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Abstract 

 

Mechanisms and Regulation of Transforming Growth Factor Superfamily  

Mediated Gene Expression 

 

The TGF-β superfamily, including TGF-βs and BMPs, is critical for normal 

embryonic development, as well as disease progression, and is tightly regulated both 

within and out of cells. In vitro, TGF-β signaling mediated epithelial-mesenchymal 

transition (EMT) by activating mesenchymal genes and suppressing epithelial markers. 

We discovered that Wnt11 was directly regulated by the mediators of TGF-β signaling, 

Smad proteins. The induction of Wnt11 expression was critical for TGF-β associated 

activation of mesenchymal marker genes. Instead of modulating Smad proteins or 

activating canonical/β-Catenin signaling, Wnt11 controlled mesenchymal gene activation 

through JNK signaling. Our findings, for the first time, demonstrated the cooperativity 

among the TGF-β, Wnt11 and JNK signaling pathways in the context of EMT. Both 

TGF-β and BMP signaling are involved in renal fibrosis, but with opposite functions. 

TGF-β is a well known pro-fibrogenic factor, while BMP counteracts TGF-β to protect 

kidney from injuries. In our study, transgenic expression of kielin/chordin-like protein 

(KCP), an inhibitor of TGF-β and enhancer of BMP7, in renal epithelia attenuated the 

upregulation of mesenchymal genes in the injured kidney of unilateral ureteral 

obstruction (UUO) mouse model. These data demonstrated the importance of the balance 

of TGF-β and BMP signaling in the progression of renal fibrosis and provided a new 

potential therapeutic target. During kidney development, both BMP7 and Tle4, a 
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common corepressor, are present in metanepheric mesenchymal cells. However, their 

relationship is unknown. Here, we found that overexpression of Tle4 not only activated a 

BMP reporter, but also enhanced and sustained the upregulation of endogenous Id1 gene 

induced by BMP7. The effect of Tle4 on BMP signaling was through mediating Smad7 

protein, for Tle4 repressed Smad7 expression and overexpression of Smad7 totally 

abolished the activation of the BMP reporter by Tle4. Our study provides a new potential 

mechanism for the regulation of BMP signaling in the kidney development.  
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Chapter I 

General Introduction 

 

The transforming growth factor β (TGF-β) signaling pathway 

TGF-β Signal transduction 

Since the purification of its first ligand, TGF-β1, from human platelets in 1983 

(Assoian et al., 1983), much of research has focused on this superfamily and, more than 

30 ligands have been discovered in the human genome (Feng and Derynck, 2005; 

Massague, 2008). According to their sequence similarity and biological effects, the TGF-

β superfamily can be divided into two distinct groups, the TGF-β/activin/nodal subfamily 

and bone morphogenetic proteins (BMPs)/anti-muellerian hormone (AMH)/growth and 

differentiation factors (GDFs) subfamily. The TGF-β signaling regulates a diverse set of 

cell processes. For example, TGF-βs caused cell cycle arrest in epithelial and 

hematopoietic cells and controlled mesenchymal cell proliferation and differentiation, 

while BMPs were important for the differentiation of osteoblasts and the survival of renal 

mesenchymal cells (Massague, 1998; Patel and Dressler, 2005; Reddi, 1998). In fact, the 

TGF-β superfamily plays a key role throughout the whole embryonic development 

process and is involved in the formation of nearly all organs. 

Although there are a number of ligands and several receptors, the general 

signaling transduction for TGF-β superfamily is relatively simple. In mammals, the 

binding of TGF-β ligand to its receptor, TGF-β receptor type II, leads to the recruitment 

and phosphorylation of TGF-β receptor type I (Derynck and Zhang, 2003). The activated 

TGFβRI is a serine/threonine kinase that transduces the signal through phosphorylating 
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receptor-activated Smad proteins (R-Smads), which are the main mediators for TGF-β 

signaling. Commonly, for TGF-βs, the R-Smads are Smad2 and 3, while for BMPs, they 

are Smad1, 5 and 8. The phosphorylated R-Smads usually form a heteromeric complex 

with a common partner, Smad4 (Co-Smads), and translocate into the nucleus. Normally, 

the Smad complex requires other transcriptional factors to activate or repress target gene 

expression (Itoh et al., 2000; Labbe et al., 2000; Sano et al., 1999). Besides R-Smads and 

Co-Smads, TGF-β signaling can induce the expression of a third group of Smad proteins, 

Smad 6 and 7 (Inhibitory Smads, I-Smads), which inhibits TGF-β signaling through 

competitive receptor binding and blocking the interaction between R-Smads and Co-

Smads (Hayashi et al., 1997; Imamura et al., 1997) (Figure 1-1). 

Since the TGF-β superfamily is widely involved in embryogenesis and 

subsequent organogenesis, it interacts with other signaling pathways, such as Wnt and 

Notch signaling. Also, because the TGF-β superfamily plays a critical role in a variety of 

biological process, it is highly regulated at different levels, from ligand releasing to 

mediator activation, and finally to transcriptional complex formation and target gene 

expression. In the following, we will discuss how TGF-β signaling is regulated and 

functions synergistically with other signaling pathways in a defined biological context. 

 

Regulation of receptor activation 

Despite the diversity of ligands in the TGF-β superfamily, they all share similar 

sequence and structure features. The active form of TGF-β cytokines is a homodimer of 

two 12.5 kd polypeptides stabilized by hydrophobic interactions and further joined by a 
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disulfide bond (Feng and Derynck, 2005; Shi and Massague, 2003). As for TGF-β 

isoforms (TGF-β1, 2, 3), its mature form is cleaved from homodimeric proproteins (pro-

TGF-β) and interact with its N-terminal peptides, called the latency-associated proteins 

(LAPs), to form a small latent TGF-β complex (SL-TGF-β). When secreted from cells, 

the SL-TGF-β complex further interacts with the latent-TGF-β-binding protein (LTBP) 

through disulfide linkages to form the TGF-β large latent complex (LLC), which may be 

covalently anchored to the extracellular matrix (ECM) for storage (Annes et al., 2003; 

Hyytiainen et al., 2004). Whether the ligands from other TGF-β subfamily undergo the 

same secreting process is not clear. 

Based on their structural and functional properties, the TGF-β receptor family is 

catalogued into two groups: type I receptors and type II receptors. Up to now, 7 type I 

and 5 type II recptors are dedicated to TGF-β signaling in the human genome (Manning 

et al., 2002) (Table 1-1).  Both types of the receptors are serine/threonine kinases, sharing 

a similar structure as an N-terminal extra-cellular ligand binding domain, a 

transmembrane region and a C-terminal serine/threonine kinase domain (Shi and 

Massague, 2003). Compared to the type II receptor, the type I receptors have an extra 

domain between the transmembrane region and the kinase domain, termed GS domain 

(sequence as SGSGSG), which can be phosphorylated by the type II receptors and critical 

for the signaling activation (Souchelnytskyi et al., 1996; Wrana et al., 1994). As for the 

interaction between the ligands and receptors, there are two distinct modes represented 

separately by TGF-β/Activin subfamily and BMP subfamily. TGF-β and Activin showed 

a high affinity for the type II receptors and the type I receptor was recruited only after the 

ligand-type II receptor complex was formed (Massague, 1998). In contrast, from the 
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analysis of binding affinity, BMPs interacted with the type I receptors first, then the type 

II receptors (Liu et al., 1995). No matter the sequence, the activation of the type I 

receptors and its interaction with Smad proteins required the phosphorylation of its GS 

domain by type II receptors (Feng and Derynck, 2005; Massague, 1998; Shi and 

Massague, 2003). 

The regulation of TGF-β receptor activation comprises two aspects: (1) 

controlling the access of TGF-β ligands to their receptors; (2) controlling the activation of 

type I receptors. Two classes of molecules with opposing function regulate the access of 

TGF-β ligands to their receptors (Massague and Chen, 2000; Shi and Massague, 2003). 

One class consists of a variety of soluble proteins that sequester TGF-β ligands and 

prevent their binding to the receptors. According to their targets, they can be further 

divided into three groups: (1) LAP, the small proteoglycan Decorin, the circulating 

protein α2-macroglobulin for TGF-βs; (2) Noggin, Chordin/SOG and DAN/Cerberus for 

BMPs; (3) follistatin for Activins and BMPs. The other class, membrane-anchored 

proteins, including betaglycan and endoglin may function as accessory receptors to 

enhance respective TGF-β signaling. 

As we discussed earlier, when the three TGF-β subfamily isoforms are secreted 

from cells, they are trapped by LAP and anchored to ECM by LTBP. The formation of 

this LLC prevents the mature TGF-β factors from binding to type II TGF-β receptor 

(Annes et al., 2003). Several factors or physiological condition changes can destroy this 

LLC and help releasing the active TGF-β ligands. First, a number of proteases, including 

plasmin and matrix metallopeptidase 2 and 9 (MMP2 and 9) can activate LLC through 

either proteolytic cleavage of LTBP (Taipale et al., 1994) or LAP (Lyons et al., 1988). 
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Second, thrombospondin-1 (TSP1) can physically interacts with LAP and induce a 

conformational change to release mature TGF-β ligands (Murphy-Ullrich and Poczatek, 

2000). Importantly, TSP1 null mice shared a similar phenotype with the TGF-β1 null 

mice (Crawford et al., 1998) and also TSP1 blocking peptides reduced the TGF-β 

activation in a rat fibrotic renal disease model (Daniel et al., 2004), suggesting that TSP1 

is responsible for a significant proportion of TGF-β activation in vivo. Third, it has been 

reported that TGF-β1 LAP was a ligand for the integrin αvβ6, and αvβ6-expressing cells 

induced spatially restricted activation of TGF-β1 (Munger et al., 1999). Furthermore, 

other integrins, such as αvβ8 and αvβ3 can function as a docking point for MMPs to 

activate TGF-β signaling (Mu et al., 2002; Rolli et al., 2003). Finally, some physiological  

changes in the microenvironment can destroy LLC, such as increasing reactive oxygen 

species (ROS) (Barcellos-Hoff et al., 1994) or decreasing pH (Lyons et al., 1988). 

Although the length and structure vary a lot among BMP antagonists, such as 

Noggin, Chordin/Sog and DAN family, they all share a common cysteine-rich region. For 

example, Noggin contains a carboxy-terminal cysteine-rich (CR) domain, while Chordin 

contains four cysteine-rich repeats (Massague and Chen, 2000). The CR domains of the 

antagonists form homodimers to match the structure of BMP ligand homodimers. The 

crystal structure of the Noggin-BMP7 complex directly showed that Noggin inhibited 

BMP7 by blocking the surfaces that were required to interact with the type I and type II 

BMP receptors (Groppe et al., 2002). Those antagonists are expressed during 

embryogenesis, and critical for the dosal-ventral patterning and left-right asymmetry. 

Because those antagonists are important for the embryonic development, their expression 

was highly regulated. For example, in chicken, expression of Caronte, which belongs to 
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the DAN family, was induced by the sonic hedgehog signaling (Rodriguez Esteban et al., 

1999) and its diffusion was restricted by Lefty1(Yokouchi et al., 1999). Once the 

antagonist-BMP complex was formed, it could be further activated through proteolytic 

cleavage by secreted metalloproteases, like Tolloid in Drosophila and zebrafish (Blader 

et al., 1997; Marques et al., 1997), Xolloid in Xenopus (Piccolo et al., 1997), and BMP1 

in human (Takahara et al., 1994). The effects of these metalloproteases on the BMP 

inactive complexes may be antagonist-dependent, since Xolloid in vivo specifically block 

the anti-BMP action of Chordin, but not Noggin or Follistatin (Blader et al., 1997). 

Interestingly, although most of the BMP antagonist shared the CR domain, not all 

proteins containing CR domain counteract BMP. Instead of blocking BMP signaling, the 

CR domain protein KCP and CV2 enhanced BMP-receptor interactions (Ikeya et al., 

2006; Lin et al., 2005). Thus, the interaction between the CR domain proteins and other 

proteins, such as ECM, may be also important for their function. 

Follistatin is a soluble secreted glycoprotein that could repress Activin signaling 

through direct ligand binding (de Winter et al., 1996). Besides Activin, it could also block 

BMP signaling through the similar mechanism (Iemura et al., 1998). 

Another class of proteins that could facilitate the delivery of TGF-β ligands to the 

receptors are the membrane-anchored proteins, for which betaglycan is a good example. 

Betaglycan comprised a large extracellular domain for TGF-β ligand binding, a single-

pass transmembrane region, and a short intracellular domain associated with receptor 

trafficking (Bilandzic and Stenvers, 2011). It binds all three TGF-β isoforms with a 

preference for TGF-β2 (Esparza-Lopez et al., 2001), which could partially compensate 

the relatively low intrinsic affinity of TGF-β2 for type II TGF-β receptors (Cheifetz and 
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Massague, 1991). On the other hand, Betaglycan can also bind to inhibin and facilitates 

its access to Activin receptors, thus blocking Activin from its receptor (Lewis et al., 

2000). Recent work has also focused on function of the intracellular domain of 

Betaglycan. It revealed that the scaffolding protein β-arrestin2 interacted with Betaglycan 

and mediate its internalization with type II receptor through a clathrin-independent/lipid 

raft pathway, which repressed TGF-β signaling (Chen et al., 2003). Thus, the eventual 

outcome of these membrane-anchor proteins on TGF-β signaling may be highly 

dependent on cellular context. 

Besides the interaction control between the TGF-β ligands and their receptors, the 

signal transduction is also regulated on the type I receptor activation. As we mentioned 

above, the GS domain in type I TGF-β receptor is important for its activation. It has been 

reported that the immunophilin FKBP12 bound to this region, capping the type II TGF-β 

receptor phosphorylation sites and stabilizing the inactive conformation of type I receptor 

(Huse et al., 1999). The BMP and Activin receptor membrane bound inhibitor protein 

(BAMBI), a pseudoreceptor with a similar homodimerization interface of the type I 

receptor, can prevent the formation of receptor complexes, thus blocking BMP and 

Activin, as well as TGF-β signaling (Onichtchouk et al., 1999). 

 

Regulation of Smad proteins 

Smad proteins are the major mediators for the TGF-β signaling. Based on their 

structure and function, they can be divided into three groups: (1) receptor Smads (R-
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Smads, Smad 1, 2, 3, 5 and 8); (2) common Smad (Co-Smad, Smad4); (3) inhibitory 

Smad (I-Smad, Smad6 and 7). 

Generally, Smad1 and its close homologues Smad5 and Smad8 are substrates for 

the type I BMP receptors and respond to BMP signals, while Smad2 and 3 are the type I 

TGF-β and Activin receptors and respond to TGF-β and Activin signals (Massague, 

1998). In fact, the activation of a particular type of R-Smad is only associated with the 

specific type I receptors and has no relationship with the ligands. For example, in 

endothelial cells, TGF-β ligands activated the Activin receptor-like kinase1 (ALK1) and 

cause the phosphorylation of Smad1, 5 and 8 (Goumans et al., 2002). The Co-Smad is not 

ligand restricted and does not interact with receptors. It can form a complex with all R-

Smad, but sometimes, its existence is dispensable. For example, the ubiquitious nuclear 

protein Transcriptional Intermediary Factor 1γ (TIF1γ) selectively bound phosphorylated 

Smad2 and 3 in competition with Smad4, so that TIF1γ and Smad4 mediated different 

biological effects of TGF-β in human hematopoietic stem/progenitor cells (He et al., 

2006). In spite of their different properties, the R-Smads and Co-Smads have similar 

structure. They all contain two conserved structural domains, the N-terminal Mad-

homolgy 1(MH1) domain and the C-termianl MH2 domain, separated by a more variable 

linker region (Ross and Hill, 2008; Shi and Massague, 2003). In addition, the R-Smads 

have a conserved SXS motif at their extreme C-termini, which is the site for receptor-

regulated phosphorylation. The MH1 domain of Co-Smads and R-Smads, except for the 

most common isoform of Smad2, exhibits sequence-specific DNA binding ability (Shi et 

al., 1998). The MH1 domain is also involved in nuclear import (Xiao et al., 2000) and has 

an autoinhibitory effect on their MH2 domain (Hata et al., 1997). The MH2 domain 
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confers the interaction between Smads and receptors (Lo et al., 1998) and is responsible 

for the formation of homomeric as well as heteromeric Smad complexes (Wu et al., 1997). 

Both the MH1 and MH2 domain can interact with a variety of transcriptional factors, 

activators and repressors, which largely increase the diversity of the biological effects of 

TGF-β signaling (Ross and Hill, 2008). The linker region is relative divergent among 

Smads, but it contain several phosphorylation sites that are important for the regulation. It 

also has a PY motif, which can be recognized by Smurf proteins for its ubiquitination 

(Izzi and Attisano, 2004). 

There are two types of I-Smads in vertebrate, Smad6 and Smad7. The MH1 

domain of I-Smads is less conserved to that of R-Smads or Co-Smads, however, their 

MH2 domain shows a similar amino acid sequence to other Smad proteins, but lack the 

C-terminal sites for receptor-mediated phosphorylation (Imamura et al., 1997; Nakao et 

al., 1997). Because of the similarity in the MH2 domain, I-Smads compete with R-Smads 

to interact with either type I receptors or Co-Smads, thus abolishing the transduction of 

TGF-β and BMP signaling. Generally, it is believed that Smad7 inhibits TGF-β/Activin 

and BMP signaling, whereas Smad6 works primarily on the BMP signaling (Hata et al., 

1998; Hayashi et al., 1997; Imamura et al., 1997; Nakao et al., 1997). More recently, 

another mechanism was found for the regulation of TGF-β signaling by I-Smads. It is 

reported that Smad7 could work as a connector to link Smurf ubiquitin ligases to the 

membrane receptors, resulting in the ubiquitination of the receptors and effectively 

blocking the signaling (Kavsak et al., 2000; Suzuki et al., 2002). 

Besides I-Smads, other proteins, such as Smad Anchor for Receptor Activation 

(SARA) and a cytoplasmic isoform of the promyelocytic leukemia protein (cPML), also 
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mediate the interaction between R-Smads and type I receptors. SARA is a multidomain 

protein, containing a Smad-binding domain in the middle and a FYVE phospholipid-

binding domain, which is important for the localization of SARA but not its interaction 

with R-Smads or TGF-β receptors. SARA enhanced the interaction between Smad 

proteins and activated TGF-β receptors either on the plasma membrane or on the early 

endosomes. Once the R-Smads were activated by the receptors, its interaction with 

SARA was weakened and the Smad-SARA-receptor complex was disassociated (Di 

Guglielmo et al., 2003; Tsukazaki et al., 1998). Meanwhile, SARA is also important for 

the receptor turnover and prevents its degradation mediated by the Smad7-Smurf 

complex (Di Guglielmo et al., 2003). The cPML is required for the association between 

Smad2/3 and SARA, and enhances the accumulation of SARA and TGF-β receptor in the 

early endosome through direct interaction with Smad2/3 and SARA (Lin et al., 2004). 

The function of cPML is interfered by a homeodomain protein, TG-interacting factor 

(TGIF), working in concert with c-Jun (Seo et al., 2006). Some modifications on the R-

Smad proteins can also regulate their interaction with receptors. It has been shown that 

the E3 ligase Itch promoted ubiquitination of Smad2 and facilitated complex formation 

between the TGF-β receptors and Smad2 proteins (Bai et al., 2004). 

After R-Smad proteins are phosphorylated by the type I receptors, they will form 

a complex with Co-Smads and translocate into the nucleus, where they either activate or 

repress target gene expression. This translocation process is another regulation point for 

the TGF-β signaling transduction. The Smad complex can be imported into the nucleus 

either through importin-dependent mechanism or importin-independent mechanism. First, 

it has been shown that the MH2 domain of Smad proteins could interact directly with the 
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FG repeat regions on nucleoporins Nup153 and 214, thus helping transport the Smad 

complex into the nucleus independent of importin proteins (Xu et al., 2002). In addition, 

a conserved lysine-rich sequence in the MH1 domain of Smads could interact with 

importins (Kurisaki et al., 2001). However, the efficiency for the Smad translocation 

through the importin-dependent mechanism is lower than that through the importin-

independent mechanism (Xu et al., 2003). The modifications of R-Smads, especially in 

the linker region are critical for their translocation and transcriptional ability. It has been 

reported that the linker region of Smad1 could be phosphorylated by the Erk MAP 

kinases, which were activated by epidermal growth factor (EGF), fibroblast growth factor 

(FGF) or stress. Phosphorylation prevented the nuclear accumulation of Smad1 and 

reduced its transcriptional activity (Kretzschmar et al., 1997; Pera et al., 2003; Sapkota et 

al., 2007). However, in contrary to Smad1, the phosphorylation of Smad2 and 3 by MAP 

kinases or upstream MEK kinase enhanced their translocation and gene transactivation 

(Brown et al., 1999; de Caestecker et al., 1998; Funaba et al., 2002). Thus, the overall 

outcome of MAPK-related phosphorylation of R-Smad proteins is cellular context-

dependent and may be affected by other signaling pathways. Other kinases can also 

phosphorylate R-Smad proteins. It has been shown that G1 cyclin-dependent kinases 

Cdk2 and Cdk4 phosphorylated Smad3 at its linker region and negatively regulated the 

TGF-β mediated block of cell cycle progression (Matsuura et al., 2004). 

Calcium/Calmodulin-dependent kinase II (CamKII) phosphorylated Smad2, 3 and 4 in 

the MH1 and linker region, preventing Smad complex formation and nuclear 

translocation (Wicks et al., 2000). 
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The degradation of Smad proteins and their dephosphorylation are equally 

important in regulating the TGF-β pathway and terminate its signaling. Usually, the 

active Smad proteins are the targets of homologous to E6-AP carboxyl terminus (HECT) 

domain E3 ligases and undergo the ubiquitin/proteasome mediated degradation pathway. 

The first HECT domain E3 ligase for Smad proteins was discovered in 1999 and called 

the HECT-domain Smad ubiquitination regulatory factors (Smurf) E3 ligase, Smurf1 

(Zhu et al., 1999), followed by the discovery of another member in this family, Smurf2 in 

2001 (Zhang et al., 2001). Smurf proteins interact with the PPXY motif of R-Smad 

proteins directly through their WW domains and it is believed that Smurf1 is responsible 

for the degradation of Smad1, while Smurf2 degrades both Smad1 and Smad2 (Zhang et 

al., 2001; Zhu et al., 1999). Besides Smurf1 and 2, the R-Smads are also degraded 

through other E3 ligase complex. For example, Smad3 physically interacted with 

Regulator of Cullins 1 (ROC1) and is degraded by Skp/cullin/F-box E3 ligase (SCF) 

complex (Fukuchi et al., 2001). Since Smad4 lacks a PPXY motif, its degradation by the 

HECT domain E3 ligases was mediated by the interaction with R-Smads (Moren et al., 

2005). The degradation of Smad4 could also be mediated through SCF complex (Wan et 

al., 2004). The mechanisms for the degradation of I-Smad proteins were similar to that of 

R-Smads. Furthermore, Smad7 proteins could function as an adapter to link Smurfs to the 

TGF-β receptors, thus facilitating the receptor degradation. This process may be further 

regulated by some other accessory proteins, such as WW domain-containing protein 1 

(WWP1) and ubiquitin-specific peptidase 15 (USP15) (Ebisawa et al., 2001; Eichhorn et 

al., 2012; Komuro et al., 2004). Additional modifications on Smad proteins also affect 

their degradation. The sumoylation of Smad4 by SUMO1/Ubc9 prolonged its half-life 
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because this modification competed with ubiquition (Lin et al., 2003a; Lin et al., 2003b). 

Smad7 could be acetylated by p300, thus preventing it from Smurf-mediated degradation 

(Goumans et al., 2002). This effect was counteracted by several class I, II and III histone 

deacetylases (HDAC) (Kume et al., 2007; Simonsson et al., 2005). Another way to 

terminate the TGF-β signaling is to remove the active phosphorylation of R-Smads at the 

C-terminal SXS motif. This could be achieved by pyruvate dehydrogenase phosphatase 

(PDP) and RNA polymerase II small C-terminal phosphatases (SCPs) for Smad1 (Chen 

et al., 2006; Knockaert et al., 2006), and Mg2+-dependent phosphatase PPM1A  for 

Smad2 and 3(Lin et al., 2006). 

 

Smad-dependent gene expression 

As transcriptional factors, R-Smads and Co-Smads, but not Smad2, have both 

DNA binding ability (except Smad2) through MH1 domain and transactivation ability 

through the linker region (de Caestecker et al., 2000; Wang et al., 2005). However, the 

Smad complex still requires the association with other transcription factors to regulate 

target genes more specifically and precisely. Both the MH1 and MH2 domains of Smad 

proteins can mediate the interaction with a long list of Smad interacting proteins, 

including the basic helix-loop-helix (bHLH) family, like E2F4/5(Chen et al., 2002) and 

Max (Grinberg and Kerppola, 2003), basic leucine zipper (bZIP) family, like c-Fos and c-

Jun (Zhang et al., 1998), Forkhead family, like FoxO 1, 3 and 4 (Seoane et al., 2004), 

Runx family, like Runx2 (Zhang et al., 2000), Zinc finger protein family, like Sp1(Feng 

et al., 2000) and YY1 (Lee et al., 2004) and mediators of other signaling pathway, like β-
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catenin (Zhou et al., 2012) and Notch intracellular domain (NICD) (Itoh et al., 2004). The 

interaction between Smad proteins and other transcriptional factors not only affects the 

number of target genes regulated by TGF-β signaling, but also functions as a platform, 

enabling the crosstalk between TGF-β and other signaling pathways. Furthermore, the 

Smad proteins also interact with coactivators or corepressors, which are equally 

important in mediating target gene expression. The coactivators, such as SMIF, Swift and 

Zeb1, enhanced Smad-dependent gene activation (Bai et al., 2002; Postigo et al., 2003; 

Shimizu et al., 2001), while the corepressors, such as TGIF, c-Myc and SnoN help Smads 

repress target genes (Feng et al., 2002; Luo, 2004; Wotton et al., 1999). On the chromatin 

level, the gene activation mediated by the Smad complex involved the recruitment of 

histone acetyltransferase CBP/p300 to the promoter sites, either through its direct 

interaction with Smads or through the coactivators (de Caestecker et al., 2000; Feng et al., 

1998; Postigo, 2003). Histone methylation, especially histone 3 lysine 4 (H3K4) tri-

methylation, may be also involed in Smad-dependent gene activation (Patel et al., 2007; 

Shimizu et al., 2001). On the other hand, the recruitment of C-terminal-binding protein 1 

(CtBP) repressor and histone deacetylases (HDACs) is critical for Smad-mediated gene 

repression (Akiyoshi et al., 1999; Izutsu et al., 2001; Wotton et al., 1999). Besides 

regulating the histone modification and chromatin remodeling, Smad proteins could 

further repress gene expression by sequestering the transcriptional factor from its 

coactivators. For example, Smad3 could bind with MEF2, blocking its interaction with 

the coactivator GRIP1, thus inhibiting myogenic differentiation (Liu et al., 2004). 

 

Smad-independent TGF-β signaling transduction 
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Many other signaling pathways may participate in TGF-β mediated biological 

responses. First, TGF-β can activate the MAPK pathway. In monkey derived COS7 cells, 

overexpressed human X-chromosome-linked inhibitor of apoptosis protein (XIAP) linked 

TAB1 to type I BMP receptor and this interaction may be necessary for the activation of 

TAB1-associated protein, TAK1, which belongs to the MAP kinase kinase kinase 

(MAPKKK) family (Yamaguchi et al., 1999). However, evidence for the direct 

interaction between the endogenous XIAP, TAB-TAK complex and type I BMP receptor, 

is still missing. Similarly, in mouse mammary epithelial (NMuMG) cells or human 

fibrosarcoma cells, p38 MAPK or JNK signaling was activated by TGF-β (Hocevar et al., 

1999; Yu et al., 2002), but the mechanisms involving this activation were poorly 

characterized. Besides MAPK cascades, TGF-β could also activated small GTPases, like 

RhoA and Cdc42, which are important for TGF-β mediated epithelial-mesenchymal 

transition in epithelial cells and re-organization of stress fibers in human prostate 

carcinoma cells (Bhowmick et al., 2001; Edlund et al., 2002). However, like the MAPK 

pathways, little evidence showed that the activation of these small GTPases is through 

TGF-β receptors, and not through secondary effects. Finally, it has been shown that upon 

the ligand-dependent activation, type I TGF-β receptor physically bound to Bα, a WD-40 

repeat subunit of phosphatase 2A (PP2A), which in turn dephosphorylated and inactivate 

p70(s6k), inducing cell cycle G1 arrest (Griswold-Prenner et al., 1998; Petritsch et al., 

2000). This mechanism is partial responsible for the TGF-β induced epithelial cell G1 

arrest. 
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Epithelial-Mesenchymal Transition (EMT) 

The epithelial mesenchymal transition (EMT) is a common biological process, 

which occurs when epithelial cells lose their polarized morphology and tight junctions 

and acquire mesenchymal properties, such as enhanced migratory capacity, elevated 

resistance to apoptosis and increased production of extracellular matrix. In fact, EMT 

occurs throughout development, from embryogenesis to the organ formation, and is 

involved in a variety of diseases. Based on the functional distinctions, EMT can be 

further divided into three types: (1) EMT that occurs during normal development 

processes, such as implantation, embryo formation and organ development. The 

mesenchymal cells derived from this type of EMT can also undergo a mesenchymal-

epithelial transition (MET) to generate secondary epithelia; (2) EMT that is associated 

with wound healing, tissue regeneration and organ fibrosis. This type of EMT is 

frequently triggered by ongoing inflammation, however, its real existence in vivo remains 

controversial; (3) EMT that is related to cancer progression, especially the metastasis of 

carcinoma cells. One prominent characteristic for this type of EMT is its heterogeneity 

with some cells keeping most of epithelial traits and acquiring some mesenchymal 

properties, while others shedding all vestiges of their epithelial origin and cecoming fully 

mesenchymal (Kalluri and Weinberg, 2009; Thiery et al., 2009; Zeisberg and Neilson, 

2009). 
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Type I EMT 

Type I EMT is involved in several stages during development. First, during 

mouse gastrulation, epiblast cells at the primitive streak, which is a transient structure 

forming along the posterior midline of the embryo, undergo the EMT (also known as 

epiblast-mesoderm transition) and then ingress between the epiblast and visceral 

endoderm to participate in the formation of either the mesoderm or the definitive 

endodermal germ layers (Ciruna and Rossant, 2001). Another EMT occurs in neural-crest 

cells, which is a transient population of cells at the boundary between epidermal and 

neural territories, to promote migration, thus giving rise to many different derivatives 

(Thiery and Sleeman, 2006). Subsequently, EMT is involved in the organ formation. For 

example, EMT is necessary for the regression of the Mullerian duct in male reproductive 

tracts (Zhan et al., 2006). Also, endothelial cells from the atrioventricular canal undergo 

EMT to invade the cardiac jelly and form the endocardial cushion, which will later 

assemble into the atrio-ventricular valvulo-septal complex (Nakajima et al., 2000). 

 

Type II EMT 

Type II EMT was thought to occur in the fibrosis of several organs, such as 

kidney, liver, lung and heart (Iwano et al., 2002; Kim et al., 2006; Zeisberg et al., 2007a; 

Zeisberg et al., 2007b). Here, we will take renal interstitial fibrosis as an example. Renal 

interstitial fibrosis is a common pathology in most chronic and progressive kidney 

diseases and characterized by inflammatory cell infiltration, fibroblast activation and 
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expansion, extracellular matrix deposition and tubular atrophy (Liu, 2011). The 

increasing number of fibroblasts may come from various resources. First, they can 

originate from the local resident interstitial cells (Humphreys et al., 2010; Lin et al., 

2008). Another source is the recruitment of circulating fibrocytes, which are a subset of 

bone marrow-derived, circulating monocytes capable of producing collagen I. However, 

because specific markers for this group of cells are lacking, their contribution for renal 

fibrosis remains controversial (Niedermeier et al., 2009; Roufosse et al., 2006). Lastly, 

fibroblasts may come from epithelial cells through EMT. 

The initial evidence supporting EMT involved in renal fibrosis in vivo came in 

2002 (Iwano et al., 2002). Through a lineage tracing experiment, the authors showed that 

the epithelial cells expressed the fibroblast marker, fibroblast specific protein 1 (FSP1) 

and synthesize collagen I. Since then, more and more research tried to demonstrate the 

existence of EMT in renal fibrosis. These studies can be categorized into two groups. The 

first group of studies showed the up-regulation of mesenchymal markers in renal 

epithelial cells in injured kidney, such as α-smooth muscle actin (αSMA) (Yang and Liu, 

2001), plasminogen activator inhibitor 1 (PAI1) (He et al., 2010), vimentin (Rastaldi et 

al., 2002), and Snail1 (Yoshino et al., 2007). The second group revealed that genetic or 

pharmaceutical manipulation of EMT related transcriptional factors or signaling 

pathways enhanced or attenuated renal fibrosis. For example, mice lacking Smad3, the 

key mediator for TGF-β signaling pathway were protected against tubulointerstitial 

fibrosis by blocking EMT (Sato et al., 2003). A similar experiment showed that systemic 

administration of recombinant human BMP7 led to repair of the damage in renal tubular 

epithelial cells through counteract the EMT effects induced by endogenous TGF-β1 
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(Zeisberg et al., 2003). Furthermore, ectopic activation of Snail1 in kidney was sufficient 

to induce renal fibrosis (Boutet et al., 2006). Besides these in vivo results, more in vitro 

studies proved the existence of EMT in cell culture (Cheng and Lovett, 2003; Huang et 

al., 2009; Qi et al., 2005; Slattery et al., 2005). 

However, improved lineage tracing results published in recent years argued 

strongly against the EMT model in renal fibrosis. In one study, the authors separately 

used the Six2 promoter to mark all tubular cells derived from the cap mesenchyme and 

the Hoxb7 promoter to mark all tubular cells from the ureteral bud to label the tubular 

cells, but failed to find the fibroblasts in peritubular interstitium with these positive 

genetic markers (Humphreys et al., 2010). Another study used Pax8-rtTA mice to 

simultaneously induce TGF-β1 and label all proximal, distal and collecting duct tubular 

cells (Koesters et al., 2010; Traykova-Brauch et al., 2008). Even under these favorable 

conditions with overexpressing TGF-β1, labeled epithelial cells were not found in the 

interstitial fibrosis region, but instead, underwent the autophagy. If there is EMT in 

fibrosis, the transiting epithelial cells must migrate through the tubular basement 

membrane (TBM) into the interstitial region, where they proliferate and deposit ECM. 

However, up to now, no transmission electron microscopy data are provided to show that 

even a single cell is crossing the TBM. Furthermore, although the TBM may become 

collapsed and highly folded, its integrity is preserved (Kriz et al., 2011). 

Based on these two contradictory facts, a concept, called “partial EMTs”, was 

proposed (Kalluri and Weinberg, 2009; Liu, 2011). In this partial EMT, epithelial cells 

only change one or two phenotypic markers, while maintaining other epithelial 

characteristics. Although the current results do not support a typical EMT process in renal 
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fibrosis, the upregulation of mesenchymal markers in epithelial cells may still be 

biological important. For example, it has been reported that Snail and Zeb proteins could 

directly repress the expression of E-Cadherin, which is a critical marker for epithelial 

cells (Cano et al., 2000; van Grunsven et al., 2003). This may be significant for the 

apoptosis or autophagy of epithelial cells, and eventually the tubular atrophy in renal 

fibrosis. Also, the metalloproteinases, such as MMP2 and MMP9, secreted from 

epithelial cells could be critical for the remodeling of ECM in interstitium, thus activating 

quiesence fibroblasts. So the precise function of upregulated mesenchymal markers in 

epithelial cells and the paracrine effects of those cells on adjacent cells still require 

further studies. 

 

Type III EMT 

The EMT program confers upon cancer epithelial cells the ability to detach from 

each other and invade adjacent cell layers or migrate to distant locations (Yang and 

Weinberg, 2008). In fact, EMT was found in nearly all types of carcinoma (Thiery et al., 

2009). For example, in breast carcinoma, a mouse lineage tracing study proved that EMT 

occurred specifically in Myc-initiated tumors (Trimboli et al., 2008). The EMT 

biomarkers, such as Snail, are associated with histological grades and the metaplastic 

subtype of breast carcinoma (Blanco et al., 2002; Lien et al., 2007). Similarly, based on 

an analysis of 123 primary human hepatocellular carcinoma (HCC) samples, the 

overexpression of Snail and Twist was correlated with a worse prognosis (Yang et al., 

2009). This analysis was supported by the in vitro study, showing that overexpression of 



21 

 

Snail in an established HCC cell line HepG2 caused its dedifferentiation into 

fibroblastoid featured with increasing invasion activity (Miyoshi et al., 2004). Recent 

studies revealed that EMT not only increases the mobility of transformed cells, but also 

confers upon them the stemness with enhanced ability to form mammospheres and 

tumorigenesis (Mani et al., 2008; Santisteban et al., 2009). These results suggested that 

besides increasing the tumor invasion, EMT may be involved in the initiation of breast 

carcinoma by increasing the tumor cell pool. Interestingly, when migratory tumor cells 

settle at distant sites, they no longer exhibit the mesenchymal phenotypes ascribed to 

metastasizing carcinoma cells (Kalluri and Weinberg, 2009). This observation indicates 

that the microenvironment surrounding the tumor cells is critical in maintaining their 

transforming state (Scheel et al., 2011). 

 

Signaling pathways associated with type II EMT 

Although EMT can be divided into three types and occur in different situations, 

its key events at the molecular level are the same, downregulation of epithelial markers, 

such as E-Cadherin, and upregulation of mesenchymal genes, such as Snail, Zeb, Pai and 

Twist. The signaling pathways involved in three types of EMT are also similar. So here, 

we will mainly focus on the signaling pathways associated with type II EMT in the 

context of renal fibrosis. 

TGF-β signaling 

TGF-β signaling pathway is the most well studied pathway for EMT. In vitro 

study suggested that TGF-β could activate mesenchymal marker genes, such as αSMA 
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and Snail, as well as repress epithelial markers, like E-Cadherin and Occuldin in at least 

two different renal epithelial cell lines, MDCK from dog and HKC8 from human (Medici 

et al., 2006; Yang and Liu, 2001). Snail1 could further form a complex with Smad3 and 4, 

which was targeted to the promoters of CAR, a tight-junction protein, and E-cadherin to 

repress their expression (Vincent et al., 2009). In vivo, the severity of renal 

histopathology has been significantly lessened in experimental glomerular nephritis 

models by treating animals with antibodies against TGF-β ligands (Border et al., 1990) or 

the type II TGF-β receptors (Kasuga et al., 2001). Tubular epithelial cells are the main 

targets for TGF-β in renal fibrosis, since in the unilateral ureteral obstruction (UUO) 

mouse model, expression of both TGF-β and its type I receptor increased rapidly and 

specifically in renal tubular epithelia (Yang and Liu, 2001). BMP7 signaling pathway 

counteracts the effects of TGF-β in inducing EMT. As we mentioned above, systemic 

administration of recombinant human BMP7 led to repair of severely damaged renal 

tubular epithelial cells (Zeisberg et al., 2003). In vitro, BMP7 not only restored the 

expression of epithelial markers, repressed by TGF-β in renal epithelial cells, such as E-

Cadherin and ZO-1 (Zeisberg et al., 2003), but also caused the mesenchymal-epithelial 

transition (MET) in adult renal fibroblasts, characterized by cell condensation, decreased 

motility and increased expressing E-Cadherin (Zeisberg et al., 2005). At the molecular 

level, BMP7 prevented TGF-β mediated loss of the transcriptional repressor SnoN and 

limited Smad3 DNA binding without affecting its phosphorylation or stability (Luo et al., 

2010). 

Canonical Wnt/β-Catenin signaling 
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The canonical Wnt signaling pathway functions by preventing the degradation of 

cytoplasmical β-Catenin by GSK3β/Axin/APC complex. The accumulated β-Catenin 

translocates into the nucleus, where it interacts with TCF/LEF proteins to regulate gene 

expression (MacDonald et al., 2009). In the UUO models in vivo, several Wnt ligands 

were up-regulated, such as Wnt1, Wnt4 and Wnt11 (He et al., 2009; Surendran et al., 

2002), and β-Catenin predominantly accumulated in tubular epithelia. Blocking of Wnt 

signaling by administrating its inhibitor, such as Dkk1 and Sfrp4, attenuated the renal 

injury, reduced the upregulation of mesenchymal genes and maintained the expression of 

epithelial markers. (He et al., 2009; Surendran et al., 2005). In vitro, it has been shown 

that β-Catenin mediated the activation of mesenchymal genes, such as Pai1, αSMA and 

Snail1, alone or together with Smad proteins (Hao et al., 2011; He et al., 2010; Zhou et 

al., 2012). Besides the Wnt ligands, β-Catenin may also accumulate from the collapse of 

cell-cell contacts during EMT induced by TGF-β. In this case, β-Catenin seems to work 

downstream of TGF-β signaling to regulate mesenchymal gene expression (Zheng et al., 

2009).  It is not clear whether Wnt ligands are also up-regulated in the process and 

facilitate β-Catenin accumulation. However, under most cases, Wnt and TGF-β signaling 

function cooperatively in mediating EMT and renal fibrosis. 

Notch signaling 

The notch signaling pathway is comprised of four receptors and two ligands, 

Delta and Jagged (Jag) (Guo and Wang, 2009). When ligands from the signal-giving cells 

bind to receptors on the signal-receiving cells, Notch intracellular domain (NICD) will be 

released from the plasma membrane through a series of proteolytic cleavages on the 

Notch receptors. NICD will then translocate into nucleus and regulate target gene 
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expression. In UUO models, the Notch ligand, Jagged1, was up-regulated in the distal 

tubular epithelial cells in injured kidneys. Along with this, the mediator of Notch 

signaling, NICD also accumulated in tubular epithelial cells. The mouse results were 

confirmed by human biopsy with diabetic kidney diseases (Bielesz et al., 2010; Morrissey 

et al., 2002). Pharmaceutical block of Notch signaling by γ-secretase inhibitor 

ameliorated tubulointerstitial fibrosis, while enhanced expression of NICD driven by the 

Pax8 promoter, in tubular epithelial cells caused activation of mesenchymal markers and 

renal fibrosis (Morrissey et al., 2002). In vitro, it is not clear whether Notch signaling 

alone can induce EMT in renal epithelial cells. However, Notch signaling could be 

activated by TGF-β signaling to promote EMT in either rat or human tubular epithelial 

cells (Bielesz et al., 2010; Nyhan et al., 2010). In the type III EMT, Notch signaling 

promoted EMT by suppressing expression of the microRNA-200 (miR-200) through 

GATA-binding (Gata) factors in lung adenocarcinoma (Yang et al., 2011) or Zeb1 in 

pancreatic cancer cells (Brabletz et al., 2011). Whether this mechanism is still applicable 

to the type II EMT is unknown. 

Integrin-associated signaling 

Integrins consist of an α-subunit and a β-subunit, which are transmembrane 

receptors, that binds to the ECM outside the cell and interacts with cytoskeleton inside 

the cell. Integrins could pass signaling through two pathways. First, since they connect 

the ECM and cytoskeleton, it could function as a bridge to physically transduce 

mechanical strength from cells to the microenvironment or in reverse. Second, their β-

subunits interact with integrin-linked kinase (ILK), an intracellular serine/threonine 

protein kinase and activate signaling through phosphorylation cascades. It has been 
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reported that both αvβ6 integrin and ILK were upregulated in renal epithelia in mouse 

UUO models or human biopsies with glomerulonephritis or other kidney diseases (Hahm 

et al., 2007; Li et al., 2003). The severity of renal fibrosis was reduced with application of 

antibody against αvβ6 integrin (Hahm et al., 2007). In vitro, overexpression of ILK in 

human kidney proximal epithelial cells suppressed expression of E-Cadherin, and 

induced fibronectin and MMP2 expression (Li et al., 2003). Normally, the function of 

αvβ6 integrin in mediating EMT or renal fibrosis is associated with TGF-β signaling. First, 

αvβ6 integrin could stimulate TGF-β signaling through facilitating the release of active 

form of TGF-β ligands from their latent complex. Consistent with this fact, both active 

TGF-β protein expression and Smad2 phosphorylation were less in UUO kidney with β6 

subunit knockdown (Ma et al., 2003). Second, inhibition of ILK expression by hepatocyte 

growth factor (HGF) blocked TGF-β induced EMT and attenuate renal fibrosis (Li et al., 

2003). Thus, it seems that TGF-β and αvβ6 integrins work in a positive feedback mode to 

regulate EMT and renal fibrosis. In addition, another subunit of integrin, α3, was 

important for the phosphorylation of β-catenin at tyrosine residue 654 to enhance the 

interaction between β-catenin and Smad2 and initiate EMT in lung fibrosis (Kim et al., 

2009). 

Platelet derived growth factors (PDGFs) signaling 

PDGF is a major mitogenic factor, whose receptors are tyrosine kinases. Upon 

stimulation, PDGFR transduce the signaling through activating several downstream 

molecules, such as Stat proteins, phosphatidylinositol-3 kinase (PI3K) and Ras (Floege et 

al., 2008). It has been shown that PDGF-C was upregulated at sites of interstitial fibrosis 

in human and rat kidneys (Eitner et al., 2008). Blocking PDGF-C or PDGF-D by 
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neutralizing antibodies reduced tubulointerstitial damage and fibrosis (Eitner et al., 2008; 

Ostendorf et al., 2006). The increase in PDGF-C expression was due, in large part, to 

infiltrating macrophages (Eitner et al., 2008). Although PDGF antibodies help preserve 

cortical expression of E-Cadherin and reduce expression of vimentin and α-SMA in vivo, 

the direct effects of PDGF signaling on renal epithelial cells are unknown. Some studies 

have focused on exploring the function of PDGF in type III EMT. It was found that 

mammalian target of rapamycin (mTor) and nuclear factor-κB (NF-κB) were activated 

upon PDGF-D overexpression in human prostate cancer cell line PC3 cells (Kong et al., 

2008). Another study revealed that PDGF treatment promotes β-catenin nuclear 

translocation through disrupting GSK-3β/Axin/APC degradation complex by p68 RNA 

helicase in a Wnt-independent manner (Yang et al., 2006). These studies may provide 

hints for researches exploring mechanisms of PDGF signaling on renal fibrosis. 

Hypoxia associated signaling 

Renal hypoxia, instead of being a consequence of renal fibrosis, may serve as an 

inducer for fibrogenic process (Manotham et al., 2004). Hypoxia inducible factor 1 

(HIF1), the stability of which is based on the oxygen concentration, is the main regulator 

for the cellular responses to hypoxia. It has been reported that hypoxia induces 

morphological and gene expression profile change in proximal tubular epithelial cells 

partial through HIF1 (Higgins et al., 2007). Also, HIF1 accumulation was found in 

tubular epithelial cells in both mouse UUO models and human renal biopsies from 

patients with chronic kidney disease. HIF1 deletion or lysyl oxidases inhibition 

attenuated fibrosis in UUO kidneys (Higgins et al., 2007). On the molecular level, the 

mesenchymal marker genes, Twist and Snail are the direct targets of HIF1α (Luo et al., 
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2011; Yang et al., 2008). HIF1α mediated activation of mesenchymal genes required the 

recruitment of histone methyltransferase (HMT) by histone deacetylase 3 (HDAC3) and 

WDR5 (Wu et al., 2011). 

 

Summary 

TGF-β superfamily, which includes TGF-βs and BMPs, is critical for normal 

development, as well as disease progression, and is tightly regulated both within and out 

of cells. In vitro, TGF-β induced the transition of renal epithelial cells into fibroblast-like 

mesenchymal cells by activating mesenchymal genes and repressing epithelial markers. 

Although the existence of this EMT in renal fibrosis is controversial, the upregulation of 

mesenchymal genes in renal epithelia may be critical for the initiation and progression of 

renal fibrosis. Considering the obvious and consistent phenotype change, the in vitro 

EMT model is also a good platform to study the mechanisms of TGF-β signaling in target 

gene activation, and crosstalk among different signaling pathways. Outside the cells, the 

regulation of TGF-β signaling could be achieved by sequestration or enhanced delivery of 

ligands to receptors. Inside the cells, TGF-β signaling could be regulated at different 

stages, such as the activation of R-Smads, the interaction between R-Smad and Smad4, 

and the access of Smad containing transcriptional complex to target genes. 

In this dissertation, we will discuss both mechanisms and regulations of TGF-β 

superfamily mediated gene expression. In Chapter II, our results demonstrated that TGF-

β activated Wnt11 was important for the upregulation of mesenchymal genes in renal 

epithelial cells. Furthermore, Wnt11 mediated TGF-β induced mesenchymal gene 
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expression through JNK signaling. In Chapter III, we showed that specific 

overexpression of KCP, a secreted cysteine rich protein, in renal epithelia attenuated the 

upregulation of some mesenchymal marker genes in injured kidneys of unilateral ureteric 

obstruction (UUO) model, by repressing TGF-β signaling and sustaining BMP signaling. 

In Chapter IV, our study revealed that Tle4 overexpression not only activated a BMP 

reporter, but also enhanced and sustained the upregulation of endogenous Id1 gene 

induced by BMP7. Furthermore, the effect of Tle4 on the BMP reporter was mediated by 

Smad7. Tle4 suppressed Smad7 expression and overexpression of Smad7 totally 

abolished the activation of Tle4 on the BMP reporter. Taken together, this dissertation 

dissected the mechanism of TGF-β to activate target gene expression in renal epithelial 

cells and also studied the regulation of TGF-β and BMP signaling, extracellularly by 

KCP and intracellularly by Tle4, providing new insights to the mechanisms of TGF-β 

superfamily action. 
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Figure 1-1. Schematic diagram of TGF-β superfamily signaling from cell membrane 
to the nucleus. The arrows indicate signal flow and phosphate groups are represented by 
red dots. R-Smad, receptor-Smad; Co-Smad, common-Smad; I-Smad, inhibitory-Smad; 
TF, transcriptional factor. 
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Table 1-1. Combinational interactions of Type II and Type I TGF-β receptors in 

vertebrates. 

Type II     Type I     R-Smad 
TβRII ALK-5 (TβRI) Smad2, Smad3 

ALK-1 Smad1, Smad5 
ALK-2 

BMPRII, BMPRIIB ALK-2 (ActRI) Smad1, Smad5, Smad8 
ALK-3 (BMPRIA) 
ALK-6 (BMPRIB) 

ActRII, ActRIIB ALK-4 (ActRIB) Smad2 
AlK-7 

AMHR ALK-2 Smad1, Smad5 
ALK-3 

      ALK-6           
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Chapter II 

Activation of Wnt11 by TGF-β Drives Mesenchymal Gene Expression through Non-

Canonical Wnt Signaling in Renal Epithelial Cells 

 

Abstract 

Transforming growth factor β (TGF-β) promotes renal interstitial fibrosis in vivo 

and the expression of mesenchymal genes in vitro, however most of its direct targets in 

epithelial cells are still elusive.  In a screen for genes directly activated by TGF-β, we 

found that components of the Wnt signaling pathway, especially Wnt11, were targets of 

activation by TGF-β and Smad3 in primary renal epithelial cells (PRECs).  In gain and 

loss of function experiments, Wnt11 mediates the actions of TGF-β through enhanced 

activation of mesenchymal marker genes, such as Zeb1, Snail1, Pai1, and αSMA, without 

affecting Smad3 phosphorylation. Inhibition of Wnt11 by receptor knockdown or 

treatment with Wnt inhibitors limited the effects of TGF-β on gene expression. We found 

no evidence that Wnt11 activated the canonical Wnt signaling pathway in renal epithelial 

cells, rather the function of Wnt11 was mediated by the c-Jun N-terminal kinase (JNK). 

Our findings demonstrate cooperativity among the TGF-β, Wnt11 and JNK signaling 

pathways and suggest new targets for anti-fibrotic therapy in renal tissue.    

Introduction 

Renal interstitial fibrosis is a common pathology in most chronic and progressive 

kidney diseases (Liu, 2010).  The function of the profibrotic cytokine TGF-β in the 
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initiation and progression of fibrosis has been intensively studied in the kidney and other 

tissues (Bottinger and Bitzer, 2002; Yang and Liu, 2001; Zeisberg et al., 2007).  In almost 

all animal models examined, increased renal fibrosis correlates with increased expression 

of TGF-β ligands.  Renal fibrosis is observed upon overexpression of TGF-β or 

application of recombinant TGF-β in mice, whereas inhibition of the TGF-β pathway can 

alleviate the severity of progressive renal fibrosis (Border et al., 1990; Kopp et al., 1996; 

Ledbetter et al., 2000).   

In mammals, the binding of TGF-β ligand to its receptor, TGF-β receptor type II, 

leads to the recruitment and phosphorylation of TGF-β receptor type I (Feng and Derynck, 

2005). The activated TGFβRI is a serine/threonine kinase that transduces the signal 

through phosphorylating receptor-activated Smad2 and Smad3.  Phosphorylated Smad2/3 

form a heteromeric complex with a common partner, Smad4, and translocate to the 

nucleus.  Normally, the Smad complex requires other transcriptional factors to activate or 

repress target gene expression (Labbe et al., 2000; Sano et al., 1999).  Both Smad2 and 

Smad3 are activated in TGF-β signaling pathway, but their targets and functions are 

distinct (Meng et al., 2010; Phanish et al., 2006).  Genetic experiments point to a critical 

role for Smad3 in promoting TGF-β mediated renal fibrosis.  Despite the evidence 

pointing to TGF-β as a profibrotic agent, its gene targets and detailed mechanisms that 

promote fibrosis are still not well characterized.  

Renal tubular epithelial cells are target cells for TGF-β in kidney fibrosis (Yang 

and Liu, 2001). In the unilateral ureteral obstruction (UUO) mouse model, expression of 

both TGF-β and its type I receptor increased rapidly and specifically in renal tubular 

epithelia.  In vitro, epithelial cells treated with TGF-β lost expression of epithelial markers 
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and assume a more mesenchymal phenotype. This epithelial-to-mesenchymal transition 

(EMT) was thought to occur in animal models of interstitial fibrosis and was an attractive 

model to explain the increased number of fibroblasts and the loss of epithelial tubular 

integrity (Iwano et al., 2002). In chapter I, we have thoroughly discussed different types of 

EMT and the controversy of the existence of type II EMT in renal fibrosis. Regardless of 

whether EMT occurs in vivo, the direct impact of TGF-β on the renal epithelial cells 

appears critical for initiation and progression of fibrosis. Meanwhile, the in vitro cell 

studies were a good model to study the function of different signaling pathways in cell fate 

determination, and provide valuable insights into in vivo disease models.   

The Wnt signaling pathways have also been linked to TGF-β and to EMT during 

normal development and diseases.  There are 19 Wnt ligands in the mouse and human 

genomes. These different Wnt ligands can signal through the canonical, β-catenin 

dependent pathway, or the non-canonical, β-catenin independent pathway.  In the 

canonical pathway, activated Wnt signaling prevents the degradation of β-catenin by the 

GSK3β/Axin/APC complex.  The accumulating β-catenin then interacts with TCF/LEF 

proteins to regulate gene expression (MacDonald et al., 2009).  One branch of the non-

canonical Wnt pathway involves the calcium influx and further activation of 

Ca2+/calmodulin-dependent kinase II (CamKII) and protein kinase C (PKC) (Kuhl et al., 

2000; Veeman et al., 2003).  Another branch of the non-canonical pathway transduces its 

signal by activating the c-Jun N-terminal kinase (JNK) pathway either through small 

GTPase or other mechanisms (Veeman et al., 2003).  

Although the Wnt signaling pathways were shown to function in EMT in vitro and 

in fibrosis in vivo (He et al., 2009; Scheel et al., 2011) , the relationships with the 
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profibrotic cytokine TGF-β are not well defined.  A limited number of studies addressing 

the cross-talk of TGF-β and Wnt signaling pathway converged on the β-catenin, as TGF-β 

could stabilize β-catenin by inhibiting its GSK3β-dependent degradation through p38 

MAPK and Akt (Hwang et al., 2009; Liu, 2010; Masszi et al., 2004).  Also β-catenin 

could physically interact with Smad proteins to regulate target gene expression (Kim et al., 

2009; Zhang et al., 2010; Zhou et al., 2012b).  Yet, little is known about the function of 

non-canonical Wnt signaling pathway in fibrosis and its relation to TGF-β.   

In this chapter, we defined the targets of TGF-β in renal epithelial cells in vitro by 

global gene expression analysis.  We showed that components of the Wnt signaling 

pathways were activated by TGF-β.   Among these, the non-canonical signaling protein 

Wnt11 was directly regulated by TGF-β through Smad3 in both primary and immortalized 

renal epithelial cells.  Wnt11 enhanced the effects of TGF-β and was necessary for 

maximal activation of mesenchymal gene such as Zeb1, Snail1, Pai1 and the 

myofibroblast marker αSMA.  Wnt11 did not enhance P-Smad3 nor activate the canonical 

Wnt signaling pathway, rather it appeared to increase mesenchymal gene expression 

through the non-canonical JNK pathway.  These results pointed to a critical role for non-

canonical Wnt signaling in TGF-β mediated fibrosis and suggested that autocrine and 

paracrine mechanisms could mediate TGF-β dependent effects in epithelial cells and 

adjacent cells.   
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Materials and Methods 

Animals  

C57BL/6 mice were kept according to NIH guidelines.  Animal use was approved 

by the University Committee on Use and Care of Animals at the University of Michigan. 

Primary and immortalized renal epithelial cells     

Primary renal epithelial cells were isolated from the cortex of 5-6 week old female 

mice.  Briefly, the medulla was manually removed and cortex was digested by liberase 

DH (Roche) in Dulbecco's modified Eagle's medium (DMEM, Lonza). The tissue 

fragments were sieved through a 212 µm pore size mesh.  After three washes with cold 

DMED, cells were expanded in UltraMDCK serum free medium (Roche) supplied with 

0.5X Insulin-Transferring-Ethanolamine-Selenium (ITES, Lonza), 60 µg/L Epidermal 

Growth Factor (EGF, R&D systems), 10-9M triiodothyronine and 1X antibiotic 

antimycotic (Gibco). Cells were split and frozen in Fetal Bovine Serum (FBS, Gibco) with 

10% dimethyl sulfoxide.  Recombinant human TGF-β1 and Wnt11 were from R&D 

systems.  

To inhibit translation, cycloheximide (5 µg/mL, Sigma) was added half an hour 

before TGF-β treatment (10 ng/mL) for the indicated times. To inhibit Smad3 

phosphorylation, Specific Inhibitor of Smad3 (SIS3, Sigma) was added into the medium at 

the concentration of 5 µM 1 hour before 10 ng/ml TGF-β1 treatment for 24 hours.  To 

inhibit JNK signaling, 20µM SP600125 (Sigma) or 10µM JNK inhibitor III (EMD) was 

added into the medium 1 hour before 10 ng/ml TGF-β1 treatment for 24 hours.  To inhibit 
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Wnt signaling, Sfrp1 (R&D systems) was added at 0.5 µg/mL together with 10 ng/mL 

TGF-β1 for 24 hours 

Immortalized renal epithelial cells (TKPTS) were a kind gift from Dr. Bello-Reuss.  

Cells were cultured in Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12 

(DMEM/F-12, Gibco) with 2% FBS, 1X ITES and Penicillin Streptomycin (Gibco). 

UltraMDCK serum free medium was used when serum starvation was necessary.   

To overexpress Smad3 or Wnt11, TKPTS cells were cultured on 6 well plate in 

UltraMDCK serum free medium and transfected with 3 µg DNA of Smad3 or Wnt11 

expressing vector or SHS (sonicated herring sperm) DNA control  using Fugene6 (Roche) 

as per manufacturer’s instruction. TGF-β1 at the indicated concentrations was added into 

the medium 24 hours after transfection and cells were cultured for an additional 24 hours.  

Microarrays expression analysis  

PRECs were grown on 100 mm dishes until confluency reached 80%. 

Cycloheximide (5ug/mL) was added half an hour before TGF-β1 treatment (10 ng/ml) for 

4 hours. RNA was extracted using the TRIzol RNA isolation system (Invitrogen).  All 

samples were done in triplicate.  Gene expression microarray analysis was done by the 

University of Michigan Comprehensive Cancer Center (UMCCC) Affymetrix and 

Microarray Core Facility.  Briefly, The FL-Ovation cDNA Biotin Module V2 kit (NuGEN 

Technologies, San Carlos, CA) was used to produce biotin-labeled cRNA, which was then 

fragmented and hybridized to a Mouse 430 2.0 Affymetrix GeneChip 3 expression arrays 

(Affymetrix, Santa Clara, CA).  Array hybridization, washes, staining, and scanning 

procedures were carried out according to standard Affymetrix protocols.  Expression data 



57 

 

were normalized by the robust multiarray average (RMA) method and fitted to weighted 

linear models in R, using the affy and limma packages of Bioconductor, respectively 

(Irizarry et al., 2006; Smyth, 2004). Only probe sets with a variance over all samples 

superior to 0.1, a p-value inferior or equal to 0.05 after adjustment for multiplicity using 

the false discovery rate (Benjamini and Hochberg, 1995), and a minimum 2-fold 

difference in expression were selected for the analysis. 

Western blot analysis 

Cells were directly lysed in 2X SDS buffer (4% sodium dodecyl sulfate, 20% 

glycerol, 0.2M dithiothreitol, 125 mM Tris, pH 6.8) and boiled at 94°C. Samples were 

separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), 

transferred to PVDF membranes and immunoblotted with antibodies as indicated. Rabbit 

anti-phosphorylated Smad3, rabbit anti-Wnt11 and rabbit anti-phosphorylated CamKII are 

from Abcam.  Rabbit anti-Smad2/3, rabbit anti-phosphorylated Smad2, rabbit anti-

phosphorylated JNK, rabbit anti-phosphorylated c-Jun and rabbit anti-c-Jun are from Cell 

Signaling.  Mouse anti- SMA, mouse anti -flag and mouse anti β-tubulin are from Sigma-

Aldrich.  Mouse anti-activeβ-Catenin is from Millipore.  Mouse anti β-Catenin is from 

BD transduction Lab. Mouse anti-N-Cadherin is from Upstate.  HRP-linked secondary 

antibodies and ECL reagent are from GE healthcare.  

RNA reverse-transcription and real-time PCR  

2-3 µg total RNA was reverse-transcribed into complementary DNA with 

SuperScript First-Strand Kit (invitrogen).  The cDNA products were diluted 5 times and 

amplified with the iTaq Sybr green master mix (Bio-Rad) in a Prism 7500 (Applied 
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Biosystems).  Primers pairs for PCR are as follows: Wnt11 5’-

GGGCCAAGTTTTCCGATGCT, 5’-TTCGTGGCTGACAGGTAGCG; ZEB1 5’-

TCAAGTACAAACACCACCTG, 5’-TGGCGAGGAACACTGAGA; PAI1 5’-

ACATGTTTAGTGCAACCCTG, 5’-GGTCTATAACCATCTCCGTG; Snai1 5’-

GGAAGCCCAACTATAGCGA, 5’-AGCGAGGTCAGCTCTACG; Fzd7 5’-

GAAGCTGGAGAAGCTGATGG, 5’-ATCTCTCGCCCCAAACTCT; Axin2 5’-

TGAGCTGGTTGTCACCTACT, 5’-CACTGTCTCGTCGTCCCA; Wisp1 5’-

GCCAGAGCAGGAAAGTCG, 5’-TACTTGGGTCGGTAGGTGC; GAPDH 5’-

ACCACAGTCCATGCCATCAC, 5’-TCCACCACCCTGTTGCTGTA. 

shRNA mediated Gene knocking-down  

TKPTS cells were seeded on the 6 well plate 1 day before transfection.  Cells were 

transfected with 2 µg DNA of Wnt11 shRNA lentivirus vector 54666, 53302 and a 

scrambled shRNA lentivirus vector (Open Biosystems) using Fugene6.  For Smad3 or 

Fizzled7 knockdown, TKPTS cells were infected with lentivirus expressing Smad3 

shRNA 54904 or Fzd7 64762 (Open Biosystems) in the presence of 8 µg/mL polybrene 

and kept overnight.  Puromycin (Sigma-Aldrich) was added into the medium at 10 µg/ml 

and kept in culture medium for constitutive selection. Survival cells were cultured, 

expanded and frozen for further experiments.   

Packed Wnt11 53302 shRNA lentivirus was used to knockdown in PRECs.  Cells 

were seeded on 100 mm dishes for 24 hours. Lentivirus was added with 8 µg/mL 

polybrene and kept overnight. Puromycin was added for selection for 10 days before 

experiments.  
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Luciferase assays  

TKPTS cells were seeded on 12 well plates.  3TP-lux reporter vector was 

transfected (1 µg/well) together with SHS or Smad3 expressing vector (2 µg/well) into the 

cells in triplicate 24 hours later.  TOPFLASH or FOPFLASH reporter vector was 

transfected (1 µg/well) together with SHS or Wnt11 expressing vector (2 µg/well). Cells 

were lysed 48 hours after the transfection with dual luciferase assay kit (Promega) and 

results were read.  In assays requiring TGF-β1 or LiCl treatment, TGF-β1 (10ng/ml) or 

LiCl (20 mM) was administrated 24 hours after the transfection and kept for another 24 

hours. 

Cellular fraction extraction  

PRECs were treated with Wnt11 (500 ng/mL) or LiCl (20 mM) for 24 hours. To 

extract cytoplasma fraction, cells were washed with PBS once, scraped off and lysed in 

cell lysis buffer (5mM PIPES at pH 8.0, 85mM KCl, 0.5%NP40 and 1X protease 

inhibitors) on ice for 10 min. Then, the cells were spun at 3000 rpm for 5 min and 

supernatant was collected as cytoplasmic fraction. To extract nucleus fraction, cells were 

scraped off, resuspended in 5mL nuclear buffer 1 (10mM Tris at pH 8.0, 10mM NaCl, 

3mM MgCl2, 0.5mM DTT, 0.1% Triton X-100, 0.1M sucrose and 1X protease inhibitors) 

and dumped 20 times with a loose fitting (type A) dounce homogenizer. Then, 5 mL 

nuclear buffer 2 (10mM Tris at pH 8.0, 10mM NaCl, 3mM MgCl2, 0.5mM DTT, 0.1% 

Triton X-100, 0.25M sucrose and 1X protease inhibitors) was added and mixed. At last, 

2.5 mL nuclear buffer 3 (10mM Tris at pH 8.0, 5mM MgCl2, 0.5mM DTT, 0.33M sucrose 
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and 1X protease inhibitor) was added from the bottom. The whole lysate was spun at 2000 

rpm for 5 min at 4oC. The pellet was collected as nuclear fraction. 

Immunofluorescence 

PRECs were seeded on 4 well chamber slide (Thermo Fisher) over night and 

treated with 10 ng/mL TGF-β1or 0.5µg/mL Wnt11 for 24 hours or 1µM Ionomycin 

(Fisher) for 1 hour. Cells were washed with PBS once, fixed in 4% paraformaldehyde and 

permeabilized in PBS containing 0.5% Triton X-100. PBS containing 0.1% Tween20 was 

used to wash slides after the incubation with primary and secondary antibodies. Mouse 

anti β-Catenin is from BD transduction Lab. Rabbit anti-CamKII is from Abcam. Goat 

anti-rabbit IgG-TRITC and Goat anti-mouse IgG-FITC are from Sigma-Aldrich. 4’,6-

diamidino-2-phenylindole dihydrochloride (Dapi) is from Sigma-Aldrich.   

Results 

Primary renal epithelial cells respond to TGF-β in a dose and time dependent manner 

The effects of TGF-β on various cells in culture have been studied in detail (Scheel 

et al., 2011; Yang and Liu, 2001; Zeisberg et al., 2007).  To confirm that primary renal 

epithelial cells (PRECs) from the adult kidneys respond to TGF-β, we isolated cells from 

adult mouse kidneys and cultured them in a defined serum-free medium.   

Once the digested renal tubules were placed on the culture dishes, they would stick 

to plates. After 4-5 days of culture, renal epithelial cells spread out from the tubules and 

formed islands with clear boundaries. Other cell types, such as podocytes and blood cells, 

cannot grow in this conditional medium and were lost after the first passage (Fig 2-1A). 
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When PRECs were exposed to TGF-β1, cells detached from each other and 

migrate out of the islands (Fig 2-1B).  Mesenchymal markers were activated in those cells, 

although the kinetics of activation varied among different markers. The genes encoding 

αSMA, Zeb1, Pai1 and Snail1 were more sensitive to TGF-β1 with a response in 24 hours, 

while the up-regulation of N-cadherin became obvious by 48 hours (Fig. 2-1D, E). A 

significant decrease of E-cadherin in protein level was not observed until 72 hours (Fig. 2-

1C). The effects of TGF-β at a low dose (0.5ng/ml) were limited. When the dose of TGF-

β1 was increased to 2 ng/ml or 10ng/ml, its ability to change cell morphology and gene 

expression profile was significantly increased. These data indicated that the primary 

isolated cells showed a consistent and dose dependent response to TGF-β and activate 

genes associated with a more mesenchymal phenotype. 

TGF-β1 induced a global gene expression change in PRECs 

Once we had established the effects of TGF-β1 on PRECs in vitro, we sought to 

determine more precisely what genes are directly under the control of TGF-β1. Thus, we 

derived PRECs from adult (5-6 weeks) mouse kidneys and cultured them in serum free 

media for 2 passages before splitting into replicates for our screening strategy. Cells were 

then cultured with cycloheximide (CHX) to inhibit further protein synthesis so only 

mRNAs of direct TGF-β targets would be activated. Subsequently, TGF-β1 was added and 

RNA prepared after 4 hours incubation. Total RNA from PRECs treated with TGF-β1 and 

cycloheximide was compared to RNA from cells cultured with cycloheximide alone using 

Affymetrix Mouse 430 2.0 cDNA microarrays. Three independent samples for each group 

were hybridized and statistically significant changes noted.  
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Overall, 454 Affymetrix probe sets, representing at least 318 annotated unique 

genes, showed significantly altered RNA expression levels of at least 2 fold or greater.  Of 

these, 248 genes exhibited increased expression levels, whereas 70 genes showed a 

decrease in RNA levels, 4 hours post TGF-β1 treatment (Table 2-1). In terms of molecular 

functions, 127 genes were assigned to functional groups involved in DNA binding or 

transcription regulation.  More than 21 kinases showed changed expression levels, 

whereas 19 receptor binding proteins were altered. Given the effects of TGF-β on cell 

migration and dissociation, it was also noted that 12 GTPase regulatory proteins showed 

changed expression levels. Among those genes, 10 genes were associated with Wnt 

signaling pathway (Table 2-2). These include 4 Wnt ligands (Wnt1, Wnt9a, Wnt10a and 

Wnt11), 4 transcriptional factors (Tle1, Nfatc2, Nfatc3 and Sox17), 1 secreted protein 

(Wisp1) and 1 cyclin protein (Ccdn2). For further study, we would focus on Wnt11 

because previous work suggested the cross-talk between Wnt11 and TGF-β (He et al., 

2009; Schiro et al., 2011). 

Activation of Wnt11 by TGF-β1 was Smad3-dependent  

First, we used qRT-PCR to insure that the change in Wnt11 mRMA levels was 

accurate in Affymetrix datasets. Up-regulation of Wnt11 in the presence of cycloheximide 

was confirmed in PRECs and also in an immortalized renal epithelial cell line TKPTS that 

expresses SV40 large T antigen (Ernest and Bello-Reuss, 1995). While Wnt11 up-

regulation could be seen as early as 2 hours after TGF-β addition in PRECs, up-regulation 

in TKPTS cells was a bit slower but still robust (Fig 2-2 A, B). 
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Smad2 and Smad3 are the most critical mediators in TGF-β signaling pathway. 

Although both Smad2 and Smad3 are phosphorylated after TGF-β stimulation, their 

functions are not necessarily similar.  In recent studies utilizing TGF-β mediated animal 

models of fibrosis, Smad2 activation was protective while Smad3 functions as an enhancer 

of the disease phenotype (Meng et al., 2010). Thus, we asked whether Wnt11 up-

regulation was mediated by Smad3. In PRECs, the induction of Wnt11 mRNA was TGF-β 

dose-dependent, in a range from 2 ng/ml to 10 ng/ml (Fig. 2-2C). The fold change of 

Wnt11 mRNA level correlated with the amount of phosphorylated Smad3 (Fig. 2-2G).  A 

specific Smad3 inhibitor, SIS3, which blocked its phosphorylation upon TGF-β treatment 

(Jinnin et al., 2006), abolished the activation of Wnt11 by TGF-β (Fig. 2-2D, H). In 

TKPTS, Wnt11 mRNA level was up-regulated by transient transfection of Flag-tagged 

Smad3 vector (Fig. 2-2E). This activation was due to phosphorylation of transfected 

Smad3 without TGF-β and was further enhanced with TGF-β treatment (Fig. 2-2I). Next, 

we used an shRNA lentivirus to specifically knockdown Smad3 in TKPTS. After 

puromycin selection, Smad3 protein level was significantly knocked down, while Smad2 

protein level remained the same (Fig 2-2J). Both the basal and activated Wnt11 expression 

levels were reduced in the Smad3 knockdown group, consistent with the decreased basal 

and TGF-β activated P-Smad3 in this group (Fig. 2-2F). We also checked the P-Smad2 

level under different conditions mentioned above. Neither the Smad3 inhibitor in PRECs 

nor the modulation of Smad3 proteins in TKPTS affected the response of Smad2 to TGF-β 

(Fig 2-2H, I, J). Considering the Wnt11 expression change in those conditions, our results 

suggested that TGF-β up-regulated Wnt11 in renal epithelial cells mainly through Smad3 

proteins. 
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Wnt11 enhances activation of TGF-β dependent mesenchymal markers 

In epithelial cell culture, TGF-β activates a program of mesenchymal marker gene 

expression associated with the transition of epithelial cells to a more mesenchymal 

phenotypes. We thus tested whether Wnt11 induction helped mediate this TGF-β 

dependent EMT in vitro. In addition to the myofibroblast marker αSMA, we examined 

cells for activation of the mesenchymal markers Zeb1, Pai1, and Snail1.  Recombinant 

Wnt11 by itself did not activate any mesenchymal marker gene.  At a high dose of TGF-β 

(10 ng/ml) all of the mesenchymal markers were activated by 24h.  However, at lower 

dose of TGF-β (2ng/ml), recombinant Wnt11 significantly enhanced the expression of 

αSMA and other mesenchymal marker genes (Fig. 2-3A, B). Using a Wnt11 expression 

plasmid, a similar effect was observed in TKPTS, as both Pai1 and Snail1 expression 

increased significantly upon TGF-β treatment and Wnt11 expression (Fig. 2-3C). 

Block of Wnt11signaling abolishes the up-regulation of mesenchymal genes 

induced by TGF-β 

Since endogenous Wnt11 is activated by TGF-β, a better test for Wnt11's 

contribution to EMT in vitro is to knockdown endogenous Wnt11 and test for TGF-β 

activation of target genes. Thus, we used shRNA lentivirus to produce two stable cell lines, 

53302 and 54666, derived from the immortalized renal cell line TKPTS.  In cell line 

53302, basal Wnt11 expression was reduced by approximately 60% compared to a 

scrambled control line and Wnt11 was not activated by TGF-β (Fig 2-4A). The up-

regulation of Pai1 was abolished in these Wnt11 knockdown cells, while up-regulation of 

Zeb1 and Snail1 were also reduced (Fig. 2-4C).  In the 54666 cell line, basal Wnt11 
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expression was reduced by approximately 40%. However, these cells up-regulated Wnt11 

about two folds in response to TGF-β1, though this was still significantly less than the 

scrambled control cells (Fig. 2-4B). Nevertheless, the up-regulation of EMT marker genes 

was also attenuated in the 54666 Wnt11 knockdown cells (Fig. 2-4D). Moreover, 

administration of Wnt11 recombinant protein totally rescued the TGF-β dependent up-

regulation of Zeb1 and partially rescued the PAI1 and Snail1 in the 53302 cells (Fig. 2-

4E). We also used the Wnt11 specific 53302 shRNA lentivirus for knockdown in PRECs. 

Although the basal Wnt11 expression was not affected, its up-regulation upon TGF-β 

treatment was largely reduced, as were the response of EMT marker genes and the 

expression of αSMA (Fig. F, G, L).   

We also determined if Frizzled7 (Fzd7), a well-characterized Wnt11 receptor 

(Djiane et al., 2000; Yamanaka and Nishida, 2007), was important for mediating the TGF-

β effects in EMT. Although Fzd7 was expressed in TKPTS, its expression was not 

affected by TGF-β treatment. Fzd7 shRNA lentivirus knocked down approximately 60% 

of its expression (Fig. 2-4H).  Similar to Wnt11 knockdown, the activation of 

mesenchymal marker genes, especially Zeb1 and Pai1, in response to TGF-β was reduced 

in the Fzd7 knockdown cell lines (Fig. 2-4I). Lastly, we inhibited Wnt signaling by 

addition of the secreted frizzled related protein Sfrp1, which sequesters Wnt away from its 

receptors. Similar to Fzd7 knockdowns, Sfrp1 addition significantly inhibited the 

expression of mesenchymal genes after TGF-β addition (Fig. 2-4K). Taken together, these 

data indicate that Wnt11 is an important TGF-β target for promoting the activation of 

mesenchymal marker genes in renal epithelial cell lines. 

Wnt11 does not affect Smad3 phosphorylation or its transaction ability upon TGF-β 



66 

 

treatment 

Our data suggests that Wnt11 is an important autocrine mediator of the TGF-β 

response.  To rule out that Wnt11 functions by modulating the levels of P-Smad3, we 

performed additional assays. First, Wnt11 knockdown did not by itself affect the ability of 

TGF-β to phosphorylate Smad3 in TKPTS (Fig. 2-5A). This was confirmed using a Wnt11 

expression plasmid in TKPTS. If anything, Wnt11 overexpression reduced P-Smad3 

slightly (Fig. 2-5B). We also tested the effects of Wnt11 on the 3TP-Lux reporter plasmid 

that responds to TGF-β. Overexpression of Wnt11 did not activate 3TP-lux by itself and 

Wnt11 knockdown did not affect the ability of TGF-β to activate 3TP-Lux (Fig. 2-5C, D). 

Thus, the effects of Wnt11 on TGF-β activation of mesenchymal markers are not mediated 

through alterations of P-Smad3 levels. 

Wnt11 does not activate canonical Wnt/β-Catenin signaling pathway 

Wnt11 could be functioning through the canonical Wnt/β-catenin pathway, either 

as a target or as an activator thereof during development process or in cancer cells (Cha et 

al., 2009; Dwyer et al., 2010; Zhou et al., 2007). Thus, we checked whether Wnt11 

activated canonical signaling pathway by western blotting, gene expression, and reporter 

assays in our system. In PRECs, administration of Wnt11 recombinant protein failed to 

increase neither the active form of β-catenin, nor the β-catenin level in the nuclear fraction 

(Fig. 2-6A, B). To our notice, the basal nuclear β-catenin level was relative high in PRECs. 

However, this was consistent with a previous report that there were more nuclear β-

catenin proteins in renal epithelial cells than other cell types, such as adult mesenchymal 

stem cells (Jian et al., 2006). Two target genes for canonical Wnt signaling pathway, 
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Axin2 and Wisp1, were also unresponsive to Wnt11 (Fig. 2C). In TKPTS, Wnt11 did not 

activate the TOPFLASH reporter for canonical Wnt signaling pathway (Fig. 2D). 

Conversely, Wnt11 overexpression slightly reduced the basal expression level of 

TOPFLASH, consistent with previous studies that show non-canonical Wnt signaling 

pathway could inhibit canonical Wnt signaling (Abdul-Ghani et al., 2011). These data 

showed that Wnt11 was not activating canonical Wnt signaling in renal epithelial cell 

cultures. Furthermore, there was little evidence that TGF-β activated canonical Wnt 

signaling when using TOPFLASH reporters or by assaying levels of Axin expression after 

4h in the microarray based screens. 

Both TGF-β and Wnt11 activates non-canonical/JNK Wnt signaling, but not non-

canonical/CamKII-associated Wnt signaling 

Since Wnt11 did not activate canonical/β-Catenin Wnt signaling, we then asked 

whether the non-canonical Wnt signaling pathway was activated in TGF-β mediated EMT. 

The cJun-N-terminal Kinase (JNK) signaling pathway is one branch of non-canonical Wnt 

signaling. We found that phosphorylation of cJun and total cJun was elevated after TGF-β 

administration (Fig. 2-7A). The calcium-dependent signaling pathway is a second branch, 

in which calcium influx will eventually cause the activation and autophosphorylation of 

Ca2+/calmodulin dependent protein kinase (CaMKII) (Barria et al., 1997; Kuhl et al., 

2000). To our surprise, the basal phosphorylation level of CaMKII in PRECs was high 

even without TGF-β treatment. After TGF-β administration, the amount of phosphorylated 

CaMKII increased only slightly (Fig. 2-7A). Recombinant Wnt11 administration in 

PRECs or overexpression in TKPTS by itself could activate the JNK signaling pathway as 

evidenced by P-cJun levels (Fig. 2-7B). Under normal conditions, phosphorylated CamKII 
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was present on the plasma membrane and throughout cytoplasma. In the stimulation of 

ionomycin, which enhanced Ca2+ influx by releasing stored intracellular Ca2+ (Morgan and 

Jacob, 1994), phosphorylated CamKII translocated into the nucleus in a number of PRECs. 

However, such translocation was seldom found in TGF-β or Wnt11 treated PRECs (Fig. 2-

8). To test the role of JNK signaling more directly, we used two specific JNK inhibitors, 

SP600125 and JNK inhibitor III, to block JNK signaling in PRECs prior to TGF-β 

administration. The JNK inhibitor III was a cell-permeable 37-mer peptide by fusing 

human c-Jun δ domain (amino acids 33-57) sequence with that of HIV-TAT protein 

transduction domain (amino acids 47-57) via a γ-aminobutyric acid spacer. It has been 

shown to specifically disrupt c-Jun/JNK complex formation and the subsequent 

phophorylation and activation of c-Jun by JNK and could be used as a complement 

inhibitor for SP600125 (Holzberg et al., 2003; Wang et al., 2008). Both the inhibitors 

blocked the up-regulation of mesenchymal genes induced by TGF-β without affecting P-

Smad3 levels (Fig. 2-7C, D). However, despite their common blockade effects on cJun 

phosphorylation, SP600125 decreased the total cJun, while JNK inhibitor III slightly 

increased it. This may reflect the different characteristics of the two inhibitors. Similarly, 

in TKPTS, both the inhibitors reduced the up-regulation of mesenchymal genes induced 

by Wnt11 overexpression (Fig. 2-7E). A more precise examination of Wnt11 expression 

upon the TGF-β treatment showed that Wnt11 was induced as early as 1 hour after TGF-

β1 administration, which was just the time point that the amount of phosphorylated c-Jun 

began to elevate (Fig. 2-7F, G). The addition of cycloheximide abolished c-Jun 

phosphorylation, suggesting that the activation of JNK signaling pathway upon TGF-β 

treatment required new protein synthesis. Also, Wnt11 knockdown suppressed TGF-β 
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induced c-Jun phosphorylation, which is consistent with a role for Wnt11 in activating the 

JNK pathway (Fig. 2-7H).  Taken these together, our results demonstrated that up-

regulation of Wnt11 by TGF-β drives expression of mesenchymal genes through the non-

canonical, JNK signaling pathway. 

Discussion 

Despite the critical role of TGF-β in renal fibrosis, many of its target genes and 

biological effects in renal epithelial cells remain poorly characterized.  We systematically 

analyzed the effects of TGF-β on transcription of direct target genes using renal epithelial 

cells and translation inhibition. From the microarray result, we found that more than 300 

genes changed their RNA expression levels of at least 2 fold.  In the presence of 

cycloheximide, not all mesenchymal markers, such as Pai1 and Zeb1, were up-regulated 

by TGF-β, suggesting that these genes are not direct targets of Smad protein dependent 

transcription.  This was consistent with previous studies indicating that some 

mesenchymal markers, such as Pai1, were not directly regulated by Smad proteins, but the 

targets of other transcriptional factors induced by TGF-β signaling (He et al., 2010). 

Similarly, E-cadherin was also not on the list. This is not only because that the suppression 

of E-cadherin required new protein synthesis, such as Snail1 (Vincent et al., 2009), but 

also due to a short TGF-β treatment time (Yang and Liu, 2001).  

Among the genes activated by TGF-β were many associated with the Wnt 

signaling pathway.  Recent evidence implied that Wnt signaling, especially the canonical 

Wnt/β-catenin pathway, was involved in EMT and TGF-β mediated fibrosis (Akhmetshina 

et al., 2012; He et al., 2009; Surendran et al., 2005; Zhou et al., 2012a).  In our studies, 



70 

 

Wnt11 showed the greatest response to TGF-β both in microarray and real-time PCR 

assays and was thus studied further.  Prior studies also suggested that Wnt11 was directly 

regulated by β-Catenin (Dwyer et al., 2010; Zhou et al., 2007). In our study, LiCl 

treatment could activate Wnt11 expression in PRECs (data not shown). However, TGF-β 

did not activate the expression of Axin2, a typical β-Catenin target, in our microarray 

studies, indicating that at least in the early stage, the upregulation of Wnt11 by TGF-β was 

β-Catenin independent. In the Smad3 knockdown TKPTS cells, the Smad2 

phosphorylation upon TGF-β treatment was not affected, but Wnt11 up-regulation was 

largely reduced, suggesting that Smad2 alone is not sufficient to activate Wnt11. In Smad3 

overexpressed TKPTS, the transfected Smad3 was phosphorylated and activated Wnt11 

expression, without affecting Smad2 phosphorylation status. Taken this together, our data 

clearly shows that Wnt11 activation is through a Smad3 dependent mechanism. Since 

Wnt11 was critical for the upregulation of mesenchymal genes upon TGF-β1 treatment, 

our results supported the different roles of Smad2 and Smad3 in mediating EMT and renal 

fibrosis (Meng et al., 2010). Considering the protecting effects of Smad2 in renal fibrosis, 

it is interesting to test whether Smad2 overexpression will inhibit Wnt11 upregulation by 

TGF-β. Another issue concerning the direct regulation of Wnt11 by Smad3 proteins, is to 

find the Smad binding element(s) (SBE) in the promoter region of Wnt11. There are 6 

transcripts for Wnt11 in mouse genome, sharing two promoter regions. Representatively, 

Wnt11-001 (ENSMUST00000067495) has 7 exons, while Wnt11-201 

(ESMUST00000168655) starts roughly from the exon3 of Wnt11-001 with 5 exons. Both 

promoter regions have been cloned previously and found to be regulated by β-Catenin  

(Dwyer et al., 2010; Zhou et al., 2007). In our study, we also cloned a 2kb genome DNA 
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fragment from these two promoter regions and inserted them into a luciferase reporter 

vector. However, both Wnt11 promoter reporters failed to response to TGF-β1 or Smad3 

overexpression in either TKPTS or 293 cells (data not shown). Thus, finding real SBE in 

Wnt11 promoter regions, a chromatin immunoprecipitation (ChIP) assay with Smad3 

antibody would be necessary. Furthermore, it has been reported that Smad proteins also 

bound to enhancers to regulate target gene expression (Tone et al., 2008). Thus, a 

conserved region between the exon4 and exon5 (in case of Wnt11-201) is another 

candidate for the ChIP assay. 

Wnt11 has multiple functions in regulating cell properties, such as proliferation, 

migration and differentiation.  However its precise function in different cell types was 

context dependent and sometimes contradictory.  For example, Wnt11 enhanced tight and 

gap junction formation in a quail mesodermal cell line QCE6 to promote its differentiation 

to cardiomyocytes (Eisenberg et al., 1997).  In contrast, Wnt11 conditional medium 

induced E-cadherin internalization in a rat intestinal epithelial cell line IEC6, thus 

increasing its proliferation and migration (Ouko et al., 2004).  These data suggested that 

Wnt11 effects were highly dependent on the cellular context.  Although it was shown that 

Wnt11 was involved in EMT during dorsal fin development in Xenopus (Garriock and 

Krieg, 2007), its detailed function and mechanisms of action were not well characterized.  

Here, we reported that Wnt11 participated in TGF-β mediated EMT in both primary and 

immortalized renal epithelial cells, and was necessary for the up-regulation of 

mesenchymal gene expression induced by TGF-β. Although both Wnt11 administration in 

PRECs and transfection in TKPTS could enhance TGF-β effects, its treatment alone in 

two cell types was different. In PRECs, Wnt11 alone did not activate mesenchymal 
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markers; however, in TKPTS, Wnt11 up-regulated some of the mesenchymal genes.  This 

could result from subtle differences of cell characteristics between primary and 

immortalized cells and Wnt11 delivery methods.  Recombinant protein administration is 

more like a paracrine model, whereas expressing vector transfection may be more 

autocrine. Compared to the Wnt11 recombinant protein, the autocrine Wnt11 in TKPTS 

may interact with other secreted ligands, thus acquiring additional properties. For example, 

the secreted Xenopus Wnt11 physically interacts with Wnt5a and the complexes has more 

canonical Wnt signaling activity than secreted Wnt11 or Wnt5a acting alone (Cha et al., 

2009).   

Whether Wnt11 activates the canonical Wnt signaling pathway is also 

controversial.  For example, Cha SW et al (Cha et al., 2009) showed that Wnt11/5a 

complex could enhance canonical Wnt11 signaling through accumulating cytosolic β-

catenin in Xenopus ooctyes, mouse L cells and human embryonic stem cells. Other reports 

show that Wnt11 had no effect, and even down-regulated β-catenin signaling (Anton et al., 

2007; Maye et al., 2004). To date, most studies are consistent with Wnt11 activating the 

non-canonical Wnt signaling pathways through the JNK or CamKII kinases (Flaherty et 

al., 2008; Westfall et al., 2003; Zhou et al., 2007). In our renal epithelial cells, Wnt11 

alone did not activate canonical Wnt signaling nor was the CamKII protein activated by 

TGF-β or Wnt11 directly. In fact, CamKII reportedly can inactivate Smad/TGF-β 

signaling through blocking the accumulation of nuclear Smad proteins (Wicks et al., 2000).  

Clearly this was not the case given the robust TGF-β responses observed. However, we 

did measure activation of the JNK signaling pathway by TGF-β and Wnt11. The 

abolishment of c-Jun phosphorylation induced by TGF-β in the presence of cycloheximide 
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indicated that the activation of JNK signaling was a secondary effect for TGF-β, which 

required new protein synthesis. Activation of JNK was critical for mediating the 

Wnt11/TGF-β response because inhibition of JNK signaling could decrease up-regulation 

of the mesenchymal genes induced by Wnt11. Although JNK signaling was activated by 

Wnt11 alone in PRECs, this was not sufficient to induce expression of mesenchymal 

genes. The JNK inhibitor only attenuated the effects of TGF-β, but did not entirely block 

the activation of mesenchymal genes. 

Furthermore, by activating families of secreted signaling molecules, TGF-β acting 

on epithelial cells could impact the environment and the adjacent cells in the renal 

interstitium. Nowadays, more and more evidence pointed to pericytes for the increasing 

number of fibroblasts in renal fibrosis (Humphreys et al., 2010; Lin et al., 2008). In this 

model, pericytes detached from the vasculature, migrate into interstitium, proliferate and 

differentiate into myofibroblasts. However, the signaling pathways controlling this series 

of biological process are largely unknown. It has been reported that Wnt11 was 

upregulated during renal fibrosis (He et al., 2009), also it promoted cell survival, 

migration and proliferation in different types of cells (Garriock and Krieg, 2007; 

Matthews et al., 2008; Ouko et al., 2004; Uysal-Onganer et al., 2010). Thus, it is worth 

exploring the function of Wnt11 in pericyte activation during renal injury.   

Taken together, our results showed that TGF-β activates multiple signaling 

pathways in renal epithelial cells through enhanced expression of secreted signaling 

proteins and transcription factors.  Of these, Wnt11 activation by TGF-β enhances the 

overall effects attributed to TGF-β on epithelial cells, such as expression of genes 

associated with more mesenchymal cells.  A recent study on EMT in breast tumor 
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suggested the importance of TGF-β, canonical and non-canonical Wnt signaling 

pathways in maintaining the mesenchymal state, indicating an interactive communication 

model between different signaling pathways in a biological process (Scheel et al., 2011).  

Our findings suggested a transregulation model, whereby TGF-β directly activates 

signaling factors and effectors necessary for the phenotyping changes observed.   
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Figure 2-1.Effects of TGF-β on primary renal epithelial cells. A) Phase contrast 
micrographs of morphology change of PRECs after they were isolated from mouse cortex. 
Indicated times were the days after cells were isolated. B) Phase contrast micrographs of 
PRECs treated with increasing concentrations of TGF-β  for 24 h. C) Western blot of 
cells treated for 0, 48, 72 h with 10 ng/ml of TGF-β and probed for E-cadherin. D) Time 
and dose dependence of αSMA and N-cadherin expression with increasing amounts of 
TGF-β. E) qRT-PCR of mesenchymal markers after 24h TGF-β treatment at the indicated 
doses. All samples were done in triplicate with error bars representing one standard 
deviation (SD) from the mean. 
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Figure 2-2. Wnt11 are direct targets of TGF-β signaling. A) Wnt11 RNA levels in 
PRECs cells cultured with TGF-β for the indicated time in hours in the presence of 
cycloheximide. B) Wnt11 RNA levels in TKPTS cells cultured with TGF-β for the 
indicated time in hours in the presence of cycloheximide. C) Wnt11 RNA levels after 24h 
with varying does of TGF-β as indicated. D) Wnt11 RNA activation in response to TGF-
β in the presence or absence of the Smad3 inhibitor SIS3. E) Wnt11 RNA levels 
measured after Smad3 transfection and/or TGF-β treatment.  F) Wnt11 RNA activation in 
response to TGF-β in the presence or absence of Smad3 shRNAs or scrambled controls.  
G) Western blot of P-Smad3 in response to increasing does of TGF-β. H) Western blots 
of P-Smad3 and P-Smad2 after inhibition by SIS3 and treatment with TGF-β. I) Western 
blot for P-Smad3 and P-Smad2 after Smad3 transfection and TGF-β treatment. J) 
Western blot of P-Samd3, P-Smad2 and total Smad2/3 after culture with Smad3 shRNAs 
and TGF-β treatment. It is noted that Smad3 proteins were shown nearly totally gone in 
Smad2/3 panel, while it is still detectable in the P-Smad3 panel. This resulted from 
different expose time and affinity for these two antibodies. All samples were done in 
triplicate with error bars representing one standard deviation (SD) from the mean. 
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Figure 2-3. Wnt11 increases TGF-β dependent activation of mesenchymal genes. A) 
Western blots for N-cadherin, αSMA, P-Samd3, and β-tubulin from cells treated with 
recombinant Wnt11 and different does of TGF-β as indicated. B) Quantitative RT-PCR 
for RNAs from the genes indicated under similar conditions as in A. C) Quantitative R-
PCR for mesenchymal genes after transfection with Wnt11 expression plasmids and/or 
TGF-β addition. All samples were done in triplicate with error bars representing one 
standard deviation (SD) from the mean. (*p < 0.05; **p < 0.01, n.s. not significant, 
students-t-test for independent variables) 
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Figure2-4. Wnt11 is necessary for the TGF-β dependent activation of mesenchymal 
genes. A) Wnt11 RNA levels after culture with shRNA #53302 or a scrambled control in 
TKPTS cells with or without TGF-β. B) Similar experiment as in A but using the Wnt11 
shRNA #54666. C) The TGF-β induction of RNAs for the indicated genes in the presence 
or absence of shRNA #53302. Relative amount of RNA is compared before or after TGF-
β addition and expressed as fold induction. D) Similar experiment as in C but using the 
Wnt11 shRNA #54666. E) The induction fold change of indicated genes by TGF-β is 
measured in cells cultured with shRNA 53302, with shRNA 53302 and recombinant 
Wnt11, or with scrambled shRNA. Note that recombinant Wnt11 increases the induction 
of mesenchymal genes in the presence of 53302. F) Wnt11 shRNA 53302 in PRECs 
reduces TGF-β dependent Wnt11 RNA induction. G) In PRECs, Wnt11 shRNA 53302 
reduces the TGF-β mediated fold induction of mesenchymal marker genes. H) In TKPTS, 
inhibition of Fzd7 RNA by shRNA #64762 is independent of TGF-β. I) Fzd7 shRNA 
#64762 inhibits the TGF-β mediated induction of mesenchymal marker genes. J) The 
Wnt secreted inhibitor Sfrp1reduces the TGF-β mediated induction of mesenchymal 
marker genes in PRECs. K) Western blots for αSMA and Wnt11. Cells show that 
inhibition of Wnt11 by shRNAs reduces the accumulation of αSMA in response to TGF-
β in PRECs. All samples were done in triplicate with error bars representing one standard 
deviation (SD) from the mean. (*p < 0.05; **p < 0.01, students-t-test for independent 
variables) 
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Figure 2-5. Wnt11 does not modulate Smad proteins. A) Western blot of P-Smad3 
from cells cultured with Wnt11 shRNAs and/or TGF-β as indicated in TKPTS. B) 
Western blots from cell overexpressing Wnt11 and treated with TGF-β show no affect of 
Wnt11 on P-Smad3 levels. C) The P-Smad2/3 reporter 3TP-Luc was assayed after co-
transfected with Wnt11 or treatment with TGF-β. Note that Wnt11 does not increase 
3TP-dependent luciferase. D) Wnt11 shRNA knockdown does not affect the ability of 
TGF-β to activate 3TP-luc. All samples were done in triplicate with error bars 
representing one standard deviation (SD) from the mean. 
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Figure 2-6. Wnt11 does not mediate β-catenin dependent gene activation. A) Western 
blot using antibodies against activated β-catenin show no effects of Wnt11 on activated 
β-catenin accumulation. B) Western blot using antibody against total β-catenin for 
cytoplasmal and nuclear fraction of PRECs under Wnt11 or LiCl treatment for 24h. β-
tubulin and ptip was used as the loading control of cytoplasmal and nuclear fraction 
respectively. C) Wnt11 does not activate Wisp1 or Axin, two known β-catenin target 
genes, as assayed by qRT-PCR in renal epithelial cells. D) Cells were transfected with the 
β-catenin reporter TOPFLASH and treated with Wnt11, TGF-β, or LiCl, or co-
transfected with Smad3.  Only the known GSK3 kinase inhibitor LiCl activated the 
TOPFLASH reporter. FOPFLASH is used as non-specific control plasmid. All samples 
were done in triplicate with error bars representing one standard deviation (SD) from the 
mean. (n.s. not significant, students-t-test for independent variables) 
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Figure 2-7. Activation of JNK signaling by TGF-β/Wnt11 activates mesenchymal 
marker genes. A) Western blot for P(S63)-cJun, total cJun and P-CamKII after treatment 
of renal epithelial cells for 24 or 48 hours with TGF-β shows increased P-cJun and total 
cJun but not P-CamKII. B) Addition of recombinant Wnt11 in PRECs and Wnt11 
overexpression in TKPTS increases levels of P-cJun, but not P-CamKII. C) Western blots 
of cell lysates show that inhibition of the cJun kinase (JNK) by SP600125 or JNK 
inhibitor III reduces expression of αSMA in response to TGF-β. Note there is no affect on 
P-Smad3 levels. D) qRT-PCR of mesenchymal marker genes treated with TGF-β, with or 
without the JNK inhibitors, show reduced expression of all mesenchymal markers tested 
upon JNK inhibition in PRECs. E) Activation of mesenchymal marker gene expression in 
response to Wnt11 is reduced upon JNK inhibition in TKPTS, as determined by qRT-
PCR. F) Wnt11 RNA levels in PRECs cells cultured with TGF-β for the indicated times 
in hours. G) Western blots for P-cJun, total cJun, Wnt11 and P-Smad3 with TGF-β 
treatment for indicated times absence or in the presence of cycloheximide (CHX). CHX 
abolished the elevated P-cJun and Wnt11 upon TGF-β treatment. H) Western blots for P-
cJun show reduced levels upon TGF-β treatment when cells are cultured with shRNA 
53302 against Wnt11. All samples were done in triplicate with error bars representing 
one standard deviation (SD) from the mean. (*p < 0.05; **p < 0.01, students-t-test for 
independent variables) 
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Figure 2-8. Neither TGF-β nor Wnt11 induced translocation of p-CamKII in PRECs. 
Immunofluorescence for p-CamKII (red) and β-Catenin (green) shows that treatment of 
TGF-β or Wnt11 for 24 hours does not induce the translocation of p-CamKII into nucleus. 
Ionomycin administration for 1 hour is utilized as the positive control for the activation of 
CamKII. β-Catenin was stained to define the cell boundary.  
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Table 2-1. Select genes regulated by TGF-β in renal epithelial cells 
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Table 2-2. Wnt associated genes regulated by TGF-β in renal epithelial cells 
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Chapter III 

Attenuated upregulation of mesenchymal marker genes in unilateral ureteral 

obstruction (UUO) mouse model with kielin/chordin-like protein (KCP) 

overexpression 

 

Abstract 

Renal interstitial fibrosis is a common pathology in most chronic and progressive 

kidney diseases. Two main branches of TGF-β superfamily are the direct mediators of 

fibrosis. TGF-β promoted renal fibrosis, while BMP7 is a protector and counteracts TGF-

βs. Recently, our lab discovered a novel cysteine-rich secreted protein, kielin/chordin-like 

protein (KCP), which is an enhancer for BMP signaling, as well as an inhibitor for TGF-β 

signaling. Here, in the unilateral ureteral obstruction (UUO) mouse model, we showed 

that specific overexpression of KCP in renal epithelia significantly attenuated the 

upregulation of mesenchymal marker genes in the injured kidney. Our study 

demonstrated the importance of the balance of TGF-β and BMP signaling in the 

progression of renal fibrosis and provided a new potential therapeutic target for its 

treatment by the application of KCP.   

Introduction 

In the United States, approximately 13% of the adult population suffers some 

degree of chronic kidney disease (CKD) whose prevalence continues to increase (Coresh 

et al., 2007). Clinically, chronic kidney disease is determined by persistent albuminuria 
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and decreased estimated glomerula filtration rate (GFR). Pathologically, the CKD, 

especially at its end stage, is usually accompanied by severe renal interstitial fibrosis (Liu, 

2010). Inflammation, such as the infiltration of macrophages to the injured kidney, plays 

a crucial role in the initiation of renal fibrogenesis (Ricardo et al., 2008), which is 

followed by the proliferation and activation of fibroblast and enhanced deposition of 

extracellular matrix (ECM). The increasing number of fibroblasts, myofibroblasts and 

excess ECM replace the kidney parenchyma, destroy the normal renal tubular 

architecture, and eventually lead to the end stage renal disease (Liu, 2011).  

Among the most well studied signaling pathways in renal fibrotic disease are 

those of the transforming growth factor β (TGF-β) superfamily, the most relevant of 

which are the TGF-βs and BMPs. As we discussed in the Chapter I and II, the general 

signaling transduction pathway for TGF-βs and BMPs is similar (Massague, 1998). The 

binding of the ligand to its type II receptor, leads to the recruitment and phosphorylation 

of type I receptor. The activated type I receptor is a serine/threonine kinase that 

transduces the signal through phosphorylating receptor Smad proteins (R-Smads), which 

form a heteromeric complex with a common partner, Smad4, translocate to the nucleus 

and mediate target gene expression. For TGF-βs, the R-Smads are Smad2 and 3, while 

for BMPs, they are Smad1, 5 and 8. A consensus exists that TGF-βs are pro-fibrogenic 

cytokines, and BMPs counteract the effects of TGF-βs. In vivo studies showed that mice 

genetically overexpressing TGF-β1 (Kopp et al., 1996) or treated with recombinant TGF-

β2 (Ledbetter et al., 2000), suffered renal interstitial fibrosis and tubular atrophy over 

time. Conversely, the severity of renal hisopathology was reduced in experimental 

glomerular nephritis models by treating animals with a human antibody against rat TGF- 
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β type II receptor (Kasuga et al., 2001). Immunohistochemical staining revealed that both 

TGF-β1 ligand and its type I receptor were robustly upregulated in proximal tubular 

epithelial cells of the injured kidney (Yang and Liu, 2001). In vitro, BMP7 reversed the 

TGF-β1 induced epithelial mesenchymal transition. This was supported by the in vivo 

study showing that systemic administration of recombinant human BMP7 led to the 

repair of severely damaged renal tubular epithelial cells and the reversal of chronic renal 

injury (Zeisberg et al., 2003). Furthermore, BMP7 induced mesenchymal to epithelial 

transition (MET) in adult renal fibroblasts (Zeisberg et al., 2005).  

In Chapter I, we have thoroughly discussed the regulation of TGF-β signaling 

both outside and inside of cells. Out of cells, a group of secreted factors, containing the 

cysteine rich (CR) domains, mediates TGF-β signaling transduction through blocking or 

facilitating the binding between ligands and receptors. For example, the crystal structure 

of the Noggin-BMP7 complex directly showed that Noggin inhibited BMP7 by blocking 

the surfaces that were required to interact with the type I and type II BMP receptors 

(Groppe et al., 2002). On the other hand, the secreted CR domain protein, connective 

tissue growth factor (CTGF), not only blocked BMP signaling, but also enhanced TGF-

β1 signaling through direct interaction with TGF-β1 ligands (Abreu et al., 2002).  

Recently, our lab identified kielin/chordin-like protein 1 (KCP1) as a secreted 

protein with 18 cysteine-rich domains that is expressed in the developing kidney at both 

early and late stages (Lin et al., 2005). Unlike Noggin or CTGF, KCP1 enhances BMP 

signaling and inhibited TGF-β1 signaling (Lin et al., 2005; Lin et al., 2006). The KCP 

homozygous mutant mice showed no gross developmental abnormalities, but exhibited 
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enhanced susceptibility to developing renal interstitial fibrosis in both UUO chronic 

kidney disease model and folic acid acute renal injury model (Lin et al., 2005). 

In this chapter, we tried to address whether overexpression of the secreted KCP 

protein in transgenic mice will alter the balance between the TGF-β and BMP signaling 

pathway and change the progress of renal fibrosis. Transgenic mice were engineered to 

express KCP protein specifically in renal proximal tubule cells and subjected to unilateral 

ureteral obstruction. While KCP expression by itself had few measurable deleterious 

effects, KCP transgenic mice showed decreased upregulation of mesenchymal genes in 

injured kidney over time, suggesting a more resistance to interstitial fibrosis. Our studies 

clearly pointed to the renal protective functions for KCP, and provide a potential target 

for the treatment of renal fibrosis.   

Materials and Methods 

Animals 

Mice were kept according to NIH guidelines.  Animal use was approved by the 

University Committee on Use and Care of Animals at the University of Michigan. The 

KCP mice were generated by Dr. Dressler. Pepck promoter was used to drive a myc-

epitope tagged form of the KCP protein that also included a human Igk light chain signal 

peptide to enhance secretion. 

For the induction of renal fibrosis, the UUO model was utilized. Mice were 

anesthetized with intraperitoneal injection of ketamine and xylozine. Through a midline 

abdominal incision, the right ureter was exposed and tied off at the mid-ureteral level 

with fine suture materials (4-0 silk) to induce a complete obstruction. Mice were allowed 
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to recover from anesthesia and were kept with ad libitum supply of food and water until 

the indicated time of sacrifice (0, 7, 14 and 28 days). Both obstructed and contralateral 

kidneys were harvested for RNA and protein. The UUO model was generated by Abdul 

Soofi.  

RNA extraction 

The kidney tissue was added into TRizol reagent (Invitrogen) and homogenized 

with Polytron Homogenizer. The mixture was centrifuged and supernatant was collected 

for further isolation following the manufacturer’s instructions. 

RNA reverse-transcription and real-time PCR  

2-3 µg total RNA was reverse-transcribed into complementary DNA with 

SuperScript First-Strand Kit (Invitrogen).  The cDNA products were diluted 5 times and 

amplified with the iTaq Sybr green master mix (Bio-Rad) in a Prism 7500 (Applied 

Biosystems).  Primers pairs for PCR are as follows: Wnt11 5’-

GGGCCAAGTTTTCCGATGCT, 5’-TTCGTGGCTGACAGGTAGCG; ZEB1 5’-

TCAAGTACAAACACCACCTG, 5’-TGGCGAGGAACACTGAGA; PAI1 5’-

ACATGTTTAGTGCAACCCTG, 5’-GGTCTATAACCATCTCCGTG; Snai1 5’-

GGAAGCCCAACTATAGCGA, 5’-AGCGAGGTCAGCTCTACG; GAPDH 5’-

ACCACAGTCCATGCCATCAC, 5’-TCCACCACCCTGTTGCTGTA. 
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Results 

Generation of KCP transgenic mice 

Since the Pepck promoter was reported to be very active in renal proximal tubular 

epithelial cells (Short et al., 1992), it was used to drive the expression of transgenic KCP 

gene (Fig. 3-1A). The transgenic KCP protein was myc-epitope tagged and included a 

human IgK light chain signal peptide to enhance its secretion. Founder animals were 

mated to wild-types and subsequent F1 generations genotyped for the transgene. The 

expression of transgenic KCP varied among littermates, but immunohistochemistry 

results showed that the exogenous KCP protein were most located in proximal tubules 

(Fig. 3-1B and C). The strongest expressing strain was used for renal injury studies. 

KCP overexpression attenuated the upregulation of mesenchymal genes in UUO model 

In UUO disease model, the normal renal tubular architecture was destroyed and 

replaced by increasing number of fibroblasts and myofibroblasts. Thus an upregulation of 

mesenchymal marker genes, such as Pai1, Snail1 and Zeb1, in the injured kidney was 

observed. Furthermore, the expression of these mesenchymal markers increased over 

time, indicating the progress of the injury. In KCP transgenic mice, the basal expression 

of mesenchymal genes were not much affected. However their upregulation trends, along 

with the disease progression, were significantly attenuated (Fig. 3-2B). The effect of KCP 

on mesenchymal gene expression was through enhancing BMP signaling and inhibiting 

TGF-β signaling, as indicated by the more phosphorylated Smad1, 5 and 8 proteins and 

less phosphorylated Smad2 and 3 in transgenic mice (Fig. 3-2A). In Chapter II, we 

demonstrated that Wnt11 was a direct target of TGF-β signaling. Here, we found that 
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Wnt11 expression was also reduced by KCP overexpression, further demonstrating the 

inhibitory effect of KCP on TGF-β signaling (Fig. 3-2B). These taken together, our data 

suggested that KCP attenuated mesenchymal gene upregulation in injured kidney through 

enhancing BMP signaling and blocking TGF-β signaling. 

Discussion 

Although BMPs and TGF-βs belong to the same superfamily, their functions in 

renal fibrosis are very different. While TGF-β induced EMT in vitro, and correlated with 

increased fibroblast proliferation and ECM deposition to promote fibrosis in vivo (Iwano 

et al., 2002; Poncelet and Schnaper, 2001; Strutz et al., 2001), BMP7 mediated MET in 

vitro, and suppressed inflammation and improved renal recovery in vivo (Hruska et al., 

2000; Vukicevic et al., 1998; Zeisberg et al., 2005). Over the years, drugs have been 

designed to repress TGF-β signaling or enhance BMP7 signaling for the treatment of 

chronic kidney diseases. Our study suggested that KCP may be a better candidate, 

because it can modulate TGF-β and BMP7 at the same time. Furthermore, KCP was not 

widely expressed in adult tissues (Lin et al., 2005), suggesting that drug targeting at KCP 

might cause less side effects. 

Besides the upregulation of mesenchymal marker genes, histology and 

immunostaining showed less Collagen IV deposition and αSMA expression in KCP mice 

compared to wildtype control at 7 and 14 days after UUO (data not shown). These further 

demonstrated the protective role of KCP. The quantitative PCR was based on the whole 

renal tissue, so we did not know whether the attenuated mesenchymal gene expression 

was due to less proliferation of fibroblasts or reduced EMT effect. However, since the 
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transgenic KCP was overexpressed specifically in proximal tubular epithelia, our results 

indicated the important role of those epithelial cells in promoting renal fibrosis either 

through an autocrine or paracrine manner.  

In the normal adult kidney, the BMP7 signaling is active, but its function is not 

well characterized. The main target cells for the BMP7 signaling in the kidney are 

epithelial cells, especially proximal tubular epithelial cells (Bosukonda et al., 2000). The 

function of BMP7 signaling in those epithelial cells may be to maintain the expression of 

E-cadherin (Zeisberg et al., 2005). It has been reported that BMP signaling was also 

involved in maintaining the pluripotency of stem cells (Varga and Wrana, 2005). During 

renal development, not all metanephric mesenchyme cells aggregate and become 

epithelia. Some cells maintain their mesenchymal properties and remain as interstitial 

stromal cells (Dressler, 2006). Thus, BMP7 signaling may be important for the survival 

of these interstitial stromal cells. During renal fibrosis, the decreasing BMP7 signaling 

may contribute to the differentiation of these stromal cells into fibroblasts. Meanwhile, 

the destruction of the stem cell pool may also reduce the recovery ability of the kidney 

from acute renal diseases. This may be one of the reasons why rats receiving BMP7 

injection had better recovery from ischemic acute renal failure (Vukicevic et al., 1998). 
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Figure 3-1. Expression of KCP in the transgenic mice. A) Schematic shows the 
expression of transgenic KCP is under the control of pepck promoter. B) Western blot for 
myc from wildtype (#1) or transgenic kidneys (#2 and #3) indicates the transgenic 
expression of KCP proteins. C) Immunofluorescence for myc (red) and laminin (green) 
shows that exogenous KCP is specifically expressed in proximal tubular epithelia. 
Laminin is used to define the boundary of renal tubules.  
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Figure 3-2. KCP overexpression attenuated upregulation of mesenchymal genes in 
injured kidney. A) Western blot for P-Smad1, P-Smad3 and myc from three independent 
normal, 7-day or 14-day UUO kidneys of wildtype or KCP transgenic mice. The 
expression of KCP decreased with the progression of the disease. The amount of P-
Smad1 was higher in KCP mice than the wildtype, while the amount of P-Smad3 was 
lower. β-tubulin was the loading control for P-Smad1, Smad1 and myc. β-actin was the 
loading control for P-Smad3. B) Gene expression levels were assayed by qRT-PCR for 
the indicated genes in control (n=3), 7-day (n=3), and 14-day UUO kidney (n=3) RNA 
isolates. All samples were done in triplicate with error bars representing one standard 
deviation (SD) from the mean. 
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Chapter IV 

Tle4 enhances BMP7 mediated gene expression 

Abstract 

Groucho proteins and their mammalian homologues, Transducin-Like Enhancer 

of split (Tle) proteins are common corepressors, and are critical for normal development 

processes. Bone morphogenetic protein 7(BMP7) signaling belongs to transforming 

growth factor-β (TGF-β) superfamily and plays an important role in controlling kidney 

development. However, the regulation of BMP7 signaling, especially within cells, is 

largely unknown. Here, our results showed that overexpression of Tle4 robustly activated 

the expression of a BMP reporter, as well as enhancing and sustaining the upregulation of 

endogenous Id1 gene induced by BMP7. BMP7 administration did not affect the 

endogenous level of Tle4. Tle4 activated the BMP reporter through mediating Smad 

proteins, as Tle4 repressed the expression of Smad7, an inhibitory Smad protein, and 

overexpression of Smad7 totally abolished the effect of Tle4 on the induction of the BMP 

reporter. Our study provided a new mechanism for the regulation of BMP signaling, 

which may be important for the kidney and neural development, since Tle4 and BMP7 

are co-expressed in these developing tissues. 

Introduction 

The human genome is carried by 23 pairs of chromosomes, containing 20,000-

25,000 protein-coding genes (2004). The proper expression of these genes is critical for 

normal cellular physiological processes, such as proliferation, differentiation and death, 

thus requiring elegant and tight regulation. Two large families of proteins control gene 
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expression, the activators and the repressors. As their name suggested, activators help the 

recruitment of RNA polymers II to the gene promoter and increase target gene expression, 

while repressors condense the chromatin structure, exclude activators and transcription 

machinery, and reduce or even silence gene expression.  

Groucho proteins and their evolutionary conserved mammalian Transducin-Like 

Enhancer of split (Tle) homologues were the first identified metazoan corepressors 

(Cinnamon and Paroush, 2008). Their structure encompasses five domains, the Trp-Asp-

repeat (WDR) domain at the N-terminal, followed by Ser-Pro-rich (SP) domain, a CcN 

domain, and Gly-Pro-rich (GP) domain, with a Gln-rich (Q) domain at the C-terminal 

(Buscarlet and Stifani, 2007). The WDR and Q domain are highly conserved and 

essential for the interaction with other DNA-binding proteins to mediate gene repression 

(Fisher and Caudy, 1998; Jennings et al., 2006). The SP domain could be phosphorylated 

by MAPK, which negatively regulates Gro/Tle repression ability (Hasson et al., 2005). 

The CcN domain has the nuclear localization signals (Buscarlet and Stifani, 2007). The 

Gro/Tle family represses gene expression through multiple mechanisms. First, it interacts 

with TFIIE or other transcriptional factors to prevent the assembling of transcription 

machinery or activator complexes (Buscarlet and Stifani, 2007). Second, Grg3 bound to 

nucleosomal arrays to promote condensation into higher-order chromatin to block the 

access of other transcriptional factors (Sekiya and Zaret, 2007). Third, they recruit 

histone deacetylase or other histone modification complexes to repress target gene 

expression (Patel et al., 2012; Yochum and Ayer, 2001). Through a series of knockdown 

and overexpression experiments, Gro/Tle proteins play important roles in embryogenesis, 
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body patterning and organogenesis (Dasen et al., 2001; Wang et al., 2004; Zamparini et 

al., 2006).  

Bone morphogenetic protein (BMP) belongs to the transforming growth factor 

(TGF)-β superfamily (Massague, 1998; Patel and Dressler, 2005).  In mammals, the 

binding of BMP ligands to their receptor, BMP type II receptor, leads to the recruitment 

and phosphorylation of BMP type I receptor (BMPRI). The activated BMPRI is a 

serine/threonine kinase that transduces the signal through phosphorylating receptor-

activated Smad1, 5 and 8. Phosphorylated Smad1, 5 and 8 form a heteromeric complex 

with a common partner, Smad4, and translocate to the nucleus to regulate target gene 

expression. The inhibitory Smads (I-Smads, Smad6 and 7) shared a common sequence 

with R-Smads and competed with them to bind to type I receptor or Smad4, thus blocking 

signaling transduction.  

BMP7 was known to be critical for the normal kidney development. It has been 

reported that the BMP7 null mice died shortly after birth because of severe renal 

dysfunction (Luo et al., 1995). In vitro, BMP7 promoted the survival of metanephric 

mesenchymal cells, as well as their differentiation to the diverse epithelial cells types of 

the nephron (Dressler, 2006; Dudley et al., 1999; Vukicevic et al., 1996). This was 

consistent with the in vivo studies, showing that BMP7 null mice had much fewer 

glomeruli and nephrons than the wildtype mice. (Dudley et al., 1995; Luo et al., 1995). 

Besides these genetic data, the BMP type I receptors, as well as their responsive Smads 

(Smad1, 5 and 8) were expressed in the nephrogenic zone (Martinez et al., 2001; Vrljicak 

et al., 2004).  
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Although BMP signaling is important, its regulation during normal kidney 

development is largely unknown. The best studied mediator is Gremlin1, an extracellular 

antagonist for BMP signaling, which inhibited the local BMP signaling and facilitating 

ureteric bud outgrowth and branching (Michos et al., 2007). In addition, the I-Smads 

were also detected in mesenchymal cells in the nephrogenic zone and at ureteric bud tips 

(Vrljicak et al., 2004). Recently, we found that Tle4 was expressed in s-shaped bodies, a 

structure derived from metanephric mesenchyme, as well as periphery mesenchyme (Cai 

et al., 2003). Tle4 has been reported to participate in the regulation of several signaling 

pathways, such as Wnt, Notch and EGF signaling (Cinnamon and Paroush, 2008). 

However, the reports of its involvement in TGF-β signaling are limited. The only data is 

from Drosophila, showing that brinker, a downstream effector of the decapentaplegic 

(dpp)/TGF-β signaling, recruited groucho and CtBP to suppress specific target genes 

(Hasson et al., 2001). Recently, Sekiya, T et al showed that the recruitment of Grg3 to 

chromatin created a closed, poorly accessible domain spanning three to four nucleosomes 

(Sekiya and Zaret, 2007). This long range repression model may be also involved in the 

regulation of signaling pathways and help explain the various target gene profiles of a 

certain signaling pathway in different cell types. In this chapter, we reported that, instead 

of repressing the effects of BMP7 on its reporter vector, Tle4 overexpression strongly 

activated BMP7 reporter. Similarly, Tle4 also enhanced and sustained the activation of 

endogenous Id1gene induced by BMP7. The effects of Tle4 on BMP7 signaling was not 

through modulating the phosphorylation status of Smad1, 5 and 8, but repressing Smad7 

expression. Our study, for the first time, showed the function of Tle4 in BMP signaling.  
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Materials and Methods 

Reporter Molecular Construction 

The forward and reverse strands of BRE fragment with BamHI site at the 5’-end were 

synthesized by Invitrogen. 10µM of each strand was added to 5X ligase buffer 

(Invitrogen), heated to 95oC for 1 min and then cooled down to room temperature for 

annealing. pRS4-EGFP reporter was digested by BamHI (NEB) for 3 hours and purified 

by QIAquick gel extraction kit (Qiagen). The BRE fragment was ligated with pRS4-

EGFP reporter with the ligation kit (Invitrogen) at 16oC overnight. The ligation product 

was transformed into competent DH5α E.coli (Invitrogen) followed the manufacture 

instruction and cultured on LB (EMD) plates containing 50µg/mL ampicillin (Roche). 

Plasmid DNA was mini-prepared with QIAprep Spin MiniPrep Kit (Qiagen) and 

examined by PstI digestion (NEB). The positive clones were sent to UM sequencing core 

to check the insertion orientation. To cut off the Pax2 binding sites from Pax2 and BMP 

double reporter vector, the vector was digested by HindIII and EcoRV (NEB) overnight, 

blunted by DNA polymerase I, Large (klenow) Fragment (NEB) and re-ligated with the 

ligation kit. BRE fragment sense: 5’-GATCCGCGGCGCCAGCCTGACAGCCCGT 

CCTGGCGTCTAACGGTCTGAGCTAGCG-3’; reverse: 5’-GATCCGCTAGCTCA 

GACCGTTAGACGCCAGGACGGGCTGTCAGGCTGGCGCCGCG-3’.  

Cell Culture 

293 cells were cultured in Dulbecco's Modified Eagle Medium (DMEM, Gibco) 

with 10% Fetal Bovine Serum (FBS), and Penicillin Streptomycin (PS, Gibco). 
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Immortalized renal epithelial cells (TKPTS) were a kind gift from Dr. Bello-Reuss. Cells 

were cultured in Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12 (DMEM/F-

12, Gibco) with 2% FBS, 1X Insulin-Transferring-Ethanolamine-Selenium (ITES, Lonza) 

and PS. UltraMDCK serum free medium (Lonza) was used when serum starvation was 

necessary.   

To test the effect of Pax2, Tle4 or BMP7 on reporter vectors, 293 cells were 

culture on 6 well plates with low serum medium (LSM, DMEM+0.5% FBS+1X Insulin-

Transferring-Selenium (ITS, Gibco)) and transfected with 0.5µg reporter vectors and 

0.5~1 µg Pax2, Tle4 expressing vector or SHS (sonicated herring sperm) DNA as control, 

using Fugene6 (Roche). Cells were harvest 48 hours after transfection for analysis. To 

test the effect of Smad7 on BMP reporters, cells were transfected with 0.5µg pRS4-

BRE4+-EGFP reporter vector, 0.5µg Tle4 expressing vector, and 0.5µg Smad7 

expressing vector or SHS DNA control. 100ng/mL BMP7 (R&D systems) was added 24 

hour after transfection for another 24 hours. For 1 hour pulse experiment, transfected 

cells were treated with 100ng/mL BMP7 for 1h, and then washed with PBS once and 

cultured in new LSM for another 23 hours.  

To collect the conditional medium, 293 cells were cultured on 100 mm dishes and 

transfected with 5 µg of GFP or Tl4 expressing vector, using Fugene6. 48 hours after 

transfection, culture medium from each plate was collected and centrifuged at 4000 rpm 

for 30 min at 4oC. The supernatant was aliquot and preserved in -80oC. 
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Western blot analysis 

Cells were directly lysed in 2X SDS buffer (4% sodium dodecyl sulfate, 20% 

glycerol, 0.2M dithiothreitol, 125 mM Tris, pH 6.8) and boiled at 94°C. Samples were 

separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), 

transferred to PVDF membranes and immunoblotted with antibodies as indicated. Rabbit 

anti-phosphorylated Smad1/5/8 is from Cell Signaling.  Mouse anti-flag and mouse anti β-

tubulin are from Sigma-Aldrich.  Mouse anti-EGFP, mouse anti-Smad1 and rabbit anti-

Tle4 are from Santa Cruz Biotech. Rabbit anti-Pax2 is self-made.  HRP-linked secondary 

antibodies and ECL reagent are from GE healthcare.  

RNA reverse-transcription and real-time PCR  

Total RNA was extracted from 293 cells with different treatment using TRIzol 

RNA isolation system (Invitrogen). 2-3 µg total RNA was reverse-transcribed into 

complementary DNA with SuperScript First-Strand Kit (invitrogen).  The cDNA 

products were diluted 5 times and amplified with the iTaq Sybr green master mix (Bio-

Rad) in a Prism 7500 (Applied Biosystems).  Primers pairs for PCR are as follows: 

Id1 5’-CTGCCTGCCCTGCTGGAC-3’, 5’- TCTCGCCGTTGAGGGTGC-3’; 

Tle4 5’-TACCCCTACTCCACGAACT-3’, 5’-TCTCCGTTCATTCCAGCA-3’; Smad4 

5’-CACTACGAACGAGTTGTATCAC-3’, 5’-CCTTCAGTGGACAACGATG-3’; 

Smad7 5’-ATCACCTTAGCCGACTCTG-3, 5’-CAGTAGAGCCTCCCCACTC-3’; 

L32 5’- CAGGGTTCGTAGAAGATTCAAGGG-3’,  

5’-CTGGAGGAAACATTGTGAGCGATC-3’. 
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Luciferase assays  

293 cells were seeded on 12 well plates and cultured in LSM.  BRE-luc reporter 

vector was transfected (1 µg/well) together with SHS or Tle4 expressing vector (1 µg/well) 

into the cells in triplicate. Medium containing 100ng/mL BMP7, or GFP or Tle4 

conditional medium was added 24 hours after transfection and kept for another 24 hours.  

Cells were lysed with dual luciferase assay kit (Promega) and results were read.   

shRNA mediated Gene knocking-down   

Packed Smad4 37196 or 37199 shRNA lentivirus was used to knockdown in 

PRECs.  Cells were seeded on 6 well plates for 24 hours. Lentivirus was added with 8 

µg/mL polybrene and kept overnight. Puromycin was added and kept for consistent 

selection. For the BMP reporter test in Smad4 knockdown cells, cells were seeded on 12 

well plate and cultured for 24 hours. 1.5 µg of DNA, containing 0.5 µg of pRS4-BRE4+-

EGFP reporter and 1µg of Tle4 expressing vector or SHS DNA control was transfected 

using Fugene6. 48 hours later, cells were lysed in 2XSDS loading buffer and analyzed by 

western blotting.   

Results 

Molecular Construction of Pax2 and BMP7 double reporter vector 

Considering the long range repression effect of Gro/Tle proteins, to study the 

function of Tle4 in BMP signaling, we decided to make a new BMP reporter system, 

which could recruit Tle4 near the BMP response element (BRE). Because Tle4 has no 

DNA binding domain, we choose to use Pax2 as the “bridge” factor, since it has been 

well documented that Tle4 bound to Pax2, 5 and 8 through the conserved octapeptide 
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(Eberhard et al., 2000; Linderson et al., 2004; Patel et al., 2012). First, we synthesized a 

50 bp BRE fragment flanked with a BamH1 site. It was defined from Id1 promoter, 

containing two Smad binding element (SBE) and GC rich region (Korchynskyi and ten 

Dijke, 2002) (Fig. 4-1A). Then, we inserted this DNA fragment into a Pax2 reporter 

vector (Patel et al., 2007) at the BamHI site between the Pax2 binding sites and TK 

promoter. Because the molecular construction was based on a single restriction enzyme, 

multiple BRE fragments could be inserted into one vector at different orientations (Fig. 4-

1B). Here, for convenience, we defined the vector as “+”, when SBE is upstream of GC 

rich region, and “-” when SBE is downstream of GC rich region. Usually, we got the 

double reporter vectors with 4 or 6 copies of BRE fragments. No matter how many copies 

the reporter vectors had, they all responded to BMP7 treatment or Pax2 overexpression 

when transiently transfected into 293 cells (Fig. 4-1C, D).  

Tle4 activated transient transfected BMP7 reporter independent of Pax2 

As previous studies stated, Tle4 abolished the transactivation ability of Pax2 

through inhibiting its phosphorylation by JNK signaling and recruiting other corepressors 

(Cai et al., 2003; Hasson et al., 2001; Patel et al., 2012; Yao et al., 2001). However, to 

our surprise, Pax2 and Tle4 co-transfection or Tle4 transfection alone strongly activated 

the Pax2 and BMP7 double reporter (Fig. 4-2A). Since Tle4 alone could activate the 

reporter, we doubted whether Pax2 binding sites were necessary. Deletion of the Pax2 

binding sites from either EGFP or firefly luciferase reporter did not affect its activation 

by Tle4 (Fig. 4-2B, C). Furthermore, the condition medium collected from Tle4 

transfected cells failed to activate the BMP7 reporter, suggesting that this activation was 

not in a paracrine manner. Both the basal EGFP expression level and the strength of its 
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activation by Tle4 were dependent on the copy numbers of BRE fragments and the 

amount of Tle4 proteins, but regardless of the orientation of the inserted BRE fragments. 

The Tle4 dependent BMP7 reporter activation could be achieved in both human derived 

293 cells and mouse derived TKPTS, indicating that it may utilize a universal mechanism 

(Fig. 4-2D, E).  

Tle4 enhanced and sustained BMP7 mediated endogenous Id1 expression 

Since the response elements of the BRE reporter vector were isolated from Id1 

gene, we then asked whether Tle4 could activate endogenous Id1 gene. Unfortunately, 

overexpression of Tle4 only slightly increased Id1 expression (usually around 1.5 fold) 

(Fig. 4-3A). However, the presence of Tle4 significantly enhanced the effect of BMP7 in 

activating Id1 gene (Fig. 4-3B). Similarly, overexpression of Tle4 also enhanced the 

induction of genome integrated pRS4-BRE4+-EGFP reporter in at least 2 independent 

clones upon BMP7 treatment (Fig. 4-3C). It has been shown that BMP7 signaling was 

required for sustained Id1 mRNA expression in pulmonary artery smooth muscle cells 

(Yu et al., 2008a). Next we checked whether Tle4 was able to prolong Id1 upregulation 

induced by BMP7 in 293 cells. After cells were treated with BMP7 for 1 hour and then 

cultured with new fresh medium for another 24 hours, the expression of Id1 returned to 

the normal level. However, in the presence of Tle4, the expression level of Id1 remained 

at the activated state for another 24 hours, after the 1h exposure of BMP7 (Fig. 4-3D). 

Taken these together, although Tle4 alone did not alter Id1 expression much, it enhanced 

and sustained BMP7 induced endogenous Id1 expression.  

BMP7 did not affect endogenous Tle4 expression 
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Considering the robust induction of Id1 expression by BMP7, we then asked 

whether Tle4 is required for the BMP7 signaling. To our surprised, the endogenous Tle4 

protein level was low in 293 cells. Although, BMP7 may slightly increase the 

transcription of Tle4 over time, there was no detectable increasing of Tle4 protein upon 

BMP7 treatment (Fig. 4-4A, B). So, these data suggested that BMP7 might not require 

high level of Tle4 to induce target gene expression in these cells.  

Tle4 activate BMP reporter vector through mediating Smad proteins 

Next, we addressed the potential mechanisms utilized by Tle4 proteins to 

upregulate BMP reporter vector. Since the Smad proteins are the main mediators for 

BMP signaling, we first check whether Tle4 affect the phosphorylation of R-Smads. 

From Figure 4-5A, we could see that overexpression of Tle4 neither induced the 

phosphorylation of Smad1, 5 and 8, nor increased their response to BMP7 signaling. In 

the BMP7 one hour pulse experiment, Tle4 also failed to maintain the phosphorylated 

status of Smad1, 5 and 8 after BMP7 ligands were withdrawn. However, in these 

experiments, we found that there existed a basal activity of BMP signaling, indicated by 

consistent low level of phosphorylated Smad1, 5 and 8. Considering the general function 

of Gro/Tle family as a corepressor, we doubted whether overexpression of Tle4 blocked 

the expression of BMP inhibitor(s). Thus Tle4 mediated activation of BMP reporter may 

be due to increase the efficiency of basal active Smads on the reporter. Because R-Smad 

proteins usually interacted with Smad4 to regulate gene expression (Massague, 1998), we 

used shRNA to knockdown the expression of Smad4. Two different shRNA lentivirus, 

37196 and 37199 knocked Smad4 down by 70% separately (Fig 4-5B). In Smd4 

knockdown cells, the response of BMP reporter to Tle4 was reduced, although it was still 
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strong. Also, Smad4 knockdown slightly reduced the basal level of phosphorylated 

Smad1, 5 and 8, but the total Smad1 amount was not affected (Fig 4-5C). Thus, the 

Smad4 activity was at least partially responsible for the Tle4 mediated BMP reporter 

activation. Smad7 was a common inhibitor for TGF-β and BMP signaling (Hayashi et al., 

1997; Nakao et al., 1997). We found that Tle4 inhibited endogenous Smad7 expression 

(Fig. 4-5D). More importantly, overexpression of Smad7 reduced the basal expression 

level of BMP reporter vector and totally abolished the activation effect of Tle4 (Fig. 4-

5E). Taken this together, we concluded that Tle4 did not affect phosphorylation of Smad1, 

5 and 8, but activated the BMP reporter vector through enhancing basal BMP signaling 

pathway by inhibiting Smad7 expression.  

Discussion 

BMP signaling pathway is important during normal development and diseases. 

Gro/Tle family proteins are common corepressors, which are involved in various 

signaling pathways. For example, Tle proteins competed with β-catenin to interact with 

Tcf/Lef, thus interfering canonical Wnt signaling (Daniels and Weis, 2005). However, 

the functions of Gro/Tle proteins in TGF-β signaling are largely unknown. Up to now, it 

was only reported that Dpp, the TGF-β homolog in Drosophila, induced the expression of 

Brinker, which recruited Groucho and CtBP to repress other Dpp target genes, thus 

confining the function zone of Dpp signaling (Hasson et al., 2001; Zhang et al., 2001). In 

this chapter, we discuss the potential function of Tle4 to enhance BMP signaling by 

suppressing Smad7 expression. However, some major points are still worth discussing 

further.  
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First, in our Smad4 knockdown experiment, the endogenous Smad4 expression 

was knocked down by 70%, but Tle4 still strongly activated the BMP reporter, even 

though its effect was reduced. Also, there still was a detectable basal level of 

phosphorylated Smad1, 5 and 8. Since previous studies showed that Smad4 was 

dispensable for TGF-β signaling (Descargues et al., 2008; He et al., 2006), to further 

address the question whether Tle4 mediated induction of BMP reporter was through 

enhancing the basal BMP activity, two more experiments are needed: (1) checking the 

effect of Tle4 on the BMP reporter in the presence of BMP inhibitors, such as Noggin, a 

secreted protein preventing BMP ligand-receptor interaction, or dorsomorphin, a small 

molecule blocking BMP receptors (Yu et al., 2008b); (2) check the effect of Tle4 on 

modified BMP reporter without Smad binding element.  

Second, Smad7 inhibits BMP signaling through interfering the binding of R-

Smads to Smad4 or type I receptor (Hayashi et al., 1997). Our data suggested that Tle4 

activated BMP reporter by inhibiting Smad7 expression. More experiments are required 

to support this idea. First, a workable Smad7 antibody is needed to show the decreased 

protein level of Smad7 upon Tle4 overexpression. Then, we could check whether Smad7 

knockdown by lentivirus would mimic Tle4 overexpression to activate BMP reporter. 

Since Tle4 robustly activated the BMP reporter and Smad7 strongly inhibited this effect, 

if Tle4 overexpression does not greatly reduce Smad7 at protein level, a second blocking 

point may exist. Tle4 may prevent Smad7 from interfering with the complex formation 

between R-Smads and Smad4. Thus, a co-immunoprecipitation (co-IP) experiment is 

needed to check the interaction between R-Smads and Smad4 in the presence of Tle4 or 

not. Furthermore, the balance between acetylation and ubiquitination was important to 
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control the stability of Smad7 (Gronroos et al., 2002; Simonsson et al., 2005). Since Tle4 

was able to interact histone deacetylase 1(HDAC1) (Choi et al., 1999), it may also 

influence Smad7 degradation . 

Third, although Tle4 strongly activated BMP reporter, its effect on the expression 

of endogenous Id1 gene was limited. This results from the different properties between 

transiently transfected vector and endogenous genes: (1) the regulation for reporter 

vectors was much simpler than real genes. In fact, besides Smad proteins, Id1 promoter 

contains binding sites for several other transcriptional factors, such as YY1, Sp1 and 

ATF3 (Kang et al., 2003; Korchynskyi and ten Dijke, 2002). It is hard to imagine that 

Tle4 could control all of these factors at the same time on its own; (2) the expression of 

endogenous genes is usually affected by the chromatin structure, while transiently 

transfected vectors are more accessible to activators. This idea was supported by the 

stable transfected cell line with BMP reporters, whose response to Tle4 overexpression is 

more like endogenous Id1 genes than transiently transfected reporters. Two potential 

mechanisms may lead to the Tle4 mediated enhanced or sustained expression of 

endogenous Id1induced by BMP7. First, just like the situation of BMP reporter vector, 

the effect of Tle4 on Id1 gene is through repressing Smad7, thus the enhanced and 

sustained Id1 expression is dependent on R-Smads. To demonstrate this idea, an 

experiment to check the Tle4 effect on BMP7 induced Id1 gene expression in the 

presence of Smad7 overexpression is necessary. We have already tried to check the 

combination effect of Tle4 overexpression and BMP7 administration on Smad7 

expression. However, the results were not consistent among repeats. This may result from 

the technique problem. Since we cannot guarantee the transfection efficiency is 100%, 
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the Smad7 expression change we saw in RT-PCR may be the net effect of BMP7 

mediated upregulation in some of cells and Tle4 mediated downregulation in other cells. 

The variants of transfection efficiency over repeats may directly influence the results. So, 

the plan to overexpress Smad7 should be a better choice, because it is easier to guarantee 

the co-transfection of Smad7 and Tle4. Also, a chromatin immunoprecipitation (ChIP) 

assay with Smad4 or R-Smads at Id1 promoter will provide more evidence to prove 

whether the enhanced and sustained Id1 expression is dependent on R-Smads. Although, 

it is widely believed that Gro/Tle family proteins are corepressors, a recent study showed 

that Tle3 was also present at the promoters of activated genes (Villanueva et al., 2011). 

So it is possible that Tle4 may function as an adaptor and also directly mediate Id1 gene 

expression. Because Tle4 itself has no DNA binding domain, it requires other 

transcriptional factors and a more accessible chromatin environment, this can explain 

why Tle4 alone only slightly increased Id1 expression. To demonstrate this idea, a ChIP 

assay with Tle4 at Id1 promoter is necessary. 

Finally, because the endogenous Tle4 level is low in 293 cells, it may not be a 

good tool to address the biological importance of Tle4 in BMP signaling. The 

metanepheric mesenchymal cells and its derived epithelia in s-shape body have relative 

high Tle4 expression (Cai et al., 2003), they may be a better tool for further studies. We 

could try to isolate those cells from E15.5 embryos, knockdown endogenous Tle4 

expression and test its response to BMP7 for proliferation and cell survival (Dudley et al., 

1999).  

In summary, studying the regulation of BMP7 signaling is critical for us to 

completely understand its function in renal development. The present data showed that 
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Tle4 play an important role in regulating BMP7 mediated Id1 expression. As shown in 

Figure 4-6, Tle4 may enhance BMP effects through modulating Smad7. This could be 

achieved by downregulating Smad7 expression, preventing it from blocking the complex 

formation of R-Smad and Smad4, or influencing its stability. A more aggressive 

hypothesis is that Tle4, instead of acting like a corepressor, can directly mediate gene 

activation. Although more experiments are required to prove these potential mechanisms, 

our work will provide a new regulatory pathway for BMP signaling.     

 

 

 

 

 

 

 

 

 

 

 

 



122 

 

 

Figure 4-1. Molecular Construction of Pax2 and BMP7 double reporter vector. A) 
Schematic of molecular construction of the double reporter vector. BMP response 
fragment was inserted into the BamHI site between Pax2 binding element (Pax2 BE) and 
TK promoter. Insertion with SBE upstream of GC rich region was defined as (+), and 
reversed insertion was defined as (-). B) DNA agarose electrophoresis showed the 
restriction endonuclease digestion of double reporter vector with different insertion 
copies. Vectors were cut by PstI and for every insertion copy, there would be a 50 bp 
shift in the electrophoresis. Clone #4 was the negative control for empty vector. C) 
Western blots for EGFP showed the response of double reporter with different insertion 
copies and orientation to BMP7 treatment for 24 hours. D) Western blots for EGFP 
showed the response of double reporter with 2 insertion copies and (+) direction to Pax2 
overexpression.    
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Figure 4-2. Tle4 overexpression activated transiently transfected BMP reporter. A) 
Western blots showed the response of cells transiently transfected with Pax2 reporter 
(RS4) or double reporter with four insertion copies in (+) direction to overexpression of 
Pax2 and Tle4. B) The same experiment as in A) but with BMP reporter without Pax2 
binding sites. C) Luciferase assay was used to measure the response of BMP reporter to 
Tle4 overexpression or conditional medium (CM) collected from cells overexpressing 
Tle4. BMP7 treatment was used as positive control and CM collected from cells 
overexpressing GFP was used as negative control. D) Western blots showed the response 
of cells transiently transfected with the double reporter of different copy numbers or 
orientation to Tle4 overexpression in 293 cells and TKPTS, an immortalized renal 
epithelial cell line. E) Western blots showed the response of cells transiently transfected 
with BRE4+ double reporter to increasing doses of overexpressed Tle4. All samples were 
done in triplicate with error bars representing one standard deviation (SD) from the mean. 
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Figure 4-3. Tle4 enhanced and sustained BMP7 mediated endogenous Id1 expression. 
A) upper: the response of endogenous Id1 gene to different amount of overexpressed 
Tle4 proteins was measured by qRT-PCR; lower: increasing amount of Tl4 expressing 
vector was transiently transfected into 293 cells to achieve different amount of Tle4 
expression level, as indicated by western blots. B) upper: the response of endogenous Id1 
gene to Tle4 overexpression and/or BMP7 treatment was measured by qRT-PCR; lower: 
equal amount of Tle4 was expressed with or without BMP7 treatment, as indicated by 
western blots. C) Western blots showed the response of BRE4+ double reporter stable 
transfected cell lines (#6 and #27) to Tle4 overexpression and/or BMP7 treatment. D) Id1 
expression was measured by qRT-PCR upon Tle4 overexpression, BMP7 treatment for 
24 hours, or BMP7 1 hour pulse in the presence or absence of Tle4 overexpression. All 
samples were done in triplicate with error bars representing one standard deviation (SD) 
from the mean. 
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Figure 4-4. BMP7 did not affect endogenous Tle4 expression. A) qRT-PCR showed 
Tle4 RNA levels in 293 cells cultured with BMP7 for the indicated time in hours. B) 
Western blot showed Tle4 protein levels in 293 cells cultured with BMP7 for the 
indicated time in hours. All samples were done in triplicate with error bars representing 
one standard deviation (SD) from the mean. 

 

 

 

 

 

 

 

 

 

 

 

 



126 

 

 

Figure 4-5. Tle4 activate BMP reporter vector through mediating Smad proteins. A) 
Western blots showed the P-Smad1/5/8 level upon Tle overexpression and/or BMP7 
treatment for 24 hours or BMP7 1 hour pulse in the presence or absence of Tle4 
overexpression. B) qRT-PCR showed Smad4 RNA levels after culture with shRNA 
#37196, #37199 or a scrambled control. C) Western blots showed the response of BRE4+ 
double reporter to Tle4 overexpression in Smad4 knockdown cells by shRNA #37196 
and #37199 or scrambled control cells. P-Smad1/5/8 and total Smad1 were also probed. 
D) qRT-PCR was used to measure the endogenous Smad7 RNA level upon Tle4 
overexpression. E) Western blots showed the response of BRE4+ double reporter to Tle4 
overexpression and/or Smad7 overexpression. P-Smad1/5/8 was also probed. All samples 
were done in triplicate with error bars representing one standard deviation (SD) from the 
mean. 
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Figure 4-6. Schematic diagram showing the regulation of Tle4 in BMP7 signaling. 
Arrows indicates the promotion, “┬” means the inhibition and “?” means uncertain. Ac, 
acetylation; Ub, ubiquitination.   
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Chapter V 

Conclusion 

Since the discovery of TGF-β1 in 1983, more than 30 different TGF-β 

superfamily ligands have been found in the human genome. Accumulated evidence 

shows that the TGF-β superfamily is critical for early embryogenesis, as well as the 

formation of nearly all organs. The TGF-β superfamily is also widely involved in various 

diseases, such as organ fibrosis and tumor metastasis. Considering its crucial role in 

development and diseases, it is important to carefully dissect the TGF-β superfamily 

signaling pathway to understand the mechanisms that it utilizes to regulate target gene 

expression both outside and inside of cells. In this thesis, we discovered that TGF-β 

activated JNK signaling through inducing Wnt11 expression and Wnt11 was necessary to 

upregulate mesenchymal marker genes in renal epithelial cells. These results not only 

revealed the direct targets of the TGF-β signaling pathway, but also, for the first time, 

integrated TGF-β, Wnt and JNK signaling within the context of the epithelial-

mesenchymal transition. 

 In the UUO models, the overexpression of the KCP protein, a secreted TGF-β 

inhibitor, reduced the upregulation of Wnt11 in the injured kidney. Furthermore, the 

overexpressed KCP proteins disturbed the balance of TGF-β and BMP signaling during 

renal fibrosis and attenuated the upregulation of mesenchymal genes. This suggested that 

the extracellular regulation of TGF-β and BMP signaling pathways is critical for their 

physiological functions during disease progression. Besides the extracellular mediators, 

the BMP signaling is also regulated within the cells. As shown in my thesis, Tle4 can 
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enhance and sustain endogenous Id1 gene expression, probably through repressing 

inhibitory Smad7. This modification of BMP signaling by Tle4 is important for at least 

two reasons. First, some cellular physiological effects of BMP signaling are dependent on 

the activation of Id genes. For example, Ids are part of the machinery that mediates the 

regulation of hair cell and satellite cell differentiation exerted by BMPs (Kamaid et al., 

2010; Ono et al., 2011). Second, since Tle4 amplifies the BMP signaling within cells, its 

specific expression pattern can mimic the effects of BMP gradients, thus causing various 

responses of different types of cells to the same BMP signaling. Taken together, my 

thesis systematically studied the mechanisms and regulations of TGF-β and BMP 

signaling in mediating target gene expression both in vitro and in vivo, thus deepening 

our understanding of TGF-β superfamily (Fig. 5-1). In the following paragraphs, I will 

further discuss the implication of my work by chapters. 

TGF-β signaling is well characterized for its pro-fibrogenic effects in kidney 

diseases (Liu, 2010). In vitro, TGF-β promotes the transition of epithelial cells to 

fibroblasts-like cells by downregulating epithelial markers, such as E-cadherin, and 

activating mesenchymal genes, such as Snail1, Pai1 and Zeb1 (Yang and Liu, 2001). 

Although the existence of EMT in vivo is controversial (Kriz et al., 2011), enforced 

expression of mesenchymal genes, such as Snail1, in epithelial cells induced renal 

fibrosis in mice (Boutet et al., 2006). In human, a drastic accumulation of Snail1 was 

seen in the nuclei from tubular epithelial cells in kidney samples with multiple myeloma 

cast nephropathy, a disease characterized by a rapid progression toward fibrosis. 

However, such accumulation of Snail1 was not found in kidney samples with an 

idiopathic nephritic syndrome, a syndrome unassociated with renal fibrosis (Hertig et al., 
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2011). These data suggest that the upregulation of mesenchymal genes in epithelial cells 

can be a major factor in the initiation and progression of renal fibrosis. 

In the first part of this thesis, we found that Wnt11, a ligand belonged to Wnt 

signaling family, enhanced TGF-β mediated mesenchymal gene activation in renal 

epithelial cells. Furthermore, Wnt11 was directly regulated by Smad3 proteins, but not 

Smad2. This was consistent with the previous results showing that Smad2 functioned as a 

protector against Smad3 in renal fibrosis (Meng et al., 2010). In fact, although Smad2 and 

3 share similar structure and are both activated by TGF-βs, their biological functions are 

not the same. Compared to the early embryonic lethality of Smad2 mutants (Waldrip et 

al., 1998), the phenotypes of Smad3 mutants were much less severe and could survive for 

1-8 months after birth (Yang et al., 1999). Detailed studies showed the different target 

gene profiles of Smad2 and 3 in human and rat epithelial cell line (Chung et al., 2010; 

Phanish et al., 2006). Recently, Smad4 was shown to be important for the progression of 

renal fibrosis, as well as for Smad3 mediated Collagen I expression (Meng et al., 2012). 

Since both Smad2 and 3 can interact with Smad4, but Smad2 lacks the DNA binding 

domain, it is possible that Smad2 counteracts Smad3 by competing for the Smad4 

interaction. Thus, it will be interesting to test whether Smad3 proteins interact with 

Smad4 strongly in the absence of Smad2 and whether a modulated Smad2 protein with 

DNA binding domain may facilitate Collagen I expression upon TGF-β treatment. With 

respect to the Wnt11, because it was regulated only by Smad3, but not Smad2, it may 

serve as a biomarker to distinguish the Smad2 and Smad3 mediated pathways.  

The modulation of Wnt11 significantly affected TGF-β mediated upregulation of 

mesenchymal genes without influencing Smad proteins, suggesting that once activated, 
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Wnt11 functioned independently of TGF-β signaling. However, the sustain activation of 

Wnt11 during EMT still required TGF-β signaling, since a selective inhibitor of TGF-β 

type I receptor, SB431542 strongly blocked the Wnt11 expression, even after Wnt11 has 

already been activated by TGF-β1 (data not shown). This further demonstrated the central 

status of TGF-β signaling in driving EMT.  

It has been reported that TGF-β could stimulate JNK signaling, though the 

mechanisms were unknown (Mao et al., 2011; Shin et al., 2011). Now, our data 

demonstrated that the activation of JNK signaling in TGF-β mediated EMT was at least 

partially through Wnt11. Instead of activating canonical/β-catenin signaling, Wnt11 

mediated the expression of mesenchymal genes through non-canonical/JNK signaling. 

This discovery also broadened the understanding of the crosstalk between TGF-β and 

Wnt signaling. Previously, the limited number of studies addressing the crosstalk of TGF-

β and Wnt signaling pathways converged on β-catenin, as TGF-β could stabilize β-

catenin by inhibiting its GSK3β-dependent degradation through p38 MAPK and Akt 

(Hwang et al., 2009; Liu, 2010; Masszi et al., 2004).  Also β-catenin could physically 

interact with Smad proteins to regulate target gene expression (Kim et al., 2009; Zhang et 

al., 2010; Zhou et al., 2012). Our data is the first direct evidence showing the crosstalk 

between TGF-β and non-canonical Wnt signaling. Indeed, we found no evidence that 

canonical Wnt pathway was activated by TGF-β. 

The studies on the regulation of TGF-β and BMP signaling are equally important, 

as these regulations control the strength of the signaling and specify the final cellular 

responses. KCP is a secreted protein containing 18 CR domains. It possesses a dual role 

in enhancing BMP signaling and inhibiting TGF-β signaling (Lin et al., 2005; Lin et al., 
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2006). In the second part of the thesis, we examined whether modulating the balance of 

TGF-β and BMP7 signaling by overexpressing KCP in transgenic mice affected the 

progression of kidney injury in UUO models. We found that the upregulation of 

mesenchymal marker genes was attenuated by KCP overexpression in the UUO mouse 

model. This is consistent with the retarded progression of renal fibrosis in KCP 

transgenic mice, as demonstrated by less α-SMA and Collagen V region (data not shown). 

What is more important, we found that upregulation of Wnt11 was also reduced in KCP 

transgenic mice. This further demonstrated that Wnt11 was a target of TGF-β signaling 

and was closely associated with renal fibrosis. Although our in vitro cell model indicated 

that Wnt11 promoted EMT, the current mouse model cannot distinguish whether Wnt11 

is only a biomarker for renal fibrosis or a mediator for this process. Since the Wnt11 

mutant mice died by 2 days postpartum, because of abnormal heart development 

(Majumdar et al., 2003), Wnt11 conditional knockout mice are needed to further study its 

function during renal fibrosis. In this case, Pepck promoter can be used to drive the 

expression of Cre recombinase, since it is very active in adult renal proximal tubular 

epithelia (Short et al., 1992). An available alternate plan for Wnt11 conditional knockout 

mice is to use Fzd4-/- mice. Fzd4-/- mice were viable and showed similar renal hypoplasia 

as Wnt11-/- mice (Ye et al., 2011), suggesting that Wnt11 may function through Fzd4. 

However, the potential problem for using this Fzd4-/- mouse model is the receptor 

redundancy, since it has been reported that Wnt11 can also transduce its signaling 

through Fzd7 or Fzd8 (Yamanaka and Nishida, 2007; Ye et al., 2011), both of which are 

expressed during renal fibrosis (He et al., 2009).  
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Under normal condition, most BMP type II receptors are localized in epithelial 

cells (Bosukonda et al., 2000), as are TGF-β type I receptors in the UUO model (Yang 

and Liu, 2001). These data suggested that renal epithelial cells are the main participants 

in responding to TGF-β/BMP signals. At early time (7 days), the differences of activation 

of Wnt11, Pai1 and Snail1, between KCP and wildtype mice were not significant, 

indicating that the effects of epithelial cells in initiating renal fibrosis may be limited. 

However, by 14 days, the upregulation of all the examined mesenchymal genes and 

myofibroblast markers, was reduced in KCP transgenic mice, indicating that epithelial 

cells play a crucial role in promoting fibrosis. One defect for our current model is that the 

expression of transgenic KCP proteins decreased along with progression of renal fibrosis. 

This may result from the increased apoptosis of epithelial cells or the silencing of Pepck 

promoter during the injury. To better address the function of KCP in renal fibrosis, a new 

KCP overexpression model may be generated. In this model, KCP gene may be knocked 

in at Rosa26R site with a 5’ upstream stop signal flanked by loxp sites. If this mouse was 

bred to the mouse with Cre expression driven by Pepck promoter, KCP will also 

overexpress in all renal proximal tubular cells. The advantage for this model is that we 

may avoid the silence of Pepck promoter and maintain KCP expression during renal 

fibrosis.  

Considering the secreted property of the KCP protein, it may affect neighboring 

cells as well. Previous results revealed that BMP7 could induce adult renal fibroblasts to 

differentiate to epithelial cells (Zeisberg et al., 2005). Thus, the overexpressed KCP may 

enhance the BMP signaling to limit the number of fibroblasts during renal fibrosis. 

Another potential target for BMP signaling is interstitial stromal cells, which are 
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quiescent undifferentiated mesenchymal cells (Dressler, 2006). Since BMP signaling is 

important to maintain the pluripotency of stem cells (Varga and Wrana, 2005), during 

renal fibrosis, the decreasing BMP7 signaling may contribute to the differentiation of 

these stromal cells into fibroblasts. Meanwhile, the destruction of the stem cell pool may 

also reduce the recovery ability of the kidneys from the injuries. Thus, it will be 

interesting to test whether KCP overexpression can improve the renal recovery in acute 

renal diseases, such as acute tubular necrosis (ATN) model induced by injection of folic 

acid (Lin et al., 2005).  

Besides the extracellular regulation, BMP signaling is also modulated within cells. 

In the third part of the thesis, we discussed how BMP signaling is regulated by Gro/Tle 

proteins. Gro/Tle family proteins are common corepressors. Up to now, the only reported 

relationship between TGF-β signaling and Tle proteins was that Dpp, the TGF-β homolog 

in Drosophila, induced the expression of Brinker, which recruited Groucho and CtBP to 

repress other Dpp target genes, thus confining the functional zone of Dpp signaling 

(Hasson et al., 2001; Zhang et al., 2001). Since Gro/Tle proteins could mediate a long 

range suppression via compacting chromatin (Sekiya and Zaret, 2007), our original idea 

was to test whether the recruitment of Tle4 to DNA can influence the nearby BMP 

response elements. Thus, we constructed the Pax2 and BMP7 double reporter vector, 

using Pas2 as the bridge factor to recruit Tle4. Much to our surprise, overexpression of 

Tle4 strongly activated BMP reporter independent of Pax2, as well as enhancing and 

sustaining the BMP7 effect on endogenous Id1 gene in 293 cells. The effects of Tle4 on 

BMP7 signaling may be mediated through Smad7 proteins, since Tle4 suppressed Smad7 

transcription, while Smad7 overexpression completely abolished the effects of Tle4 on 
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BMP reporter. However, Tle4 only suppressed Smad7 transcription by ~50%, but its 

effect on the activation of BMP reporter was robust. This suggested that Tle4 may also 

influence Smad7 at the protein level. The balance between acetylation and ubiquitination 

was important to control the stability of Smad7 (Gronroos et al., 2002; Simonsson et al., 

2005). Since Tle4 was able to interact histone deacetylase 1(HDAC1) (Choi et al., 1999), 

it may help erase the acetylation marker from Smad7 to facilitate its ubiquitination and 

further degradation.  

If Tle4 mediates BMP7 signaling by repressing Smad7, the activation of BMP7 

reporter by Tle4 is actually the derepression of the basal BMP7 activity. Indeed, in 293 

cells, we detected a basal level of phosphorylated Smad1, 5 and 8. Furthermore, Smad4 

knockdown reduced the effect of Tle4 on BMP7 reporter, although the extent was limited. 

Here, using the BMP receptor inhibitor will be a better choice than Smad4 knockdown. 

Smad1, 5 and 8 themselves have DNA binding domain, thus may directly mediate gene 

transactivation (Korchynskyi and ten Dijke, 2002). In contrast, the BMP receptor 

inhibitor, such as DMH1, could specifically and efficiently block BMP signaling by 

inhibiting the phosphorylation of Smad1, 5 and 8, thus resulting in a clearer background 

(Hao et al., 2010). Since Smad7 can also block TGF-β signaling (Hayashi et al., 1997), it 

will be interesting to test whether Tle4 overexpression can activate TGF-β reporter, 3TP-

luc, as well.  

It is noticeable that Tle4 could activate BMP reporter even stronger than BMP7 

administration, suggesting that it may use other mechanism, besides repressing Smad7, to 

mediate BMP signaling. Tle4 may directly mediate activation of BMP reporter and 

endogenous Id1 gene, since recent study showed that Tle3 was presented at the promoters 
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of activated genes (Villanueva et al., 2011). If this is the case, it is important to determine 

which transcriptional factor binds to the BMP binding element (SBE) and recruits Tle4. 

The first candidate will be Smad proteins. However, Smad proteins lacked the common 

interaction motif for Gro/Tle proteins, such as WRPW tetrapeptides and Engrailed 

homology 1 (Eh1) sequences (Buscarlet and Stifani, 2007). Besides the SBEs, the BMP7 

reporter also contains a GC rich region, which may be the binding site for other 

transcriptional factors. A chromatin immunoprecipitation (ChIP) assay for Tle4 will 

confirm the presence of Tle4 at the promoter region of Id1 gene.    

Although Tle4 could modulate the BMP signaling, the BMP signaling pathway 

does not affect the amount of endogenous Tle4 proteins. In fact, BMP7 did not influence 

the expression of any Tle proteins, from Tle1 to Tle3 (data not shown). Since the basal 

Tle4 protein level is low in 293 cells, it seemed that BMP signaling pathway did not 

require Tle proteins to activate target genes. Thus, to further address the biological 

importance of Tle4 in BMP signaling, the metanepheric mesenchymal cells and its 

derived epithelia may be a better tool, because they have relative high endogenous Tle4 

expression (Cai et al., 2003). It will be valuable to test whether Tle4 knockdown in those 

cells affects their response to BMP7 for proliferation and cell survival (Dudley et al., 

1999).  

Finally, although Gro/Tle proteins are important corepressors and studied in 

different types of cancers (Buscarlet and Stifani, 2007), their involvement in renal 

fibrosis is totally unknown. We even do not know whether those proteins are expressed in 

adult kidneys. However, considering the amplification effect of Gro/Tle proteins on BMP 

signaling, it is interesting to check their expression during renal fibrosis. Since the target 
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of Tle4, the Smad7 proteins, is involved in the regulation of both TGF-β and BMP 

signaling, the precise function of Tle4 in renal fibrosis may be complicated, but it may 

serve as another regulation point to balance the TGF-β and BMP signaling in vivo.  

In summary, this dissertation analyzed both the mechanisms and regulations of 

TGF-β superfamily mediated target gene expression in renal epithelia. The work provided 

further insight into the TGF-β signaling and may provide new clues for the medical 

treatment of TGF-β associated diseases, such as renal fibrosis and cancer.    
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Figure 5-1. Schematic diagram summarizing the mechanisms and regulation of 
TGF-β superfamily mediated gene expression in this thesis. Arrows indicates the 
promotion, “┬” means the inhibition and “?” means uncertain.  
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