolic network and

regulatory network design.

• Design mutated E. coli strains for overproduction of fatty acids and some other

biofuel molecules utilizing the bi-level optimization framework.

5.2 Bi-level Optimization Framework for Metabolic and

Regulatory Network Design

To design a metabolic network and corresponding regulatory network, we

developed a model framework that considers the modification of both metabolic and

regulatory networks. Here, we first choose regulatory flux balance analysis (rFBA)

to model the metabolic network with logic rules representing transcriptional

regulations. Thus we can derive a bi-level optimization framework to design the

metabolic network and corresponding regulatory network. This algorithm is similar

to OptORF described above; the major difference is that instead of using embedded

linear regulatory constraints to represent the regulation, logic rules indicating the

bi-states of gene expressions are employed, which can be non-linear. Therefore, our
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model can avoid inaccurate predictions due to the non-linear structure of regulatory

network. More details will be discussed in the following two sections.

5.2.1 Assumptions and Simplifications

Regulation of cell metabolism is complex, and both transcriptional regulation

and post transcriptional regulation have strong effects. Developing accurate and

reliable mathematic models for the these regulations is still a challenge in system

biology. Boolean network and some other methods have been used to describe

cellular regulation. For simplification, we use the discrete model, Boolean network,

to represent complex interactions in cellular regulation. One basic assumption made

in Boolean networks for cellular regulation is the states of all the components in the

network, such as gene expression, enzyme activity, compound concentration and

other extracellular signals, can be described by binary numbers (0 or 1). One reason

for this discretization is ultrasensitivity of these systems(Huang , 2001). Under this

assumption, gene expression is classified into two states, ON and OFF, as well as

the existence of nutrients, extracellular signals and some other components in the

network. Another assumption made in this Boolean network model is that

interactions between components in the network can be described by logic relations,

such as AND, OR, and NOT. By doing so, enzyme activity or gene expression can

be predicted according to the states of extracellular signals, other genes, and

enzymes through the corresponding logic rules. Figure 5.1 demonstrates how this

Boolean network works.

To estimate the effects of cellular regulation on metabolism, predicted states of

enzyme activities must be converted to regulatory constraints under the rFBA

framework. As there are only two states of enzyme activity or gene expression, two

states of a metabolic reaction can be modeled by the Boolean network, ON or OFF.

If a metabolic reaction is indicated as ON by the regulatory network, it is able to
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Figure 5.1: Example of boolean network and logic rules

carry flux; and if indicated as OFF, which means the reaction is inhibited under this

condition and its flux is set to zero. Therefore, a set of inhibited reactions predicted

by the Boolean network can further constrain the solution space in flux balance

analysis. However, certain intracellular signals (e.g. the flux or direction of one

metabolic reaction) in the Boolean network cannot be provided until the later flux

balance analysis is done. To solve this issue, iterations are employed in this

framework. Thus, the states of these intracellular signals are initially set to

hypothetical values. Then, after the Boolean network and flux balance analysis are

solved, updated values based on flux predictions will be used. The iteration is

stopped when there is no difference between the hypothetical values and updated

values. This process is described in Figure 5.2.

The rFBA framework discussed above is able to provide a solid prediction of

metabolism under cellular regulation, and has been applied to Escherichia coli to

improve the phenotype predictions. Based on this we can further develop the

algorithm for design of metabolic and regulatory networks. As mentioned before,

the inhibited reaction set together with extracellular signals (nutrient information)

135



Figure 5.2: Flow chart of regulatory Flux Balance Analysis(rFBA)

is needed when predicting metabolic fluxes in rFBA framework. Thus, two types of

modifications can be modeled under this framework, adding reactions into the

non-active list and removing reactions from the non-active list. The biological

implications for these two modifications are very clear. Adding reactions into the

non-active list can be achieved by eliminating corresponding metabolic genes.

Removing reactions from the non-active list can be achieved by either eliminating

the transcriptional factors inhibiting these genes or changing the promoters of these

genes so they are no longer inhibited in the desired condition. There is another

assumption implied in this framework, that is, there are certain objective functions

that the wildtype strain or modified strain are trying to accomplish. This

assumption is necessary to make prediction of metabolic flux. Different objective

functions have been used, for example maximization of growth (FBA) or ATP

production, minimization of flux value, and minimization of metabolic adjustment

(MOMA). In this framework, maximization of growth is selected as the objective

function, which is commonly used for both wildtype strains and mutant strains.
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5.2.2 Bi-level optimization Framework

We developed a framework for bi-level metabolic network and regulatory network

design based on the assumptions and simplifications described in Section 5.2.1. There

are two levels in the framework, which is demonstrated in Figure 5.3. The outer level

of the model is optimization for desired property, which is maximization of product

synthesis. The inner level of the model is the same as rFBA model, which is trying

to determine the metabolic flux by assuming the cellular metabolism is optimized for

growth, which is represented by the inner level objective function. There are several

constraints that will define the solution spaces for all possible values of metabolic

fluxes. The first one,
∑

r∈R

S(m, r) · v(r) = 0 (5.1)

is the mass balance constraint, which indicates no net changes in metabolites at steady

state and is applied to all metabolites. The second type of constraints,

v(r) ≤ Fmax · Ireactive(r) (5.2)

indicates inhibited reactions must carry zero fluxes unless they are re-activated, which

will be reflected by Ireactive(r) = 1. Similarly, the third constraint,

v(r) ≤ Fmax · (1− Iknockout(r)) (5.3)

indicates the reactions that are eliminated must carry zero fluxes, which will be

reflected by Iknockout = 0. The last constraint,

v(r) ≤ Fsupply(r) (5.4)
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indicates all nutrients are supplied with certain amounts, which are limited by Fsupply.

There are a set of constraints that are not shown in Figure 5.3. One of them is

constraint of reversibility, which forces irreversible reactions to carry positive flux

(v(r) ≥ 0, ∀r ∈ Irreversible). Another constraint not shown in Figure 5.3 is the

constraint for ATP maintenance, which sets the lower bound of ATP maintenance.

Figure 5.3: Structure of bi-level metabolic network and regulatory network design
model. R: all reactions, M: all metabolites, Nutrient: nutrient uptake reactions,
Inhibited: inhibited reactions, v:variable of flux, vGrowth: growth rate, vproduct: rate
of product synthesis, Ireactive: binary variables of re-activate reactions, Iknockout:
eliminated reactions, S: stoichiometric matrix, Fmax: maximum flux value, Fsupply:
nutrient uptake rates.

To solve this bi-level mixed integer linear programming (MILP) problem, it is

converted into a single level MILP problem based on duality theory. According to

duality theory, if there is a feasible solution, the inner level linear programming

problem (binary variables are treated as parameters in the inner level) can be

replaced by the primal LP problem and its dual problem with another constraint

that forces the two problems to have the same objective function values. There is

one remaining issue to address before converting the inner level into a set of linear

equations and linear inequalities which can be solved in MILP framework. When
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writing the dual problem for the primal problem, the binary variables Iknockout and

Ireactive are treated as parameters, which is definitely true for the inner level.

However, these binary variables must be solved in the outer level when the inner

level is converted into primal and dual problems. Then, the products between

variables in dual problem and these binary variables from outer level can make the

whole problem non-linear. To solve this problem, the constraints used in the inner

level must be rewritten. For the constraints for eliminating reactions (Equation 5.3),

can be reformed into

v(r) = 0, ∀r ∈ {r|Iknockout(r) = 1} (5.5)

and similarly, constraints 5.2 can be reformed into

v(r) = 0, ∀r ∈ Inhibited ∩ {r|Ireaction(r) = 0} (5.6)

After these transformations, the dual problem for the transformed primal problem

can be written as

∑

m∈M

S(m, r) · u1(m) + AInhibited(r) · u2(r) + u3(r) + ANutrient(r) · u4(r) ≥ 0,

∀r ∈ Irreversible; (5.7)

∑

m∈M

S(m, r) · u1(m) + AInhibited(r) · u2(r) + u3(r) + ANutrient(r) · u4(r) = 0,

∀r ∈ Reversible; (5.8)
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u2(r) ≤ umax · (1− Ireactive(r)), ∀r ∈ Inhibited; (5.9)

u3(r) ≤ umax · Iknockout(r), ∀r ∈ R; (5.10)

u4(r) ≥ 0, ∀r ∈ Nutrient; (5.11)

in which Reversible is the set for reversible reactions, Irreversible is the set for

irreversible reactions, u1(m) is the dual variable for these mass balance constraints,

u2(r) is the dual variable for these constraints of inhibited reactions, u3(r) is the dual

variable for these constraints of eliminated reactions, and u4(r) is the dual variable

for these constraints of nutrient uptake limits. Two arrays are introduced, AInhibited

and AInhibited. They are defined as below,

AInhibited(r) =











0 ∀r /∈ Inhibited

1 ∀r ∈ Inhibited
(5.12)

and

ANutrient(r) =











0 ∀r /∈ Nutrient

1 ∀r ∈ Nutrient
(5.13)

To enforce values of the two objective functions to be the same, a final constraint,

vGrowth =
∑

r∈Nutrient

Fsupply(r) ∗ u4(r) (5.14)

is added also.

By replacing the inner level LP problem to these linear equations and linear

inequalities, not including the transformed constraints for primal problem (Equation

5.5 and 5.6), the whole problem is now a common MILP problem and can be solved

with conventional algorithm. In practice, two more constraints to limit total number

of modifications can be added to avoid solutions with more genetic manipulations

than expected, and these maximum numbers of modifications should be determined
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by both the scale of the two networks and difficulty of the problem.

5.3 Strain Network Design for Fatty Acids Derived

Hydrocarbons

The bi-level framework for metabolic network and regulatory network design

described in the last section enable us to optimize metabolic network and regulatory

network for maximization of product rate. To apply this framework, metabolic

network reconstruction and logic rules representing regulatory network are required.

We choose Escherichia coli as the organism to over-produce fatty acid for

bio-hydrocarbon production.

5.3.1 Metabolic and Regulatory Networks of Escherichia coli

There are several versions of metabolic network reconstructions for Escherichia

coli, and some of them also include logic rules to represent cellular regulations. In this

work, we start with a metabolic network reconstruction (Covert and Palsson, 2002)

focused on central carbon metabolism. The logic rules of cellular regulation for this

metabolic network also were generated and tested. However, fatty acid metabolism

is not included in this metabolic network reconstruction, which is essential for our

design. We added relevant metabolic reactions and metabolites (Raetz , 1978) into

the metabolic network reconstruction. Further, we add the uptake of xylose to enable

the prediction with xylose as carbon source. The final metabolic network is shown

in Figure 5.4. Finally, there are 148 metabolic reactions and 25 exchange reactions

involved in the metabolic network, and 57 logic rules in the regulatory network. The

details about the metabolic network and logic rules used in this design model can be

found in Appendix II.

From the Figure 5.4, we can find the metabolic network reconstruction is not
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Figure 5.4: Metabolic network of Escherichia coli for the design model. The number
behind the gene name is the number of transcription factors or signals regulating that
reaction.
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a genome scale, and there are some other genome scale models for Escherichia coli

that also consider both metabolic network and regulatory network. One reason for

us to choose this simplified model is the cellular regulation for carbon metabolism

has been extensively studied compared to some other pathways. Thus, we are more

confident to apply this design model on this simplified model to avoid errors from the

raw data, so we can focus more on the methods and results. Because this simplified

network does not include some essential pathways, e.g. amino acid metabolism, we

need to pay more attention to the designs suggested by the model, and verify them

experimentally if possible.

5.3.1.1 Optimal Design of Metabolic Network and Regulatory Network

for Fatty Acids

We applied the design model of Escherichia coli to find best design for biofuel

production. First, we looked for best design for fatty acids or triacylglycerols (TAGs)

from D-glucose, which is a common nutrient used as carbon source. Second, we looked

into the possibility of producing fatty acid from more economically feasible feedstock,

e.g. glycerol, and conditions for mixed carbon sources. Finally we also applied the

model to design strains for other valuable products, such as succinate and ethanol. To

further study these designed strains, Dr. Fengming Lin [Lin et al., to be submitted]

has been working on implement the designed strain for fatty acid/TAG production

from D-glucose.

We first study the conditions with only D-glucose as carbon source in anaerobic

and aerobic conditions. For comparison, we also tried to design different strains

allowing only gene knockouts, only gene re-activation and both two types of

modifications. We also constrained the possible modifications to avoid problematic

designs. For example, the modifications of fatty acid synthesis cycles are excluded,

as they are essential for cellular metabolism. Table 5.1 summarizes these results.
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From the table, there are two major conclusions. First, applying modifications

to both metabolic network and regulatory network can bring better performance

than applying only one of them with an improvement of more than 25%, which

is the reason we want to design a model enabling both changes. Second, aerobic

conditions are preferred for fatty acids over production. This might be explained by

the high energy requirement during fatty acid synthesis, and anaerobic condition is not

favorable for energy production. We also found if not applying gene knockouts, but

only re-activation of genes/reactions, no improvement can be made, which suggests

re-activating genes/reactions only plays an auxiliary role. The growth rates for the

designed strains are greatly reduced, which means cells put more resources into fatty

acid metabolism that can be used for growth. The optimal products of fatty acids

are different in aerobic and anaerobic conditions. In aerobic condition, octanoic acid

(C8) is preferred product but in anaerobic condition stearic acid (C18) is chosen.

We are also interested in converting different feedstock into biofuels, for example

glycerol which is much cheaper than glucose or other sugars. In addition, we want

to explore the possibility of using more than one carbon source, and whether the

mixed carbon sources can bring better efficiency for fatty acid production. Another

reason for us to investigate mixed carbon source conditions is that hexose and pentose

sugars always co-exist in lignocellulosic biomass, which is an attractive carbon source

for biofuel production. Here we choose D-xylose to represent pentose sugars and D-

glucose to represent hexose sugars. So it is interesting to investigate the fatty acid

production with both D-xylose and D-glucose. Table5.2 lists the results of using

glycerol, D-xylose and D-glucose or their combinations as carbon source for fatty

acids production.

From the results, we found the improvement of introducing regulatory network

modifications is more significant in mixed carbon sources conditions. This is different

from what we observed in single carbon source supply conditions, and it seems in
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Table 5.1: Summary of optimal designs for fatty acid production from D-glucose.
The numbers of carbons in optimal fatty acid products are also listed. The results
for wildtype strain are highlighted. Production rate is calculated based on 10mM
Glucose/hr/g DCW.

Methods Growth
Condition

Objectives Growth
Rate
(1/hr)

Fatty Acid
Production
(mM)∗

Carbon
Efficiency

Wildtype Aerobic Growth 0.95 0 0
Re-active
Only

Aerobic Fatty Acid NA NA NA

Knockout
Only

Aerobic Fatty Acid 0.27 3.1 (C8) 41%

Re-active &
Knockout

Aerobic Fatty Acid 0.16 3.90 (C8) 52%

Wildtype Anaerobic Growth 0.33 0 0
Re-active
Only

Anaerobic Fatty Acid NA NA NA

Knockout
Only

Anaerobic Fatty Acid 0.198 0.16 (C18) 4.7%

Re-active &
Knockout

Anaerobic Fatty Acid 0.135 0.57 (C18) 17%

∗:Extra free fatty acid, and counted based on 10 mM Glucose.

mixed carbon sources supply conditions, re-design of regulatory network is necessary

and important. These results can be explained by the effects of catabolic repression.

In wildtype strain, catabolic repression will force the cell to utilize its favorite carbon

source first even when there are other sources available. Before removing catabolite

repression, the cell can only utilize one carbon source, Glucose in our cases, and the

other carbon sources are wasted. However, after modifying regulatory network there is

no catabolite repression, and the cell can make use of all the carbon sources provided.

Interestingly, when glucose and glycerol are mixed and provided to the modified cell,

the carbon efficiency is higher than any of the two if provided separately, which is

unexpected. The details about the modifications suggested by the model for mixed

glycerol and glucose condition is shown in Figure 5.5.
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Table 5.2: Summary of optimal designs for fatty acid production from glycerol,
glucose, xylose and their combinations in aerobic condition. The numbers of carbons
in optimal fatty acid products are also listed. The results for wildtype strain are
highlighted. Production rate is calculated based on 10mM Glucose/hr/g DCW.

Methods Carbon
Source ∗

Objective Growth
Rate
(1/hr)

Fatty Acid
Production
(mM)

Carbon
Efficiency

Wildtype Glycerol Growth 1.1 0 0
Knockout
Only

Glycerol Fatty
Acids

0.375 3.25 (C8) 43%

Re-active &
Knockout

Glycerol Fatty
Acids

0.375 3.25 (C8) 43%

Wildtype Glycerol &
Glucose

Growth 0.47 0 0

Knockout
Only

Glycerol &
Glucose

Fatty
Acids

0.13 1.56 (C8) 21%

Re-active &
Knockout

Glycerol &
Glucose

Fatty
Acids

0.122 4.95 (C8) 66%

Wildtype Xylose &
Glucose

Growth 0.47 0 0

Knockout
Only

Xylose &
Glucose

Fatty
Acids

0.180 1.56 (C8) 21%

Re-active &
Knockout

Glycerol &
Glucose

Fatty
Acids

0.109 2.37 (C8) 34%

∗ All carbon sources are supplied with equal carbon amount as 60 mM/hr/gDCW.
When mixed together, two carbon sources have the same carbon amount.

5.3.1.2 Optimal Design of Metabolic and Regulatory Network for Other

Products

We applied the same model to Escherichia coli to design metabolic network and

regulatory network for some other products, including ethanol, succinate, lactate and

pyruvate. Table 5.3 summarizes the optimal production rates for these products from

glucose in both anaerobic and aerobic conditions.

As shown in Table 5.3, ethanol, succinate and lactate can be synthesized by

designed strains in both aerobic and anaerobic conditions but with higher yield in

anaerobic condition, while pyruvate can be produced better in the aerobic condition.

Further, by modifying regulatory network and metabolic network together, products
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Figure 5.5: Designed strain for fatty acids production from glucose and glycerol mixed
supply.

that cannot be produced in certain conditions by only applying gene knockouts can

be synthesized, even though the conditions are not ideal for them.

Researchers have tried to produce succinate in aerobic conditions. Henry Lin
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Product Condition Knockout Only Re-active Only Re-active & Knockout
Ethanol Aerobic 0 0.2 8.81
Ethanol Anaerobic 9.76 7.80 16.80
Succinate Aerobic 0 3.03 5.88
Succinate Anaerobic 0 0 7.37
Lactate Aerobic 7.13 0.95 9.13
Lactate Anaerobic 11.54 0 16.66
Pyruvate Aerobic 12.44 0 12.44
Pyruvate Anaerobic 5.73 0 8.32

Table 5.3: Optimal production rate for designed strain from D-glucose. Production
rate is calculated based on 10mM Glucose/hr/g DCW.

and his group members applied a very similar genetic manipulation suggested by our

model to Escherichia coli and successfully produced succinate with 45% to 70% of

theoretical yield. Compared to our model, the suggested optimal design has a yield

of 58% of theoretical yield. We also calculated the yield for the strain used in Lin’s

work, which is 52% of theoretical yield. The details about these two designs can be

found in Figure 5.6. It is clear that our model prediction is in agreement with the

published experimental data. Thus we also expect the optimal design suggested by

the model to have similar or even better performance.

5.3.2 Experimental Verification of Designed Strain for Fatty Acid

Production

In Section 5.3.1.1 we described several designed Escherichia coli strains for fatty

acid production in different conditions utilizing different feedstock. We are

interested in experimentally implementing some of these designs and testing their

performance. Dr. Fengming Lin in our lab was working to develop an Escherichia

coli strain to produce triacylglycerols(TAGs), which also requires over-production of

fatty acids to enhance the TAGs production. Therefore, the strain designed for

production of fatty acids from D-glucose on aerobic conditions is selected. To derive

the designed strain, there are 6 metabolic reactions need to be eliminated and 2
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Figure 5.6: Model suggested Strain and Published Strain for Aerobic Succinate
Production. a) Left is published strain for aerobic succinate production with 45%
to 70% of theoretical yield. Our model predicts this strain with 52% of theoretical
yield. b) Right is the optimal strain suggested by out model, with 58% of theoretical
yield.

reactions to be re-activated from the wildtype strain. To eliminate the 6 metabolic

reactions, cyoA(subunit II of the cytochrome bo terminal oxidase complex encoded

by cyoABCDE); nuoA(part of the inner membrane component of NADH

dehydrogenase I); ndh(NADH dehydrogenase II); adhE(alcohol dehydronase);

pta(Phosphate acetyltransferase); dld and ldh(D-lactate dehydrogenase) need to be

removed from the chromosome. To re-activate the two glyoxylate bypass reactions,

aceA and aceB, genes iclR and icdA should be removed to stop their inhibition on

glyoxylate bypass operon (aceBAK) (Lee et al., 2009; Lin et al., 2005).

We tried to understand the mechanism and effects of these modifications suggested

by the computational model. Four of them are simply removal of competing pathways,

including eliminating genes of pta, adhE, dld and adhE. The purpose of this type of

modification is straightforward, that is to drive most of the carbon and energy to fatty

acid production. The second type of modifications in the designed strain is reaction

re-activation, including iclR and icdA gene knockouts that can promote glyoxylate
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bypass pathways. When glyoxylate bypass pathways is active, less NADH(NADPH)

but more malate and succinate are produced through tricarboxylic acid (TCA) cycle.

Research indicates these effects will lead to a increase of organic acid production

(Meijer and Otero 2009). Another type of modification suggested by the design model

is change of aerobic respiration, including gene knockouts of cyoA, nuoA and ndh.

The purpose of these modifications might be to change the ratio between NADPH

and NADH production and ATP generation as well. Fatty acid synthesis pathway

requires both NADPH and NADH, and is the major consumer of NADPH in cell

metabolism. Increase of NADPH production level may be beneficial for fatty acid

production.

The design model in Section 5.3.1 provides us all these modifications on

metabolic network, and we also can study their effects in different combinations. In

addition, we are able to determine the best sequence of manipulations, in which the

genetic manipulation with largest effect is chosen at each step. The predicted

sequence of manipulations is ∆cyoA, ∆adh, ∆nuoA, ∆ndh, ∆dld and ∆ldh, ∆pta,

and ∆iclR and ∆icdA. Using two different algorithms, flux balance analysis (FBA)

and minimization of metabolic adjustment (MOMA), we predict the phenotypes

after each step of modification, so we can compare the model predictions along this

path with the experimental results. Figure 5.7 demonstrates the predictions along

the optimal sequence.

From the figure, we found the two algorithms, MOMA and FBA, give different

predictions for the first four modifications. FBA predicts no extra fatty acid

production before the fifth manipulation is introduced, while MOMA predicts the

fatty acid production increases gradually. Further, because of the mechanism of

MOMA, no improvement can be predicted for re-activated reactions.

Dr. Fengming Lin carried out most of the designed manipulations suggested by

the model, along the sequence of ∆cyoA, ∆adh, ∆nuoA, ∆ndh, ∆pta, ∆dld and
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Figure 5.7: Model predictions of fatty acid production along optimal sequence of
genetic manipulations. The results predicted by FBA and MOMA methods are shown
in the optimal sequences calculated by the models.

∆iclR. This sequence is slightly different from the optimal sequence predict by the

model but introduces ∆pta before ∆dld and excludes ∆ldh and ∆icdA. Figure 5.8

demonstrates the experimental results after applying each manipulation in M9 growth

medium.

From these results, we found the production of fatty acid increases gradually,

but the most significant increase takes place in the fifth step, indicating a state of

metabolism between MOMA prediction and FBA prediction. Because the strains in

Dr. Fengming Lin’s work are different from the model suggested after the fifth steps,

we cannot make further conclusion about the sequential predictions. In the designed

fifth step, competing pathway of lactate synthesis is removed by ∆dld and ∆ldh. In

the experiments, ldh is still left, which leads to a high production rate of lactate and

decrease in fatty acid production.

Cell growth rate is also measured during the process, which is reduced significantly

as the model predicted. The compositions of fatty acids are shown in the Figure

5.8, which do not change significantly along the modifications. Dr. Fengming Lin

also cultivated the strains in another two growth mediums, LB 1-2 and LB 5-10.

The results of these experiments are shown in Figure5.9. Comparing the results

with only reaction eliminations to the results with both reactions elimination and re-
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Figure 5.8: Profiling of gene modified strains based on the model prediction. The
strains were cultured in M9 minimal medium with 2% glucose for 48 hrs. The total
amount of fatty acids was quantified by GC-FID as well as the fatty acid composition
was identified. The other fermentation parameters were determined, including the
final concentration of by-products lactate and acetate, the growth (OD), and the
final glucose concentration.

activations, we found the reaction re-activation has strong positive effects on fatty acid

production only when cultivated in LB 5-10. In contrast, re-activating the glyoxylate

bypass reactions will decrease the fatty acid production in LB 1-2 medium. The

mechanism causing these ambiguous results is still unclear. One hypothesis is that

the designed strain does not grow healthily compared to wildtype strain due to the

gene modifications, which is indicated by the slower growth. LB 5-10 medium has

a higher glucose concentration (5%) than LB 1-2(1%) medium, so the sick cells may
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prefer a richer medium.

Figure 5.9: Total amount of fatty acid of strains suggested by the optimization model.
Two culture mediums LB 1-2 and LB 5-10 were tested. All strains were cultured at
30?? for 48 hrs. 7∆ represents strain with ∆cyoA, ∆adh, ∆nuoA, ∆ndh, ∆pta,
∆pta.

5.4 Discussion and Conclusions

As mentioned before, the metabolic network and regulatory network used in this

work is not a genome-wide model, because the quality of regulatory networks in

genome scale might be not as good as those in central carbon metabolism. However,

researchers are getting more and more data to generate more accurate genome-wide

models for cellular regulation. We expect there should be genome-wide metabolic and

regulatory model for model organisms with desired quality in the near future. Then

all prediction models and design models relying on the genome-wide models can be

further improved.

Different to some existing design methods, such as OptORF, our framework does

not linearized the cellular regulation but use the logic rules to represent these

complex interactions. Due to the non-linearity of some logic rules, the regulatory

network is no longer able to be solved within mixed integer linear programming

(MILP) framework. Therefore, this solving process is done iteratively in our model.

The regulatory network is solved separately before the optimization model for strain
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design, and then this process repeats. Once the iteration converges to a stable state,

we can make a reliable approximation about the effects of regulatory network on the

metabolic network. One limitation for our model and all other models based on

MILP framework is the objective function must also be linear. This indicates the

model in the inner level of the bi-level model can only using linear functions as its

objective function. Thus, some model, such as Minimization of Metabolic

Adjustment (MOMA), cannot be utilized in this framework. Currently, there are

only limited objective functions for constraint based metabolic models that are

widely use, and finding a proper objective function for a specific system is still a

challenge. In this work, we choose the commonly used objective function,

maximization for growth, which can be used for both wildtype strains and mutated

strains.

According to the predicted results, we found re-activated metabolic reactions will

have strong effects only in those conditions that cellular regulation controls cellular

metabolism strongly, which is the same as we expected. This means our framework for

strain design will give more powerful predictions in those cases that either the desired

products are unfavorable in the conditions or the cells are cultivated in a condition

different from its common growth environments. For example, producing succinate

aerobically belongs to the first class and cultivation of Escherichia coli using mixed

glucose and glycerol belongs to the latter one.

In summary, we discussed the algorithm to design metabolic networks together

with regulatory networks and implement this method in Escherichia coli for fatty

acid production. We first introduced a bi-level optimization computational

framework enabling the design for both two networks. Then we applied this

framework to a metabolic and regulatory network of Escherichia coli which mainly

considers carbon metabolism. We used this model to design strains for fatty acids

production in both aerobic and anaerobic conditions. Different carbon sources were
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examined as well as their combinations. Results indicate that modifications of

regulatory network can bring further improvement on fatty acid production,

especially in mixed carbon sources conditions. The possible reason for this

significant increase of fatty acid production is caused by the removal of catabolite

repression, which regulates cellular carbon utilization. We also found when mixing

glucose and glycerol, a high yield of fatty acid can be achieved, which is even higher

than any of the two cases they are provided individually. This result indicates that

there are synergetic interactions for fatty acid production from glucose and glycerol,

so when cells utilize both of them, an extra benefit besides of removal of catabolite

repression can be achieved. We also designed strains for some other products,

including succinate and ethanol. The designed strain for aerobic succinate

production is very similar to one of the designs in literature, and the predicted yield

is within the experimental range. Dr. Fengming Lin carried out part of the

manipulations for fatty acid production designed by this method. By comparing the

results along the manipulations, we found the experimental results stand between

the prediction of FBA method and MOMA method, which are calculated along the

optimal sequence of manipulations. The fatty acid production in M9 medium is

partly in agreement with model predictions. An improvement of fatty acid

production by re-activating two glyoxylate bypass reactions was observed in the

experiments using LB 5-10 as growth medium but not in LB 1-2. In future, the

remaining modifications would be carried out and we expect the final strain can

produce more fatty acids than current engineered strains.
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CHAPTER VI

Concluding Remarks and Future Directions

6.1 Concluding Remarks

In this dissertation, we demonstrated strategies for automatically reconstructing

metabolic network for microorganisms by integrating their genomes, transcriptomes

and proteomes. We further introduced multiple-organism models to utilize these

metabolic networks for community-wide metabolic network modeling. These

community-wide metabolic network models were able to describe the cellular

metabolism, biosynthesis potentials, as well as interspecies interactions for microbial

communities. Besides metabolic modeling, a bi-level strain design model was

developed to optimize metabolic networks and regulatory networks of

microorganisms for production of biofuel molecules.

In Chapter II, we first developed a bioinformatic pipeline for genome-wide

metabolic network reconstruction (PEER), which can automatically reconstruct

high-quality genome-wide metabolic networks from annotated genomes. This

bioinformatic pipeline was tested with a model organism E. coli. By comparing the

metabolic network reconstructed by this automated bioinformatic pipeline with the

manual curated reference metabolic networks, we demonstrated PEER can provide

high-quality and complete genome-wide metabolic networks. The PEER was further

applied to twelve strains of P. marinus to generate pan and core metabolic networks
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of the species. We found the metabolic networks of the twelve strains can be

classified into two groups, which are consistent with the two ecotypes of the strains.

Therefore, we can define the metabolic functions and biosynthesis capabilities that

are essential for all the strains of P. marinus, as well as the diversities of metabolism

across the species. By mapping the variable part of metabolic networks of the twelve

strains, we identified several factors that differentiate the metabolism of strains. The

dominant factor, light, shaped the metabolic networks of low-light-adapted strains,

which are enriched with two reactions involved in citric-acid cycle (CAC) converting

2-oxoglutarate to succinyl-CoA. This observation suggest that the low-light-adapted

P. marinus are not obligate autotrophs, which agrees with experimental data.

Sulfur source is another factor identified in our work that may differentiate the

metabolic networks of the two ecotypes. In addition, we found phosphorus source

and nitrogen source did not affect the metabolic networks of the two ecotypes, even

though different types phosphorus sources and nitrogen sources were available in the

two environments. All these results demonstrate the extra benefits of reconstructing

pan and core metabolic networks for one species, which can only be achieved by

high-throughput automated metabolic network reconstruction tools.

After the bioinformatic pipeline for genome-wide metabolic network

reconstruction (PEER) was developed, we could start to reconstruct metabolic

networks for all the organisms identified in microbial communities. The PEER was

applied to Acid Mine Drainage (AMD) biofilm in Chapter III to model the AMD

biofilm and identify essential interactions associated with the biofilm formation.

The genome-scale metabolic networks of the five major organisms were

reconstructed, providing mechanisms for certain essential metabolisms in the

biofilm, such as nitrogen fixation, carbon fixation and biomass synthesis. In

addition to the individual metabolic networks, we developed community-wide

metabolic networks using multi-organism models. These models considered both

157



intracellular metabolism and interspecies interactions simultaneously. According to

the prediction, several essential interactions were identified, including cross-feeding

like interactions of amino acids and ammonia. These interactions provided us

potential treatments for AMD pollution by blocking these interactions that are

essential for the biofilm formation. We incorporated the proteomic datasets with the

reconstructed metabolic network to further refine the metabolic networks. 88.4%

and 75.7% active reactions for the two dominant organisms were identified in the

proteome, which were significantly higher than the proteome coverage (p-value

< 10−200). This enrichment of active reactions not only verified the reconstructed

metabolic networks but also indicated that growth is the major objective for this

biofilm.

Gut microbiomes are important host-related microbial communities that directly

relevant to health issues. We were interested in reconstructing community-wide

metabolic networks and identifying interspecies interactions to reveal the

mechanisms for the metabolism and relationship of the species inside the gut

microbiome. In Chapter IV, we applied two three-step metabolic modeling

procedures to two model gut microbial communities. By integrating growth

phenotypic data, genechip-based transcriptomes, and annotated genomes, we

reconstructed the metabolic networks for the two species in the two-species

microbiome. For the two-species model gut microbiome, the reconstructed

metabolic networks can predict the growth test results with 93% accuracy and agree

with 63% to 73% of the transcriptome. The community-wide model predicted B.

thetaiotaomicron provided pantothenate to E. rectale and E. rectale produced

stachyose for B. thetaiotaomicron which can be verified by experimental data. We

reconstructed the metabolic networks for a more comprehensive model gut microbial

community which includes ten species. Ten-species model was developed by a

different three-step modeling procedure that can utilize sequence-based
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transcriptomes. More than 60% of metabolic reactions identified in the

transcriptome was predicted to be active in the model. By modeling the

interactions, the model predicted the organisms that required extrageneous sources

of certain metabolites as well as the organisms synthesized them. Urea, citrate and

agmatine were found in the list of these interacted metabolites, and experimental

evidences were found to support these prediction.

In addition to reconstructing and modeling metabolic networks, we developed a

bi-level optimization based framework for strain design, which considering both

modifications of cellular metabolism and gene regulation. This method was used to

predict gene manipulations for some biofuel products including fatty acids,

succinate, and ethanol. From the model predictions, we confirmed that optimizing

both metabolic network and regulatory network can provide higher productivities

than only revising one of them, and the improvements were more significant for the

cases that either the products were not the favorite products of the cell, or the

growth conditions were far from the environments the organism evolved with. Part

of the design for fatty acid over-produced E. coli has already been implemented in

experiment by Dr. Fengming Lin.

From these results, we demonstrated the possibility of automatically

reconstructing genome-scale and community-wide metabolic network. We generated

the community-wide metabolic networks of three model microbial communities and

explored the potential of utilizing metabolic modeling methods to predict not only

cellular metabolism but also inter-species interactions. Despite of challenges, we

believe the bioinformatic pipeline for automated metabolic network reconstruction

we developed is a powerful tool for generating (meta)genome-scale metabolic

networks. These complex metabolic networks contain comprehensive information

about both cellular metabolism and the interactions with environments. Through

the studies of two model gut microbiota, we introduced strategies of integrating
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growth phenotypic data and gene expression data with metabolic models. This

integration of information from multiple levels provides us more comprehensive

knowledge about these complex biological systems. Therefore, community-wide

metabolic modeling is a promising method to study the metabolic functions and

ecological roles of microorganisms in microbial communities, and a powerful tool to

analyze and integrate large-scale culture-independent data.

6.2 Future Directions

In this dissertation, we demonstrated that reconstructing metabolic networks

from metagenomes or data collected by other cultivation-independent methods is a

promising tool for studying the intracellular metabolism and interspecies

interactions of microbial communities. However, there are several challenges during

this reconstruction process. First, the metagenomic sequences are less

comprehensive than genomic sequences collected from single organisms. Mavromatis

et al.(2007) predicted that about 20% of all the genes in a dominant microorganism

co-existing with others in a community could not be identified from metagenomic

sequences. The missing of these genes causes more metabolic gaps in the

reconstructed metabolic networks. To fill these gaps, more putative reactions are

needed, which increases the uncertainty of the final metabolic network. This

increase of putative reactions can be observed by comparing the metabolic networks

of AMD biofilm (Chapter IV) with the metabolic networks for P. marinus (Chapter

II). Therefore, to reconstruct high-quality community-wide metabolic networks,

accurate metabolic gap filling and gene candidate identification methods are

required.

The inter-species interactions are important properties in microbial communities.

However, these interactions have not been comprehensively characterized for most

microbial communities. To elucidate these interactions, we reconstructed the

160



metabolic networks together with inter-species interactions during our

community-wide metabolic modeling. This method can generate informative

predictions about these interactions, but largely relies on metabolic gap filling and

transporter prediction. Therefore, to accurately predict the inter-species

interactions in microbial communities, transporter predictions must be improved,

especially for the specificity of the exchange reactions.

The complexity of microbial communities further increases the difficulty of

community-wide metabolic networks modeling. Because of the inter-species

interactions, the metabolic networks of member organisms must be reconstructed

simultaneously, which can be demonstrated by comparing the metabolic networks of

individual organisms with the five-species metabolic network for the AMD biofilm

(Chapter III). As a result, the computational requirement will grow exponentially

with the number of organisms in the microbial community. Therefore,

simplifications that can reduce the complexity of the system but will not overly

reduce the accuracy and predictive power are required for these large-scale microbial

systems.

In this section, I will discuss several potential strategies for solving some of these

challenges, including utilizing more gene annotation/classification methods to

improve gap filling, utilizing multiple culture-independent data to improve the

community-wide model, and reconstructing metabolic networks for phylogenetic

groups to reduce the complexity. By introducing these methods, we expect to

further extend our metabolic modeling framework and its application to a wider

range of microbial communities. For example, one day we might be able to create

personalized gut microbe signatures using these methods, which could either

diagnose related diseases or guide our behavior in everyday life.
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6.2.1 Future Directions for Metabolic Network Reconstruction and

Modeling

6.2.1.1 Incorpration of Gene Annotation Methods

Including PEER framework, there are only several tools developed to

automatically reconstruct (meta)genome-wide metabolic networks. The desires of

high-quality metabolic networks drive us to keep improving these tools to overcome

several limitations. One of the challenges is to predict and annotate gene accurately.

The electronic annotation methods have been extensively studied and different

mapping algorithms were developed. Currently, BLAST against COG or KEGG

datasets is the most commonly used method for metagenomic data. In PEER,

BLAST against KEGG datasets was the only method used to identify gene

candidates for metabolic gaps. This process can be further improved by introducing

other gene annotation methods. Table 6.1 lists several potential methods or

databases that may work with PEER.

Gene Classification Systems
and Databases

Classification
Methods

Reference

HAMAP families HAMAP−Scan Lima et al., 2009
Pfam protein domains HMMER3 Punta et al., 2012
InterPro protein families,
domains and functional
sites

InterProScan Hunter et al., 2009

Clusters of Orthologous
Groups (COG)

BLAST Tatusov et al., 2003

Table 6.1: Potential Gene Classification Methods and Datasets for PEER.

The listed annotation and classification methods utilize different algorithms from

different classification aspects to provide systematic gene annotation and

classification. By mapping these classification systems and databases to the

metabolic reactions we collected, we will be able to predict the gene-reaction

associations more accurately than merely considering KEGG datasets. Therefore,
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we can improve the metabolic network reconstruction by incorporating these

methods when searching for gene candidates for metabolic gaps.

6.2.1.2 Incorpration of More -Omics data

In the Chapter III and IV, we described methods that incorporate either

transcriptomic or proteomic datasets during reconstruction of metabolic networks of

Acid Mine Drainage (AMD) biofilm and model gut microbial communities. Those

results indicate the advantage of integrating either gene expression or protein

identification with metabolic network reconstruction process based on genome

annotation and sequence. Therefore, considering both transcriptomic and proteomic

data might bring us to a better understanding of the metabolism of cells.

Furthermore, metabolomic data are becoming more and more available for many

biological systems, which are another potential source of information about these

microorganisms.

There are several challenges in integrating different -omics data. First, these -

omics data always have different coverages. Therefore, only part of the metabolic

network can be connected with all of these data. We need to develop methods to

avoid the bias caused by the different coverages of these -omics datasets. Another

challenge of integrating -omics data is the conflicts between different -omics data.

Specific strategies are needed to resolve these conflicts according to the properties of

these experimental data. For example, genechip based expression data normally have

higher coverages than sequenced-based expression data but less accurate. Therefore,

different strategies are needed to resolve the conflicts caused by the two types of

gene expression data. If we can overcome these challenges and integrate all the

-omics data in reconstructing process, we will generate much more complete and

accurate metabolic networks, which can bring us to a better understanding of cellular

metabolism and interactions.
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6.2.2 Metabolic Network Modeling of Real Human Gut Microbiota

In Chapter IV, we demonstrated two case studies on model gut microbial

communities utilizing metabolic reconstruction methods. These model microbial

communities were designed to study some specific questions about the natural gut

microbiota, for example, the microbial structure changes in response to diet.

However, the structure of natural gut microbiota is much more complex. Due to

this complexity, assembling the metagenomic sequences is still challenge. Therefore,

to associate the gene sequences with corresponding organisms, binning methods are

more frequently applied to these metagenomic datasets. Because of the limitation of

the binning methods, only incomplete genomes for organisms can be retrieved. The

incomplete genomes may not provide comprehensive information to reconstruct the

genome-scale metabolic network of all the individual organisms. To overcome this

shortage, we can reconstruct metabolic networks either for the dominant organisms

or for phylogenetic groups. However, due to variations and complexities of the data,

the required reconstruction strategies will be different from those used for single

organism or model communities, and we will discuss the possibility to utilize

metabolic network reconstruction methods in studying natural gut microbial

communities.

6.2.2.1 Preliminary Results

There are a number of metagenomic datasets for natural human gut microbial

communities. Here we introduce one collected by Qin et al. (2010). As part of

MetaHIT (Metagenimics of Human Intestinal Tract) project, this 576.7 Gb dataset

contains DNA sequences from 124 European adults. 3,299,822 non-redundant genes

were mapped to 89 frequent reference microbial genomes to generate a gene catalogue

of the human gut microbiome. According to the works, only 18 bacteria have been

found in all the 124 human faecal samples, while 57 were found in 90% of the human
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faecal samples and 155 were found in at least 1 human fecal sample. Therefore,

sample-wise variation is significant across the dataset, which cannot be neglected when

reconstructing metabolic networks for core human gut microbiome. Even though the

124 individuals can be classified into healthy people, people with ulcerative colitis

(UC) and people with Crohn’s disease (CD), we did not observe clear separation of

the gut microbiomes from the three groups, which can be explained partly by the

sample-wise variations.

Provided with this comprehensive metagenomic dataset, we are capable of

predicting the core and pan metabolic networks of human gut microbiome from the

metabolic networks reconstructed from 124 individuals. Utilizing the same method

described in Section 2.2.1, we reconstructed the draft metabolic networks from the

metagenomes of 124 individuals. In total, 3261 metabolic reactions were identified

for the gut microbiomes from 124 people. To identify the core metabolic network for

human gut microbiome, we set the cutoff value of 60 individuals to select core

metabolic reactions. There were 1777 metabolic reactions found in more than 60

human faecal samples, which were considered as core metabolic reactions.

Figure 6.1a lists the products according to the model predictions with different

levels of penalty for metabolic gaps. Some common fermentation products can be

produced without any gap filling, including acetate, ethanol and propanoate. Several

secondary metabolites also belong to this category, such as nicotinate and indole.

Riboflavin, ascorbate, and taurine require significantly more metabolic gaps if they

are produced.

The active reactions for synthesizing these products were listed in Figure 6.1b.

From the results, the more products lead to more active reactions, as well as

metabolic gaps. This result also indicates that the last several products in the

product list are mainly synthesized by putative reactions. Therefore, we shall not

keep decreasing the penalty levels for metabolic gaps, which will make the
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Figure 6.1: a) Secondary metabolites and byproducts synthesized by the core
metabolic network of human gut microbiome. The numbers of metabolic gaps that
are needed to fill are listed on the left. The compounds in the biomass composition
were not counted; b) the corresponding active reactions for synthesis of the products
(red bars). The frequencies of these reactions identified in samples are also listed.
Putative: metabolic gaps filled by reaction not in pan metabolic network; Identified:
metabolic gaps filled by reaction in pan metabolic network. The side bar indicates
the sources of metabolic reactions. Blue: core metabolic networks; red: metabolic
gaps.

predictions less reliable. The sample frequencies of both pan metabolic reactions

and putative reactions demonstrate that almost all the metabolic reactions involved

can be found in more than half of the populations. This result ensures the
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predictions are representative and the derived core metabolic network is capable of

producing these metabolites with limited metabolic gap filling.

We reconstructed the metabolic network of several phylogenetic groups identified

in this human gut metagenomic dataset. The sequences were classified into different

groups from phylum to genus. Even though we can generate metabolic networks for

all these groups, the discovery rates of genes in all the samples prevent us

reconstructing high-quality metabolic networks for some lower-level groups in the

phylogenetic tree. To generate representative metabolic networks, we select those

reactions widely identified not only in the whole gut microbiome but also in specific

classified groups.

After reconstructing the metabolic networks of the three major phyla, we were

able to generate community-wide metabolic networks of Firmicutes, Bacteroidetes

and Proteobacteria using the same methods described in Section 4.3.2. Figure 6.2

are the predicted interactions among the three phyla under three levels of penalty of

interaction. Some interactions that were suggested by the prediction of biosynthetic

capabilities were found in this result. For example, Firmicutes was the major

phylum corresponding to butyrate production. There are only a few interactions

predicted under the highest penalty level, including riboflavin (Vitamin B2),

ascorbate(Vitamin C), sn-glycero-3 phosphocholine, and

pyridoxalphosphate(Vitamin B6). Interestingly, most of these interacted molecules

are vitamins. According to the results in medium penalty level, 11, 12 and 18

putative reactions were filled as metabolic gaps for Firmicutes, Bacteroidetes and

Proteobacteria respectively. These metabolic gaps were about 3% of the total active

metabolic networks. The low fraction of metabolic gaps can be explained by the

methods we used to identify metabolic reactions from the metagenomic dataset. We

assigned all the metabolic reactions in lower levels to the corresponding higher level.

Therefore, metabolic reactions from multiple organisms were including for one
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phylum and the chance for missing an important metabolic reaction was

significantly reduced, compared to assignment metabolic reactions to genus or

species level.

Figure 6.2: Interaction results on Three-Phylum-Model of human gut microbiome.
Higher penalty leads to more conservative prediction.

6.2.2.2 Future Work

The above preliminary work on the MetaHIT dataset demonstrated that we can

capture and predict metabolic phenotypes as well as inter-groups interactions by

applying metabolic network reconstruction to those phylogenetic groups. One

advantage of this method is that we can avoid the uncertainty caused by inaccurate

sequence binning. In addition, this method integrated the organisms with relatively

low discovery rates into several phylogenetic groups, which contain more complete

genomic sequences and higher discovery rates than individual organisms. We further

found that the sequence depth and coverage have significant effects on the accuracy

of model predictions. Therefore, applying similar methods to more comprehensive

datasets lead to more accurate and complete understanding about these microbial

communities.

Human Microbiome Project (HMP) is such a project aiming to provide

comprehensive structural and genetic information of human microbiomes in various
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body sites including the gastrointestinal tract. One of the recently released datasets

were collected from 242 screened and phenotyped healthy adults (Human

Microbiome Project Consortium, 2012). This dataset contains more samples than

the MetaHIT dataset and the information of host phenotype contains more details.

Another advantage of the new dataset is that only samples from healthy adults were

included. Therefore, sample-wise variations caused by differences in host phenotypes

were minimized and the metabolic network reconstructed according to this dataset

might be more accurate. The metabolic pathways were found to be consistent across

the stool samples (Human Microbiome Project Consortium, 2012), which suggests

the consistency of the dataset.

Provided with more comprehensive and consistent Human Microbiome Project

(HMP) datasets, we will be able to generate high-quality metabolic networks for

natural human gut microbiomes. The detailed phenotype records of the host are

another type of informative data. By associating the metabolic networks with the

phenotypes, e.g. Body Mass Index (BMI), we might be able to generate new

hypotheses about the host-microbiome interaction. With these comprehensive

sequencing data, multiple-group metabolic models can be applied at lower levels,

e.g. at the species level. Results from such models with lower-level groups could

provide more accurate predictions about inter-species interactions by reducing the

number of organisms in each group.
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APPENDIX A

Biomass Compositions Assumed for E. coli

Table A.1: Biomass synthesis function assumed for E. coli. This composition was
modified from iAF1260 model. Negative value represents requirment.

Metabolites Coefficients

(mmol/g DCW)

Metabolites Coefficients

(mmol/g DCW)

L-alanine -0.5137 L-arginine -0.2958

L-asparagine -0.2411 L-aspartate -0.2411

L-cysteine -0.09158 L-glutamate -0.2632

L-glutamine -0.2632 L-glycine -0.6126

L-histidine -0.09474 L-iso-leucine -0.2905

L-leucine -0.4505 L-lysine -0.3432

L-methionine -0.1537 L-phenylalanine -0.1759

L-proline -0.2211 L-serine -0.2158

L-threonine -0.2537 L-tryptophan -0.05684

L-tyrosine -0.1379 L-valine -0.4232

dATP -0.02617 dGTP -0.02702

dCTP -0.02702 dTTP -0.02617

Continued on next page
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Metabolites Coefficients

(mmol/g DCW)

Metabolites Coefficients

(mmol/g DCW)

GTP -0.2151 CTP -0.1335

UTP -0.1441 NAD -0.001831

NADP 0.000447 COA -0.000576

FAD -0.000223 ATP -59.984

10-

Formyltetrahydrofolate

-0.000223 2-Oxo-3-hydroxy-4-

phosphobutanoate

-0.000223

S-Adenosyl-L-

methionine

-0.000223 5,10-

Methylenetetrahydrofolate

-0.000223

Pyridoxal 5’-

phosphate

-0.000223 Riboflavin -0.000223

5,6,7,8-

Tetrahydrofolate

-0.000223 ADP 59.810000

172



APPENDIX B

Automated Curation Model in PEER

• Sets

R, all the metabolic reactions;

Re, all the transporter reactions;

Renvi, environmental conditions;

M , all the metablites;

S, all the species (subdivisions) in the model;

Ire, irreservable reactions;

Inenvi, all the incomming environmental exchange fluxes;

Outenvi, all the outgoing environmental exchange fluxes;

In, all the uptake fluxes;

Out, all the secretion fluxes;

• Parameters

S(r,m), stoichiometric coefficient of metabolite m in metabolic reaction r;
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Se(re,m), stoichiometric coefficient of metabolite m in transport reaction re;

Senvi(renvi,m), stoichiometric coefficient of metabolite m of environmental

exchange flux renvi;

weight(r, s), the scaled risk of added reaction rin species s;

Exs(r, s), existent of reaction r in specise s (0 or 1);

Elim, the upbound of the reaction flux;

spon(r), parameter indicates whether r is spontaneous reaction;

Nutrient(renvi), the maximum nutrient supply of the incomming environmental

exchange fluxes;

Growth(s), the minimal growth rate requirement of species s in this

environment.

• Continuous variables

v(r, s), flux of reaction rin species s;

ve(re, s), flux of reaction re in species s;

venvi(renvi), flux of environmental exchange reaction renvi;

• Binary variables

bact(r, s), activity of reaction r in species s (0 or 1);

badd(r, s), Add reaction r into species s (0 or 1);

• Objective function

min
v,ve,badd

∑

s∈S,r∈R

weight(r, s) ∗ badd(r, s)

This objective function is trying to minimize the all the putative reactions in

a metabolic network. weight parameters give weights to all these putative
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reactions based on the sequence alignment. Therefore, the model will fill the

metabolic gaps with those reactions associated with good gene candidates if

possible.

• Constrains

– Mass balance constraints of each species.

∑

r∈R

S(r,m) ∗ v(r, s) +
∑

re∈Re

Se(re,m) ∗ ve(re, s) = 0

, ∀m ∈ M, s ∈ S. These constraints will force all the metabolites in each

species without net changes. The effects of exchange fluxes have been

included in these mass balance constraints.

– Mass balance constraints of the whole compartment

∑

r∈R

∑

s∈S

Se(re,m) ∗ ve(re, s) +
∑

renvi∈Renvi

Senvi(renvi,m) ∗ venvi(renvi) = 0

, ∀m ∈ M . These constraints requires mass balance of all the exchange

fluxes. All the net changes must be balanced by the exchange fluxes with

environments. These mass balance constraints can be omitted if there is

only one organism or compartment containted in the model.

– Reversibility

v(r, s) ≥ 0 ∀r ∈ R, s ∈ S

These constraints requires all the irreversible reaction with positive flux.

– Active reaction constraints

v(r, s) ≤ Elim ∗ bact(r, s) ∀r ∈ R, s ∈ S

175



v(r, s) ≥ −Elim ∗ bact(r, s) ∀r ∈ R, s ∈ S

These two set of constriants will only allow those reactions predicted to be

active to carry fluxes.

– Existance of reaction

bact(r, s) ≤ Exs(r, s) + badd(r, s) + spon(r) ∀r ∈ R, s ∈ S

The active reactions can be spontaneous reactions, putative reactions, or

reactions identified in the genome annotation.

– Nutrient uptake and product secret

Nutrient(renvi) ≥ venvi(renvi) ≥ 0 ∀renvi ∈ Inenvi

Environmental incomming fluxes, the upbounds of the incomming fluxes

are determined by the nutrient supply.

venvi(renvi) ≤ 0 ∀renvi ∈ Outenvi

Environmental outgoing fluxes, there is no limit for these outgoing fluxes.

ve(re, s) ≥ 0 ∀re ∈ In, s ∈ S

Uptake fluxes for each organism;

ve(re, s) ≤ 0 ∀re ∈ Out, s ∈ S

Secret fluxes for each organism.
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– Growth Requirement

v(r Growth, s) ≤ Growth(s) ∀s ∈ S

r Growth is the biomass synthesis reaction. It must larger than the

minimal growth rate defined by Growth(s).
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APPENDIX C

Byproducts in Model Gut Microbiota

The minimal products were predicted by the multi-organisms model by minimizing

the number of byproducts. Table C.1 lists all the necessary byproducts predicted in

two-species model. Most of the byproducts are synthesized by E. rectale except 3-

beta-D-Galactosyl-sn-glycerol.

Table C.1: Minimal byproducts in the two-species microbial community.

Species Minimal Byproducts
B .thetaiotaomicron 3-beta-D-Galactosyl-sn-

glycerol
E. rectale Hydroxylamine
E. rectale 2,3-Bisphospho-D-glycerate
E. rectale Deoxyguanosine
E. rectale 3-Hydroxy-3-methyl-2-

oxobutanoicacid
E. rectale alpha-D-Galactose

Figure 4.15 provides the list of byproducts that have been identified in relevant

metabolomic studies. The complete list of the byproducts are listed in Table C.2.

There are only less than 15% of predicted byproducts were identified in relevent

metabolomic studies. This low coverage was caused by either the incomplete

metabolomic datasets or false positive predictions by the ten speceis model.
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Table C.2: Minimal byproducts in the ten-species microbial community. Only the
byproducts predicted by all the solutions were listed.

Metabolite Metabolite Metabolite Metabolite

CoA
D-Fructose1,6-

bisphosphate
Hexadecanoicacid

Shikimate3-

phosphate

Glyoxylate
D-Glucosamine6-

phosphate

1,2-Diacyl-sn-

glycerol
L-Rhamnose

Hydrogen Sucrose6-phosphate Glycolaldehyde L-Rhamnulose

Oxidizedferredoxin
D-Mannose6-

phosphate
D-Xylose D-Mannonate

3-Phospho-D-

glycerate
Sugarphosphate D-Xylulose (R)-Pantoate

Maltose Sugar D-Fructuronate

N-Acetyl-L-

glutamate5-

phosphate

Thiosulfate Anthranilate
D-Arabinose5-

phosphate
Deoxyribose

Raffinose Sorbitol6-phosphate
2-Dehydro-3-deoxy-

D-gluconate

4,6-Dideoxy-4-oxo-

dTDP-D-glucose

Inosine Glycerol D-Altronate
dTDP-4-dehydro-6-

deoxy-L-mannose

5-Dehydro-4-deoxy-

D-glucuronate

D-Fructose1-

phosphate

2-Dehydro-3-deoxy-

6-phospho-D-

gluconate

D-O-Phosphoserine

Glutathione D-Sorbitol
(4S)-4,6-Dihydroxy-

2,5-dioxohexanoate
Melibiitol

Continued on next page
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Metabolite Metabolite Metabolite Metabolite

Nicotinamide D-Mannose
beta-D-Glucose1-

phosphate

D-Tagatose6-

phosphate

Hydrogensulfide Propanoyl-CoA Creatine
3-Hydroxy-3-methyl-

2-oxobutanoicacid

Sulfite Propanoate Thymidine Chloramphenicol

Triphosphate
10-

Formyltetrahydrofolate
3-Dehydroshikimate

Chloramphenicol3-

acetate

Adenine Uridine Deoxycytidine

2-Amino-4-hydroxy-

6-hydroxymethyl-

7,8-dihydropteridine
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APPENDIX D

Metabolites Identified in Metabolomic Studies

We collect metabolites that have been identified in the gut environments from

literatures (Bjerrum et al., 2010; Chuang et al., 2012; Jansson et al., 2009; Le Gall

et al., 2011; Li et al., 2011; Martin et al., 2010; Wikoff et al., 2009; Wu et al., 2010;

Zheng et al., 2011). This list of metabolite was used as a filter to simplify the

prediction of uptake and secretion in Chapter IV. Table D.1 is the complete list of

these metabolites.

Table D.1: Complete list of metabolites identified in relevant metabolomic studies.

Metabolite Metabolite Metabolite Metabolite

4-Imidazolone-5-

propanoate
L-Glutamine Ascorbate

3-

Hydroxykynurenine

L-Citrulline 2-Oxoglutarate Choline

O-(4-Hydroxy-3,5-

diidophenyl)-3,5-

diiodo-L-tyrosine

Urea beta-D-Glucose
(R)-3-

Hydroxybutanoate

4-(2-Aminoethyl)-

1,2-benzenediol

Adenine alpha-D-Glucose (S)-Lactate Homovanillate

Continued on next page
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Metabolite Metabolite Metabolite Metabolite

D-Ribose5-

phosphate
L-Tyrosine Acetone L-Normetanephrine

L-Homocysteine Raffinose Dimethylamine Octanoicacid

Acetate Formate Creatine Tetradecanoicacid

4-Aminobutanoate L-Serine Creatinine Hexadecanoicacid

Citrate L-Alanine Allantoin L-Arabitol

Succinate Isocitrate 3-Methylguanine D-Arabinose

Cadaverine Glycine Thymine Xylitol

N-Carbamoyl-L-

aspartate
D-Alanine Deoxycytidine D-Xylose

L-Ornithine Fumarate Cytosine 6-Deoxy-D-galactose

O-Phospho-L-serine L-Lysine Malonate L-Rhamnose

L-Proline L-Asparagine Cytidine D-Gluconicacid

Indole 2-Oxobutanoate
Imidazole-4-

acetaldehyde
Citramalate

Ethanol L-Tryptophan Imidazole-4-acetate Aminomalonate

Glycerol L-Phenylalanine Methylimidazoleaceticacid
2’-

Hydroxydihydrodaidzein

Hypoxanthine Phenylpyruvate Hypotaurine I-Urobilin

L-Histidine beta-D-Fructose 5-Oxoproline
N,N-

Dimethylformamide

Urocanate Chorismate L-Methionine Salicyluricacid

myo-Inositol L-Leucine

N6-(L-1,3-

Dicarboxypropyl)-L-

lysine

S-

Succinyldihydrolipoamide

Orotate Nicotinate L-Pipecolate L-Carnitine

Continued on next page
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Metabolite Metabolite Metabolite Metabolite

Shikimate Xanthine Sarcosine Agmatine

LL-2,6-

Diaminoheptanedioate
L-Isoleucine Putrescine Tyramine

CO2 alpha-D-Galactose Itaconate
1H-Imidazole-4-

ethanamine

Pyruvate Glutathione Tryptamine Skatole

D-Glucose
sn-glycero-3-

Phosphocholine
Nicotinamide Propanoate

Glyoxylate Betaine N-Methyltryptamine Pentanoate

L-Glutamate Taurine
4-Hydroxy-2-

quinolinecarboxylicacid
Ethanolaminephosphate
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