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CHAPTER I

Introduction

In many biomedical studies where the event of interest is recurrent (e.g., hospital

admission), marks are observed upon the occurrence of each event (e.g., medical costs,

length of stay). In Chapter II, we propose novel methods which contrast group-specific

cumulative means, influenced by the recurrent event rate and survival probability.

Our proposed methods utilize a form of hierarchical modeling: a proportional haz-

ards model for the terminating event; a proportional rates model for the conditional

recurrent event rate given survival; and a generalized estimating equations approach

for the marks, given an event has occurred. Group-specific cumulative means are

estimated (as processes over time) by averaging fitted values from the afore-listed

models, with the averaging being with respect to the marginal covariate distribution.

Large sample properties are derived, while simulation studies are conducted to assess

finite sample properties. We apply the proposed methods to data obtained from the

CANADA-USA Peritoneal Dialysis Study (CANUSA).

Typically in observational studies, it is necessary to account for measured and un-

measured heterogeneity across study subjects. This is often accomplished through

model covariates (for measured factors) and frailty variates (to account for unmea-

sured predictors). In Chapter III, we investigate a frequently occurring data structure

where the event of interest is recurrent (e.g., hospital admission), marks are observed
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upon the occurrence of each event (e.g., length of stay) and the recurrent event pro-

cess may be permanently stopped by a terminating event (e.g., death). Similar to

Chapter II, the methods proposed in Chapter III model the terminating event haz-

ard, conditional recurrent event rate given survival and the mark process. However,

in Chapter III all such models are fully parametric, and estimation is carried out

simultaneously. Most importantly, residual correlation across the terminating event,

recurrent event and mark process is captured by a frailty variate, assumed to follow

a Normal distribution. Maximum likelihood based estimation is carried out via a

Gaussian Quadrature technique for integration. Through simulation, the methods

are shown to work well for practical sample sizes. In contrast, significant biases are

detected when estimation is based on methods which fail to account for residual cor-

relation among the event, death and mark processes, especially when heterogeneity

is large within the population.

In Chapter IV, we develop inverse weighting methods to contrast group-specific

cumulative means. Both the underlying data structure and the target estimands are

the same as those from Chapter II. However, for the methods proposed in Chapter

IV, we avoid constructing semi-parametric or parametric models for each process to

achieve consistent estimates. We further take into account of treatment imbalance and

unobserved censoring times by combining Inverse Probability of Treatment Weight-

ing (IPTW) and Inverse Probability of Censoring Weighting (IPCW). Efficiency is

compared with the procedure proposed in Chapter II.
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CHAPTER II

Semi-parametric methods contrasting

group-specific cumulative mean

2.1 Introduction

In many biomedical studies, subjects may experience the event of interest multiple

times. Examples include repeated hospital admissions, epileptic seizures, repeated

use of illegal drugs, and others. Although chief interest often lies in modeling the

recurrent event process, often investigators are also interested in an outcome measure

associated with each recurrent event; for example, the medical cost incurred during

each hospitalization, or the length of treatment during each hospital visit. Such

outcome measures are defined as marks, and measure quantitative or qualitative

aspects of each event occurrence. The marks may also be influenced by either internal

or external covariates in the study. In the setting where the study population is

heterogeneous, it is often of interest to know how subjects from different demographic

groups exhibit certain characteristics over the study period, or how subjects from

different populations respond to different treatments over the course of follow-up. One

also needs to acknowledge the fact that the recurrent event process can be terminated

permanently by a terminating event (e.g., death). Since this type of data structure

is very common in biomedical studies, it is of much interest to establish accurate
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methods to appropriately model the marked recurrent event process in the presence

of a terminating event, while accounting for group-specific risk profile difference.

Although there is a rich body of work based on the recurrent/terminal event set-

ting (e.g., Cook and Lawless, 1997; Li and Lagakos, 1997; Ghosh and Lin, 2000,

2002; Huang and Wang, 2004; Liu, Wolfe, and Huang, 2004; Ye, Kalbfleisch, and

Schaubel, 2007), very few methods have been proposed to deal with a marked recur-

rent process which is subject to a terminating event. Ghosh and Lin (2000, 2002)

proposed models for the marginal mean number of events, while Cook and Lawless

(1997) developed models for the conditional recurrent event rate given survival. A

latent variable (frailty) was introduced by Liu et al. (2004) and Ye et al. (2007),

with the recurrent and terminating events assumed to be independent conditional

on the frailty. In comparing group-specific cumulative means, it is often beneficial

to understand the component processes; in particular, the relationship between the

covariates and the terminating event process, the recurrent event process and the

marks associated with each recurrent event. For example, a group’s higher medical

costs might be due to their longer survival, higher hospitalization rate or greater cost

per hospital admission. Interesting group-specific differences with respect to any of

these processes could go undetected if one focuses only on the overall mean.

We propose semiparametric methods that compare group-specific means which

are viewed as processes over time. The proposed methods assume a proportional haz-

ards model for the terminating event; a proportional rates model for the conditional

recurrent event process given survival; and a generalized estimating equations model

(Liang and Zeger, 1986) for the marks given the occurrence of recurrence event. Our

estimator combines the fitted values from the above-listed models by computing the

estimated cumulative mean for each subject, then averaging over all subjects. The

covariate adjustments are allowed to vary for the terminating event process, recurrent

event process and model for marks and for different groups. The baseline hazard for
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the terminating event model and baseline rate for the recurrent event model are also

allowed to be group specific. If any of the component models are of interest, different

modeling strategies could be adopted.

The motivating example for our method is the Canada-USA (CANUSA) Peri-

toneal Dialysis Study, where interest lies in comparing group-specific means between

American and Canadian peritoneal dialysis (PD) patients. The CANUSA study was a

prospective cohort study of patients commencing continuous peritoneal dialysis in 14

centers in Canada and the United States. Between September 1, 1990 and December

31, 1992, a total of 679 patients were enrolled. There were 90 deaths, 130 trans-

plants and 1,340 hospitalizations. Patient’s length of each hospital visit was recorded

and the number of hospitalizations varies between patients. Patients may experience

death during the course of the follow up period. Hence, a patient’s hospitalization

experience is terminated by death. Besides knowing a patient’s survival time (subject

to right censoring) and hospitalization information, we also record factors that might

influence the length of stay (e.g., serum albumin, normalized protein catabolic rate,

subjective global assessment, percent lean body mass, Kt/V, creatinine clearance

rate, country, gender, race).

In many studies, investigators are interested in estimating medical costs associ-

ated with each hospitalization. In the above example, the length of stay during each

hospitalization can be treated as the mark. Length of stay could also be used as a

surrogate for costs. In fact, our proposed method provides an important framework

for analyzing cost data which is rarely discussed in the cost analysis literature. In

terms of cost analysis, mean cost, cumulative cost, lifetime cost or restricted lifetime

cost are of interest. Depending on the setting and objective of the study, nonpara-

metric, marginal, conditional, or joint cost models have been developed (e.g., Lin,

2000; Huang, 2002, 2009; Liu, Conaway, Knaus and Bergin, 2008; Cai, Zeng, and

Pan, 2010). Lin (2000) developed a proportional means regression model for cumu-
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lative medical costs. The proposed inference procedures were semi-parametric and

the method targets “study-duration” medical cost. Since study duration is a some-

what artificial time limit, and since the covariates might impact survival as well, the

interpretation of such results may be inappropriate in terms of inference regarding

true lifetime medical cost. Huang (2002) developed calibration regression methods

to model lifetime medical cost and survival time jointly. The method postulates lin-

ear covariate effects on both lifetime medical cost and survival time, which can be

measured on certain transformed cost and time scales, respectively. Liu et al. (2008)

developed a four-part random effects model to analyze correlated medical cost data.

The model of Liu et al. (2008) targets longitudinal costs, (e.g., the cost accumulation

process), instead of total costs. The model also takes account of both the mean struc-

ture and inter-temporal correlation among longitudinal medical costs. In addition,

the model of Liu et al. (2008) takes into consideration the presence of zero costs. In

recent work of Cai, Zeng, and Pan (2010), costs are treated as marks, with each mark

being associated with the occurrence of each recurrent event. Therefore, the method

of Cai et al. (2010) could be classified as a conditional model for cost data.

We structure the remainder of the chapter as follows. In Section 2.2, we introduce

the proposed model, followed by the estimation method. Asymptotic properties are

listed in Section 2.3, with proofs of the theorems given in the Appendix. Simulation

studies are reported in Section 2.4. An application of our approach is given in Section

2.5. In Section 2.6, we provide discussion and explore some future research areas.

2.2 Proposed Models and Estimating Methods

2.2.1 Notation and setup

We first establish the required notation. Let Di denote the time of the termi-

nating event for subject i, while Ci is the censoring time for subject i. We let
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Xi = min(Ci, Di) and let Yi(t) = I(Xi ≥ t) be the at-risk indicator. We let the

true terminating event process be represented by N∗Di (t) and we let N∗Ri (t) equal the

total number of recurrent events for subject i up to time t. The observed terminat-

ing event process and recurrent event process are ND
i (t) = I(Di ≤ t,Di < Ci) and

NR
i (t) = N∗Ri (t ∧ Xi), respectively. Notice that recurrent events do not occur after

death. We define Gi(t) as the mark for subject i at time t. It is assumed that marks

only occur at time of a recurrent event. In addition, subjects are divided into groups

(e.g., by treatment type, gender, diagnosis) and Ai is used to denote group for sub-

ject i. For ease of presentation, we consider the case where Ai is binary (Ai = 0, 1),

although the proposed methods can accommodate more than two groups. We then

set up the group indicator Aij = I(Ai = j). Each subject is characterized by a vector

of covariates, Zi.

Of interest for each subject is the cumulative mark

B∗i (t) =

t∫
0

Gi(u)dN∗Ri (u),

with mean µij(t), defined as

µij(t) = E[B∗i (t)|Zi, Ai = j].

That is, µij(t) represents the mean of B∗i (t) for a subject with covariate Zi, under the

hypothetical scenario where subject i is a member of group j. We wish to estimate

µij(t) using the observed data. Using properties of conditional expectations, we can
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write:

µij(t) = E

 t∫
0

I(Di > u)Gi(u)dN∗Ri (u)|Zi, Ai = j


=

t∫
0

Sij(u)gij(u)dRij(u), (2.1)

where Sij(u) = P (Di > u|Zi, Ai = j), gij(u) = E(Gi(u)|dN∗Ri (u) = 1, Zi, Ai = j) and

dRij(u) = E(dN∗Ri (u)|Zi, Di > u,Ai = j).

To contrast group-specific means, we first define µj(t) as the cumulative mean for

group j averaging across the marginal distribution of Zi. That is, µj(t) = E[µij(t)] =

E[E[B∗i (t)|Ai = j, Zi]] for j = 0, 1, where the outer expectation is taken with re-

spect to the marginal distribution of Zi. The quantities µ0(t) and µ1(t) are averaged

with respect to the same covariate distribution. The difference in cumulative means

between the two groups can be expressed as

δ(t) = µ1(t)− µ0(t). (2.2)

The goal here is to estimate δ(t), methods for which are proposed in the next

subsection.

2.2.2 Estimation

We estimate µj(t) through µij(t), and semiparametric models are assumed for each

process in (3.1). The terminating event hazard is assumed to follow a proportional

hazards model,

λij(t) ≡ λ(t|Zi, Ai = j) = λ0j(t) exp{β ′DZiD}, (2.3)
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where βD is a parameter vector, Λ0j(t) =
∫ t

0
λ0j(s)ds is the group-specific cumulative

baseline hazard, and ZiD is a covariate vector comprised of appropriate elements of

Zi or functions thereof. Model (3.3) implies group-specific baselines and a regression

parameter that is shared across groups. Note that group-specific regression coefficients

are obtained through inclusion of group × covariate interactions. The estimator of

βD, denoted by β̂D, can be computed through the partial likelihood score function,

UD(βD) =
n∑
i=1

1∑
j=0

τ∫
0

Aij{ZiD − Z̄j(t; βD)}dND
i (t), (2.4)

where Z̄j(t; βD) = S
(1)
j (t; βD)/S

(0)
j (t; βD), with S

(k)
j (t; βD) = n−1

∑n
i=1AijYi(t)e

β
′
DZiDZ⊗kiD

for k= 0, 1, 2, with Z⊗0
iD = 1, Z⊗1

iD = ZiD and Z⊗2
iD = ZiDZ

′
iD. The baseline hazard is

estimated through the Breslow-Aalen method,

Λ̂0j(t; β̂D) = n−1

n∑
i=1

t∫
0

AijS
(0)
j (s; β̂D)

−1
dND

i (s). (2.5)

Having computed β̂D and Λ̂0j(t, β̂D), subject-specific survival can be estimated for

each group via Ŝij(t) = exp{−Λ̂0j(t; β̂D) exp{β̂ ′DZiD}}.

Next, we assume a proportional rates model for the conditional recurrent event

rate given survival, as

rij(t) ≡ E[dN∗Ri (t)|Di > t, Zi, Ai = j] = r0j(t) exp{β ′RZiR}, (2.6)

where R0j(t) =
∫ t

0
r0j(s)ds is the cumulative baseline rate, ZiR is a covariate vector

derived from elements of Zi, and βR is the regression parameter. The right hand side

of equation (2.6) is the familiar proportional rates model (Lin et al., 2000) applied to

the conditional event rate given survival (e.g., as in Liu et al., 2004; Schaubel and Cai,

2005; Ye at al., 2007). Then βR and R0j(t) can be estimated through a process-based
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analog of GEE, using the fact that the following equations

n∑
i=1

1∑
j=0

τ∫
0

AijZiR dM
R
ij (s; βR) = 0p×1 (2.7)

n∑
i=1

τ∫
0

AijdM
R
ij (s; βR) = 0 (2.8)

have mean zero, where MR
ij (t; βR) = NR

i (t)−
∫ t

0
Yi(s) exp {β ′RZiR}dR0j(s). The upper

limit τ satisfies P (Xi ≥ τ) > 0 and is typically set to max {Xi}. Solving equation

(2.7) and (2.8), then reorganizing, β̂R can be computed as the root of

UR(βR) =
n∑
i=1

1∑
j=0

τ∫
0

Aij[ZiR − Z̄j(s; βR)]dNR
i (s), (2.9)

where S
(k)
j (s; βR) = n−1

∑n
i=1 AijYi(s)Z

⊗k
iR exp {β ′RZiR} for k = 0, 1, 2, while R0j(t; βR)

can be estimated by its Breslow-Aalen analog,

R̂0j(t; β̂R) = n−1

n∑
i=1

t∫
0

AijS
(0)
j (s; β̂R)−1dNR

i (s). (2.10)

We assume the following model for the mark process,

gij(t) ≡ E[Gi(t)|dN∗Ri (t) = 1, Zi, Ai = j] = g(t; βG, ZiG, Ai = j), (2.11)

where ZiG is a covariate vector consisting of elements of Zi and an intecept term, and

βG is the corresponding parameter vector. The function g is a monotonic differentiable

function of t, βG, ZiG and Ai.

In order to avoid distributional assumptions on Gi(t), we estimate model (2.11)

using GEE. We let Gi = [Gi(Ti1), Gi(Ti2), ..., Gi(TiNR
i

)]
′
= [Gi1, Gi2, ..., GiNR

i
]
′

and the

corresponding mean vector given ZiG, Ai and dN∗Ri by gij = [gij1, gij2, ...gijNR
i

]
′
, where

10



NR
i ≡ NR

i (Xi). The covariance matrix of Gi is modeled as Vi = φH
1/2
i Ri(α)H

1/2
i

where Hi is a NR
i × NR

i diagonal matrix with v(gijl) as the lth diagonal element

with l = 1, . . . , NR
i . The variance function v is determined by the specific work-

ing probability distribution used for the marks, and φ is a dispersion parameter.

The quantity Ri(α) is the correlation matrix of Gi; for instance, an exchangeable

structure, corr(Gil, Gik) = α, for l 6= k. The working correlation matrix can be

estimated through an iterative fitting process by using the current value of the pa-

rameter vector to compute the appropriate functions of the Pearson residual êijl =

(Gil − ĝijl)[v(ĝijl)]
−1/2. The generalized estimating equation is given by:

UG(βG) =
n∑
i=1

1∑
j=0

∂g
′
ij

∂β
′
G

AijV
−1
i [Gi − gij]. (2.12)

We can obtain an estimate of βG and Vi by the following iterative algorithm:

1. Compute an initial estimate of βG assuming independence among (Gil, Gik), for

l 6= k

2. Compute the working correlation Ri(α) based on the standard residuals, the

current βG and the assumed structure of Ri(α)

3. Get an estimate of the covariance Vi with V̂i = φH
1/2
i R̂i(α)H

1/2
i

4. Update β̂G:

β̂s+1
G = β̂sG −

[
n∑
i=1

1∑
j=0

∂g′ij
∂β
′s
G

AijV̂
−1
i

∂gij
∂βsG

]−1 [ n∑
i=1

1∑
j=0

∂g′ij
∂β
′s
G

AijV̂
−1
i (Gi − gij)

]

5. Iterate between steps 2-4 until convergence.

For example, for subject i, we specify v(gijl) = gijl with j=0,1; l = 1, . . . NR
i ; NR

i =2;

11



φ=1. We specify an exchangeable working correlation matrix,

Ri(α) =

 1 α

α 1



Vi =

 gijl 0

0 gijl


1/2  1 α

α 1


 gijl 0

0 gijl


1/2

,

where α is estimated as α̂ = [(N∗ − p)φ]−1
∑n

i=1

∑
l<k êijlêijk with N∗ = 1/2

∑n
i=1

NR
i (NR

i −1), p being the number of regression parameters. Note that, under a working

independence assumption, Ri(α) is replaced by the identity matrix. If φ is not known

, it can be estimated as φ̂ = [N−p]−1
∑n

i=1

∑NR
i

l=1 ê
2
ijl with êijl = (Gil− ĝijl)[v(ĝijl)]

−1/2

and N =
∑n

i=1N
R
i .

If the working correlation matrix is misspecified, that is Cov(Gi) 6= Vi, we still get

a consistent estimator of βG, and we can consistently estimate Cov(β̂G) through the

robust estimator

Σ =

[
n∑
i=1

1∑
j=0

∂g′ij
∂β
′
G

AijV
−1
i

∂gij
∂βG

]−1 [ n∑
i=1

1∑
j=0

∂g′ij
∂β
′
G

AijV
−1
i Cov(Gi)V

−1
i

∂gij
∂βG

]
(2.13)

×

[
n∑
i=1

1∑
j=0

∂g′ij
∂β
′
G

AijV
−1
i

∂gij
∂βG

]−1

.

In computing Σ̂, β and α are replaced by their estimated values, while Cov(Gi)

is replaced by [Gi − gij(β̂G)][Gi − gij(β̂G)]′.

Finally, after estimating βD, βR, βG, R0j(t) and Λ0j(t), we can estimate µj(t) by

replacing the true parameters with their estimated counterparts, then averaging over
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the empirical covariate distribution,

µ̂j(t) =
1

n

n∑
i=1

µ̂ij(t) =
1

n

n∑
i=1

t∫
0

Ŝij(u)ĝij(u)dR̂ij(u). (2.14)

The group-specific difference, δ(t), is then estimated by

δ̂(t) = µ̂1(t)− µ̂0(t). (2.15)

In the above estimation of δ(t), we allow βD, βR and βG to be shared among

different groups. In the event that the βD, βR and βG are group-specific, we can

develop similar estimation procedures from the following models:

λij(t) = λ0j(t) exp{β ′DjZiD} (2.16)

rij(t) = r0j(t) exp{β ′RjZiR} (2.17)

gij(t) = g(t; βGj, ZiG, Ai = j). (2.18)

2.3 Asymptotic Properties

In this section, we summarize the essential asymptotic behavior of the proposed

estimators by first listing the necessary conditions, for i = 1, . . . , n and j= 0, 1.

(a) {N∗Ri (.), Di, Ci, Zi, Ai, Gi(.)} are independent and identically distributed

(b) E[dN∗Ri (t)|Di > t, Zi, Ai, Ci > t]=E[dN∗Ri (t)|Di > t, Zi, Ai]

(c) E[Gi(t)|dN∗Ri (t) = 1, Zi, Ai, Ci > t] = E[Gi(t)|dN∗Ri (t) = 1, Zi, Ai]

(d) lim
δ→0

Pr{t ≤ Di < t+ δ|Di > t, Zi, Ci > t} = lim
δ→0

Pr{t ≤ Di < t+ δ|Di > t, Zi}

(e) Pr(Yi(τ) = 1) > 0

(f)
∫ τ

0
dΛ0j(t) <∞,

∫ τ
0
dR0j(t) <∞ and NR

i (τ) <∞

13



(g) Elements of Zi are bounded almost surely.

(h) Postive-definiteness of the matrices, ADj (βD) and ARj (βR),

where

ADj (βD) = E

 τ∫
0

{ZiD − z̄j(t; βD)}⊗2Yi(t)e
β
′
DZiDdΛ0j(t)


ARj (βR) = E

 τ∫
0

{s(2)
j (t; βR)s

(0)
j (t; βR)

−1
− z̄j(t; βR)⊗2}s(0)

j (t; βR)dR0j(t)


z̄j(t; β) = s

(1)
j (t; β)s

(0)
j (t; β)

−1

s
(d)
j (t; β) = E[AijYi(t)Z

⊗d
i exp{β ′Zi}], d = 0, 1, 2.

Now, we describe the main asymptotic results from the proposed procedures.

Proofs of the theorems are provided in the Appendix.

Theorem II.1. Under conditions (a) to (h) and models (3.3),(3.6) and (3.11), µ̂j

is a uniformly consistent estimator of µj. That is, µ̂j(t) converges to µj(t) almost

surely for j=0,1 and t ∈ (0, τ ]. In addition, n1/2{µ̂j(t) − µj(t)} converges weakly

to a zero-mean Gaussian process for j=0,1 and t ∈ (0, τ ] with covariance function

σj(s, t) = E[ψij(s)ψij(t)], where

ψij(t) =
6∑

k=1

ψijk(t)
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ψij1(t) = −ADj (βD)
−1
UD
ij (βD)× E

eβ′DZiD t∫
0

Sij(u
−|ZiD)

u∫
0

{ZiD − z̄j(r; βD)}′

×dΛ0j(r)gij(u|ZiG)dRij(u|ZiR)]

ψij2(t) = −ARj (βR)−1UR
ij (βR)× E

eβ′RZiR t∫
0

Sij(r
−|ZiD)gij(r|ZiG){ZiR − z̄j(r; βR)}′dR0j(r)


ψij3(t) = E

 t∫
0

Sij(r
−|ZiD)

∂g′ij
∂β
′
G

gij(r|ZiG)dRij(r|ZiR)

E [∂UG
ij (βG)

∂β
′
G

]−1

UG
ij (βG)

ψij4(t) = −
t∫

0

E[eβDZiDSij(r|ZiD)gij(r|ZiG)dRij(r|ZiR)]

r∫
0

dMD
ij (u; βD)

s
(0)
j (u; βD)

ψij5(t) =

t∫
0

E[eβRZiRSij(r
−|ZiD)gij(r|ZiG)]

dMR
ij (r; βR)

s
(0)
j (r; βR)

ψij6(t) = µj(t|Zi)− µj(t)

where we define

UD
ij (βD) =

τ∫
0

Aij{ZiD − z̄j(t; βD)}dMD
ij (t; βD)

UR
ij (βR) =

τ∫
0

Aij{ZiR − z̄j(t; βR)}dMR
i (t; βR)

UG
ij (βG) = ∂g

′

ij/∂β
′

GAijV
−1
i [Gi − gij].

The proof of Theorem 1 unfolds through a series of Taylor expansions, several

applications of the Strong Law of Large Numbers (Sen and Singer, 1993) and the

Multivariate Central Limit Theorem (MCLT). A demonstration of tightness completes

the proof of weak convergence using various results from empirical processes (Pollard

1990; van der Vaart and Wellner 1996; Bilias et al. 1997). In the next Theorem, we

describe asymptotic results for δ̂(t).

Theorem II.2. Under conditions (a) to (h) and models (3.3),(3.6) and (3.11), δ̂(t)

is a uniformly consistent estimator of δ(t). That is, δ̂(t) converges to δ(t) almost
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surely for j=0,1 and t∈ (0, τ ]. Further, n1/2{δ̂(t)− δ(t)} converges weakly to a zero-

mean Gaussian process with covariance function σδ(s, t) = E[{ξi1(s)−ξi0(s)}{ξi1(t)−

ξi0(t)}].

It follows from Theorem 1 that n1/2{µ̂1(t)− µ̂0(t)} is asymptotically equivalent to

n−1/2
∑n

i=1{ξi1(t) − ξi0(t)}, a scaled sum of zero-mean Normal variates. For fixed

(s, t), convergence follows from the MCLT. Tightness follows from empirical processes

theory. The covariance σδ(s, t) can be consistently estimated by replacing all limiting

values with their empirical counterparts, then averaging across all subjects for i =

1, . . . , n.

2.4 Simulation Study

The terminating event was generated from λij(t) = λ0j exp{β ′DZi}, a propor-

tional hazards model where Zi = (Zi1, Zi2, Zi3)′. The Cox regression parameter was

set to βD = (0.5, 0.3, 0.3)′, with λ0j=0.03 or 0.06. We let Zi1 ∼ Bernoulli(0.5),

with Zi2 generated through the model P (Zi2 = 1|Zi1)=expit{h1Zi1} and P (Zi3 =

1|Zi1, Zi2)=expit{h2Zi1 + h3Zi2}, where (h1, h2, h3)′ = (1, 1, 1)′ and with expit(h)=

exp{h}[1 + exp{h}]−1. We generated recurrent events from the model rij(t) =

Qir0j exp{β ′RZi} by generating gap times between successive events as: Ti,k+1 =

Ti,k − Qi log(Ui,k)[r0j exp{β′RZi}]−1 for k = 1, . . . , 50, where each of the Ui,k variates

followed a Unif(0,1) distribution. The frailty, Qi, could be considered an unmeasured

predictor that is shared by all recurrent event times for the same subject. We let

Qi ∼ Gamma(θ) where θ= 0.5 or 0.25 and represents Var(Qi); note that E(Qi) = 1.

We set r0j= 0.25 or 0.20, with the regression parameter set to βR = (0.5, 0.3, 0.3)′.

The model for the marks was as follows: gi(t) = βG0 +βG1t+βG2Zi1 +βG3Zi2 +βG4Zi3,

with (βG0 , βG1 , βG2 , βG3 , βG4)
′=(1, 1, 1, 1, 1.5)′. In the simulation, a working indepen-

dence correlation structure was assumed.Censoring times were generated through
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λCij(t) = λC0j exp{βD3Zi3} and truncated at 60, which results in 30% ∼ 40% of cen-

soring for different simulation configurations. The average observed number of re-

current events ranged from 2 to 4 per subject. Cumulative means were estimated at

t = 3, 6, 9, 12, in order to give comparisons for early, middle and late follow up times.

Sample sizes were set at n = 400 and 500 replicates were generated per configuration.

Table 2.1 provides results for the population average cumulative mean estimator

for the various data configurations examined. For all data configurations, the esti-

mated cumulative means are very close to the true values. The average asymptotic

standard errors (ASE) agree well with the empirical standard deviations (ESD) and,

correspondingly, the empirical coverage probabilities (CP) are close to the nominal

value of 0.95.

In Table 2.2, we evaluated the proposed treatment effect estimator, δ̂(t) = µ̂1(t)−

µ̂0(t). The biases at different follow-up times are negligible compared to the true

values. The ASEs also agree well with the ESDs, with the CP being generally quite

close to the nominal value of 0.95.

2.5 Application

We applied our method to the CANUSA study to compare the estimated cumula-

tive mean days hospitalized between U.S. versus Canadian peritoneal dialysis patients.

All patients commencing continuous PD between September 1, 1990 and December 31,

1992 were eligible for the study. Demographic data recorded at enrollment included

age, sex, race, functional status according to the Karnofsky score, underlying renal

disease, insulin-dependent diabetes mellitus (IDDM), and history of cardiovascular

disease (CVD). Estimates of nutritional status included subjective global assessment

(SGA), protein catabolic rate (PCR) and percentage of lean body mass (PCTLBM).

Adequacy of dialysis was estimated by measurement of total weekly Kt/V for urea, to-

tal weekly creatinine clearance (CCr), and serum beta-2-microglobulin(β2M). Death
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served as the terminating event, while the recurrent event was hospitalization. Length

of stay (number of days hospitalized) served as the mark for each hospital visit. Then,

the natural interpretation of cumulative mark would be the total number of days hos-

pitalized, which is our main interest.

A total of n = 679 patients were enrolled in the study. There were many more

males (393) than females (286) enrolled. The mean age was 54, with a range of 18

to 82 years. Follow-up was terminated on December 31, 1993. There were 90 deaths,

and the average number of days hospitalized across all patients was 7.8 days per pa-

tient. Of primary interest was to compare American and Canadian patients. Adjust-

ment covariates included serum albumin (SALB), normalized protein catabolic rate

(NPCR), subjective global assessment (SGA), percent lean body mass (PCTLBM),

age, Karnofsky score and cardiovascular disease (CVD).

We first investigated the impact of each factor on the terminating event (e.g.,

mortality), recurrent event (e.g., hospitalization) and the marks (e.g., number of days

hospitalized) based on the afore-listed covariates adjustment by fitting a proportional

hazards model, a proportional rates model and a GEE model for the mark process,

respectively. Table 2.3 gives the parameter estimates and p-values for the proportional

hazards model, proportional rates model and a GEE linear regression model for the

mark process. In the Canadian group, the only covariate that was significant for the

terminating event model include percent lean body mass. A 1% increase in lean body

mass is associated with 6% decrease in death hazard adjusting for other variables.

In the American group, the covariates that were significant for the terminating event

model include PCTLBM, age, CVD and SALB. For those patients who have a history

of CVD, the mortality hazard is 2.27 times that of patients without CVD, adjusting

for other covariates. A 1g/L increase in serum albumin concentration is associated

with 6% decrease in the death hazard, covariate adjusted. Factors that are significant

predictors of the hospital admission rate for either group include PCTLBM, Karnofsky
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score, SALB and CVD. For the American patients, PCTLBM and age are significant

in the model for marks, in addition to follow-up time. For the Canadian patients, only

follow-up time is significant. Lower percentage of lean body mass, increased age and

early hospitalization are associated with longer length of stay. Overall, percentage

lean body mass and CVD are either significant or borderline significant in either the

terminating event model or the recurrent event model for patients in both countries.

Follow-up time at hospital admission is significant for both countries.

As evident in Figure 2.1, the estimated cumulative mean days hospitalized is

slightly higher for Canadian patients than for American PD patients. This holds for

most of the observed follow-up period, with the difference slightly decreasing with

the increase in follow-up time. In addition, we estimated the difference in cumulative

mean for American and Canadian PD patients at every half year interval and found

that the difference tends to become increasingly non-significant as follow-up time

increases (Table 2.4). Figure 2.2 gives the differences in cumulative mean between

the patients in the two countries, and shows no trend during the first year, then a

mild decreasing trend thereafter as time increases. The estimated cumulative mean

difference stayed slightly above zero within the two year follow-up time window.

2.6 Discussion

We developed semiparametric methods to compare group-specific cumulative means

associated with marked recurrent events in the presence of a terminating event. Our

methods combine a proportional hazards model (Cox, 1972) for the terminating event,

a proportional rates model (Lin et al, 2000) for the conditional recurrent event rate

given survival and a GEE model for the marks. We estimated the terminating event

hazard, recurrent event rate given survival and the marks given each recurrent event

separately, integrating to get the estimated group-specific means. In our modeling,

the parameters of interest are estimated separately. This is different from methods
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that involve joint estimation or conditional estimation of the parameters of inter-

est. In addition, we do not assume the covariates are necessarily shared by different

models. The group-specific means are each averaging over the marginal covariate

distribution, such that covariate imbalances are factored out.

Schaubel and Zhang (2010) developed a method which targets the same δ(t) of

interest in our work. In the work of Schaubel and Zhang (2010), imbalances in

the group-specific covariate distributions are adjusted through Inverse Probability

of Treatment Weighting. The models of Schaubel and Zhang (2010) require that

the censoring time be conditionally independent of the adjustment covariates, given

group. The consistency of their estimators also requires that the logistic model for

group assignment be correct. These assumptions would not be necessary in our

approach. A potential advantage of Schaubel and Zhang (2010) is that the method

does not require models for µj(t) or its components. That said, our proposed method

does not require a model for µj(t) per se, and the models for the components would

often be of interest to investigators.

In the causal inference literature, our measure could be interpreted as an average

causal effect estimator. Chen and Tsiatis (2001) developed methods in estimating the

average causal treatment difference in restricted mean lifetime. The causal treatment

effect is defined through counterfactual random variables. In our modeling, the causal

issues are not our main focus. Note that the appropriate application of the term causal

depends on other properties of the observed data.

One potentially very useful variation of our methods would be joint modeling

techniques. Cai et al.(2010) developed a semi-parametric proportional means model

for marker data contingent on recurrent events. The authors used a marginal rate

model, while the marks were analyzed through a proportional means model. The

parameters for the marginal rate model and those of the proportional means model are

linked by estimating equations through which the parameters are estimated jointly.
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A terminating event was not considered. Another useful extension of our work would

be incorporating shared latent variables, such that the recurrent event process would

be subject specific and could allow for residual correlation between the terminating

and recurrent event processes.
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Table 2.1: Simulation Results: Performance of Proposed Estimator

λ00, λ01 r00, r01 V (Qi) t % at risk µ1(t) Bias ESD ASE CP
0.03/0.03 0.20/0.25 0.5 3 71% 6.98 0.04 0.77 0.74 0.92

6 53% 16.01 0.10 1.75 1.72 0.95
9 40% 26.12 0.27 2.92 2.95 0.96
12 29% 36.66 0.35 4.31 4.38 0.96

0.03/0.03 0.20/0.25 0.25 3 71% 6.98 0.04 0.56 0.65 0.98
6 53% 16.01 0.18 1.34 1.51 0.97
9 40% 26.12 0.02 2.26 2.59 0.97
12 29% 36.66 0.00 3.34 3.90 0.96

0.03/0.06 0.25/0.25 0.5 3 59% 6.23 0.02 0.66 0.67 0.95
6 40% 12.84 0.02 1.50 1.43 0.93
9 23% 18.98 0.11 2.42 2.28 0.92
12 16% 24.38 0.22 3.31 3.18 0.94

0.03/0.06 0.25/0.25 0.25 3 59% 6.23 0.04 0.57 0.60 0.96
6 40% 12.84 0.04 1.22 1.29 0.95
9 23% 18.98 0.11 1.92 2.07 0.96
12 16% 24.38 0.04 2.64 2.87 0.96

0.06/0.06 0.25/0.20 0.5 3 59% 4.99 0.03 0.57 0.56 0.94
6 40% 10.27 0.13 1.18 1.19 0.95
9 23% 15.19 0.19 1.82 1.87 0.96
12 16% 19.50 0.20 2.47 2.58 0.96

0.06/0.06 0.25/0.20 0.25 3 59% 4.99 0.00 0.45 0.49 0.97
6 40% 10.27 0.05 0.98 1.06 0.95
9 23% 15.19 0.06 1.53 1.67 0.96
12 16% 19.50 0.10 2.09 2.35 0.96

Notes: βD = (0.5, 0.3, 0.3)′, βR = (0.5, 0.3, 0.3)′, βG = (1, 1, 1, 1, 1.5)′. Number of
repetitions: 500. Number of subjects: n = 400.
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Table 2.2: Simulation Results: Treatment effects
λ00, λ01 r00, r01 V (Qi) t % at risk δ(t) Bias ESD ASE CP

0.03/0.03 0.20/0.25 0.5 3 71% 1.40 0.01 0.86 0.80 0.94
6 53% 3.20 0.07 1.88 1.92 0.96
9 40% 5.22 0.14 3.16 3.41 0.96
12 29% 7.33 0.07 4.79 5.20 0.96

0.03/0.03 0.20/0.25 0.25 3 71% 1.40 0.04 0.74 0.76 0.97
6 53% 3.20 0.06 1.62 1.83 0.97
9 40% 5.22 -0.05 2.73 3.23 0.97
12 29% 7.33 -0.25 4.04 4.94 0.98

0.03/0.06 0.25/0.25 0.5 3 59% 0.75 -0.03 0.90 0.87 0.93
6 40% 3.17 -0.07 1.94 2.02 0.95
9 23% 7.14 -0.19 3.30 3.47 0.95
12 16% 12.29 -0.59 4.78 5.15 0.96

0.03/0.06 0.25/0.25 0.25 3 59% 0.75 -0.08 0.82 0.82 0.95
6 40% 3.17 -0.08 1.80 1.93 0.97
9 23% 7.14 -0.16 2.97 3.32 0.97
12 16% 12.29 -0.05 4.35 4.92 0.97

0.06/0.06 0.25/0.20 0.5 3 59% 1.25 -0.03 0.87 0.78 0.91
6 40% 2.57 -0.13 1.74 1.73 0.93
9 23% 3.80 -0.06 2.76 2.84 0.96
12 16% 4.88 0.11 3.83 4.02 0.96

0.06/0.06 0.25/0.20 0.25 3 59% 1.25 0.09 0.74 0.75 0.94
6 40% 2.57 0.16 1.59 1.66 0.96
9 23% 3.80 0.25 2.53 2.71 0.96
12 16% 4.88 0.29 3.52 3.84 0.96

.

Notes: βD = (0.5, 0.3, 0.3)′, βR = (0.5, 0.3, 0.3)′, βG = (1, 1, 1, 1, 1.5)′.Number of
repetitions: 500. Number of Subjects: n = 400
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Table 2.3: Analysis of CANUSA data: Parameter estimates for terminating event
model, recurrent event model and model for marks

λij(t) rij(t) gij(t)

Variable β̂D p exp{β̂D} β̂R p exp{β̂R} β̂G p
CANADA
PCTLBM -0.06 0.03 0.94 -0.02 0.02 0.98 -0.03 0.61
AGE 0.01 0.71 1.01 -0.01 0.33 0.99 0.00 0.98
KARNOF -0.02 0.19 0.98 -0.02 0.01 0.98 -0.13 0.03
CVD 0.84 0.12 2.32 0.56 0.01 1.75 0.44 0.76
SALB 0.01 0.91 1.01 0.00 0.90 1.00 0.10 0.50
NPCR -0.94 0.50 0.39 -0.09 0.83 0.92 1.17 0.68
SGA 0.08 0.62 1.09 -0.02 0.76 0.98 0.58 0.28
TIME - - - - - - -0.30 <0.001
USA
PCTLBM -0.02 0.05 0.98 -0.01 0.16 0.99 -0.08 0.00
AGE 0.02 0.04 1.02 0.00 0.42 1.00 0.07 0.01
KARNOF 0.01 0.15 1.01 0.00 0.29 1.00 0.00 0.90
CVD 0.82 0.00 2.27 0.15 0.14 1.12 1.31 0.11
SALB -0.07 0.01 0.94 -0.02 0.02 0.98 -0.13 0.15
NPCR -0.29 0.55 0.75 0.22 0.25 1.24 1.51 0.37
SGA 0.01 0.93 1.01 -0.01 0.85 0.99 -0.18 0.58
TIME - - - - - - -0.27 <0.001

.

Notes: λij(t): Survival model rij(t): Recurrent event model gij(t): marks model
p: p-value
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Table 2.4: Analysis of CANUSA data: Difference in length of hospital-
ization between American and Canadian patients over time
(Canadian minus American)

Months δ̂(t) ŜE{δ̂(t)} P-value
6 2.79 1.98 0.17

12 4.02 3.23 0.22

18 2.32 3.87 0.56

24 0.95 4.07 0.82
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The solid line represents American (j = 0) PD patients, and dashed line represents
Canadian (j = 1) PD patients.

Figure 2.1: Analysis of the CANUSA data: Estimated cumulative mean number of
days hospitalized for American and Canadian PD patients over time (mea-
sured in Months).
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Figure 2.2: Analysis of the CANUSA data: point estimates and 95% confidence in-
tervals for the estimated cumulative mean difference in days hospitalized
δ̂(t) = µ̂1(t)− µ̂0(t), between American (j = 0) and Canadian (j = 1) PD
patients
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CHAPTER III

Joint modeling of marked recurrent events in the

presence of a terminating event

3.1 Introduction

In public health and medicine, the event of interest is often recurrent (e.g., re-

peated tumor occurrences, a series of hospitalizations). In recent decades, the study

of such recurrent event process has drawn more and more attention. Often, the re-

current events have certain descriptive characteristics (e.g., size of tumor, or length of

stay in each hospital visit). We refer to such these outcome measures associated with

the recurrent events as “marks”. In a sense, the mark characterizes each recurrent

event. In clinical trials or epidemiologic studies, it is often the case that study sub-

jects may die during the course of follow-up. Accurate analysis of recurrent events in

this type of setting should allow for the fact that a terminating event may occur.

We further acknowledge the fact that both measured and unmeasured hetero-

geneity exists across study subjects, especially in observational studies. To account

for measured heterogeneity, various regression models can be developed by including

important adjustment factors as covariates. On the other hand, unmeasured het-
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erogeneity could be explained via a “frailty” variate, an approach which has gained

increasing popularity in recent decades, especially in the area of survival analysis.

The purpose of a frailty (or random effect) is to represent unobserved heterogeneity

in the model; which is appropriate if there is reason to believe that subjects with

the same covariate value may have unequal risk of death or relapse of a particular

disease. The term frailty was introduced by Vaupel, Manton and Stallard (1979) in

the univariate survival analysis setting and was extended to the multivariate survival

setting by Clayton (1978). In the context of the recurrent/terminal event setting,

various methods have been developed to jointly model the dependence between the

recurrent event and terminal event process using a frailty, e.g., Wang, Qin and Chi-

ang, 2001; Huang and Wang, 2004; Liu, Wolfe and Huang, 2004; Ye, Kalbfleisch and

Schaubel, 2007. By incorporating the frailty, we can potentially allow for residual cor-

relation beyond what can be captured by the adjustment covariates. We investigate

a type of data structure where the subjects may experience a sequence of recurrent

events. These recurrent events are only observable if the study subjects are alive at

each recurrent event occurrence. In other words, the recurrent event process may be

stopped by the terminating event. The marks of these subjects are only observed

if they experience each recurrent event. In Chapter III, interest lies not only in the

individual processes (e.g., recurrent event, terminating event, mark), but also in the

dependence structure among these processes; where the dependence is not only be-

tween the recurrent and terminal event but also between the recurrent/terminal event

and the outcome measure associated with each recurrent event.

We propose joint modeling techniques targeted at the setting where, in addition to

covariate effects, interest also lies in the heterogeneity within the study population, as

well as the shape of the baseline death hazard and recurrent event rate functions. The

proposed methods assume a proportional hazards model for the terminating event; a

proportional rates model for the conditional recurrent event process given survival;
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and a Poisson regression model for the marks given the occurrence of recurrence event.

The baseline hazard is chosen to be piecewise constant in the assumed proportional

hazards model. Similarly, the baseline rate for the recurrent event model is also

assumed to be piecewise constant. Since the marks are generally non-negative, the

Poisson distribution would appear to be a reasonable choice. In addition, we assume

the frailty is at the subject level and applies to all three afore-listed models. The

variance of the frailty variate reflects the degree of residual correlation among the

death, recurrent event and mark process.

The application for our proposed models is the well-known Canada-USA (CANUSA)

Peritoneal Dialysis Study(Canada-USA (CANUSA) Peritoneal Dialysis Study Group,

1996; Churchill, 1998; Ye, Kalbfleisch and Schaubel, 2007). The CANUSA Study

Group (1996) focused on evaluating the relationship of adequacy of dialysis and nu-

tritional status to mortality and morbidity. Churchill (1998) targeted the implication

of adequacy of dialysis on peritoneal dialysis schedule. Ye, Kalbfleisch and Schaubel

(2007) utilized the CANUSA study data to model the relationship between the hospi-

talization rates and failure of peritoneal analysis. One of our interests in this Chapter

is the hospital admission or number of days hospitalized, which has rarely been pre-

sented before. Duration of hospital stay serves as the marks, which are only observed

when a hospital admission occurs. The survival information (e.g., death, censor-

ing) underlies the proportional hazards model and the PD patients’ hospitalization

times serves as the foundation of our recurrent event model, which is interpreted

as being conditional on survival. Some of the clinical and non-clinical factors that

are present in the above models are as follows: serum albumin, normalized protein

catabolic rate, subjective global assessment, percent lean body mass, Kt/V, creati-

nine clearance rate, country, gender and race, Karnofsky score, cardiovascular disease

and underlying cause of renal disease.

We structure the remainder of the chapter as follows. In Section 3.2, we introduce
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the proposed proportional hazards model, proportional rates model and Poisson re-

gression model, followed by the Gaussian quadrature estimation method. We conduct

simulation studies in Section 3.3. In Section 3.4, we illustrate our proposed methods

by applying them to the CANUSA study. In Section 3.5, we conclude this chapter

with some discussion and future research areas.

3.2 Proposed Models and Estimating Methods

3.2.1 Notation and Setup

We first establish the required notation. Let Di denote the time of the terminating

event for subject i, while Ci is the censoring time. The quantity, Xi = min{Di, Ci},

is the observation time. Then, we denote N∗Ri (t) as the total number of recurrent

events for subject i up to time t. In addition to the terminating event, we introduce

Tik, a sequence of recurrent event times for suject i, i = 1, . . . , n; k = 1, . . . , ni. Let

δi = I(Di ≤ Ci) and ∆ik = I(Tik ≤ Xi), indicators for subject i’s terminating event

and recurrent event time, respectively. Last, we introduce the event for the marks.

Notice that recurrent events do not occur after death and marks are only observed

at time of each uncensored recurrent event. Therefore it is implied that there is no

information on the mark process available after the subject is dead or at times when

the subject does not experience a recurrent event. Define Gi(t) as the observed mark

for subject i at time t. Often times, the marks are non-negative (e.g., number of days

hospitalized, cell counts for each diagnosis) and, therefore, we assume Gi(t) ≥ 0. The

covariate vector is denoted by Zi = {ZiD, ZiR, ZiG}, where ZiD, ZiR and ZiG represent

the covariate vectors for the terminating event model, recurrent event model and the

mark model respectively.

Collecting the previously-listed assumptions and conditions, the underlying data

structure and proposed approach can be summarized as follows. The terminating
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event process and the recurrent event process are correlated for the same subject

through a mutual correlation with the covariate, Zi, and also through a common

random effect, wi. The recurrent events only occur while the subject is alive. The

recurrent event and the marks are also correlated for the same subject through the

same random effect, wi. The marks are only observed when the subject experiences

a recurrent event. The marks are non-negative and follow a Poisson distribution. For

both the terminating event hazard and recurrent event rate, the overall shape does

not have to be imposed in advance; although constancy is assumed within pre-defined

sub-intervals of time. If the follow-up time sub-intervals are chosen to be sufficiently

small, one should obtain a fairly close approximation of the true underlying baseline

rate and hazard functions.

3.2.2 Proposed Models

Based on the above assumptions, we establish the following piecewise proportional

hazards model for the terminating event hazard. Let a0 = 0 < a1 < ..... < aK−1 <

aK =∞ be a partition of the follow-up time. The hazard for the ith subject is given

by

dΛi(t) = dΛ(t) exp{β ′DZiD + wi}, (3.1)

where dΛ(t) =
∑K

k=1 λkI(ak−1 ≤ t < ak) is the baseline hazard function. The likeli-

hood contribution for subject i with respect to the death process is given by

LDi = dΛi(Xi)
δi exp{−Λi(Xi)}

=

[
K∑
k=1

λkI(ak−1 ≤ Xi < ak) exp{β ′DZiD + wi}

]δi

× exp

−
Xi∫

0

exp{β ′DZiD + wi}
K∑
k=1

λkI(ak−1 ≤ t < ak)dt

 . (3.2)
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Then, we establish the following proportional rates model for the conditional recurrent

event rate given survival. Let b0 = 0 < b1 < ..... < bQ−1 < bQ = ∞ be another

partition of the follow-up of time axis, noting that it is not required to be the same

partition given before (3.1). The recurrent event rate for the ith subject is then given

by

dRi(t) = E[dN∗Ri (t)|Di ≥ t, ZiR, wi]

= dR(t) exp{β ′RZiR + wi}, (3.3)

where dR(t) =
∑Q

q=1 rqI(bq−1 ≤ t < bq) is the baseline recurrent event rate. Note

that the recurrent event rate here is a conditional quantity; the conditional event

rate, given survival. This expression resembles that of Ye, Kalbfleisch and Schaubel

(2007) and Pan and Schaubel (2009). The likelihood contribution for subject i with

respect to the recurrent event process is given as

LRi =

ni∏
k=1

[
Q∑
q=1

rqI(bq−1 ≤ Tik < bq) exp{β ′RZiR + wi}

]∆ik

× exp

−
Xi∫

0

exp{β ′RZiR + wi}
Q∑
q=1

rqI(bq−1 ≤ t < bq)dt

 . (3.4)

Finally, we assume a Poisson regression model for the marks as follows,

log[E{Gi(t)|dN∗Ri (t) = 1, ZiG(t), wi}] = β
′

GZiG(t) + wi, (3.5)

where ZiG = ZiG(0), and Zi(t) is comprised of elements of Zi(0) and parametric

functions of t. With respect to the mark distribution, the likelihood contribution for

the ith subject equals

LGi = exp{Gi(t)(β
′

GZiG(t) + wi)} exp{− exp{β ′GZiG(t) + wi}}. (3.6)
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After combining the above three models, the likelihood for the ith subject is given by

Li =

∫
LDi L

R
i L

G
i fwi(wi)dwi, (3.7)

when the integral is over the support of wi; or,

Li =

∫
exp{`Di + `Ri + `Gi }fwi(wi)dwi, (3.8)

with

`Di = δi

[
log

{
K∑
k=1

λkI(ak−1 ≤ Xi < ak)

}
+ β

′

DZiD + wi

]

−
Xi∫

0

exp{β ′DZiD + wi}
K∑
k=1

λkI(ak−1 ≤ t < ak)dt, (3.9)

`Ri =

ni∑
k=1

[
∆ik log

{
Q∑
q=1

rqI(bq−1 ≤ Tik < bq)

}
+ β

′

RZiR + wi

]

−
Xi∫

0

exp{β ′RZiR + wi}
Q∑
q=1

rqI(bq−1 ≤ t < bq)dt, (3.10)

and

`Gi = Gi(t)(β
′

GZiG(t) + wi)− exp{β ′GZiG(t) + wi}. (3.11)

3.2.3 Proposed estimation methods

Several approaches have been adopted to estimate frailty models. Nielsen et al.

(1992) adopted an EM algorithm by treating the frailties as unobserved quantities or

missing values. However, the EM algorithm tends to converge slowly, and standard

errors of the estimates can not be obtained directly. Another approach is the Penalized
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Partial Likelihood (PPL), proposed by McGilchrist et al. (1991). The PPL algorithm

is fast, but no standard error estimate of the frailty variance is given. Since our

proposed method would involve evaluating complex integrals with joint frailties, the

PPL method is not practical in our setting. To use the EM algorithm, conditional

expectations of the random effects given the observed data need to be calculated and

usually they do not have closed forms. In our setting, under the joint frailty models

given above, the conditional expectations of the normal frailty do not have a closed

form. Markov chain Monte Carlo (MCMC) methods (e.g., Metropolis-Hastings) could

be adopted as in Liu, Wolfe and Huang (2004), but tend to be very computational

expensive. Other options for fitting frailty models include Gaussian Quadrature,

Laplace approximation (Tierney and Kadane, 1986) and the partial quasi-likelihood

developed by Breslow and Clayton (1993). Since it is computationally fast and easy

to implement using standard statistical software, we will use Gaussian Quadrature

for our estimation.

Gaussian quadrature is well suited to numerically evaluate integrals against prob-

ability measures. Suppose we have the following integral of interest,

∫
f(x)p(x)dx ≈

n∑
j=1

sjf(xj), (3.12)

where p(x) is the probability density function and f(x) is a function of interest. Let

sj be the quadrature weights and xj the integration points. The Gaussian quadrature

chooses integration points in areas of high density.

For example, equation (4.8) can be approximated by weighted averages of U pre-

determined quadrature points su over random effect wi, u = 1, . . . , U as follows,

Li ≈
U∑
u=1

exp{ ˆ̀
i

D
+ ˆ̀

i

R
+ ˆ̀

i

G
}θufwi(su), (3.13)
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where θu are the weights and

ˆ̀
i

D
= δi

[
log

{
K∑
k=1

λ̂kI(ak−1 ≤ Xi < ak)

}
+ β̂

′

DZiD + su

]

−
Xi∫

0

exp{β̂ ′DZiD + su}
K∑
k=1

λ̂kI(ak−1 ≤ t < ak)dt; (3.14)

ˆ̀
i

R
=

ni∑
k=1

[
∆ik log

{
Q∑
q=1

r̂qI(bq−1 ≤ Tik < bq)

}
+ β̂

′

RZiR + su

]

−
Xi∫

0

exp{β̂ ′RZiR + su}
Q∑
q=1

r̂qI(bq−1 ≤ t < bq)dt; (3.15)

ˆ̀
i

G
= Gi(t)(β̂

′

GZiG(t) + su)− exp{β̂ ′GZiG(t) + su}. (3.16)

The software used in our study is SAS (version 9.2). A NLMIXED procedure

is used to carry out the intergral approximation and estimation. PROC NLMIXED

selects the number of quadrature points adaptively by evaluating the log-likelihood

function at the starting values of the parameters until two successive evaluations

have a relative difference less than the value of the pre-defined tolerance number.

The quadrature weights then will be determined based on the number of quadrature

points. An empirical Bayes estimate of the random effect wi, ŵi, is further computed

such that the negative of the log-likelihood function is minimized based on the current

vector of parameters. Then different optimizations techinques can be utilized to get

an estimate of the parameter estimates (i.e., Dual quasi-newton, Newton-Raphson).
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3.3 Simulation Study

To study the finite sample properties of the proposed estimator, we first assume

frailty wi to be normally distributed with mean 0 and variance σ2, with σ2=0.01,

0.0625 or 0.25 to examine the scenarios where there is relatively low correlation,

moderate correlation and high correlation, respectively. The terminating event was

generated from dΛi(t) = dΛ(t) exp{β ′DZi + wi}, a proportional hazards model where

Zi = (Zi1, Zi2, Zi3)′. The Cox regression parameter was set to βD = (0.5, 0.3, 0.3)′,

with dΛ(t) =
∑2

k=1 λkI(ak−1 ≤ t < ak), where λ1 = 0.06, λ2 = 0.03, a0 = 0, a1 = 10

and a2 = max{Xi}. We let Zi1 ∼ Bernoulli(0.5), with Zi2 generated through the

model P (Zi2 = 1|Zi1)=expit{h1Zi1} and P (Zi3 = 1|Zi1, Zi2)=expit{h2Zi1 + h3Zi2},

where (h1, h2, h3)′ = (1, 1, 1)′ and expit(h)=exp{h}[1 + exp{h}]−1. We generated

recurrent events from the model dRi(t) = dR(t) exp{β ′RZi + wi} by generating gap

times between successive events as: Ti,k+1 = Ti,k − log(Ui,k)[dR(t) exp{β′RZi + wi}]−1

for k = 1, . . . , 50, where each of the Ui,k variates followed a Unif(0,1) distribution.

For simplicity, we let dR(t) =
∑2

q=1 rqI(bq−1 ≤ t < bq), with r0 = r1 = 0.20, b0 =

0, b1=median{Tik} and b2 = max{Tik} so that the piecewise constant assumption is

still satisfied. The regression parameter was set to βR = (0.5, 0.3, 0.3)′. The model for

the marks was as follows: log[E{Gi(t)|dN∗Ri (t) = 1, Zi(t), wi}] = β′GZi +wi + 2t, with

βG = (0.5, 0.3, 0.3)′. Censoring times were generated from a Unif(0,30) which resulted

in about 30% of censoring. The average observed number of recurrent events is about

three per subject. We used five quadrature points in our estimations. Sample sizes

were set at n = 2000 and 2000 replicates were generated for each data configuration.

Table 3.1 provides performance of the parameters under very low correlation

(σ2 = 0.01) among the terminating events, recurrent events and marks. Since the cor-

relation is very small (close to independence), estimation with or without considering

the frailty wi, both achieved fairly good performance in terms of bias and coverage

probability. For all parameters, the estimated values are very close to the true values.
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The average asymptotic standard errors (ASE) agree well with the empirical standard

deviations (ESD) and, correspondingly, the empirical coverage probabilities (CP) are

close to the nominal value of 0.95.

In Table 3.2, the correlation among the terminating events, recurrent events and

marks was increased to be moderately large (σ2 = 0.0625). In this setting, not con-

sidering the correlation resulted in increased bias and worse coverage. If we consider

the frailty effect, the biases are negligible and the ASEs agree well with the ESDs

with CPs generally being close to the nominal value of 0.95.

Last, we examine the results from Table 3.3 where correlation among the termi-

nating events, recurrent events and marks was quite large (σ2 = 0.25). The variance

contributed by the frailty are over half of the total variance explained. Under this

scenario, the estimation procedure including the frailty still outperforms the estima-

tion procedure without frailty by a large extent. We can see from Table 3.3 that

without considering the frailty resulted in highly elevated biases for most of the pa-

rameters and the variances of the parameter estimators are underestimated, yielding

much lower CPs.

3.4 Application

We applied our methods to data obtained the previously-described CANUSA Peri-

toneal Dialysis Study. In this analysis, all patients commencing continuous PD be-

tween September 1, 1990 and December 31, 1992 were eligible for the study. De-

mographic data recorded at enrollment included age, sex, race, functional status

(according to the Karnofsky score), underlying renal disease, insulin-dependent di-

abetes mellitus (IDDM), and history of cardiovascular disease (CVD). Estimates of

nutritional status included subjective global assessment (SGA), and percentage of

lean body mass (PCTLBM). Adequacy of dialysis was estimated by measurement

of total weekly Kt/V for urea, total weekly creatinine clearance (CCr), and serum
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beta-2-microglobulin(β2M). Death served as the terminating event, while the recur-

rent event was hospitalization. Length of stay (number of days hospitalized) served

as the mark for each hospital visit.

A total of n = 679 patients were enrolled. There were many more males (393)

than females (286) enrolled in the study. The mean age was 54, with a range of 18

to 82 years. Follow-up was terminated December 31, 1993. There were 90 deaths,

and the average number of days hospitalized across all patients was 7.8 days per

patient. Adjustment covariates included serum albumin (SALB), normalized pro-

tein catabolic rate (NPCR), subjective global assessment (SGA), percent lean body

mass (PCTLBM), Kt/V, total weekly creatinine clearance (CCr), gender, race, age,

Karnofsky score, underlying renal disease and cardiovascular disease (CVD).

As evident from Table 3.4, the covariates that are significant for the proportional

hazards model include SALB, percent lean body mass and Age. A 1g/L increase

in serum albumin concentration is associated with 11% decrease in the death haz-

ard, adjusting for other covariates and conditional on the frailty. A 1% increase in

lean body mass is associated with a 5% decrease in the hazard adjusting for other

covariates. One year increase in age will result in 2% increase in hazard.

Factors that are significant predictors of the recurrent event rate include serum

albumin, percentage lean body mass, Karnofsky score and Age. For example, a 1g/L

increase in serum albumin concentration is associated with 6% decrease in hospital-

ization rate, adjusting for other variables. Age is the only significant variable in the

Poisson regression model. Overall, serum albumin and percent lean body mass show

up significant in two of three models where age is significant for all three models.

The heterogeneity effect are estimated through the variance of the frailty term. It

appears to be highly significant(p-value<0.001). This shows much variation among

the study subjects. The bottom half of Table 3.4 provides a comparison of parameter

estimates based on a model which ignores the heterogeneity among the subjects. We
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notice various degrees of bias in the parameter estimates, along with the changes in the

significance levels for some of the clinical and demographic factors in the proportional

hazards model, proportional rates model or the Poisson regression model.

3.5 Discussion

In this Chapter, we developed joint modelling methods to estimate the importance

of certain parameters of interest. This is well suited to our hierarchical data setting

where we have a sequence of recurrent events that could be stop by a terminating

event. The marks that characterize each recurrent event are dependent upon the exis-

tence of each recurrent event. We specify separate models for each process (recurrent

event process, terminating event process and mark process). The frailty term which

is subject specific captures the dependence structure among the above three processes

and serves as the bridge for our joint estimation. We assume a piecewise constant

proportional hazards models for the terminating event while we assume a piecewise

constant proportional rates model for the recurrent event rate given survival. We

further assume a Poission regression type of model for the marks. One of our main

contributions to the existing literature is the introduction of the marks. Here, we

restrict the marks to be non-negative. In the conventional recurrent event literature,

many papers focus on the recurrent event process itself (Cook and Lawless, 1997;

Ghosh and Lin, 2000, 2002; Schaubel and Zhang, 2010). Their models essentially

count the number of recurrent event occurrence, each event occurrence being binary

(either 0 or 1). We built upon the notion that although marks are related to each

recurrent event, they are not necessarily restricted to be binary. The marks can have

their own processes depending upon the behavior of the marks. In other words, if we

restrict the marks all to be identity, our models could be reduced to methods that

only considering the recurrent event processes.

In this Chapter, we demonstrated the importance of capturing the heterogeneity
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effect in modelling consideration. For example, a study population maybe not be

homogeneous (some individuals will have higher hazards of death or recurrence of

certain disease compared to others). In addition, it might be hard to measure all the

factors related to the disease due to resources or other reasons. This makes models

incorporating the frailty effect more reasonable. Our results show that when hetero-

geneity is present, building models without considering the effect of heterogeneity will

cause different degree of biases depending on the scale of the heterogeneity effect.

Methods developed in this Chapter involve building parametric models for each

of the underlying processes (i.e., recurrent event, terminating event, mark). In each

of the processes, the frailty term was built in to represent the heterogeneity effect.

They are assumed to be shared among all three processes. This assumption could be

relaxed by introducing more than one frailty term. For example, we could quantify the

dependence between the recurrent event process and the mark process by including

one frailty term while using another frailty term for the mark process and terminating

event process. The trade-off of introducing more than one frailty term is the added

computation complexity since we need to estimated more parameters. Another point

to mention is that the distribution of the the frailty term is assumed to be normal

in the development of our models. Other distributions for the frailty term are also

possible in building the models. (e.g., Gamma distribution).

We utilized Gaussian quadrature techniques in estimating the parameters of in-

terest. The advantage of using Gaussian quadrature is the computation speed and

relative accuracy. In order to use Gaussian quadrature, we would need to fully spec-

ify the likelihood function for the models described in this Chapter. Therefore, the

models need to be fully parameterized. We typically do not know the true underly-

ing models. Although, efficiency gains would result if the models being specified are

accurate, substantial bias could arise if we have model misspecification.
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Table 3.1: Simulation Results: Performance of the proposed parameter
estimators under small heterogeneity

Parameters Bias ESD ASE CP BIAS∗ ESD∗ ASE∗ CP ∗

r1 0.000 0.008 0.008 0.95 0.001 0.008 0.008 0.95
r2 0.000 0.007 0.007 0.95 0.000 0.007 0.007 0.95

λ1 0.000 0.004 0.004 0.96 0.000 0.004 0.004 0.96
λ2 0.000 0.003 0.003 0.95 0.000 0.003 0.003 0.95

βG1 -0.002 0.022 0.022 0.94 -0.003 0.022 0.021 0.93
βG2 0.006 0.021 0.022 0.96 0.006 0.021 0.021 0.94
βG3 -0.002 0.022 0.022 0.96 0.004 0.022 0.021 0.93

βD1 0.001 0.057 0.058 0.95 0.000 0.057 0.058 0.95
βD2 0.005 0.064 0.061 0.94 0.003 0.064 0.060 0.94
βD3 -0.004 0.068 0.070 0.93 -0.005 0.068 0.069 0.93

βR1 -0.002 0.029 0.031 0.95 -0.005 0.029 0.030 0.94
βR2 0.003 0.031 0.032 0.96 0.001 0.030 0.031 0.96
βR3 -0.002 0.035 0.036 0.97 -0.003 0.035 0.036 0.95

σ2 0.000 0.004 0.004 0.92 - - - -

Notes: βD = (0.5, 0.3, 0.3)′, βR = (0.5, 0.3, 0.3)′, βG = (0.5, 0.3, 0.3)′,λ1 = 0.06,
λ2 = 0.03, r1 = 0.2, r2 = 0.2, σ2 = 0.01. Number of repetitions: 2000. Number of
subjects: n = 2000. *Estimation assuming no correlation among terminating events,
recurrent events and marks.

42



Table 3.2: Simulation Results: Performance of the proposed parameter
estimators under moderate heterogeneity

Parameters Bias ESD ASE CP BIAS∗ ESD∗ ASE∗ CP ∗

r1 0.000 0.008 0.008 0.96 0.008 0.008 0.008 0.82
r2 0.000 0.007 0.008 0.94 -0.004 0.008 0.007 0.89

λ1 0.000 0.004 0.004 0.96 0.001 0.004 0.004 0.95
λ2 0.000 0.003 0.003 0.95 -0.001 0.003 0.003 0.93

βG1 -0.004 0.024 0.026 0.97 0.003 0.024 0.020 0.90
βG2 0.015 0.024 0.026 0.94 0.026 0.025 0.021 0.71
βG3 0.000 0.025 0.026 0.95 0.021 0.026 0.021 0.77

βD1 -0.006 0.060 0.059 0.94 -0.020 0.059 0.058 0.94
βD2 0.015 0.064 0.062 0.95 0.006 0.062 0.061 0.94
βD3 -0.009 0.068 0.071 0.95 -0.016 0.065 0.069 0.95

βR1 -0.008 0.031 0.034 0.96 -0.024 0.031 0.030 0.86
βR2 0.016 0.031 0.035 0.95 0.006 0.031 0.031 0.96
βR3 -0.007 0.037 0.040 0.96 -0.016 0.038 0.036 0.90

σ2 -0.001 0.006 0.006 0.94 - - - -

Notes: βD = (0.5, 0.3, 0.3)′, βR = (0.5, 0.3, 0.3)′, βG = (0.5, 0.3, 0.3)′,λ1 = 0.06,
λ2 = 0.03, r1 = 0.2, r2 = 0.2, σ2 = 0.0625. Number of repetitions: 2000. Number of
subjects: n = 2000. *Estimation assuming no correlation among terminating events,
recurrent events and marks.
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Table 3.3: Simulation Results: Performance of the proposed parameter
estimators under large heterogeneity

Parameters Bias ESD ASE CP BIAS∗ ESD∗ ASE∗ CP ∗

r1 0.000 0.009 0.010 0.97 0.029 0.010 0.009 0.10
r2 -0.001 0.009 0.009 0.96 -0.013 0.009 0.007 0.54

λ1 0.010 0.004 0.004 0.97 0.004 0.004 0.004 0.88
λ2 -0.001 0.003 0.003 0.96 -0.004 0.002 0.003 0.61

βG1 -0.008 0.026 0.036 0.99 0.027 0.036 0.020 0.59
βG2 0.032 0.029 0.036 0.90 0.065 0.041 0.020 0.26
βG3 0.010 0.029 0.036 0.97 0.100 0.039 0.020 0.07

βD1 -0.013 0.064 0.064 0.95 -0.060 0.058 0.058 0.84
βD2 0.029 0.065 0.067 0.93 0.000 0.061 0.061 0.94
βD3 -0.008 0.069 0.076 0.97 -0.032 0.064 0.069 0.94

βR1 -0.014 0.036 0.041 0.98 -0.070 0.037 0.030 0.38
βR2 0.032 0.035 0.043 0.93 -0.002 0.037 0.032 0.91
βR3 -0.012 0.043 0.048 0.96 -0.039 0.045 0.036 0.75

σ2 -0.010 0.012 0.013 0.85 - - - -

Notes: βD = (0.5, 0.3, 0.3)′, βR = (0.5, 0.3, 0.3)′, βG = (0.5, 0.3, 0.3)′,λ1 = 0.06,
λ2 = 0.03, r1 = 0.2, r2 = 0.2, σ2 = 0.25. Number of repetitions: 2000. Number of
subjects: n = 2000. *Estimation assuming no correlation among terminating events,
recurrent events and marks.
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Table 3.4: Analysis of CANUSA study: Heterogeneity effect and parameter esti-
mates under proportional hazards model, porpotional rates model and
the Poisson regression model

dΛi(t) dRi(t) Gi(t)

Variable β̂D SE p β̂R SE p β̂G SE p
Frailty(Yes)
SALB -0.112 0.024 <0.001 -0.057 0.011 <0.001 -0.004 0.010 0.719
NPCR -0.008 0.586 0.989 -0.007 0.276 0.981 0.049 0.241 0.840
SGA -0.005 0.087 0.952 -0.113 0.041 0.006 -0.013 0.036 0.729
PCTLBM -0.053 0.013 <0.001 -0.003 0.005 <0.001 -0.009 0.005 0.057
KTV -0.030 0.219 0.891 -0.074 0.111 0.505 0.038 0.096 0.691
CCR -0.003 0.006 0.669 0.002 0.003 0.509 0.001 0.002 0.926
CANADA 0.010 0.345 0.976 -0.009 0.164 0.955 -0.015 0.142 0.916
GENDER -0.020 0.262 0.938 -0.044 0.126 0.725 0.091 0.110 0.406
RACE -0.031 0.144 0.829 -0.028 0.070 0.686 0.076 0.062 0.220
AGE 0.021 0.009 0.027 -0.015 0.004 <0.001 0.033 0.003 <0.001
KARNOF -0.002 0.009 0.866 -0.019 0.005 <0.001 -0.003 0.004 0.511
PRD 0.002 0.074 0.982 0.026 0.037 0.480 -0.048 0.032 0.130
CVD 0.041 0.261 0.876 0.006 0.128 0.965 0.089 0.011 0.425
σ̂2 1.325 0.083 <0.001 - - - - - -

SALB -0.054 0.021 0.012 -0.047 0.005 <0.001 0.006 0.002 0.000
NPCR -0.010 0.544 0.986 -0.015 0.134 0.908 0.504 0.038 <0.001
SGA 0.008 0.077 0.922 -0.064 0.019 0.001 0.008 0.006 0.172
PCTLBM -0.040 0.013 0.002 -0.027 0.003 <0.001 -0.006 0.001 <0.001
KTV -0.047 0.198 0.814 -0.176 0.065 0.007 -0.122 0.019 <0.001
CCR -0.001 0.005 0.898 0.004 0.002 0.003 0.001 0.000 0.001
CANADA 0.012 0.310 0.973 -0.010 0.077 0.895 -0.139 0.025 <0.001
GENDER -0.026 0.232 0.911 -0.093 0.061 0.126 0.272 0.018 <0.001
RACE -0.040 0.143 0.779 -0.089 0.033 0.007 0.081 0.009 <0.001
AGE 0.020 0.009 0.035 -0.023 0.002 <0.001 0.020 0.001 <0.001
KARNOF -0.001 0.009 0.885 -0.018 0.002 <0.001 0.005 0.001 <0.001
PRD 0.010 0.066 0.886 0.008 0.017 0.642 -0.046 0.005 <0.001
CVD 0.044 0.230 0.849 0.037 0.059 0.531 0.266 0.018 <0.001
σ̂2 0 - - - - - - - -

dΛi(t): proportional hazards model;dRi(t): proportional rates model; Gi(t): Poisson regression
model.
Proposed method given in the top frame; parameter estimates in the bottom frame are based on
a model with no frailty (σ2 ≡ 0).
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CHAPTER IV

Comparison of marginal means through inverse

weighting methods

4.1 Introduction

There have been many methods developed for analysing recurrent event data in

terms of various marginal means or rates models, largely due to the interpretation of

the parameters and the fact that no particular dependency through event history need

be assumed; e.g., Pepe and Cai, 1993; Lawless and Nadeau, 1995; Lin, Wei, Yang and

Ying, 2000; Cai and Schaubel, 2004. Pepe and Cai (1993) developed partly marginal

regression models that accommodate time dependent covariates. Later, Lawless and

Nadeau (1995) presented robust semi-parametric techniques for estimating the cu-

mulative mean function in discrete time. Lin et al. (2000) extended the approach

of Lawless and Nadeau (1995) to continuous time and rigorously derived the asymp-

totic properties using empirical processes. Cai and Schaubel (2004) further proposed

semi-parametric marginal means/rates model by allowing for more than one type of

recurrent event. They also developed asymptotic properties for the parameter esti-

mators. Investigators are often interested in estimating differences between groups

(e.g., treatment versus control), and one approach is to make comparisons through

the marginal means.
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In this Chapter, we are interested in descriptive measures (i.e., “marks”) that

are associated with each recurrent event (e.g., repeated hospital admissions, epileptic

seizures). Examples include entities such as the cost billed for each hospital visit,

or the length of stay. In the recurrent event data setting, few methods have been

proposed to analyze such type of data. One such method is that of Cai, Zeng and Pan

(2010), which proposed a proportional means model for the marks, contingent upon

the recurrent event occurrences, along with a marginal rate model for the recurrent

event. Since in clinical trials or animal studies, study subjects may experience a

terminating event (e.g., death), it is therefore necessary to acknowledge the fact that

the recurrent event process could potentially be stopped permanently. The methods

of Cai et al. (2010) would not apply to settings involving a terminating event.

A number of methods have been developed where both the recurrent event and

terminating event are present. For example, Cook and Lawless (1997) developed

models for the conditional recurrent event rate given survival. Ghosh and Lin (2000)

proposed non-parametric inference procedures for the mean function, and later de-

veloped semi-parametric models for the marginal mean number of events (Ghosh and

Lin, 2002). In such models, death is treated as a terminating event that prevents fur-

ther recurrent event occurrence. Huang and Wang (2004) developed joint modelling

techniques where a latent frailty variable is used to associate the recurrent event rate

and terminating event hazard. The general data structure considered in this Chapter

involves a sequence of recurrent events that could potentially be stopped by a termi-

nating event. A mark is associated with each recurrent event, with marks only being

observed when each recurrent event occurs.

The motivating example for our proposed methods is the Canada-USA (CANUSA)

Peritoneal Dialysis (PD) Study (Canada-USA (CANUSA) Peritoneal Dialysis Study

Group, 1996; Churchill 1998; Ye, Kalbfleisch and Schaubel, 2007). In this study,

the sample consisted of PD patients starting dialysis in either Canada or USA. Such
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patients experience repeated hospitalizations over the course of the study period.

Whenever each hospitalization occurs, the number of days hospitalized are recorded.

Demographic and some clinical information is collected at start of follow-up. Patients

are removed from the study if either death or transplant occurs.

Of interest in Chapter IV is the integrated mark process, viewed as a function

of time; as was the case in Chapter II. For example, in the motivating example

(CANUSA Study), the recurrent event is hospital admission, the terminating event

is death, and the mark is length of stay (measured in days). As a result, cumulative

mark equals the total days hospitalized. The proposed methods take into account of

treatment imbalance and censoring by incorporating Inverse Probability of Treatment

Weighting (IPTW; Robins et al. 2000; Hernan et al. 2000; Anstrom and Tsiatis

2001) and Inverse Probability of Censoring Weighting (IPCW; Robins and Rotnitzky

1992; Robins 1993), respectively. We avoid building models for the recurrent event

rate, terminating hazard and mark. The advantage of this less parametric approach

is that we do not require models for each process to be correct (e.g., proportional

hazards model, proportional rates model) in order to achieve consistent estimates of

the marginal mean.

In Section 4.2, we introduce the proposed estimator and estimating methods.

Asymptotic properties are given in Section 4.3, with proofs provided in the Appendix.

Simulation studies are conducted in Section 4.4. An application of our proposed

methods is given in Section 4.5, followed by discussion in Section 4.6.

4.2 Proposed Estimation Methods

4.2.1 Notation and Setup

We first establish the required notation. Let Di denote the time of the termi-

nating event for subject i, while Ci is the censoring time for subject i. We let
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Xi = min(Ci, Di) and let Yi(t) = I(Xi ≥ t) be the at-risk indicator. We let the

true terminating event counting process be represented by N∗Di (t) = I(Di ≤ t) and

we let N∗Ri (t) equal the total number of recurrent events for subject i up to time

t. The observed terminating event counting process and recurrent event process are

ND
i (t) = I(Di ≤ t,Di < Ci) and NR

i (t) = N∗Ri (t ∧ Xi), respectively. Notice that

recurrent events do not occur after death. We define Gi(t) as the mark for subject

i at time t. It is assumed that marks only occur at time of a recurrent event. In

addition, subjects are divided into groups (e.g., by treatment type, gender, diagnosis;

whatever is of chief interest to the investigator) and Ai is used to denote group for

subject i. For ease of presentation, we consider the case where Ai is binary (Ai = 0, 1),

although the proposed methods can easily accommodate more than two groups. We

then set up the group indicator Aij = I(Ai = j). Each subject is characterized by

a vector of possibly time dependent covariates, Zi(t). Typically, one would want

to make the j = 0 and j = 1 groups comparable at time 0 (balance the baseline

covariate distribution); would generally not want to adjust for events after t = 0.

We set the baseline value of the covariate vector to Zi ≡ Zi(0). Finally, we define

Fi(t) = {Ni(s), Gi(s), Zi(s); s ∈ [0, t)} as the recurrent event, mark and covariate

history up to (but not including) time t.

Of interest for each subject is the cumulative mark

B∗i (t) =

t∫
0

Gi(u)dN∗Ri (u),

with mean µij(t), defined as

µij(t) = E[B∗i (t)|Zi, Ai = j].

That is, µij(t) represents the mean of B∗i (t) for a subject with covariate Zi, under
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the hypothetical scenario where subject i is a member of group j. To contrast group-

specific means, we first define µj(t) as the cumulative mean for group j, averaging

across the marginal distribution of Zi. That is,

µj(t) ≡ E[µij(t)] = E[E[B∗i (t)|Ai = j, Zi]], (4.1)

for j = 0, 1, where the inner expectation conditions on Zi and Ai = j, irrespective of

the group to which subject i actually belongs (i.e., under the hypothetical scenario

where, possibly contrary to fact that, Ai = j), and the outer expectation is taken

with respect to the marginal distribution of Zi. This way, even if the Zi distributions

are quite different across groups, µ0(t) and µ1(t) are comparable, in the sense that

each is averaged with respect to the same covariate distribution. The quantity of

chief interest is the difference in cumulative means between the two groups, which is

expressed as

δ(t) = µ1(t)− µ0(t). (4.2)

The goal here is to estimate δ(t), methods for which are proposed in the next subsec-

tion.

4.2.2 Estimation

We develop semi-parametric procedures to estimate treatment-specific means.

The proposed methods assume no functional form with respect to the relationship

between the treatment-specific mean functions. If the treatment were randomized, a

natural estimator of µj(t) could be given by

µ̂∗j(t) =

t∫
0

∑n
i=1 I(Ai = j)Gij(u)dN∗ij(u)∑n

i=1 I(Ai = j)
. (4.3)
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In observational studies, treatment is rarely randomized and, in the absence of ran-

domization, the above estimator would be generally biased due to confounding. In

addition to the aforementioned obstacle, censoring times are unknown for subjects

observed to die. In order to tackle the above two complexities, we propose an inverse-

weighted estimator. IPTW is utilized to account for the treatment imbalance, while

IPCW is utilized to account for censoring.

4.2.3 Proposed Estimator: Inverse Weighting

The idea of using IPTW is to essentially create treatment-specific pseudo-populations

with the same adjustment covariate distribution. An IPTW based nonparametric es-

timator of the mean of treatment group j has the interpretation of mean number of

recurrent events which would result if the whole population had received treatment

j. In order to derive the IPTW weight, we assume a logistic model for Ai given Zi,

pij(θ0) ≡ P (Ai = j|Zi; θ0) =
exp{θ′0Zi}

1 + exp{θ′0Zi}
, (4.4)

where i = 1 . . . n and j = 0, 1. Under maximum likelihood, we can get an estimate of

θ0 by solving the corresponding score equation. Then the IPTW weight function is

given by

wAij(θ̂) =
Aij

pij(θ̂)
. (4.5)

Correspondingly, the purpose of using a IPCW weight is to replace the unobserved

quantity, in this case Gi(t)dN
∗R
i (t), by an observed quantity which has the same

expectation. We let the cause-specific hazard function for Ci be denoted by

λCij(t) = lim
dt↓0

1

dt
P{t ≤ Ci < t+ dt, Ci < Di|Xi ≥ t,Fi(t), Ai = j} (4.6)
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We set up the time-dependent covariate ZC
i (t) to satisfy λCij{t|ZC

i (t), Ai = j} =

λCij{t|Fi(t), Ai = j}. That is, ZC
i (t) consists of time-dependent covariates, ZC

i (t), plus

components of the event and/or mark history that predict censoring. We assume the

following proportional hazards model for Ci,

λCij(t) = λC0j(t) exp{β ′CZC
i (t)}, (4.7)

and let ΛC
ij(t) =

∫ t
0
λCij(s)ds. Then the IPCW weight wCij(t) can be estimated by the

following,

ŵCij(t) = exp{Λ̂C
ij(t)}, (4.8)

where Λ̂C
0j(t) = n−1

∑n
i=1

∫ t
0
π̂j(s)

−1AijdN
C
i (s) and π̂j(s) = n−1

∑n
i=1 AijYi(s) exp{β̂′ZC

i (s)}.

After the above definition, it is easy to show that the following estimator,

µ̂j(t) = n−1

n∑
i=1

t∫
0

wAij(θ̂)ŵ
C
ij(s)Gi(s)dN

R
i (s), (4.9)

which is IPTW and IPCW weighted, is a consistent estimator of µj(t). Therefore,

the differences in cumulative means between the two groups can then be consistently

estimated by,

δ̂(t) = µ̂1(t)− µ̂0(t). (4.10)

52



4.3 Asymptotic Properties

In this section, we summarize the essential asymptotic behavior of the proposed

estimators by first listing the necessary conditions, for i = 1, . . . , n and j= 0, 1.

(a) {NR
i (.), Xi, Zi(.), Ai, Gi(.)} are independent and identically distributed

(b) Pr(Yi(t) = 1) > 0 for all t ∈ [0, τ ], where τ is a pre-specified constant

(c) NR
i (τ) <∞ and ΛC

0 (τ) <∞

(d) 0 < Pr(Ai = j|Zi) < 1 for j = 0, 1.

(e) Covariates Zil(t) are bounded almost surely, where t ∈ [0, τ ] and Zil(t) is the

lth element of Zi(t)

(f) Positive-definiteness of the matrices, ACj (βC) and I(θ), where

ACj (βC) = E

 τ∫
0

{ZC
i (t)− z̄(t; βC)}⊗2Yi(t)λ

C
ij(t)dt


z̄j(t; βC) = s

(1)
j (t; βC)s

(0)
j (t; βC)

−1

s
(d)
j (t; βC) = E[AijYi(t)Zi(t)

⊗d exp{β ′CZi}], d = 0, 1, 2.

I(θ) = E[Z⊗2
i (1− pij(θ))pij(θ)]

Now, we summarize the asymptotic properties from the proposed procedures.

Proofs of the theorems are provided in the Appendix.

Theorem IV.1. Under the above regularity conditions, µ̂j is a uniformly consistent

estimator of µj. That is, µ̂j(t) converges to µj(t) almost surely for j=0,1 and t

∈ (0, τ ]. In addition, n1/2{µ̂j(t) − µj(t)} converges weakly to a zero-mean Gaussian

process for j=0,1 and t ∈ (0, τ ] with covariance function σj(s, t) = E[ψij(s)ψij(t)],
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where

ψij(t) =
3∑
i=1

ψijk(t)

ψij1(t) = H
′

j(t)I(θ0)−1n−1/2

n∑
i=1

Ui(θ0)

ψij2(t) = E[wAij(θ0)

t∫
0

wCij(s) exp{β ′CZC
i (s)}

s∫
0

{Zi(u)− z̄(u; βC)}dΛ0j(u)Gi(s)dN
R
i (s)]

×ACj (βC)−1n−1/2

n∑
i=1

UC
ij (βC)

+

t∫
0

E[wAij(θ0) exp{βCZC
i (s)}wCij(s)Gi(s)dNi(s)]n

− 1
2

n∑
i=1

s∫
0

dMC
ij (u; βC)

s
(0)
j (u; βC)

ψij3(t) = n−1/2

n∑
i=1

t∫
0

{wAij(θ0)wCij(s)Gi(s)dNi(s)− dµj(s)}

where we define

UC
ij (βC) =

τ∫
0

Aij{ZC
i (t)− z̄(t; βC)}dMC

ij (t; βC)

Ui(θ) = Zi{Ai1 − pi1(θ)}

Hj(t) = E

 t∫
0

(−1)jAij
1− pij(θ)
pij(θ)

Ziw
C
ij(s)Gi(s)dNi(s)


dMC

ij (s) = Aij{dNC
i (s)− Yi(s)dΛC

ij(s)}.

The proof of the above theorem involves the Weak Law of Large Numbers (WLLN),

series of Tayor expansions, Central Limit Theorem (CLT) and various results from

empirical processes (Pollard, 1990; van der Vaart and Wellner 1996).

Theorem IV.2. Under the above regularity conditions, δ̂(t) is a uniformly consistent

estimator of δ(t). That is, δ̂(t) converges to δ(t) almost surely for j=0,1 and t ∈ (0, τ ].
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Furthermore, n1/2{δ̂(t)−δ(t)} converges weakly to a zero-mean Gaussian process with

covariance function ∆(s, t) = E[{ψi1(s)− ψi0(s)}{ψi1(t)− ψi0(t)}].

It follows from Theorem 1 that n1/2{µ̂1(t)− µ̂0(t)} is asymptotically equivalent to

n−1/2
∑n

i=1{ψi1(t) − ψi0(t)}, a scaled sum of zero-mean Normal variates. For fixed

(s, t), convergence follows from the MCLT. Tightness can be demonstrated using

results from empirical processes theory, which completes the process aspect of the

proof.

4.4 Simulation Study

We evaluated the finite-sample properties of the proposed estimator through sim-

ulation. The terminating event was generated from λij(t) = λ0j exp{β ′DZi}, a propor-

tional hazards model where Zi = (Zi1, Zi2, Zi3)′. The Cox regression parameter was

set to βD = (0.5, 0.3, 0.3)′, with λ0j=0.03 or 0.06. We let Zi1 ∼ Bernoulli(0.5), with

Zi2 generated through the model P (Zi2 = 1|Zi1)=expit{h1Zi1}, P (Zi3 = 1|Zi1, Zi2)=

expit{h2Zi1 + h3Zi2} and P (Ai = 1|Zi1, Zi2, Zi3)=expit{h2Zi1 + h3Zi2 + h4Zi3} where

(h1, h2, h3, h4)′ = (1, 1, 1, 1)′ and with expit(h)=exp{h}[1 + exp{h}]−1. We gener-

ated recurrent events from the model rij(t) = Qir0j exp{β ′RZi} by generating gap

times between successive events as: Ti,k+1 = Ti,k − Qi log(Ui,k)[r0j exp{β′RZi}]−1

for k = 1, . . . , 50, where each of the Ui,k variates followed a Unif(0,1) distribu-

tion. The frailty, Qi, could be considered an unmeasured predictor that is shared

by all recurrent event times for the same subject. We let Qi ∼ Gamma(θ) where

θ= 0.5 or 0.25 and represents Var(Qi); note that E(Qi) = 1. We set r0j= 0.25

or 0.20, with the regression parameter set to βR = (0.5, 0.3, 0.3)′. The model for

the marks was as follows: gi(t) = βG0 + βG1t + βG2Zi1 + βG3Zi2 + βG4Zi3, with

(βG0 , βG1 , βG2 , βG3 , βG4)
′=(1, 1, 1, 1, 1.5)′. Censoring times were generated through

λCij(t) = λC0j exp{β ′CZi + log(1.05)Ni(t
−)} and truncated at 60, which resulted in
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about 30% to 40% of censoring for different simulation configurations. In the above

model, λC0j = 0.03, βC = (0.2, 0.2, 0.2)′ and Ni(t
−) = Ni(t) − dNi(t), the number of

recurrent event up to (but not including) time t. The average observed number of

recurrent events ranged from 2 to 4 per subject. Cumulative means were estimated at

t = 3, 6, 9, 12, in order to give comparisons for early, middle and late follow up times.

Sample sizes were set at n = 400 and 500 replicates were generated per configuration.

Table 4.1 provides results for the population average cumulative mean estimator

for the various data configurations examined. For all data configurations, the esti-

mated cumulative means are very close to the true values. The average asymptotic

standard errors (ASE) agree well with the empirical standard deviations (ESD) and,

correspondingly, the empirical coverage probabilities (CP) are close to the nominal

value of 0.95.

In Table 4.2, we evaluated the proposed treatment effect estimator, δ̂(t) = µ̂1(t)−

µ̂0(t). The biases at different follow-up times are negligible compared to the true

values. The ASEs also agree well with the ESDs, with the CP being generally quite

close to the nominal value of 0.95.

To compare relative efficiencies to estimator proposed in Chapter II, we generated

data under the same settings as those described in Chapter II. Table 4.3 provides

results for µ̂1(t) for the various data configurations examined. For all data configura-

tions, the estimated cumulative means are very close to the true values. Compared

with the estimators presented in Table 2.1, we can see that we achieve substantial

efficiency gains by utilizing the inverse weighted estimator. In Table 4.4, we eval-

uated the proposed treatment effect estimator, δ̂(t) = µ̂1(t) − µ̂0(t). The biases at

different follow-up times are negligible compared to the true values. Note that for the

simulation presented in Table 4.3 and Table 4.4, the recurrent event process does not

predict λCi (t). In addition, the efficiencies are comparable in terms of the treatment

effect.
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4.5 Application

Data were obtained from the Canada-USA (CANUSA) peritoneal dialysis (PD)

study. More than three years of data were collected, including demographic, nutri-

tional status, adequacy of dialysis. The final study population consists of n = 679

peritoneal dialysis patients from either US (577 patients) or Canada (102 patients).

During the follow-up period, these PD patients may experience repeated hospitaliza-

tion, death, transplant or loss of follow-up.

In our analysis, repeated hospitalizations were treated as recurrent event of interest

while death were considered as the terminating event. The number of days hospital-

ized associated with each hospital admission was considered the mark. Chief interest

in our analysis is to compare the marginal mean number of total days hospitalized

between the PD patients from US and Canada. The CANUSA data being handled

in this application has a hierarchical type of structure: patients are hospitalized con-

ditioning on being alive up to their hospitalization visit; number of days hospitalized

being observed are conditioned on each occurrence of hospital visit. In addition, we

treat transplant or loss of follow-up as censoring event. The adjustment covariate

included serum albumin (SALB), subjective global assessment (SGA), percent lean

body mass (PCTLBM), Kt/V, CCR, gender, race, age, cardiovascular disease (CVD)

and the event history.

The results given were based on the inverse weighting method where inverse prob-

ability of censoring weighting and inverse probability of treatment weighting were

both considered. We first fitted a logistic regression model and a proportional haz-

ards model to detect any significant covariates of interests. The logistic regression

model, pij(θ0), models the probability of being Canadian, given the covariates. The

proportional hazards model, λCij(t), was stratified by country. As shown in Table 4.5,

SGA, PCTLBM, KTV, CCR, gender, race and age are all significant or borderline

significant for the logistic regression model; while SALB, PCTLBM, age, CVD and
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event history are significant predictors for the proportional hazards model. For ex-

ample, a 1 % increase in lean body mass is associated with 4% decrease in the odds of

being Canadian, adjusting for other covariates. Those having a history of CVD will

have 2.11 times higher hazards of censoring compared with those without a history

of CVD, adjusting for other covariates. Similarly, each additional hospital visit is

associated with an 8% times higher hazard of censoring, adjusting for other covari-

ates. Generally, higher percent of lean body mass, fewer hospitalizations, absence of

cardio-vascular disease history and increase in SALB are each associated with lower

risk of censoring.

Figure 4.1 presents the estimated cumulative mean number of days hospitalized

for American and Canadian patients over a two year period. From the figure, we

can notice that overall the estimated mean number of days hospitalized are similar

between the two groups, with the solid line being close to the dashed line. Canadian

PD patients have a slightly higher number of days hospitalized compared with the

American patients throughout the two year period.

Figure 4.2 gave the mean difference estimator between the American and Cana-

dian PD patients with 95 % pointwise confidence intervals plotted. As is evident from

Figure 4.2, the mean difference estimator is very close to the reference (δ̂(t) = 0) over

time. Throughout the two year period, the difference was slightly above zero. Cor-

respondingly, we computed the estimated mean difference and associated asymptotic

standard error at every half year interval as shown in Table 4.6. We notice that the

estimated mean difference are close to zero and the differences are all non-significant.

This means that American PD patients compared with their Canadian counterparts

have an approximately equal mean number of days hospitalized over the entire follow-

up period.
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4.6 Discussion

The method developed in this Chapter combines an Inverse Probability of Treat-

ment Weighting (IPTW) and Inverse Probability of Censoring Weighting (IPCW).

In the development of IPTW, treatment assignment is dependent upon the baseline

covariate distribution, such that treatment imbalance exists between any two com-

parison groups. For ease of interpretation, we demonstrated the performance under

two comparison groups, but the proposed methods can easily be extended to settings

where there exist more than two groups. In the development of IPCW, we allowed the

censoring mechanism to depend on the covariate distribution, and the event history.

Although we have strong dependence structure, our methods still perform very well

under various simulation settings.

In this Chapter, we are mainly interested in the marginal cumulative differences

between any two comparison groups. The estimator developed in this Chapter does

not assume any underlying models for the recurrent event process, terminating event

process or the mark process. On the contrary, the estimator proposed in Chapter II

would need to allow the individual models to be specified correctly. Otherwise, we

could see biased parameter estimates that could undermine the true outcome. Even

though comparing with methods developed in Chapter II, we can see that under lim-

ited sample size, two methods achieve quite similar results. The estimator developed

in this Chapter would achieve more robust results under model misspecification.

Schaubel and Zhang (2010) also proposed methods to estimate treatment effect on

the marginal recurrent event mean via inverse weighting. Though there are similarities

to our methods, Schaubel and Zhang (2010) did not consider the existence of marks.

They used IPTW, and proposed two methods of dealing with Ci (e.g., imputing Ci

when Di < Ci; IPCW). In their IPCW model, they assume that neither covariates

nor recurrent event history predicted censoring, which is quite stringent. We made

the IPCW component richer. We did not consider an imputation approach, as it
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would seem to be difficult to carry out in the sense that more complex modelling

would need to be done than in Schaubel and Zhang (2010).
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Table 4.1: Simulation Results: Performance of Proposed Inverse Weighted Estimator
λ00, λ01 r00, r01 V (Qi) t % at risk µ1(t) Bias ESD ASE CP

0.03, 0.03 0.20, 0.25 0.5 3 77% 6.98 -0.08 1.01 0.67 0.92
6 61% 16.01 -0.29 2.32 1.53 0.93
9 47% 26.12 -0.47 3.90 2.72 0.93
12 36% 36.66 -0.71 5.78 4.22 0.94

0.03, 0.03 0.20, 0.25 0.25 3 77% 6.98 -0.10 0.74 0.62 0.93
6 61% 16.01 -0.26 1.72 1.39 0.92
9 47% 26.12 -0.31 3.02 2.43 0.93
12 36% 36.66 -0.36 4.56 3.77 0.92

0.03, 0.06 0.25, 0.25 0.5 3 70% 6.23 0.02 0.64 0.63 0.93
6 48% 12.84 0.06 1.41 1.33 0.92
9 38% 18.98 0.13 2.33 2.15 0.92
12 29% 24.38 0.25 3.44 3.06 0.91

0.03, 0.06 0.25, 0.25 0.25 3 70% 6.23 0.04 0.54 0.58 0.97
6 48% 12.84 0.05 1.18 1.19 0.95
9 38% 18.98 0.05 1.85 1.85 0.96
12 29% 24.38 0.00 2.61 2.56 0.93

0.06, 0.06 0.25, 0.20 0.5 3 70% 4.99 0.00 0.46 0.52 0.96
6 48% 10.27 0.03 1.08 1.07 0.94
9 38% 15.19 0.03 1.75 1.68 0.92
12 29% 19.50 -0.02 2.44 2.32 0.92

0.06, 0.06 0.25, 0.20 0.25 3 70% 4.99 -0.02 0.46 0.49 0.96
6 48% 10.27 -0.04 0.95 0.97 0.95
9 38% 15.19 -0.07 1.48 1.50 0.95
12 29% 19.50 -0.08 2.07 2.08 0.95

Notes: βD = (0.5, 0.3, 0.3)′, βR = (0.5, 0.3, 0.3)′, βG = (1, 1, 1, 1, 1.5)′. Number of
repetitions: 500. Number of subjects: n = 400.
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Table 4.2: Simulation Results: Treatment effects of Inverse Weighted Estimator
λ00, λ01 r00, r01 V (Qi) t % at risk δ(t) Bias ESD ASE CP

0.03, 0.03 0.20, 0.25 0.5 3 77% 1.40 -0.15 1.39 1.12 0.94
6 61% 3.20 -0.35 3.18 2.54 0.93
9 47% 5.22 -0.68 5.29 4.43 0.94
12 36% 7.33 -1.09 7.99 6.77 0.94

0.03, 0.03 0.20, 0.25 0.25 3 77% 1.40 -0.19 1.11 1.05 0.94
6 61% 3.20 -0.48 2.54 2.34 0.95
9 47% 5.22 -0.57 4.39 4.00 0.95
12 36% 7.33 -0.73 6.50 5.99 0.95

0.03, 0.06 0.25, 0.25 0.5 3 70% 0.75 -0.03 1.40 1.22 0.94
6 48% 3.17 -0.15 3.11 2.71 0.92
9 38% 7.14 -0.48 5.13 4.52 0.95
12 29% 12.29 -0.74 7.74 6.77 0.94

0.03, 0.06 0.25, 0.25 0.25 3 70% 0.75 -0.02 1.18 1.13 0.95
6 48% 3.17 0.04 2.54 2.49 0.93
9 38% 7.14 0.06 4.20 4.10 0.93
12 29% 12.29 0.14 6.36 6.00 0.92

0.06, 0.06 0.25, 0.20 0.5 3 70% 1.25 0.00 1.02 1.08 0.96
6 48% 2.57 -0.06 2.26 2.24 0.96
9 38% 3.80 -0.11 3.58 3.52 0.94
12 29% 4.88 -0.23 4.96 4.82 0.95

0.06, 0.06 0.25, 0.20 0.25 3 70% 1.25 0.15 0.98 1.02 0.96
6 48% 2.57 0.36 2.01 2.07 0.95
9 38% 3.80 0.51 3.09 3.20 0.95
12 29% 4.88 0.68 4.24 4.36 0.95

.

Notes: βD = (0.5, 0.3, 0.3)′, βR = (0.5, 0.3, 0.3)′, βG = (1, 1, 1, 1, 1.5)′.Number of
repetitions: 500. Number of Subjects: n = 400.
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Table 4.3: Simulation Results: Performance of Proposed Inverse Weighted Estimator
λ00, λ01 r00, r01 V (Qi) t % at risk µ1(t) Bias∗ ESD∗ Bias† ESD† RE

0.03/0.03 0.20/0.25 0.5 3 71% 6.98 -0.06 0.57 0.04 0.77 1.82
6 53% 16.01 -0.23 1.35 0.10 1.75 1.64
9 40% 26.12 -0.50 2.25 0.27 2.92 1.61
12 29% 36.66 -0.82 3.34 0.35 4.31 1.59

0.03/0.03 0.20/0.25 0.25 3 71% 6.98 -0.03 0.48 0.04 0.56 1.37
6 53% 16.01 -0.21 1.12 0.18 1.34 1.41
9 40% 26.12 -0.36 1.96 0.02 2.26 1.28
12 29% 36.66 -0.70 2.96 0.00 3.34 1.20

0.03/0.06 0.25/0.25 0.5 3 59% 6.23 0.01 0.59 0.02 0.66 1.25
6 40% 12.84 -0.15 1.19 0.02 1.50 1.56
9 23% 18.98 -0.25 1.89 0.11 2.42 1.61
12 16% 24.38 -0.33 2.61 0.22 3.31 1.59

0.03/0.06 0.25/0.25 0.25 3 59% 6.23 -0.08 0.46 0.04 0.57 1.49
6 40% 12.84 -0.16 0.99 0.04 1.22 1.49
9 23% 18.98 -0.27 1.61 0.11 1.92 1.39
12 16% 24.38 -0.40 2.29 0.04 2.64 1.30

0.06/0.06 0.25/0.20 0.5 3 59% 4.99 0.00 0.45 0.03 0.57 1.61
6 40% 10.27 -0.04 0.94 0.13 1.18 1.59
9 23% 15.19 -0.07 1.48 0.19 1.82 1.54
12 16% 19.50 -0.13 2.03 0.20 2.47 1.49

0.06/0.06 0.25/0.20 0.25 3 59% 4.99 -0.04 0.39 0.00 0.45 1.32
6 40% 10.27 -0.11 0.86 0.05 0.98 1.28
9 23% 15.19 -0.13 1.35 0.06 1.53 1.28
12 16% 19.50 -0.19 1.88 0.10 2.09 1.23

Notes: βD = (0.5, 0.3, 0.3)′, βR = (0.5, 0.3, 0.3)′, βG = (1, 1, 1, 1, 1.5)′. Number
of repetitions: 500. Number of subjects: n = 400. *: Bias and ESD of estimator
in Chapter IV. †: Bias and ESD of estimator in Chapter II. RE: relative efficiency,
compared to the Chapter II estimator.
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Table 4.4: Simulation Results: Treatment effects of Inverse Weighted Estimator
λ00, λ01 r00, r01 V (Qi) t % at risk δ(t) Bias∗ ESD∗ Bias† ESD† RE

0.03/0.03 0.20/0.25 0.5 3 71% 1.40 0.03 0.83 0.01 0.86 1.08
6 53% 3.20 -0.12 1.84 0.07 1.88 1.04
9 40% 5.22 -0.18 3.31 0.14 3.16 0.91
12 29% 7.33 -0.18 4.89 0.07 4.79 0.96

0.03/0.03 0.20/0.25 0.25 3 71% 1.40 -0.02 0.76 0.04 0.74 0.95
6 53% 3.20 -0.01 1.61 0.04 1.62 1.01
9 40% 5.22 -0.09 2.78 -0.05 2.73 0.96
12 29% 7.33 0.01 4.18 -0.25 4.04 0.94

0.03/0.06 0.25/0.25 0.5 3 59% 0.75 0.00 0.95 -0.03 0.90 0.90
6 40% 3.17 0.05 2.07 -0.07 1.94 0.88
9 23% 7.14 0.17 3.29 -0.19 3.30 1.01
12 16% 12.29 0.13 4.67 -0.59 4.78 1.06

0.03/0.06 0.25/0.25 0.25 3 59% 0.75 0.04 0.83 -0.08 0.82 0.99
6 40% 3.17 0.01 1.74 -0.08 1.80 1.08
9 23% 7.14 -0.08 2.95 -0.16 2.97 1.02
12 16% 12.29 -0.13 4.33 -0.05 4.35 1.01

0.06/0.06 0.25/0.20 0.5 3 59% 1.25 -0.03 0.86 -0.03 0.87 1.03
6 40% 2.57 -0.09 1.77 -0.13 1.74 0.97
9 23% 3.80 -0.19 2.76 -0.06 2.76 0.99
12 16% 4.88 -0.27 3.84 0.11 3.83 0.99

0.06/0.06 0.25/0.20 0.25 3 59% 1.25 0.04 0.76 0.09 0.74 0.96
6 40% 2.57 0.03 1.62 0.16 1.59 0.97
9 23% 3.80 0.06 2.56 0.25 2.53 0.99
12 16% 4.88 0.08 3.62 0.29 3.52 0.95

Notes: βD = (0.5, 0.3, 0.3)′, βR = (0.5, 0.3, 0.3)′, βG = (1, 1, 1, 1, 1.5)′. Number
of repetitions: 500. Number of subjects: n = 400. *: Bias and ESD of estimator
in Chapter IV. †: Bias and ESD of estimator in Chapter II. RE: relative efficiency,
compared to the Chapter II estimator.
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Table 4.5: Analysis of CANUSA data: Parameter estimates for logistic
regression model and proportional hazards model for cen-
soring

pij(θ0) λCij(t)

Variable θ̂ p Odds Ratio β̂C p exp{β̂C}

SGA 0.34 0.00 1.41 - - -

KTV -1.37 0.00 0.25 - - -

CCR 0.02 0.01 1.02 - - -

GENDER 0.47 0.10 1.59 - - -

RACE 0.24 0.06 1.28 - - -

AGE -0.01 0.14 0.99 0.02 0.07 1.02

PCTLBM -0.04 0.00 0.96 -0.03 0.00 0.97

SALB - - - -0.05 0.02 0.95

CVD - - - 0.75 0.00 2.11

EVENT HISTORY - - - 0.07 0.04 1.08

.

Notes: pij(θ0) = P{Ai = 1|Zi}, with j = 0 for US patients and j = 1 for
Canadian patients. λCij(t): proportional hazards model for censoring p: p-value
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Table 4.6: Analysis of CANUSA data: Difference in length of hospital-
ization between American and Canadian patients over time
(Canadian minus American)

Months δ̂(t) ŜE{δ̂(t)} P-value
6 1.06 2.54 0.68

12 4.29 4.53 0.35

18 3.61 6.38 0.58

24 0.75 6.49 0.91
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The solid line represents American (j = 0) PD patients, and dashed line represents
Canadian (j = 1) PD patients.

Figure 4.1: Analysis of the CANUSA data: Estimated cumulative mean number of
days hospitalized for American and Canadian PD patients over time (mea-
sured in Months).
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(Canadian minus American). The dashed lines represent the corresponding 95%
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Figure 4.2: Analysis of the CANUSA data: point estimates and 95% confidence in-
tervals for the estimated cumulative mean difference in days hospitalized
δ̂(t) = µ̂1(t)− µ̂0(t), between American (j = 0) and Canadian (j = 1) PD
patients

68



CHAPTER V

Conclusion

5.1 Conclusion

In many biomedical and health related studies, the study subjects may experience

a sequence of recurrent events (e.g., repeated hospital admissions, multiple tumor

occurrences). Often times, there are outcome measures that describe either quanti-

tative or qualitative aspects of the recurrent event, which we define as “marks”. In

addition, the sequence of recurrent events may potentially be stopped by a terminat-

ing event (e.g., death), especially during clinical trials or epidemiologic studies. In

this dissertation, we developed three novel methodologies that take into account of

the association between the recurrent event, marks and the terminating event.

In Chapter II, we developed semi-parametric methods to contrast group-specific

means. We utilized a proportional hazards model for the terminating event hazards,

a proportional rates model for the recurrent event given survival and a generalised es-

timating equation type model for the marks given each recurrent event. The marginal

mean estimator is built from the above three component models. Our estimator takes

into account potential treatment imbalances between groups by averaging over the

marginal covariate distribution, analogous to average causal effect estimators.

Since study subjects often exhibit unmeasured heterogeneity (e.g., unequal risk of

death or different rates of disease recurrence, even after conditioning on covariates),
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we developed joint modelling techniques in Chapter III via a “frailty” term. We

assumed a piecewise constant proportional hazards model for the terminating event

hazards, a piecewise constant proportional rates model for the recurrent event rate

given survival and a Poisson regression model for the marks given hospitalization. The

variance of the frailty term quantifies the scale of the dependence among the recurrent

events, terminating event and marks. Unlike Chapter II where the parameters are

estimated separately for each of the individual models, parameters in Chapter III are

estimated simultaneously via maximum likelihood.

In Chapter IV, we propose inverse weighting methods to contrast the marginal

means. We employ an Inverse Probability of Censoring Weighting (IPCW) to account

for censoring and Inverse Probability of Treatment Weighting (IPTW) to tackle treat-

ment imbalances. The IPTW weight is built through a logistic regression model while

the IPCW weight is constructed through a proportional hazards model for censoring.

Our proposed estimator in this Chapter are considered solely non-parametric if the

two weights mentioned above are absent. This is in contrast to the proposed estimator

in Chapter II where we propose a regression model for each component process.

In summary, we developed three novel methods that accommodate the data struc-

ture of our interest. Each method addresses the problem from a different angle. There

are also pros and cons in employing each method. For example, by building separate

models for each process (as in Chapter II), ideally we can achieve efficiency gain if

the models describe the data well. On the other hand, we could achieve robust re-

sults by implementing an estimator similar to the one in Chapter IV even with model

misspecification. Heterogeneity effect is solely considered in Chapter III, which is

not modelled in either Chapter II or Chapter IV. Although we considered all three

processes (e.g., terminating event process, recurrent event process and mark process)

in Chapter II, III and IV, our proposed methods could still be implemented if we

only have two of the three processes. For example, if we only have terminating event
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process and recurrent event process, we can just treat the marks associated with each

recurrent event to be identity. Likewise, if we ignore the terminating event process,

our proposed methods could still be applied.

71



APPENDICES

72



APPENDIX A

Proofs of Theorems in Chapter II

The proof of consistency and the derivation of the large-sample distribution are

the same for µ̂1(t) and µ̂0(t), j = 0 or 1. Following the proofs for µ̂1(t) and µ̂0(t), the

consistency and distribution of δ̂(t) can be directly obtained, as is evident from the

development that follows.

Proof of Theorem II.1:

Note that µ̂j(t) = n−1
∑n

i=1 µ̂j(t; β̂D, β̂R, β̂G, Λ̂0j, R̂0j|Zi). µ̃j(t) = n−1
∑n

i=1

µj(t; βD, βR, βG,Λ0j, R0j|Zi) and µj(t) = E[µj(t; βD, βR, βG,Λ0j, R0j|Zi)]. Since β̂D
a.s.−−→

βD, β̂R
a.s.−−→ βR, β̂G

a.s.−−→ βG, Λ̂0j(t)
a.s.−−→ Λ0j(t) and R̂0j(t)

a.s.−−→ R0j(t), by Continuous

Mapping Theorem, µ̂j(t)
a.s.−−→ µ̃j(t), for all t ∈ (0, τ ]. Then applying the uniform

strong law of large numbers (USSL; Pollard, 1990), we have µ̃j(t)
a.s.−−→ µj(t).
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Proof of Theorem II.2:

We can first decompose n
1
2{µ̂j(t)− µj(t)} into six parts as follows

n
1
2{µ̂j(t)− µj(t)}

= n
1
2{µ̂j(t)− µ̃j(t)}+ n

1
2{µ̃j(t)− µj(t)}

= n−
1
2

n∑
i=1

{µ̂j(t; β̂D, β̂R, β̂G, Λ̂0j, R̂0j|Zi)− µ̂j(t; βD, β̂R, β̂G, Λ̂0j, R̂0j|Zi)} (A.1)

+n−
1
2

n∑
i=1

{µ̂j(t; βD, β̂R, β̂G, Λ̂0j, R̂0j|Zi)− µ̂j(t; βD, βR, β̂G, Λ̂0j, R̂0j|Zi)}(A.2)

+n−
1
2

n∑
i=1

{µ̂j(t; βD, βR, β̂G, Λ̂0j, R̂0j|Zi)− µ̂j(t; βD, βR, βG, Λ̂0j, R̂0j|Zi)}(A.3)

+n−
1
2

n∑
i=1

{µ̂j(t; βD, βR, βG, Λ̂0j, R̂0j|Zi)− µ̂j(t; βD, βR, βG,Λ0j, R̂0j|Zi)}(A.4)

+n−
1
2

n∑
i=1

{µ̂j(t; βD, βR, βG,Λ0j, R̂0j|Zi)− µj(t; βD, βR, βG,Λ0j, R0j|Zi)}.(A.5)

+n−
1
2

n∑
i=1

{µj(t; βD, βR, βG,Λ0j, R0j|Zi)− µj(t)} (A.6)

Next, we consider (A.1) to (A.6) in sequence. The first part can be expanded around

βD using a Taylor series as

(A.1) =
1

n

n∑
i=1

t∫
0

∂Ŝij(r
−|ZiD)

∂β
′
D

∣∣∣∣∣∣
βD∗

n
1
2 (β̂D − βD)ĝij(r|ZiG)dR̂ij(r)

= − 1

n

n∑
i=1

t∫
0

[
exp{−eβ

′
D∗ZiDΛ̂0(r) + β

′

D∗ZiD}ZiDΛ̂0j(r)

− exp{−eβ
′
D∗ZiDΛ̂0(r) + β

′

D∗ZiD}
r∫

0

S
(1)
j (u; βD∗)

nS
(0)
j (u; βD∗)

2dN
D
i (u)

 ĝij(r|ZiG)dR̂ij(r)

×n
1
2 (β̂D − βD)

a.s.−−→ −E[eβ
′
DZiD

t∫
0

Sij(u
−|ZiD)

u∫
0

{ZiD − z̄(r; βD)}dΛ0j(r)gij(u|ZiG)dRij(u)]

×n
1
2 (β̂D − βD).
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Through another Taylor expansion, we have n
1
2 (β̂D−βD) = ADj (βD)

−1
n−

1
2

∑n
i=1 U

D
ij (βD)

as n→∞, such that

(A.1) = −E[eβ
′
DZiD

t∫
0

Sij(u
−|ZiD)

u∫
0

{ZiD − z̄(r; βD)}dΛ0j(r)gij(u|ZiG)dRij(u)]

×ADj (βD)
−1
n−

1
2

n∑
i=1

UD
ij (βD)

= n−
1
2

n∑
i=1

ψij1(t),

as defined in Theorem II.2. Now consider the second part, as n→∞,

(A.2) =
1

n

n∑
i=1

t∫
0

{
Ŝij(r

−|ZiD)ĝij(r|ZiG)
∂dR̂ij(r|ZiR)

∂β′R
|βR=βR∗

}
n

1
2 (β̂R − βR)

=
1

n

n∑
i=1

t∫
0

Ŝij(r
−|ZiD)ĝij(r|ZiG)

×

{
ZiRe

βR∗ZiRdR̂0j(r) + eβR∗ZiR
−S(1)

j (r; βR∗)

S
(0)
j (r; βR∗)2

dNR
i (r)

}
n

1
2 (β̂R − βR)

a.s.−−→ −E

eβ′RZiR t∫
0

Sij(r
−|ZiD)gij(r|ZiG){ZiR − z̄(r; βR)}dR0j(r)

n 1
2 (β̂R − βR).

Through another Taylor expansion, n
1
2 (β̂R − βR) = ARj (βR)−1n−

1
2

∑n
i=1 U

R
ij (βR).

Therefore, as n→∞,

(A.2) = −E

eβ′RZiR t∫
0

Sij(r
−|ZiD)gij(r|ZiG){ZiR − z̄(r; βR)}dR0j(r)


×ARj (βR)−1n−

1
2

n∑
i=1

UR
ij (βR)

= n−
1
2

n∑
i=1

ψij2(t).
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where ψij2(t) is as defined in Theorem II.2. For the third part, we have:

(A.3) =
1

n

n∑
i=1

t∫
0

Ŝij(r
−|ZiD)

∂ĝij(r|ZiG)

∂β
′
G

gij(r|ZiG)dR̂ij(r)n
1
2 (β̂G − βG)

=
1

n

n∑
i=1

t∫
0

Ŝij(r
−|ZiD)

∂ĝij(r|ZiG)

∂β
′
G

gij(r|ZiG)dR̂ij(r)n
1
2 (β̂G − βG)

Through another Taylor expansion, n
1
2 (β̂G−βG) = E

[
∂UGij (βG)

∂β
′
G

]−1

n−
1
2UG

ij (βG). There-

fore,

(A.3)
a.s.−−→ E

 t∫
0

Sij(r
−|ZiD)

∂gij(r|ZiG)

∂β
′
G

gij(r|ZiG)dRij(r)

[E∂UG
ij (βG)

∂β
′
G

]−1

n−
1
2UG

ij (βG)

= n−
1
2

n∑
i=1

ψij3(t),

with ψij3(t) defined as in Theorem II.2. For the fourth part, as n→∞,

(A.4) =
1

n

n∑
i=1

t∫
0

n
1
2{Ŝij(r−|ZiD)− Sij(r−|ZiD)}ĝij(r|ZiG)dR̂ij(r; βR|ZiR)

=
1

n

n∑
i=1

t∫
0

n
1
2{exp{−Λ̂0j(r; βD)eβ

′
DZiD} − exp{−Λ0j(r)e

β
′
DZiD}}ĝij(r|ZiG)

×R̂ij(r; βR|ZiR)

= −
t∫

0

1

n

n∑
i=1

{e−Λ0j(r)e
β
′
DZiD eβ

′
DZiD}ĝij(r|ZiG)dR̂ij(r; βR|ZiR)

×n
1
2{Λ̂0j(r; βD)− Λ0j(r)}

a.s.−−→ −
t∫

0

E[eβDZiDSij(r|ZiD)gij(r|ZiG)dRij(r|ZiR)]n
1
2{Λ̂0j(r; βD)− Λ0j(r)}
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Using a zero-mean structure,

n
1
2{Λ̂0j(r; βD)− Λ0j(r)}

= n−
1
2


r∫

0

∑n
i=1 dN

D
i (u; βD)∑n

i=1 Yi(u)eβ
′
DZiD

− Λ0j(r)


= n−

1
2

n∑
i=1

r∫
0

dMD
ij (u; βD)

S
(0)
j (u; βD)

= n−
1
2

n∑
i=1

r∫
0

dMD
ij (u; βD)

s
(0)
j (u; βD)

+ n−
1
2

n∑
i=1

r∫
0

[S
(0)
j (u; βD)

−1
− s(0)

j (u; βD)
−1

]dMD
ij (u; βD)

The second term goes to zero by strong convergence, the Continuous Mapping The-

orem and USLLN. Therefore, we have

n
1
2{Λ̂0j(r; βD)− Λ0j(r)}

a.s.−−→ n−
1
2

n∑
i=1

r∫
0

dMD
ij (u; βD)

s
(0)
j (u; βD)

. (A.7)

Combining the above argument related to the forth part,

(A.4)
a.s.−−→ −

t∫
0

E[eβDZiDSij(r|ZiD)gij(r|ZiG)dRij(r|ZiR)]n−
1
2

n∑
i=1

r∫
0

dMD
ij (u; βD)

s
(0)
j (u; βD)

= n−
1
2

n∑
i=1

ψij4(t).

For the fifth part, as n→∞,

n
1
2{R̂0j(r; βR)−R0j(r)}

a.s.−−→ n−
1
2

n∑
i=1

r∫
0

dMR
ij (u; βR)

s
(0)
j (u; βR)

,
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Therefore, based on argument which parallel those in the derivation of (A.7)

(A.5) =

t∫
0

1

n

n∑
i=1

Sij(r
−|ZiD)gij(r|ZiG)eβRZiRn

1
2{dR̂0j(r; βR)− dR0j(r)}

a.s.−−→
t∫

0

1

n

n∑
i=1

Sij(r
−|ZiD)gij(r|ZiG)eβRZiRn−

1
2

n∑
i=1

dMR
ij (r; βR)

s
(0)
j (r; βR)

a.s.−−→
t∫

0

E{Sij(r−|ZiD)gij(r|ZiG)eβRZiR}n−
1
2

n∑
i=1

dMR
ij (r; βR)

s
(0)
j (r; βR)

= n−
1
2

n∑
i=1

ψij5(t).

For the last part, it is straightforward to show that (A.6) = n−
1
2

∑n
i=1 ψij6(t), as

n→∞.

At last, combining the above six terms, we have n
1
2{µ̂j(t)−µj(t)} = n−

1
2

∑n
i=1 ψij(t) =

n−
1
2

∑n
i=1

∑6
k=1 ψijk(t), completing the proof.
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APPENDIX B

Proofs of Theorems in Chapter IV

Proof of Theorem IV.1: µ̂j(t) = n−1
∑n

i=1

∫ t
0
wAij(θ̂)ŵ

C
ij(s)Gi(s)dN

R
i (s). Ac-

knowledging the fact that ŵCij(s)
p−→ wCij(s) and wAij(θ̂)

p−→ wAij(θ0), then applying

WLLN and using continuity,

µ̂j(t)
p−→

t∫
0

E[wAij(θ0)wCij(s)Gi(s)dN
R
i (s)] = µj(t).

n1/2{µ̂j(t)− µj(t)} = n1/2{µ̂j(t; ŵA, ŵC)− µ̂j(t;wA, ŵC)} (B.1)

+n1/2{µ̂j(t;wA, ŵC)− µ̂j(t;wA, wC)} (B.2)

+n1/2{µ̂j(t;wA, wC)− µj(t)} (B.3)

For the first term in the decomposition, we can write
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(B.1) = n−1/2

n∑
i=1

t∫
0

{wAij(θ̂)− wAij(θ0)}ŵCij(s)Gi(s)dN
R
i (s)

= n−1

n∑
i=1

t∫
0

(−1)jAij
1− pij(θ0)

pij(θ0)
I(θ0)−1n−1/2

n∑
l=1

Ul(θ0)ŵCij(s)Gi(s)dNi(s)

= H
′

j(t)I(θ0)−1n−1/2

n∑
i=1

Ui(θ0)

= n−1/2

n∑
i=1

ψij1(t),

where H
′
j(t) and I(θ0) are defined in Theorem IV.1. For the second term, we can

further decompose as follows

(B.2) = n1/2{µ̂j(t;wA, ŵC(t; β̂C , Λ̂
C
0j))− µ̂j(t;wA, ŵC(t; βC , Λ̂

C
0j))} (B.4)

+n1/2{µ̂j(t;wA, ŵC(t; βC , Λ̂
C
0j))− µ̂j(t;wA, ŵC(t; βC ,Λ

C
0j))} (B.5)

For the first piece in the above decomposition, we have

(B.4) =
1

n

n∑
i=1

t∫
0

wAij(θ̂)
∂wCij(s)

∂β
′
C

∣∣∣∣∣
β∗C

Gi(s)dN
R
i (s)

=
1

n

n∑
i=1

t∫
0

[exp


s∫

0

exp{β ′CZi(u)}dΛ̂C
0j(u) + β

′

CZi(s)

Zi(s)Λ̂
C
0j(s)

− exp


s∫

0

exp{β ′CZi(u)}dΛ̂C
0j(u) + β

′

CZi(s)


s∫

0

S
(1)
j (u; βC)

nS
(0)
j (u; βC)

2dN
C
i (u)]

×Gi(s)dN
R
i (s)n

1
2 (β̂C − βC)

a.s−→ E

wAij(θ̂) t∫
0

wCij(s) exp{β ′CZi(s)}
s∫

0

Zi(u)− z̄(u; βC)dΛ0j(u)Gi(s)dN
R
i (s)


×n1/2(β̂C − βC)
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Through a Taylor series expansion, we have n1/2(β̂C−βC) = ACj (βC)−1n−1/2
∑n

i=1 U
C
ij (βC)

as n→∞.

(B.4)
a.s−→ E[wAij(θ̂)

t∫
0

wCij(s) exp{β ′CZi(s)}
s∫

0

Zi(u)− z̄(u; βC)dΛ0j(u)Gi(s)dN
R
i (s)]

×ACj (βC)−1n−1/2

n∑
i=1

UC
ij (βC)

For the second piece in the above decomposition, we have

(B.5) =
1

n

n∑
i=1

t∫
0

wAij(θ0)n1/2

exp{
s∫

0

eβCZi(u)dΛ̂0j(u; βC)}

− exp{
s∫

0

eβCZi(u)dΛ0j(u; βC)}

Gi(s)dNi(s)

=
1

n

n∑
i=1

t∫
0

wAij(θ0) exp


s∫

0

eβCZi(u)dΛ0j(u; βC)

 eβCZi(s)

×n1/2{Λ̂0j(s; βC)− Λ0j(s; βC)}Gi(s)dNi(s)

a.s.−−→
t∫

0

E[wAij(θ0) exp{βCZi(s)}wCij(s)Gi(s)dNi(s)]n
1/2{Λ̂0j(s; βC)− Λ0j(s; βC)}

In the above term,

n1/2
{

Λ̂C
0j(s; βC)− ΛC

0j(s; βC)
}

= n−
1
2{

s∫
0

∑n
i=1 dN

C
i (u; βC)∑n

i=1 Yi(u)eβ
′
CZi(u)

− ΛC
0j(u; βC)}

= n−
1
2

n∑
i=1

s∫
0

dMC
ij (u; βC)

S
(0)
j (u; βC)

= n−
1
2

n∑
i=1

s∫
0

dMC
ij (u; βC)

s
(0)
j (u; βC)

+ n−
1
2

n∑
i=1

s∫
0

[S
(0)
j (u; βC)

−1
− s(0)

j (u; βC)
−1

]dMC
ij (u; βC)

The second term goes to zero by the almost sure convergence, continuous mapping

81



theorem and USLLN. Therefore, we have

n
1
2{Λ̂C

0j(s; βC)− ΛC
0j(s; βC)} a.s.−−→ n−

1
2

n∑
i=1

s∫
0

dMC
ij (u; βC)

s
(0)
j (u; βC)

.

Therefore, combining the above argument, we obtain

(B.2)
a.s.−−→ E

wAij(θ̂) t∫
0

wCij(s) exp{β ′CZi(s)}
s∫

0

{Zi(u)− z̄(u; βC)} dΛ0j(u)Gi(s)dN
R
i (s)


×ACj (βC)−1n−1/2

n∑
i=1

UC
ij (βC)

+

t∫
0

E[wAij(θ0) exp{βCZi(s)}wCij(s)Gi(s)dNi(s)]n
− 1

2

n∑
i=1

s∫
0

dMC
ij (u; βC)

s
(0)
j (u; βC)

= n−1/2

n∑
i=1

ψij2(t),

with ψij2(t) defined in Theorem IV.1. For the last term, it is straightforward that

(B.3) = n−1/2

n∑
i=1

t∫
0

{wAij(θ0)wCij(s)Gi(s)dNi(s)− dµj(s)}

= n−1/2

n∑
i=1

ψij3(t)

After combining (B.1)-(B.3), we have, n1/2{µ̂j(t)− µj(t)} = n−1/2
∑n

i=1 ψij(t)

= n−1/2
∑n

i=1

∑3
k=1 ψijk(t), which is a scaled sum of independent and identically dis-

tributed zero mean random variates. By the Central Limit Theorem, n1/2{µ̂j(t) −

µj(t)} converges to a zero mean Gaussian process with covariance function σj(s, t) =

E[ψij(s)ψij(t)].
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