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ABSTRACT: Biological plausibility and other prior information could help select genome-wide association (GWA) findings
for further follow-up, but there is no consensus on which types of knowledge should be considered or how to weight them.
We used experts’ opinions and empirical evidence to estimate the relative importance of 15 types of information at the
single-nucleotide polymorphism (SNP) and gene levels. Opinions were elicited from 10 experts using a two-round Delphi
survey. Empirical evidence was obtained by comparing the frequency of each type of characteristic in SNPs established as
being associated with seven disease traits through GWA meta-analysis and independent replication, with the corresponding
frequency in a randomly selected set of SNPs. SNP and gene characteristics were retrieved using a specially developed
bioinformatics tool. Both the expert and the empirical evidence rated previous association in a meta-analysis or more than one
study as conferring the highest relative probability of true association, whereas previous association in a single study ranked
much lower. High relative probabilities were also observed for location in a functional protein domain, although location in a
region evolutionarily conserved in vertebrates was ranked high by the data but not by the experts. Our empirical evidence did
not support the importance attributed by the experts to whether the gene encodes a protein in a pathway or shows interactions
relevant to the trait. Our findings provide insight into the selection and weighting of different types of knowledge in SNP or
gene prioritization, and point to areas requiring further research.
Genet Epidemiol 37:205–213, 2013. C© 2013 Wiley Periodicals, Inc.
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Introduction

In genome-wide association (GWA) studies, the choice of
which single-nucleotide polymorphisms (SNPs) should be
followed up for replication in independent samples or for
functional investigation can either be based purely on dis-
covery P-values or can incorporate prior knowledge about
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the SNP and its possible association with the phenotype of
interest. Selection of SNPs for replication based purely on
discovery P values is currently the most common approach
[Gögele et al., 2012], but this strategy tends to have low power
to identify good candidates when the discovery sample is rel-
atively small, particularly for SNPs with low minor allele fre-
quency [Liu et al., 2008]. Despite current efforts to increase
power by pooling GWA data from different studies, small dis-
covery sample size can still be a critical issue for rarer disease
outcomes or phenotypes that are difficult to measure, and the
presence of heterogeneity across studies can further reduce
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statistical power [Greene et al., 2009; Ioannidis, 2007; Kraft
et al., 2009]. Incorporating prior information on biological
gene function or findings from previous genetic epidemio-
logical studies can help select the most promising SNPs in a
more informed way, thus, potentially increasing the yield of
downstream studies [Moreau and Tranchevent, 2012]. Such
information may derive from very different sources, includ-
ing gene expression and proteomics studies, genetic studies
in animal models, and previous association or linkage studies
in humans.

In practice, prior knowledge has been used to aid gene pri-
oritization in many different ways. Sometimes investigators
add to the list of GWA top hits sent to replication additional
SNPs within genes known by the authors to have been previ-
ously linked to the phenotype [Gögele et al., 2012], although
this leaves the reader in doubt about whether other SNPs
with even higher support from prior knowledge might have
been omitted. Other authors have used more systematic ways
of identifying relevant prior information for SNP selection,
either focusing on a single type of evidence, such as pathway
analysis, or combining different types of evidence [Cantor
et al., 2010; Saccone et al., 2008; Thomas et al., 2009]. Lack of
evidence on the relative informativeness of different types of
prior knowledge means that decisions on what information is
worth retrieving and how much weight should be attributed
to different types of knowledge are inevitably subjective. This
work provides suitable weights for estimating the likelihood
of true association given certain types of prior knowledge,
and contrasts the views of experts with empirical evidence
taken from published GWA meta-analyses.

Material and Methods

Elicitation of Experts’ Opinions

Ten experts in the field of GWA investigations from differ-
ent backgrounds (molecular biology, genetic epidemiology,
statistical genetics) were asked to participate in the study,
without being told the identity of the other experts [Akins
et al., 2005]. Upon acceptance, a two-round Delphi survey
was used to elicit their opinions through pre-prepared ques-
tionnaires circulated by e-mail. The Delphi method is a form
of structured group communication process, consisting of an
expert survey organized in two (or more) rounds [Adler and
Ziglio, 1996]. In the second round, the anonymous results
for all experts in the previous stage were given as feedback,
and the same experts were asked to reassess their answers
to the same set of questions in the light of their colleagues’
opinions. These questions referred either to the specific SNP
or to the gene(s) lying within 5 kb of the SNP. The questions
did not refer to any specific phenotype, and the experts were
asked to think in general terms.

In the first round, experts were presented with a list of 20
items (Supporting information Table SI), and were asked to
provide their “best guess” on how many times more likely a
SNP was to be truly associated with the phenotype given a cer-
tain characteristic, when compared with a SNP with no such

characteristic (hereafter referred to as the “relative probabil-
ity” associated with that characteristic). Experts were asked to
answer as if each type of evidence were the only external infor-
mation available, so that all types of evidence were treated as
independent. To help ensure consistent interpretation of the
scale, the experts were provided with an example for which
the probability that a random SNP was truly associated with
the disease was around 1 in 10,000, so that an answer of five
times more likely would translate into a probability of true
association of 5 in 10,000.

In the second round, the number of questions was reduced
based on findings from the first round (see section “Statistical
Analyses”) and the experts were asked to provide a revised
answer to each question, together with a 95% interval rep-
resenting their uncertainty, reflecting both their own experi-
ence and the results of the first round averaged across experts
(Supporting information Table SI). Estimates based on the
experts’ opinions are hereafter referred to as “opinions.”

Empirical Evidence

Estimates of Empirical Relative Probabilities

We obtained empirical estimates of the relative probabil-
ity of association for a SNP given a certain type of prior
knowledge using a “case-control” approach. We chose seven
disease traits for which a set of SNPs, referred to as “true
SNPs”, had been identified through large GWA investigations
and had been replicated (Table 1). With “true SNPs” rep-
resenting our “cases” and a set of 1,000 random SNPs as
our “controls,” we estimated relative probabilities of associ-
ation by comparing the proportion of true SNPs for which a
certain type of evidence was present vs. the proportion in ran-
dom SNPs (see section “Statistical Analyses”). A different set
of 1,000 random SNPs was selected for each trait through-
out the genome, from about 2,500,000 SNPs with minor
allele frequency greater than 0.01 (the sampling frame was
that of all SNPs used in the estimated glomerular filtration
rate, eGFRcrea, meta-analysis [Köttgen et al., 2010] and can
be found at: https://intramural.nhlbi.nih.gov/labs/CF/Pages/
CKDGenConsortium.aspx). Because true and random SNPs
were not matched by allele frequency, we also performed a
sensitivity analysis adjusting for allele frequency.

The seven selected traits were estimated glomerular filtra-
tion rate (as a measure of renal dysfunction), Crohn’s disease,
coronary artery disease, rheumatoid arthritis, primary biliary
cirrhosis, type 2 diabetes, and body mass index (as a measure
of obesity). For each trait, the list of true SNPs was compiled
based on the most recent (one or more) GWA meta-analysis
(Table 1), after excluding SNPs that had been selected for
replication based on prior knowledge rather than GWA ev-
idence. Estimates based on empirical evidence are hereafter
referred to as “data.”

To enable a comparison with the relative probabilities given
by the experts, the data-based results for each SNP character-
istic were also considered independently. However, the em-
pirical evidence also enables us to investigate the dependence
between the questions, and to determine the weights that
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Table 1. Data source and number of “true SNPs” for the seven
disease traits used to estimate empirical relative probabilities.
“True SNPs” were single-nucleotide polymorphisms established
as being associated with the seven traits through genome-wide
association meta-analysis and independent replication. MeSH
terms are those used for the bioinformatics retrieval of evidence
on the relationships between the SNPs and the phenotype

Identification of “true SNPs”
MESH terms used in

Trait Data source Number bioinformatics tool

eGFR Köttgen et al., 2010 28 Kidney diseases; kidney
failure; kidney failure,
acute; kidney failure,
chronic; renal
insufficiency, acute;
renal insufficiency,
chronic

Crohn’s disease Franke (2010) Franke
et al., 2010

71 Crohn’s disease

Coronary artery
disease

Schunkert et al., 2011;
Coronary Artery
Disease (C4D)
Genetics Consortium,
2011

30 Coronary artery disease;
angina pectoris;
coronary disease;
coronary restenosis;
coronary stenosis;
coronary thrombosis;
myocardial infarction

Rheumatoid
arthritis

Stahl et al., 2010 18 Arthritis, rheumatoid;
arthritis, juvenile
rheumatoid

Primary biliary
cirrhosis

Mells et al., 2011 18 Liver cirrhosis, biliary

Type 2 diabetes Voight et al., 2010 26 Diabetes mellitus, type 2
BMI Speliotes et al., 2010 32 Obesity

eGFR, estimated glomerular filtration rate; BMI, body mass index.

should be used in a combined estimate that incorporates all
of the SNP characteristics, as shown in the companion paper
by Thompson et al. [2013] (see section Discussion).

Bioinformatics Retrieval of Information

Information on each of the types of prior knowledge
was retrieved for both the true SNPs and for 1,000 ran-
dom SNPs in a standardized and automatic way, by use
of a bioinformatics tool developed for this project. En-
sembl [Flicek et al., 2011; Stabenau et al., 2004] was the
main data source queried by the tool, but additional public
databases were used to answer specific questions, in partic-
ular HuGE (Human Genome Epidemiology) Navigator [Yu
et al., 2008], Pfam (Protein family database) [Finn et al.,
2010], cisRED (cis-regulatory element database) [Robertson
et al., 2006], VISTA Enhancer Browser [Visel et al., 2007], mi-
Randa (microRNA Target Detection Software) [John et al.,
2004], Mouse Genome Informatics (MGI) database [Blake
et al., 2011], BioGPS (gene annotation portal) [Su et al., 2004;
Wu et al., 2009], KEGG (Kyoto Encyclopedia of Genes and
Genomes) [Kanehisa and Goto, 2000], and IntAct molec-
ular interaction database [Aranda et al., 2010]. Support-
ing information Table SII summarizes the structure of each
query, and the source code is available on our website at
https://gemex.eurac.edu/downloads/stats/GenEpi2012.

To allow retrieval of evidence using these databases, the
formulation of the query had, in a few cases, to be modi-

fied slightly from the initial question presented to the experts
(Table 2). All types of evidence regarding relationships be-
tween genes and phenotypes were retrieved using MeSH
(Medical Subject Headings) terms linked to UMLS CUIs
(Unified Medical Language System Concept Unique Iden-
tifier) directly referring to the particular phenotype (Table 1;
Supporting information Table SII), while questions to the ex-
perts had been phrased more generally as “the same/closely
related phenotype.” The potential impact of this difference
was assessed in sensitivity analyses performed on three of
seven traits by repeating the retrieval of evidence after ex-
tending the list of UMLS CUI terms to cover “closely related”
phenotypes. One important difference was related to evi-
dence from previous genetic association studies (Q8, Q9, and
Q11). Because HuGE Navigator only provides information
on whether a gene-phenotype association has been investi-
gated and not on whether it has been established as true, the
search of HuGE Navigator includes publications with nega-
tive findings [Yu et al., 2008]. This problem is typical of all
search engines based on text mining of published literature,
and we are not aware of any alternative public resource, cov-
ering both candidate-gene and GWA studies, which also pro-
vides the result of each investigated association. Formulation
of the question on “functional models” (Q12) also had to be
modified, from “evidence from in vitro and animal studies”
in the question to experts to “evidence from mouse mod-
els (MGI database)” in the bioinformatics query, because
we could not find public databases from which we could
retrieve the required genome-wide information from other
functional models. Finally, the question on the importance of
whether the SNP is in a gene which shows gene/protein (gene-
gene, gene-protein, or protein-protein) interactions relevant
to the phenotype (Q15) was restricted to protein-protein in-
teractions in the bioinformatics query.

We could not obtain by automated methods empirical ev-
idence on the relative probability of association given sup-
porting knowledge from linkage studies (Q10: “The SNP is
in a gene (±5 kb) which is under a linkage peak that has
been associated with the same/closely related phenotype”)
due to the lack of electronically processable public databases
summarizing published genome-wide linkage findings.

Statistical Analyses

For experts’ opinions, correlations between items of the
original questionnaire in the first Delphi round were analyzed
to help reduce the list of types of evidence to be evaluated,
by dropping questions that appeared not to convey much
additional information.

We estimated empirical relative probabilities as odds ratios
of true association with logistic regression analysis, modeling
the probability of being a “true SNP” given the presence of
each type of evidence.

For both opinions and data, relative probabilities were ana-
lyzed after log transformation. Inverse variance meta-analysis
based on either a fixed- or random-effect model, depending
on absence or presence of heterogeneity, respectively, was
used to pool opinions across experts and data across traits.
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Table 2. Pooled relative probabilities of association across the nine experts for experts’ opinion and across the seven traits for
empirical evidence. Example of how questions were formulated (Q13): “How many times more likely to be associated with the
phenotype is a SNP in a gene (±5 kb) which is highly expressed in a tissue relevant to the phenotype compared with a SNP which is
not?” Frequencies for each type of evidence were calculated across all seven traits for “True SNPs”, and across all 7,000
single-nucleotide polymorphisms for “Random SNPs”

Type of prior knowledge Frequency Experts’ opinionsa Empirical evidenceb

Bioinformatics query Random Heterogeneity Heterogeneity
Questions to experts (Changes from True SNPs SNPs Pooled RP Percent of Ib Pooled RP Percent of Ib

(Questionnaire round 2) questionnaire) Percentage Percentage (95%CI) (P value)c (95%CI) (P value)c

Q1: SNP in a transcribed but not No change 58.7 50.6 2.1 33 1.4 0
translated region? (1.6–2.7) (0.150) (1.1–1.8) (0.669)

Q2: SNP in a translated region but does No change 1.4 0.6 2.8 69 4.0 0
not change the amino acid? (1.9–4.2) (0.001) (1.8–8.6) (0.700)

Q3: SNP changes the amino acid but not No change 3.4 0.4 5.3 74 7.7 0
in a functional protein domain? (3.2–8.8) (<0.001) (4.2–14.1) (0.854)

Q4: SNP in a functional protein domain? No change 4.5 0.4 6.4 61 9.6 0
(4.1–9.8) (0.009) (6.1–15.1) (0.822)

Q5: SNP in a regulatory region which No change 3.6 3.5 3.5 41 1.2 0
is not transcribed? (2.5–4.9) (0.094) (0.7–2.3) (0.935)

Q6: SNP in a transcribed regulatory No change 11.2 5.1 4.9 7 2.4 20
region? (3.8–6.4) (0.377) (1.6–3.5) (0.281)

Q7: SNP in a genomic region evolutionary No change 10.3 1.5 1.8 11 5.7 0
conserved in vertebrates? (1.4–2.3) (0.344) (3.8–8.4) (0.888)

Q8: SNP in a gene (±5 kb) that has been SNP in a gene investigated 33.6 1.3 49.3 86 21.1d 64
associated with same/closely related
phenotype in a meta-analysis or in >1
study?

with the phenotype in
meta-analysis or >1 study

(19.7–123.2) (<0.001) (16.6–26.8) (0.010)

Q9: SNP in a gene (±5 kb) that has been SNP in a gene investigated 8.1 2.4 6.4 40 2.4e 57
associated with same/closely related
phenotype in a single study?

with the phenotype in a
single study

(4.7–8.8) (0.104) (1.4–4.2) (0.030)

Q10: SNP in a gene (±5 kb) under NA - - 5.2 52 NA NA
a linkage peak that has been associated
with same/closely related phenotype?

(3.7–7.4) (0.032)

Q11: SNP in a locus within which other SNP in a locus where other 75.8 46.9 9.8 84 3.5 43
SNPs have been associated with the
same/closely related phenotype?

SNPs investigated with the
phenotype

(4.6–21.0) (<0.001) (2.6–4.7) (0.106)

Q12: SNP in a gene (±5 kb) that has been SNP in a gene associated with 1.4 0.1 21.9 68 9.5 0
associated with same/closely related
phenotype in functional models (animal
or in vitro studies)?

the phenotype in mouse
models

(12.1–39.5) (0.002) (2.3–38.5) (0.984)

Q13: SNP in a gene (±5 kb) which is highly No change 10.8 2.7 3.6 83 3.4f 52
expressed in a tissue relevant to the
phenotype?

(1.9–6.7) (<0.001) (2.3–5.0) (0.080)

Q14: SNP in a gene (±5 kb) which encodes No change 26.0 13.3 16.0 84 2.1g 47
for a protein in a pathway relevant to
the phenotype?

(8.3–30.7) (<0.001) (1.5–2.8) (0.079)

Q15: SNP in a gene (±5 kb) which SNP in a gene which shows 39.9 18.7 10.3 83 2.5 0
shows gene/protein interactions relevant
to the phenotype?

protein-protein interactions
relevant to the phenotype

(5.1–20.8) (<0.001) (1.9–3.2) (0.527)

a Pooled estimate obtained from random-effect meta-analysis.
b Pooled estimate obtained from fixed-effect meta-analysis.
c P value from the heterogeneity test (in bold: P-value < 0.10).
d Random effects (RE) meta-analysis: 24.1 (15.5–37.4).
e RE meta-analysis: 7.3 (3.5–15.2).
f RE meta-analysis: 3.9 (2.1–7.4).
g RE meta-analysis: 2.4 (1.6–3.6).
RP, relative probability; 95%CI, 95% confidence intervals.

Between-expert and between-trait heterogeneity was tested
using chi-square tests with statistical significance defined at
P-value <0.10 [Fleiss, 1993], and the magnitude of the het-
erogeneity was estimated using the I2, representing the per-
centage of variability in estimates explained by heterogeneity
rather than sampling error [Higgins et al., 2003].

In this paper, the term “relative probability”, used to in-
dicate the probability of true association for a SNP given a
certain type of prior knowledge compared with a SNP with
no such evidence, refers to a relative risk for opinions and to
an odds ratio for data. However, the impact of such differ-

ence on the comparison between opinions and data should
be minimal, given the very low frequency of the outcome,
represented by the a priori probability of true association for
any given SNP in the genome [Davies et al., 1998].

Results

Experts’ Opinions

Based on the findings of the first Delphi round and
the correlation coefficients between items of the original
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questionnaire (Supporting information Figs. SI and SII), the
number of questions was reduced from 20 to 15. An item was
dropped when it did not seem to convey additional informa-
tion compared with another more general or relevant one, but
only if the two were highly correlated and their relative prob-
abilities very similar across experts (Supporting information
Table SI). Although we had planned to drop types of evidence
showing relative probabilities close to one (i.e., no relevance
at all in support of a true association) consistently across ex-
perts, no such types of evidence were identified. Rewording
of some questions which could have been interpreted either
as mutually exclusive or overlapping was also performed to
improve clarity in the second round (Supporting information
Table SI).

Nine of the ten experts completed the second round. Some
experts were more prone than others to change their opin-
ion toward the average, and the extent of the changes from
the first to the second round also varied across questions
(Supporting information Table SI). Pooled estimates of rela-
tive probabilities across experts are presented in Table 2, and
were obtained using a random-effect meta-analysis model
due to the presence of moderate to large between-expert het-
erogeneity for most questions. Subgroup analyses by experts’
background, biological vs. nonbiological, could not explain
the heterogeneity observed (data not shown). Heterogeneity
disappeared in two questions after excluding one outlying
expert, who provided much higher relative probabilities for
most questions (Supporting information Table SIII).

It turned out that the types of evidence considered as the
most important (relative probabilities >10) were related to
information at the gene level rather than to the SNP itself
(Table 2). In decreasing order of perceived importance, they
were as follows: gene previously associated with the pheno-
type in a meta-analysis or more than one study (Q8); gene
previously associated with the phenotype in functional mod-
els (Q12); gene encoding for a protein in a pathway relevant
to the phenotype (Q14); gene which shows gene/protein in-
teractions relevant to the phenotype (Q15).

Empirical Evidence

The number of true SNPs varied across traits between 18
and 71 (Table 1). Table 2 reports the frequency of each type
of evidence in truly associated and random SNPs, calcu-
lated as a weighted average across traits, while histograms
for each trait are presented in Supporting information Fig-
ure SIII (the full set of results is available on our website
at https://gemex.eurac.edu/downloads/stats/GenEpi2012).
Some types of evidence were commonly observed in the sam-
ple of SNPs and their relative probabilities could be accurately
estimated, while others, often with high relative probabilities,
were rare (genuine low frequency or limited coverage of the
bioinformatics query/data source) and had imprecise esti-
mates. Pooled estimates of relative probabilities across traits
were obtained using a fixed-effect model given the absence
of substantial heterogeneity for most questions. Pooled esti-
mates are presented and compared with those from experts’

opinions in Table 2 and in the forest plots in Figure 1, while
findings for the individual traits are reported in Supporting
information Table SIV.

The type of evidence with the highest relative probability
was previous association of the gene with the phenotype in
a meta-analysis or in more than one study (Q8), whereas
previous association in a single study (Q9) showed a much
lower relative probability. Although this was in line with ex-
perts’ opinions, estimates for the two types of evidence were
substantially lower in the data, 21 (95% confidence interval:
17–27) vs. 49 (20–123) for association in meta-analysis/more
than one study, and 2 (1–4) vs. 6 (5–9) for association in sin-
gle study. Similarly, the relative probability for whether the
SNP is in a locus within which other SNPs have been previ-
ously associated with the phenotype (Q11) was significantly
lower in data compared with opinions, 4 (3–5) vs. 10 (5–21).
The difference between the data and the opinions for these
three types of evidence might be partly explained by the fact
that the bioinformatics tool retrieved evidence on “previous
investigation” rather than “previous association.” This repre-
sents a measurement error in the assessment of the exposure
(presence or absence of previous association), and as such
is more likely to introduce bias toward the null, leading to
underestimation of the relative probability in the data.

The type of evidence with the second highest relative prob-
ability in the data was whether the SNP is in a functional
protein domain (Q4), with relative probability higher than
in experts’ opinions, 10 (6–15) vs. 6 (4–10). Similarly to the
opinions, relative probabilities for the other three questions
on the SNP’s possible functional role (transcribed, Q1; trans-
lated, Q2; changes the amino acid, Q3) and the two questions
on location in regulatory regions (not transcribed, Q5; tran-
scribed, Q6) reflected their hierarchical structure. Relative
probabilities for questions dealing with regulatory regions
were significantly lower than those based on opinions, and
only the question addressing whether the SNP is located in a
transcribed region was statistically different from one.

Previous association of the gene with the phenotype in
functional models (Q12) had the third highest relative prob-
ability. The scarcity of the data available for this type of ev-
idence, which was limited to mouse models, made the esti-
mate imprecise, 10 (2–39), and the observed difference with
the experts’ opinions (22; 12–40) could be due to chance.

Location of the SNP in a genomic region evolutionarily
conserved in vertebrates (Q7) had a relative probability of
6 (4–8), much higher than in experts’ opinions. Data and
opinions gave very similar estimates for high gene expression
in a tissue relevant to the phenotype (Q13), with relative
probabilities around 3. Finally, whether the gene encodes for a
protein which is in a pathway (Q14) or shows protein/protein
interactions (Q15) relevant to the phenotype had relative
probabilities around 2, significantly lower than in experts’
opinions (16 and 10, respectively).

Results of the sensitivity analyses performed for three
of the seven traits by extending the list of UMLS CUI
terms to cover “closely related” phenotypes, as formulated
in the questions to experts, were similar to the main results
(Supporting information Table SV). Similarly, adjusting the
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Figure 1. Plots of the relative probabilities of association for each type of prior knowledge from empirical evidence (with 95% confidence
intervals) compared with those based on experts’ opinions (with 95% intervals). Q10 is omitted as empirical evidence is not available (data could
not be processed electronically). *Questions for which the difference in estimates from data vs. opinions are statistically significant (P-value <
0.05).
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analyses for allele frequency did not change the results (data
not shown).

Dependence Between Questions

The degree of dependence between questions, as expressed
by the correlation matrix of 7,000 random SNPs, is shown
in Supporting information Table SVI. The correlation of Q7
(SNP in a region evolutionary conserved in vertebrates) with
Q2, Q3, and Q4 (indicating a possible functional role, from
translated without amino acid change to translated in func-
tional protein domain) may be due to functional regions
being more likely to be conserved [Levenstien and Klein,
2011]. Similarly, the correlation between Q14 (SNP in a gene
encoding for a protein in a pathway relevant to the phe-
notype) and Q15 (SNP in a gene showing protein-protein
interactions relevant to the phenotype) might be explained
by the fact that proteins in a pathway may also interact with
each other [Kirouac et al., 2012]. The interdependence of
the different types of prior knowledge needs to be accounted
for when they are used together through conditional analyses
that jointly model them, as discussed in the companion paper
by Thompson et al. [2013].

Discussion

The use of prior knowledge may improve the selection of
GWA signals for follow-up, thus increasing the probability
of a successful replication or functional investigation. Stud-
ies which have systematically incorporated prior knowledge
from multiple data sources using bioinformatics tools have
attributed equal importance to the different types of evidence
[Aerts et al., 2006; Chen et al., 2011; Sookoian et al., 2009],
and yet our findings suggest that this may be suboptimal.
Our study convincingly shows that, for commonly investi-
gated traits, evidence from previous association studies on
the phenotype of interest represents the most informative
type of knowledge for gene prioritization, although it does
not help discover novel genes. The empirical findings suggest
that SNPs in genes previously investigated in relation with
the phenotype in a meta-analysis or in more than one study
are 21 times more likely to represent true associations, with
this being reduced to two times if previous investigation is
limited to a single study.

Our findings suggest that location of the SNP in a func-
tional protein domain may increase the probability of true
association up to 10 times, with progressively decreasing ef-
fect for whether the SNP changes the amino acid but is not
in a functional protein domain, and whether the SNP is in a
translated region but does not change the amino acid. Despite
the very low proportion of SNPs with these characteristics,
between 1% and 5% in the SNPs associated with our seven
traits, information on SNP characteristics can be retrieved
easily and accurately so that these types of evidence are worth
considering in the prioritization of GWA signals. Similarly,
location of the SNP in a gene previously associated with the
phenotype in functional models could substantially increase

the probability of true association by nine times according to
our empirical findings limited to mouse data, but up to 23
times in experts’ opinions regarding animal and in vitro mod-
els in general. The mouse model is widely used [Hardouin
and Nagy, 2000; Rosenthal and Brown, 2007], and the ob-
served empirical estimates were highly consistent across the
seven traits considered, suggesting that retrieving such infor-
mation can still be useful when other functional data cannot
be accessed. However, its frequency was very low (1% in our
“true SNPs”), and the practical importance of incorporating
functional evidence in gene prioritization would increase by
considering additional models.

It is interesting to note how studies which have tried to
incorporate prior knowledge have often disregarded knowl-
edge of association of the gene with the phenotype of interest
from human and animal studies, but rather focused on in-
formation on pathways or protein-protein interactions, SNP
characteristics and gene expression data [Chen et al., 2009;
Parikh et al., 2009; Saccone et al., 2008; Zhong et al., 2010].
Use of gene pathway information for gene prioritization has
received much attention and bioinformatics tools have been
developed to allow retrieval of such information at genome-
wide level [Cantor et al., 2010; Elbers et al., 2009; Zhong et al.,
2010]. This is reflected by experts’ opinion, which ranked
this type of information as the third most important. How-
ever, our empirical findings based on pathway information
retrieved using KEGG [Kanehisa and Goto, 2000] do not
support this view. This may be partly explained by the diffi-
culty of defining the boundaries of a pathway, but nonetheless
suggests that more investigation is needed to evaluate the po-
tential value of pathway information and how it should be
modeled. Similarly, our empirical findings did not support
the importance attributed by the experts to information on
whether the gene product shows evidence of interactions rel-
evant to the phenotype. On the other hand, our empirical
findings suggest that presence of the SNP in a genomic re-
gion evolutionarily conserved in vertebrates could increase
the probability of true association by six times, contrary to
experts’ opinion that ranked this as the least important type
of knowledge. Although it occurred in only 10% of our “true
SNPs”, this type of evidence can be easily and accurately re-
trieved and may well be incorporated in gene prioritization.
An interesting follow-up of our study will be to investigate
the impact of the choice of a 5 kb window for mapping SNPs
to genes, and to provide evidence on what window might be
the most informative. Such choice is likely to influence the
estimated relative probability of association of many types of
knowledge, including whether the gene encodes a protein in
a pathway.

Limitations of the Study

Our empirical findings are based on only seven exam-
ples of gene-disease associations, but their generalization
is supported by the high consistency observed across traits
for most types of evidence. The precision of our empirical
weights could be improved by considering more traits and
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increasing the number of “true SNPs” analyzed. This could
be done systematically using publicly available databases such
as the NHGRI GWAS Catalog, a continuously updated cata-
log of findings from published GWA investigations [Hindorff
et al., 2009]. As for the selection of “true SNPs” for each of the
seven traits, although the completeness of our lists is not an
issue, its representativeness is, and it may well be that SNPs
identified by GWA investigations and replicated are not rep-
resentative of all true genetic associations, particularly those
with weaker effects.

Many of the “true SNPs” in our seven traits may be SNPs in
linkage disequilibrium with the real causal variants, so that
types of evidence referring to the characteristics of the SNP
(e.g., “the SNP is in a functional protein domain”) may be
negative for the “true SNP” only because this is in fact only
a proxy of the causal one. This, which can be interpreted as
measurement error in the definition of our “cases”, is likely
to introduce bias toward the null and therefore lead to un-
derestimation of relative probabilities, particularly for types
of evidence referring to SNP characteristics. Other forms of
misclassification could in theory lead to a bias away from the
null, for example, if, because of the way in which the GWA
studies have been conducted, a “true SNP” is more likely to
have been identified if it has certain of the characteristics,
or due to inaccuracies in the SNP annotations. Empirical es-
timates of relative probabilities of true associations will be
different in the future, when GWA findings will be based on
newer sequencing and genotyping technology resulting in
higher genome coverage and improved reliability. In general,
empirical estimates of the relative importance of different
types of evidence will depend on current knowledge and data
availability, thus requiring continual updating of the infor-
mation extracted from the databases.

Regarding the retrieval of the evidence, our study shows
the limitations of using bioinformatics tools that search for
prior knowledge at genome-wide level from publicly avail-
able databases, and the practical limits on certain types of
information, such as evidence from linkage studies, func-
tional studies other than mouse models, and eQTL databases
for gene expression from multiple tissue sources. Moreover,
data quality strongly depends on the coverage provided by the
interrogated databases, which suggests that integrating infor-
mation on a certain type of evidence from multiple databases
may be preferable to relying on a single one.

Practical use of our Findings

Investigators willing to incorporate prior information on
biological function or evidence from previous studies in the
selection of GWA hits for follow-up encounter a few practical
issues as follows: What types of prior knowledge are worth-
while considering? How can prior knowledge be retrieved in a
systematic way? How can prior knowledge be combined with
the discovery P values? How should different types of knowl-
edge be differentially weighted to provide an overall a priori
probability of association for each SNP? Our findings an-
swer the question about the relative importance of different

types of prior knowledge and show the feasibility of auto-
matic retrieval of such information using a bioinformatics
tool that queries multiple data sources. A companion paper
by Thompson et al. [2013] demonstrates the use of prior
knowledge in combination with discovery P values within
a Bayesian framework to provide a posterior probability of
replication, which can be used to rank the most promising
SNPs for follow-up. That work combines our estimates of
relative probabilities for 14 types of knowledge and calculates
the overall prior probability of association for a given SNP.

Thompson et al. demonstrate that the success of replica-
tion is increased when the selection of SNPs incorporates
prior knowledge using a simple approximate Bayesian anal-
ysis, compared with the classical approach purely based on
discovery P values.
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