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Abstract

New applications of evolutionary biology are transforming our understanding of

cancer. The articles in this special issue provide many specific examples, such as

microorganisms inducing cancers, the significance of within-tumor heterogene-

ity, and the possibility that lower dose chemotherapy may sometimes promote

longer survival. Underlying these specific advances is a large-scale transformation,

as cancer research incorporates evolutionary methods into its toolkit, and asks

new evolutionary questions about why we are vulnerable to cancer. Evolution

explains why cancer exists at all, how neoplasms grow, why cancer is remarkably

rare, and why it occurs despite powerful cancer suppression mechanisms. Cancer

exists because of somatic selection; mutations in somatic cells result in some

dividing faster than others, in some cases generating neoplasms. Neoplasms grow,

or do not, in complex cellular ecosystems. Cancer is relatively rare because of nat-

ural selection; our genomes were derived disproportionally from individuals with

effective mechanisms for suppressing cancer. Cancer occurs nonetheless for the

same six evolutionary reasons that explain why we remain vulnerable to other

diseases. These four principles—cancers evolve by somatic selection, neoplasms

grow in complex ecosystems, natural selection has shaped powerful cancer

defenses, and the limitations of those defenses have evolutionary explanations—
provide a foundation for understanding, preventing, and treating cancer.

Introduction

Our understanding of cancer is in the midst of a major

transition. Extraordinary recent progress in genetics and

cell biology is revealing details about cancer that under-

mine prior conceptions, and highlight the value of an evo-

lutionary perspective. The na€ıve notion that cancer is one

entity, with one cause, for which we can find a single cure,

is fading as the complex and dynamic nature of cancer is

becoming better understood (Gatenby 2009; Greaves and

Maley 2012). The emerging view recognizes cancers as het-

erogeneous collections of cells (Campbell et al. 2008; Park

et al. 2010; Maley et al. 2006; Merlo and Maley 2010) that

evolve in tumor microenvironments with complex ecolo-

gies (Bissell and Radisky 2001). A full understanding

requires evolutionary and ecological theory and methods.

The utility of evolutionary medicine (Nesse and Stearns

2008; Gluckman et al, 2009) for understanding cancer is

illustrated by four principles. The most obvious is that

neoplasms are heterogeneous populations of cells that

evolve via somatic evolution. This principle, and associ-

ated phylogenetic methods, is proving crucial to under-

standing tumor heterogeneity, and its significance for

optimizing chemotherapy. A second principle is that the

fitness of cells, like individuals, depends not only on their

genotypes and phenotypes, it also depends on their inter-

actions within complex ecosystems. Ecological theory is

proving important for understanding factors that stimu-

late and suppress the growth of neoplastic cells. The third

principle is that powerful defenses against cancer were

shaped by natural selection starting about one billion years

ago. Finally, evolutionary medicine (Nesse and Williams

1994) explains how the limits of these mechanisms arise

from the trade-offs between the risks of cancer and the

benefits of retaining dynamic tissue capacities for develop-

ment and repair.

© 2012 The Authors. Published by Blackwell Publishing Ltd. This is an open access article under the terms of the Creative
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These four principles provide an evolutionary framework

for understanding the origins and progression of cancer

that is parallel to what the Hallmarks of Cancer framework

(Hanahan and Weinberg 2000) provides for understanding

cellular mechanisms involved in cancer. These perspectives

are entirely complementary; we need to know not only how

cell regulation mechanisms work but also how they evolved

to be the way they are, and why they are not better able to

protect us from disease.

Evolution explains how cancers arise from the differen-

tial survival and proliferation of mutant cells that promote

their own replication at the expense of the rest of the body

(Greaves and Kinlan 2000; Greaves and Maley 2012; Merlo

et al. 2006; Pepper et al. 2009). A view of cancers merely

growing is being replaced by recognition that they evolve

according to well-understood principles of somatic selec-

tion, along trajectories that can be described by established

methods for tracing phylogenies. This has practical applica-

tions for understanding the significance of heterogeneity

within tumors, and implications for diagnosis and treat-

ment.

Ecological theory is equally useful for understanding can-

cer progression and resistance to chemotherapy. The

growth, suppression, and death of neoplastic cells are

explained not only by their genotypes and phenotypes but

also by the microenvironments they inhabit. Such microen-

vironments impose powerful selection forces on neoplastic

cells, and those cells, in turn, induce changes in microenvi-

ronments. So, too, do chemotherapy treatments. No

amount of mechanistic detail is sufficient to explain these

interactions; ecological theory is crucial.

Natural selection shaped mechanisms that suppress can-

cer remarkably effectively. With about 60 trillion cells in

the human body, 500 billion of which are replaced each

day (Cooper and Hausman 2009), it is amazing we do not

all get cancer early in life. The relative rarity of cancer is

even more remarkable when you consider the diversity of

cells within many tumors, and the inevitability of somatic

selection increasing the prevalence of the most malignant

cells (Campbell et al. 2008; Park et al. 2010; Maley et al.

2006; Merlo and Maley 2010). The explanation goes back

to the most important ‘major transition’ in the history of

life—the origin of multicellular organisms about 1 billion

years ago (Maynard Smith and Szathm�ary 1995a). The ten-

sion between cell-level selection (somatic evolution) favor-

ing neoplastic cells, and organism-level selection

(organismal evolution) favoring individuals who are able

to suppress mutations and rouge cells, was central. As

organisms became longer lived, and the number of cells in

a body increased from hundreds to trillions, suppressing

cancer became ever more crucial (Caulin and Maley 2011;

Nunney this issue). In short, evolution at the organism

level shaped powerful mechanisms that suppress evolution

at the somatic level (see Fig. 1).

Why are not those mechanisms better? The six kinds of

evolutionary explanations for vulnerability to diseases in

general all apply to cancer (Nesse 2005; Williams and

Nesse, 1991). Evolutionary medicine attempts to under-

stand the reasons why the systems of the body are limited

in their capacities to protect us from disease. Nowhere is

this better illustrated than in the diverse reasons why we

remain vulnerable to cancer (Greaves 2007). As described

in greater depth in the final section of this paper (see Box

1), cancer vulnerability can be understood within the larger

framework of the six types of evolutionary explanations for

traits that leave organisms vulnerable to disease:

1 Mismatch with novel environments (e.g., tobacco avail-

ability? lung cancer)

2 Co-evolution with fast-evolving pathogens (e.g.,. HPV

? cervical cancer)

3 Constraints on what selection can do (e.g.,. mutations ?
cancer)

4 Trade-offs (e.g.,. capacity for tissue repair versus risk of

cancer)

(A) (B)

Figure 1 Evolution explains why cancer exists and also why it is not more common. (A) Cancer results from somatic selection at the cell level that

favors neoplastic cells (red) over normal somatic cells (tan). (B) Cancer suppression results from selection at the organism level, favoring organisms

that have traits (e.g., DNA repair, cell cycle checkpoints/apoptosis, and certain tissue architectures), which keep neoplastic cells in check (blue) while

those individuals with traits that make them susceptible (pink) decrease in prevalence in the population.

© 2012 The Authors. Published by Blackwell Publishing Ltd 6 (2013) 144–159 145
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5 Reproductive success (RS) at the expense of health (e.g.,

cancer promoting alleles that may increase RS)

6 Defenses with costs as well as benefits (e.g.,. inflamma-

tion).

These four principles—somatic evolution of neoplasms,

ecological analysis of tumor environments, selection for

mechanisms that suppress cancer, and evolutionary expla-

nations for their limits—provide an evolutionary founda-

tion for understanding, preventing, and treating cancer.

Research making use of these principles is well underway,

but still at an early stage. The sections below illustrate the

opportunities and some directions forward.

Neoplasms evolve by somatic selection

Cancer cells are heterogeneous

Cancer is far from a single, well-defined disease. It is highly

diverse, in ways more subtle than the obvious differences

between cancers originating from different organs or tis-

sues. For example, subtypes of breast cancer each have dif-

ferent risk factors, different phenotypic and genotypic

characteristics, different effective treatment regimes, and

different recurrence risks (Althuis et al. 2004; Bauer et al.

2007; Beaber et al. 2008; Colditz et al. 2004; Dawood 2010;

Dolle et al. 2009; Foulkes et al. 2010; Koboldt et al. 2012).

New genetic evidence confirms that cancers are highly

diverse, even among cells within a single tumor. Genomics

and single cell analyses in a variety of cancers show dra-

matic heterogeneity among cells (Campbell et al. 2008;

Park et al. 2010; Maley et al. 2006; Merlo and Maley 2010;

Anderson et al. 2011; Navin et al. 2011; Gerlinger et al.

2012; Nik-Zainal et al. 2012). Some types of cancers are

characterized reliably by mutations in similar pathways or

identical genetic alterations, such as the BCR-ABL translo-

cation (Melo and Barnes 2007) or RB mutation in retino-

blastoma (Dyer and Bremner 2005), but even these cancers

can be highly diverse with regard to other mutations. Intra-

tumor heterogeneity is critical because it is the raw material

upon which somatic selection can act. Understanding can-

cers as intrinsically diverse is crucial because of the impor-

tance of heterogeneity in cancer progression and

therapeutic resistance (see Fig. 2) (Campbell et al. 2008;

Park et al. 2010; Maley et al. 2006; Merlo and Maley 2010).

Origins of heterogeneity

While much attention is focused on heterogeneity that

originated within neoplasms, theoretical calculations sug-

gest that many mutations important for cancer may occur

early in development, because a single early mutation may

be transmitted to thousands or millions of daughter cells in

a growing body (Frank 2010). This suggests that measures

of heterogeneity may predict vulnerability to cancer, the

need for close attention to the role of development in het-

erogeneity, and the importance of factors that influence the

fidelity of replication during early developmental stages

(Frank 2010; Meza et al. 2005).

Attention to development is equally important later in

life. For instance, rates of breast cancer rise sharply in mid-

life, but more slowly later (American Cancer Society 2012),

a pattern congruent with hormone induced cellular replica-

tion. However, similar patterns are found for other cancers,

leading to the challenge of differentiating several possible

explanations, including genetic heterogeneity (Frank

2007a).

Heterogeneity and cancer progression

Within-tumor heterogeneity has an important implication

for how somatic evolution proceeds: the more genetic vari-

ation in the population of cells, the more likely it is that

some variants will have proliferative or survival advantages.

Tumor diversity should therefore lead to faster progression

to cancer—which is indeed what is observed in Barrett’s

esophagus (Maley et al. 2006; Merlo et al. 2010). Further-

more, tumor diversity is associated with clinical variables

and histopathological characteristics associated with

aggressiveness in breast cancer (Park et al. 2010).

Therapy Relapse

resistant
sub-clone

Progression Resistance

Homogeneous

Heterogeneous

Therapy
Cure

Figure 2 Intra-tumor heterogeneity increases the likelihood that some mutants will have a proliferation or survival advantage, resulting in faster pro-

gression. Heterogeneity also increases the likelihood that there will be a resistant mutant already present in the cell populations before therapy, mak-

ing therapeutic resistance and relapse more likely.

© 2012 The Authors. Published by Blackwell Publishing Ltd 6 (2013) 144–159146
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One of the primary causes of tumor heterogeneity is

genetic instability. Cancer cells exhibit a wide range of

genetic modifications, from point mutations to massive

chromosomal aberrations (Stephens et al. 2011). This

results in many non-functional mutant cells, but a few

whose genetic changes enhance their fitness. In Graham

et al. (this issue), a model of the evolution of genetic insta-

bility finds cancer cells readily evolving a mutator pheno-

type. The mutator phenotype is suppressed by the resulting

mutational load only under extreme parameters: where del-

eterious mutations are common, the cost of deleterious

mutations is prohibitively high, and the benefit for driver

mutations is extremely low. This surprising evolutionary

viability of the mutator phenotype echoes other findings

(Beckman and Loeb 2005) and is alarming given the carcin-

ogenic effects of genetic instability. A separate model found

that selection for driver mutations is more necessary for

tumor growth early in progression than during later stages

(Reiter et al. this issue).

Tumor heterogeneity is not only genetic; variations in

the environments that tumor cells inhabit may be equally

important. As is described in the next section on ecology,

cancer cells inhabit complex microenvironments that vary

substantially even within a tumor. For instance, Alfarouk

et al. (this issue) call attention to the differences in avail-

ability of resources for cells living close to blood vessels ver-

sus those living farther away. They propose that

heterogeneity in vascular density and blood flow are critical

factors promoting cell heterogeneity.

Heterogeneity and therapeutic resistance

Just as spraying fields with pesticides leads to selection for

resistant pests, chemotherapy selects for resistant cells.

Chemotherapy rarely kills every malignant cell. The

chemo-resistant cancer cells that survive are selected for,

and the chemo-sensitive cells are selected against. Hetero-

geneity of a tumor is therefore a likely to be a critical neg-

ative prognostic factor for chemotherapy outcomes,

especially considering the known role of genetic instability

in therapeutic resistance (Lee and Swanton 2012). After

chemotherapy, resistant cells are not only more prevalent,

they also have new ecological spaces into which they can

expand, with potentially disastrous implications for

patients.

Foo et al. (this issue) model tumor rebound growth fol-

lowing therapy and find that tumor diversity predicts early

relapse when mutation rates are high. This may reflect fas-

ter evolution in cell populations with more genetic varia-

tion, or it may reflect the degree of genetic instability in the

neoplasm. Because genetic instability is one of the primary

causes of heterogeneity, and because tumor heterogeneity

may increase genetically unstable variants, disentangling

the roles of heterogeneity and genetic instability in cancer

progression remains a major challenge. When mutation

rates are lower, early relapse is associated with differences

in the fitness of the sensitive and resistant cells rather than

the diversity of the cells. These findings make it clear that

the evolutionary processes underlying therapeutic resis-

tance and relapse are complex and cannot be described by

any simple generalization.

As discouraging as the seeming inevitability of the evolu-

tion of resistance might appear, considering evolutionary

dynamics is essential for finding strategies to reduce resis-

tance. For example, there is some evidence that lower dose

chemotherapy conditionally applied only when a tumor is

growing (the ‘adaptive therapy’ algorithm) leads to longer

survival than the traditional high dose chemotherapy in a

study of mice injected with ovarian cancer cells (Gatenby

et al. 2009). This may be because lower dose chemotherapy

does not select for chemo-resistant cells as strongly as high

dose chemotherapy does, and sensitive cells may have a fit-

ness advantage in the absence of therapy, leading to the

maintenance of tumor cells that are responsive to chemo-

therapy. Another potential contributor to the apparent suc-

cess of adaptive therapy may be that maintaining some of

the tumor decreases new ecological openings for resistant

cells to repopulate. In essence, adaptive therapy may pre-

vent rapidly dividing resistant cells from taking over the

population through a process analogous to ‘competitive

release’ in ecology (Williams 2010). Several studies on

adaptive therapy are currently in progress. If these efforts

succeed, the adaptive therapy strategy could offer substan-

tial clinical benefits.

Heterogeneity and homogeneity

Emphasis on the importance of tumor heterogeneity by no

means diminishes the importance of the continuing search

for factors common to most neoplasms. It is equally

important and unsurprising that mutations influencing cell

cycle checkpoints, angiogenesis, apoptosis, and telomere

synthesis are common across many neoplasms. The impor-

tance of heterogeneity also does not diminish the benefits

of looking for genetic signatures characteristic of tumors in

specific tissues, or signatures that define subtypes of cancers

within a tissue, such as has recently been accomplished for

breast cancer (Koboldt et al. 2012).

However, the search for shared factors and signatures

that define specific subtypes of cancer is already proceeding

at full speed. It seems to us that this effort to identify the

signature of specific types of cancer sometimes tends

toward essentializing types of cancer (see also Aktipis et al.,

2010), as if all cases in one category are expected to be the

same. In some respects they often are, and the classification

of a cancer can provide important guides to treatment.

© 2012 The Authors. Published by Blackwell Publishing Ltd 6 (2013) 144–159 147
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However, an evolutionary approach encourages viewing

variation among individuals, tumors, and cells as intrinsic

to the process that gives rise to cancer, and to life itself,

instead of as a limitation of our classification systems.

Implications of tumor heterogeneity

Somatic evolution can act only when cells have heritable

differences that influence survival or replication. Fisher’s

fundamental theorem of natural selection states that the

rate of increase in a population’s fitness is directly pro-

portional to its genetic variation in fitness (Fisher 1930).

The same principle applies to neoplasms; the more

genetic diversity, the faster it evolves via somatic selec-

tion. This means that tumor diversity should influence

cancer progression, not just for esophageal cancer, where

the link has already been established (Maley et al. 2006;

Merlo et al. 2010), but for all cancers. Further, heteroge-

neity is likely to emerge as a critical marker for resistance

to chemotherapy (Lee and Swanton 2012). Future clini-

cians might be able to customize treatment based on

tumor heterogeneity. As compared with traditional high

dose chemotherapy, the adaptive therapy algorithm may

extend survival over traditional high dose therapy, espe-

cially when tumors are highly heterogeneous and there-

fore likely to already harbor resistance mutations. Other

strategies will also emerge from deeper understanding of

somatic selection of heterogeneous cells.

Cancers evolve in ecological contexts

Overview of cancer ecology

The environments in which cancer cells live and evolve is as

complex and multifaceted as the environments in which

organisms evolve. The life of a cell in the body is character-

ized by complex development in a shifting ecosystem, fol-

lowed by exposure to a variety of threats and opportunities,

including attack by predatory immune cells, the limited

availability of resources such as growth factors, oxygen, and

glucose, and physical constraints and affordances shaped by

adjacent cells and the basement membranes to which they

are attached. Finally, many somatic cells live and evolve in

environments teeming with diverse fast-evolving microbes.

Taken together, these environmental and ‘social’ factors

create a complex ecology that influences the fitness of

somatic cells (Fig. 3) (Gatenby and Gillies 2008; Pienta

et al. 2008). Indeed, the normal microenvironment of cells

plays a critical role in cancer suppression, and changes to

that microenvironment are a key factor in cancer initiation,

progression and response to treatment (Correia and Bissell

2012; Nakasone et al. 2012; Pontiggia et al. 2012; Bissell

and Hines 2011; Bissell and Radisky 2001).

The central roles of tumormicroenvironment in suppress-

ing and promoting cancer make ecological theory an essen-

tial tool for cancer researchers, as illustrated by four papers

on the topic in this special issue (Thomas et al. this issue;

Ewald and Swain Ewald this issue; Daoust et al. this issue;

Cell Ecology Organism Ecology

resource
delivery

resource
delivery

regulation of
growth and survival

dependence for
survival and reproduction

immune
predation

predation
diverse microbes diverse species

Figure 3 The ecological context of cancer cells parallels the ecological context for organisms. Similarities include dependence on limited resources,

dependence on neighbors for survival and reproduction, interactions with other species and threats from predation. In the case of cancer cells, their

ecological context is characterized by dependence resource delivery from blood vessels, growth and survival signals from neighbors, interactions with

microbial species and predation from the immune system. Similarly, the ecological context for organisms is characterized by dependent on resource

delivery from the environment, dependence on neighbors for effective survival and reproduction, interactions with other species and threats from

predators.

© 2012 The Authors. Published by Blackwell Publishing Ltd 6 (2013) 144–159148
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Alfarouk et al. this issue). Daoust et al. (this issue) describe

applications of landscape ecology to cancer, offering

methods for identifying tissue microhabitats that influence

tissue growth, and vulnerability to metastasis. Similarly,

Alfarouk et al. (this issue) describe how cells evolving near

blood vessels (and their associated resources) are expected to

evolve differently than those distant from blood vessels.

Neighboring cells

The world of cancer cells is highly social. Tumor microenvi-

ronments include both other tumor cells as well as ‘normal’

cells nearby. These normal cells can be co-opted to provide

growth signals or other fitness enhancing factors for the

cancer cells. It remains known, for example, that the risk of

cancer can be increased by a variety of changes to neighbor-

ing support cells or stroma (a combination of fibroblasts,

vasculature, immune cells, and interstitial extracellular

matrix) (Bissell and Hines 2011). Fellow cancer cells may

also provide growth factors or engage in other actions that

enhance their neighbor’s fitness (Axelrod et al. 2006).

One paper in this issue (Sprouffske et al. this issue)

argues that the maintenance of ‘non-stem cells’ in the

tumor cell population may be explained by the positive

influence of these cells on the fitness of genetically identical

tumor-propagating cells (‘stem cells’). In other words, the

model suggests that ‘non-stem cells’ could play a similar

evolutionary role to ‘helpers at the nest’ in cooperative

breeders (Alcock 2009), promoting their fitness indirectly

through enhancing the fitness of their genetically identical

parent ‘stem cell.’ The authors suggest that the promotion

of tumor-propagating cells (‘stem cells’) by ‘non-stem cells’

may be similar to the promotion of the germ line by

somatic cells in multicellular organisms. The importance of

‘stem cells’ or tumor-propagating cells for cancer progres-

sion is the focus of Greaves (Greaves this issue), who calls

attention to the fact that stem cells are the unit of selection

in cancer, an observation supported by the results of

Sprouffske et al.’s (this issue) model.

The role that neighboring cells can have on each others’

fitness also has implications for drug targeting. Drugs that

disrupt the actions of secreted factors that benefit nearby

cells (i.e., public goods) might slow development of thera-

peutic resistance to chemotherapeutic agents (Pepper

2012). Although cytotoxic drugs exert strong selection for

cells that are resistant to therapy by killing as many cancer

cells as possible, drugs that target public goods should not

select strongly for resistant cells (Pepper 2012).

Resource use and availability

Resource availability for a cell is influenced by both its own

characteristics and by interactions with neighboring cells.

For example, cancer cells that coordinate and regulate

angiogenic signaling (for blood vessel growth) may induce

greater blood flow to the tumor. Cells that do not coordi-

nate angiogenic signaling may induce leaky vessels that

temporarily increase blood flow (Nagy et al. 2012) until

vessels collapse because of pressure loss resulting from

excess permeability.

Some of these interactions among cells mimic character-

istics of resource dilemmas in human populations, such as

the Tragedy of the Commons (Hardin 1968), and can be

profitably analyzed using game theory (Axelrod et al.

2006). Dilemmas such as these are characterized by conflict

between individuals pursuing their own interests versus the

interests of the group. Such dilemmas have important con-

sequences for tumor evolution. For example, some models

suggest that competition among cancer cells resulting in

resource overuse may contribute to invasion and metasta-

sis, just as high rates of resource use lead to dispersal of

organisms (Aktipis et al. 2011). More generally, resource

availability and distribution are expected to speed the evo-

lution of cell motility in ways analogous to those observed

for species (Chen et al. 2011). More subtle factors, such as

the carrying capacity of the microhabitat, the quality of that

habitat, and habitat fragmentation, also impose important

selection forces that shape cancer cells (Daoust et al. this

issue).

Predation by immune cells

Organisms evolve capacities for evading their predators.

Predators, in turn, evolve strategies for catching their prey

despite all attempts at evasion. The resulting co-evolution

shapes traits that can be understood only in light of their

evolutionary histories. Somatic cells exposed to the threat

of predation by immune cells vary in their ability to evade

the immune system. Those that succeed best have a selec-

tive advantage, and they proliferate at the expense of others

(Crespi and Summers 2005). This co-evolutionary process

is ongoing in most cancers. Strategies malignant cells

evolve for evading the immune system include mimicry,

hiding, and co-opting immune cells in ways that speed can-

cer growth. (Gabrilovich and Pisarev 2003; Cavallo et al.

2011).

Co-evolution with microbes

Cancer cells also co-evolve with cells from other species,

namely the microbes that make up the microbiome.

Human microbiome cells outnumber somatic cells 10 to 1

(Peterson et al. 2009). They are highly diverse, both among

individuals and within a particular individual (Eckburg

et al. 2005). Interactions with these microbes may, via

somatic evolution, increase cancer vulnerability. The pres-

© 2012 The Authors. Published by Blackwell Publishing Ltd 6 (2013) 144–159 149
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ence of certain microbes is associated with specific cancers

including colorectal, gastric, oral/esophageal, mammary,

lung, liver, and blood cancers (as reviewed by Arthur and

Jobin 2011), suggesting that they may play important roles

in cancer initiation and progression. The mechanisms

underlying microbial influences on cancer are just starting

to be understood, but it is clear that altered metabolism

and immune system functions are important. It has long

been known that inflammation increases susceptibility to

cancer (Grivennikov et al. 2010), but recent work in mice

suggests that bacterial colonization in distant tissues can

alter gene expression elsewhere in the body, causing meta-

bolic changes and inflammation in uninfected tissues (Rog-

ers 2011). Microbes can also induce cells to switch from a

stationary epithelial phenotype to a mobile mesenchymal

phenotype called the Epithelial-Mesenchymal Transition

(EMT) since microbes produce a variety of factors that can

have effects on signaling pathways leading to EMT (Hof-

man and Vouret-Craviari 2012). This may have important

implications for the transition from benign neoplasm to

invasive and metastatic cancer.

Exploitation by other species

Microbes can also influence neoplastic growth. One of the

body’s main defenses is mechanisms that kill infected cells,

so it is not surprising that viruses can promote their own

fitness through interfering with cell cycle arrest, apoptosis,

telomere regulation, and cell adhesion (Ewald and Swain

Ewald this issue). Such phenomena may explain how

microbes can induce cancer. Cancer vulnerability should be

increased by microbes that enhance their own fitness by

increasing the proliferation of somatic cells that provide

growth factors, immune protection, or physical niches in

which the microbes thrive. In other words, while cancer

may result from inflammation induced by microbes, it can

also result from microbes increasing their own fitness by

inducing somatic cell proliferation.

Crypts in the gastrointestinal tract provide niches for gut

microbes, many of which are commensal and promote nor-

mal gut functioning (Yu et al. 2012). This raises the possi-

bility that some cancers could result from side effects of

mechanisms that microbes use to induce niche formation

and expansion. Crypts produce mucus (Takubo et al. 1995;

Levine et al. 1989) that promotes the survival of certain

bacteria (Van den Abbeele et al. 2012; Hansson 2012), and

colorectal adenomas are associated with mucosal adherent

bacteria characterized by higher diversity (Shen et al.

2010), suggesting complex interactions between the cells

that line crypts, and the bacteria that colonize the resulting

niches.

This possibility might also be involved in Barrett’s

Esophagus, a premalignant condition characterized by the

formation of crypts in the esophagus, where they are not

normally present. During the process of neoplastic trans-

formation, these crypts become longer and more tortuous

(Srivastava et al. 2007). The formation of these crypts, and

their subsequent lengthening, could result from microbes

manipulating cell proliferation in ways that construct larger

and more plentiful mucus-producing niches that benefit

them, despite increasing cancer susceptibility for their host.

Several findings support these speculative ideas, including

(1) the association of esophageal cancer with specific

microbes (Yang et al. 2009), (2) shorter crypts in germ free

animals (Yu et al. 2012), and (3) longer crypts after oral

inoculation with bacteria (Yu et al. 2012).

Species extinction and cancer regression

Ecological theories describing species extinctions have

implications for treating and preventing cancer. All indi-

viduals have neoplastic clusters of cells, most of which will

never progress to cancer. Sometimes these growths sponta-

neously regress, a process analogous to species extinction.

Tumor regression after treatment is also akin to extinction.

Though treatment may cause regression, observations of

spontaneous regression in the absence of treatment suggest

that other mechanisms may also result in extinction of a

malignant cell lineage. Applying ecological theories about

species extinction to understanding why cancer cells regress

(either spontaneously or as the result of treatment), sug-

gests close attention to processes such as habitat destruc-

tion (Kareva 2011), competition, resource limitation, and

factors that disrupt reproduction. Anti-angiogenic therapy

limits blood supply to tumors, but has yielded mixed

results, perhaps because the decrease in resource availability

may select for dispersal or cell motility (Aktipis et al.

2012). Indeed, anti-angiogenic therapy may increase rates

of metastasis (as reviewed in Grepin and Pages 2010). A

more thorough ecological approach may help researchers

anticipate these sorts of consequences and limit unintended

negative effects.

Implications of ecological theory for cancer research

Ecological theory offers tools and perspectives that help

make sense of the complexities of cancer. Closer attention

to the environment in which cancer evolves may suggest

ways to slow cancer progression, enhance the effectiveness

of treatment, or otherwise prolong life. These approaches

include limiting the availability of resources for cancer cells,

altering the social signals and context of neoplastic cells,

and shaping interactions with microbes in ways that limit

the fitness of neoplastic cells. They are parallel to

approaches for understanding and limiting the abilities of

pathogens to establish niches that allow them preferential
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access to resources (such as oxygen and glucose) and pro-

tection from threats (such as circulating immune cells). In

the gastrointestinal tract “especially” perspectives from

ecology, evolution, and microbiology intersect in ways with

profound implications for understanding, preventing, and

treating cancer.

Organism-level evolution shapes cancer
suppression

Overview of cancer suppression

The story of cancer begins about one billion years ago at

the dawn of multicellularity. Before the transition to meta-

zoans, natural selection shaped one-celled organisms for

whatever traits maximized their representation in future

generations, especially maximal proliferation, invasion of

adjacent spaces, and transmission to open niches. The

transformation from unicellular to multicellular life was

possible only when cells that cooperated by inhibiting their

replication gained a selective advantage over those that

went it alone (Maynard Smith and Szathm�ary 1995b). How

can cells that sacrifice their own capacity for replication

succeed in competition with ‘selfish’ individual cells? Socie-

ties of cooperative cells can outcompete cells that try to go

it alone. The success of these societies depends on their

ability to suppress or kill cells that do not cooperate (Nun-

ney this issue). This explains the evolution of the many

mechanisms that suppress cancer, including effective DNA

repair, cell cycle checkpoints, apoptosis, epigenetic modifi-

cations, and tissue architectures that limit the ability of

over-proliferative cells to expand widely (Gatenby et al.

2010). Similarly, Ewald and Swain Ewald (this issue) argue

that evolution has acted on multicellular organisms to cre-

ate five primary barriers to the evolution of metastatic can-

cer: cell cycle arrest, apoptosis, limits to the number of cell

divisions, cell adhesion, and asymmetric cell division. Can-

cer suppression mechanisms like these make it less likely

that benign neoplasms will progress to cancer. In other

words, evolution not only explains why cancer exists, it also

explains why cancer is remarkably rare.

The transition to multicellularity

Prior to the multicellular transition, mechanisms for inhib-

iting cell division were useless, with one crucial exception.

In harsh environments, attempts to replicate are wasteful

and may even kill a cell, so cells that can inhibit replication

in these circumstances get a selective advantage. These

mechanisms may have been co-opted in the transition to

metazoan life, to regulate cell division during development,

and to prevent cancer. This is consistent with genetic evi-

dence for the continuity of mechanisms for programmed

cell death from unicellular organisms to large multicellular

organisms (Nedelcu 2009). During that transition, cancer

suppression must have been a powerful selection force.

Individuals with cells that divided out of control were at a

severe selective disadvantage compared with those capable

of controlling cell division and suppressing cancer to create

functional multicellular bodies. The trade-offs between

cancer suppression and functional multicellularity are cen-

tral, not only to understanding cancer but understanding

multicellular life itself.

Peto’s paradox and body size

Building complex multicellular organisms in the face of

somatic evolution of cells in the body involves a multitude

of trade-offs. As organisms became larger, longer lived,

with orders of magnitude more cells, suppressing cancer

became a larger problem. If we assume that every cell in a

multicellular body has a certain chance of becoming malig-

nant every year, then large, long-lived animals like ele-

phants should have vastly higher rates of cancer than mice.

However, this is not what we observe: large, long-lived ani-

mals seem to have similar (or lower) rates of cancer than

small, shorter lived animals (Caulin and Maley 2011). This

apparent inconsistency is known as Peto’s paradox. What

explains the unexpectedly low rate of cancer in large ani-

mals? Cancer itself has been a selection force that has

shaped cancer suppression mechanisms that are as effective

as they need to be, whatever the size of the organism.

Indeed, emerging evidence suggests that, at least in the case

of elephants, large animals may have more copies of tumor

suppressor genes (Caulin and Maley 2011). Consistent with

these findings, Roche et al. (this issue) describe a model

showing that tumor suppressor genes are more likely to be

activated more in animals with large body sizes. There are

other possible explanations for Peto’s paradox including

the possibility that slower metabolic rates of larger organ-

isms are protective (Caulin and Maley 2011). Investigations

of Peto’s paradox illustrate the power of the comparative

method in evolutionary medicine.

Interestingly, if we look within species, size does influ-

ence cancer incidence. Tall humans are at significantly

greater risk for cancer than shorter humans, with a 10 cm

height increase leading to a relative risk of 1.1 for males

and 1.14 for females. The same pattern holds for other spe-

cies, such as dogs and rodents (as reviewed by Nunney this

issue). This suggests that, within a species, large size should

be correlated with cancer risk, but that among species can-

cer risks should be relatively similar because selection has

shaped cancer suppression mechanisms including include

DNA repair, immune surveillance, cell cycle checkpoint

genes (such as p53), specialized tissue architecture, apopto-

sis, contact inhibition, and telomere length at the species

level. As expected, small and large organisms differ in a

© 2012 The Authors. Published by Blackwell Publishing Ltd 6 (2013) 144–159 151

Aktipis and Nesse Evolutionary foundations for cancer biology



Text Box 1. Evolutionary Reasons for Disease Vulnerability Applied to Cancer
Despite millions of years of evolution of cancer suppression mechanisms, we remain vulnerable to cancer. Nesse and Williams (Nesse

2005; Nesse and Williams 1994) offer six main reasons why natural selection leaves bodies vulnerable to disease (numbered below).

Vulnerability to cancer can be understood within this same framework (bullets underneath numbers):

1 Mismatch with the modern environment: Selection is too slow to adapt bodies to rapidly changing environments,

especially changes induced by human cultures.

• Population migration and skin cancer (Jablonski and Chaplin 2010)

• Caloric availability and obesity as a cancer risk factor (Wolin et al. 2010)

• Higher availability of fats that promote tumor growth (Sauer et al. 2005)

• Tobacco availability and smoking as a cancer risk factor (Peto et al. 2000)

• Differences in number of reproductive cycles and breast cancer (Coe and Steadman 1995; Strassmann 1999;

Eaton et al. 1994)

• Exposure to light at night may increase breast cancer risk (Tomlinson et al. 2007; Blask et al. 2005).

2 Co-evolution with pathogens: Pathogens evolve much faster than larger organisms can, and co-evolution of patho-

gens and their hosts shapes extremely expensive and dangerous defenses.

• The presence of specific microbes is associated with several specific cancers (as reviewed by Arthur and Jobin

2011)

• Viruses induce some cancers (Ewald and Swain Ewald this issue)

• Viruses integrated into our genome may influence cancer susceptibility (Tooby 2011)

3 Constraints on selection: Constraints on what natural selection can do are severe, including both limitations of space

and time that apply to all systems, and the inability to start with a fresh design that limits organic but not mechanical

systems.

• Path-dependence in highly conserved cell cycle control mechanisms (Hartwell and Kastan 1994) may leave

organisms susceptible to cancer or constrain therapeutic options

• Constraints on the immune system’s ability to detect cancer cells (Mapara and Sykes 2004) because cancer cells

are derived from normal cells

4 Trade-offs: Changes that would make a trait less vulnerable to disease often lead to a decrease in fitness due to effects

on other traits.

• Fast and effective wound healing requires cell movement and proliferation (Guo and Dipietro 2010), capacities

that leave an organism more vulnerable to cancer (Hofman and Vouret-Craviari 2012)

• Fast growth may come at the cost of somatic maintenance, leading to cancer vulnerability (De Stavola et al.

2004)

5 Reproduction at the cost of health: Bodies are not shaped by natural selection for health or longevity; they are shaped

to maximize reproductive success.

• Competitiveness in males may lead to higher susceptibility to prostate cancer (Calistro Alvarado this issue)

• Early menarche comes at the cost of higher susceptibility to breast cancer in females (Hsieh et al. 1990)

• Women with BRCA mutations have greater susceptibility to breast cancer but also higher fertility (Smith et al.

2011)

6 Evolved capacities for defense and their costs:Many of the problems people bring to their physicians are not diseases

themselves, but protective defenses shaped by natural selection such as cough, fever, pain, and vomiting. Like every-

thing else, they have costs.

• The capacity for inflammation is crucial not only for defending against infection but also for dealing with rouge

cells. However, inflammation also damages tissues and makes them more vulnerable to cancer (Coussens and

Werb 2002; de Visser et al. 2006).
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variety of these mechanisms (as reviewed by Caulin and

Maley 2011).

Evolutionary explanations for cancer vulnerability

The story of the evolutionary origins of cancer and cancer

suppression mechanisms is mostly one of selection and con-

straints. Cancer exists because cells were originally shaped

to maximize replication. Cancer is rare because selection at

the individual level has shaped powerful mechanisms to

suppress cancer. The crucial remaining question is, why are

not those mechanisms better? One major reason why cancer

cannot be perfectly suppressed is that natural selection has

constraints (see also Greaves 2007). Mutations happen, and

path-dependence means that fundamental design limita-

tions, such as the blind spot in the vertebrate eye, can never

be corrected.

What about the other 5 evolutionary explanations for

vulnerability to disease? (see Box 1) All of them contribute

to explaining our vulnerability to cancer. Co-evolution

with fast-evolving pathogens has already been discussed,

with special emphasis on the benefits pathogens can get by

inducing host cell replication. Closely related are defenses

shaped by natural selection that contribute to cancer, espe-

cially the capacity for inflammation, with its unavoidable

associated tissue damage. That leaves mismatch with mod-

ern environments and trade-offs, including the special

trade-off of reproductive success at the expense of health.

Mismatch

Cancer is not a disease exclusively of modern environ-

ments. Evidence for cancer in ancient mummies (Nerlich

et al. 2006; David and Zimmerman 2010), to say nothing

of other species, makes it obvious that cancer is not evolu-

tionarily novel. Some kinds of cancer are, however, more

common now than in ancestral times, often for obvious

reasons. Lung and throat cancers increase dramatically in

populations where smoking spreads, and decrease where

smoking is curtailed (Peto et al. 2000). Mismatch between

ancestral conditions and modern environments can also

increase cancer rates when subpopulations move to envi-

ronments different from those in which their ancestors

evolved. Melanin pigmentation is a defense against skin

damage, cancer, and perhaps degradation of folic acid as

well. However, deeply pigmented skin also limits vitamin-

D biosynthesis in environments with lower sun exposure.

This is the leading explanation for the evolution of depig-

mented skin outside of the tropics (as reviewed by Jablon-

ski 2004). The migration of light-skinned individuals to

equatorial zones results in a mismatch between skin pig-

ment and sun exposure that explains high rates of skin can-

cer.

More intriguing are increases in cancer rates arising

in association with changes in reproductive patterns.

Breast cancer rates are estimated to be more than ten

times higher for women in the USA compared with

hunter-gatherers (Eaton et al. 1994). This seems likely

to result from increased hormone exposure, starting

with earlier menarche, then augmented by contracep-

tion and years spent in reproductive cycles that would

previously have been spent nursing babies. The average

woman in the USA has over 400 menstrual cycles,

compared with 100 in women in a pastoralist culture

in Africa without birth control (Strassmann 1999). The

role of hormone levels is supported further by a com-

parative study showing a high correlation between

breast cancer rates and average levels of progesterone

(Jasienska and Thune 2001).

When considering all cancers, the role of mismatch with

modern environments is overwhelming. About one-third

of cancers are direct complications of tobacco use, and

another third are reported to be results of obesity, inactivity

or poor diet (American Cancer Society 2012). In addition,

many cancers are caused by radiation, hormone treatments,

environmental exposures, and new pathogens. In contrast,

only about 5% of cancers are products of hereditary genetic

abnormalities. Cancer in modern populations is caused

mainly not by the innate inadequacies of our bodies, but by

exposure to aspects of modern environments for which our

bodies are ill prepared.

Another important contributor to cancer rates in the

modern environments is vastly extended average life span

resulting from general good health and nutrition, and

protection from infection. Hunter-gatherers who reach

adulthood are very likely to live into their 60s or 70s, but

prevention of early death has increased the average life-

span in modern societies by decades, and the proportion

of people over 60 is many times larger than ever before.

Cancer increases with age, as there are increased numbers

of cell divisions, more accumulation of somatic muta-

tions, and declining abilities to suppress cancer (Cancer

Research UK 2012; American Cancer Society 2012). Some

think that selection can have no effect after reproduction

ceases, but this is incorrect; actions at any age that benefit

kin who share your genes can influence an individual’s

contributions to the future gene pool. Nonetheless, the

force of selection declines steeply starting at the age of

first reproduction simply because some individuals die

each year, even in the absence of aging and cancer. As a

result, selection for mechanisms that suppress cancer fades

to nearly nothing at advanced stages of life. As with can-

cer in general, the amazing thing is that the suppression

mechanisms continue to work as well as they do at

advanced ages.
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Trade-offs

Trade-offs are at the very center of evolutionary thinking.

This is nowhere more evident than in applications to can-

cer. Organisms could have better mechanisms to prevent

cancer, but the costs might be high for wound healing,

growth, reproduction, and aging.

A key trade-off for any organism is between limiting

uncontrolled cell division while maintaining the capacity to

repair tissues. To heal a wound, cells must be able to prolif-

erate and move (Guo and Dipietro 2010). However, having

cells with the capacity to proliferate and move leaves an

organism more vulnerable to cancer (Hofman and Vouret-

Craviari 2012). Wound healing also requires the rapid gen-

eration of new blood vessels to nourish and oxygenate the

healing cells (Guo and Dipietro 2010). Given that angio-

genesis is one of the hallmarks of cancer (Hanahan and

Weinberg 2000), the capacity for rapid angiogenesis is

likely to increase vulnerability to cancer, despite its func-

tion in wound healing.

The trade-off between wound healing capacity and can-

cer suppression offers an important area for further work.

In species that encounter greater physical threats (whether

from high rates of injury from predators or high rates of

intra-species aggression), one might expect that fast and

effective wound healing to be a relatively stronger selective

pressure than cancer suppression. Within a species, indi-

viduals with faster wound healing may be more vulnerable

to cancer. Even within individuals, exposure to injuries or

physical threats could conceivably shift physiological sys-

tems toward faster wound healing despite the increased risk

of cancer. This hypothesis predicts that variations in the

prevalence of injury among species (and perhaps among

individuals within a species) may be associated with faster

wound healing and higher cancer risk. These admittedly

speculative suggestions can be tested using the comparative

method, and they gain some support from evidence that

aggression is associated with cancer risk in fish (Fernandez

2010), and that aggression may be associated with faster

wound healing in baboons (Archie et al. 2012).

Embryogenesis and development are essential to multi-

cellularity, but the cell capacities associated with these

functions leave individuals vulnerable to cancer. Develop-

ment involves ‘invasion’ of cells into other developing

tissues during gastrulation. The capacity to transition

from a stationary epithelial cell to a motile mesenchymal

cell (a process known as the Epithelial-Mesenchymal

Transition or EMT) is crucial to this process, but leaves

organisms vulnerable to cancer (Hofman and Vouret-

Craviari 2012).

Fast body growth and sexual maturation also increase

cancer susceptibility. If replication is more accurate in

slower growing organisms, they should have lower risks of

cancer. The possibility that mutations early in development

are especially important influences on cancer risk makes

this doubly interesting (Frank 2007b). However, slower

growth means…slower growth, thus delaying reproduction

and reducing fitness. The advantages of faster growth may

also have trade-offs resulting in increased risk of cancer

because of less DNA repair, less apoptosis of cells with DNA

damage, more generation of mutations earlier in develop-

ment and perhaps higher levels of receptors for growth fac-

tors. This may explain why rates of breast cancer are higher

for those with faster childhood growth (De Stavola et al.

2004), and early menarche (Hsieh et al. 1990), although

increased hormone exposure may contribute as well.

Trade-offs between cancer and aging are illustrated by a

tumor suppressor gene, p53 (TP53). Mice with supernu-

merary copies of p53 are protected from cancer, likely

because they exhibit an enhanced response to DNA damage

(Garcia-Cao et al. 2002). However, if the extra copies are

constitutively expressed, mice show signs of premature

aging (Tyner et al. 2002). If p53 is placed under proper reg-

ulatory control by its endogenous promoters, these super

p53 mice do not age prematurely (Garcia-Cao et al. 2002),

suggesting that aging and cancer are fitness trade-offs that

have shaped the mechanisms that activate p53.

Reproductive success at the expense of health

It is disturbing to recognize that natural selection does not

shape organisms directly for health or longevity. An allele

that increases net reproductive success will tend to increase

in frequency irrespective of its effect on health. This phe-

nomenon is most evident in the higher mortality rates in

men compared with women in most modern societies. Suc-

cess in mating competition has greater reproductive payoffs

for males in many species, so natural selection has shaped

investment in competitive abilities that are proportionately

greater than investment in tissue repair capacities, as com-

pared with women (Kruger and Nesse 2006). In developed

societies, this results in early adult mortality rates three

times higher for men than women.

The role of testosterone is evident in the correlation

between testosterone levels and risk of prostate cancer. In a

sophisticated analysis examining various factors contribut-

ing to epidemiological differences among human sub-

groups and rates of prostate cancer, Alvarado (this issue)

notes that high levels of nutrition in modern Western cul-

tures increases both investment in mate competition and

testosterone levels. Subpopulations where competition is

especially physical and desperate have higher testosterone

levels and increased mating success, but at the cost of

increased rates of prostate cancer. This thesis receives sup-

port from comparative studies showing higher rates of

prostate cancer in human polygamous societies compared
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with monogamous cultures living adjacent in similar cir-

cumstances in Africa (Calistro Alvarado this issue). Trade-

offs of this sort may exist for female susceptibility to breast

cancer as well, as estrogen response to competitive interac-

tions is associated with higher motivation for power (Stan-

ton and Schultheiss 2007).

Many of the examples above fit neatly into evolution-

ary life history theory and its analysis of the trade-offs

between somatic maintenance (i.e., acquiring resources

and keeping one’s body running in tip-top shape) and

reproductive effort (i.e., acquiring mates, and making

and caring for offspring) (Stearns 2000). In environments

with high levels of extrinsic mortality, selection favors

investment in early reproduction at the expense of

somatic maintenance. Furthermore, environmental cues

can calibrate these systems as a function of early experi-

ence or current conditions. Threats and uncertainty may

shift investment from long-term reproductive goals to

immediate survival goals, including up-regulation of the

immune system and inflammation, more investment in

wound healing, and speeding growth and reproductive

maturity, even at the cost of higher long-term cancer

risk. The life history trade-offs involved in differences in

prostate cancer risk across populations noted by Alvarado

(this issue) are a good example. For women, similar

trade-offs may help to explain increased rates of breast

cancer risk after exposure to stressful experiences, such as

war exposure early in life (Keinan-Boker et al. 2009; Elias

et al. 2004; Koupil et al. 2009). In mice, the stress of

early social isolation leads to higher mammary cancer

burden (Williams et al. 2009) and faster reproductive

aging (Hermes and McClintock 2008).

Implications of selection for cancer suppression, and its

limits

Cancer suppression is as ancient as multicellular life. Multi-

cellular organisms must have mechanisms to suppress can-

cer effectively. As evolution shaped larger and longer lived

species, the problem of cancer suppression became more

challenging, and the solutions for suppressing cancer

became remarkably effective. They can never be perfect,

however, for the same six evolutionary reasons that other

bodily traits remain vulnerable to disease.

Conclusion

The benefits of using evolutionary principles to understand

cancer provide a specific example of the benefits of evolu-

tionary medicine more generally. An evolutionary approach

can help us understand why cancer exists and how it pro-

gresses (somatic evolution), how cancer cells interact with

environments (ecological approaches), why it is not more

common (natural selection for cancer suppression mecha-

nisms), and why cancer suppression mechanisms can never

be perfect (constraints, trade-offs, and other evolutionary

reasons for vulnerability to disease). Evolution is essential

for understanding cancer. It provides a framework for

studying the evolutionary origins and progression of cancer

that is parallel and complementary to the Hallmarks of

Cancer framework for studying the mechanisms of cancer.

The importance of an evolutionary understanding cancer

is not just an academic pursuit; it has great clinical utility

that remains largely untapped. Evolutionary theory and

methods have led to critical advances that promise to

improve how we understand and treat cancer. For example,

the finding that diversity in the premalignant biopsies pre-

dicts progression to cancer (Maley et al. 2006; Merlo et al.

2010) suggests methods for risk stratification, and a focus

of clinical resources on those patients with the highest like-

lihood of cancer progression. Also, the development of

novel therapeutic approaches, such as Gatenby’s adaptive

therapy algorithm (Gatenby et al. 2009), holds the promise

of revolutionizing the way some cancers are treated—shift-

ing the focus from eliminating every cancer cell, to control-

ling cancer by manipulating selection forces within the

tumor. An evolutionary analysis of chemotherapy resis-

tance suggests that taking another biopsy after a relapse

may identify resistant mutations and guide targeted second

line therapies. Finally, a clearer understanding of how large

organisms suppress cancer (Caulin and Maley 2011), and

the trade-offs inherent in cancer suppression, will inspire

new strategies for risk assessment and cancer prevention.

An example is provided by Hochberg et al.’s (this issue)

discussion of new strategies to limit or eradicate incipient

neoplasms by reducing microinflammation which may

spur neoplastic progression, and by reducing the accumula-

tion of DNA damage by administering poly ADP ribose

polymerase inhibitors.

In retrospect, it is remarkable that the evolution of cells

within tumors was not recognized until the 1970s with

Nowell’s (1976) paper ‘The clonal evolution of tumor cell

populations.’ Despite subsequent wide acceptance of evolu-

tionary explanations for cancer progression, applications of

evolutionary thinking remain limited; for instance, evolu-

tionary terms are used in only about 1% of the abstracts of

papers on therapeutic resistance (Aktipis et al. 2011).

While applications of evolutionary principles to the prob-

lems of cancer are in their infancy, they are growing fast, as

illustrated by many recent conferences across the world,

and the creation of two centers for the study of evolution

and cancer, the Center for Evolution and Cancer at the

University of California, San Francisco, and the Centre for

Ecological and Evolutionary Cancer Research at University

of Montpellier. We anticipate that evolutionary applica-

tions that advance cancer research and treatment will speed
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the growth of evolutionary medicine more generally, and

that as more physicians have opportunities to learn the

basic science of evolutionary biology, their insights will fur-

ther advance our understanding of cancer, as well as the

rest of medicine.
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