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ABSTRACT

A Velocity Decomposition Method For Efficient Numerical Computation of Steady
External Flows

by

Deborah Osborn Edmund

Co-Chairs: Robert F. Beck and Kevin J. Maki

Modeling forces on surface vessels to determine their hydrodynamic performance in

the marine environment is integral to vessel design. Many hydrodynamic solution

methods exist, ranging from the geometrically simplified strip theory, to inviscid

approaches and fully nonlinear unsteady Reynolds-Averaged Navier-Stokes (RANS)

solvers. The former approaches are less expensive, but neglect various aspects of the

relevant physics including viscous effects and, often, wave breaking. RANS solvers can

include viscosity and handle wave breaking; however, they are generally too expensive

to be widely utilized at the design stage. The decomposition method presented in

this work provides equivalent accuracy to that of RANS solvers, but with decreased

computational expense by combining RANS and potential flow solvers to deliver the

benefits of each in a unified methodology.

The decomposition method in this work utilizes a Helmholtz-type velocity decom-

position to describe the total velocity field as the sum of an irrotational component

and a vortical component. Applying the decomposition to the body boundary condi-

tion allows the effects of viscosity to be included in the potential velocity field. The
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viscous-potential-velocity field then fully represents the real fluid velocity everywhere

the vorticity has decreased to a negligible level. The computational domain can there-

fore be reduced to extend just beyond the vortical region surrounding the body and

in the wake, with the viscous potential velocity acting as the inlet and farfield bound-

ary conditions for the total fluid velocity. The potential velocity is determined in

the infinite-fluid domain using a boundary-element method, and the RANS equations

model the total fluid velocity using a finite-volume method.

The velocity decomposition solver developed in this work has matched the accu-

racy of a RANS solver in decreased computation time for a variety of steady two-

dimensional and three-dimensional, laminar and turbulent, external, incompressible

flows. The computation time was reduced between 3% and 68% for the cases studied

in this thesis.
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CHAPTER I

Introduction

Designers and engineers in a wide range of industries rely on modeling fluid flows

to aid the design process. Computational Fluid Dynamics (CFD) is used to model

fluid flows and gain insight into how ship, airplane, automobile, wind turbine, and

many other designs will perform. The benefit to the designer of using a modeling tool

increases with the fidelity of the tool and decreases with the amount of time it takes

to use the tool. Most of the existing methods to model fluid flow offer either high

computational efficiency with lower accuracy or high accuracy with significant com-

putational cost. The method presented in this thesis aims to provide high accuracy

at a decreased computational cost.

In the marine industry specifically, modeling forces on surface vessels to determine

their hydrodynamic performance in the marine environment is integral to vessel de-

sign. Many hydrodynamic solution methods exist, ranging from the geometrically

simplified strip theory, to inviscid approaches and fully nonlinear unsteady CFD

solvers. The former approaches are less expensive, but neglect various aspects of

the relevant physics including viscous effects and, frequently, wave breaking. CFD

solvers, such as RANS solvers, can include viscosity and handle wave breaking (Mus-

cari and Di Mascio 2003a, Muscari and Di Mascio 2003b, Rhee and Stern 2002);

however, they are generally too expensive to be widely utilized at the design stage.
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A large number of evaluations in different sea states and operating conditions are

necessary to obtain measures of performance that can guide the design process for

a ship in a seaway. At the present time, such computations are prohibitively time

consuming except for those performed based on the assumptions of potential flow.

To model high-Reynolds number flows using CFD, models such as the Reynolds-

Averaged Navier-Stokes (RANS) equations, large eddy simulations, or detached eddy

simulations must be used since all of the relevant scales can not be resolved in a

reasonable computation time. Even using one of these CFD models to narrow the

range of scales that must be resolved, the spatial discretization of the flow domain can

be on the order of tens-of-millions of cells, leading to high computational costs. The

decomposition method presented in this work provides equivalent accuracy to that of

RANS solvers, but with decreased computational expense by combining RANS and

potential flow solvers to deliver the benefits of each in a unified methodology.

The decomposition method in this work utilizes a Helmholtz-type velocity decom-

position to describe the total velocity field u as the sum of an irrotational component

that can be expressed as the gradient of a potential, ∇Φ, and a vortical component

w:

u = ∇Φ + w (1.1)

This velocity decomposition can be applied to any total velocity solution, u. For

a given total velocity, the velocity decomposition is not unique in that an infinite

number of irrotational velocities and their corresponding vortical components can

be combined to accurately describe the total velocity. The velocity decomposition

pursued in this work achieves an irrotational component ∇Φ that fully represents

the total velocity outside of the vortical regions around a body and in the wake, and

therefore drives the vortical component to zero as the vorticity falls to a negligible

level.

For high-Reynolds number external flows, the real fluid around a body is rota-

2



tional, or vortical, in a small region surrounding the body and in the wake. The

majority of the flow field outside of this vortical region is irrotational and can be

expressed as the gradient of a scalar potential, ∇Φ, which is the basis for the use of

potential flow methods. Frequently, potential flow methods do not include the effects

of viscosity in the solution of the potential itself, and for many flows this causes what

we call the ‘inviscid’ potential velocity to not match the real fluid velocity even in

the irrotational region. The effect of viscosity around the body and in the wake must

be included in the potential velocity for it to represent the true viscous fluid velocity

everywhere in the irrotational region. Once this ‘viscous’ potential velocity is avail-

able, it can be used to describe the fluid velocity everywhere outside of the vortical

regions around the body and in the wake, allowing the computational domain for the

CFD solver to be reduced to include only these vortical regions.

The key is to find the correct potential, Φ. In conventional potential flow methods,

the non-penetration condition specifying no flow through the body is met. However,

this does not account for the no-slip condition on the body surface that specifies no

tangential flow on the body surface due to viscous effects, and consequently gives

an incorrect potential, Φ, even in the farfield. The method presented in this thesis

develops a new body boundary condition for the potential that depends on the real

viscous flow solution.

Applying the decomposition to the body boundary condition allows the effects

of viscosity to be included in the potential velocity field. The viscous-potential-

velocity field then fully represents the fluid velocity outside of the vortical region

surrounding the body and in the wake. The computational domain can therefore

be reduced to extend just beyond the vortical region. The decomposition is applied

to the inlet and farfield boundaries, and since the vortical velocity is negligible on

these boundaries, the fluid velocity is set equal to the viscous potential velocity. The

potential velocity is determined in the infinite-fluid domain with a boundary-element

3



method and the RANS equations are used to model the total fluid velocity with a

finite-volume method.

Decreasing the computational domain increases the computational efficiency. The

solver itself requires less computation time since the number of unknowns in the field

discretization used to solve the RANS equations is significantly reduced. While the

velocity decomposition solver implemented in this work includes steps to calculate the

potential velocity and update the boundary conditions that the RANS solver does

not include, these steps are less computationally expensive than running the RANS

solver on the larger domain. Another significant source of time savings comes from

the reduced effort required to generate meshes for smaller domains. The quality of

the spatial discretization of the fluid domain in the form of a mesh directly impacts

the quality of the solution. Generating appropriate meshes can be time consuming

and challenging. Reducing the size of the domain generally makes the mesh gener-

ation process faster and less challenging as it is easier to maintain high quality cells

throughout the domain.

While the required computational domain is limited to surrounding the vortical

region around the body and in the wake, the flow solution is available everywhere in

the infinite fluid region through the viscous potential velocity. The viscous potential

velocity includes the effects of viscosity around the body and hence fully represents

the fluid velocity everywhere outside of the vortical region. One possible application

of this feature is problems with multiple bodies. Rather than discretizing the fluid

flow in a large domain that encompasses all of the bodies, the flow could be modeled

in small domains surrounding each body individually. The influence of each body

on the others would be included through the viscous potential velocity which would

calculate the velocity at any given point by including the influence of the singularity

elements from all of the bodies. The RANS solution around each body would receive

the influence of the other bodies through the inlet and farfield boundary conditions

4



where the fluid velocity is set equal to the viscous potential velocity.

The velocity decomposition method presented also offers a theoretical advance-

ment to including the effects of the viscous boundary layer in the calculation of the

potential flow. The derivation of the modified body boundary condition necessary

to include the viscous effects in the potential velocity presented by Morino (1986)

offers improvements in accuracy and applicability from Lighthill’s equivalent source

method (1958). The inclusion of viscous effects through the modified body boundary

condition also works for flows with thick boundary layers and separation. The work

in this thesis is strongly motivated by Morino’s development, and implements and

demonstrates the effectiveness of including the viscous effects in this way.

The ultimate applications of the velocity decomposition method presented are

three-dimensional bodies moving at high Reynolds numbers through a free surface.

In this work, the velocity decomposition method is developed for and demonstrated

on two-dimensional and three-dimensional deeply submerged bodies in steady laminar

and turbulent flows.

1.1 Background

The benefits of coupling viscous and inviscid solvers have led many to explore this

field. Two fairly straightforward applications are improving the potential velocity

solution by including the influence of the viscous boundary layer through methods

such as Lighthill’s displacement thickness (Lighthill 1958), or improving the RANS

solution by using the potential velocity as the inlet and farfield boundary conditions

on reduced domains where the free-stream velocity is less applicable (for example,

Eça and Hoekstra 2009). Another approach is to decompose the domain into an area

around the body and wake, where the viscous equations are solved, and the remaining

irrotational domain, where the potential equations apply. This domain decomposition

technique imposes an artificial boundary between the two solution methods that can
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be problematic. The current work focuses on decomposing the velocity rather than

the domain, which has also been investigated with promising results.

Kendon et al. (2003) applies the Helmholtz-type decomposition of the velocity

vector shown in Equation 1.1 in a numerical procedure for wave-body interaction

problems dominated by diffraction forces with viscous shear forces important to the

calculation of the response motion. First, a boundary-element technique utilizing

linearized boundary conditions on the mean free surface in the frequency domain is

used to solve for the potential from the wave-body problem. The potential is then

transferred to the time domain where the rotational velocity component is calculated.

This two-dimensional numerical method has yielded promising results for a submerged

circular cylinder close to the free surface. While this method uses different solution

techniques than the currently proposed method, it demonstrates the usefulness of the

decomposition in free-surface applications which are the ultimate application. The

proposed method offers an improvement to Kendon’s work by seeking an improved

velocity decomposition where the potential solution drives the rotational component

to zero in the majority of the computational domain.

The SWENSE (Spectral Wave Explicit Navier-Stokes Equations) approach pre-

sented by Luquet et al. (2004) and Luquet et al. (2007) provides another numerical

approach to modeling wave-body interactions utilizing the strengths of both potential

flow formulations and RANS formulations. The SWENSE method decomposes the

primitive variables, velocity and pressure, and the free-surface elevation into incident

and diffracted components. The regular incident wave field is modeled using an algo-

rithm based on stream function theory and the irregular incident wave field is modeled

using a Higher Order Spectral scheme. The diffracted component, or the difference

between the total field and the incident field, is solved for using a modified form of

the RANS equations. Using potential flow theory to calculate the incident wave field

is highly accurate and efficient, while the use of RANS to solve for the diffracted flow
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allows the inclusion of viscous effects. Summing the incident and diffracted compo-

nents then provides the overall flow field desired. The SWENSE method has been

successfully applied to a ship in regular waves with forward speed and a tension leg

platform in waves, among other bodies. The decomposition of the flow field into com-

ponents described by potential flow and the RANS equations is very similar to the

approach presented here. The main difference between the SWENSE method and the

current method is that the current method includes viscous effects in the potential

flow in order to reduce the flow domain. The viscous flow does not influence the

potential flow in the SWENSE method. Also, the current method does not solve the

decomposed equations, which are more computationally expensive.

Hafez et al. combines a modified domain decomposition technique with a Helmholtz-

type velocity decomposition to simulate steady laminar incompressible two-dimensional

flows with promising success (Hafez et al. 2006 and Hafez et al. 2007). A modified

form of the momentum balance equations are used to solve for the rotational velocity

component only inside the boundary layer, the extent of which is conservatively de-

fined prior to the calculations. The potential flow is solved everywhere in the domain

by setting the Laplacian of the potential equal to the divergence of the rotational

velocity, satisfying the continuity equation. The potential solution then essentially

represents a set of sources in the viscous boundary layer, creating a potential veloc-

ity field that includes viscous effects around the body. Since the potential velocity

field is based on the rotational velocity and calculated continuously in the domain, it

eliminates the problematic interface between the potential and the viscous solutions

found in many domain decompositions.

An analytical discussion of the velocity decomposition can be found in Morino’s

work. Morino has been exploring the application of a decomposition of the general

form shown in Equation 1.1 to analyze viscous incompressible flows, primarily with

limited vortical regions around the body and in the wake (Morino 1986, 1994, 2003,
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Morino et al. 1995, Morino et al. 1999). Morino uses this decomposition to solve

for the flow given a vorticity field using the boundary integral method to determine

the potential velocity. This method offers the benefit of eliminating the pressure in

the vorticity transport equations; however, the boundary conditions in the vorticity

formulation are not physically straightforward. The current method uses a primitive

variable formulation with easier-to-specify boundary conditions than the vorticity

formulation.

The current effort originated with the work presented in Kim et al. (2005). Kim

uses the Helmholtz-type velocity decomposition to derive the complementary RANS

equations by substituting the decomposed velocity into the Navier-Stokes equations

for the total velocity. The complementary RANS equations are similar to the modi-

fied form of the momentum equations used by Hafez et al. (2006 and 2007). Given

a potential field, the complementary RANS equations can be solved for the corre-

sponding rotational velocity and the total velocity can be constructed as the sum of

the potential and rotational parts. Kim notes that the decomposition is not unique;

the rotational velocity component is dependent on the potential field. Since the goal

is to minimize the computational domain of the RANS equations for the rotational

velocity, a potential field that most closely captures the total velocity field outside the

boundary layer and wake is desired. Kim achieved good results using this method for

both laminar and turbulent flows. However, he found that the complementary RANS

solution method did not reduce the computation time when compared to RANS due

to the inability to decrease the computational domain.

The complementary RANS equations were implemented early on in the current

efforts. The finding of Kim et al. (2005) was reproduced; while the complementary

RANS equations function well, they do not provide computational savings. Including

the effects of viscosity in the potential flow is essential to being able to reduce the

computational domain; the potential velocity that satisfies the non-penetration body
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boundary condition will not fully represent the real fluid velocity at finite distances

from the body where the vorticity has decreased to a negligible level. The process of

including the viscous effects relies on the velocity decomposition, but does not require

the complementary velocity to be solved for directly. Using the RANS equations

to solve for the total fluid velocity and expressing the complementary velocity as

the difference between the fluid velocity and the viscous potential velocity rather

than solving the complementary RANS equations for the complementary velocity is

more efficient since it eliminates the additional term introduced by decomposing the

momentum equation.

As Kim et al. (2005) noted, the velocity decomposition is not unique for a given

total velocity. To reduce the computational domain, the current work seeks a velocity

decomposition in which the vortical component goes to zero as the vorticity decreases

to a negligible level away from the body and wake. For the vortical component to go

to zero, the irrotational potential velocity must fully represent the total fluid velocity

outside of the boundary layer and wake. The potential velocity must therefore include

the effects of the viscous boundary layer and wake.

Lighthill presented four possible methods to account for viscous effects in the po-

tential velocity solution including flow reduction, equivalent sources, velocity compar-

ison, and mean vorticity (Lighthill 1958). The equivalent source method distributes

sources on the body surface to push the inviscid streamlines outward to match the

viscous boundary layer thickness, and has since been called the transpiration velocity

to reflect the apparent flow through the body surface.

Lemmerman and Sonnad (1979) affectively used a surface transpiration in an

inviscid three-dimensional panel method iteratively corrected by a two-dimensional

integral boundary layer method. The boundary layer method is used to determine

the boundary layer thickness, and then the surface transpiration necessary to im-

pose that boundary layer thickness is added to the three-dimensional panel method
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(Lemmerman and Sonnad 1979).

Morino presents an exact formulation for Lighthill’s equivalent source method in

the context of his velocity decomposition (Morino 1986, 2003, Morino et al. 1995,

Morino et al. 1999). In addition, he shows that the divergence of the defect velocity,

or the difference between the total velocity and the potential velocity due to vorticity,

can be integrated along the body normal to provide an exact equation for the transpi-

ration velocity which is a generalized form of Lighthill’s result (Morino 1986). This

formulation has strongly motivated the inclusion of viscous effects in the potential

flow which is central to this work.

1.2 Objectives

The objectives stated at the outset of this research were to:

1. Develop and implement an improved velocity decomposition by finding a po-

tential velocity solution which minimizes the extent of the vortical velocity and

therefore allows the computational domain to be significantly reduced.

2. Extend the velocity decomposition method to turbulent flows through the use

of existing turbulence models.

3. Extend the solver to three-dimensional and/ or free-surface flows around simple

bodies as time permits.

The completion of each of these objectives is described in this thesis, with the

exception of extending the solver to free-surface flows, which is also being done with

promising results (Rosemurgy et al. 2012).

The governing equations, boundary conditions, and velocity decomposition are

presented in Chapter 2. Chapter 3 describes the numerical implementation of the
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RANS equations using a finite-volume method, the potential flow using a boundary-

element method, and the algorithm that implements the velocity decomposition ap-

proach to interface the two solutions.

Chapter 4 presents two-dimensional laminar flows over a flat plate, a circular

cylinder, and a NACA 0012 airfoil. Turbulent flows over a flat plate and a NACA

0012 airfoil are presented in Chapter 5. Three-dimensional laminar and turbulent

flows over the Afterbody 1 are presented in Chapter 6 and the turbulent results are

compared to experimental data (Huang et al. 1978). The contributions of this work,

and possible areas of future work are discussed in Chapter 7.
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CHAPTER II

Mathematical Formulation

Steady incompressible external flows are considered in this thesis. The governing

equations for the total fluid velocity, u, and the irrotational potential velocity, ∇Φ,

are presented in this chapter, along with their conventional boundary conditions. The

velocity decomposition is then restated and applied to the body boundary condition,

allowing the viscous effects in the fluid velocity u to be included in the viscous po-

tential velocity. The velocity decomposition is also applied to the inlet and farfield

boundary conditions.

A diagram of a general flow domain is shown in Figure 2.1 with the positive x−axis

aligned with the free-stream velocity, the y−axis perpendicular to the x−axis, and

the positive z−axis pointing out of the paper according to the right-hand rule. The

origin is generally aligned with either the leading edge of the body as shown here, or

the center of the body. The inlet, farfield, outlet, and body boundaries are labeled

for reference.

2.1 RANS Equations

The governing equations for the fluid velocity u are found by simplifying the

conservation equations for mass and momentum with the assumptions that the flow

does not vary in time, and has constant density and viscosity. These simplifications
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Figure 2.1: General flow domain showing orientation of the global coordinate system
and the boundary surface labels.

lead to the continuity equation and the steady incompressible Navier-Stokes equation

as shown in Equations 2.1 and 2.2.

∇ · u = 0 (2.1)

∇ · uu = −∇p
ρ

+ ν∇2u (2.2)

where p is the dynamic pressure, ρ is density, and ν is kinematic viscosity. The total

pressure P equals the dynamic pressure plus the static pressure, P = p+ρg ·x, where

g represents the gravitational body forces and x is a position vector.

The Reynolds-Averaged Navier-Stokes (RANS) equations are used to model tur-

bulent flows in this work. The velocity and pressure variables in Equations 2.1 and 2.2

are expressed as the sum of a mean, u and p, plus a fluctuating component, u′ and

p′. Taking the Reynolds time average of the resulting equations, dropping the bars

indicating the average on all but the new term, and re-arranging leads to the RANS

equations, as shown in Equations 2.3 and 2.4. Note that the average of the mean
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equals the mean and the average of the fluctuating component equals zero.

∇ · u = 0 (2.3)

∇ · uu = −∇p
ρ

+∇ · [ν(∇u +∇uT)]−∇ · u′u′ (2.4)

Here, p is the time-averaged dynamic pressure, and u is the time-averaged velocity

vector. The resulting continuity equation for the time averaged fluid velocity vector is

identical to the instantaneous form shown in Equation 2.1. The momentum equation

is also the same as the instantaneous form, with the addition of the term ∇ · u′u′,

which arises from averaging the fluctuating components of the convection term. The

Boussinesq approximation is used to express this new term, which represents the

transfer of momentum due to turbulence, using an eddy viscosity model as shown in

Equation 2.5.

−u′u′ = νt(∇u +∇uT)− 2

3
kI (2.5)

where νt is the kinematic eddy viscosity, k = 1/2 tr(u′u′) is the turbulent kinetic

energy, and I is the identity matrix. Including the expression in Equation 2.5 in

Equation 2.4 results in Equation 2.6, where the turbulent kinetic energy is included

in the pressure.

∇ · uu = −∇p
ρ

+∇ · [(ν + νt)(∇u +∇uT)] (2.6)

Equations 2.3 and 2.6 will be referred to as the RANS equations throughout this

thesis. Please note that the working variables u and p represent both the instanta-

neous value in laminar cases, where the instantaneous Navier-Stokes equations apply,

and the time-averaged value in turbulent cases, where the RANS equations apply.

The solvers in this work use the RANS equations with a user-specified turbulence

model to solve for the kinematic eddy viscosity, νt. In laminar cases, the turbulence

model is turned off, essentially removing the eddy viscosity from the RANS equations
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and making them function as Navier-Stokes equations.

2.1.1 Turbulence Model

The velocity decomposition approach applied in the current solver should be inde-

pendent of the turbulence model for the kinematic eddy viscosity, νt. For the sake of

demonstrating the performance of the solver on turbulent flows, the k−ω Shear Stress

Transport (SST) turbulence model developed by Menter (1994, 1996) and Menter et

al. (2003) has been used. The k − ω SST model uses blending functions to utilize

the accuracy of the k − ω model, which solves governing equations for the turbu-

lent kinetic energy k and the specific dissipation rate ω, as formulated by Wilcox

(2006) in near wall layers and the lower sensitivity to free-stream values of the k − ε

model, which solves governing equations for the turbulent kinetic energy k and the

dissipation rate ε. The model’s ability to handle strong adverse pressure gradients

and separation, combined with its accuracy and robustness, has caused it to become

common in industrial, commercial, and research codes (Menter et al. 2003).

2.1.2 Conventional RANS Boundary Conditions

The fluid velocity u is subject to the no-slip boundary condition on the body, as

shown in Equation 2.7 for a fixed body.

u
∣∣
body

= 0 (2.7)

At the inlet and farfield boundaries, the velocity is often set equal to the free-

stream value; this boundary condition is modified using the velocity decomposition

as described in Section 2.3.2.

u
∣∣
inlet & farfield

= U∞ (2.8)
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The velocity boundary condition at the outlet boundary is zero normal gradient.

The pressure boundary conditions on the body, inlet, and farfield boundaries are

also zero normal gradient. The pressure at the outlet is set to zero to serve as the

reference pressure. While these pressure boundary conditions are frequently used,

pressure boundary conditions are still a debated topic (Gresho and Sani 1987, Sani

et al. 2006, Rempfer 2006, and Rempfer 2008).

For turbulent flows, the turbulent kinetic energy, k, and the specific dissipation

rate, ω, are set equal to their free-stream values on the inlet and farfield boundaries.

The outlet boundary condition for the turbulent kinetic energy and specific dissipation

rate is zero normal gradient. The kinematic eddy viscosity, νt, is initially set equal

to the free-stream value, then calculated on the inlet, farfield, and outlet boundaries.

Wall functions model each of the turbulent quantities on the wall and in the first cell

so that the viscous sublayer does not need to be resolved by the mesh. The first mesh

point away from the wall is placed in the log layer, where the law of the wall applies.

2.2 Velocity Potential

The irrotational potential velocity can be expressed in terms of the gradient of a

scalar potential, ∇Φ. Since the flow is incompressible, substitution into the continuity

equation leads to the Laplace equation. While the irrotational and vortical velocity

components could have counteracting divergence to maintain a divergence-free total

fluid velocity, this does not seem to offer any benefit and has not been pursued. The

Laplace equation is then the governing equation for both the inviscid and viscous

potential flow:

∇2Φ = 0 (2.9)
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2.2.1 Conventional Potential Boundary Conditions

The Laplace equation in the volume surrounding the body is subject to boundary

conditions on the body and far from the body. The inviscid potential velocity is sub-

ject to the non-penetration boundary condition, which states that the velocity normal

to a solid surface must be zero. In a body-fixed reference frame this is expressed as

∇Φ · n
∣∣
body

= 0 (2.10)

This non-penetration body boundary condition is modified using the velocity decom-

position as described in Section 2.3.2 to achieve the viscous potential velocity.

The radiation condition for an infinite fluid requires the disturbance due to the

body to decay as the distance, r, from the body increases, and hence the velocity to

return to the undisturbed velocity far from the body, as shown in Equation 2.11.

lim
r→∞

(∇Φ−U∞) = 0 (2.11)

2.3 Velocity Decomposition

The velocity decomposition method utilizes a Helmholtz-type velocity decompo-

sition to describe the total velocity field u as the sum of an irrotational component

∇Φ and a vortical component w, as stated in Equation 1.1, and re-stated here:

u = ∇Φ + w (2.12)

For a given total velocity, this velocity decomposition is not unique. We seek the

decomposition that drives the vortical velocity w to zero as the vorticity falls to a

negligible value outside of the boundary layer and wake. The desired decomposition

will therefore be found if the irrotational potential velocity matches the fluid veloc-
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ity outside of the vortical region. For the potential velocity to fully represent the

fluid velocity outside of the vortical region, it must include the effects of the viscous

boundary layer and wake.

Applying the decomposition to the body boundary condition allows the effects of

viscosity to be included in the potential-velocity field. This ‘viscous potential’ velocity

then fully represents the fluid velocity outside of the vortical region surrounding the

body and in the wake, and hence the vortical velocity is negligible. If the inclusion

of viscous effects through the body boundary condition is successful, the computa-

tional domain can be reduced to extend just beyond the vortical region, as will be

demonstrated for a variety of flows in Chapters IV, V, and VI. The decomposition

can then be applied to the inlet and farfield boundaries, and since the vortical ve-

locity is negligible, the fluid velocity is set equal to the viscous potential velocity on

those boundaries. The details of the application of the velocity decomposition to the

boundaries are described in the following sections.

2.3.1 Velocity Decomposition of the Body Boundary Condition

The viscous potential developed in this work uses the velocity decomposition to

modify the non-penetration potential velocity body boundary condition in order to

include the effects of viscosity in the calculation of the irrotational potential velocity.

The total velocity u is subject to the no-slip boundary condition on the body, as

shown in Equation 2.7 for a fixed body. Applying the velocity decomposition to the

no-slip body boundary condition for u indicates the irrotational velocity ∇Φ must be

equal and opposite to the vortical velocity w on the body, as shown by the progression

from Equation 2.13 to Equation 2.14.

u
∣∣
body

= ∇Φ
∣∣
body

+ w
∣∣
body

= 0 (2.13)
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∇Φ
∣∣
body

= −w
∣∣
body

(2.14)

Taking the normal component of Equation 2.14 provides the new body boundary

condition for the viscous potential in terms of the normal component of the vortical

velocity on the body:

∂Φ

∂n

∣∣∣∣
body

= −(w · n)
∣∣
body

= −wn(0) (2.15)

The final term, wn, expresses the normal component of the vortical velocity in a local

orthogonal coordinate system on the body surface aligned with the normal pointing

out of the body into the fluid.

The flow ‘through’ the body boundary is how the viscous effects are included in

the viscous potential velocity, and has been suggested in various forms since Lighthill

introduced the equivalent source method (1958). Based on the nature of having an

apparent flow through the body surface, this approach has since been called a ‘tran-

spiration velocity.’ The versions proposed by Lighthill as an equivalent source method

(1958) and subsequent users, such as Lemmerman and Sonnad (1979), are based on

the continuity equation and include approximations. Morino (1986, Appendix C)

offers a theoretical presentation of an improved formulation. His formulation is based

on the solenoidal nature of the ‘defect velocity,’ as he calls the difference between the

fluid velocity and the potential velocity, since he defines it as the contribution due

to a vector potential. This allows the formulation to theoretically hold for unsteady,

compressible, and separated flows. We limit our current definition of the vortical

velocity to incompressible flows where the continuity equation enforces zero diver-

gence, but note the possibility of extension to compressible flows. As shown below,

following the formulation from Morino provides an expression for the normal compo-

nent of the vortical velocity on the body, as needed in the body boundary condition

for the viscous potential velocity given by Equation 2.15. The novel implementation
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of this body boundary condition for the viscous potential velocity is explored and

demonstrated in this work.

In the incompressible cases considered in this work, conservation of mass dictates

that the fluid velocity u must be divergenceless. The irrotational component is also

divergence free, and hence the vortical component must also be divergenceless. The

resulting continuity equation for the vortical component w is expressed in Equations

2.16 and 2.17, where the latter expression is written in a local coordinate system.

∇ ·w = 0 (2.16)

∂wn
∂n

+
∂wt1
∂t1

+
∂wt2
∂t2

= 0 (2.17)

In the local orthogonal coordinate system, n is aligned with the normal pointing out

of the body into the fluid, and t1 and t2 are aligned with two in-plane tangent vectors.

The subscripts n, t1, and t2 denote the component in the corresponding direction.

Integrating the divergence of the vortical velocity in the normal direction through

the vortical region leads to Equation 2.18, which can be simplified to Equation 2.19,

and rearranged to yield Equation 2.20.

δ∫
0

(
∂wn
∂n

+
∂wt1
∂t1

+
∂wt2
∂t2

)
dn = 0 (2.18)

δ∫
0

(
∂wt1
∂t1

+
∂wt2
∂t2

)
dn+ wn(δ)− wn(0) = 0 (2.19)

wn(0) =

δ∫
0

(
∂wt1
∂t1

+
∂wt2
∂t2

)
dn+ wn(δ) (2.20)

The upper limit of the integration, δ, is outside of the vortical region. Since we seek

a vortical velocity, w, that goes to zero where the vorticity is negligible, we desire
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that wn(δ) = 0, in which case

wn(0) =

δ∫
0

(
∂wt1
∂t1

+
∂wt2
∂t2

)
dn (2.21)

Substituting Equation 2.21 into Equation 2.15, results in the following expression

for the normal component of the potential velocity on the body in terms of the vortical

velocity.

∂Φ

∂n

∣∣∣∣
body

= −
δ∫

0

(
∂wt1
∂t1

+
∂wt2
∂t2

)
dn (2.22)

For convenience we define

f(w) = −
δ∫

0

(
∂wt1
∂t1

+
∂wt2
∂t2

)
dn (2.23)

This version of the body boundary condition is also used for the wake sources.

Equation 2.22 is the basis for including the effects of viscosity present in the total

fluid velocity, u, in the viscous potential velocity. This version of the ‘transpiration

velocity’ concept has not been numerically implemented before now. Using this body

boundary condition allows the total fluid velocity to define the viscous potential ve-

locity. The viscous potential velocity can then be used as the external boundary

conditions for the total fluid velocity on a small domain while maintaining the avail-

ability of the velocity in the infinite fluid domain. The numerical implementation of

this body boundary condition is discussed in Section 3.3.1.

2.3.2 Velocity Decomposition of Inlet and Farfield Boundary Conditions

On large computational domains where the fluid velocity at the domain boundary

is undisturbed by the presence of the body, setting the fluid velocity equal to the free-

stream value on the inlet and farfield boundaries works well. On reduced domains,
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using the free-stream velocity as the inlet and farfield boundary conditions leads to

an incorrect velocity field since it is essentially the wrong boundary value problem to

be solving. For the reduced domains used with the velocity decomposition solver, the

total velocity is set equal to the potential velocity. This modified boundary condition

is based on the decomposition of the velocity on the inlet and farfield boundaries,

and the assumption that the vortical velocity w is negligible since the boundaries are

outside of the vortical region.

u
∣∣
inlet & farfield

= ∇Φ
∣∣
inlet & farfield

(2.24)

Eça and Hoekstra (2009) applied this form of the inlet and farfield boundary

conditions using an inviscid potential and showed that it was an improvement over

the free-stream value for moderate domain sizes. While using the potential velocity

rather than the free-stream velocity value does offer an improvement on moderate

domains, the desired accuracy can not be achieved using the inviscid potential velocity

on significantly reduced domains.

The effects of viscosity must be included in the potential velocity to successfully

use it as the inlet and farfield boundary conditions as stated in Equation 2.24. If the

viscous effects are not included in the irrotational velocity, ∇Φ, the vortical velocity

component, w, is not negligible outside of the vortical region and hence can not be

neglected on the boundaries. Using the body boundary condition for the viscous

potential provided in Equation 2.22 drives the vortical velocity to a negligible level

outside of the vortical region so Equation 2.24 may be used, as demonstrated in the

results chapters.
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CHAPTER III

Numerical Implementation

The computational fluid dynamics environment Open Source Field Operation and

Manipulation (OpenFOAMr) was chosen to implement the solver based on its vast

open source C++ libraries that provide both tested RANS solvers and the ability to

modify the existing solvers.

The RANS equation solution using a finite-volume method is discussed, followed

by the numerical implementation of the potential flow solution using a two-dimensional

constant-source-strength panel method and a three-dimensional constant-source-strength

quadrilateral panel method. The velocity decomposition solver algorithm is then pre-

sented. The numerical implementation of the viscous potential velocity body bound-

ary condition is described, followed by a description of the velocity decomposition

solver parameters.

3.1 RANS Solution

Within OpenFOAM, the steady incompressible viscous flow solver simpleFoam

was chosen as the base RANS solver since it represents an industry standard steady

RANS solver. The simpleFoam solver is so named because it uses the Semi-Implicit

Method for Pressure-Linked Equations (SIMPLE) algorithm as described by Patankar

(1980). The simpleFoam solver will be referred to as the RANS solver throughout
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this work.

The RANS equations are discretized using the finite-volume method. The semi-

discrete form for the total velocity vector is

aPuP +
∑
N

aNuN = rP −∇pP (3.1)

where a is the matrix influence coefficient, r is the source term, and the subscripts P

and N denote the point at the cell center and the neighboring cell centers respectively.

If the term

H(u) = rP −
∑
N

aNuN (3.2)

is introduced, the momentum predictor step and pressure correction step of the

SIMPLE algorithm for the RANS equations can be expressed as

uP =
1

aP
[H(u)−∇p∗P ] (3.3)

∇ ·
[
∇pP
aP

]
= ∇ ·

[
H(u)

aP

]
(3.4)

respectively, where p∗ is the pressure from the previous iteration. The pressure cor-

rection step given by Equation 3.4 is derived by substituting the expression for u

given in Equation 3.3 into the continuity equation given in Equation 2.1, and is used

to make the total velocity field divergenceless. The convergence of the solution of this

segregated solver is judged by monitoring the residuals, defined as a scaled L1 norm,

for each variable.

The RANS solver uses second order Gaussian integration with linear interpolation

of the cell center values to the face centers for the gradient and Laplacian terms. The

Laplacian terms also use an explicit non-orthogonal correction for the surface normal

gradient. The divergence terms are also discretized by Gaussian integration, but use

a bounded first/ second order linear upwind interpolation scheme that uses Gaussian
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integration and linear interpolation to calculate the gradient. The divergence of the

turbulent quantities, k and ω, are discretized by Gaussian integration using a first

order upwind interpolation scheme. Overall, the equation discretization is formally of

second order except for the turbulent quantities which are first order, or near extrema.

The ASME (Celik et al. 2008) procedure and a similar procedure utilizing a

least squares fit presented by Eça and Hoekstra (2006) are used to estimate the

uncertainty due to discretization. Details are provided in Appendix A. The drag

coefficient for laminar flow over a NACA 0012 airfoil at a Reynolds number of 2000 is

used to analyze the uncertainty. The ASME procedure provided an observed order of

accuracy of p = 1.3 and a numerical uncertainty of GCI21
fine = 0.05% for the medium-

fine mesh. The least square root procedure presented by Eça and Hoekstra (2006) gave

an observed order of accuracy of p = 1.7 and a numerical uncertainty of Ufine
Cd = 0.002%

for the fine mesh. Both of the observed orders are close to, but lower than, the

theoretical value of 2.0.

3.2 Potential Velocity Solution

As described in Section 2.2, the scalar potential used to define the potential ve-

locity must satisfy Laplace’s equation in the volume, V , surrounding the body. The

body boundary condition applies on the body surface, SB, and the radiation bound-

ary condition applies on the outer boundary surface S∞. A wake surface, SW , is also

included to allow a distribution of wake sources. The surfaces are labeled in Fig-

ure 2.1. The progression to the boundary integral equation for the potential is briefly

outlined here, following the presentation in Katz and Plotkin (2001). The details are

included in many sources, including Katz and Plotkin (2001) and Newman (1977).

Green’s second identity relates a volume integral to a surface integral, defining

the boundary integral equation that expresses the Laplace equation for the potential
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in the volume, V , as shown in Equation 3.5.

∫
S

(Φ1∇Φ2 − Φ2∇Φ1) · n dS =

∫
V

(Φ1∇2Φ2 − Φ2∇2Φ1)dV (3.5)

Here, n is the surface normal pointing out of the fluid domain and the surface S must

completely surround the fluid domain. In this case, S is the sum of the body, wake,

and outer surfaces.

S = SB + SW + S∞ (3.6)

Φ1 and Φ2 are defined as follows where r is the distance between a singularity element

and a point, P :

Φ1 =
1

r
in 3D (3.7)

Φ1 = ln r in 2D (3.8)

Φ2 = Φ (3.9)

The potential at the point, P , can then be expressed in three-dimensions as

Φ(P ) = − 1

4π

∫
SB+SW

[
σ

(
1

r

)
− µ ∂

∂n

(
1

r

)]
dS + Φ∞(P ) (3.10)

where σ is a source strength, µ is a doublet strength, and Φ∞ is the free-stream

potential. Since only flows without circulation are considered in this thesis, only the

source elements are used and Equation 3.10 reduces to

Φ(P ) = − 1

4π

∫
SB+SW

σ

(
1

r

)
dS + Φ∞(P ) (3.11)

In two dimensions, the potential at a point utilizing only source elements can be
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represented as

Φ(P ) = − 1

2π

∫
SB+SW

σ ln r dS + Φ∞(P ) (3.12)

A distribution of wake sources is also included in this work. For symmetric bodies,

the influences of the body source elements cancel each other out along the centerline

of the wake, which extends from the trailing edge of the body. If no flow is desired

through the wake surface, as is generally the case, any source elements distributed

along the wake would have a strength of zero. To achieve the viscous potential, it is

desired to include the viscous effects in the wake, so wake sources are included subject

to the same decomposed body boundary condition as the body.

The potential can be expressed as

Φ = φ+ U∞ · x (3.13)

where φ is the perturbation potential given by the integral terms in Equations 3.11

and 3.12, and U∞ · x is the free-stream potential, Φ∞.

To perform the calculation of the velocity field, the source strengths must be

known. The source strengths are determined by satisfying the Neumann body bound-

ary condition of non-penetration for the inviscid potential velocity or the decomposed

body boundary condition for the viscous potential, as shown for the perturbation po-

tential in Equations 3.14 and 3.15 respectively.

∂φ

∂n

∣∣∣∣
body

= −(U∞ · n)
∣∣
body

Inviscid Potential (3.14)

∂φ

∂n

∣∣∣∣
body & wake

= −(U∞ ·n)
∣∣
body & wake

−(w·n)
∣∣
body & wake

Viscous Potential (3.15)

Equation 3.16 is constructed by satisfying the body boundary condition at each

body panel center and wake source location, where the latter term on the right side
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is dropped in the inviscid case.

[A][σbody & wake] = −[(U∞ · n)
∣∣
body & wake

]− [(w · n)
∣∣
body & wake

] (3.16)

The matrix of influence coefficients, A, is generated by calculating the normal

velocity at collocation point i due to source j with a source strength of one, where

i = 1 : N , j = 1 : N , and N is the number of sources. The terms on the right side

represent vectors of the body boundary condition at each collocation point, which

consist of the body panel centers and wake source locations. The inverse of the

influence coefficient matrix, A, is calculated using LU (Lower-Upper) decomposition.

The vector of source strengths for each body panel and wake source, [σbody & wake],

is solved for by multiplying both sides of the equation by the inverted influence

coefficient matrix, A−1. In the two-dimensional cases, constant strength source panels

are used for the wake sources as well as the body sources. While point sources could

be used in the wake, using panel sources offers some benefits in specifying the wake

source strengths, as described in the following section.

The second boundary condition imposed on the potential velocity is the radiation

condition, which ensures that the undisturbed velocity, U∞, is recovered far from the

body; the constant-strength source solution satisfies this naturally.

The perturbation potential is calculated using constant-strength source elements

as described in the following sections for two- and three- dimensional cases. The

velocity contributions are defined in local panel coordinate systems, denoted by the

subscript p. In the two-dimensional case, xp is aligned with the panel tangent, t1,

and yp is aligned with the outward panel normal, n, as shown in Figure 3.1. In three

dimensions, xp and yp are aligned with two orthogonal panel tangents, t1 and t2,

and zp is aligned with the outward panel normal, n. Note that the panel normals

are defined pointing out of the body into the fluid for the body boundary conditions
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and panel coordinate systems. The normal direction used across the body boundary

condition is independent from the normal used in Green’s Theorem since the normal

is present in each term of the boundary condition.

3.2.1 Two-Dimensional Potential Velocity

The two-dimensional potential velocity field is determined using a constant-strength

source panel method as described by Katz and Plotkin (2001). The velocity contri-

bution at a collocation point due to the perturbation potential of a single panel in

the x− and y− directions of the local panel coordinate system are given by

∂φ

∂xp
=

σ

4π
ln
r2

1

r2
2

(3.17)

∂φ

∂yp
=

σ

2π
(θ2 − θ1) (3.18)

respectively, where σ is the source strength of the panel, the subscript p denotes panel

coordinates, and r1, r2, θ1, and θ2 correspond to the distances and angles shown in

Figure 3.1.

Figure 3.1: Coordinate system and variable definitions for the two-dimensional per-
turbation potential (based on Katz and Plotkin 2001).

It follows from Equations 3.17 and 3.18 that the perturbation velocity for a collo-
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cation point centered just above a panel will be given by

∂φ

∂xp
(xp, 0) = 0 (3.19)

∂φ

∂yp
(xp, 0) =

σ

2
(3.20)

Due to the symmetry of the bodies considered in this work and the alignment

of the wake sources on the center-line, each of the wake panels is only influenced

by itself, so Equation 3.20 can be re-arranged to solve for each of the wake source

strengths, noting that ∂φ/∂yp = ∂φ/∂n.

σwake = 2
∂φ

∂yp
(xp, 0) (3.21)

3.2.2 Three-Dimensional Potential Velocity

The three-dimensional potential velocity field is determined using a constant-

strength source distribution over planar quadrilateral panels as developed by Hess

and Smith (1967) and described by Katz and Plotkin (2001). The integral of the

three-dimensional Green function over the quadrilateral source gives the potential

at a point P (x, y, z). The velocity contribution at a collocation point due to the

perturbation potential of a single panel in the x−, y−, and z− directions of the local

panel coordinate system, are given by Equations 3.22, 3.23, and 3.24 respectively. The

collocation point P is located at (x, y, z). The panel corners are assigned subscripts

1 through 4, and the z− coordinate of the panel corners is zero since the panel is

planar and the panel coordinate system origin is located at the centroid of the panel.
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∂φ

∂xp
=
σ

4π

[
y2 − y1

d12

ln
r1 + r2 − d12

r1 + r2 + d12

+
y3 − y2

d23

ln
r2 + r3 − d23

r2 + r3 + d23

+
y4 − y3

d34

ln
r3 + r4 − d34

r3 + r4 + d34

+
y1 − y4

d41

ln
r4 + r1 − d41

r4 + r1 + d41

]
(3.22)

∂φ

∂yp
=
σ

4π

[
x1 − x2

d12

ln
r1 + r2 − d12

r1 + r2 + d12

+
x2 − x3

d23

ln
r2 + r3 − d23

r2 + r3 + d23

+
x3 − x4

d34

ln
r3 + r4 − d34

r3 + r4 + d34

+
x4 − x1

d41

ln
r4 + r1 − d41

r4 + r1 + d41

]
(3.23)

∂φ

∂zp
=
σ

4π

[
tan−1

(
m12e1 − h1

zr1

)
− tan−1

(
m12e2 − h2

zr2

)

+ tan−1

(
m23e2 − h2

zr2

)
− tan−1

(
m23e3 − h3

zr3

)

+ tan−1

(
m34e3 − h3

zr3

)
− tan−1

(
m34e4 − h4

zr4

)

+ tan−1

(
m41e4 − h4

zr4

)
− tan−1

(
m41e1 − h1

zr1

)]
(3.24)
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The following equations define the included terms.

d12 =
√

(x2 − x1)2 + (y2 − y1)2 (3.25)

d23 =
√

(x3 − x2)2 + (y3 − y2)2 (3.26)

d34 =
√

(x4 − x3)2 + (y4 − y3)2 (3.27)

d41 =
√

(x1 − x4)2 + (y1 − y4)2 (3.28)

m12 =
y2 − y1

x2 − x1

(3.29)

m23 =
y3 − y2

x3 − x2

(3.30)

m34 =
y4 − y3

x4 − x3

(3.31)

m41 =
y1 − y4

x1 − x4

(3.32)

rk =
√

(x− xk)2 + (y − yk)2 + z2, k = 1, 2, 3, 4 (3.33)

ek = (x− xk)2 + z2, k = 1, 2, 3, 4 (3.34)

hk = (x− xk)(y − yk), k = 1, 2, 3, 4 (3.35)
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It should be noted that the inverse tangent in Equation 3.24 is evaluated in the

principle-value range of −π/2 to π/2; Hess and Smith also present an alternate form

of Equation 3.24 where the inverse tangent is defined in the principle-value range of

−π to π (Hess and Smith 1967). When the collocation point approaches z = 0 in

panel coordinates,

∂φ

∂zp
(z = 0±) =

±σ
2

(3.36)

if the point is inside the quadrilateral, and

∂φ

∂zp
(z = 0±) = 0 (3.37)

if the point is outside the quadrilateral.

When the collocation point is sufficiently far from the panel center, the quadrilat-

eral source can be estimated as a point source to reduce the computational expense.

Based on the conservative recommendations in Katz and Plotkin (2001), the colloca-

tion point must be five times the average panel diameter away from the panel to use

the point source estimation. In this case, Equations 3.38 through 3.40 may be used

in place of Equations 3.22 through 3.24.

∂φ

∂xp
=

σA(x− x0)

4π[(x− x0)2 + (y − y0)2 + z2]3/2
(3.38)

∂φ

∂yp
=

σA(y − y0)

4π[(x− x0)2 + (y − y0)2 + z2]3/2
(3.39)

∂φ

∂zp
=

σA(z − z0)

4π[(x− x0)2 + (y − y0)2 + z2]3/2
(3.40)

where A is the panel area. The point source approximation is not currently imple-

mented in the three-dimensional code, and hence offers a source of further computa-
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tional time reduction.

3.3 Velocity Decomposition Solver Algorithm

The algorithm used by the velocity decomposition solver is shown in the form of a

flow chart in Figure 3.2. The steps on the flow chart are described below. The details

of the numerical implementation of the viscous potential velocity body boundary

condition are discussed, followed by a description of the velocity decomposition solver

parameters.

The steps of the velocity decomposition solver algorithm are:

1. Initiate solver by providing the mesh, boundary conditions, and initial condi-

tions. The solver parameters must also be specified.

2. Solve for the inviscid potential velocity, ∇Φ.

3. Set u = ∇Φ to initialize the flow field (optional).

4. Set u
∣∣
inlet & farfield

= ∇Φ
∣∣
inlet & farfield

.

5. Solve for the total fluid velocity, pressure, and turbulence quantities using the

RANS solver on a small domain surrounding the vortical regions around the

body and in the wake.

6. When the maximum velocity residual, max[res(u)], drops below the user-specified

update residual, resupdate, update the inlet and farfield boundary conditions us-

ing the following procedure where initially i = 0 and i is the iteration number.

(a) Calculate the integration limit, δ, based on the vorticity field of the total

fluid, u.

(b) Calculate the potential velocity at δ, ∇Φi(δ), using the previously calcu-

lated source strengths. Either the inviscid potential source strengths or
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the final viscous potential sources strengths from the previous update can

be used. The inviscid source strengths are used in the current implemen-

tation.

(c) Iterate the following three steps according to the number of iterations

specified by the user to find the source strengths for the viscous potential

velocity.

i. Set wi(δ) = u(δ) − ∇Φi(δ) and use wi(δ) to calculate the new body

boundary condition for the viscous potential velocity ∂Φ
∂n

∣∣i+1

body & wake
=

f(wi). The details of this step are discussed in the following section.

ii. Use the body boundary condition ∂Φ
∂n

∣∣i+1

body & wake
to calculate new source

strengths, σi+1.

iii. Use the new source strengths, σi+1, to calculate ∇Φi+1(δ).

(d) Use the final source strengths, σi=# of iter., to calculate the viscous potential

on the inlet and farfield boundaries, ∇Φ
∣∣
inlet & farfield

.

7. Set u
∣∣
inlet & farfield

= ∇Φ
∣∣
inlet & farfield

.

8. Repeat steps 5 through 7 according to the number of updates specified.

9. Solve for the total fluid velocity, pressure, and turbulence quantities using the

RANS solver.

10. When the specified final residuals are reached for all variables, terminate the

solver. The solution has been reached.
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Figure 3.2: Velocity decomposition solver flow chart with numbers and letters cor-
responding to the description in the text. Step 8 is to repeat steps 5
through 7.
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3.3.1 Viscous Potential Velocity Body Boundary Condition

Section 2.3.1 describes the derivation of the viscous potential body boundary

condition given by Equation 2.22 and re-stated here.

∂Φ

∂n

∣∣∣∣
body & wake

= −
δ∫

0

(
∂wt1
∂t1

+
∂wt2
∂t2

)
dn (3.41)

In the iterative framework of the implementation described in Step 6c of the algorithm

in the previous section, the body boundary condition can be expressed as

∂Φ

∂n

∣∣∣∣i+1

body & wake

= f(wi) (3.42)

where, for convenience, we defined

f(wi) = −
δ∫

0

(
∂wit1
∂t1

+
∂wit2
∂t2

)
dn (3.43)

We seek the value of the integral term in Equation 3.43. While numerically inte-

grating the gradient of the vortical velocity does work, revisiting the original expres-

sion for the integral of the divergence along the normal offers a more accurate and less

computationally expensive alternative. The integral of the divergence of the vortical

component of the velocity, w, along the local normal is shown in Equation 3.44 and

simplified to Equation 3.45, where i indicates the iteration level.

δ∫
0

(
∂win
∂n

+
∂wit1
∂t1

+
∂wit2
∂t2

)
dn = 0 (3.44)

δ∫
0

(
∂wit1
∂t1

+
∂wit2
∂t2

)
dn+ win(δ)− win(0) = 0 (3.45)
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Re-arranging the terms in Equation 3.45 results in Equation 3.46.

δ∫
0

(
∂wit1
∂t1

+
∂wit2
∂t2

)
dn = win(0)− win(δ) (3.46)

Substituting Equation 3.46 into Equation 3.43 leads to the following expression:

f(wi) = −win(0) + win(δ) (3.47)

The viscous potential body boundary condition can therefore be stated in terms

of the values of the normal vortical velocity component on the body and at δ from

the previous iteration:

∂Φ

∂n

∣∣∣∣i+1

body & wake

= f(wi) = −win(0) + win(δ) (3.48)

Using Equation 3.48 to calculate the desired viscous potential velocity body bound-

ary condition rather than numerically calculating the integral form of the equation

significantly reduces the computational expense. The potential velocity only needs to

be calculated at δ for each panel rather than in the whole field. The computational

expense and errors introduced by a numerical integration scheme are eliminated.

3.3.2 Velocity Decomposition Solver Parameters

The value of δ used to determine the body boundary condition for the viscous

potential velocity is defined as the normal distance from each panel where the vorticity

has dropped to a negligible value. The vorticity is defined as ω = ∇×u. Technically,

δ can be any distance past the vortical region. However, it has been observed that

using the minimal value of δ outside the vortical region provides a viscous potential

velocity that matches the fluid velocity better in fewer iterations. δ essentially defines

the thickness of the vortical region. The value of δ for each body and wake panel is
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determined for a given fluid velocity field by calculating the vorticity in the field, then

sampling the value of the vorticity in each cell the panel normal crosses out to some

distance, δmax. The maximum vorticity, ωmax, from the sampled set is then found for

each panel. The negligible level of vorticity is defined as ωlimit = αvortωmax, where

αvort is a fraction input by the user. The location of δ can then be determined by

finding the cell closest to the body along the normal sample line where the average

of the vorticity in that cell and the cells before and after that cell is less than the

vorticity limit, ωlimit. The three-point averaging procedure prevents δ from being

located at a dip in the vorticity rather than where the vorticity is truly trending

towards zero. If the negligible vorticity value is not found on the sample line, δ is

set to zero to prevent calculating the boundary condition based on a velocity that is

within the vortical region. In this case, the non-penetration condition is the boundary

condition on that panel. It may be possible to assign the viscous potential velocity

body boundary condition on the panels where the desired vorticity drop is not found

based on the neighboring panels, rather than using the non-penetration condition.

The parameters involved in determining δ are the distance along the normal to

sample the vorticity, δmax, for each panel on the body and in the wake, and the frac-

tion, αvort, of the maximum sampled vorticity used to define the negligible vorticity

limit. The sampling distance, δmax, is assigned separate values for panels on the body

and panels in the wake.

The user must also define the location of the wake panels by specifying the end

of the body, the initial wake panel length, ws, the panel growth rate, wg, and the

number of wake panels, nwp. The wake panels are then distributed according to a

geometric growth rate. The panel centers are defined by

xwp,i = xwp,i−1 +
1

2
ws(1 + wg)i−1 +

1

2
ws(1 + wg)i (3.49)

where xwp,i indicates the x− coordinate of the center of the ith wake panel. The first
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wake panel center is located half of the initial wake panel length, ws, from the trailing

edge of the body. The y− and z− coordinates of the wake panel centers are assigned

as constants equal to their value at the center of the trailing edge of the body. The

current implementation of the wake panel distribution is limited to symmetric bodies

and will need to be modified to handle more complex wake structures.

The number of iterations used to modify the body boundary condition for the

viscous potential velocity for a given velocity field, the number of times to update

the inlet and farfield boundary conditions for the fluid velocity based on the viscous

potential, and the residual at which to perform those updates must also be specified

by the user. The parameters are further described and demonstrated in the results

chapters.

40



CHAPTER IV

Laminar Two-Dimensional Results

Results for steady laminar flow over a flat plate, a circular cylinder, and a NACA 0012

airfoil are presented. The RANS solver is used to generate solutions with which to

compare the velocity decomposition solver results. The parameters used in the ve-

locity decomposition solver are studied in the flat plate and the circular cylinder

cases. Those cases are then used to guide the selection of the parameters for the

NACA 0012 airfoil. The velocity decomposition solver is shown to obtain results that

compare very well with the RANS solutions in less computation time.

For each case, the problem is stated and the RANS solution is developed. The

velocity decomposition parameters are then discussed. Finally, the velocity decom-

position solver solution is compared to the RANS solver solution.

4.1 Laminar Flat Plate

Laminar flow over a flat plate at a Reynolds number of 2000 based on the plate

length is studied with a RANS solver and the velocity decomposition solver. While

the geometry of this case is quite simple, it offers insight into the ability of the vis-

cous potential velocity to account for the boundary layer effects. The computational

domain and coarse 10L mesh used for the RANS solver are shown in Figure 4.1,

where L = 1.0 m is the plate length. As described in the next section, the coarse 10L
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mesh is the coarsest of a set of systematically refined meshes that extend ten plate

lengths from the plate in the inlet and farfield directions. The reduced domain for

the velocity decomposition solver is outlined to show the scale of the reduction. The

plate is located on the x−axis from x = 0 to x = 1.

y

x

Figure 4.1: Laminar flat plate coarse 10L mesh with the plate located on the x−axis
from x = 0 to x = 1 and the reduced 0.3L domain outlined by the blue
dashed line.

For the RANS solver, the velocity is set equal to the free-stream velocity, U∞ =

0.002 m/s at the inlet and farfield boundaries, and zero at the wall. The outlet

pressure is set to zero to serve as the reference pressure. The velocity at the outlet,

and the pressure at the inlet, farfield, wall, and center plane are calculated to achieve

zero normal gradient. A slip boundary condition, which sets the normal component

to zero and enforces zero normal gradient on the tangential component, is used for the

velocity on the center plane before and after the plate. The pressure field is initially

set to zero, and the velocity is initially set equal to the free-stream velocity.

The only modification to the boundary conditions for the velocity decomposition
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solver is that the fluid velocity on the inlet and farfield boundaries is set equal to the

potential velocity.

4.1.1 RANS Domain Dependence Study

To ensure the accuracy of the RANS solution used to validate the velocity de-

composition solver, a study of the computational domain resolution and extent was

performed. Coarse, medium, and fine structured meshes extending ten plate lengths,

L, in the inlet, farfield, and outlet directions from the plate were systematically cre-

ated by doubling the resolution. The meshes are concentrated around the leading and

trailing edges of the plate, and in the boundary layer. Table 4.1 provides the mesh

resolution given as the number of cells normal to the plate by the number along the

length of the domain, number of panels (faces) along the plate, total number of cells,

and mesh refinement factor rj = hj/hfine where j is the mesh being evaluated. The

representative mesh size h is defined for two-dimensional cases by

h =

[
1

N

N∑
i=1

∆Ai

]1/2

(4.1)

where N is the number of cells in the mesh and ∆Ai is the area of the ith cell. In

three-dimensional cases, ∆Ai is replaced by ∆Vi, which is the volume of the ith cell

and the power of 1/2 is replaced by 1/3. The domain extents of the coarse mesh were

doubled from ten to twenty times the plate length by extending the original coarse

mesh to ensure the overlapping portion is identical. The coarse 20L mesh has a larger

mesh refinement factor due to the addition of larger cells outside of the original 10L

domain.

Velocity profiles at x/L = 0.05, 0.25, 0.5, 0.95, and 1.5 from the three mesh resolu-

tions on the 10L domain, and the coarse 20L domain are shown to match quite well in

the top of Figure 4.2. The bottom of Figure 4.2 shows the error in the drag coefficient
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Table 4.1: Laminar flat plate mesh characteristics.
Mesh Resolution Plate panels # of Cells rj = hj/hfine

Fine 10L 300 x 800 200 240,000 1.0
Medium 10L 150 x 400 100 60,000 2.0
Coarse 10L 75 x 200 50 15,000 4.0
Coarse 20L 85 x 220 50 18,700 7.1

and the root mean square (RMS) of the error in the x-component of the velocity, u, at

ten points located at y/L = 0.05 and 0.2 and x/L = 0.05, 0.25, 0.5, 0.95, and 1.5 with

respect to the fine mesh solution as a function of the mesh refinement factor. Note

that the highest mesh refinement factor corresponds to the larger domain. The drag

coefficient is defined in Equation 4.2 and the error in the drag coefficient is defined

in Equation 4.3.

Cd =
F

0.5ρU∞
2LW

(4.2)

Cd % error = 100
Cdi − Cdj

Cdi
(4.3)

where F is the drag force, L is the body length, and W is the width of the body or

computational domain. The indices i and j represent the value being compared to

and the value being compared respectively. The RMS of the error in the x-component

of the velocity, u, is defined in Equation 4.4.

RMS % error = 100

√∑n
k=1(ui,k − uj,k)2/n

U∞
(4.4)

where n is the number of points considered.

Table 4.2 provides the error values described above, as well as the errors with

respect to the next finer or smaller mesh, and the drag coefficient values. All of the

errors are less than 0.5%. The error in the drag coefficient between the coarse 10L

mesh and the medium 10L mesh is 0.21%, and the error between the coarse 20L mesh

and the coarse 10L mesh is 0.096%, so the coarse 10L mesh appears to sufficiently

capture the solution and will be the standard against which to compare the velocity
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Figure 4.2: RANS solver results for laminar flow over a flat plate at Re = 2000.

Top: Velocity profiles at x/L = 0.05, 0.25, 0.5, 0.95, and 1.5. Bottom:
Drag coefficient error and RMS velocity error with respect to the finest
resolution as a function of mesh refinement factor.

decomposition solver.

4.1.2 Velocity Decomposition Parameters

To observe the effects of the velocity decomposition parameters, the velocity de-

composition solver was used to calculate the viscous potential velocity given the con-
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Table 4.2: Laminar flat plate at Re = 2000 drag coefficients and error in RANS solver
due to domain resolution and extent.

Mesh Cd Cd error
w/fine

Cd relative
error

RMS velocity
error w/ fine

RMS velocity
relative error

Fine 10L 0.03315
Medium 10L 0.03312 0.10% 0.10% 0.024% 0.024%
Coarse 10L 0.03305 0.31% 0.21% 0.11% 0.086%
Coarse 20L 0.03301 0.41% 0.096% 0.11% 0.071%

verged coarse 10L RANS fluid velocity field described in the previous section. The

parameters influencing the viscous potential include the limits on how far from the

body and wake panels to scan the vorticity field, δmax, body and δmax,wake, the fraction

of the maximum vorticity, αvort, on a given panel normal that is used to define the

negligible vorticity limit, the distribution of wake panels, and the number of itera-

tions used to calculate the body boundary condition for the viscous potential. The

effects of these parameters are presented in terms of the average error between the

magnitude of the viscous potential velocity and the fluid velocity at δ above each

body panel, as shown in Equation (4.5).

Err(δ)% =
100

nbp

nbp∑
i=1

|ui(δi)−∇Φi(δi)|
|ui(δi)|

(4.5)

where nbp is the number of panels on the body.

The value of δmax for the body and the wake should be outside of the expected

boundary layer and inside of the flow domain. For the flat plate at a Reynolds number

of 2000, δmax was set to 0.3L on the body and 0.5L in the wake. These values allowed

the algorithm to find the desired vorticity drop for all panels in a reasonable amount

of computation time. Using a higher δmax than needed will add computation time, and

if the sampled line ends close to the outer boundaries on a reduced computational

domain, the vorticity introduced by the boundary may make the calculation of δ

inaccurate.
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As shown in the first section of Table 4.3, fractions ranging from 0.1 to 0.0001 were

tested as the fraction, αvort, of the maximum vorticity on a given panel normal that

is used to define a negligible vorticity. The average error at δ shows that αvort = 0.01

provides the lowest error between the viscous potential velocity and the converged

fluid velocity. Using a larger fraction causes a significant increase in the error between

the viscous potential velocity and the fluid velocity since it causes δ to be located

within the vortical region. Lower fractions are acceptable, but they result in larger δ

values which essentially relax the inclusion of the viscous effects.

The second section of Table 4.3 shows the average error at δ for a range of wake

panel distributions. The lowest error is achieved with an initial spacing of ws = 0.2L,

and a growth rate of wg = 0.25. The number of panels, nwp, is determined according

to the length of the computational domain in the downstream direction. For the

distribution mentioned above, eleven panels are used. The error is increased by both

coarsening and refining the wake distribution from these values, though refining the

distribution only slightly increases the error. The number of panels could be reduced

as the first few have the most impact, but allowing them to extend to the downstream

boundary adds very little computation time with this distribution.

The final section in Table 4.3 shows the influence of the number of iterations on

the average error at δ for a given fluid velocity field. The best vorticity fraction and

wake distribution, as described above, are used, and the average errors between the

viscous potential velocity and the fluid velocity are provided at iterations 0−5, 10, 15,

20, and 25. Note that iteration zero uses the inviscid potential velocity. The viscous

potential velocity approximates the fluid velocity at δ quite well, and converges toward

a solution with an average error of approximately 0.07% by 25 iterations for the flat

plate. The average error at δ decreases from 5% with the inviscid potential to under

1% by the second iteration, so two iterations appear to be sufficient and will be used

in the solver for the flat plate case. The fewest number of iterations that achieve
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the desired level of accuracy should be used. More iterations can be used to further

improve the solution, but will slightly increase the computational cost.

Table 4.3: Influence of the vorticity limit fraction, αvort, wake distribution, and num-
ber of iterations on the average error between the viscous potential velocity
and the fluid velocity at δ for all body panels for flow over a flat plate at
Re = 2000.

αvort nwp ws/L wg # of Iter. Err(δ)

0.1 11 0.20 0.25 4 1.10%
0.01 11 0.20 0.25 4 0.31%
0.001 11 0.20 0.25 4 0.38%
0.0001 11 0.20 0.25 4 0.45%
0.01 0 – – 4 0.85%
0.01 8 0.40 0.25 4 0.32%
0.01 11 0.20 0.25 4 0.31%
0.01 14 0.10 0.25 4 0.32%
0.01 29 0.01 0.2 4 0.32%
0.01 11 0.20 0.25 0 5.01%
0.01 11 0.20 0.25 1 1.48%
0.01 11 0.20 0.25 2 0.69%
0.01 11 0.20 0.25 3 0.44%
0.01 11 0.20 0.25 4 0.31%
0.01 11 0.20 0.25 5 0.24%
0.01 11 0.20 0.25 10 0.12%
0.01 11 0.20 0.25 15 0.09%
0.01 11 0.20 0.25 20 0.08%
0.01 11 0.20 0.25 25 0.07%

The final two parameters are the residual, resupdate, at which to update the veloc-

ity boundary conditions, and the number of times to update the velocity boundary

conditions. To determine recommended values for these parameters, the velocity de-

composition solver was applied to a reduced domain, and the result compared to the

RANS solution on the full domain. The coarse 10L flat plate mesh described above

was trimmed to extend 0.3L in the inlet and farfield directions. The outlet extent was

not modified. Further details on the reduced mesh case are provided in the following

section.

The drag coefficient error and the RMS velocity error are used to assess the per-
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formance of the velocity decomposition solver on a reduced domain with different

parameter values. The coarse 10L domain RANS solution is used as the benchmark.

The RMS velocity error is based on the x-component of the velocity, u, at ten points

located at y/L = 0.05 and 0.2 and x/L = 0.05, 0.25, 0.5, 0.95, and 1.5.

The first section of Table 4.4 shows the influence of the residual, resupdate, at which

the boundary condition update occurs. Reducing the residual limit from 1× 10−3 to

1 × 10−4 reduces the error seen in both the drag coefficient and the RMS velocity

error. Decreasing the residual further to 1×10−5 does not offer any further advantage.

Using lower residuals tends to increase the overall computation time since the solver

is spending longer finding the solution to the boundary value problem with inlet and

farfield boundary conditions that are not as accurate as their final values. The residual

at which to update the inlet and farfield boundaries will therefore be resupdate =

1× 10−4.

The influence of the number of times the inlet and farfield boundary conditions are

updated by setting the total fluid velocity on those boundaries equal to the viscous

potential velocity is shown in the second section of Table 4.4. Both the drag coefficient

error and the RMS velocity error decrease as the number of updates is increased. The

errors converge to 0.29% for the drag coefficient and 0.15% for the RMS velocity error

by around twenty updates. The majority of the error decrease is seen in the first three

updates, so three updates will be used in the velocity decomposition solver on the

reduced domain.

The parameters selected to be used in the velocity decomposition solver on the

reduced domain for the laminar flat plate case are summarized in Table 4.5.

4.1.3 Velocity Decomposition Results

The coarse 10L domain used for the RANS solver was trimmed to extend 0.3L

in the inlet and farfield directions. The reduced domain is shown outlined by a blue
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Table 4.4: Influence of update residual, resupdate, and the number of updates on the
drag coefficient error and RMS velocity error for flow over a flat plate at
Re = 2000.

resupdate # of Updates Cd Error RMS u Error

1.0x10−3 2 0.92% 0.47%
1.0x10−4 2 0.77% 0.36%
1.0x10−5 2 0.77% 0.36%
1.0x10−4 1 2.4% 1.3%
1.0x10−4 2 0.77% 0.36%
1.0x10−4 3 0.42% 0.19%
1.0x10−4 4 0.34% 0.16%
1.0x10−4 5 0.32% 0.16%
1.0x10−4 20 0.29% 0.15%
1.0x10−4 50 0.28% 0.15%

Table 4.5: Velocity decomposition solver parameters selected for flow over a flat plate
at Re = 2000.

Parameter Value

αvort 0.01
nwp 11
ws/L 0.2
wg 0.25
# of iterations 2
resupdate 1.0x10−4

# of updates 3

dashed line in Figure 4.1. The Blasius boundary layer thickness, δ99%, is defined as

δ99% =
5.0x√
Rex

(4.6)

where x is the distance from the leading edge of the plate. At x = L, the Blasius

boundary layer thickness is 0.1L. The vorticity thickness, defined as the distance for

the maximum vorticity on the normal to drop two orders of magnitude, is approx-

imately 0.1L at the end of the plate, and 0.35L at the outlet of the computational

domain. The reduced domain extends three times the boundary layer thickness from

the body, and extends slightly less than the vorticity thickness at the outlet of the

domain.
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The domain reduction decreased the number of cells by 64%, from 15,000 to 5,406.

The parameters summarized in Table 4.5 are used in the velocity decomposition solver.

The values of δmax for the body and the wake were reduced from the values discussed

in the previous section to 0.15L on the body and 0.25L in the wake since the domain

was reduced to extend 0.3L from the body. These lower limits allow the desired

vorticity decrease to be found everywhere over the body, and in the first portion of

the wake. The margin between δmax and the boundary is necessary to ensure that

vorticity at the outer boundary is not affecting the value of δ.

Velocity profiles at x/L = 0.05, 0.25, 0.5, 0.95, and 1.5 are shown for the velocity

decomposition solver on the coarse 0.3L mesh and the RANS solver on the coarse 10L

mesh in Figure 4.3. The solutions visually match very well in the velocity profiles. The

RMS error of the x-component of the velocity, u, at ten points located at y/L = 0.05

and 0.2 and x/L = 0.05, 0.25, 0.5, 0.95, and 1.5 is 0.19%, as shown in Table 4.6. The

error between the drag coefficients is 0.42%. The magnitudes of the RMS velocity

error and the drag coefficient error are similar to their magnitudes between the RANS

solver solutions on the coarse 10L domain and fine 10L domain of 0.11% and 0.31%

respectively. The drag coefficient from the velocity decomposition solver on the 0.3L

domain is closer to the RANS solver solution on the fine 10L domain than the coarse

10L solution, with an error of 0.10%. The velocity fields and drag coefficients indicate

that the velocity decomposition solver matches the RANS solver extremely well in

this laminar flat plate case.

The computation times presented in this thesis are the execution time, which is

the elapsed CPU time, for the solution residuals to decrease below their specified final

value. In this case, the velocity residuals were required to fall below 1.0× 10−10 and

the pressure residual was required to fall below 1.0 × 10−8. The computations were

performed on a computer with a 2.80GHz Intelr CoreTM 2 Duo processor and 4GB

of RAM. While the velocity decomposition solver was written with computation time
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Figure 4.3: RANS and velocity decomposition velocity profiles for flow over a flat

plate at Re = 2000.

in mind, the coding has not been fully optimized and hence further time reduction is

possible. For this laminar flat plate case, the computation time is reduced from 69.6

seconds for the RANS solver to 22.2 seconds for the velocity decomposition solver,

representing a decrease of 68%.

The performance of the velocity decomposition solver on the coarse 0.3L domain

compared to the RANS solver on the coarse 10L domain is summarized in Table 4.6.
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Table 4.6: Velocity decomposition solver on 0.3L domain compared to RANS solver
on 10L domain for flow over a flat plate at Re = 2000.

# of cells RANS 15,000
# of cells Vel. Decomp. 5,406
Decrease in # of Cells 64%
RMS u error 0.19%
RANS Cd 0.03305
Vel. Decomp. Cd 0.03318
Cd Error 0.42%
RANS Time (sec) 69.6
Vel. Decomp. Time (sec) 22.2
Decrease in Time 68%
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4.2 Laminar Cylinder

Laminar flow over a cylinder at a Reynolds number of 60 based on the cylinder di-

ameter, D, is studied with a RANS solver and the velocity decomposition solver. The

circular cylinder was chosen to demonstrate the ability of the velocity decomposition

solver to handle massively separated flows and the low Reynolds number was chosen

to ensure steady flow. Significant separation is generally extremely challenging to

handle with boundary element methods; the viscous potential velocity body bound-

ary condition enables the velocity decomposition solver to handle separation. The

basic geometry of the computational domain and the coarse 50D domain are shown

in Figure 4.4. The reduced domain for the velocity decomposition solver is outlined

to show the scale of the reduction. The cylinder is centered at (0, 0) with a radius of

0.5 m. The velocity is set equal to the free-stream velocity, U = 0.00006 m/s, at the

inlet and farfield boundaries, and zero at the wall. The outlet pressure is set to zero

to serve as the reference pressure. The velocity at the outlet, and the pressure at the

inlet, farfield, and wall are calculated to achieve zero normal gradient. The pressure

field is initially set to zero, and the velocity is initially set equal to the free-stream

velocity.

The only modifications to the boundary and initial conditions for the velocity

decomposition solver are that the flow velocity is initially set equal to the inviscid

potential velocity, and the fluid velocity at the inlet and farfield boundaries is set

equal to the potential velocity.

4.2.1 RANS Domain Dependence Study

To ensure the accuracy of the RANS solution used to validate the velocity de-

composition solver, a study of the computational domain resolution and extent was

performed. Coarse, medium, and fine structured meshes extending fifty diameters in

the inlet, farfield, and outlet directions from the cylinder were systematically created
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Figure 4.4: Laminar circular cylinder coarse 50D mesh with the reduced 3.5D domain
outlined by the blue dashed line.

by doubling the resolution. The meshes are concentrated around the cylinder and in

the wake. Table 4.7 provides the mesh resolution given as the number of cells across

the outlet by the number along one side of the inlet and farfield boundaries, number

of panels along the body, total number of cells, and mesh refinement factor. The

domain extents of the coarse mesh were doubled from fifty to one-hundred times the

cylinder diameter by extending the original coarse mesh to ensure the overlapping
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portion is identical. The largest mesh refinement factor corresponds to the 100D

coarse mesh, and is due to the large cells extending from the original 50D domain.

Table 4.7: Laminar circular cylinder mesh characteristics.
Mesh Resolution Body panels # of Cells rj = hj/hfine

Fine 50D 416 x 216 400 108,256 1.0
Medium 50D 208 x 108 200 27,064 2.0
Coarse 50D 104 x 54 100 6,766 4.0
Coarse 100D 110 x 59 100 7,640 7.5

Velocity profiles at x/D = −0.45,−0.25, 0.0, 0.25, 0.45, and 1 from the three mesh

resolutions on the 50D domain, and the coarse 100D domain are shown to match

quite well in the top of Figure 4.5. The bottom of Figure 4.5 shows the error in the

drag coefficient and the RMS of the error in the x-component of the velocity, u, at

twelve points located at y/D = 0.55 and 1.0 and x/D = −0.45,−0.25, 0.0, 0.25, 0.45,

and 1 with respect to the fine mesh solution as a function of the mesh refinement

factor. Table 4.8 provides the error values described above, as well as the errors with

respect to the next finer or smaller mesh, and the drag coefficient values. All of the

errors are less than 1%. The error in the drag coefficient between the coarse 50D mesh

and the medium 50D mesh is 0.49%, and the error between the coarse 100D mesh

and the coarse 50D mesh is 0.56%, so the coarse 50D mesh appears to sufficiently

capture the solution and will be the standard against which to compare the velocity

decomposition solver.

Table 4.8: Laminar circular cylinder at Re = 60 drag coefficients and error in RANS
solver due to domain resolution and extent.

Mesh Cd Cd error
w/fine

Cd relative
error

RMS velocity
error w/ fine

RMS velocity
relative error

Fine 50D 1.293
Medium 50D 1.295 0.14% 0.14% 0.14% 0.14%
Coarse 50D 1.301 0.64% 0.49% 0.79% 0.66%
Coarse 100D 1.294 0.079% 0.56% 0.71% 0.36%
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Figure 4.5: RANS solver results for laminar flow over a circular cylinder at Re =

60. Top: Velocity profiles at x/D = −0.45,−0.25, 0.0, 0.25, 0.45, and 1.
Bottom: Drag coefficient error and RMS velocity error with respect to
the finest resolution as a function of mesh refinement factor.

4.2.2 Velocity Decomposition Parameters

To determine the most effective parameters, the velocity decomposition solver

was used to calculate the viscous potential velocity given the converged coarse 50D

domain RANS velocity field. On the circular cylinder at a Reynolds number of 60,

δmax was set to 2D on the body and 5D in the wake. The role of δmax is more
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complex on bluff bodies where some of the body panel normals on the downstream

side are very closely aligned with the free-stream velocity and hence point into the

wake. Higher values of δmax on the body will allow δ to be found further around the

trailing edge of the body as the sample line will extend through the wake even at low

angles. The more panels δ is defined on, the more influence the viscous effects can

have on the viscous potential velocity, leading to a better solution. Recall that if δ is

not found for a panel, the non-penetration boundary condition is used on that panel.

The main limiting factor for δmax is the size of the reduced domain since the assigned

value of δmax applies to the whole body. If higher accuracy is desired on bluff bodies,

modifying the algorithm to allow δmax to be longer around the trailing edge would

help.

In this case, using a value on the body of δmax = 2.0D stays within the reduced

domain which extends 3.5D from the body in the inlet and farfield directions while

providing adequate results. Increasing the value of δmax on the body does slightly

improve the results, but extends past the desired reduced domain. A profile of the δ

values for each panel are shown super-imposed on the vorticity contours in Figure 4.6.

The background of the figure is composed of the vorticity contours on a logarithmic

scale. The cells shaded dark gray indicate the cell in which the desired vorticity drop

was achieved, which defines δ. The distance from the body to the shaded cell center

is δ. The top side of the cylinder shows the contour formed by the cells δ is found in

for panels on the body and in the wake. The bottom side only shows the cells δ is

found in for panels on the body, demonstrating how far around the body δmax = 2.0D

allows the sample line to cross through the vorticity in the wake.

As shown in the first section of Table 4.9, fractions ranging from 0.1 to 0.0001 were

tested as the fraction, αvort, of the maximum vorticity on a given panel normal that

is used to define a negligible vorticity. The average error at δ shows that αvort = 0.01

provides the lowest error between the viscous potential velocity and the converged
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Figure 4.6: Vorticity contours with cells where δ is located shown in dark gray for
flow over a circular cylinder at Re = 60 with αvort = 0.01.

fluid velocity, as in the flat plate case. Figure 4.6 shows how δ follows the boundary

between the lighter and darker gray, where the vorticity has dropped two orders of

magnitude since αvort = 0.01 in this case. The location of δ shifts off of the boundary

between the lighter and darker gray in the wake region due to the decrease in the

maximum vorticity which causes δ to be located at a lower vorticity, the shade of

which is not resolved in this figure.

The second section of Table 4.9 shows the average error at δ for a range of wake

panel distributions. The lowest error is achieved with an initial spacing of ws = 0.2D,

and a growth rate of wg = 0.25, as was seen in the flat plate case. For this distribution,

eighteen panels are used to extend between the cylinder and the end of the domain.

The error is increased by both coarsening and refining the wake distribution from

these values, though refining the distribution only slightly increases the error. The
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number of panels could be reduced as the first few have the most impact, but allowing

them to extend to the downstream boundary adds very little computation time with

this distribution.

The final section in Table 4.9 shows the influence of the number of iterations on

the average error at δ for a given fluid velocity field. The best vorticity fraction

and wake distribution, as described above, are used, and the average errors between

the viscous potential velocity and the fluid velocity are provided at iterations 0− 5,

10, 15, 20, and 25. Note that the error at iteration zero uses the inviscid potential

velocity. The initial error between the inviscid potential velocity and the fluid velocity

is 21%, which is approximately four times the initial error in the flat plate case due

to the more complex geometry. The error decreases most significantly in the first

ten iterations, reaching a value of 1.3%; therefore, ten iterations will be used in the

solver. The errors in the first two sections of Table 4.9 are higher because only four

iterations were used to get those values. Increasing the number of iterations would

increase the accuracy if higher accuracy is desired. More iterations are necessary on

the circular cylinder than the flat plate to achieve a similar level of accuracy, which

is not surprising given the more complex geometry.

The influence of including the viscous effects in the viscous potential velocity

through the body boundary condition can be seen in the streamlines and contours

shown in Figure 4.7. The background of each image shows the potential velocity

magnitude contours. The black lines represent streamlines of the converged total

fluid velocity u from the RANS solver on the coarse 50D domain and are the same

in the top and bottom images. The blue lines represent streamlines of the potential

velocity. The top image shows the inviscid potential velocity contours and streamlines,

and it is evident that the inviscid streamlines do not match the total fluid velocity

streamlines over the body and in the wake. Including the viscous effects through the

body boundary condition pushes the viscous potential velocity streamlines out away
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Table 4.9: Influence of the vorticity limit fraction, αvort, wake distribution, and num-
ber of iterations on the average error between the viscous potential velocity
and the fluid velocity at δ for all body panels for flow over a circular cylin-
der at Re = 60.

αvort nwp ws/D wg Iter. Err(δ)

0.1 18 0.20 0.25 4 467.75%
0.01 18 0.20 0.25 4 3.36%
0.001 18 0.20 0.25 4 3.41%
0.0001 18 0.20 0.25 4 4.02%
0.01 0 – – 4 6.55%
0.01 15 0.40 0.25 4 4.47%
0.01 18 0.20 0.25 4 3.36%
0.01 21 0.10 0.25 4 3.63%
0.01 37 0.01 0.20 4 3.62%
0.01 18 0.20 0.25 0 20.65%
0.01 18 0.20 0.25 1 9.41%
0.01 18 0.20 0.25 2 5.48%
0.01 18 0.20 0.25 3 4.20%
0.01 18 0.20 0.25 4 3.36%
0.01 18 0.20 0.25 5 2.72%
0.01 18 0.20 0.25 10 1.31%
0.01 18 0.20 0.25 15 1.05%
0.01 18 0.20 0.25 20 0.89%
0.01 18 0.20 0.25 25 0.80%

from the body and the centerline of the wake, causing them to match the total fluid

velocity streamlines quite well outside of the vortical region, as shown in the lower

image. Ten iterations were used to calculate the body boundary condition for the

viscous potential shown.

The final two parameters are the residual, resupdate, at which to update the total

fluid velocity boundary conditions, and the number of times to update the fluid ve-

locity boundary conditions. To determine recommended values for these parameters,

the velocity decomposition solver was applied to a reduced domain, and the result

compared to the RANS solution on the full domain. The coarse 50D circular cylin-

der mesh described above was trimmed to extend 3.5D from the body in the inlet

and farfield directions. The outlet extent was not modified. Further details on the
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Figure 4.7: Potential velocity contours with streamlines of the converged fluid velocity
(black) and the potential velocity (blue) at 0 iterations – inviscid potential
(top) and 10 iterations (bottom) for flow over a circular cylinder at Re =
60.

reduced mesh case will be provided in the following section. The coarse 50D mesh

RANS solution is used as the benchmark. The RMS velocity error is based on the

x-component of the velocity, u, at twelve points located at y/D = 0.55 and 1.0 and
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x/D = −0.45,−0.25, 0.0, 0.25, 0.45, and 1.

The first section of Table 4.10 shows the influence of the residual, resupdate, at

which the boundary condition update occurs. Decreasing resupdate from 1 × 10−3 to

1×10−4 reduces the error seen in the velocity field and the drag coefficient. Reducing

the residual limit further to 1× 10−5 slightly increases both errors since it extends δ

and therefore relaxes the inclusion of the viscous effects. A residual of 1 × 10−4 will

be used.

The influence of the number of times that the inlet and farfield boundary condi-

tions are updated by setting the total fluid velocity on those boundaries equal to the

viscous potential velocity is shown in the second section of Table 4.10. The velocity

on the reduced domain tends to initially overshoot the value expected based on the

large domain result. Each update of the inlet and farfield boundary conditions then

decreases the magnitude of the velocity, bringing it to around the expected values at

three updates. Further updates continue to decrease the velocity slightly from the

expected value to converge to a solution with a drag coefficient error of approximately

0.9% and a RMS velocity error of approximately 0.5%. While it would be preferred

that the velocity decomposition converge exactly to the RANS solution on the large

domain, it is expected that the solution may be slightly different; the RANS solution

also contains errors. The error in the converged result may be reduced by increas-

ing the number of iterations used to determine the viscous potential velocity body

boundary condition for a given fluid velocity field. Since three updates appears to

usually be where the best solution is achieved, three updates will be used in the solver

for the laminar circular cylinder.

The parameters selected to be used in the velocity decomposition solver on the

reduced domain for the laminar circular cylinder case are summarized in Table 4.11.
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Table 4.10: Influence of update residual, resupdate, and the number of updates on
the drag coefficient error and RMS velocity error for flow over a circular
cylinder at Re = 60.

resupdate # of Updates Cd Error RMS Error

1.0x10−3 2 1.4% 0.76%
1.0x10−4 2 0.44% 0.28%
1.0x10−5 2 0.45% 0.29%
1.0x10−4 1 3.1% 1.6%
1.0x10−4 2 0.44% 0.28%
1.0x10−4 3 0.36% 0.23%
1.0x10−4 4 0.65% 0.37%
1.0x10−4 5 0.80% 0.44%
1.0x10−4 50 0.90% 0.48%
1.0x10−4 200 0.90% 0.49%

Table 4.11: Velocity decomposition solver parameters selected for flow over a circular
cylinder at Re = 60.

Parameter Value

αvort 0.01
nwp 18
ws/D 0.2
wg 0.25
# of iterations 10
resupdate 1.0x10−4

# of updates 3
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4.2.3 Velocity Decomposition Results

The coarse 50D domain used for the RANS solver was trimmed to extend 3.5D

from the body in the inlet and farfield directions. The vorticity thickness, defined as

the distance for the maximum vorticity on the normal from the centerline to drop two

orders of magnitude, is approximately 4D at the outlet of the computational domain.

The reduced domain extent of 4D from the centerline therefore just encompasses the

thickness of the wake.

The domain reduction decreased the number of cells by 24%, from 6,766 to 5,146.

The parameters summarized in Table 4.11 are used in the velocity decomposition

solver. The value of δmax for the body was set to 2.0D as in the previous section,

and reduced from 5D to 3.5D in the wake to stay within the reduced domain. These

limits allowed δ to be found on the majority of the body as discussed in the previous

section, and for the first ten of the eighteen wake panels.

Velocity profiles at x/D = −0.45,−0.25, 0.0, 0.25, 0.45, and 1 are shown for the

velocity decomposition solver on the coarse 3.5D mesh and the RANS solver on

the coarse 50D mesh in Figure 4.8. The velocity profiles visually match very well.

The RMS error of the x-component of the velocity, u, at twelve points located at

y/D = 0.55 and 1.0 and x/D = −0.45,−0.25, 0.0, 0.25, 0.45, and 1 is 0.23%, as shown

in Table 4.12. The error between the drag coefficients is 0.36%. The RMS velocity

error and the drag coefficient error are lower than the errors between the RANS

solver solutions on the coarse 50D domain and fine 50D domain of 0.79% and 0.64%

respectively. The drag coefficient from the velocity decomposition solver on the 3.5D

domain is closer to the RANS solver solution on the fine 50D domain than the coarse

50D solution, with an error of 0.31%. The velocity fields and drag coefficients indicate

that the velocity decomposition solver matches the RANS solver quite well in this

laminar circular cylinder case.

For this case, the velocity residuals were required to fall below 1.0 × 10−10 and
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the pressure residual was required to fall below 1.0 × 10−8. The computation time

is reduced from 19.2 seconds for the RANS solver to 18.6 seconds for the velocity

decomposition solver, representing a decrease of 2.8%. The increase in speed is not as

significant in the laminar circular cylinder case as in the laminar flat plate case. The

bluff body shape requires more iterations to include the viscous effects in the viscous

potential body boundary condition. The thick vortical region around the body, and

especially in the wake, also limits the domain reduction.

Table 4.12: Velocity decomposition solver on 3.5D domain compared to RANS solver
on 50D domain for flow over a circular cylinder at Re = 60.

# of cells RANS 6,766
# of cells Vel. Decomp. 5,146
Decrease in # of Cells 24%
RMS u error 0.23%
RANS Cd 1.301
Vel. Decomp. Cd 1.297
Cd Error 0.36%
RANS Time (sec) 19.2
Vel. Decomp. Time (sec) 18.6
Decrease in Time 2.8%
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Figure 4.8: RANS and velocity decomposition velocity profiles for flow over a circular

cylinder at Re = 60.
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4.3 Laminar NACA 0012

Laminar flow over a NACA 0012 airfoil at a Reynolds number of 2000 based on

the chord is studied with a RANS solver and the velocity decomposition solver. The

computational domain and coarse-medium 20L mesh are shown in Figure 4.9, where

L = 1.0 m is the chord. The reduced domain for the velocity decomposition solver is

outlined to show the scale of the reduction. The airfoil is centered vertically on the

x−axis from x = 0 to x = 1. For the RANS solver, the velocity is set equal to the

free-stream velocity, U∞ = 0.002 m/s at the inlet and farfield boundaries, and zero

at the wall. The outlet pressure is set to zero to serve as the reference pressure. The

velocity at the outlet, and the pressure at the inlet, farfield, and wall are calculated

to achieve zero normal gradient. The pressure field is initially set to zero, and the

velocity is initially set equal to the free-stream velocity.

The only modifications to the boundary and initial conditions for the velocity

decomposition solver are that the flow velocity is initially set equal to the inviscid

potential velocity, and the fluid velocity at the inlet and farfield boundaries is set

equal to the potential velocity.

4.3.1 RANS Domain Dependence Study

To ensure the accuracy of the RANS solution used to validate the velocity de-

composition solver, a study of the computational domain resolution and extent was

performed. Coarse-medium, medium, medium-fine, and fine structured meshes ex-

tending twenty chords in the inlet, farfield, and outlet directions from the airfoil were

systematically created. The meshes are concentrated around the leading and trailing

edges of the airfoil, in the boundary layer, and in the wake. Table 4.13 provides

the mesh resolution given as the number of cells across the outlet by the number

along one side of the inlet and farfield boundaries, number of body panels, total num-

ber of cells, and mesh refinement factor. The domain extents of the coarse-medium
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Figure 4.9: Laminar NACA 0012 airfoil coarse-medium 20L mesh with the reduced
0.4L domain outlined by the blue dashed line.

mesh were doubled from twenty to forty times the chord by extending the original

coarse-medium mesh to ensure the overlapping portion is identical.

Velocity profiles at x/L = 0.05, 0.25, 0.5, 0.95, and 1.5 from the four mesh resolu-

tions on the 20L domain, and the coarse-medium 40L domain are shown to match

quite well in the top of Figure 4.10. The bottom of Figure 4.10 shows the error in the

drag coefficient and the RMS of the error in the x-component of the velocity, u, at ten
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Table 4.13: Laminar NACA 0012 airfoil mesh characteristics.
Mesh Resolution Body panels # of Cells rj = hj/hfine

Fine 20L 302 x 398 398 120,196 1.00
Medium-Fine 20L 226 x 298 298 67,348 1.34
Medium 20L 150 x 198 198 29,700 2.01
Coarse-Medium 20L 112 x 148 148 16,576 2.69
Coarse-Medium 40L 134 x 163 148 21,842 4.65

points located at y/L = 0.075 and 0.15 and x/L = 0.05, 0.25, 0.5, 0.95, and 1.5 with

respect to the fine mesh solution as a function of the mesh refinement factor. The

coarse-medium 40L mesh has a larger mesh refinement factor due to the addition of

larger cells outside of the original 20L domain. Table 4.14 provides the error values

described above, as well as the errors with respect to the next finer or smaller mesh,

and the drag coefficient values. All of the errors are less than 0.2%. The error in the

drag coefficient between the coarse-medium 20L mesh and the medium 20L mesh,

which is 1.5 times finer, is 0.034%, and the error between the coarse-medium 40L

mesh and the coarse-medium 20L mesh is 0.075%. The coarse-medium 20L mesh

appears to sufficiently capture the solution with the least computational expense and

will be the standard against which to compare the velocity decomposition solver.

Table 4.14: Laminar NACA 0012 airfoil at Re = 2000 drag coefficients and error in
RANS solver due to domain resolution and extent.

Mesh Cd Cd error
w/fine

Cd rel.
error

RMS velocity
error w/ fine

RMS velocity
relative error

Fine 20L 0.08348
Med.-Fine 20L 0.08348 0.0083% 0.0083% 0.024% 0.024%
Medium 20L 0.08351 0.039% 0.030% 0.043% 0.042%
Coarse-Med. 20L 0.08354 0.073% 0.034% 0.15% 0.12%
Coarse-Med. 40L 0.08348 0.0026% 0.075% 0.16% 0.048%

4.3.2 Velocity Decomposition Parameters

In the interest of demonstrating the ability of the velocity decomposition solver

without completing a study of the parameters, the parameters were selected for the
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Figure 4.10: RANS solver results for laminar flow over a NACA 0012 airfoil at Re

= 2000. Top: Velocity profiles at x/L = 0.05, 0.25, 0.5, 0.95, and 1.5.
Bottom: Drag coefficient error and RMS velocity error with respect to
the finest resolution as a function of mesh refinement factor.

NACA 0012 airfoil based on their effects in the laminar flat plate and circular cylinder

cases. The parameters selected to be used in the velocity decomposition solver on the

reduced domain for the laminar NACA 0012 airfoil case are summarized in Table 4.15.
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Table 4.15: Velocity decomposition solver parameters selected for flow over a
NACA 0012 airfoil at Re = 2000.

Parameter Value

αvort 0.01
nwp 14
ws/L 0.2
wg 0.25
# of iterations 3
resupdate 1.0x10−4

# of updates 3

4.3.3 Velocity Decomposition Results

The coarse-medium 20L domain used for the RANS solver was trimmed to extend

0.4L in the inlet and farfield directions. The vorticity thickness is approximately 0.2L

at the end of the airfoil, and 0.4L at the outlet of the computational domain. The

reduced domain extends two times the vorticity thickness from the body, and extends

slightly past the vorticity thickness at the outlet of the domain.

The domain reduction decreased the number of cells by 55%, from 16,576 to 7,400.

The parameters summarized in Table 4.15 are used in the velocity decomposition

solver. The values of δmax are 0.3L on the body and 0.35L in the wake. These limits

allow the desired vorticity decrease to be found everywhere over the body, and on

nine of the fourteen wake panels.

Velocity profiles at x/L = 0.05, 0.25, 0.5, 0.95, and 1.5 are shown for the velocity

decomposition solver on the coarse-medium 0.4L mesh and the RANS solver on the

coarse-medium 20L mesh in Figure 4.11. The velocity profiles visually match very

well. The RMS error of the x-component of the velocity, u, at ten points located at

y/L = 0.075 and 0.15 and x/L = 0.05, 0.25, 0.5, 0.95, and 1.5 is 0.064%, as shown in

Table 4.16. The error between the drag coefficients is 0.21%. The velocity fields and

drag coefficients indicate that the velocity decomposition solver matches the RANS

solver very well for the laminar NACA 0012 airfoil case using parameters based on

the flat plate and cylinder cases.
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For this case, the velocity residuals were required to fall below 1.0 × 10−10 and

the pressure residual was required to fall below 1.0 × 10−8. The computation time

is reduced from 108.8 seconds for the RANS solver to 59.8 seconds for the velocity

decomposition solver, representing a decrease of 45%.
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Figure 4.11: RANS and velocity decomposition velocity profiles for flow over a

NACA 0012 airfoil at Re = 2000.
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Table 4.16: Velocity decomposition solver on 0.4L domain compared to RANS solver
on 20L domain for flow over a NACA 0012 airfoil at Re = 2000.

# of cells RANS 16,576
# of cells Vel. Decomp. 7,400
Decrease in # of Cells 55%
RMS u error 0.064%
RANS Cd 0.08354
Vel. Decomp. Cd 0.08371
Cd Error 0.21%
RANS Time (sec) 108.8
Vel. Decomp. Time (sec) 59.8
Decrease in Time 45%
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CHAPTER V

Turbulent Two-Dimensional Results

Results for steady turbulent flow over a flat plate and a NACA 0012 airfoil are

presented. The RANS solver is used to generate solutions with which to compare the

velocity decomposition solver results. The parameters used in the velocity decom-

position solver are studied in the turbulent flat plate case. The turbulent flat plate

case, in addition to the laminar flat plate and circular cylinder cases, are then used

to guide the selection of the parameters for the NACA 0012 airfoil. The velocity de-

composition solver is shown to obtain results that compare very well with the RANS

solutions in less computation time.

For each case, the problem is stated and the RANS solution is developed. The

velocity decomposition parameters are then discussed. Finally, the velocity decom-

position solver solutions are compared to the RANS solver solutions.

5.1 Turbulent Flat Plate

Turbulent flow over a flat plate at a Reynolds number of 6×106 based on the plate

length was modeled with a RANS solver and the velocity decomposition solver. The

computational domain and coarse 0.5L mesh used for the RANS solver are shown

in Figure 5.1, where L = 1.0 m is the plate length. The reduced domain used for

the velocity decomposition solver is outlined to show the scale of the reduction. The
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plate is located on the x−axis from x = 0 to x = 1.

For the RANS solver, the velocity is set equal to the free-stream velocity, U∞ =

6.0 m/s, at the inlet and farfield boundaries, and zero at the wall. The outlet pressure

is set to zero to serve as the reference pressure. The velocity at the outlet, and the

pressure at the inlet, farfield, wall, and center plane are calculated to achieve zero

normal gradient. A slip boundary condition, which sets the normal component to

zero and enforces zero normal gradient on the tangential component, is used for the

velocity on the center plane before and after the plate. The pressure field is initially

set to zero, and the velocity is initially set equal to the free-stream velocity.

The k−ω SST turbulence model is used. The free-stream turbulent kinetic energy

used as the initial condition and the boundary condition on the inlet and farfield

boundaries is calculated using Equation 5.1.

k =
3

2
(U∞I)2 (5.1)

where I is the turbulence intensity, which was set to 2% in this case. The kinematic

eddy viscosity is initially set equal to ten times the kinematic viscosity, νt = 10ν. The

free-stream value of the specific dissipation rate, ω, used for the initial condition and

the inlet and farfield boundary conditions, is set according to the relation ω = k/νt.

The turbulent kinetic energy and the specific dissipation rate are calculated to achieve

zero normal gradient on the center plane before and after the plate and the outlet.

Wall functions are used in this case. Low-Reynolds number models, such as the

Spalart-Allmaras model without wall functions, have also been used successfully with

the velocity decomposition solver.

The only modification to the boundary conditions for the velocity decomposition

solver is that the fluid velocity at the inlet and farfield boundaries is set equal to the

potential velocity.
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Figure 5.1: Turbulent flat plate coarse 0.5L mesh with the reduced 0.04L domain
outlined by the blue dashed line.

5.1.1 RANS Domain Dependence Study

To ensure the accuracy of the RANS solution used to validate the velocity de-

composition solver, a study of the computational domain resolution and extent was

performed. Coarse and fine structured meshes extending one plate length in the inlet

and farfield directions and two plate lengths in the outlet direction from the plate

were systematically created by doubling the resolution. The meshes are concentrated

around the leading and trailing edges of the plate, and in the boundary layer. Ta-

ble 5.1 provides the mesh resolution given as the number of cells normal to the plate

by the number along the length of the domain, number of panels along the plate, total

number of cells, and mesh refinement factor. The domain extents of the coarse mesh

were trimmed from one to one-half a plate length in the inlet and farfield directions

while leaving the outlet extent at two plate lengths.

Table 5.1: Turbulent flat plate mesh characteristics.
Mesh Resolution Plate panels # of Cells rj = hj/hfine

Fine 1L 159 x 337 159 53,583 1.0
Coarse 1L 79 x 167 79 13,193 2.0
Coarse 0.5L 72 x 159 79 11,448 1.4

Velocity profiles at x/L = 0.25, 0.5, 0.95, and 1.5 from the two mesh resolutions

on the 1.0L domain, and the coarse 0.5L domain are shown to match fairly well in

Figure 5.2. There is a minor difference between the coarse meshes and the fine mesh
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in the boundary layer towards the leading edge of the plate. The error in the drag

coefficient and the RMS of the error in the x-component of the velocity, u, at ten

points located at y/L = 0.01 and 0.035 and x/L = 0.05, 0.25, 0.5, 0.95, and 1.5 with

respect to the fine mesh solution are provided in Table 5.2. The errors with respect

to the next finer or smaller mesh, and the drag coefficient values are also provided in

Table 5.2. All of the errors are less than 1%. The error in the drag coefficient between

the coarse 1L mesh and the fine 1L mesh is 0.86%, and the error between the coarse

0.5L mesh and the coarse 1L mesh is 0.64%, so the coarse 0.5L mesh appears to

sufficiently capture the solution and will be used as the standard against which to

compare the velocity decomposition solver results.

Table 5.2: Turbulent flat plate at Re = 6× 106 drag coefficients and error in RANS
solver due to domain resolution and extent.

Mesh Cd Cd error
w/fine

Cd relative
error

RMS velocity
error w/ fine

RMS velocity
relative error

Fine 1L 0.002912
Coarse 1L 0.002887 0.86% 0.86% 0.061% 0.061%
Coarse 0.5L 0.002906 0.22% 0.64% 0.12% 0.10%

5.1.2 Velocity Decomposition Parameters

To determine the effects of the velocity decomposition parameters, the velocity

decomposition solver was used to calculate the viscous potential velocity given the

converged coarse 0.5L RANS fluid velocity field described in the previous section. For

the flat plate at a Reynolds number of 6×106, δmax was set to 0.02L on the body and

0.04L in the wake. These values allowed the algorithm to find the desired vorticity

drop for all panels.

As shown in the first section of Table 5.3, fractions ranging from 0.1 to 0.0001 were

tested as the fraction, αvort, of the maximum vorticity on a given panel normal that

is used to define a negligible vorticity. The trend in the average error at δ is similar

to the laminar cases in that it decreases significantly as αvort is lowered from 0.1 to
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Figure 5.2: Velocity profiles at x/L = 0.25, 0.5, 0.95, and 1.5 from the RANS solver

for turbulent flow over a flat plate at Re = 6× 106.

0.01, then increases slightly again when αvort is lowered to 0.001. Unlike the laminar

cases, further lowering αvort to 0.0001 decreases the average error at δ slightly more.

The error appears to be oscillating slightly around an error of 0.185% for the three

lower values of αvort. Since the three lower limits have approximately the same error

and using the higher values of αvort, which lead to lower δ values, tends to achieve a

better solution in fewer iterations, αvort = 0.01 will be used as in the laminar cases.
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The second section of Table 5.3 shows the average error at δ for a range of wake

panel distributions. Refining the wake by decreasing the initial spacing, ws, decreases

the average error at δ. The gain from increasing the resolution from an initial spacing

of 0.1L with eight panels to an intial spacing of 0.01L with twenty panels is only

0.001%, so the former is used as the distribution for the velocity decomposition solver

on the reduced domain.

The final section in Table 5.3 shows the influence of the number of iterations on

the average error at δ for a given fluid velocity field. The vorticity fraction and wake

distributions selected above are used, and the average errors between the viscous

potential velocity and the fluid velocity are provided at iterations 0 − 5, 10, 15, 20,

and 25. Note that the error at iteration zero uses the inviscid potential velocity.

The viscous potential velocity approximates the fluid velocity at δ quite well, and

converges toward a solution with an average error of approximately 0.185% by 3

iterations. Since the majority of the error reduction occurs in the first two iterations,

two iterations are used in the velocity decomposition solver on the reduced domain.

As expected based on the smaller viscous boundary layer in turbulent flows, the

average error at δ between the inviscid potential velocity and the fluid velocity is

lower in the turbulent case than the laminar case – 0.3% versus 5%.

The final two parameters are the residual, resupdate, at which to update the veloc-

ity boundary conditions, and the number of times to update the velocity boundary

conditions. To determine recommended values for these parameters, the velocity de-

composition solver was applied to a reduced domain, and the result compared to

the RANS solution on the full domain. The coarse 0.5L flat plate mesh described

above was trimmed to extend 0.04L in the inlet and farfield directions. The outlet

extent was not modified. Further details on the reduced mesh case are provided in the

following section. The coarse 0.5L mesh RANS solution is used as the benchmark.

The RMS velocity error is based on the x-component of the velocity, u, at ten points
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Table 5.3: Influence of the vorticity limit fraction, αvort, wake distribution, and num-
ber of iterations on the average error between the viscous potential velocity
and the fluid velocity at δ for all body panels for flow over a flat plate at
Re = 6× 106.

αvort nwp ws/L wg Iter. Err(δ)

0.1 8 0.20 0.25 4 0.417%
0.01 8 0.20 0.25 4 0.185%
0.001 8 0.20 0.25 4 0.186%
0.0001 8 0.20 0.25 4 0.184%
0.01 0 – – 4 0.211%
0.01 3 0.40 0.25 4 0.194%
0.01 5 0.20 0.25 4 0.189%
0.01 8 0.10 0.25 4 0.185%
0.01 20 0.01 0.20 4 0.184%
0.01 8 0.10 0.25 0 0.349%
0.01 8 0.10 0.25 1 0.191%
0.01 8 0.10 0.25 2 0.186%
0.01 8 0.10 0.25 3 0.185%
0.01 8 0.10 0.25 4 0.185%
0.01 8 0.10 0.25 5 0.185%
0.01 8 0.10 0.25 10 0.185%
0.01 8 0.10 0.25 15 0.185%
0.01 8 0.10 0.25 20 0.185%
0.01 8 0.10 0.25 25 0.185%
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located at y/L = 0.01 and 0.035 and x/L = 0.05, 0.25, 0.5, 0.95, and 1.5.

The first section of Table 5.4 shows the influence of the residual, resupdate, at

which the boundary condition update occurs. The errors in the drag coefficient and

the velocity field are extremely close for the three residuals evaluated. Based on the

trends of the laminar cases in addition to the performance of this case, a residual

limit of 1× 10−4 is used in the velocity decomposition solver.

The influence of the number of times that the inlet and farfield boundary con-

ditions are updated by setting the total fluid velocity equal to the viscous potential

velocity is shown in the second section of Table 5.4. The drag coefficient error con-

verges to a value of 0.85% and the RMS velocity error converges to 0.27%. Three

updates are used in the velocity decomposition solver.

Table 5.4: Influence of update residual, resupdate, and the number of updates on the
drag coefficient error and RMS velocity error for flow over a flat plate at
Re = 6× 106.

resupdate # of Updates Cd Error RMS Error

1.0x10−3 2 1.06% 0.146%
1.0x10−4 2 1.06% 0.144%
1.0x10−5 2 1.06% 0.144%
1.0x10−4 1 1.78% 0.314%
1.0x10−4 2 1.06% 0.144%
1.0x10−4 3 0.907% 0.234%
1.0x10−4 4 0.870% 0.258%
1.0x10−4 5 0.860% 0.265%
1.0x10−4 10 0.856% 0.267%
1.0x10−4 50 0.856% 0.268%

The parameters selected to be used in the velocity decomposition solver on the

reduced domain for the turbulent flat plate case are summarized in Table 5.5.

5.1.3 Velocity Decomposition Results

The coarse 0.5L domain used for the RANS solver was trimmed to extend 0.04L

in the inlet and farfield directions. At x = L, the Blasius boundary layer thickness
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Table 5.5: Velocity decomposition solver parameters selected for flow over a flat plate
at Re = 6× 106.

Parameter Value

αvort 0.01
nwp 8
ws/L 0.1
wg 0.25
# of iterations 2
resupdate 1.0x10−4

# of updates 3

is 0.002L. The vorticity thickness, defined as the distance for the maximum vorticity

on the normal to drop two orders of magnitude, is approximately 0.02L at the end of

the plate, and 0.04L at the outlet of the computational domain. The reduced domain

extends two times the boundary layer thickness from the body, and extends slightly

past the vorticity thickness at the outlet of the domain.

The domain reduction decreased the number of cells by 51%, from 11,448 to 5,617.

The parameters summarized in Table 5.5 are used in the velocity decomposition solver.

The values of δmax are 0.025L on the body and 0.035L in the wake. These limits allow

the desired vorticity decrease to be found everywhere over the body, and on all but

the final wake panel.

Velocity profiles at x/L = 0.25, 0.5, 0.95, and 1.5 are shown for the velocity de-

composition solver on the coarse 0.04L mesh and the RANS solver on the coarse 0.5L

mesh in Figure 5.3. The solutions visually match very well in the velocity profiles,

though there is enough difference to show a distinction between the lines in some

areas. The RMS error in the x-component of the velocity, u, at ten points located at

y/L = 0.01 and 0.035 and x/L = 0.05, 0.25, 0.5, 0.95, and 1.5 is 0.23%, as shown in

Table 5.6. The error between the drag coefficients is 0.91%. The velocity fields and

drag coefficients indicate the velocity decomposition solver matches the RANS solver

well.

For this case, the velocity residuals were required to fall below 1.0×10−10 and the
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pressure, turbulent kinetic energy, and specific dissipation rate residuals were required

to fall below 1.0× 10−8. The computation time is reduced from 29.3 seconds for the

RANS solver to 26.7 seconds for the velocity decomposition solver, representing a

decrease of 8.9%.

Table 5.6: Velocity decomposition solver on 0.04L domain compared to RANS solver
on 0.5L domain for flow over a flat plate at Re = 6× 106.

# of cells RANS 11,448
# of cells Vel. Decomp. 5,617
Decrease in # of Cells 51%
RMS u error 0.23%
RANS Cd 0.002906
Vel. Decomp. Cd 0.002932
Cd Error 0.91%
RANS Time (sec) 29.3
Vel. Decomp. Time (sec) 26.7
Decrease in Time 8.9%
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Figure 5.3: RANS and velocity decomposition velocity profiles for flow over a flat

plate at Re = 6× 106.
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5.2 Turbulent NACA 0012

Turbulent flow over a NACA 0012 airfoil at a Reynolds number of 6× 106 based

on the chord, L, is modeled with a RANS solver and the velocity decomposition

solver. The computational domain and coarse 5L mesh are shown in Figure 5.4, where

L = 1.0 m is the chord. The reduced domain used for the velocity decomposition

solver is outlined to show the scale of the reduction. The airfoil is centered vertically

on the x−axis from x = 0 to x = 1.

For the RANS solver, the velocity is set equal to the free-stream velocity, U∞ =

6.0 m/s, at the inlet and farfield boundaries, and zero at the wall. The outlet pressure

is set to zero to serve as the reference pressure. The velocity at the outlet, and the

pressure at the inlet, farfield, and wall are calculated to achieve zero normal gradient.

The pressure field is initially set to zero, and the velocity is initially set equal to the

free-stream velocity.

The k−ω SST turbulence model is used. The free-stream turbulent kinetic energy

used as the initial condition and the boundary condition on the inlet and farfield

boundaries is calculated using Equation 5.1 with a turbulence intensity of I = 0.1%.

The kinematic eddy viscosity is initially set equal to ten times the kinematic viscosity,

νt = 10ν. The free-stream value of the specific dissipation rate, ω, used for the initial

condition and the inlet and farfield boundary conditions, is set according to the

relation ω = k/νt. The turbulent kinetic energy and the specific dissipation rate are

calculated to achieve zero normal gradient at the outlet. Wall functions are used.

The only modifications to the boundary and initial conditions for the velocity

decomposition solver are that the flow velocity is initially set equal to the inviscid

potential velocity, and the fluid velocity at the inlet and farfield boundaries is set

equal to the potential velocity.
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Figure 5.4: Turbulent NACA 0012 airfoil medium 5L mesh with the reduced 0.3L
domain outlined by the blue dashed line.

5.2.1 RANS Domain Dependence Study

To ensure the accuracy of the RANS solution used to validate the velocity de-

composition solver, a study of the computational domain resolution and extent was

performed. Coarse and fine structured meshes extending five chords in the inlet,

farfield, and outlet directions from the airfoil were systematically created by doubling

the resolution. The meshes are concentrated around the leading and trailing edges
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of the airfoil, in the boundary layer, and in the wake. Table 5.7 provides the mesh

resolution given as the number of cells across the outlet by the number along one side

of the inlet and farfield boundaries, number of body panels, total number of cells, and

mesh refinement factor. The domain extents of the coarse mesh were extended from

five chords to eleven chords.

Table 5.7: Turbulent NACA 0012 airfoil mesh characteristics.
Mesh Resolution Body panels # of Cells rj = hj/hfine

Fine 5L 556 x 464 600 257,984 1.0
Coarse 5L 280 x 232 300 64,960 2.0
Coarse 11L 294 x 242 300 71,148 4.0

Velocity profiles at x/L = 0.25, 0.5, 0.95, and 1.5 from the two mesh resolutions on

the 5L domain, and the coarse 11L domain are shown to match well in Figure 5.5. The

error in the drag coefficient and the RMS of the error in the x-component of the veloc-

ity, u, at ten points located at y/L = 0.065 and 0.09 and x/L = 0.05, 0.25, 0.5, 0.95,

and 1.5 with respect to the fine mesh solution are provided in Table 5.8. The errors

with respect to the next finer or smaller mesh, and the drag coefficient values are

also provided in Table 5.8. The error in the drag coefficient between the coarse 5L

mesh and the fine 5L mesh is 1.4%, and the error between the coarse 11L mesh and

the coarse 5L mesh is 0.29%. The coarse 5L mesh appears to sufficiently capture

the solution and will be used as the standard against which to compare the velocity

decomposition solver.

Table 5.8: Turbulent NACA 0012 airfoil at Re = 6 × 106 drag coefficients and error
in RANS solver due to domain resolution and extent.

Mesh Cd Cd error
w/fine

Cd relative
error

RMS velocity
error w/ fine

RMS velocity
relative error

Fine 5L 0.007710
Coarse 5L 0.007604 1.4% 1.4% 0.021% 0.021%
Coarse 11L 0.007582 1.7% 0.29% 0.11% 0.097%
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Figure 5.5: Velocity profiles at x/L = 0.25, 0.5, 0.95, and 1.5 from the RANS solver

for flow over a NACA 0012 airfoil at Re = 6× 106.

5.2.2 Velocity Decomposition Parameters

In the interest of demonstrating the ability of the velocity decomposition solver

without completing a study of the parameters, the parameters were selected for the

NACA 0012 airfoil based on their effects in the laminar flat plate and circular cylinder

cases, and the turbulent flat plate case. The parameters selected to be used in the

velocity decomposition solver on the reduced domain for the turbulent NACA 0012
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airfoil case are summarized in Table 5.9.

Table 5.9: Velocity decomposition solver parameters selected for flow over a
NACA 0012 airfoil at Re = 6× 106.

Parameter Value

αvort 0.01
nwp 11
ws/L 0.1
wg 0.25
# of iterations 3
resupdate 1.0x10−4

# of updates 3

5.2.3 Velocity Decomposition Results

The coarse 5L domain used for the RANS solver was trimmed to extend 0.3L in

the inlet and farfield directions. The vorticity thickness, defined as the distance for the

maximum vorticity on the normal to drop two orders of magnitude, is approximately

0.02L at the end of the airfoil, and 0.15L at the outlet of the computational domain.

The reduced domain extends approximately two times the vorticity thickness at the

outlet of the domain.

The domain reduction decreased the number of cells by 43%, from 64,960 to 37,120.

The parameters summarized in Table 5.9 are used in the velocity decomposition solver.

The values of δmax are 0.05L on the body and 0.1L in the wake. These limits allow

the desired vorticity decrease to be found on all but one panel.

Velocity profiles at x/L = 0.25, 0.5, 0.95, and 1.5 are shown for the velocity decom-

position solver on the coarse 0.3L mesh and the RANS solver on the coarse 5L mesh

in Figure 5.6. The solutions visually match very well in the velocity profiles. The

RMS error in the x-component of the velocity, u, at ten points located at y/L = 0.065

and 0.09 and x/L = 0.05, 0.25, 0.5, 0.95, and 1.5 is 0.03%, as shown in Table 5.10.

The velocity fields from the velocity decomposition solver and the RANS solver match

quite well. The error in the drag coefficient is 1.5%, which is similar to the error of
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1.4% between the drag coefficients on the coarse 5L mesh and the fine 5L mesh from

the RANS solver. The error between the drag coefficients from the velocity decom-

position solver on the coarse 0.3L mesh and the RANS solver on the fine 5L mesh

is only 0.1%. The velocity decomposition solver on the coarse 0.3L mesh provides a

more accurate solution than the RANS solver on the coarse 5L mesh.

For this case, the velocity residuals were required to fall below 1.0× 10−8 and the

pressure, turbulent kinetic energy, and specific dissipation rate residuals were required

to fall below 1.0× 10−6. The computation time is reduced from 4,430 seconds for the

RANS solver to 2,180 seconds for the velocity decomposition solver, representing a

decrease of 51%.

Table 5.10: Velocity decomposition solver on 0.3L domain compared to RANS solver
on 5L domain for flow over a NACA 0012 airfoil at Re = 6× 106.

# of cells RANS 64,960
# of cells Vel. Decomp. 37,120
Decrease in # of Cells 43%
RMS u error 0.030%
RANS Cd 0.007604
Vel. Decomp. Cd 0.007718
Cd Error 1.5%
RANS Time (sec) 4,430
Vel. Decomp. Time (sec) 2,180
Decrease in Time 51%
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Figure 5.6: RANS and velocity decomposition velocity profiles for flow over a

NACA 0012 airfoil at Re = 6× 106.
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CHAPTER VI

Three-Dimensional Results

Results for steady laminar and turbulent flow over the Afterbody 1 are presented.

The Afterbody 1 is an axisymmetric body with a fine convex stern that has been

studied experimentally (Huang et al. 1976). Figure 6.1 shows the profile of the

Afterbody 1. Since the Afterbody 1 is axisymmetric and we expect the flow field to

also be axisymmetric, it could be simplified to a two-dimensional problem; however,

we are using it to demonstrate the ability of the velocity decomposition solver to

handle three-dimensional cases, so the full body and domain were discretized and

solved in three-dimensions. The RANS solver is used to generate solutions with

which to compare the velocity decomposition solver results.

0 0.5 1 1.5 2 2.5 3

−0.2

0

0.2

Student Version of MATLAB

Figure 6.1: Afterbody 1 profile.

The laminar problem is stated and the RANS solution is developed. The velocity

decomposition parameters are discussed and the velocity decomposition solver solu-
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tion is compared to the RANS solver solution. The turbulent flow problem is then

described. The velocity decomposition solver parameters are established, and the

velocity decomposition solver results are compared to both the RANS solver and the

experimental data of Huang et al (1978).

6.1 Laminar Afterbody 1

Laminar flow over the Afterbody 1 at a Reynolds number of 2000 based on the

body length was simulated with a RANS solver and the velocity decomposition solver.

The computational domain and coarse 20L mesh used for the RANS solver are shown

in Figure 6.2, where L = 3.066 m is the body length. The reduced domain used for

the velocity decomposition solver is outlined to show the scale of the reduction. The

body is centered on the x−axis from x = 0 to x = 3.066.

For the RANS solver, the velocity is set equal to the free-stream velocity, U∞ =

0.0006523 m/s, at the inlet and farfield boundaries, and zero at the wall. The outlet

pressure is set to zero to serve as the reference pressure. The velocity at the outlet,

and the pressure at the inlet, farfield, and wall are calculated to achieve zero normal

gradient. The pressure field is initially set to zero, and the velocity is initially set

equal to the free-stream velocity.

The only modification to the boundary conditions for the velocity decomposition

solver is that the fluid velocity at the inlet and farfield boundaries is set equal to the

potential velocity.

6.1.1 RANS Domain Dependence Study

To ensure the accuracy of the RANS solution used to validate the velocity de-

composition solver, a study of the computational domain resolution and extent was

performed. Coarse and fine structured meshes extending 19 body lengths in the inlet

direction, 21 body lengths in the farfield directions, and 39 body lengths in the out-
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Figure 6.2: Laminar Afterbody 1 coarse 20L mesh with the reduced 0.7L domain
outlined by the blue dashed line.

let direction from the body were systematically created by doubling the resolution.

These meshes will be referred to as 20L meshes. Center cones in the meshes extend-

ing from the front of the body to the inlet and from the back of the body to the

outlet allow the application of quadrilateral panels on the front and back of the body.

Table 6.1 provides the mesh resolution given as the number of cells along the outlet

from the center cone to the farfield boundary by the number of cells axially along

the inlet and farfield boundaries by the number of cells forming the ring around the

body. The number of panels on the body, total number of cells, and mesh refinement

factor are also provided in Table 6.1. The domain extents of the coarse mesh were

extended to 37 body lengths in the inlet direction and 39 body lengths in the farfield
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direction while leaving the outlet extent at 39 body lengths. This extended mesh will

be referred to as the 40L mesh.

Table 6.1: Laminar Afterbody 1 mesh characteristics.
Mesh Resolution Body panels # of Cells rj = hj/hfine

Fine 20L 76 x 202 x 64 8,704 974,080 1.0
Coarse 20L 38 x 101 x 32 2,176 121,760 2.0
Coarse 40L 43 x 101 x 32 2,176 138,240 3.2

Velocity profiles at x/L = 0.05, 0.25, 0.5, 0.95, and 1.5 from the two mesh reso-

lutions on the 20L domain, and the coarse 40L domain are shown to match well in

Figure 6.3. Note that r is the radial coordinate. The error in the drag coefficient and

the RMS of the error in the x-component of the velocity, u, at ten points located at

r/L = 0.098 and 0.16 and x/L = 0.05, 0.25, 0.5, 0.95, and 1.5 with respect to the fine

mesh solution are provided in Table 6.2. The errors with respect to the next finer or

smaller mesh, and the drag coefficient values are also provided in Table 6.2. All of the

errors are less than 0.2%. The error in the drag coefficient between the coarse 20L

mesh and the fine 20L mesh is 0.10%, and the error between the coarse 40L mesh

and the coarse 20L mesh is 0.00095%, so the coarse 20L mesh appears to sufficiently

capture the solution and will be used as the standard against which to compare the

velocity decomposition solver results.

Table 6.2: Laminar Afterbody 1 at Re = 2000 drag coefficients and error in RANS
solver due to domain resolution and extent.

Mesh Cd Cd error
w/fine

Cd relative
error

RMS velocity
error w/ fine

RMS velocity
relative error

Fine 20L 0.1266
Coarse 20L 0.1265 0.10% 0.10% 0.18% 0.18%
Coarse 40L 0.1265 0.11% 0.00095% 0.18% 0.0095%

6.1.2 Velocity Decomposition Parameters

The velocity decomposition solver parameter studies on the laminar flat plate

and circular cylinder, and the turbulent flat plate were used to guide the selection
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Figure 6.3: Velocity profiles at x/L = 0.05, 0.25, 0.5, 0.95, and 1.5 from the RANS

solver for laminar flow over the Afterbody 1 at Re = 2000.

of parameters for the Afterbody 1. The ability of the velocity decomposition solver

to function without wake sources is demonstrated by this case. The selected param-

eters for the velocity decomposition solver on the reduced domain for the laminar

Afterbody 1 case are summarized in Table 6.3.
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Table 6.3: Velocity decomposition solver parameters selected for flow over the After-
body 1 at Re = 2000.

Parameter Value

αvort 0.01
nwp 0
ws/L –
wg –
# of iterations 2
resupdate 1.0x10−4

# of updates 2

6.1.3 Velocity Decomposition Results

The coarse 20L domain used for the RANS solver was trimmed to extend 0.69L

from the body in the inlet direction and 0.78L from the body in the farfield direction,

which corresponds to a farfield extent of 1.5L from the centerline at the outlet. The

outlet extent was not modified from 39L. The reduced domain is referred to as the

coarse 0.7L mesh. The vorticity thickness is approximately 0.2L at the end of the

body, and 0.8L at the outlet of the computational domain. The reduced domain

extends approximately two times the vorticity thickness at the outlet of the domain.

The domain reduction decreased the number of cells by 41%, from 121,760 to

72,320. The value of δmax is 0.57L on the body. The desired vorticity decrease is

found for all of the body panels using this limit.

Velocity profiles at x/L = 0.05, 0.25, 0.5, 0.95, and 1.5 are shown for the velocity

decomposition solver on the coarse 0.7L mesh and the RANS solver on the coarse 20L

mesh in Figure 6.4. The solutions visually match well in the velocity profiles. The

RMS error in the x-component of the velocity, u, at ten points located at r/L = 0.098

and 0.16 and x/L = 0.05, 0.25, 0.5, 0.95, and 1.5 is 0.12%, as shown in Table 6.4. The

error between the drag coefficients is 0.23%. The velocity fields and drag coefficients

indicate the velocity decomposition solver matches the RANS solver well. The velocity

decomposition solver performs well without wake sources in this case.
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To evaluate the computation time, the velocity residuals were required to fall

below 1.0×10−10 and the pressure residual was required to fall below 1.0×10−8. The

computation time is reduced from 1, 599.8 seconds for the RANS solver to 1, 302.5

seconds for the velocity decomposition solver, representing a decrease of 18.6%.

Table 6.4: Velocity decomposition solver on 0.7L domain compared to RANS solver
on 20L domain for flow over the Afterbody 1 at Re = 2000.

# of cells RANS 121,760
# of cells Vel. Decomp. 72,320
Decrease in # of Cells 41%
RMS u error 0.12%
RANS Cd 0.1265
Vel. Decomp. Cd 0.1268
Cd Error 0.23%
RANS Time (sec) 1,599.8
Vel. Decomp. Time (sec) 1,302.5
Decrease in Time 18.6%
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Figure 6.4: RANS and velocity decomposition velocity profiles for flow over the After-

body 1 at Re = 2000.
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6.2 Turbulent Afterbody 1

Turbulent flow over the Afterbody 1 at a Reynolds number of 6.6× 106 based on

the body length was modeled with a RANS solver and the velocity decomposition

solver. The results are compared to the experimental results of Huang et al. (1978).

The fine 20L mesh presented in the laminar Afterbody 1 case is used for the RANS

solver. The computational domain for the fine 20L mesh is the same as the domain

shown in Figure 6.2, and the resolution is doubled from the coarse mesh shown. The

body length is L = 3.066 m, as in the laminar case.

For the RANS solver, the velocity is set equal to the free-stream velocity, U∞ =

30.48 m/s, at the inlet and farfield boundaries, and zero at the wall. The outlet

pressure is set to zero to serve as the reference pressure. The velocity at the outlet,

and the pressure at the inlet, farfield, and wall are calculated to achieve zero normal

gradient. The pressure field is initially set to zero, and the velocity is initially set

equal to the free-stream velocity.

The k−ω SST turbulence model is used. The free-stream turbulent kinetic energy

used as the initial condition and the boundary condition on the inlet and farfield

boundaries is calculated using Equation 5.1 with a turbulence intensity of I = 0.1%

based on the experimental measurements (Huang et al. 1978). The kinematic eddy

viscosity is initially set equal to ten times the kinematic viscosity, νt = 10ν. The

free-stream value of the specific dissipation rate, ω, used for the initial condition and

the inlet and farfield boundary conditions, is set according to the relation ω = k/νt.

Wall functions are used.

The only modification to the boundary conditions for the velocity decomposition

solver is that the fluid velocity at the inlet and farfield boundaries is set equal to the

potential velocity.
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6.2.1 Velocity Decomposition Parameters

The velocity decomposition solver parameter studies on the laminar flat plate

and circular cylinder, and the turbulent flat plate were used to guide the selection

of parameters for the Afterbody 1. The ability of the velocity decomposition solver

without wake sources is demonstrated by this case. The selected parameters are

the same as those used in the laminar Afterbody 1 case presented previously, as

summarized in Table 6.5.

Table 6.5: Velocity decomposition solver parameters selected for flow over the After-
body 1 at Re = 6.6× 106.

Parameter Value

αvort 0.01
nwp 0
ws/L –
wg –
# of iterations 2
resupdate 1.0x10−4

# of updates 2

6.2.2 Velocity Decomposition Results

The fine 20L mesh presented in the laminar Afterbody 1 case is used for the

RANS solver. A reduced domain for the velocity decomposition solver was created

by trimming the fine 20L mesh to extend 0.12L from the body in the inlet direction

and 0.13L from the body in the farfield direction, which corresponds to a farfield

extent of 0.35L from the centerline at the outlet. The outlet extent was not modified

from 39L. The reduced domain is referred to as the fine 0.1L mesh, and is shown in

Figure 6.5 with the outlet extent truncated. The vorticity thickness is approximately

0.05L at the end of the body, and 0.2L at the outlet of the computational domain.

The reduced domain extends less than two times the vorticity thickness at the outlet

of the domain.
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The domain reduction decreased the number of cells by 61%, from 974,080 to

380,800. The value of δmax is 0.10L on the body.

Figure 6.5: Turbulent Afterbody 1 fine 0.1L mesh around the body with the outlet
extent truncated.

Velocity profiles at x/L = 0.755, 0.914, 0.977, and 1.057 are shown for the velocity

decomposition solver on the fine 0.1L mesh and the RANS solver on the fine 20L

mesh in Figure 6.6. Experimental data from Huang et al. (1978) is also included

in Figure 6.6. The velocity decomposition solver matches the RANS solver result

very well, and both computational results are close to the experimental data from

Huang et al. (1978). The RMS errors with respect to the experimental data in the

x-component of the velocity, u, for the RANS solver and the velocity decomposition

solver are 1.75% and 1.70% respectively, as shown in Table 6.6. The locations of the

eight points used to determine the RMS velocity error are shown in Table 6.7. The

error between the drag coefficients from the RANS solver and the velocity decom-

position solver is 0.70%. The velocity fields and drag coefficients demonstrate good

agreement between the velocity decomposition solver and the RANS solver. The ve-
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locity data also indicate that the velocity decomposition and RANS solvers match

the experimental data equally well.

The velocity residuals were required to fall below 1.0 × 10−10 and the pressure,

turbulent kinetic energy, and specific dissipation rate residuals were required to fall

below 1.0 × 10−8. The computation time is reduced from 8.92 hours for the RANS

solver to 4.39 hours for the velocity decomposition solver, representing a decrease of

50.8%.

Table 6.6: Velocity decomposition solver on 0.1L domain compared to RANS solver
on 20L domain and the experimental work of Huang et al. (1978) for flow
over the Afterbody 1 at Re = 6.6× 106.

# of cells RANS 974,080
# of cells Vel. Decomp. 380,800
Decrease in # of Cells 61%
RANS RMS u error (with exp.) 1.75%
Vel. Decomp. RMS u error (with exp.) 1.70%
RANS Cd 0.008196
Vel. Decomp. Cd 0.008253
Cd Error (Vel. Decomp. & RANS) 0.70%
RANS Time (hrs) 8.92
Vel. Decomp. Time (hrs) 4.39
Decrease in Time 50.8%

Table 6.7: Points used to sample the turbulent Afterbody 1 velocity field.
x/L r/L

0.755 0.0493
0.755 0.0819
0.914 0.0333
0.914 0.0729
0.977 0.0195
0.977 0.0735
1.057 0.0177
1.057 0.0665
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Figure 6.6: RANS and velocity decomposition velocity profiles for flow over the After-

body 1 at Re = 6.6× 106.
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CHAPTER VII

Contributions and Future Work

7.1 Contributions

The velocity decomposition approach presented in this thesis is a novel numerical

implementation of a mechanism to include the effects of viscosity in the potential

velocity through the body boundary condition coupled with the use of the viscous

potential velocity to specify the inlet and farfield boundary conditions on computa-

tional domains extending just beyond the vortical region. The velocity decomposition

solver was developed, implemented, and demonstrated in this work.

The velocity decomposition solver has matched the accuracy of a RANS solver

in decreased computation time for a variety of steady, two-dimensional and three-

dimensional, laminar and turbulent, external, incompressible flows. The computa-

tion time was reduced between 3% and 68% for the cases studied in this thesis. A

description of the effects of the velocity decomposition solver parameters is provided

for a variety of flows. The parameter studies presented have successfully guided the

selection of parameters for other cases.

The inclusion of the effects of viscosity in the viscous potential velocity through

the body boundary condition allows the viscous potential velocity to fully capture the

real fluid velocity outside of the vortical region. Wake sources improve the ability of

the viscous potential velocity to match the total fluid velocity. The novel numerical
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implementation of this body boundary condition was demonstrated to work well for

a variety of flows in this work.

The benefits of decomposing the velocity were determined to be fully available

through its application to the boundary conditions. Solving the RANS equations

rather than the complementary RANS equations of Kim et al. (2005) reduces the

number of terms and allows the utilization of any of the techniques developed to solve

the RANS equations.

The velocity decomposition method presented in this thesis utilizes the strengths

of both RANS solvers and potential flow solvers to provide the benefits of each in

a unified methodology. Applying the velocity decomposition to the body boundary

condition allows the effects of viscosity to be included in the viscous potential velocity

field. The viscous potential velocity field then fully represents the fluid velocity out-

side of the vortical region surrounding the body and in the wake. The computational

domain can therefore be reduced to extend just beyond the vortical region with the

viscous potential velocity acting as the inlet and farfield boundary conditions for the

total fluid velocity. The accuracy of the RANS solver is maintained in the velocity

decomposition solver while the computational cost is decreased due to the reduction

of the domain size. Further time savings will be achieved as mesh generation for

smaller domains is also less time consuming.

7.2 Future Work

The velocity decomposition approach can accurately and efficiently handle deeply

submerged, steady, two-dimensional and three-dimensional, laminar and turbulent,

external, incompressible flows over rigid bodies without lift. The formulation of the

velocity decomposition method should also apply directly to bodies with lift and

multi-body problems; the implementation of the solver, and particularly of the po-

tential velocity, will require modifications in these cases. With minor adjustments to
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the theoretical formulation and the numerical implementation, the velocity decom-

position approach may also offer improved computational efficiency for compressible

flows, unsteady problems, and free-surface flows around bodies. The computational

efficiency of the velocity decomposition solver may be improved by the implemen-

tation of more efficient potential solution methods, and improvements in the coding

structure.

Flows over bodies with lift, such as airfoils at an angle of attack, bodies near a free

surface, or ships at a yaw angle, are among the possible applications of the velocity

decomposition solver. The formulation applies directly; however, we expect a lifting

potential, or a potential that includes vorticity, to be necessary to allow significant

domain reduction.

Problems involving multiple bodies, such as multi-hull ships and passing ves-

sels, are another exciting possible application of the velocity decomposition method.

Rather than discretizing the fluid flow in a large domain that encompasses all of the

bodies, the flow can be modeled in small domains surrounding each body individually.

The influence of each body on the others would be included in the viscous potential

velocity that acts as the inlet and farfield boundary conditions for the RANS solution

around each body.

The velocity decomposition approach may also be utilized for compressible flows

in the aeronautical and automotive industries. The viscous potential velocity body

boundary condition formulation is theoretically applicable to compressible flows if the

vortical velocity is solenoidal (Morino 1986, Appendix C).

Unsteady problems of interest may include maneuvering ships and bodies with

relative motion. The velocity decomposition method should be applicable to unsteady

flows using either a steady potential based on the average total velocity components,

or an unsteady potential velocity. In turbulent cases and other cases where the

unsteadiness is primarily limited to the vortical regions, it may be preferable to apply
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a steady potential velocity, and account for the unsteadiness in the vortical velocity

term. If the unsteadiness is present throughout the domain, including the areas

with negligible vorticity where the potential velocity should fully capture the total

velocity, an unsteady potential velocity will probably be necessary. The velocity

decomposition solver may be implemented with models other than RANS, such as

large eddy simulations.

Bodies on or near a free-surface, or other problems with complex farfield bound-

ary conditions, are particularly well suited for the velocity decomposition method.

These problems may include ships, submarines, offshore wind platforms, and bodies

in experimental towing facilities with wave generation, among others. The potential

velocity solution must be modified to include the free surface. A submerged body

at a finite depth may be studied by including the effects of the free surface through

the potential velocity on the inlet and farfield boundaries of a computational domain

that surrounds the vortical regions around the body and in the wake. The extent of

the flow domain between the vortical region and the free surface does not need to be

discretized to include the presence of the free surface. Free-surface problems are be-

ing studied using the velocity decomposition method presented in this work with the

addition of desingularized sources above the free-surface and collocation points along

the numerically predicted free-surface for bodies at a finite depth with promising

results (Rosemurgy et al. 2012).
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APPENDIX A

RANS Discretization Error

The ASME (Celik et al. 2008) procedure and a similar procedure utilizing a least

squares fit presented by Eça and Hoekstra (2006) are used to estimate the uncertainty

due to discretization. The drag coefficient for laminar flow over a NACA 0012 airfoil

at a Reynolds number of 2000 is used to analyze the uncertainty.

Six meshes were generated using systematic refinement. Table A.1 includes the

mesh resolution expressed as the number of cells along one side of the inlet and

farfield boundaries by the number of cells across the outlet, the total number of cells,

the representative mesh size h, and the grid refinement factor r = hj/hfine where

j is the mesh being evaluated. The representative mesh size h is defined for the

two-dimensional case by

h =

[
1

N

N∑
i=1

∆Ai

]1/2

(A.1)

where N is the number of cells in the mesh and ∆Ai is the area of the ith cell.

ASME procedure

The ASME procedure determines the discretization error based on the value of

the variable of interest from simulations on three systematically refined meshes. The
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Table A.1: Laminar NACA 0012 airfoil mesh characteristics for the discretization
uncertainty analysis.
Mesh Resolution # of Cells h rj = hj/hfine

Fine 302 x 398 120,196 0.111 1.00
Medium-Fine 226 x 298 67,348 0.148 1.34
Medium 150 x 198 29,700 0.222 2.01
Coarse-Medium 112 x 148 16,576 0.298 2.69
Coarse 74 x 98 7,252 0.450 4.07
Coarsest 36 x 48 1,728 0.919 8.32

procedure was applied to the four possible sets of consecutive meshes presented in

Table A.1. The results for the coarse-medium, medium, and medium-fine meshes

are presented since this set of three meshes has an observed order of accuracy of 1.3

which is in the expected range of 1.0 to 2.0, and consequently indicates that it is in

the asymptotic range. The observed order of accuracy for the other sets exceeded

the theoretical value of 2.0, which may be due to not being in the asymptotic range,

and for the set of the three finest meshes, may be due to the small error between the

drag coefficients for the fine and medium-fine meshes. Being in the asymptotic range

indicates that the variable is approaching an asymptotic numerical value, and hence

the leading order of error dominates. The meshes are assigned the indices 1, 2, and

3 with 1 corresponding to the finest mesh. The relative grid refinement factors are

defined as r21 = h2/h1 and r32 = h3/h2, and are reported in Table A.2. The observed

or apparent order of accuracy, p = 1.3, was calculated using fixed point iteration to
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solve the following set of equations.

p =
1

ln(r21)

∣∣∣∣ln ∣∣∣∣φ3 − φ2

φ2 − φ1

∣∣∣∣+ q(p)

∣∣∣∣ (A.2)

q(p) = ln

(
rp21 − s
rp32 − s

)
(A.3)

s = 1 · sgn

(
φ3 − φ2

φ2 − φ1

)
(A.4)

where φj is the drag coefficient on the jth mesh. The value of s was positive, indicating

monotonic convergence. The extrapolated value φ21
ext of the drag coefficient is then

computed as

φ21
ext =

rp21φ1 − φ2

rp21 − 1
(A.5)

The relative error between the two finer meshes, e21
rel, extrapolated relative error

between the extrapolated value and the value on the finest mesh, e21
ext, and the fine-

grid convergence index, GCI21
fine, are defined as follows. Please note that ‘fine’ here

refers to the finest mesh in the set of three used for this analysis, which corresponds

to the medium-fine mesh presented in Table A.1.

e21
rel =

∣∣∣∣φ1 − φ2

φ1

∣∣∣∣ Relative error (A.6)

e21
ext =

∣∣∣∣φ21
ext − φ1

φ21
ext

∣∣∣∣ Extrapolated relative error (A.7)

GCI21
fine =

Fse
21
rel

rp21 − 1
Fine− grid convergence index (A.8)
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Table A.2: ASME discretization uncertainty values for the traditional RANS solver
based on flow over a NACA 0012 airfoil at Re = 2000 using the medium-
fine, medium, and coarse-medium meshes.

Property Value
r21 1.506
r32 1.338
Cd1 0.08348
Cd2 0.08351
Cd3 0.08354
p 1.299
Cdext 0.08345
e21

rel 0.03042%
e21

ext 0.04339%
GCI21

fine 0.05421%

where Fs is a safety factor which is usually taken as 1.25. The GCI represents the

numerical uncertainty in the solution on a given mesh. The values of the extrapolated

drag coefficient and the three forms of error are presented in Table A.2.

Least squares procedure

Eça and Hoekstra (2006) present a very similar procedure to estimate the dis-

cretization uncertainty based on a least squares version of the grid convergence index

(GCI). The elements are essentially the same, only a least squares approach is used

rather than the fixed point iteration. This difference allows the use of more than

three meshes. Their procedure uses the GCI to define the discretization uncertainty

U as

U = Fs|δRE| (A.9)

where Fs is a safety factor as in the ASME procedure, and δRE is an estimate of the

error using Richardson extrapolation:

δRE = φj − φo = αhpi (A.10)
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φo is the estimated exact solution which is similar to φ21
ext in the ASME procedure,

and α is a constant. The values for p, φo, and α are determined using a least squares

root approach that minimizes the function

S(φo, α, p) =

√√√√ nm∑
j=1

(
φj −

(
φo + αhpj

))2
(A.11)

where nm is the number of meshes available. The four finest meshes presented in

Table A.1 are used in this procedure since including the coarser meshes leads to

values of the observed order of accuracy over 2.0 which indicate that they may not be

in the asymptotic range, as was mentioned with the ASME procedure. The standard

deviation, Us, of the least squares root fit is calculated as

Us =

√∑nm

j=1

(
φj −

(
φo + αhpj

))2

nm − 3
(A.12)

To check for oscillatory convergence, p∗ is determined using φ∗j = |φj+1 − φj| in

Equation (A.11). Monotonic convergence is observed in this case, as indicated by a

positive value of both p and p∗. The uncertainty for this case, where 0.95 ≤ p ≤ 2.05,

is calculated as

Uφ = Fs|δRE|+ Us (A.13)

where the safety factor has a value of 1.25 as in the ASME procedure.

The observed order of accuracy using the least squares approach on the four finest

meshes is 1.7, which is close to the theoretical value of 2.0. The numerical uncertainty

for the drag coefficient on the fine mesh, Ufine
Cd , is 0.002028%. The values of the drag

coefficient on the four meshes, the extrapolated value, Cd,ext, and the uncertainties

are provided in Table A.3.
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Table A.3: Least squares root discretization uncertainty values for the traditional
RANS solver based on flow over a NACA 0012 airfoil at Re = 2000 using
the fine, medium-fine, medium, and coarse-medium meshes.

Property Value
Cdfine 0.08348
Cdmedium−fine 0.08348
Cdmedium 0.08351
Cdcoarse−medium 0.08354
p 1.664
Cdext 0.08346
Us 9.020× 10−7

Ufine
Cd 0.002028%

Summary

The ASME procedure provided an observed order of accuracy of p = 1.3 and a

numerical uncertainty of GCI21
fine = 0.05%. The least squares root procedure presented

by Eça and Hoekstra (2006) gave an observed order of accuracy of p = 1.7 and

a numerical uncertainty of Ufine
Cd = 0.002%. Both of the observed orders are close

to, but lower than, the theoretical value of 2.0. The numerical uncertainties on the

medium-fine grid in the ASME procedure, and the fine grid in the least squares

procedure, are quite low. It should be noted that the least squares root uncertainty

is not normalized by the extrapolated value as the ASME version is.

116



BIBLIOGRAPHY

117



BIBLIOGRAPHY

Celik, I., U. Ghia, P. Roache, C. Freitas, H. Coleman, and P. Raad (2008). Pro-
cedure for estimation and reporting of uncertainty due to discretization in CFD
applications. Journal of Fluids Engineering 130.

Eça, L. and M. Hoekstra (2006). Discretization uncertainty estimation based on
a least squares version of the grid convergence index. In Proceedings of the 2nd
Workshop on CFD Uncertainty Analysis.

Eça, L. and M. Hoekstra (2009). On the numerical accuracy of the prediction of
resistance coefficients in ship stern flow calculations. Journal of Marine Science
and Technology 14 (1), 2–18.

Gresho, P. and R. Sani (1987). On pressure boundary conditions for the incom-
pressible Navier-Stokes equations. International Journal for Numerical Methods in
Fluids 7, 1111–1145.

Hafez, M., A. Shatalov, and M. Nakajima (2007). Improved numerical simulations of
incompressible flows based on viscous/inviscid interaction procedures. Computers
and Fluids 36 (10), 1588 – 91.

Hafez, M., A. Shatalov, and E. Wahba (2006). Numerical simulations of incompress-
ible aerodynamic flows using viscous/ inviscid interaction procedures. Computer
Methods in Applied Mechanics and Engineering 195 (23-24), 3110 – 3127.

Hess, J. and A. Smith (1967). Calculation of Potential Flow about Arbitrary Bodies.
Douglas Aircraft Company.

Huang, T., N. Santelli, and G. Belt (1978). Stern boundary-layer flow on axisymmetric
bodies. In Twelfth Symposium on Naval Hydrodynamics. National Academy of
Sciences.

Huang, T., H. Wang, N. Santelli, and N. Groves (1976). Propeller/stern/boundary-
layer interaction on axisymmetric bodies: Theory and experiment. David W. Taylor
Naval Ship Research and Development Center .

Katz, J. and A. Plotkin (2001). Low-Speed Aerodynamics (Second Edition ed.). Cam-
bridge University Press.

118



Kendon, T. E., S. J. Sherwin, and J. M. R. Graham (2003). An irrotational/vortical
split-flow approach to viscous free surface flow. In K. J. Bathe (Ed.), Second MIT
Conference on Computational Fluid and Solid Mechanics, pp. 950–955.

Kim, K., A. I. Sirviente, and R. F. Beck (2005). The complementary RANS equations
for the simulation of viscous flows. International Journal for Numerical Methods
in Fluids 48 (2), 199 – 229.

Lemmerman, L. and V. Sonnad (1979). Three-dimensional viscous-inviscid coupling
using surface transpiration. Journal of Aircraft 16 (6), 353 – 8.

Lighthill, M. J. (1958). On displacement thickness. Journal of Fluid Mechanics 4 (04),
383–392.

Luquet, R., P. Ferrant, B. Alessandrini, G. Ducrozet, and L. Gentaz (2007). Sim-
ulation of a TLP in waves using the SWENSE scheme. In Proceedings of the
Seventeenth (2007) International Offshore and Polar Engineering Conference, Lis-
bon, Portugal, pp. 1916 – 1922. The International Society of Offshore and Polar
Engineers.

Luquet, R., L. Gentaz, P. Ferrant, and B. Alessandrini (2004). Viscous flow simulation
past a ship in waves using the SWENSE approach. In 25th Symposium on Naval
Hydrodynamics, St. John’s, Newfoundland and Labrador, Canada.

Menter, F. (1994). Two-equation eddy-viscosity turbulence models for engineering
applications. AIAA Journal 32 (8), 1598 – 605.

Menter, F. (1996). A comparison of some recent eddy-viscosity turbulence models.
Transactions of the ASME. Journal of Fluids Engineering 118 (3), 514 – 19.

Menter, F., M. Kuntz, and R. Langtry (2003). Ten years of industrial experience with
the SST. Turbulence, Heat and Mass Transfer 4 .

Morino, L. (1986). Helmholtz decomposition revisited: Vorticity generation and
trailing edge condition. I - Incompressible flows. Computational Mechanics 1 (1),
65–90.

Morino, L. (1994). Toward a unification of potential and viscous aerodynamics -
boundary integral formulation. Mathematical Concepts and Methods in Science
and Engineering 44.

Morino, L. (2003). Is there a difference between aeroacoustics and aerodynamics? An
aeroelastician’s viewpoint. AIAA Journal 41 (7), 1209 – 23.

Morino, L., M. Gennaretti, and S. Shen (1995). Lighthill transpiration velocity revis-
ited. An exact formulation. Meccanica 30 (2), 127 – 137.

Morino, L., F. Salvatore, and M. Gennaretti (1999). New velocity decomposition for
viscous flows: Lighthills equivalent-source method revisited. Computer Methods in
Applied Mechanics and Engineering 173 (3), 317–336.

119



Muscari, R. and A. Di Mascio (2003a). A local model for the simulation of two-
dimensional spilling breaking waves. Journal of marine science and technology 8,
61 – 67.

Muscari, R. and A. Di Mascio (2003b). A model for the simulation of steady spilling
breaking waves. Journal of Ship Research 47 (1), 13 – 23.

Newman, J. (1977). Marine Hydrodynamics. The MIT Press.

Patankar, S. V. (1980). Numerical Heat Transfer and Fluid Flow, Series in Com-
putational and Physical Processes in Mechanics and Thermal Sciences. Taylor &
Francis.

Rempfer, D. (2006). On boundary conditions for incompressible Navier-Stokes prob-
lems. Applied Mechanics Reviews 59, 107–125.

Rempfer, D. (2008). Two remarks on a paper by Sani et al. Int. J. Numer. Meth.
Fluids 56, 1961–1965.

Rhee, S. H. and F. Stern (2002). RANS model for spilling and breaking waves. ASME
Transactions 124, 424 – 432.

Rosemurgy, W., D. Edmund, K. Maki, and R. Beck (2012). A velocity decomposition
approach for steady free-surface flow. In 29th Symposium on Naval Hydrodynamics.

Sani, R., J. Shen, O. Pironneau, and P. Gresho (2006). Pressure boundary condition
for the time-dependent incompressible Navier-Stokes equations. Int. J. Numer.
Meth. Fluids 50, 673–682.

Wilcox, D. (2006). Turbulence Modeling for CFD (Third Edition ed.). DCW Indus-
tries.

120


