
Evaluating Failure Outcomes with

Applications to Transplant Facility

Performance

by

Jie (Rena) Sun

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Biostatistics)

in The University of Michigan
2012

Doctoral Committee:

Professor John D. Kalbfleisch, Co-Chair
Professor Douglas E. Schaubel, Co-Chair
Professor Robert M. Merion
Assistant Professor Min Zhang



ACKNOWLEDGEMENTS

This thesis would not have been possible without the guidance, encouragement

and patience of my co-advisors Dr. Jack Kalbfleish and Dr. Doug Schaubel. I thank

both of them for sharing their insights and knowledge with me. Besides the academic

and research skills I learned from them, many transferrable skills such as structured

creative thinking, effective writing and presentation have all benefited tremendously

on my research, career and life. I feel privileged to have had the opportunity to work

with both of them.

I am also deeply grateful to my committee members, Dr. Robert Merion and Dr.

Min Zhang, for their suggestions and comments.

In addition, I would like to thank the Department of Biostatistics at the Univer-

sity of Michigan and Kidney Epidemiology and Cost Center for their assistance and

financial support throughout my graduate studies.

As always, it is impossible to mention everybody who had an impact on this

work. I would like to thank all of my colleagues who had supported me throughout

the course of the thesis.

Finally my special thanks go to my wonderful parents, Baosheng Sun and Huifen

Su, whose faith in me was the motivation to carry on with this work. I thank them

for their encouragement, patience and understanding.

ii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II. A Risk-Adjusted O-E CUSUM with Monitoring Bands for
Monitoring Medical Outcomes . . . . . . . . . . . . . . . . . . . 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 The O-E CUSUM with a V-mask . . . . . . . . . . 9
2.2.3 Monitoring Bands . . . . . . . . . . . . . . . . . . . 11
2.2.4 The One-Sided CUSUM . . . . . . . . . . . . . . . 12
2.2.5 Control Limits . . . . . . . . . . . . . . . . . . . . . 13
2.2.6 Some Examples of CUSUM Charts . . . . . . . . . 15
2.2.7 Head-Start . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Control Limits . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Sensitivity to Process Change in Relative Risk . . . 21

2.4 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

III. Weighted Cumulative Sum (WCUSUM) to Monitor Medical
Outcomes in the Presence of Dependent Censoring . . . . . . 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iii



3.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.1 A Weighted Zero-Mean Process . . . . . . . . . . . 30
3.3.2 One-Sided Weighted CUSUM Chart . . . . . . . . . 33
3.3.3 Variance of the Zero-Mean Process NW (t)− A

W (t) 34
3.3.4 Control Limits . . . . . . . . . . . . . . . . . . . . . 36
3.3.5 IPCW Weights Calculation . . . . . . . . . . . . . . 37

3.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.1 Set-up . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.2 Variance of the Zero-Mean Process . . . . . . . . . . 40
3.4.3 Recovery of Underlying Failure Risks . . . . . . . . 41

3.5 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5.1 Data Description . . . . . . . . . . . . . . . . . . . 42
3.5.2 Analysis and Results . . . . . . . . . . . . . . . . . 45

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

IV. Implementation of Inverse Probability Censoring Weighting
using a Cox model and a Piecewise Exponential approach . . 48

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Cox IPCW Approach . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.3 Software Implementation . . . . . . . . . . . . . . . 53

4.3 PWE IPCW Approach . . . . . . . . . . . . . . . . . . . . . 55
4.3.1 Background . . . . . . . . . . . . . . . . . . . . . . 55
4.3.2 Choice of Location and Number of Knots . . . . . . 57

4.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5.1 Data Description . . . . . . . . . . . . . . . . . . . 62
4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

V. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

iv



LIST OF FIGURES

Figure

2.1 An O-E CUSUM with V-mask triggering ‘worse than expected’ signal. 11

2.2 Center A, with 378 patients between January 01, 2006 and June 30,
2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Center B, with 173 patients between January 01, 2006 and June 30,
2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 The weighted CUSUM of Center A for a 5-year period as compared
to the standard practice of the region that Center A belongs to. . . 46

3.2 The weighted CUSUM of Center B for a 5-year period as compared
to the standard practice of the region that Center B belongs to. . . 47

v



LIST OF TABLES

Table

2.1 Control limits, power and ARL of the O-E CUSUM. . . . . . . . . . 20

2.2 Statistical power of the CUSUM in Scenario 1 where failure rates
change for subjects entering after year 1, and Scenario 2 where failure
rates change for subjects at risk at year 1. . . . . . . . . . . . . . . 22

2.3 The number of centers signalled by the CUSUM (# of signals) and
average time to signal (AVE) among signalled centers. . . . . . . . 24

3.1 Confirmation of the expected variance and the zero-mean process. . 40

3.2 Recovery of underlying failures and risks in the case of dependent
censoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Control limits for Weighted CUSUM . . . . . . . . . . . . . . . . . 46

4.1 An example dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 The expanded dataset to cover all censoring times. . . . . . . . . . . 54

4.3 The contracted dataset to only include death times. . . . . . . . . 54

4.4 Comparison among 4 baseline hazards, with censoring at ∼40%. . . 59

4.5 Comparison among 4 baseline hazards, with censoring at ∼60%. . . 60

4.6 Average computation time of IPCW procedure (in seconds). . . . . 61

4.7 Censoring model and death model using Cox IPCW and PWE4 IPCW 66

D.1 Weighted CUSUM . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

E.1 Standardized Br(t) between year 1 and year 2 . . . . . . . . . . . . 80

vi



LIST OF APPENDICES

Appendix

A. Proof of Theorem in Chapter II . . . . . . . . . . . . . . . . . . . . . 69

B. Cox model for death in Chapter III . . . . . . . . . . . . . . . . . . . 71

C. Generating dependent censoring in Chapter III . . . . . . . . . . . . . 72

D. Simulation studies to demonstrate alternative approach to choose con-

trol limit for WCUSUM in Chapter III . . . . . . . . . . . . . . . . . 74

E. Variance of the Weighted Zero-Mean process in Chapter IV . . . . . . 76

vii



CHAPTER I

Introduction

In this thesis, I develop methods to evaluate mortality experience of medical fa-

cilities, with applications to transplant facility-specific post-transplant mortality and

pre-transplant waitlist mortality. We aim to compare the center-specific outcomes

with the standard practice while providing timely feedback to the centers.

In Chapter II, we introduce a risk-adjusted O-E (Observed-Expected) Cumulative

Sum (CUSUM) chart along with monitoring bands as decision criterion, to monitor

the post-transplant mortality in transplant programs. This can be used in place of a

traditional but complicated V-mask and yields a more easily interpreted chart. The

resulting plot provides bounds that allow for simultaneous monitoring of failure time

outcomes with signals for ‘worse than expected’ or ‘better than expected’. The plots

are easily interpreted in that their slopes provide graphical estimates of relative risks

and direct information on additional failures needed to trigger a signal. Appropriate

rejection regions are obtained by controlling the false alarm rate (Type I error) over

a period of given length.

In Chapter III, we discuss the construction of a weighted CUSUM to evaluate

pre-transplant waitlist mortality of facilities in the context where transplantation is

considered to be dependent censoring. This setting arises, for example, with patients

1
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on the liver transplant waitlist. These patients are evaluated multiple times, in

order to update their current medical condition as reflected in a time dependent

variable called the Model for End-Stage Liver Disease (MELD) score. Waitlisted

patients with higher MELD score have a higher risk of death and consequently are

given higher priority to receive a liver transplant when available. Unless the time-

dependent factors (such as MELD) are adjusted for in the pre-transplant death

model, censoring (transplant) time is correlated with the patient’s unobserved time

of death. To evaluate the waitlist mortality of transplant centers, it is important to

take this dependent censoring into consideration; failing to do so could yield biased

results. We assume a ‘standard’ transplant practice through a transplant model,

utilizing Inverse Probability Censoring Weights (IPCW) to construct a weighted

CUSUM. We evaluate the properties of a weighted zero-mean process as the basis of

the proposed weighted CUSUM. A rule of setting control limits is discussed. A case

study on regional liver transplant waitlist mortality is carried out to demonstrate

the use of the proposed weighted CUSUM.

In Chapter IV, we provide an explicit road map for using a Cox dependent censor-

ing model in the IPCW approach, complete with details of implementation. The Cox

IPCW method has not been widely adopted among practitioners, despite its flexibil-

ity and wide applicability. It is likely that the technical implementation, which seems

tricky and challenging, is the main obstacle hindering its wide adoption. In addi-

tion to the software implementation details, we evaluate an alternative parametric

IPCW approach to gain computational efficiency. Simulation studies and case study

on the national liver transplant waitlist mortality are conducted to demonstrate the

similarity in estimates between Cox IPCW and PWE IPCW, and the computational

savings by the PWE IPCW as compared to the Cox IPCW.
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In the last chapter, we discuss the future directions of our work.



CHAPTER II

A Risk-Adjusted O-E CUSUM with Monitoring

Bands for Monitoring Medical Outcomes

2.1 Introduction

Control charts are used to continuously monitor outcomes of a process, and hence

to guide improvement in quality by providing timely feedback. CUmulative SUM

(CUSUM) control charts were first introduced by Page (1954), in an industrial qual-

ity control setting. Over the last decade or so, CUSUMs have been suggested to

monitor the performance of clinicians by, for example, measuring the occurrence of

deaths or other outcomes after a surgical procedure. This approach enables early

detection of an unacceptable number of deaths, and helps with the identification and

correction of problems. Steiner et al. (2000) and Steiner et al. (2001) developed a

risk-adjusted one-sided CUSUM procedure based on the likelihood ratio in a logis-

tic model. Axelrod et al. (2006) demonstrated the utility of the one-sided CUSUM

method for analyzing one-year binary mortality outcomes using a cohort of trans-

planted patients at multiple centers. However, a built-in one-year lag is necessary

in this approach. Biswas and Kalbfleisch (2008) developed a risk-adjusted one-sided

CUSUM procedure that is based on a continuous time scale, incorporating a failure

as soon as it occurs. In their method, a selected alternative hypothesis defines the

4
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one-sided CUSUM from a sequential probability ratio test (SPRT). They applied

the procedure to detect ‘worse than expected’ outcomes, but it can also be used

to detect the alternative hypothesis ‘better than expected’ in a separate one-sided

chart. Gandy et al. (2010) discussed a time-scale transformation under which some

properties of the one-sided CUSUM can be obtained analytically.

The path of the one-sided CUSUM, however, does not clearly exhibit the true

difference between observed and expected failures. For example, a horizontal path

does not mean that the center is operating at the national average level, but rather

that it has a risk approximately half way between the national average and the target

risk used in constructing the chart. Collett et al. (2009) suggested supplementing

the one-sided chart with an O-E CUSUM for which the slopes of the plot provide

a simple estimate of the relative risk of death associated with the outcomes for the

center under investigation. If O(t) is the observed number of failures in (0,t] and

E(t) represents the expected number of failures; a plot of O(t) − E(t) versus t or

E(t) is called an O-E CUSUM plot (Collett et al., 2009).

In this article, we consider such a risk-adjusted O-E CUSUM, and propose moni-

toring bands along the CUSUM path; when the CUSUM crosses either band, a signal

occurs. This approach has the advantage of providing a true reading as to whether

the rate of deaths at a center is above or below a chosen standard, while being a

simple monitoring tool that is easy for clinicians to operate and interpret. The reader

is referred to Figure 2.I and 3.I for example charts. The single plot suffices for sum-

marizing the past data and trends, and provides signals in the same way as the two

one-sided CUSUMs.

The monitoring bands are obtained from the V-mask approach which was pro-

posed in the context of normally distributed outcomes by Barnard (1959). He sug-
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gested a CUSUM as a ‘reversed’ SPRT and showed that a pre-determined shift of

the process mean can be detected through the use of a cursor, called a V-mask,

superimposed on the chart following each observation. It triggers a signal if either

of its arms cuts the CUSUM path. This idea is quite elegant, although the V-mask

has been found to be more difficult to implement than the one-sided CUSUM. In

Section 2, we study the V-mask approach to monitoring a failure time mechanism,

show its equivalence to the one-sided CUSUMs, and develop an alternative plotting

mechanism based on monitoring bands that are simpler to use.

This work was motivated by the wish to provide real time feedback to trans-

plant centers given data reported to the Scientific Registry of Transplant Recipients

(SRTR). For this purpose, we compare post-transplant outcomes at the center to

those that would be expected from a model based on national data, where the ex-

pectations are risk adjusted to reflect the patient mix at the center under review.

In this approach, the standard for comparison is obtained from a population model

fitted to all centers combined. An alternative approach would use historical data

for each center as the benchmark to define the expected outcomes, as suggested in

Steiner et al. (2000), Steiner et al. (2001) and Collett et al. (2009). This focuses

on determining whether the center is performing better or worse than it has pre-

viously done. The use of historical benchmark can be satisfactory with very large

centers or with the overall national picture, but it could be problematic for smaller

centers, where the baseline rates (e.g. of one-year patient survival) are rather poorly

estimated (Kalbfleisch, 2009).
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2.2 Method

2.2.1 Notation

In this section, we first describe an adjusted ‘national average failure rate’, which

is estimated by combining the outcomes from all of the transplant centers in the

United States. Second, we consider individual centers and introduce a process to

count the cumulative observed failures over time at each center. This is compared to

a center-specific expected number of cumulative failures, which is obtained assuming

that the outcome distribution of this center corresponds to that of the national

average having adjusted for patient characteristics.

Let X represent the time from transplant to death, and suppose that we have a

model for X based on transplantation data from all centers in the country. Given

covariate vector Zi for patient i measured at the time of transplant, a hazard function

is defined as

(2.1) αi(x) = α(x;Zi) = lim
δ→0

P{X ∈ (x, x+ δ)|X ≥ x, Zi}/δ,

which can be estimated through a failure time model. For example, we might have

a (stratified) Cox model, an accelerated failure time model or a parametric model to

describe the national experience accounting, so much as possible, for covariates that

influence outcomes.

Consider following a specific center in chronological time t beginning at t = 0

and suppose that patients receive transplants at times S1 < S2 < · · · . In particular,

subject i receives transplant at time Si and subsequently fails at time Ti, so that the

time to failure from transplant is Xi = Ti−Si. Suppose that survival over a one-year

period is of interest, so that a qualifying failure occurs if Xi ≤ 1. Other longer or

shorter periods could also be considered. It is also assumed that, conditional on
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covariates Zi, the null or ‘expected’ distribution of Xi is known and defined by the

hazard function αi(x); in our case, αi(x) is estimated based on the very large sample

obtained by combining national experience of all transplant facilities. We suppose

that the error in estimation of αi(x) is small enough to be ignored.

Let ND
i (t) count the number of qualifying failures for subject i in (0, t]. Thus,

ND
i (t) is 0 until a qualifying failure is observed, at which time it jumps to 1; if, on

the other hand, a qualifying failure never occurs for subject i, ND
i (t) remains at 0

for all t. Thus,

ND
i (t) =





I(Ti ≤ t ≤ Si + 1) for t ≤ Si + 1 ,

ND
i (Si + 1) for t > Si + 1.

Let ND(t) =
∑NQ(t)

i=1 ND
i (t) be the total observed number of qualifying failures in

(0, t] at the center, where NQ(t) =
∑

i I(Si ≤ t) denotes the number of transplants

that have taken place in (0, t]. We define the ‘at risk’ process for subject i as Yi(t) =

I{Si < t ≤ min(Ti, Si + 1)}.

We now suppose that the risk of a qualifying failure at this center is eµ times

the null or predicted rate αi(x). Let the history for this center at t be given by

Ft− = {NQ(u), N
D
i (u), Yi(u), Zi, i = 1, · · · , NQ(t); 0 ≤ u < t} and define the intensity

function of subject i at this center as

(2.2) E{dND
i (t)|Ft− , µ} = eµdΛi(t) =





Yi(t)e
µαi(t− Si)dt if t > Si;

0 otherwise,

where αi is defined in (2.1) and dΛi(t) is being defined implicitly. When µ = 0,

national rates prevail and E{dND
i (t)|Ft− , µ = 0} = dΛi(t). In this case, Λi(t) =

∫ t

0
dΛi(s) represents the cumulative intensity for individual i up to time t, and A(t) =

∑NQ(t)
i=1 Λi(t) denotes the overall cumulative intensity for the center up to t. Note

that if µ = 0, the death rates for patients at this center are identical to the expected
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or national rates; if µ > 0 (or µ < 0), the death rates in this center are higher (or

lower) than the national rates.

We make the following notes: i) Although we only include administrative cen-

soring in this formulation, other independent censoring could be incorporated by

suitable definition of Yi(t). ii) We define the hazard αi(x) for all x > 0 and restrict

attention to qualifying failures through setting Yi(t) = 0 once one-year exposure is

completed. Therefore, the proportional hazards assumption based on the constant

relative risk eµ for the center under review is only relevant for 0 < x < 1. iii) Finally,

the choice of the proportional hazards model for center departures from the predicted

rate is for convenience; other models, such as an accelerated failure time model or

parametric model, could be used, but it would alter the formulation of the likelihood

ratio and may increase the computational difficulty of the control limits.

2.2.2 The O-E CUSUM with a V-mask

Based on the model (2.2), the likelihood of µ on data {NQ(u), N
D
i (u), Yi(u), 0 <

u ≤ t, i = 1, · · · , NQ(t)} is proportional to L(µ) =
∏NQ(t)

i=1 exp{µND
i (t)− eµΛi(t)}.

To construct the CUSUM, we consider a likelihood ratio test. The null hypoth-

esis of interest is that the process is ‘in control’ with relative risk 1 (H0: µ = 0).

We consider simultaneously two alternative hypotheses: the process is ‘worse than

expected’ with a relative risk eθ1 (H−: µ = θ1 with θ1 > 0), and the process is ‘better

than expected’ with a relative risk eθ2 (H+: µ = θ2 with θ2 < 0). Here θ1 and θ2 are

pre-determined constants.

The likelihood ratio of µ = θ versus 0 for a center based on the data in (s, t] with

starting time s ∈ (0, t] is LR(θ; s, t) = exp
[
θ{ND(t)−ND(s)} − (eθ − 1){A(t)− A(s)}

]
.

Therefore, the rejection region forH− is log{LR(θ1; s, t)} > a > 0 (or log{LR(θ2; s, t)} >
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b > 0 for H+). These two rejection regions can be re-written as

(2.3) C(s) < {C(t)− h1 − k1A(t)}+ k1A(s), for H−,

(2.4) C(s) > {C(t) + h2 − k2A(t)}+ k2A(s), for H+.

where C(t) = ND(t) − A(t), k1 = (eθ1 − 1)/θ1 − 1 > 0, k2 = (eθ2 − 1)/θ2 − 1 < 0,

h1 = a/θ1 > 0, and h2 = −b/θ2 > 0. Note that k1 and k2 are determined based

on the target relative risk θ1 and θ2, whereas h1 and h2 can be adjusted to obtain

desired properties (e.g. to achieve a certain false alarm rate over a given period of

time). Here we can view ND(t) as O(t) and A(t) as E(t), as introduced in Section

1, so that C(t) = O(t)− E(t).

Now consider a plot of C(s) versus A(s) for all s ∈ (0, t] at a given t. The in-

equalities (2.3) and (2.4) correspond to straight-line boundaries (Figure 2.1) crossing

the points (A(t), C(t) − h1) and (A(t), C(t) + h2) with slopes k1 and k2, respec-

tively. These boundaries described the appropriate V-mask similar to that proposed

by Barnard (1959) in the Gaussian case.

An alternative approach is to view the SPRT process in reverse time beginning

with the ‘origin’ (A(t), C(t)) at the current time t and looking backward at all

previous times s ≤ t (Wetherill, 1977). The same boundaries (2.3) and (2.4) can also

be obtained from this approach.

We could plot the O-E CUSUM as C(t) versus A(t) or versus t. The former

has the advantage of leading to the linear V-mask discussed above. In this plot, if

either arm of the V-mask intersects the previous CUSUM path, a signal is recorded,

suggesting a decrease (or increase) in the underlying failure rate from the nominal

value. Thus, the O-E CUSUM can be implemented by applying the V-mask at each

point in time until a signal occurs. If one continues a CUSUM indefinitely, whatever
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Figure 2.1: An O-E CUSUM with V-mask triggering ‘worse than expected’ signal.

the true value of θ is, the CUSUM will eventually hit one of the boundaries and thus

lead to rejection of the null hypothesis. Over any finite interval, however, there is a

positive chance of no signal. Power and size are then of interest.

In the test outlined above, we plot C(t) versus A(t) and use the linear bounds.

However, it is more natural to plot C(t) versus t. In the next section, we re-specify

the CUSUM signals so that they can be implemented in a plot against t.

2.2.3 Monitoring Bands

The V-mask is generally viewed as a rather complicated presentation, which may

be one reason why the one-sided CUSUMs discussed in the next section have been

more widely used, at least in medical applications. In this section, we describe a novel

way to present the O-E CUSUM chart to avoid the need of repeatedly applying the
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V-mask.

Consider the alternative hypothesis H− at time t. From (2.3), let

(2.5) M1(t) = inf
s≤t
{C(s)− k1A(s)}+ h1 − {C(t)− k1A(t)},

so that the chart signals at time t if M1(t) ≤ 0, or it continues if M1(t) > 0. In

addition to the path C(t), we can also plot C(t) +M1(t), graphically displaying the

minimum distance of the CUSUM from the lower control arm of the V-mask at time

t.

Similarly, we plot C(t)−M2(t) for ‘better than expected’ detection, whereM2(t) =

infs≤t{−C(s)+ k2A(s)}+h2 + {C(t)− k2A(t)}. The CUSUM chart signals at time t

if M2(t) ≤ 0, or it continues if M2(t) > 0. We refer to C(t)+M1(t) and C(t)−M2(t)

as ‘monitoring bands’, which now serve as control limits with the same signaling

properties as the V-mask. These ‘monitoring bands’ apply equally to a plot of C(t)

versus t as to a plot of C(t) versus A(t). Sample plots and detailed interpretations

are given in Section 2.2.6.

It is worth noting that the computation of monitoring bands M1(t) and M2(t)

is not so difficult as it might seem to be. For example, the infimum on the right

side of (2.5) must occur before a jump point of C(s). We only need to evaluate

{C(s−)− k1A(s−)}+ h1−{C(t)− k1A(t)} at the failure times s1, s2 · · · t, and select

the minimum value as M1(t).

2.2.4 The One-Sided CUSUM

For comparison purposes, we discuss the one-sided CUSUM, which was intro-

duced in the case of binary outcomes by Steiner et al. (2000) and modified to the

present setting of continuous failure times by Biswas and Kalbfleisch (2008). The

one-sided CUSUM is also based on a SPRT. For the alternative hypothesis of a rela-
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tive risk eθ, the one-sided CUSUM is defined by Gt+dt = max(0, Gt + dUt) for t > 0,

with G0 = 0 and dUt = θdND(t)− (eθ − 1)dA(t).

If we are interested in detecting a relative risk of either eθ1 (θ1 > 0) or eθ2 (θ2 <

0), two one-sided CUSUMs can be performed simultaneously (Gandy et al., 2010),

denoted as G
(1)
t and G

(2)
t . The process G

(1)
t remains at 0 until the first qualifying

failure occurs, whereas G
(2)
t immediately increases from 0. The G

(1)
t CUSUM gives

a signal of ‘worse than expected’ when G
(1)
t exceeds a predetermined control limit

L1 (> 0); and similarly, G
(2)
t CUSUM signals ‘better than expected’ when G

(2)
t is

greater than a predetermined control limit L2 (> 0).

In contrast to the O-E CUSUM, the slope of any interval in the one-sided CUSUM

is not directly interpretable as an estimated relative risk.

2.2.5 Control Limits

It is perhaps not so surprising that the O-E CUSUM with a V-mask is equiva-

lent to the two one-sided CUSUMs with the usual horizontal control lines, because

they are both derived from an SPRT. Both approaches lead to signals at the exact

same time if the control lines and the parameters of the V-mask are suitably cho-

sen. Specifically, with the choice hi = Li/θi, i = 1 or 2, the O-E CUSUM V-mask

designed to test H0 : θ = 0 versus H− : θ = θ1 > 0 and H+ : θ = θ2 < 0 has

identical signal times to the simultaneous use of two one-sided CUSUMs constructed

with regard to the same hypotheses. We show this equivalency in the Appendix.

Generally, we wish to choose a control limit so that there will tend to be a long

waiting time until a signal occurs if the center failure rates are similar to the national

average; at the same time, we wish to identify as quickly as possible the situation

where the death rates are substantially higher (or lower) than the national average.
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The average run length (ARL) of a CUSUM is defined as the expected time to a

signal. With the one-sided CUSUM G
(1)
t and control limit L1, the signal time is

τ = inf{s : G(1)
s ≥ L1} and the ARL at a given relative risk eθ is ARL(θ) = E(τ ; θ).

One approach is to determine the control limit so as to attain a specified ARL when

the process is operating at the null value; that is, we fix E(τ ; θ = 0).

In the one-sided CUSUM setting, Gandy et al. (2010) considered a time-scale

transformation s = A(t). The modulated Poisson process ND(t) with intensity

A(t) is transformed to the new time-scale s in which the event process Ñ(s) is a

homogeneous Poisson process with rate 1. The log likelihood ratio up to time s

is θÑ(s) − (eθ − 1)s, where Ñ(s) = ND(A−1(s)) and A−1(s) = inf{t : A(t) > s}.

Denote the signal time in the new time scale as τ̃ , so that τ̃ = A(τ) where τ is the

signal time on the original time scale. They showed that the ARL in control on this

new time scale, E(τ̃ ; 0), can be obtained analytically through constructing a Markov

chain. This ARL is equal to the expected number of events until stopping on the

original scale, E(τ̃) = E(ND(τ)). In practice, one can calibrate L to obtain a desired

ARL on a transformed time-scale or, equivalently, expected number of failures until a

false alarm on the original time-scale. Since the one-sided CUSUM and O-E CUSUM

with a V-mask both lead to signals at the same time when hi = Li/θi, i = 1 or 2, we

can also calibrate hi in the O-E chart to obtain desired expected number of failures

until a false alarm.

Biswas and Kalbfleisch (2008) conducted simulations to determine control limits.

For a given center size, they set a false positive rate over a certain period, so that

each center is subject to the same error rate if it operates at the national level. This

yields control limits that are lower for smaller centers and higher for larger centers.

We use a similar method of controlling Type I error over a fixed period to obtain
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a control limit h for the O-E CUSUM; in the simulation, we categorize the results

by the expected number of failures at a center. In the application of SRTR dataset,

we use center size multiplied by national failure rate to approximate the number of

expected failures and to determine the appropriate h. This approach subjects all

centers regardless of size to a similar probability of a false positive.

2.2.6 Some Examples of CUSUM Charts

We consider liver transplant centers A and B followed over 3.5 years to illustrate

the use and interpretation of CUSUM charts. For each center, the O-E CUSUM and

two one-sided CUSUMs for one-year post-transplant patient survival are presented.

Similar charts could be constructed for other outcomes or other length of follow-up,

such as one-year graft survival or one-month survival.

In the O-E CUSUM chart, monitoring bands C(t) + M1(t) and C(t) − M2(t),

chosen for testing alternatives of relative risk 2 and 0.5 respectively, are plotted along

with the O-E CUSUM trajectory over time. M1(t) and M2(t) indicate how many

additional and fewer failures at time t would have resulted in a signal. The values 2

and 0.5 as alternatives are chosen to represent differences in rates that would clearly

be clinically important. These same values have been used in other presentations

(e.g. Axelrod et al., 2009). For the one-sided charts, two one-sided CUSUMs are

displayed on separate plots. We reflected the one-sided CUSUM versus the relative

risk 0.5 and its control line through the X-axis in the presentation.

Center A: No signal of either ‘worse than expected’ or ‘better than expected’

was suggested in either CUSUM (Figure 2.2). The O-E chart (Figure 2.2.I) suggests

that the outcomes of the center were similar to the national average over the 3.5

years. In July 2008, the CUSUM would have signaled ‘better than expected’, had
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there been 2 fewer failures. The one-sided charts (Figure 2.2.II) show similar results

that Center A performs at the national average level.

Center B: The failure rate at this center is close to the national average for the

first year and a half, as suggested by the nearly horizontal plot line in the O-E chart

(Figure 2.3.I). After that, the death rates were approximately twice the national

average as illustrated by the O-E path having a slope close to the one for relative

risk 2 in the legend. The CUSUM triggers a ‘worse than expected’ signal in March

2008. Note that if the center had one more failure in November 2007, it would have

triggered the signal then. As expected, the one-sided CUSUM chart (Figure 2.3.II)

indicates a ‘worse than expected’ signal at the same time.

It is worth noting that because we use national average rates as reference, an

increasing trend, for example, could indicate either that the performance of the

center has suddenly changed to ‘worse than expected’ or that it has consistently

had ‘worse than expected’ outcomes. When a center experiences a sudden change

causing higher mortality rates, the CUSUM is expected to show a flat trajectory for

a period of time followed by a substantially positive slope indicating such change,

such as Center B in the example above. It then makes sense to look for an assignable

cause associated with the time at which the change occurred. On the other hand,

if the center has consistently had higher mortality rates compared to the national

average, there would be no identifiable change point. In this situation, however,

it is also desirable for the center to review its practice in light of the fact that its

outcomes are poorer than one would expect based on the risk adjusted national

average outcomes.
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Figure 2.2: Center A, with 378 patients between January 01, 2006 and June 30, 2009
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Figure 2.3: Center B, with 173 patients between January 01, 2006 and June 30, 2009
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2.2.7 Head-Start

When the CUSUM of a center leads to a ‘worse than expected’ signal, it is

appropriate for the center to examine its practice, especially changes in practice,

to look for assignable causes, and to make adjustment as appropriate. Rather than

resetting the CUSUM to 0, it is preferable to use a ‘head-start’ by taking the plotting

position somewhere less than the control limit (Lucas and Crosier, 1982). Gandy

et al. (2010) discussed a head-start scheme in the one-sided CUSUMs. They reset the

CUSUM to L/2 after a signal, and conducted a series of simulations to demonstrate

the advantage of utilizing such head-start value. Collett et al. (2009) also used this

head-start technique and argued the appropriateness of such resetting in monitoring

transplant centers. The same idea could be used in an O-E CUSUM. For example,

resetting the CUSUM at h1/2 below C(t) + M1(t) when a ‘worse than expected’

signal occurs is equivalent to resetting the one-sided CUSUM to L1/2.

2.3 Simulation Studies

2.3.1 Control Limits

We consider transplants arriving according to a homogeneous Poisson process and

suppose that the post-transplant failure time distribution for the national average is

exponential with rate λ0, corresponding to a one-year failure rate of 1− e−λ0 = 10%.

As discussed before, the choice of a control limit for a center is affected by the size or

the number of expected failures if the center failure rates are at the national average.

To simulate centers that have expected failures within one year as 2, 5, 10, 15 and

20, Poisson processes are generated with rates 20, 50, 100, 150 and 200 transplants

per year. Take θ1 = −θ2 = θ = log(2) so that H+ and H− are symmetric hypotheses.

We chose parameter k based on the target relative risk eθ, and chose h by con-
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Table 2.1: Control limits, power and ARL of the O-E CUSUM.
Expected failures Relative Risk 2 Relative Risk 0.5

per year h1 Power ARL h2 Power ARL
2 4.08 0.70 2.98 3.00 0.42 4.60
5 5.34 0.92 1.71 4.36 0.71 3.04
10 6.36 1.00 1.05 5.50 0.91 2.04
15 6.81 1.00 0.77 6.10 0.98 1.56
20 7.25 1.00 0.61 6.46 0.99 1.27

trolling the rate of false signals to 8% over 3.5 years for each category of the expected

number of failures per year. The choice of the 8% rate for the 3.5 year period gives a

similar false positive rate to the standard 5% Type I error rate over a 2.5 year period

that has been used by the SRTR.

Simulation results confirm the equivalence of the one-sided CUSUM and the O-E

CUSUM with respect to the signals that they generate, if L1 = h1θ1 and L2 = h2θ2.

Table 2.1 gives the control limits of the O-E CUSUM obtained through controlling

the Type I error as described above. The column entitled ‘Power’ specifies the

probability that a center with relative risk 2 (or 0.5) would signal in a 3.5 year

period. The ARLs in the table give the average number of follow-up years before the

first signal occurs when the failure rate at the center is twice (or half) the national

average. For example, if a center is expected to have 5 failures per year based on the

national rates, but its true rate is twice that, there is a 92% probability that a ‘worse

than expected’ signal would be detected in the 3.5 year period, and on average, the

first signal occurs after 1.71 years. The signal threshold h increases with the expected

number of failures to maintain a constant probability of a false positive. As expected,

when the expected number of failures increases, the power of CUSUMs increases.
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2.3.2 Sensitivity to Process Change in Relative Risk

Of some particular interest is the behavior of the CUSUM when the center is

initially experiencing failures at the overall (adjusted) national rate, but at a specific

point in time, the rate changes substantially. To examine how sensitive the CUSUM

is to sudden changes, we conducted simulations in two scenarios with a change point

in the underlying risk.

In Scenario 1, the process is under control with a relative risk 1 for subjects

entering during the first year, and it changes to ‘worse than expected’ with a relative

risk 2 for subjects entering after year 1. This scenario mimics a systematic change in

the quality of treatment that occurs at the time of transplant, such as the quality of

the transplant surgical procedure. In Scenario 2, the process operates at the national

average level for the first year, and changes to ‘worse than expected’ with a relative

risk 2 for every subject that remains at risk or enters after year 1. This scenario

reflects a sudden change of environment such as a change in the quality of care for

all patients. In each case, the simulation evaluates the statistical power of the O-E

CUSUM at the end of years 2, 2.5, 3 and 4. A signal counts in the power calculation

only if it occurs after the change in rates at the end of year 1; if the chart signals

before the end of year 1, we re-set the CUSUM by applying the head-start described

in Section 2.2.7 and then continue monitoring.

Table 2.2 shows that the CUSUM detects the sudden changes quickly, especially

in centers with higher expected failures. After the change, the increase of cumulative

failures is faster in Scenario 2. Thus, as expected, the CUSUM is more powerful in

detecting the Scenario 2 type of change.
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Table 2.2: Statistical power of the CUSUM in Scenario 1 where failure rates change
for subjects entering after year 1, and Scenario 2 where failure rates change
for subjects at risk at year 1.

Expected failures Scenario 1 Scenario 2
per year Year 2 Year 2.5 Year 3 Year 4 Year 2 Year 2.5 Year 3 Year 4

2 0.08 0.20 0.34 0.56 0.21 0.34 0.47 0.67
5 0.13 0.37 0.59 0.83 0.38 0.60 0.74 0.90
10 0.24 0.60 0.81 0.96 0.64 0.83 0.92 0.99
15 0.34 0.73 0.91 0.99 0.80 0.94 0.98 1.00
20 0.42 0.85 0.97 1.00 0.89 0.98 0.99 1.00

2.4 Case Studies

To demonstrate the use of the O-E CUSUM, we performed a retrospective analysis

on one-year post-transplant survival outcomes at liver transplant centers in the SRTR

database. The cohort of patients receiving transplants between July 1, 2005 and

December 31, 2008 was reviewed. Data included 11,861 liver transplants at 68 centers

which ranged in size from 1 to 572 liver transplants over the 3.5 year period. We

omitted 10 centers with fewer than 8 transplants per year, for which the CUSUMs

would be expected to yield little power.

The SRTR models for post-transplant survivals were utilized to represent the

national rates and to compute the expected outcomes. The SRTR one-year survival

model for deceased donor transplants adjusts for 60 donor and recipient characteris-

tics, whereas the model for living donor adjusts for 8 donor and recipient character-

istics. Because the models for deceased and living donors are quite different, SRTR

computed expected outcomes for deceased and living donor cohorts separately using

these two models. We do the same for the CUSUMs.

To specify control limits, we utilized the simulated values presented in Table 2.1.

Thus, given the estimated expected number of failures at a center, we used linear

interpolation to find an appropriate control limit h.
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It is important to note that although we used a historical dataset for the purpose

of demonstration, CUSUM charts can and should be used to monitor the center per-

formance in real time; being able to effectively do this depends on prompt reporting

of failures.

The number of signals and the average time to detect a signal for centers catego-

rized by volume are summarized in Table 2.3. The O-E CUSUMs lead to relatively

quick signals and for the most part, identify more quickly the same centers that are

eventually identified as having results that are higher or lower than expected under

the previous SRTR rules. Further, if these charts were provided in real time (say

quarterly) to the centers, they would have provided a simple graphical tool to identify

when the center is experiencing relatively higher death rates and a clear indication

of the potential for a signal as illustrated in Section 2.2.6.

It is worth noting if all centers perform at the national average level, we would

expect to see 8% (about 5 signals out of 58 centers of interest) signalling on either

direction. However, some centers may not operate at the null level during the time of

interest; so as in this illustration, the test may detect more signals. In addition, the

statistical power of each category in Table 1 shows that the test is more powerful in

detecting the alternative hypothesis in larger centers (with more expected failures).

This is consistent with what we see in Table 3.

2.5 Discussion

The usual one-sided CUSUM has the disadvantage of not giving a simple reading

of the accumulating difference between observed and expected failures. For example,

a horizontal path does not mean that the center is operating at the national average

level, but rather that the center has a risk approximately half way between the
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Table 2.3: The number of centers signalled by the CUSUM (# of signals) and average
time to signal (AVE) among signalled centers.

Expected failures Total # of H−: RR=2 H+: RR=0.5
per year Centers # of signals AVE # of signals AVE

1-3 14 2 2.10 3 2.90
3-7 26 6 1.80 5 2.37
7-13 14 5 1.96 1 1.55
13-18 3 1 1.97 1 1.97
≥ 18 1 0 − 1 2.67

national average and the target risk used in constructing the chart. In contrast, the

O-E CUSUM gives a true reading as to whether or not the rate of deaths at a center

is above or below the national average. The O-E CUSUM is easily plotted and its

trends are easily interpreted; further, when the monitoring bands are included, it

provides simple rules for flagging.

Monitoring bands in O-E CUSUMs record the number of additional or fewer

failures required for a signal. The one-sided CUSUM charts also provide such in-

formation, although in a somewhat disguised way. In the ‘worse than expected’

one-sided CUSUM chart, the distance between CUSUM and the control line is pro-

portional to the number of additional failures required for a signal at that time, with

the constant of proportionality being the absolute value of the log of relative risk

used in determining the chart.

Steiner and Jones (2010) proposed a risk-adjusted exponentially weighted mov-

ing average (EWMA) chart and claimed that its main advantage over a one-sided

CUSUM is to provide an ongoing local estimate of the average score that is eas-

ier for clinical staff to interpret and understand. O-E CUSUM also provides such

information, but in a simple chart based on the likelihood ratio.

Monitoring bands are similar to the Bollinger bands (Bollinger, 2002) used as
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a tool for technical evaluation of stock trading. Bollinger bands consist of a set of

three curves drawn in relation to securities prices. The middle band is a measure

of the intermediate-term trend, usually a simple moving average, that serves as the

base for the upper band and lower band. The interval between the upper (or lower)

and middle bands is determined by volatility, typically the standard deviation of the

same data that were used for the average. Although somewhat different in purpose

and construction, the Bollinger bands are used to graphically guide when appropriate

actions (buying, holding or selling) should be taken.

In constructing the CUSUM charts, we used a proportional hazards alternative.

Other alternatives could be considered. Practitioners should be aware that a mis-

specified alternative would lead to reduced power and reduce the efficiency of the

method. Also, the construction of the monitoring bands requires specification of

alternative relative risk eθ1 and eθ2 . We chose θ1 = log(2) = −θ2 in this paper,

which would represent important clinical differences. Other choices of θ1 and θ2 (e.g.

θ1 = log(1.5) = −θ2) could lead to different monitoring bands and somewhat differ-

ent operating characteristics. A systematic evaluation of the dependence of the ARL

on the true relative risk eθ and the specified alternatives would be of interest.

The national average failure rate is used in this article as the reference for evaluat-

ing each individual center. Alternatively, depending on one’s interest, the historical

performance of individual centers could also serve as the benchmark. In that case,

a signal would indicate that the performance of the center has been improved or

worsened compared to its own previous performance. Although this alternative way

to set up a reference level has some appeal, one needs to be careful in interpretation.

There is no guarantee on the quality of performance during reference period of time

and the results would only show the comparison of the current performance relative
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to the historical performance for the particular center. For example, if a center has

good performance during the reference period, the CUSUM could yield a ‘worse than

expected’ signal even though the center might in fact have normal performance levels

compared to other centers. In addition, this approach can be problematic for smaller

centers where there is a lot of inherent variation in the baseline period. Where pos-

sible, we believe that basing risk-adjusted charts on national outcomes, as we have

discussed, provides a better approach to monitoring centers. Such plots indicate an

overall propensity for the center to have higher rates of failure than the population

as a whole. Abrupt changes in the slope of the CUSUM identify time points at which

the rates within the center changed, and suggest the need of further explanation.



CHAPTER III

Weighted Cumulative Sum (WCUSUM) to

Monitor Medical Outcomes in the Presence of

Dependent Censoring

3.1 Introduction

Control charts are used to continuously monitor outcomes of a process, and hence

to guide improvement in quality by providing timely feedback. CUmulative SUM

(CUSUM) control charts have been suggested to monitor the performance of clini-

cians by measuring the occurrence of deaths or other outcomes after a surgical pro-

cedure. This approach enables early detection of an unacceptable number of deaths,

for example, and can help with timely identification and correction of problems.

Steiner et al. (2000) and Steiner et al. (2001) developed a risk-adjusted one-sided

CUSUM procedure based on the likelihood ratio in a logistic model for binary out-

comes. They proposed a graphical method for identifying either a substantial or

consistent change in risk-adjusted mortality. Axelrod et al. (2006) demonstrated the

utility of the one-sided CUSUM method for tracking and analyzing one-year binary

mortality outcomes using a cohort of transplanted patients at multiple centers. How-

ever, a built-in one-year lag is necessary in this approach. Biswas and Kalbfleisch

(2008) developed a risk-adjusted one-sided CUSUM procedure constructed on a con-

27
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tinuous time scale, to monitor transplant survival outcomes sequentially by incor-

porating exposure and failures as soon as they occur. They compared the observed

number of deaths at a given center to the expected number of deaths at that center

assuming that the center has the same adjusted death rates as the overall national

average. A sequential probability ratio test (SPRT) forms the basis of the one-sided

CUSUM which examines whether there is evidence that could lead to rejection of

the null hypothesis in favor of ‘worse than expected’ (or ‘better than expected’)

performance at the center as compared to the reference national average mortality

rates.

All these methods are developed based on the assumption of independent cen-

soring. This could be violated in some cases, especially in medical settings where

preventive approaches are applied on high-risk patients, and highly correlated de-

pendent censoring may occur. For example, patients on the liver transplant waitlist

are evaluated constantly to assess their current medical condition. One summary

measure of time is Model for End-Stage Liver Disease score, or MELD score. Wait-

listed patients with higher MELD score have a higher risk of death and consequently

are given priority to receive liver transplants when available. The ‘censoring time’

through receiving a transplant is therefore correlated with the patients’ unobserved

time of death on the waitlist had the patient been left untransplanted. To evaluate

the waitlist mortality of patients in transplant centers, it is important to take the de-

pendent censoring factor (transplantation) into consideration; failing to do so yields

biased results.

In this paper, we discuss a Weighted CUSUM (WCUSUM) to account for de-

pendent censoring. Motivated by the waitlist mortality issue for liver transplant

centers, we phrase the description of the method to address this case directly. Trans-
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plant represents dependent censoring and mortality is the failure event. The method,

however, could be adapted to monitor other datasets where dependent censoring is

present.

We assume all centers follow a standard liver transplantation guideline on donor

allocation, which can be described by a transplant model. We then make use of in-

verse weights in order to obtain adjusted CUSUMs (or WCUSUMs) that take account

of the dependent censoring, where the weights are determined by the time depen-

dent MELD scores and their relationship to transplant. The resulting WCUSUMs

are designed to compare the waitlist mortality at a center to the national average

performance, having adjusted for dependent censoring through the MELD score.

In the following sections, we introduce some basic notation before constructing a

WCUSUM, where the weights and the hazard of death are obtained using an inverse

probability of censoring approach (Robins and Finkelstein, 2000). We describe the

signalling rules for the WCUSUM. Simulation studies are conducted to demonstrate

the properties of the weighted process. A case study is followed to illustrate the use

of the proposed WCUSUM.

3.2 Notation

Assume patient i enters the cohort at calendar time Si (e.g. time of initial listing

on the transplant waitlist). Denote Di as time to death since entry and Ci as time

to transplant since entry. Let Xi be the observed event time since entry to either

death or transplant whichever occurs first, Xi = min(Di, Ci). Let Ti be the calendar

time of the observed event, so that Ti = Si + Xi. Let Zi(x), 0 ≤ x ≤ Xi, be the

set of time-dependent covariates (e.g. MELD scores) and let Vi be a set of baseline

covariates.
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Assume we have a population model on time to mortality since entry with a

hazard function αi(x) = α(x;Vi) for subject i where αi(x) = lim∆→0 P{Di ∈ (x, x+

∆)|Di ≥ x, Vi}/∆. Let dΛ∗i (t) = I(t > Si)αi(t− Si)dt define the hazard for subject i

at calendar time t.

Now we build a process to count the qualifying failures at a particular center ǫ.

Suppose that survival over a one-year period is of interest, so that at-risk indictor is

Y ∗i (t) = I{Si < t ≤ min(Ti, Si + 1)}. Let δi = I(Di = Xi) be the failure indicator.

Let N∗
i (t) count the number of qualifying failures in the chronological time interval

(0, t] for subject i:

N∗
i (t) =





0 t ≤ Si;

δiI{Ti ≤ t ≤ Si + 1} Si < t ≤ Si + 1;

N∗
i (Si + 1) t > Si + 1.

Note that N∗
i (t) is either 0 or 1. It takes the value 1 if the ith individual enters at

a time Si < t and has a qualifying failure before time t. The number of qualifying

failures in (0,t] for the center ǫ is N∗(t) =
∑

i∈ǫN
∗
i (t), where the summation is overall

individuals i in this center ǫ.

3.3 Method

3.3.1 A Weighted Zero-Mean Process

In this section, we first state the key assumption on dependent censoring. We

consider the independent censoring case and the usual zero-mean process. Then we

take dependent censoring into account to construct a weighted zero-mean process.

This is the foundation to the weighted CUSUM that is described in the following

section.

Assume the cause-specific hazard for censoring is λCi (x|Z̄i(x), Vi) = lim∆→0 P{Ci ∈
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(x, x + ∆)|Di ≥ Ci ≥ x, Z̄i(x), Vi}/∆, where Z̄i(x) = {Zi(s), 0 < s ≤ x}. The key

assumption is that

(3.1) λCi (x|Z̄i(x), Vi) = lim
∆→0

P{Ci ∈ (x, x+∆)|Ci ≥ x, Z̄i(y), Vi, Di = y}/∆,

for all y > x. It says that all information about the rate of dependent censoring

at time x is contained in Z̄i(x) and the fact that the individual is surviving and

uncensored at time x. This rate is not changed by the knowledge of the future value

of Di = y > x or the additional information on {Zi(v), x < v ≤ y}. Under this

assumption, it follows that

(3.2) P{Ci > x|Vi, Z̄i(y), Di = y} = exp{−
∫ x

0

λC(u|Z̄i(u), Vi)du}

for all 0 < x < y. This assumption (3.1) and its consequence (3.2) are essential to

the use of inverse weights and for the use of the process Zi(x) to fully correct for

bias due to independent censoring (Robins and Finkelstein, 2000).

Let Ñi(t) represent the underlying failure counting process in the absence of

dependent censoring so that Ñi(t) = I(Si+Di ≤ t < Si+1) if t ≤ Si+1 and Ñi(t) =

Ñi(Si + 1) if t > Si + 1. Similarly, let Ỹi(t) denote the underlying at-risk indicator

in the absence of dependent censoring, Ỹi(t) = I{Si < t < min(Si +Di, Si + 1)}. It

follows that

E(dÑi(t)|Ỹi(t), Vi, Si) = Ỹi(t)αi(t− Si)dt = Ỹi(t)dΛi(t).

Without any censoring, the CUSUM at center ǫ could compare the observed

number of failures O(t) =
∑

i∈ǫNi(t) with the expected number of failures E(t) =

∑
i∈ǫ

∫ t

0
Ỹi(u)dΛi(u), and O(t)-E(t) is a zero-mean process if center ǫ has the same

mortality rates as the reference population.



32

Now assuming the center ǫ still has the same mortality rates as the reference

population but has dependent censoring, we aim to develop a zero-mean process

analogue to O(t)-E(t) alone. Let dM∗
i (t) = dN∗

i (t) − Y ∗i (t)dΛ
∗
i (t) = Y ∗i (t)[dÑi(t) −

dΛ∗i (t)]. Note that Y ∗i (t) = Ỹi(t)I(Ci > t− Si) and

E[dM∗
i (t)] = E

{
E{Ỹi(t)I(Ci > t− Si)[dÑi(t)− dΛ∗i (t)]|Ỹi(t), dÑi(t), Z̄i(t− Si), Si, Vi}

}

= E
{
E{I(Ci > t− Si)|Ỹi(t), dÑi(t), Z̄i(t− Si), Si, Vi}Ỹi(t)[dÑi(t)− dΛ∗i (t)]

}
.

Under assumption (3.2), it follows that

E{I(Ci > t− Si)|Ỹi(t), dÑi(t), Z̄i(t− Si), Si, Vi} = exp

{
−
∫ t−Si

0

λCi (u|Z̄i(u), Vi)du

}
.

So that

(3.3) E[dM∗
i (t)] = E

{
exp{−

∫ t−Si

0

λCi (u|Z̄i(u), Vi)du}Ỹi(t)[dÑi(t)− dΛ∗i (t)]

}
.

The expression (3.3) shows that the M∗
i (t) process does not in general have mean

zero. However, it also indicates how to obtain a zero-mean process.

Let w∗i (t) = wi(t−Si) = exp{
∫ t−Si

0
λCi (u|Z̄i(u), Vi)du}. It is now easy to see that

(3.4) E[w∗i (t)dM
∗
i (t)|Ỹi(t), Vi, Si] = E{Ỹi(t)[dÑi(t)− dΛ∗i (t)]|Ỹi(t), Vi, Si} = 0.

This equation (3.4) shows that the difference between the weighted cumulative ob-

served failuresNW
i (t) =

∫ t

0
w∗i (u)dN

∗
i (u) and the weighted cumulative hazardsAW

i (t) =

∫ t

0
w∗i (u)Y

∗
i (u)dΛ

∗
i (u) is a zero-mean process, for any subject i.

Thus, the weighted zero-mean process for center ǫ is NW (t) − AW (t), where

NW (t) =
∑

i∈ǫN
W
i (t) and AW (t) =

∑
i∈ǫA

W
i (t). In fact, we are replacing O(t) and

E(t) above with estimates that adjusted for the dependent censoring.

In the independent censoring case, when all weights are equal to 1, this process

reduces to the normal zero-mean Martingale, with

w∗i (t)dM
∗
i (t) = dÑi(t)− I(Di ≥ t− Si)dΛi(t) = dM̃i(t),
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and NW (t)− AW (t) = O(t)− E(t).

3.3.2 One-Sided Weighted CUSUM Chart

First let us revisit the one-sided CUSUM chart in the independent censoring case

proposed by Biswas and Kalbfleisch (2008). At time t, consider testing H0 : µ = 0

versus H1 : µ = θ > 0 (eθ > 1), where eθ denotes relative risk of such process.

The logarithm of the likelihood under relative risk eθ, logL(t; θ), is proportional to

∑
i{θNi(t)− eθAi(t)} = θN(t)− eθA(t), where Ni(t) counts the number of qualified

failure for subject i up to time t, and Ai(t) represents the cumulative hazards of

this subject up to time t. So that the one-sided CUSUM Gt is defined by Gt+dt =

max{0, Gt + θdN(t) − (eθ − 1)dA(t)}, with G0 = 0. This CUSUM can be designed

to detect either a ‘worse than expected’ performance with θ > 0 or ‘better than

expected’ performance with θ < 0. It triggers a signal if the process exceeds a

pre-determined value.

With the presence of dependent censoring, we utilize weighted cumulative failures

and weighted cumulative hazards defined in the last section in place of the ordinary

values, use dNW (t) =
∑

iw
∗
i (t)dN

∗
i (t) and dAW (t) =

∑
iw

∗
i (t)Y

∗
i (t)dΛ

∗
i (t) in place

of dN(t) and dA(t). The one-sided Weighted CUSUM is

GW
t+dt = max{0, GW

t + θdNW (t)− (eθ − 1)dAW (t)},

with GW
0 = 0.

Weighted values still maintain the asymptotic properties as shown by previous

research, but additional variation is introduced through the weights. In the next

section, we quantify the variance of the weighted zero-mean process.
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3.3.3 Variance of the Zero-Mean Process NW (t)− AW (t)

The process NW
i (t) − AW

i (t) =
∫ t

0
w∗i (u)dN

∗
i (u) −

∫ t

0
w∗i (u)Y

∗
i (u)dΛ

∗
i (u) for each

individual i has mean zero under null hypothesis when a center has the same mortality

rates as the reference population. We now investigate the variance of this process.

Consider the general case with true relative risk r, meaning that the mortal-

ity rates in the center ǫ are r times the rates of the population. A weighted

zero-mean process for individual i would be NW
i (t) − rAW

i (t) =
∫ t

0
w∗i (u)dN

∗
i (u) −

r
∫ t

0
w∗i (u)Y

∗
i (u)dΛ

∗
i (u). The variance of this process is

Var

{∫ t

0

w∗i (u)dN
∗
i (u)− rw∗i (u)Y

∗
i (u)dΛ

∗
i (u)

}

= E

{∫ t

0

w∗i (u)dN
∗
i (u)− rw∗i (u)Y

∗
i (u)dΛ

∗
i (u)

}2

= E

{∫ t

0

[w∗i (u)]
2dN∗

i (u)− 2r

∫ t

0

w∗i (u)dN
∗
i (u)

∫ t

0

w∗i (u)Y
∗
i (u)dΛ

∗
i (u)

+r2[

∫ t

0

w∗i (u)Y
∗
i (u)dΛ

∗
i (u)]

2

}
.(3.5)

The second term in (3.5) has the expectation as follows

E{2r
∫ t

0

w∗i (u)dN
∗
i (u)

∫ t

0

w∗i (u)Y
∗
i (u)dΛ

∗
i (u)}

= 2rE{
∫ t

0

∫ t

0

w∗i (u)w
∗
i (v)Y

∗
i (u)Y

∗
i (v)dÑi(u)dΛ

∗
i (v)}

= 2rE{
∫ t

0

w∗i (u)Y
∗
i (u)dÑi(u)

∫ u

0

w∗i (v)dΛ
∗
i (v)}

+2rE{
∫ t

0

w∗i (u)dÑi(u)

∫ t

u

w∗i (v)Y
∗
i (v)dΛ

∗
i (v)},(3.6)

with Y ∗i (u)Y
∗
i (v) = Y ∗i (u) for v < u and Y ∗i (u)Y

∗
i (v) = Y ∗i (v) for v > u. Note

that for the second term in (3.6) with v > u, when Y ∗i (v) = 1, dÑi(u) has to be

0, because the fact that the subject is at risk for time v indicates it didn’t fail at

u < v. Similarly, when dÑi(u) = 1, it indicates that Y ∗i (v) = 0, meaning that if the
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subject fails at time u, it is removed from the at risk set for time v > u. So that

E{
∫ t

0
w∗i (u)dÑi(u)

∫ t

u
w∗i (v)Y

∗
i (v)dΛ

∗
i (v)} = 0. Therefore, (3.6) is

E{2r
∫ t

0

w∗i (u)dN
∗
i (u)

∫ t

0

w∗i (u)Y
∗
i (u)dΛ

∗
i (u)} = 2rE{

∫ t

0

∫ u

0

w∗i (u)w
∗
i (v)Y

∗
i (u)dÑi(u)dΛ

∗
i (v)}.

Now let us take a look at the third term in (3.5),

E

{
[r2

∫ t

0

w∗i (u)Y
∗
i (u)dΛ

∗
i (u)]

2

}
= 2r2E

∫ t

0

∫ u

0

w∗i (u)w
∗
i (v)Y

∗
i (u)dΛ

∗
i (u)dΛ

∗
i (v).

It is then obvious that, under the hypothesis of relative risk r and

E(Y ∗i (t)dÑi(t)|Y ∗i (t), Vi, r, Si) = rY ∗i (t)dΛ
∗
i (t),

the second and the third terms in (3.5) cancel. Thus (3.5) is

Var
{
NW

i (t)− rAW
i (t)

}
= Var

{∫ t

0

w∗i (u)dN
∗
i (u)− rw∗i (u)Y

∗
i (u)dΛ

∗
i (u)

}

= E

∫ t

0

[w∗i (u)]
2dN∗

i (u)

= E

{∫ t

0

E[{w∗i (u)}2dN∗
i (u)|Y ∗i (u), Vi, Si, r]

}

= rE

∫ t

0

[w∗i (u)]
2Y ∗i (u)dΛ

∗
i (u).

Under the null hypothesis of center having the same failure risk as the na-

tional average, or r = 1, we have Var
{∫ t

0
w∗i (u)dN

∗
i (u)− w∗i (u)Y

∗
i (u)dΛ

∗
i (u)

}
=

E
∫ t

0
[w∗i (u)]

2Y ∗i (u)dΛ
∗
i (u). The variance of the process NW (t) − rAW (t) under null

accounting for all subjects at the center ǫ is then VarW (t) = Var{NW (t)−AW (t)} =
∑

i∈ǫ

∫ t

0
[w∗i (u)]

2Y ∗i (u)dΛ
∗
i (u).

In the special case of no dependent censoring, failure process is Poisson, weights

reduce to 1, then the zero-mean process returns to the ordinary zero-mean process,

and variance reduces to r
∫ t

0
Ỹi(u)dΛi(u) = rAi(t) under the hypothesis of relative

risk r.
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3.3.4 Control Limits

A few different approaches have been discussed to set control limits for CUSUM

processes. In the ordinary or independent censoring case, Gandy et al. (2010) utilize

the expected number of observed events before stopping or the average run length

in calendar time to calibrate control limits. Continuous time t is transformed to

Λ(t), which maps the counting process of observed failures to a homogeneous Pois-

son process with rate 1. In the dependent censoring scenario, the weighted counting

process can no longer be mapped to a homogeneous Poisson process through the

time transformation. Although the weighted expected number of failures recovers

the underlying expected number of failures had there have been no dependent cen-

soring, increased variance inflate the error rate α. Adopting an approach similar

to Gandy et al. (2010), we can use both the weighted expected failures and the

variance of the weighted zero-mean process under the null hypothesis to calibrate

control limits. When the dependent censoring is positively correlated with death,

the proportion of change in standard deviation of the weighted zero-mean process

increases linearly with the proportion of change in control limit. We demonstrate

this approach through simulation in the Appendix.

Biswas and Kalbfleisch (2008) and Sun and Kalbfleisch (2012) conducted simu-

lations to determine control limits. For a given center size, they set a false positive

rate over a certain period, so that each center is subject to the same error rate if it

operates at the national level. For example, Biswas and Kalbfleisch (2008) uses a

false positive rate of 8% over a 3.5 year period. This yields control limits that are

lower for smaller centers and higher for larger centers. Based on our dataset and

interest in monitoring, we choose to use a similar method of controlling Type I error

over a fixed period to obtain a control limit L for the weighted CUSUM. Without
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any knowledge of the mechanism for dependent censoring in the dataset, this can no

longer be done via a simple simulation. We utilize resampling technique to calibrate

control limits for a center of given size ψ and over a certain period of time. To do

this, we require a reference population which forms the standard to which centers

are to be compared. This reference population is subject to both failure and depen-

dent censoring. We draw randomly and repeatedly samples of size ψ and construct

WCUSUM. Then we choose the control limit so that a given population of the sim-

ulated WCUSUMs has a signal rate of α over the period of interest (e.g. 8% in 3.5

years).

3.3.5 IPCW Weights Calculation

Robins and Finkelstein (2000) has shown that under assumption (3.1) we can

estimate the true hazards Λi with the presence of dependent censoring, using the

inverse probability of censoring weights (IPCW) approach. Chapter 4 gives more

details of the setup and implementation.

We assume a Cox model for the time to transplant with hazard function

(3.7) λC(x|Z̄i(x), Vi, Di > x) = λC0 (x) exp{γCZi(x) + βCVi},

where λC0 (x) is an unspecified baseline hazard function, Z̄i(x) = {Zi(s), 0 < s ≤ x}

and Vi is a set of baseline covariates. For simplicity without loss of generality, we

assume that the censoring rate at time x depends only on the most recent value

Z(x).

Fitting the model to the dependent censoring data using standard techniques, we

obtain estimates γ̂C , β̂C , and Λ̂C
0 (x) as estimate of ΛC

0 (x) =
∫ x

0
λC0 (u)du.

Under the model (3.7) and assumption (3.1), the conditional probability of not
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receiving a transplant until time x for subject i where survival time exceeds x is,

(3.8) KV
i (x) = P{Ci ≥ x|Di > x, Z̄i(x), Vi} = exp{−ΛC

i (x)},

where ΛC
i (x) =

∫ x

0
exp{γCZi(s) + βCVi}dΛC

0 (s). This is estimated as K̂V
i (x) by

replacing γC , βC and ΛC
0 with their estimated values. The commonly-used (unsta-

bilized) weights are defined as ŵi1(x) = 1/K̂V
i (x).

To further reduce the variation in the weights due to baseline heterogeneity while

still get unbiased estimates for the marginal death model of interest, we can stabilize

the weights by including a numerator K̂0
i (x) obtained by using Zi(0) in place of Zi(s)

in (3.8). Stabilized weights are then ŵi2(x) = K̂0
i (x)/K̂

V
i (x). It has been shown that

stabilized weights also give unbiased parameter estimates for the marginal death

model, but with smaller variation. Therefore, stabilized weights are used to obtain

the mortality hazards. The process of obtaining true hazards in the marginal death

model with weights is presented in Appendix A, using the same approach that Robins

and Finkelstein (2000) performed.

Note that the probability of having some large weights in this process is small,

although it can sometimes happen. For example, the chance that a patient who is

alive with large MELD score but has not received a transplant is very small.

In practice, one can also use a stratified Cox model or a parametric model (e.g.

a piecewise exponential model) to obtain the weights. In our case, since transplant

donors are strategically allocated within each OPO, instead of the entire national

level, we utilize a stratified Cox model to estimate dependent censoring or transplant.
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3.4 Simulation

3.4.1 Set-up

Assume patients arrive at a given center according to a homogeneous Poisson

process with rate µ0 patients per year. We refer to µ0 as the facility size. For

each patient i, assume a baseline covariate Vi that follows Bernoulli(p) and a time

dependent covariate Zi(x) that follows a Poisson process on the follow-up time x,

with rate depending on Vi; specifically, we assume Zi(x) ∼ PP(µeγ
DVi). Suppose we

are interested in one-year mortality. Patients are followed for one year from entry and

are censored at one year if they have not experienced either a failure or a transplant

(censoring).

Conditional on Zi(x) and Vi, we generate (cause-specific) censoring and mortal-

ity according to hazards functions λCi (x|Vi, Zi(x)) = λC0 exp{γCVi + βCZi(x)} and

λDi (x|Vi, Zi(x)) = λD0 exp(γDVi) + βDZi(x), respectively. We choose an additive

form for the conditional mortality model, to ensure that its marginal form taking

expectation on Zi(x) is multiplicative (see Appendix) with structure λDi (x|Vi) =

[λD0 − µ(e−β
Dx − 1)]eγ

DVi . This step in the simulation is essential to generate a

marginal mortality model in a proportional hazards format, so that Cox model can

be used to estimate the mortality. The correlation between the transplant hazards

and mortality hazards is determined by the Zi(x) process. We use a Spearman rank

correlation coefficient to measure the correlation between the latent death time and

transplant time. In practice, we observe only one event among death, transplant and

independent censoring whichever occurs first.
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3.4.2 Variance of the Zero-Mean Process

In this section, we verify the variance calculation of the zero-mean process from

equation (3.5). Consider a period of time in the equilibrium stage, say 1 year, and

the following parameter setup: µ0 = 500, p = 0.5, µ = 5, γD = log(2), λD = 0.01,

γC = log(1.5), βD = 0.06 and βC = log(2). The simulation is conducted using 1000

repetitions.

With relative risks 0.5, 1 and 2, Table 3.1 reports: the observed death rates; the

dependent censoring rates; the Spearman rank correlation between latent death time

and dependent censoring time; and the mean and the variance of OEW
r = OEW

r (1) =

NW (1)− rAW (1). In addition, it reports: the mean and standard deviation of what

we refer to as the empirical variance,

V̂ar = V̂ar{OEW
r (1)} =

∑

i

{
∫ 1

0

w∗i (u)dN
∗
i (u)− rw∗i (u)Y

∗
i (u)dΛ

∗
i (u)}2;

the mean and standard deviation of the variance constructed in equation (3.5), Ṽar =

Ṽar{OEW
r (1)} =

∑
i r

∫ 1

0
[w∗i (u)]

2Y ∗i (u)dΛ
∗
i (u); and the mean and variance of the

score statistic,

Score = Score{OEW
r (1)} = OEW

r (1)√
Ṽar(OEW

r (1))

.

Table 3.1: Confirmation of the expected variance and the zero-mean process.

OEW

r
V̂ar Ṽar Score

r Death Censoring Corr. mean Var mean SD mean SD mean Var
0.5 11.1% 0 0 -0.27 55.4 55.4 6.8 55.7 2.5 -0.03 1.00

8.6% 32.4% 0.13 -0.44 66.4 68.2 29.0 67.8 6.5 -0.04 0.98
1 20.7% 0 0 0.11 103.6 103.7 8.6 103.8 4.5 0.01 1.00

16.3% 29.6% 0.17 -0.37 125.2 124.9 36.0 125.5 12.6 -0.03 1.00
2 36.3% 0 0 -0.14 179.0 181.2 10.7 181.5 8.2 -0.00 0.98

29.6% 24.6% 0.22 0.34 220.0 216.8 39.3 216.1 21.8 0.04 1.06

Table 3.1 shows that the OEW
r is a zero-mean process with the mean value close to
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0 under all scenarios, and that Ṽar and V̂ar are both valid estimates of the variance

of OEW
r , based on the close values they suggest at the mean level. However, Ṽar

from equation (3.5) possesses much smaller variation than V̂ar under all scenarios.

Score statistic is constructed under each run, suggesting the same conclusions: that

the OEW
r process is mean zero and Ṽar and the variance of OEW

r agree closely.

3.4.3 Recovery of Underlying Failure Risks

We now compare the number of observed failures and the number of expected

failures in the independent censoring case (Scenario 1) with the weighted observed

failures and weighted expected hazards using true IPCW weights and hazards under

dependent censoring (Scenario 2). Note that we can never obtain the true weights or

hazards in practice. To mimic the practical implementation, we also compare with

the values obtained from the estimated weights and hazards (Scenario 3), where we

generate a separate large sample (or population) with 5000 subjects and run IPCW

analysis to obtain the parameter estimates of censoring and mortality models.

We consider the following parameter setup: µ0 = 100, p = 0.5, µ = 3, γD =

log(2), λD = 0.01, λC = 0.05, γC = log(2), βD = 0.1 and βC = log(2). The

simulation is conducted using 100 repetitions. The one-year cohort has 13.9% deaths

and 39.3% dependent censoring while the latent death rate is 20.6%. Spearman rank

correlation between latent death time and dependent censoring time is 0.18.

Table 3.2:
Recovery of underlying failures and risks in the case of dependent censoring

Scenario 1 (indep) Scenario 2 (dep) Scenario 3 (dep)
mean SD mean SD mean SD

Observed failures 20.35 4.17 19.21 5.63 19.29 5.43
Expected failures 20.77 1.92 20.72 2.14 20.34 2.19

Variance 20.77 1.92 34.77 5.36 36.51 10.47
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Table 3.2 shows that in both Scenario 2 and 3, weighted observed failures and

weighted expected failures in the dependent censoring case recover the true value of

underlying failures and hazards have the center had no such censoring. Note, how-

ever, that variance is inflated in the dependent censoring case due to the additional

uncertainty introduced by the weights. Weighted values using estimated weights and

estimated hazards in Scenario 3 agree closely with those obtained using true weights

and true hazards in Scenario 2.

3.5 Case Study

3.5.1 Data Description

As an example, we evaluate liver transplant waitlist mortality using the data

obtained from the Scientific Registry of Transplant Recipients (SRTR). We consider

a five-year cohort of patients from one of 11 regions in the U.S. waitlisted between

January 1st, 2004 and December 31st, 2008. Patients recorded as Status 1 or 1A at

baseline have acute liver failure at waitlisting and are not included in the analysis. In

addition, we exclude patients listed in error, changed to kidney/pancreas transplants

or with previous liver transplant history. Given that pediatric patients follows a

different scheme of transplant, we only include adults of age 18 years above in the

analysis. Two centers with fewer than 5 patients waitlisted over this five-year span

are excluded. In the final working set, 3,314 patients from 7 centers and 5 Organ

Procurement Organizations (OPOs) are included.

We measure baseline covariates gender, race, age, diagnosis categories, diabetes,

previous malignancy indicator, Body Mass Index (BMI), blood type, and hospital-

ization and Intensive Care Unit (ICU) status. All these covariates are included in

both the transplant (censoring) model and the mortality model.
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Time dependent variables consist of the Model for End-Stage Liver Disease (MELD)

score, inactive period, and sodium value. MELD is the scoring system used to prior-

itize patient on the liver wait list. It combines serum bilirubin, serum creatinine and

the international normalized ratio for prothrombin time (INR). Allocation MELD

score is used in practice as the main determining factor on liver deceased donor allo-

cation. We record MELD as binary indicators for whether the score is in 6-8, 9-11,

12-14, 15-17 (as the reference level), 18-20, 21-23, 24-26, 27-29, 30-32, 33-35, 36-39,

40+, and Status 1/1A. Assuming that a patient is being monitored sufficiently by

the clinician, it would appear reasonable to believe that lack of a MELD update

reflects the fact that the patient’s MELD has not changed. This would imply that

coding MELD score as a step-function (i.e. last-value carried-forward) would be

appropriate. Sometimes, patients are temporarily removed from the waitlist for vari-

ous reasons such as medical condition, refusing transplant, improved or deteriorated

condition, or being inactive on the program for more than 2 years. Such patients are

not supposed to receive offers of deceased donor livers when they are removed from

or not on the waitlist. We set the inactive indicator as 1 to identify the period of

removal and to capture this information in modeling. Sodium value is recorded as

a continuous variable and is also included in the set of time dependent covariates.

Alternative approaches of handling inactive time were used by Zhang and Schaubel

(2011).

Death on the waitlist is the event of interest in our analysis. A patient is consid-

ered as dependently censored, if he or she experienced any type of deceased donor

transplant or died during a deceased donor transplant procedure. A patient is in-

dependently censored if he or she is lost of follow-up or received a living donor

transplant, which typically is not predicted by MELD score.
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The data from this region is considered as population data. We fit a Cox model of

the equation (3.7) to the dependent censoring to obtain appropriate IPCW weights.

In the censoring model, Zi(x) is the time-dependent MELD, inactive period and

sodium level, with Zi(0) indicating the baseline values of these variables. Vi is the

set of baseline covariates. The reader is referred to the case section in Chapter 4 for

details of the baseline covariates.

We then conduct a weighted Cox death model stratified on centers with stabilized

IPCW weights, using the same set of baseline covariates Vi and Zi(0). We used

weighted Cox models to estimate hazards for death, controlling for time-dependent

confounding variables (i.e. MELD, inactive period and sodium level). Because these

confounders are controlled by the weights rather than by inclusion as covariates in

the Cox models, this approach avoids the problem that such confounders could also

be intermediate on the causal pathway to the outcome of death.

Resampling technique with replacement is used for 1,000 iterations to obtain

control limits. Since the region of interest is the population or the reference, we

sample N subjects from the entire region many times to choose an appropriate control

limit for the facility, with N being the facility size. For example, for a facility with

300 patients arriving over a 5-year period, we randomly select 300 patients over the

same 5-year period from the region and construct a weighted CUSUM. We repeat

this process 1,000 times and calibrate a control limit L, so that the Type I error

rate of the 5-year period is 10%. Now a WCUSUM for the facility of interest can be

plotted with the same control limit L. Similarly, we repeat this process on facility

sizes 100, 200 · · · 900, and 1,000 patients over the 5-year span. By controlling type

I error rate at 10% for the entire 5-year period, we get control limit of each size

summarized in Table 3.3.
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3.5.2 Analysis and Results

We construct a WCUSUM in order to detect a relative risk of 2 for waitlist death

rates at the center level, as compared to the overall regional data. Table 3.3 shows

that as size increases, the control limit increases, and the weighted expected number

of failures and the variance of the weighted zero-mean process increase linearly. The

weighted observed number of failures and the weighted expected number of failures

are very close.

Given the estimated expected number of failures at a center, we used linear

interpolation based on values from Table 3.3 to find an appropriate control limit L.

We apply the estimated control limits on the 7 centers in the selected region. No

signal is presented in any center. Figure 3.1 demonstrates that the example center A

with 472 patients over the 5 year period operates at the reference level for the first 4

years and has a spike in the number of deaths at the end of the fourth year, although

the accumulation isn’t enough to trigger a signal. Figure 3.2 shows center B with

1004 patients in the 5 year cohort has a large number of weighted failures observed

around January 2006. We can see that although the actual number of failures are

few, the weighted values are quite high which causes the spike of the WCUSUM.

There are few high-risk patients that should have been transplanted but died on the

waitlist at this center. Further investigation is suggested. After the spike at year

2006, the WCUSUM came back down around the zero line. This means that the

sharp increase may just have been random variation.

3.6 Discussion

We assume that the information on MELD updates is accurate and that trans-

plant (or censoring) model is correct, with no unmeasured confounders, so that the
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Table 3.3: Control limits for Weighted CUSUM
Size L OW EW VarW

100 5.08 16.95 16.90 29.35
200 5.98 33.71 33.78 59.76
300 6.76 50.42 50.43 88.00
400 7.28 68.36 68.14 120.97
500 7.47 84.97 85.27 150.57
600 7.73 101.59 101.45 176.98
700 7.92 117.98 118.29 205.92
800 8.10 135.23 135.73 239.10
900 8.15 152.47 152.44 268.13
1000 8.29 169.08 169.13 294.82

Figure 3.1: The weighted CUSUM of Center A for a 5-year period as compared to
the standard practice of the region that Center A belongs to.
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Figure 3.2: The weighted CUSUM of Center B for a 5-year period as compared to
the standard practice of the region that Center B belongs to.

true hazards can be recovered by IPCW approach and the weighted process of the

difference between cumulative observed number of failures and cumulative expected

number of failures is a zero-mean process. We also assume that the Cox model for

death is correct.

When dependent censoring model is misspecified, a WCUSUM might give a va-

riety of results depending on the actual censoring pattern. It is important to have

a correct dependent censoring model. In our case, this does not present a problem

because the transplant scheme is set nationally and should be strictly followed.



CHAPTER IV

Implementation of Inverse Probability Censoring

Weighting using a Cox model and a Piecewise

Exponential approach

4.1 Introduction

Time-to-event models are often used in analyzing biomedical data. However, in

almost all application, the death time of interest may be censored, and the traditional

independent censoring assumption is sometimes violated. This is especially true

when a preventive approach is used. In studies collecting both longitudinal and

survival information, time-dependent covariates are frequently related to both the

event and dependent censoring. Ignoring the dependent censoring may introduce

bias in estimating the failure hazards that would apply in the absence of censoring.

For example, the receipt of a liver transplant constitutes dependent censoring in

evaluating liver waitlist mortality. In this case, the Model for End-stage Liver Disease

(MELD) score is highly predictive of both pre-transplant death and transplant time.

One way to estimate the underlying mortality model is through the Inverse Prob-

ability Censoring Weighting (IPCW) method (Robins and Rotnitzky, 1992; Robins

and Finkelstein, 2000). The IPCW method first estimates weights based on the

inverse probability that a surviving individual is uncensored via a time-dependent

48
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censoring model. It then constructs an estimating equation based only on baseline

covariates and weights from the censoring model.

Among regression methods for censored data, the Cox model is the most fre-

quently used. The Cox model for death with IPCW weights has been shown to give

consistent and unbiased estimates by Robins and Finkelstein (2000) and has been

used in several works such as Schaubel et al. (2009) and Zhang and Schaubel (2011).

However, the literature is not entirely clear on the implementation details. Sev-

eral previous authors have also used a weighted pooled logistic model approximation

(Hernán et al., 2000, 2002, 2006, 2008; Cole et al., 2005, 2007), which is asymptot-

ically equivalent to a discrete Cox model and yields results close to the Cox model

using exact times of events as illustrated by D’Agostino et al. (1990). However, this

logistic approach treats each person-visit or person-day as an observation, and allow

for a time-dependent intercept. Therefore, it expands the dataset into a much larger

scale which results in considerable additional computational burden. In addition, to

ensure consistent estimates in practice, this method requires to control the number

of free parameters in the logisitc model using various means such as replacing inter-

cepts with a linear term of a cubic splineHernán et al. (2000). It is worth noting

that this approximate approach was first introduced to avoid the technical challenges

before the time-varying weights were allowed in the Cox models by SAS 9.1 in 2004

(Hernán et al., 2000). Xiao et al. (2010) conducted simulations illustrating that the

Cox death model yielded lower standard deviations of the treatment effect estimators

than the pooled logistic regression approximation, less biased estimates in scenarios

with more frequent events, and more accurate estimates for the indirect treatment

effect. In summary, all evidence shows that a weighted Cox model for death should

be preferred over the approximate approach.
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A question remains as to what the best model would be for estimating censoring

probabilities. Much methodological research has been done utilizing a Cox censoring

model to obtain the IPCW weights (Robins and Finkelstein, 2000; Ghosh and Lin,

2002; Schaubel et al., 2009; Zhang and Schaubel, 2011), referred as ‘Cox IPCW’;

on the other hand, those who use a weighted pooled logistic death model opt for

a pooled logistic censoring model to be consistent. Because the logistic censoring

model allows for time-dependent intercepts and increases the number of parameters

dramatically, the reduction of free parameters by combining intercepts is necessary

to ensure model stability (Hernán et al., 2000).

Despite the obvious flexibility and wide applicability, the Cox IPCW approach

has not been widely adopted among practitioners. Given that the Cox model features

a non-parametric baseline hazard, it remains flexible while accounting for covariate

effects through a parametric link. It is crucial but may be not obvious that the use

of a Cox censoring model requires expanding the original analysis file into a larger

dataset. Cox censoring model and Cox death model can both be accomplished using

the standard Cox regression software. As far as we know, there is no report in the

literature that describes how to implement this method. We also discuss a piece-

wise exponential censoring model (PWE IPCW) as an alternative approach to Cox

IPCW, and its advantage in reducing computation time when dependent censoring

is heavy.

In this paper, we aim first to provide an explicit road map for using the Cox

death model with Cox IPCW weights, complete with details of implementation.

Then we consider PWE models to fit dependent censoring. Simulation demonstrates

that PWE IPCW approach maintains most of the flexibility that the Cox IPCW

offers. Guidance on PWE censoring model fitting is provided. Finally, we conduct
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a case study based on liver waitlist mortality using data obtained from a national

organ transplant registry to demonstrate the use of approaches and tricks mentioned

throughout the paper.

4.2 Cox IPCW Approach

4.2.1 Notation

Denote Di as time to death and Ci as time to dependent censoring for subject

i. Let Xi be the observed time of death or censoring whichever occurs first, Xi =

min(Di, Ci). Let Vi be a set of baseline covariates and Zi(x), 0 ≤ x ≤ Xi, be the set

of time-dependent covariates. Let Zi ≡ Zi(0) represents the baseline values of the

time dependent covariates. Assume we have a population model for time to mortality

with a hazard function,

λDi (x|Vi, Zi) = λ0(t) exp(γ
DZi + βDVi).

In medical settings, it is very common that preventive treatments are prioritized

to the patients with high risk of mortality. In that case, the patient censored is highly

likely to die in the near future had the treatment has not been given. Ignoring the

dependent censoring may introduce bias in estimating the failure hazard model.

4.2.2 Method

As shown by Robins and Finkelstein (2000), the IPCW approach correct for

bias caused by dependent censoring that is attributable to a set of time dependent

covariates Z(x). The assumption underlying this approach is that the hazards of

censoring at time x do not further depend on possibly unobserved death time Di, or

(4.1) λC(x|Z̄i(Di), Di, Di > x) = λC(x|Z̄i(x), Di > x),
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where Z̄i(x) = {Zi(s), 0 < s ≤ x}, λC(x|A) = lim∆→0 P{Ci ∈ [x, x + ∆)|A,Ci ≥

x}/∆ and Ci represents the censoring time. In fact, equation (4.1) says that given

the true death time Di > x and the time-dependent covariates Zi(s) up to time Di,

the censoring rate depends only on the Z̄i(x) and the fact that Di > x, or that for an

individual uncensored, the censoring rate at time x given the past and the covariates

is unaffected by the future. This is referred to as the condition of ‘no unmeasured

counfounders’ by Robins and Finkelstein (2000).

Assume that (4.1) holds, and that a Cox model holds for the time until censoring

(transplant) with hazard function

(4.2) λC(x|Z̄i(x), Vi, Di > x) = λC0 (x) exp{γCZi(x) + βCVi},

where λC0 (x) is an unspecified baseline hazard function and Vi is a set of baseline

covariates. For notational convenience, we assume that the censoring rate at time x

depends only on the most recent value Z(x). Alternatively, one can build a stratified

model to allow different baseline hazards across stratum: λCm(x|Zi(x), Vi, Di, Di >

x,m) = λC0m(x) exp{γCZi(x) + βCVi}, where λC0m(x) is unspecified stratum-specific

baseline hazard function. The basic unstabilized weights are defined as wi(x) =

1/KV
i (x), where KV

i (x) represents the conditional probability of not receiving a

transplant until time x for subject i where survival time exceeds x. That is,

KV
i (x) = P{Ci ≥ x|Di > x, Z̄i(x), Vi} = exp{−ΛC

i (x)},

where ΛC
i (x) =

∫ x

0
exp{γCZi(s) + βCVi}dΛC

0 (s).

Research (e.g. Robins et al. (2000)) has shown that in order to reduce the vari-

ation in the weights caused by baseline heterogeneity, stabilized weights should be

considered. Robins and Finkelstein (2000) and Hernán et al. (2008) use ŵi(x) =

K̂0
i (x)/K̂

V
i (x) with stabilizer K0

i (x) estimated by refitting the same model in (4.2)
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with Zi(t) replaced with Zi(0). We use the same stabilizer, although other choices

could be considered.

4.2.3 Software Implementation

In this section we describe a step-by-step procedure of technical implementation

based on an example dataset. SAS code can be found in the Appendix. One can

follow the same steps and implement the approach in R or other statistical software.

Time-dependent covariate ‘Z’ is recorded in consecutive time intervals (t1, t2) for each

subject indexed by ‘id’. For convenience, it is assumed that the time-dependent Z

remains constant in each time period and jumps to the next value when the period

ends. Fixed baseline variables, ‘age’ and ‘male’, have the same value over time for

each subject. ‘Death’ is the event of interest and ‘transplant’ is considered as depen-

dent censoring. Table 4.1 presents a subset of the original dataset as an example.

To obtain the estimate of KV (x) for the denominator of stabilized weights, we

fit model (4.2) with time-dependent Z, baseline covariates age and male, and trans-

plant as the event using PHREG. We then output the linear predictor XBeta and

cumulative baseline hazards using OUTPUT and BASELINE statements, and get

incremental baseline hazards using the LAG function. If appropriate, a stratified

censoring model can be fitted here with a STRATA statement, in which case the

baseline hazards are recorded by stratum.

Now the critical step is to expand the dataset to all unique transplant times for

each subject. This is essential to obtain the correct weights using a Cox IPCW

approach. When a transplant occurs, the baseline hazards and the cumulative haz-

ards jump, causing the weights to change. Viewed in this way, the weights are step

functions and only change at the transplant times. Table 4.2 presents the expanded
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Table 4.1: An example dataset.
id t1 t2 Z age male death transplant
1 0 4 1 59 1 0 1
2 0 3 4 60 0 0 0
2 3 10 8 60 0 1 0
3 0 1 2 55 1 0 0
3 1 5 8 55 1 0 1
4 0 2 2 57 0 0 0
4 2 4 6 57 0 1 0

Table 4.2: The expanded dataset to cover all censoring times.
id t1 t2 Z age male death transplant
1 0 4 1 59 1 0 1
2 0 3 4 60 0 0 0
2 3 4 8 60 0 0 0
2 4 5 8 60 0 0 0
2 5 10 8 60 0 1 0
3 0 1 2 55 1 0 0
3 1 4 8 55 1 0 0
3 4 5 8 55 1 0 1
4 0 2 2 57 0 0 0
4 2 4 6 57 0 1 0

Table 4.3: The contracted dataset to only include death times.
id t1 t2 Z age male death transplant
1 0 4 1 59 1 0 1
2 3 4 8 60 0 0 0
2 5 10 8 60 0 1 0
3 1 4 8 55 1 0 0
4 2 4 6 57 0 1 0

dataset based on the original set in Table 4.1. If a stratified censoring model is

assumed, one needs to expand the dataset to unique times of censoring within each

stratum, as compared to an unstratified model with the expansion to all censoring

times. As a result, a stratified censoring model tends to increase computational ef-

ficiency. For example, for the national dataset used in the case study, with 42,000+

patients and 20 records for each patient on average, a stratified censoring model

based on 50 strata takes about 30 minutes while the unstratified censoring model
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takes over 3.5 hours. Stratification is recommended for Cox IPCW censoring models

when reasonable. Now, merging the newly expanded set with the data containing

the baseline hazard increments and all covariates, we can obtain the estimates of

the cumulative hazards via multiplying the cumulative baseline hazards by the ex-

ponetiated value of linear predictor Xbeta, or exp(γCZi(x) + βCVi). This yields the

denominator of the stabilized weights.

We then refit the model with Zi(0) in replace of Zi(t) over time for all subjects

to obtain K̂0
i (x). Similar modeling and data manipulation steps as those for K̂V

i (x)

can be done.

Now we fit a Cox model for death using PHREG with a WEIGHT option to

include the IPCW weights. Note that, the Cox model only takes the records at

death times into account. To increase computational efficiency without altering the

results, we use the subset with time periods that include death times. This technique

results in a more significant time reduction for larger datasets and for datasets with

heavy dependent censoring.

In summary, given the nonparametric nature of the baseline in Cox censoring

model, the expansion of the dataset for weight calculations is essential. This results

in substantial computational burden, especially when the dataset is large with many

distinct censoring times or in the simulation studies where many iterations need to

be carried out.

4.3 PWE IPCW Approach

4.3.1 Background

Obtaining IPCW weights via a Cox censoring model requires the data expan-

sion to cover all unique censoring times in order to calculate weights correctly. A
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parametric time-to-event model, in contrast, does not require such expansion. In

this section, we explore a piece-wise exponential (PWE) censoring model for weights

calculation (PWE IPCW) as an alternative.

Assume that a PWE model holds for the time until censoring (transplant) with

hazard function for the kth interval

(4.3) λC(x|Zi(x), Vi, Di > x, tk−1 < x ≤ tk) = λCk exp{γCZi(x) + βCVi},

where λCk represents the constant baseline hazard for the kth piece and t0 = 0. This

model requires pre-specification of the pieces or the cut-off knots. Along with γC

and βC , all λCk s need to be estimated. Therefore, Λ̂C(x|Z̄i(x), Di > x, Vi) increases

linearly until Zi(x) or the hazard piece it lies in, λ̂Ck , changes, when it switches to a

new slope to continue its accumulation. As we mentioned before, the Cox model for

death only takes the records at death times into account; It is necessary to expand

the dataset to all unique death times for the exact weights.

The difference in implementation between Cox IPCW and PWE IPCW gives

each method computational advantage under different scenarios. In a dataset with

many deaths but few censoring, Cox IPCW may run faster; on the other hand, in

the settings with many censoring times and fewer deaths, the PWE IPCW approach

tends to be computationally more efficient. In medical settings where preventive

approaches are often used, the latter scenario with more censoring and fewer deaths

is more common. Note that if the censoring percentage is quite low (e.g. 10%), then

IPCW would usually not be required at all.

We propose the use of PWE model as an alternative to estimate censoring and

IPCW weights, given its flexibility, ease of implementation, and potential gain of

computational efficiency. Note that model (4.3) may be chosen for Ci either be-
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cause it is believed to be the correct model, or because it is intended to be a close

approximation to the (true) model given by (4.2).

4.3.2 Choice of Location and Number of Knots

Not knowing the actual shape of the baseline hazards, it may be challenging to

determine appropriate number of pieces and locations of the cutoffs or knots for a

PWE model.

Generally, two ways in determining the knots are commonly used. First and

ideally, we allocate knots based on previous knowledge or theory. For example,

following a heart transplantation, a patient faces an increasing hazard of death over

the first ten days, while the body adapts to the new organ. The hazard then decreases

with time as the patient recovers. In this case, we want to allocate more knots

in the beginning and fewer towards the long term, to capture the main trends in

the rate function. Another example, if it is known that transplants (dependent

censoring) on the liver waitlist occur more frequently in the early stage of follow-up;

as a consequence, making finer intervals at earlier follow-up times is recommended.

Alternatively, without enough knowledge of the rate function, we suggest choosing

knots based on the cumulative hazards for censoring estimated without covariates,

or group the censoring events in equal number as pieces. Such a strategy helps to

ensure sufficient data within each interval.

In the next section, we evaluate PWE IPCW method using pieces that are either

equally spaced (on follow-up time) or that have equal number of events. Lawless and

Zhan (1998) suggested that it is satisfactory to use piece-wise constant intensities

with 4-10 pieces in most practical situations. Liu et al. (2012) conducted compre-

hensive simulation and recommended to include at least 6 pieces in the assumed
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baseline rate function for a recurrent event model. We evaluate 4 and 6 pieces in our

simulations with these recommendations as guidelines.

4.4 Simulation

In this section, we examine several common hazard distributions for censoring

models, with the aim to compare the performance between PWE and Cox IPCW

and to provide general guidance on choosing the pieces for PWE models.

We simulate samples with N subjects. For each subject i, we assume a baseline

treatment covariate Vi ∼Bernoulli(p) and a time dependent covariate Zi(x) that

follows a Poisson process on the follow-up time scale x, with rate depending on Vi

and a predetermined baseline rate µ, Zi(x) ∼ PP(µeγ
DVi). Here γD is the coefficients

of baseline covariates in the weighted Cox death model. Details are given in the

following paragraph. Each subject is followed for five years and is censored at the

end of fifth year if they have not experienced either a failure or a dependent censoring.

We model the censoring and mortality rates as λCi (x|Vi, Zi(x)) = λC0 exp{γCVi +

βCZi(x)} and λDi (x|Vi, Zi(x)) = λD0 exp(γDVi) + βDZi(x). An additive form for

the mortality model is chosen to ensure that its marginal form is multiplicative

(see Appendix), λDi (x|Vi) = [λD0 − µ(e−β
Dx − 1)]eγ

DVi . It is advantagous to create a

marginal mortality model in a proportional hazards format, so that Cox model can be

used to estimate the mortality. The correlation between the censoring and mortality

is mostly determined by the Zi(x) process. We use a Spearman rank correlation

coefficient to measure the correlation between the death time and censoring time. In

practice, however, we observe only one event among death, dependent censoring and

independent censoring whichever occurs first.

We consider four scenarios with different shapes of baseline hazards: (I) constant
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Table 4.4: Comparison among 4 baseline hazards, with censoring at ∼40%.

Baseline Hazard
Constant Piecewise unimodal Weibull monotone λ(t) = αγtγ−1

(I)λ = 0.1 (II)λ = 0.06 ∼ 0.14 (III)α = 0.2, γ = 0.5 (IV)α = 0.05, γ = 1.5
# Weights Est (bias) SD Est (bias) SD Est (bias) SD Est (bias) SD
(1) Cox 0.693 ( 0.001) 0.145 0.689 (-0.003) 0.154 0.675 (-0.017) 0.146 0.691 (-0.001) 0.134
(2) PWE4no 0.694 ( 0.002) 0.143 0.689 (-0.003) 0.149 0.675 (-0.017) 0.144 0.692 (-0.000) 0.135
(3) PWE4tm 0.691 (-0.001) 0.148 0.686 (-0.006) 0.157 0.667 (-0.025) 0.146 0.690 (-0.002) 0.143
(4) PWE6no 0.694 ( 0.002) 0.141 0.689 (-0.003) 0.147 0.675 (-0.017) 0.147 0.691 (-0.001) 0.134
(5) PWE6tm 0.695 ( 0.003) 0.146 0.688 (-0.004) 0.152 0.671 (-0.021) 0.144 0.691 (-0.001) 0.140

hazards; (II) unimodal piece-wise constant hazards equally spaced on the follow-up

time; (III) Weibull monotone decreasing hazards λ(t) = αγtγ−1 with γ = 0.5 and

(IV) Weibull monotone increasing hazards λ(t) = αγtγ−1 with γ = 1.5.

We set parameters as p = 0.5, µ = 3, γD = log(2), λD = 0.3, γC = log(2),

βD = 0.12 and βC = log(1.5). The parameters for baseline hazards are: (I) λ = 0.1;

(II) λ1 = 0.08, λ2 = 0.1, λ3 = 0.12, λ4 = 0.14, λ5 = 0.1, and λ6 = 0.06; (III)

α = 0.2 and (IV) α = 0.05. For these settings, censoring rates are all around 40%

(38%-44%), and Spearman correlations between censoring time and death time are

all approximately 0.2 (0.20-0.22).

Under each scenario, we evaluate parameter estimates of the mortality model for

death using the following weights: (1) Cox IPCW weights; (2) PWE IPCW weights,

4 pieces with the equal number of censoring events; (3) PWE IPCW weights, 4 pieces

with the equal intervals in the follow-up time; (4) PWE IPCW weights, 6 pieces with

the equal number of censoring events, (5) PWE IPCW weights, 6 pieces with the

equal intervals in the follow-up time. The results in Table 4.4 are based on 500

repetitions and a sample size 500.

All examples in the paper are carried out using SAS 9.3 (TS1M0) on a X64 7PRO

platform (Windows) with dual CPU (Intel R© Xeon R© Processor X5570 @ 2.93 GHz)

and 3GB RAM memory.
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Table 4.5: Comparison among 4 baseline hazards, with censoring at ∼60%.

Baseline Hazard
Constant Piecewise unimodal Weibull monotone λ(t) = αγtγ−1

(I)λ = 0.2 (II)λ = 0.16 ∼ 0.24 (III)α = 0.3, γ = 0.5 (IV)α = 0.15, γ = 1.5
# Weights Est (bias) SD Est (bias) SD Est (bias) SD Est (bias) SD
(1) Cox 0.673 (-0.019) 0.201 0.670 (-0.022) 0.193 0.679 (-0.013) 0.196 0.672 (-0.020) 0.183
(2) PWE4no 0.671 (-0.021) 0.199 0.674 (-0.018) 0.196 0.680 (-0.012) 0.193 0.671 (-0.021) 0.186
(3) PWE4tm 0.663 (-0.029) 0.217 0.661 (-0.031) 0.208 0.665 (-0.027) 0.206 0.660 (-0.032) 0.201
(4) PWE6no 0.670 (-0.022) 0.196 0.673 (-0.019) 0.193 0.679 (-0.013) 0.193 0.670 (-0.022) 0.182
(5) PWE6tm 0.665 (-0.027) 0.212 0.667 (-0.025) 0.204 0.673 (-0.019) 0.198 0.665 (-0.027) 0.196

Table 4.4 shows that Cox IPCW and PWE IPCWs perform similarly in terms of

both accuracy and efficiency (bias and standard deviation). Particularly, PWE with

equal number of censoring events, Approach (2) and (4), gives results very close to

the Cox IPCW. In addition, PWE with equal number of censoring events exhibits

a small but consistent accuracy and efficiency gain comparing to PWE with equal

time distance, given its smaller biases and smaller standard deviations. PWE with

equal number of censoring events, therefore, is recommended. 4 or 6 pieces do not

differentiate much in results. In most cases, PWE with 4 pieces is recommended,

unless the follow-up period is long or the shape of baseline hazards is expected to be

complicated, in which case, more pieces for PWE approach should be explored.

Now we increase the dependent censoring rates to 60%, and further compare

the performance of these methods under different scenarios. We set parameters

βD = 0.15 and βC = log(1.8), and the rest are the same as the ones used above.

The four baseline hazards functions have parameters: (I) λ = 0.2; (II) λ1 = 0.18,

λ2 = 0.2, λ3 = 0.22, λ4 = 0.24, λ5 = 0.2, and λ6 = 0.16; (III) α = 0.3; and

(IV) α = 0.15, respectively. These values are 0.1 more than the values used in the

previous setting. Now dependent censoring rates are around 60% (59%-61%), and

Spearman correlations between censoring time and death time are approximately 0.2

(0.20-0.22).
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Table 4.6: Average computation time of IPCW procedure (in seconds).
Censoring rate 40% Censoring rate 60%

Method (I) (II) (III) (IV) (I) (II) (III) (IV)

Cox 24.3 23.2 20.6 20.1 15.0 15.7 16.3 15.1
PWE4no 13.6 13.9 13.7 13.2 5.8 6.3 6.0 6.1
PWE6no 15.0 16.2 10.5 14.6 6.6 6.9 6.7 6.3

Table 4.5 gives results similar to those in Table 4.4. Even with heavy dependent

censoring around 60%, Cox IPCW and PWE IPCW approaches still perform well

and give the estimates with bias smaller than 0.02 (or 3%). Similar as before, PWE

with equal number of censoring events perform better than PWE with equal time

distance, with smaller bias and standard deviation.

Our motivation to explore PWE IPCW as an alternative to Cox comes from the

computational gain of the former approach when a large portion of the observations

are dependently censored. We now compare the computational time of Cox IPCW

and PWE IPCW with equal number of censoring events.

Table 4.6 shows the average computation time of estimating IPCW weights using

these approaches, based on 10 runs and sample size N = 1000. The results show

that PWE saves 50-70% of computation time as compared to Cox IPCW when

dependent censoring rate is 40-60%. This time saving is important especially in a

large dataset with heavy censoring. For example, in the case study dataset with

42,000 patients and 20 records per patient on average, PWE censoring model takes

2 minutes while Cox censoring model takes over 7 hours. A stratified model would

reduce the difference to about 30 minutes, with increased computation time for PWE

and decreased time for Cox censoring model.
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4.5 Case Study

4.5.1 Data Description

As an example, we evaluate liver transplant waitlist mortality using the data

obtained from the Scientific Registry of Transplant Recipients (SRTR), and compare

the Cox IPCW and 4-piece PWE IPCW with equal number of censoring events

approach. We consider a five-year cohort of patients waitlisted between January 1st,

2004 and December 31st, 2008. Patients recorded as Status 1 or 1A at baseline have

acute liver failure at waitlisting and are not included in the analysis. In addition,

we exclude patients listed in error, changed to kidney/pancreas transplants or with

previous liver transplant history. Given that pediatric patients follows a different

scheme of transplant, we only include adults of age 18 years above in the analysis.

Among the 125 transplant centers, 25 centers with fewer than 10 patients listed

per year are excluded. Similarly, among the 52 Organ Procurement Organizations

(OPO), 2 with fewer than 10 patients listed per year are excluded. In the final

working set, 42,021 patients from 100 centers and 50 OPOs are included.

We measure baseline covariates gender, race, age, diagnosis categories, diabetes,

previous malignancy indicator, Body Mass Index (BMI), blood type, and hospitaliza-

tion and Intensive Care Unit (ICU) status. All these covariates are included in both

the transplant (censoring) model and the mortality model. In addition, 11 regions

coded as binary indicators for each subject are also included.

Time dependent variables consist of the Model for End-Stage Liver Disease (MELD)

score, inactive period, and sodium value. MELD is the scoring system used to prior-

itize patient on the liver wait list. It combines serum bilirubin, serum creatinine and

the international normalized ratio for prothrombin time (INR). Allocation MELD

score is used in practice as the main determining factor on liver deceased donor allo-
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cation. We record MELD as binary indicators for whether the score is in 6-8, 9-11,

12-14, 15-17 (as the reference level), 18-20, 21-23, 24-26, 27-29, 30-32, 33-35, 36-39,

40+, and Status 1/1A. Assuming that a patient is being monitored sufficiently by

the clinician, it would appear reasonable to believe that lack of a MELD update

reflects the fact that the patient’s MELD has not changed. This would imply that

coding MELD score as a step-function (i.e. last-value carried-forward) would be

appropriate. Sometimes, patients are temporarily removed from the waitlist for vari-

ous reasons such as medical condition, refusing transplant, improved or deteriorated

condition, or being inactive on the program for more than 2 years. Such patients are

not supposed to receive offers of deceased donor livers when they are removed from

or not on the waitlist. We set the inactive indicator as 1 to identify the period of

removal and to capture this information in modeling. Sodium value is recorded as

a continuous variable and is also included in the set of time dependent covariates.

Alternative approaches of handling inactive time were used by Zhang and Schaubel

(2011).

Patients in need of a liver donor are often encouraged to be listed at multiple

centers. In the five-year cohort, we have 39,680 patients listed at a single center,

while 2,341 patients listed at multiple centers. Among the ones listed at multiple

centers, 2,221 are listed at two centers, 111 are listed at three centers, and 9 are listed

at four centers. When a patient is listed at multiple centers simultaneously, the first

listing center is considered as his/her primary center; unless he/she is transferred

to another center as an independent censoring, the new center would be appointed

as the primary center and the patient is then treated as two people. We track all

listing records for each patient and define dependent censoring if a patient receives

a deceased donor transplant at any center.
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Death on the waitlist is the event of interest in our analysis. A patient is consid-

ered as dependently censored, if he or she experienced any type of deceased donor

transplant or died during a deceased donor transplant procedure. A patient is in-

dependently censored if he or she is lost of follow-up or received a living donor

transplant, which typically is not predicted by MELD score. We conduct a Cox

death model stratified on center with Cox IPCW weights and PWE IPCW weights.

In this case, we expect the baseline hazards decrease over time because patients are

most likely getting transplants towards the beginning of waitlist period whenever

qualified. We use piece-wised exponential censoring model with 4 pieces of equal

number of transplants, as comparison to the Cox IPCW approach.

It is worth noting a computational trick for the Cox death model on any large

dataset. Cox model only takes into the considerations the time points when a event

or failure occurs. Therefore, a compressed dataset containing only records with death

times yields the same results yet reduces computational time. This reduction in time

is particularly significant in large datasets.

4.5.2 Results

Table 4.7 presents the parameter estimates of censoring model and death model

using Cox IPCW and PWE IPCW in 4 pieces with equal number of events. The

results of Cox censoring model are very close to those using PWE model. However,

while Cox censoring model takes approximately 5 hours in computation, the PWE

approach, on the other hand, only takes less than 4 minutes. The time reduction

comes from two sources. First, although PHREG can conveniently deal with time

dependent covariates, it increases computation time dramatically in large datasets.

On the other hand, we implement PWE models in LIFEREG treating each record
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as a piece of duration utilizing the memoryless property of exponential models. This

reduced the computational time greatly as compared to PHREG procedure. Second,

our dataset has approximately 50% of dependent censoring, which increases the

burden in data expansion stage especially for Cox IPCWmethod where it is necessary

to expand to all unique transplant times for all patients.

Both Cox and PWE censoring models give some extreme weights. Cox identified

31 subjects with maximum weights larger than 100; while PWE identifies 28. The

same 28 patients have been suggested with extreme weights by both methods. PWE

is slightly more stable in estimating weights for patients being in the at-risk set for

a longer time with heavy tails. These 28 patients either have been in the at-risk set

for longer than 2 years with medium MELD score or have been in the at-risk set

for some time at a high MELD score 30+. Since 99.5% of subjects have maximum

weights under 10, we use 10 as a cap for both Cox weights and PWE weights in the

death model calculation.

Table 4.7 also shows that the death models using Cox IPCW weights and PWE

IPCW weights yield very similar results. The expanded dataset of Cox IPCW is

7 times larger than that of PWE IPCW approach. With the computation trick to

compress dataset to only include death records, the death models with both weights

take the similar amount of time (14-16 minutes) in computation. As we expected, the

higher the MELD score becomes, the more likely the patient would get a transplant

and the more likely he or she would die. Since there is no patient with Status 1/1A

at baseline, the parameter estimate for that covariate is 0.
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Table 4.7: Censoring model and death model using Cox IPCW and PWE4 IPCW
Censoring model Death model

PWE4 Cox PWE4 wts 10 Cox wts 10
Est StErr P-val. Est StErr P-val. Est StErr P-val. Est StErr P-val.

Gender: Male 0.14 0.02 <0.01 0.14 0.02 <0.01 -0.02 0.03 0.44 -0.02 0.03 0.45
Race: White (ref)

Black -0.16 0.02 <0.01 -0.16 0.02 <0.01 0.03 0.06 0.57 0.02 0.06 0.66
Hispanic -0.13 0.02 <0.01 -0.13 0.02 <0.01 -0.06 0.04 0.14 -0.06 0.04 0.12
Asian -0.20 0.03 <0.01 -0.20 0.03 <0.01 -0.32 0.07 <0.01 -0.32 0.08 <0.01

Primary diagnosis: nonchron/cirr (ref)
Chronic liver disease 0.07 0.03 0.01 0.07 0.03 0.01 0.04 0.06 0.48 0.04 0.06 0.54
Malignant neoplasm 0.07 0.03 0.01 0.06 0.03 0.03 0.57 0.09 <0.01 0.56 0.09 <0.01
Metastatic disease 0.06 0.05 0.22 0.06 0.05 0.22 0.25 0.11 0.02 0.24 0.11 0.03

HCV1 0.02 0.02 0.19 0.02 0.02 0.16 0.27 0.03 <0.01 0.27 0.03 <0.01
Etiology unknown 0.04 0.06 0.42 0.07 0.06 0.19 -0.02 0.11 0.88 -0.02 0.11 0.87
Other -0.20 0.03 <0.01 -0.20 0.03 <0.01 0.09 0.06 0.16 0.09 0.06 0.14

Diabetes -0.01 0.02 0.74 -0.01 0.02 0.73 0.12 0.03 <0.01 0.12 0.03 <0.01
Diabetes missing -0.12 0.05 0.01 -0.12 0.05 0.01 0.01 0.08 0.91 0.01 0.08 0.89
Previous malignancy -0.01 0.03 0.84 -0.01 0.03 0.62 -0.07 0.07 0.33 -0.09 0.07 0.24
BMI: 30 to 35 (ref)

0 to 25 0.03 0.02 0.10 0.03 0.02 0.13 0.08 0.04 0.04 0.09 0.04 0.03
25 to 30 0.05 0.02 <0.01 0.05 0.02 <0.01 -0.06 0.04 0.11 -0.05 0.04 0.16
35+ -0.01 0.02 0.55 -0.01 0.02 0.53 0.08 0.04 0.08 0.08 0.04 0.07

Blood type: O (ref)
A 0.11 0.02 <0.01 0.11 0.02 <0.01 0.06 0.03 0.05 0.06 0.03 0.03
B 0.35 0.02 <0.01 0.35 0.02 <0.01 -0.05 0.05 0.30 -0.05 0.05 0.31
AB 1.24 0.03 <0.01 1.24 0.03 <0.01 0.04 0.11 0.70 0.04 0.11 0.69

Hospitalization: Other conditions (ref)

ICU 2 0.00 0.04 0.94 0.03 0.04 0.48 1.28 0.08 <0.01 1.29 0.08 <0.01
not ICU 0.05 0.02 0.03 0.05 0.02 0.03 0.64 0.05 <0.01 0.65 0.05 <0.01

Age: 18 to 29 (ref)
30 to 39 0.15 0.05 0.01 0.15 0.05 0.01 0.18 0.17 0.30 0.16 0.18 0.37
40 to 49 0.17 0.05 <0.01 0.17 0.05 <0.01 0.46 0.15 <0.01 0.43 0.15 0.01
50 to 54 0.16 0.05 <0.01 0.16 0.05 <0.01 0.71 0.15 <0.01 0.69 0.16 <0.01
55 to 59 0.16 0.05 <0.01 0.15 0.05 <0.01 0.75 0.15 <0.01 0.72 0.15 <0.01
60 to 64 0.20 0.05 <0.01 0.19 0.05 <0.01 0.90 0.16 <0.01 0.88 0.16 <0.01
65 to 69 0.17 0.05 <0.01 0.16 0.05 <0.01 1.08 0.16 <0.01 1.05 0.16 <0.01
70+ 0.27 0.06 <0.01 0.25 0.06 <0.01 1.43 0.17 <0.01 1.41 0.17 <0.01

MELD score: 15 to 17(ref)
6 to 8 -2.08 0.06 <0.01 -2.04 0.06 <0.01 -0.87 0.07 <0.01 -0.87 0.07 <0.01
9 to 11 -2.14 0.05 <0.01 -2.11 0.05 <0.01 -0.63 0.05 <0.01 -0.63 0.05 <0.01
12 to 14 -1.56 0.04 <0.01 -1.55 0.04 <0.01 -0.32 0.04 <0.01 -0.32 0.04 <0.01
18 to 20 0.92 0.03 <0.01 0.91 0.03 <0.01 0.41 0.05 <0.01 0.41 0.05 <0.01
21 to 23 1.70 0.03 <0.01 1.68 0.03 <0.01 0.55 0.06 <0.01 0.55 0.06 <0.01
24 to 26 2.37 0.03 <0.01 2.36 0.03 <0.01 1.06 0.08 <0.01 1.06 0.08 <0.01
27 to 29 2.97 0.03 <0.01 2.94 0.03 <0.01 1.83 0.09 <0.01 1.82 0.09 <0.01
30 to 32 3.44 0.04 <0.01 3.43 0.04 <0.01 2.19 0.11 <0.01 2.16 0.11 <0.01
33 to 35 3.68 0.04 <0.01 3.67 0.04 <0.01 2.51 0.10 <0.01 2.50 0.11 <0.01
36 to 39 3.77 0.04 <0.01 3.77 0.04 <0.01 2.81 0.11 <0.01 2.77 0.11 <0.01
40 3.88 0.04 <0.01 3.86 0.04 <0.01 3.43 0.10 <0.01 3.39 0.10 <0.01

Status 1/1A 4.91 0.11 <0.01 4.79 0.11 <0.01 0.00 - - 0.00 - -
Inactive -2.30 0.07 <0.01 -2.23 0.07 <0.01 0.85 0.08 <0.01 0.85 0.08 <0.01
Serum sodium 138+ (ref)

131- 0.10 0.02 <0.01 0.10 0.02 <0.01 0.83 0.05 <0.01 0.84 0.05 <0.01
132 to 137 0.05 0.02 <0.01 0.04 0.02 0.01 0.29 0.03 <0.01 0.29 0.03 <0.01
missing -0.07 0.02 <0.01 -0.08 0.02 <0.01 0.21 0.04 <0.01 0.21 0.04 <0.01

1. HCV= hepatitis C.
2. ICU= intensive care unit.
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4.6 Discussion

In the presence of dependent censoring, IPCW techniques can be useful to re-

cover the true death hazards and are easy to implement. We detailed software im-

plementation procedure, and describe techniques motivated by time reduction using

stratification and compression of the final dataset for the death model. When the

dataset is large or the dependent censoring portion is large, it is advantageous of

using a PWE IPCW over Cox IPCW demonstrated via simulation and case study.

In some extreme cases, PHREG may not run given the computer memory limitation,

a PWE model can be used as an alternative.

We discussed some general guidance on how to choose pieces and knots for PWE

censoring model.



CHAPTER V

Future Work

In the thesis, we first considered a risk-adjusted O-E CUSUM chart along with

monitoring bands as decision criterion, to monitor the post-transplant mortality in

transplant programs. The O-E CUSUM is easily plotted and its trends are easily

interpreted; further, when the monitoring bands are included, it provides simple

rules for flagging. In practice, a head-start technique can be used to provide a quick

and sensitive detection after a signal, to ensure the problem causing the signal has

been addressed properly. Further work can be done to delineate the average run

length (ARL) among programs in the case study, incorporating a head-start after

signal. The CUSUM described in this chapter, however, does not allow for dependent

censoring, which is common especially in the medical setting. This motivated our

work in the third chapter, where we developed a weighted CUSUM to account for

the dependent censoring.

The construction of a weighted CUSUM based on the IPCW weights requires

assumptions of accurate information, no unmeasured confounding, and correctness

of the model. Given these assumptions, weighted O-E under null hypothesis is a

zero-mean process with inflated variance. We derived the theoretical formula for the

variance of this zero-mean process, which can be used for any point evaluation of

68
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cumulative weighted O-E. For example, a score statistic can be constructed at any

time point using accumulated information, to evaluate the null hypothesis based on

a pre-determined Type I error rate. In our case, we are interested in the sequential

usage of the accumulating information, for the purpose of providing timely feedback

to centers. We discussed a resampling technique to obtain the control limit for a

center at a given size and over a certain period of time. Further investigation on

sampling can be done, such as comparing the results using sampling technique in the

independent censoring scenario to the approach discussed in Chapter II. In addition,

other ways of calibrating control limits, perhaps incorporating the weighted expected

values and the variance of the weighted zero-mean process, are also of interest for

future research.

In Chapter IV, we focused on the technical implementation of the Cox IPCW

approach and compared the PWE approach with the Cox IPCW approach. While

our censoring mechanism determines the simplicity or the monotone shape of the

baseline hazard curve for the censoring model, PWE approach works well in giving

similar results to the Cox IPCW model, while reducing computational time greatly.

In practice, especially when the censoring mechanism is not as clearly defined as our

case, the researcher needs to be careful in choosing the appropriate knots for the

PWE approach. Much research has been done in this area. One may want to choose

a simple and intuitive way to choose knots based on previous knowledge, if speed is

of concern. Further investigation can be done in this area as well.
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APPENDIX A

Proof of Theorem in Chapter II

With the choice hi = Li/θi, i = 1 or 2, the O-E CUSUM with V-mask designed to

test H0 : θ = 0 versus H− : θ = θ1 > 0 and H+ : θ = θ2 < 0 has identical hitting

times to the simultaneous use of two one-sided CUSUMs constructed with regard to

the same hypotheses.

Consider the path of one-sided CUSUM for ‘worse than expected’ with parameters

θ1 and L1. Consider an excursion beginning at s where G
(1)
s > 0 and G

(1)

s−
= 0. This

excursion ends when the CUSUM reaches the control limit L1 and triggers a signal

or when it returns next to 0. If it returns to 0, it stays at 0 until the next failure

when a new excursion begins. Suppose the original excursion begins at s = 0 and

ends at time τ = inf{t > 0 : G
(1)
t = 0 or G

(1)
t ≥ L1}, and let J = I(G

(1)
τ ≥ L1). If

J = 1, for example, then

i) 0 < θ1{ND(t)−ND(s)} − (eθ1 − 1){A(t)− A(s)} < L1, s < t < τ ; and

ii) θ1{ND(τ)−ND(s)} − (eθ1 − 1){A(τ)− A(s)} ≥ L1.

If J = 0, then ii) becomes ii∗) θ1{ND(τ)−ND(s)} − (eθ1 − 1){A(τ)− A(s)} = 0.

It is easily seen that i) implies that

{
eθ1 − 1

θ1
− 1

}
{A(t)− A(s)} < {ND(t)− A(t)} − {ND(s)− A(s)}

<

{
eθ1 − 1

θ1
− 1

}
{A(t)− A(s)}+ L1

θ1
,
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for s < t < τ . This can be seen to be of the same form of the O-E CUSUM in (3). If

we choose h1 = L1/θ1, the one-sided CUSUM does not signal on the interval (0, τ)

if and only if the O-E CUSUM does not signal on the same interval. Similarly the

two CUSUMs both signal at τ if the inequality ii) holds. A similar argument shows

an equivalence between the O-E CUSUM and the one-sided CUSUM for the test of

‘better than expected’.
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APPENDIX B

Cox model for death in Chapter III

We can estimate the true hazard in the mortality model using estimated inverse

weights. Assuming a Cox PH mortality model λD(x) = λD0 (x) exp(βZ), where β =

(β1, · · · , βp) and Z represents the vector (Z(0), V (0)) measured at baseline. Again,

this mortality model might be obtained from an overall model or a stratified model.

For demonstration, we use an overall model in our notation. The weighted Cox

partial likelihood score function is

U(β) =
n∑

i=1

δiwi(xi){Zi −
∑

j

Yj(xi + Si)wj(xi)Zj exp(βZj)∑
k Yk(xi + Si)wk(xi) exp(βZk)

}

=
n∑

i=1

∫ x

0

wi(s){Zi −
∑

j

Yj(s+ Si)wj(s)Zj exp(βZj)∑
k Yk(s+ Si)wk(s) exp(βZk)

}dN∗
i (s+ Si)

=
n∑

i=1

∫ x

0

wi(s){Zi − Z̄w(s; β)}dN∗
i (s+ Si)

E(U(β)) = 0. Use estimated stabilized weights ŵi(x) for wi(x) and solve U(β̂) = 0.

β̂ is a consistent estimator of β as shown by Robins and Finkelstein (2000).
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APPENDIX C

Generating dependent censoring in Chapter III

We show that for an additive conditional mortality model given Vi and Zi(x), the

expectation of the hazards on Zi(x) results in a multiplicative form, which can then

be analyzed using a standard Cox PH model.

Let Vi represent the covariate of interest, e.g. treatment assignment, and sup-

pose that Vi has a Bernoulli distribution with probability of success p. Generate Zi

(e.g. MELD score) as time dependent covariate for subject i based on his treatment

assignment Vi. Let Zi be a Poisson process with intensity µeγVi . The time interval

between successful jumps are i.i.d and follow exp{µeγVi}.

Assume a transplant model

λCi (x|Zi(x), Vi) = λC0 exp{βCZi(x) + γCVi},

and a conditional mortality model

λDi (x|Zi(x), Vi) = λD0 exp(γVi) + βDZi(x).

Based on Jewell and Kalbfleisch (1996), the marginal survivor function for mor-



75

tality is

S(x|Vi) = EZ{S(x|Vi, Zi(x))} = EZ{exp(−
∫ x

0

[λD0 e
γVi + βDZi(u)]du)}

= exp{−λD0 eγVix}EZ{exp
∫ ∞

0

ψ(u)Zi(u)du} where ψt(u) = −βDI(u < x)

= exp{−λD0 eγVix} exp{KZ(ψ)}

Therefore,

λD(x|Vi) = −
∂ log S(x|Vi)

∂x
= λD0 e

γVi − ∂KZ(ψ)

∂x

and

KZ(ψ) = −
∫ x

0

µeγVids+

∫ x

0

µeγVi exp{
∫ x

s

ψ(v)dv}ds

= −µeγVix+ µeγVi

∫ x

0

e−β
D(x−s)ds

= µeγVi(
1

βD
− e−β

Dx

βD
− x)

So that ∂K/∂x = µeγVi(e−β
Dx − 1) and the marginal mortality model given Vi is

λD(x|Vi) = λD0 e
γVi − µeγVi(e−β

Dx − 1)

= [λD0 − µ(e−β
Dx − 1)]eγVi

= λ∗0(x)e
γVi ,

which is a Cox PH model.
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APPENDIX D

Simulation studies to demonstrate alternative

approach to choose control limit for WCUSUM in

Chapter III

In this appendix, we demonstrate that in a weighted CUSUM, control limits increases

linearly with the inflated variance measuring the zero-mean process as the dependent

censoring rate increases, to maintain the same ARL or type I error rate over a certain

period of time.

Assume a center with 100 patients per year for 3.5 years. One-year survival is of

interest. The setup of censoring model and death model is the same as the rest of

the paper, with parameters p = 0.5, µ = 3.

We set death model parameters as λD1 = 0.05, γD1 = log(1.8), βD
1 = 0.03 (Pattern

1) and λD2 = 0.015, γD2 = log(2), βD
2 = 0.05 (Pattern 2) to compare two different

shapes of baseline hazards.

We set parameters for censoring as λC1 = 0, γC1 = log(1.5), βC
1 = log(2); λC2 =

0.03, γC2 = log(1.5), βC
2 = log(2); λC3 = 0.06, γC3 = log(2), βC

3 = log(2); λC4 = 0.1,

γC4 = log(1.5), βC
4 = log(1.5); λC5 = 0.2, γC5 = log(1), βC

5 = log(1.5), to obtain

different rates of dependent censoring. 500 iterations are conducted on each scenario.

We stop each iteration as soon as the cumulative weighted expected number of

failures reaches 40. StDev represents the square root of the variance for the weighted
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Table D.1: Weighted CUSUM
Pattern 1 Pattern 2

Censor pattern StDev L StDev L
1 (no censoring) 6.1 5.07 6.1 5.10
2 6.7 6.68 6.9 6.98
3 7.1 7.25 7.5 8.08
4 7.5 7.92 7.9 8.85
5 7.7 8.80 8.2 9.50

zero-mean process. L is calibrated so that the weighted process has 5% type I error

rate over the 3.5 year period. Power under hypothesis of relative risk 2 is also

illustrated.

Table D.1 shows the linear trend.
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APPENDIX E

Variance of the Weighted Zero-Mean process in

Chapter IV

In this section, we show that the variance of the weighted zero-mean process increases

in a stable rate in equilibrium stage. Assume patients arrive in a stable process (e.g.

homogeneous Poisson process), and the number of patients at risk stays constant

after the first year of accumulation (if we are interested in one-year survival).

Denote B(t) =
∑n

i=1

∫ t

0
[w∗i (u)dN

∗
i (u)−w∗i (u)Yi(u)dΛi(u)] =

∑
i

∫ t

0
w∗i (u)dM

∗
i (u),

where E{w∗i (u)dM∗
i (u)} = 0 for subject i and n is the number of patients up to time

t at the center.

If relative risk of mortality is r, or the ratio of the observed number of deaths

against the expected number of deaths is r, then

E{
∑

i

∫ t

0

w∗i (u)dN
∗
i (u)|Yi(u), w∗i (u), Vi, Si, r} = r

∑

i

∫ t

0

w∗i (u)Yi(u)dΛi(u).

Generalize B(t) to

Br(t) =
n∑

i=1

∫ t

0

[w∗i (u)dN
∗
i (u)− rw∗i (u)Yi(u)dΛi(u)] =

∑

i

∫ t

0

w∗i (u)dM
∗
i (u; r),

with E{w∗i (u)dM∗
i (u; r)} = 0.

Assuming the expected risk of failure, the weights over time and the death process

among all patients are i.i.d, according to Central Limit Theorem, we have

(E.1) Br(t)/
√
n→D N(0,Σr(t)),



79

and

Σ̄r(t) =
1

n

∑

i

{
∫ t

0

w∗i (u)dM
∗
i (u; r)}2 =

1

n

∑

i

Ji(t; r)→p Σr(t), as n→∞,

where

Ji(t; r) = [

∫ t

0

w∗i (u)dN
∗
i (u)−

∫ t

0

rw∗i (u)Yi(u)dΛi(u)]
2

=

∫ t

0

[w∗i (u)]
2dN∗

i (u)− 2r

∫ t

0

w∗i (u)dN
∗
i (u)

∫ t

0

w∗i (u)Yi(u)dΛi(u)

+r2[

∫ t

0

w∗i (u)Yi(u)dΛi(u)]
2.

Note that although the expectation calculation of
∫ t

0
w∗i (u)dN

∗
i (u)

∫ t

0
w∗i (u)Yi(u)dΛi(u)

isn’t trivial, if we assume t → ∞ or there is no administrative censoring, equation

above has a limiting value E{Ji(t; r)|wi(u), Vi, Si, 0 < u < t} → ci.

Then, E{Σ̄r} = E{
∑

i Ji(t)/n} =
∑

i ci(r)/n →p c̄r, as t → ∞, where c̄r de-

scribes a population average.

This concludes that the variance of the weighted zero-mean process is stable in

equilibrium stage when t→∞ (one year survival is the only independent censoring

source), given patients’ Vi, Zi(t) and relative risk. If patients arrive in a homogeneous

Poisson process with rate λ: E{n} = λt, then Var{Br(t)} → λtc̄r=̇σ
2
r t.

We empirically verify that the standardized version of Br(t) or Br(t)/SEr(t) has

an approximate standard normal distribution, where

{SEr(t)}2 =
∑

i

V̂ar{
∫ t

0

w∗i (u)dM
∗
i (u; r)} =

∑

i

{
∫ t

0

w∗i (u)dN
∗
i (u)−

∫ t

0

rw∗i (u)Yi(u)dΛi(u)}2,

with E{
∫ t

0
w∗i (u)dM

∗
i (u; r)} = 0.

We are interested in one-year outcomes. Therefore, after the first year of recruit-

ment accumulation, the process reaches an equilibrium stage in which the distribution

of Br(∆t) = Br(t2)−Br(t1) depends only on ∆t = t2− t1 for t2 > t1 > 1. We choose

t2 = 2 and t1 = 1 in averaging the distribution of Br(∆t)/SEr(∆t).
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Table E.1: Standardized Br(t) between year 1 and year 2

r death% cen.% corr Br(∆t) ± SE Var(∆t) ± SE Br(∆t)√
Varr(∆t)

± SE

2 22.8 36.2 0.22 -0.21±8.72 79.86±15.90 -0.09±0.98
1 12.3 41.4 0.16 0.14±6.62 44.61±13.12 -0.09±1.05
0.5 6.5 44.0 0.12 -0.28±5.05 22.03±11.39 -0.28±1.19

We consider the following parameter setup: µ0 = 200, p = 0.5, µ = 5, γD =

log(2), λD = 0.01, λC = 0.01, γC = log(2), βD = 0.05 and βC = log(2). The

simulation is conducted with 500 repetitions.

In this Table, under relative risk r = 2, r = 1 and r = 0.5, we report observed

dependent censoring rate, observed death rate, correlation between latent death time

and dependent censoring time, and the normality properties of Br(∆t)/SEr(∆t) be-

tween year 1 and year 2. The results confirm that the standardized zero-mean process

at time t has mean 0 and variance 1.
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