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Microfabricated Nanotopological Surfaces for Study of 
Adhesion-Dependent Cell Mechanosensitivity

  Weiqiang   Chen  ,     Yubing   Sun  ,     and   Jianping   Fu   *   
 Cells exhibit high sensitivity and diverse responses to the intrinsic nanotopography 
of the extracellular matrix through their nanoscale cellular sensing machinery. A 
simple microfabrication method for precise control and spatial patterning of the local 
nanoroughness on glass surfaces by using photolithography and reactive ion etching 
is reported. It is demonstrated that local nanoroughness as a biophysical cue could 
regulate a diverse array of NIH/3T3 fi broblast behaviors, including cell morphology, 
adhesion, proliferation, migration, and cytoskeleton contractility. The capability to 
control and further predict cellular responses to nanoroughness might suggest novel 
methods for developing biomaterials mimicking nanotopographic structures in vivo 
for functional tissue engineering. 
  1. Introduction 

 Living cells grow and function in tissues where they are 

tightly associated with a three-dimensional porous network 

of scaffolding known as the extracellular matrix (ECM). Indi-

vidual components and the architecture of the ECM and the 

cellular structures regulating cell–ECM interactions exhibit 

abundant nanoscale features that contribute to cell–ECM 

signaling. [  1–3  ]  The ECM consists predominantly of interwoven 

proteins such as collagen, elastin, fi bronectin, vitronectin, 

and laminin acting as adhesive ligands with dimensions 

ranging from a few nanometers to hundreds of nanometers. [  4  ]  

Integrins, the transmembrane receptors directly linking the 

ECM to the intracellular actin cytoskeleton (CSK), are the 

most important cell adhesion molecules and are on the scale 

of tens of nanometers as well. [  4  ]  In recent years, increasing 

evidence has indicated that the cellular sensory machinery is 
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capable of integrating the complex nanoscale information at 

the cell/ECM interface into a coherent environmental signal 

to regulate intracellular signaling and thus cell function. [  1  ,  3  ,  5  ,  6  ]  

Therefore, the local nanoscale topography in the ECM, like 

nanoroughness, can provide a potent regulatory signal to reg-

ulate cellular behaviors, such as cell morphology, migratory 

property, cell signaling, gene expression profi le, and stem cell 

differentiation. [  2  ,  7–14  ]  

 Study of adhesion-dependent cell mechanosensitivity 

to nanoscale topography is critically dependent on the fab-

rication methods available to generate precisely controlled 

nanoroughness. Electron-beam and nanoimprint lithography 

techniques have been broadly applied to generate surfaces 

with nanoscale patterns. [  11  ,  15  ]  However, electron-beam lithog-

raphy is a serial exposure technique and thus has the inherent 

disadvantage of low throughput, especially when writing 

dense patterns over a large area. Nanoimprint lithography 

is a simple nanolithography process with low cost and high 

resolution. However, it still requires the imprint mold to be 

generated fi rst using electron-beam lithography, thus inher-

iting the inherent low-throughput limitation. Other methods 

to generate nanotopographic surfaces rely on either chemical 

treatments of polymer and metal surfaces or chemical vapor 

deposition of carbon nanofi bers. [  8  ,  9  ,  16–19  ]  However, these 

approaches can require multiple and complex processes, and 

lack the precise control and reproducibility of nanoscale 

topography. 

 The intrinsic mechanosensitive property of adherent 

cells to nanoscale topography is still far from completely 
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     Figure  1 .     A) Schematic of the fabrication process for patterned nanorough glass substrates using 
photolithography followed by RIE. B) Phase-contrast microscopic and C) immunofl uorescence 
images showing single NIH/3T3 fi broblasts selectively adhering and conforming to nanorough 
islands ( R q    =  70 nm) of different geometries on the glass surface 4 h after initial cell seeding. 
D) Immunofl uorescence images of clusters of NIH/3T3 fi broblasts selectively attaching and 
conforming to nanorough islands ( R q    =  70 nm) of different geometries on the glass surface 48 h 
after initial cell seeding. C,D) Cells were co-stained with 4 ′ ,6-diamidino-2-phenylindole (DAPI; 
blue) and phalloidin (red) for visualization of nuclei and actin microfi laments, respectively. 
E) SEM images of NIH/3T3 fi broblasts on smooth ( R q    =  1 nm; top) and nanorough ( R q    =  
150 nm; bottom) substrates.  
understood. Thus, the ability to robustly 

and reproducibly generate uniformly 

controlled and precisely defi ned surfaces 

presented with nanotopographic cues will 

be necessary for exploring the mechano-

sensitive property of adherent cells, which 

will have important implications for the 

developing fi elds of functional tissue engi-

neering and regenerative medicine. 

 Herein, we propose a simple yet effec-

tive microfabrication method for precise 

control and spatial patterning of local 

nanoroughness on glass surfaces by using 

photolithography followed by reactive 

ion etching (RIE). Our method is of low 

cost and high throughput and can gen-

erate wafer-scale surfaces with precisely 

controlled and patterned nanoroughness. 

To illustrate the general application of 

our RIE-generated nanorough glass sur-

faces, we demonstrated that local random 

nanoroughness could provide a potent 

biophysical signal to regulate a diverse 

array of functions of NIH/3T3 mouse 

embryonic fi broblasts, including cell mor-

phology, cell adhesion, proliferation, and 
migration. We further explored the potential underlying 

mechanotransductive signals for topography sensing, and 

showed that adhesion-dependent cell mechanosensitivity to 

nanotopography might be regulated through integrin-medi-

ated adhesion signaling and actin cytoskeletal contractility. 

Thus, the integrated behavioral and intracellular responses 

of NIH/3T3 fi broblasts clearly demonstrated the important 

role of nanotopography as a potent biophysical signal in reg-

ulating cellular functions. This study could provide exciting 

new avenues to use RIE-generated nanorough surfaces to 

advance our current understanding of adhesion-dependent 

cell mechanosensitivity.   

 2. Results and Discussion 

  2.1. Fabrication Method 

 Precisely controlled and locally patterned nanoroughness 

was generated on silica-based glass surfaces by using pho-

tolithography followed by RIE ( Figure    1  A). The roughness 

of glass surfaces was characterized with atomic force micro-

scopy (AFM) using the root-mean-square (RMS) roughness 

 R q   (see Experimental Section for details of fabrication and 

surface characterization of nanorough glass surfaces). The 

initial surface roughness  R q   of unprocessed glass wafers was 

about 1 nm. Nanoscale roughness ranging from 1 to 150 nm 

on the glass surface was precisely generated when the glass 

wafers were processed with RIE using a mixture of SF 6 , C 4 F 8 , 

He, and Ar gases for different periods of time. Etching of the 

silica-based glass wafer was consistent with a process of the 

ion-enhanced chemical reaction and physical sputtering. [  20  ,  21  ]  

Interestingly, since small concentrations of impurities such as 
www.small-journal.com © 2013 Wiley-VCH V
Al, K, and Na exist in the silica glass, these impurities could 

result in accumulations of less volatile species (such as AlF 3 , 

KF, NaF, etc.) on the glass surface during the RIE process. [  20  ,  21  ]  

These compound clusters effectively generated the so-called 

“micro masking” effect that could randomly shadow the glass 

surface and thus result in nanoscale roughening of the glass 

surface during RIE. [  20  ]  Under the same RIE conditions, the 

nanoroughness level of the glass surface (or  R q  ) was solely 

determined by the RIE process duration.  

 Traditional photolithography was utilized for spatially 

patterning of nanoroughness on the glass surface. Here, glass 

wafers were fi rst spin-coated with photoresist, and the pho-

toresist layer was then patterned by photolithography to 

physically expose different glass regions of various sizes and 

shapes for subsequent RIE etching. After the RIE process, 

photoresist was stripped using solvents, and the glass wafers 

were cleaned with distilled water and a piranha solution 

(4:1 H 2 SO 4 /H 2 O 2 ) to remove organic residues from the glass 

surface. [  22  ]  Thus, by precisely controlling photolithography 

and RIE, we could specify the location, shape, area, and 

nanoroughness level of different nanorough regions on glass 

substrates (Figure  1 B).   

 2.2. Functional Responses of NIH/3T3 Fibroblasts 

 To explore the adhesion-dependent cell mechanosensi-

tivity to nanotopography, experiments were performed 

with NIH/3T3 fi broblasts using the RIE-generated nano-

topological glass surfaces. Unlike most of the nanotopo-

graphic substrates used in previous studies, which require 

surface functionalization with ECM proteins to promote cell 

adhesion, the RIE-generated nanotopological glass surfaces 
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     Figure  2 .     A) Cell adhesion rate of NIH/3T3 fi broblasts as a function of 
nanoroughness. Data were collected at both 2 and 4 h after initial cell 
seeding. B) Proliferation rate of NIH/3T3 cells after 8 h of culture as a 
function of nanoroughness. Data in (A) and (B) represent the means  ±  
standard error of the mean (s.e.m.) from three independent experiments 
( n   =  3). C) Representative immunofl uorescence images of DAPI-stained 
nuclei of NIH/3T3 fi broblasts plated on smooth ( R q    =  1 nm; top) and 
nanorough ( R q    =  150 nm; bottom) substrates after 4 h of culture. These 
images were used for calculation of the cell adhesion rate shown in (A). 
D) Representative immunofl uorescence images of NIH/3T3 fi broblasts 
stained with Hoechst 33342 (blue) and EdU (pink) for enumeration of 
proliferating cells on smooth ( R q    =  1 nm) and nanorough ( R q    =  150 nm) 
substrates after 8 h of culture. These images were used for calculation 
of the cell proliferation rate shown in (B).  
did not require additional precoating or surface functionali-

zation with ECM protein. 

 NIH/3T3 fi broblasts demonstrated signifi cant adhesion 

selectivity between different levels of nanoroughness on glass 

surfaces. After 4 h of culture on a glass surface patterned with 

differently shaped nanorough islands surrounded by smooth 

surfaces, single NIH/3T3 fi broblasts selectively adhered to 

the nanorough islands where  R q    =  70 nm, but not on the smooth 

areas where  R q    =  1 nm (Figure  1 B). During this selective 

adhesion process, NIH/3T3 fi broblasts spread to conform to 

the different geometries of the nanorough islands (Figure  1 C). 

In addition, when a high concentration of single NIH/3T3 

fi broblasts was seeded onto a glass surface patterned with 

large nanorough islands, the cells prominently attached and 

aggregated to the patterned nanorough islands to form cell 

colonies that conformed to the different geometries of the 

nanorough islands (Figure  1 D). 

 We further observed that NIH/3T3 fi broblasts could 

exhibit distinct morphological features when plated on smooth 

and nanorough glass surfaces. Figure  1 E shows scanning elec-

tron microscopy (SEM) images of single NIH/3T3 fi brob-

lasts 24 h after cell seeding. A highly branched, fi lopodia-rich 

morphology of single NIH/3T3 fi broblasts was observed 

on smooth glass surfaces where  R q    =  1 nm (Figure  1 E, 

top), as compared to the more confi ned cell morphology with 

fewer and shorter cytoplasmic extensions on the nanorough 

surface where  R q    =  150 nm (Figure  1 E, bottom). 

 We quantifi ed adhesion selectivity, defi ned as the ratio 

of the number of cells adhered to nanorough islands to the 

total number of cells initially seeded, of NIH/3T3 fi brob-

lasts to patterned nanorough islands ( R q    =  70 nm) 4 h after 

cell seeding to be about 91%, which suggests that patterned 

nanoroughness could serve as an effective means to control 

the adhesion location, cell shape or spread area, and colony 

geometries of NIH/3T3 cells. We further quantifi ed the cell 

adhesion rate, defi ned as the ratio of the number of cells 

adhered to the glass surface to the total number of cells ini-

tially seeded, 2 and 4 h after cell seeding against the surface 

roughness ( R q    =  1, 50, 100 and 150 nm). Our results showed a 

great enhancement of cell attachment of NIH/3T3 fi broblasts 

to nanorough glass surfaces with larger  R q  , at least for the 

fi rst 4 h after cell seeding ( Figure    2  A and C).  

 The standard 5-ethynyl-2 ′ -deoxyuridine (EdU) cell pro-

liferation assay (see Experimental Section for details) was 

performed to characterize the effect of the nanotopological 

cue on cell proliferation. NIH/3T3 fi broblasts were seeded at 

a low density (3000 cells cm  − 2 ) on glass substrates with dif-

ferent values of  R q   (1, 50, 100, and 150 nm). Our results in 

Figure  2 B and D show that NIH/3T3 fi broblasts proliferated 

more rapidly on the RIE-generated nanorough surfaces, on 

which the cell proliferation rate was as high as 84.3% for  R q    =  

150 nm, as compared to the cells on smooth substrate ( R q    =  

1 nm) with a lower cell proliferation rate of 57.8%. 

 We further explored whether the migratory behavior 

of NIH/3T3 fi broblasts would be affected by the nanotopo-

graphic cue. Live-cell time-lapse images were recorded for 

individual migrating NIH/3T3 fi broblasts at 5-min intervals 

for a total period of 20 h. Cell migration trajectories and 

speeds were extracted from these images using ImageJ and 
© 2013 Wiley-VCH Verlag Gmbsmall 2013, 9, No. 1, 81–89
the manual object tracking plug-in MTrackJ ( Figure    3  A). 

NIH/3T3 fi broblasts showed an increased migration speed 

against the surface roughness (Figure  3 B). For example, 

the migration speed of NIH/3T3 fi broblasts on the nano-

rough surface where  R q    =  150 nm was 0.75  μ m min  − 1 , about 

2.7 times greater than the speed on the smooth substrate 

where  R q    =  1 nm.  

 Since cell adhesion and migration properties of NIH/3T3 

fi broblasts were critically regulated by nanotopographic cue, 

we next examined whether NIH/3T3 fi broblasts would show 

any directional preference when crossing a topology boundary 

between smooth and nanorough regions patterned on the 

glass surface. We fi rst observed that when NIH/3T3 fi brob-

lasts were initially located within a nanorough island, their 
83www.small-journal.comH & Co. KGaA, Weinheim
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     Figure  3 .     A) Migration trajectories of NIH/3T3 fi broblasts on smooth ( R q    =  1 nm) and 
nanorough ( R q    =  150 nm) substrates during a period of 6.5 h after 24 h of culture. These 
trajectories were used for calculation of cell migration speed shown in (B). B) Migration speed 
of NIH/3T3 cells as a function of nanoroughness. Data represent the means  ±  s.e.m. from 
ten independent experiments ( n   =  10). C) Migration trajectories of NIH/3T3 fi broblasts that 
were initially either outside (left) or inside (right) a circular nanorough pattern ( R q    =  70 nm). 
D) Migration trajectory showing a confi ned cell migration in a circular nanorough loop ( R q    =  
70 nm). E) Boundary-crossing rate of NIH/3T3 fi broblasts, for cells approaching the topography 
boundary either from the smooth ( R q    =  1 nm) to the nanorough ( R q    =  70 nm) side (S → R) or 
from the nanorough to smooth side (R → S), as indicated in the plot. Data represent the means 
 ±  s.e.m. from fi ve independent experiments. Statistical analysis was performed by employing 
Student’s  t -test.  ∗  ∗  indicates  p   <  0.01.  
migration trajectory could be confi ned within the nanorough 

island for a long period of time (Figure  3 C and Supporting 

Information Figure S1). Further, when fi broblasts approached 

the topology boundary of a nanorough island from the nano-

rough side, they would most likely turn around or retract 

from the topology boundary and would not migrate across 

the boundary of the nanorough island (Figure  3 C; Supporting 

Video V1). In contrast, fi broblasts approaching the topology 

boundary of a nanorough island from the smooth side could 

easily migrate across the boundary to enter the nanorough 

island (Figure  3 C ;  Supporting Video V2). We further quanti-

fi ed the boundary-crossing rate, defi ned as the percentage of 

cells that successfully migrated across the topology boundary, 

for cells approaching the boundary either from the smooth 

to nanorough side (S → R; cross-in) or from the nanorough to 

smooth side (R → S; cross-out). The cross-in rate of NIH/3T3 

fi broblasts for a nanorough pattern with  R q    =  70 nm was 

84%, much greater than the cross-out rate, which was only 

13% (Figure  3 E). 

 The migration preference of NIH/3T3 fi broblasts on 

nanorough surfaces further allowed the noninvasive control 

of cell migration by using nanorough patterns on the glass 

surface. For example, we demonstrated that the migration of 

NIH/3T3 fi broblasts followed a circular loop-shaped nano-

rough pattern (Figure  3 D and Supporting Videos V3–V6). 

Together, our results demonstrated that the RIE-generated 

nanotopological cue could provide a potent regulatory signal 

to mediate a diverse array of NIH/3T3 fi broblast behav-

iors including cell morphology, adhesion, proliferation, and 

migration.   
www.small-journal.com © 2013 Wiley-VCH Verlag GmbH & Co. KGaA,
 2.3. Nanotopographic Regulation of Focal 
Adhesion Formation 

 Although much effort has been focused on 

functional studies of the nanotopographic 

sensing by adherent cells, the molecular 

mechanism for adhesion-dependent cell 

mechanosensitivity to nanotopography 

remains largely undetermined. Existing 

evidence has suggested that integrin-medi-

ated focal adhesion (FA) signaling, which 

is critical for many cellular functions and 

strongly dependent on their nanoscale 

molecular arrangement and dynamic 

organization, might play an important role 

in regulating cell mechanosensitivity to 

nanotopography. [  3  ]  

 To investigate the likely involve-

ment of integrin-mediated FA forma-

tion in regulating topological sensing of 

NIH/3T3 fi broblasts, we examined FA 

formation of single NIH/3T3 fi broblasts 

plated on nanorough glass surfaces. After 

24 h of culture, single NIH/3T3 fi brob-

lasts exhibited distinct FA formation and 

organization on the smooth and nanor-

ough glass surfaces, as characterized by 

immunofl uorescence staining of vinculin, 

a FA protein ( Figure    4  A). On the smooth 
glass surface where  R q    =  1 nm, mature and prominent vin-

culin-containing FAs formed primarily on the periphery of 

the cells. In contrast, on the nanorough surface where  R q   
 =  150 nm, NIH/3T3 fi broblasts exhibited randomly distrib-

uted, punctate FAs of small areas throughout the entire 

cell spread area. Morphometric analysis of cell populations 

suggested that on the nanorough glass surface with  R q    =  

150 nm, NIH/3T3 fi broblasts had smaller mean cell spread 

area and total FA area per cell than the cells on the smooth 

surface (Figure  4 D,E). Furthermore, our quantitative results 

indicated that NIH/3T3 fi broblasts on the nanorough sur-

face formed FAs of smaller sizes but with a greater den-

sity as compared with the cells on the smooth surface 

(Figure  4 E–H). These small, punctate FAs suggested rapid 

FA turnover and weak actomyosin CSK contractility, which 

could lead to disorganized actin fi laments and rapid cell 

migration.  

 We further performed single-cell correlative studies by 

plotting single-cell data of the total FA area per cell and 

number of FAs per cell against cell spread area (Figure  4 B,C). 

Figure  4 B shows that all the single-cell data of the total FA 

area per cell collapsed and followed a single trend against cell 

spread area, regardless of surface roughness, thus indicating 

comparable total FA area per cell on both smooth and rough 

surfaces. However, all the single-cell data of the number of 

FAs per cell on smooth ( R q    =  1 nm) and nanorough ( R q    =  50, 

100, 150 nm) surfaces followed different trends against cell 

spread area, evidenced by the different slopes of the fi tting 

curves, thereby indicating increased FA number per cell area 

on nanorough surfaces (Figure  4 C). 
 Weinheim small 2013, 9, No. 1, 81–89
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     Figure  4 .     A) Representative immunofl uorescence images of NIH/3T3 fi broblasts on smooth ( R q    =  1 nm) and nanorough ( R q    =  150 nm) substrates 
after 24 h of culture. Cells were co-stained for nuclei with DAPI (blue), actin (red), and vinculin (green). B–H) Quantitative and correlative analysis 
of cell morphology and FA formation of NIH/3T3 fi broblasts; (B) and (C) show the total FA area per cell (B) and the number of FAs per cell (C) as 
a function of cell area. Each data point in (B) and (C) represents an individual cell plated on either smooth ( R q    =  1 nm; cell number  n   =  50) or 
nanorough ( R q    =  50, 100, 150 nm; cell number  n   =  191) surfaces. Data trends in (B) and (C) were plotted using linear least-squares fi tting (black 
lines), with the slope values  ±  s.e.m. indicated. (D)–(H) plot cell area (D), total FA area per cell (E), average single FA area (F), total number of 
FAs per cell (G), and number of FAs per cell area (H) as a function of nanoroughness. Data represent the means  ±  s.e.m. For each data point, cell 
number  n   >  50.  
 Taken together, our comparative and correlative studies 

strongly indicated that FA formation and organization were 

tightly coupled cellular mechanosensory systems involved 

in transducing nanotopography signals in the local cellular 

microenvironment into intracellular responses. The molecular 

arrangement and dynamic organization of integrin-mediated 

FAs appeared to be sensitive and responsive to local presen-

tation of a nanotopographical cue.   

 2.4. Nanotopographic Regulation of Cytoskeletal 
Contractility 

 The small, punctate FAs and confi ned cell spreading of 

NIH/3T3 fi broblasts on the nanorough glass surface impli-

cated the involvement of actin CSK remodeling in adhesion-

dependent cell mechanosensitivity to nanotopography. [  23  ]  

 To investigate the potential involvement of actin CSK 

remodeling in adhesion-dependent cell mechanosensitivity 

to nanotopography, we utilized an array of elastomeric poly-

dimethylsiloxane (PDMS) microposts as live-cell force sensors 

to report subcellular traction forces exerted by cells adhered 

on the tops of the PDMS microposts ( Figure    5  ). The PDMS 

micropost array is a well-established technique useful for cell 
© 2013 Wiley-VCH Verlag Gmbsmall 2013, 9, No. 1, 81–89
mechanics and mechanobiology study. [  24–26  ]  Recent studies 

have demonstrated that a quick RIE treatment can generate 

nanoscale roughness on the PDMS surface. [  27  ]  Thus, in this 

work, nanoroughness was generated on the tops of the PDMS 

microposts using RIE ( R q    =  53 nm, Figure  5 A; see Experi-

mental Section for details). Our quantitative analysis of cell 

morphology and CSK contractility of NIH/3T3 fi broblasts 

revealed that the cell spread area and traction force decreased 

signifi cantly for cells plated on roughened PDMS microposts 

as compared to the cells plated on unroughened controls 

(Figure  5 C–F). We further performed correlative studies of 

single-cell data of traction force and cell spread area. Our 

data in Figure  5 G showed strong linear correlations between 

traction force and cell spread area, for NIH/3T3 fi broblasts 

on both smooth ( R q    =  0.5 nm) and nanorough ( R q    =  53 nm) 

PDMS microposts. However, the slope of the linear correlation 

between traction force and cell spread area was substantially 

less for cells plated on the nanorough microposts than for cells 

on the smooth ones. Combining together the results in Figures  4  

and  5 , it appeared that nanotopography might regulate the 

behavior of NIH/3T3 fi broblasts through its direct effect on 

the local molecular arrangement, and the formation and dis-

tribution of FAs that might in turn regulate the CSK organiza-

tion and contractility and thus downstream cellular functions.    
85www.small-journal.comH & Co. KGaA, Weinheim
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     Figure  5 .     A) SEM image showing the PDMS micropost array with a post diameter of 1.83  μ m, height of 8.3  μ m, and center-to-center distance of 4 
 μ m. B) Representative immunofl uorescence image showing a single NIH/3T3 fi broblast on the PDMS micropost array 24 h after initial cell seeding. 
The cell was stained with fl uorophore-labeled phalloidin for actin fi laments (yellow), and the underlying PDMS posts were visualized using DiI (see 
Experimental Section). C) Colorimetric maps showing subcellular traction forces exerted by single NIH/3T3 fi broblasts on the PDMS microposts. 
The PDMS microposts were either untreated (top, smooth;  R q    =  0.5 nm) or roughened using RIE (bottom, rough;  R q    =  53 nm). D–G) Quantitative 
analysis of cell morphology and traction force for NIH/3T3 fi broblasts. (D)–(F) plot the cell area (D), total traction force per cell (E), and traction 
force per post (F) for single NIH/3T3 fi broblasts plated on the PDMS microposts with either smooth ( R q    =  0.5 nm) or nanorough ( R q    =  53 nm) top 
surfaces. Data represent the means  ±  s.e.m. ( n   >  16). Statistical analysis was performed by employing the Student’s  t -test.  ∗   p   <  0.05;  ∗  ∗   p   <  0.01. 
G) Total traction force per cell as a function of cell area. Each data point represents an individual cell on the PDMS microposts with either smooth 
( R q    =  0.5 nm;  n   =  19) or nanorough ( R q    =  53 nm;  n   =  16) top surfaces. Data trends in (G) were plotted using linear least-squares fi tting (black lines), 
with the slope values  ±  s.e.m. indicated.  
 2.5. Post-RIE Residues on Glass Surfaces and Their Negligible 
Effect on Cellular Sensitivity to Nanotopography 

 It is known that RIE can leave some chemical residues on 

nanorough glass surfaces after the RIE etching process. [  22  ]  To 

confi rm that the post-RIE residues on the nanorough glass 

surfaces would not affect the intrinsic cellular sensitivity 

and responses to nanotopography, we applied X-ray photo-

electron spectroscopy (XPS; Kratos Axis Ultra DLD, Kratos 

Analytical Ltd, Manchester, UK) to examine potential chem-

ical residues left on nanorough glass surfaces after RIE. 

From the XPS spectra shown in the Supporting Information 

(Figure S2A), we did indeed observe a peak of elemental F 

for RIE-processed glass surfaces, which did not show in the 

XPS spectrum for unprocessed fl at glass surfaces. These F 

residues might have resulted from the SF 6  and C 4 F 8  gases 

used in the RIE process. 

 We then examined whether the F residues deposited on 

the RIE-etched nanorough glass surfaces could have measur-

able effects on the normal behavior of NIH/3T3 fi broblasts, 

by comparing the behavior of the cells on nanorough glass 

substrates treated with or without brief etching with buffered 

hydrofl uoric acid (BHF). Our results (Supporting Informa-

tion Figure S2A and B) suggested that a brief treatment with 

BHF for 15 s for RIE-processed nanorough glass surfaces 

could effectively remove F residues on the glass surfaces 

without affecting signifi cantly their nanoroughness. We thus 
6 www.small-journal.com © 2013 Wiley-VCH V
compared the cell adhesion, proliferation, and FA forma-

tion of NIH/3T3 fi broblasts on glass substrates with similar 

nanoroughness levels that were treated with or without BHF 

cleaning. Our data (Supporting Information Figure S2C–G) 

clearly suggested that F residues on RIE-processed glass sur-

faces had negligible effects on the normal cellular behavior 

of NIH/3T3 cells. Thus, we concluded that cellular responses 

to RIE-processed nanorough glass surfaces were due to the 

intrinsic cellular sensitivity to the nanotopography.    

 3. Conclusion 

 We have reported a simple, yet effective, microfabrication 

strategy for the precise control and patterning of local nano-

roughness on glass surfaces by using photolithography and 

RIE. We demonstrated that NIH/3T3 fi broblasts were intrin-

sically sensitive to the RIE-generated nanoscale topological 

cue, as evidenced by reduced cell spread area, enhanced cell 

adhesion, rapid cell proliferation, and cell migration on nano-

rough glass surfaces as compared to smooth controls. Our 

results further suggested that cellular responses of NIH/3T3 

fi broblasts to nanotopography might be functionally linked 

to their disrupted FA formation and spatial reorganiza-

tion of CSK structure and contractility. We provided direct 

experimental evidence showing that the CSK contractility 

of NIH/3T3 fi broblasts decreased signifi cantly in response 
erlag GmbH & Co. KGaA, Weinheim small 2013, 9, No. 1, 81–89
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to the nanotopological cue, which might shed light on the 

molecular mechanism for the adhesion-dependent cell mech-

anosensitivity to nanotopography. We suspect that a feedback 

regulation and mechanochemical integration mechanism 

involving integrin-mediated FA, actin CSK, and intracellular 

mechanosensory components might play an important role 

in regulating the mechanosensitive behaviors of NIH/3T3 

fi broblasts. Our RIE-based technique to robustly and repro-

ducibly generate uniformly controlled and precisely defi ned 

surfaces presented with a nanotopographic cue might fi nd 

potential applications in the general areas of cell-based assays 

and tissue engineering.   

 4. Experimental Section 

   Fabrication of Nanorough Glass Samples  : To achieve a precise 
control and spatial patterning of nanoroughness on glass sub-
strates, we developed a simple yet precise fabrication method based 
on photolithography and RIE. In brief, photoresist was fi rst spin-
coated on glass wafers (Borofl oat 33, Plan Optik, Elsoff, Germany) 
and patterned using photolithography to physically expose dif-
ferent regions of the underlying glass wafer. The patterned glass 
wafer was then processed with RIE (LAM 9400, Lam Research, Fre-
mont, CA) for different periods of time to generate different levels of 
the nanoscale surface roughness ( R q    =  1–150 nm) on the exposed 
regions of the glass wafer, where the photoresist had previously 
been developed and dissolved. The RIE processing conditions 
used in this work were: SF 6  (8 sccm), C 4 F 8  (50 sccm), He (50 sccm), 
Ar (50 sccm), chamber pressure 1.33 Pa, bias voltage 100 V, and 
radio-frequency power 500 W. The resulting RIE glass etch rate was 
about 50 nm min  − 1 . After the RIE process, photoresist was stripped 
using solvents, and the glass wafer was rinsed with distilled water. 
For unpatterned nanorough glass samples, bare glass wafers 
were directly processed with RIE using the same RIE conditions 
as described above. The glass wafers were cut into small pieces 
(2 cm  ×  2 cm) using a die saw (ADT7100; Advanced Dicing Tech-
nologies Ltd., Yokneam, Israel) before assays with cells. 

   Surface Characterization Using Atomic Force Microscopy  : The 
nanoroughness of the glass or PDMS surfaces was measured at 
room temperature with AFM (Veeco NanoMan atomic force micro-
scope; Digital Instruments Inc., Santa Barbara, CA) using a non-
contact tapping mode and standard Si tapping mode AFM tips. 
The AFM scan size was set as 10  μ m  ×  10  μ m with a scan rate of 
1 Hz. The resulting map of the local surface height was represented 
by using AFM topographs. The nanoroughness of each sample was 
characterized using the root-mean-square (RMS) roughness  R q   of 
the local surface height over the whole sample area scanned by 
AFM. The initial surface roughness  R q   of unprocessed bare glass 
wafers and PDMS surfaces characterized by AFM was about 1 and 
0.5 nm, respectively. 

   Cell Culture and Reagents  : NIH/3T3 mouse embryonic fi brob-
lasts (ATCC, Manassas, VA) were maintained in a growth medium 
consisting of high-glucose Dulbecco’s modifi ed Eagle’s medium 
(DMEM; Invitrogen, Carlsbad, CA) supplemented with 10% bovine 
serum (Atlanta Biological, Atlanta, GA), 100  μ g mL  − 1  L -glutamine, 
100 units mL  − 1  penicillin, and 100  μ g mL  − 1  streptomycin. Fresh 
0.25% trypsin–EDTA in phosphate-buffered saline (PBS) was used 
to resuspend NIH/3T3 cells. The cells were seeded at a low density 
© 2013 Wiley-VCH Verlag Gmsmall 2013, 9, No. 1, 81–89
(3000 cells cm  −   2 ) in the growth medium onto the glass or PDMS 
surfaces. 

   SEM Specimen Preparation  : Cells were washed three times 
with 50 m M  Na-cacodylate buffer (pH 7.3; Sigma–Aldrich, St. Louis, 
MO), fi xed for 1 h with 2% glutaraldehyde (Electron Microscopy Sci-
ences, Hatfi eld, PA) in 50 m M  Na-cacodylate buffer, and dehydrated 
in a graded series of ethanol concentrations through 100% over a 
period of 1.5 h. Dehydration in 100% ethanol was performed three 
times. Dehydrated samples were then dried with liquid CO 2  using a 
supercritical point dryer (Samdri-PVT-3D, Tousimis, Rockville, MD). 
Samples were mounted on stubs, sputtered with gold/palladium, 
and observed and photographed by SEM (Hitachi SU8000 ultra-
high-resolution microscope; Hitachi High Technologies America, 
Inc., Pleasanton, CA). 

   EdU Cell Proliferation Assay  : For the EdU cell proliferation 
assay, NIH/3T3 cells were fi rst starved at confl uence in the growth 
medium supplemented with 0.5% bovine serum (Invitrogen) for 
48 h to synchronize the cell cycle before trypsinization. Synchro-
nized cells were replated on the glass substrates, recovered in the 
complete growth medium for 12 to 24 h, and were then exposed 
to 4  μ  M  5-ethynyl-2 ′ -deoxyuridine (EdU; Invitrogen) in the growth 
medium for 8 h. Cells were then fi xed with 3.7% formaldehyde 
(Electron Microscopy Science) in PBS, permeabilized with 0.3% 
Triton X-100 (Roche Applied Science, Indianapolis, IN) in PBS, 
blocked with 10% goat serum, and stained with Alexa Fluor 488 
conjugated azide targeting the alkyne groups in EdU, which was 
incorporated in newly synthesized DNA. Cells were co-stained with 
Hoechst 33342 (Invitrogen) to visualize the cell nucleus. 

   Immunofl uorescence Staining  : For total cell counts, cell nuclei 
were stained with 4 ′ ,6-diamidino-2-phenylindole (DAPI; Invitrogen). 
For visualization of F-actin, cells were fi xed with 4% paraformalde-
hyde (Electron Microscopy Science) in PBS. F-actin was detected 
with fl uorophore-conjugated phalloidin (Invitrogen). Immunofl uo-
rescence staining of FAs was performed as previously described. [  24  ]  
In brief, cells were incubated in an ice-cold cytoskeleton buffer 
(50 m M  NaCl, 150 m M  sucrose, 3 m M  MgCl 2 , 1  μ g mL  − 1  aprotinin, 
1  μ g mL  − 1  leupeptin, and 1  μ g mL  − 1  pepstatin) for 1 min, and then 
permeabilized for 1 min in the cytoskeleton buffer supplemented 
with 0.5% Triton X-100. Detergent-extracted cells were fi xed with 
4% paraformaldehyde in PBS for 30 min, washed with PBS, incu-
bated with 10% goat serum (Invitrogen) for 1 h, incubated with a 
primary antibody to vinculin produced in mouse (Sigma–Aldrich) 
for 1 h, and stained with Alexa Fluor 488 conjugated goat anti-
mouse immunoglobulin G (IgG) secondary antibody (Invitrogen) for 
1 h. Alexa Fluor 555 conjugated phalloidin (Invitrogen) and DAPI 
were used to visualize F-actin and the nucleus, respectively. 

   Quantitative Analysis of Cell Adhesion, Cell Spread Area, and 
FA  : For quantitative analysis of cell adhesion, NIH/3T3 cells were 
seeded at a low density (3000 cells cm  − 2 ) in the growth medium 
onto the glass samples with different roughnesses. The cells 
were then incubated for 2 or 4 h. Cells were then fi xed with 4% 
paraformaldehyde in PBS for 30 min, washed with PBS, and incu-
bated with DAPI for 1 h to visualize nuclei. Immunofl uorescence 
images (100 images per sample) of the nuclei were taken using an 
epifl uorescence microscope (Carl Zeiss Axio Observer Z1, Carl Zeiss 
MicroImaging, Thornwood, NY) equipped with a thermoelectrically 
cooled monochrome CCD camera (AxioCam camera; Carl Zeiss 
MicroImaging) and a 10 ×  objective (0.3 NA; EC Plan NEOFLUAR; 
Carl Zeiss MicroImaging). ImageJ (National Institutes of Health, 
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Bethesda, MD) was then used to determine the number of cells 
adhered to the sample surface. 

 Cell spread area and FA formation were quantifi ed as previously 
described. [  24  ,  28  ]  In brief, immunofl uorescence images of actin CSK 
and vinculin were obtained using an epifl uorescence microscope 
(Carl Zeiss Axio Observer Z1 Carl Zeiss MicroImaging, Thornwood, 
NY) equipped with a thermoelectrically cooled monochrome CCD 
camera (AxioCam camera; Carl Zeiss MicroImaging) and a 40 ×  
objective (0.75 NA; EC Plan NEOFLUAR; Carl Zeiss MicroImaging). 
Images were captured using the Axiovision Software (Carl Zeiss 
MicroImaging) and processed using custom-developed MATLAB 
programs (Mathworks, Natick, MA). To determine the cell spread 
area, the Canny edge detection method was used to binarize the 
actin fi bers and FAs in the images, and then image dilation, ero-
sion, and fi ll operations were used to fi ll in the gaps between the 
white pixels in the images. The resultant white pixels were summed 
to quantify cell spread area. To quantify FA number and area, the 
grayscale vinculin image was thresholded to produce a black and 
white FA image from which the white pixels, representing FAs, were 
counted and summed. 

   Quantitative Analysis of Cell Migration  : Time-lapse microscopy 
experiments were performed for cell migration assays. Individual 
cells were chosen at random, and their phase-contrast images 
were recorded at 5-min intervals for a total period of 20 h with 
the Carl Zeiss Axio Observer Z1 microscope using a 10 ×  objective 
(0.3 NA; EC Plan NEOFLUAR; Carl Zeiss MicroImaging). The micro-
scope was enclosed in an environmental chamber (XL S1 chamber; 
Carl Zeiss MicroImaging) to maintain the experimental environment 
at 37  ° C and 5% CO 2 . Cell migration trajectories and speeds were 
determined from the recorded microscope images using ImageJ 
(National Institutes of Health, Bethesda, MD) and the manual 
object tracking plug-in MTrackJ (developed by Dr. E. Meijering, Bio-
medical Imaging Group of Rotterdam, University Medical Center of 
Rotterdam, The Netherlands). 

   Fabrication of PDMS Micropost Arrays  : The PDMS micropost 
arrays were fabricated using deep reactive ion etching (DRIE) and 
replica molding, as previously described. [  24  ,  25  ]  Briefl y, silicon 
micropost array masters were fabricated using projection photoli-
thography and DRIE. By controlling the mask design of the micro-
post array and the DRIE process time, we determined precisely 
the different geometrical factors of the silicon micropost array 
master, including post diameter, post center-to-center distance, 
and post height. The PDMS micropost array was then generated 
through a double-casting process, which ensured a planar sur-
face of the PDMS micropost tops. [  25  ]  The silicon masters were 
fi rst silanized with (tridecafl uoro-1,1,2,2,-tetrahydrooctyl)-1-
trichlorosilane vapor (United Chemical Technologies, Bristol, 
PA) for 4 h under vacuum to facilitate subsequent release of the 
negative PDMS mold from the silicon master. PDMS prepolymer 
(Sylgard 184, Dow-Corning, Midland, MI) was then prepared by 
thoroughly mixing the monomer with the curing agent (with a 
w/w ratio of 10:1), poured onto the silicon master, and cured 
at 110  ° C for 20 min. The fully cured negative PDMS mold was 
peeled off the silicon mold, and the excess PDMS was trimmed 
using a razor blade. The negative PDMS mold was then acti-
vated with an oxygen plasma for 1 min (200 mTorr; Plasma Prep 
II, West Chester, PA) and silanized with (tridecafl uoro-1,1,2,2,-
tetrahydrooctyl)-1-trichlorosilane vapor for 24 h to facilitate sub-
sequent release of the PDMS micropost array from the negative 
www.small-journal.com © 2013 Wiley-VCH 
PDMS mold. To generate the fi nal PDMS micropost array, 1:10 
ratio PDMS prepolymer was poured over the negative PDMS 
mold and degassed under vacuum for 10 min. A 25 cm  ×  25 cm 
cover glass, which served as the substrate for the PDMS micro-
post array, was then placed on top of the negative PDMS mold. 
After curing at 110  ° C for 40 h, the PDMS micropost array was 
peeled off the negative mold to release the fi nal PDMS micropost 
array. When peeling induced collapse of the PDMS microposts, 
we regenerated freestanding PDMS microposts by sonication in 
100% ethanol for 30 s followed by dry-release with liquid CO 2  
using a critical point dryer. The PDMS micropost array used in 
this study had a post diameter of 1.83  μ m, a height of 8.3  μ m 
and a center-to-center distance of 4  μ m. 

 To generate nanoscale roughness on the top surface of the 
PDMS microposts, the PDMS micropost array was processed with 
RIE for 5 min. The RIE process conditions were: SF 6  (50 sccm), 
chamber pressure 1.33 Pa, bias voltage 100 V, and radio-fre-
quency power 200 W. The resulting nanoroughness on the top sur-
face of the PDMS microposts was characterized by AFM to be about 
53 nm. 

   Surface Functionalization of PDMS Micropost Array  : As 
described previously, [  24  ,  25  ]  we used microcontact printing to func-
tionalize the PDMS microposts with ECM proteins to promote cell 
attachment. Briefl y, a fl at 1:30 PDMS stamp was prepared and 
inked with fi bronectin (BD Biosciences, San Jose, CA) at a satu-
rating concentration of 50 mg mL  − 1  in distilled water for 1 h at 
room temperature. The PDMS stamp was then thoroughly rinsed 
with distilled water and blown dry with nitrogen gas. In parallel, 
the PDMS micropost array was treated with ultraviolet (UV) ozone 
(UV–ozone cleaner; Jelight, Irvine, CA) for 7 min to ionize the 
PDMS surface and thus facilitate transfer of ECM molecules from 
the stamp to the PDMS micropost tops. The fi bronectin-coated 
PDMS stamp was then gently placed in conformal contact with the 
PDMS micropost array for 30 s to complete the protein transfer 
process. To utilize the PDMS micropost array for live-cell trac-
tion force measurements, we stained the PDMS microposts with 
1,1 ′ -dioleyl-3,3,3 ′ ,3 ′ -tetramethylindocarbocyanine methanesul-
fonate ( Δ  9 -DiI; Invitrogen). Pluronics F127 NF dissolved in PBS 
(0.2%, w/v; BASF, Ludwigshafen, Germany) was then adsorbed 
onto the PDMS surface for 1 h at room temperature to prevent pro-
tein adsorption to nonfunctionalized portions of the PDMS micro-
post array. 

   Quantifi cation of Cellular Traction Force  : Cell traction forces 
were quantifi ed as previously described. [  24  ,  25  ]  In brief, phase-
contrast images of live cells and fl uorescence images of  Δ  9 -DiI-
stained PDMS microposts underlying the cells were taken at the 
focal plane passing through the top surface of the posts with a 
40 ×  objective on the Zeiss Observer Z1 microscope attached to the 
AxioCam camera. The microscope was enclosed in the Carl Zeiss 
XL S1 environmental chamber to maintain the experimental envi-
ronment at 37  ° C and 5% CO 2 . Images were then analyzed with a 
custom-developed MATLAB program to calculate the defl ection   δ   
of the post centroid from its ideal position determined by the free 
and undefl ected posts, which was then converted to the horizontal 
traction force  f  using the expression  f   =   K δ  , where  K  is the nominal 
spring constant of the PDMS micropost calculated from the Euler–
Bernoulli beam theory. 

   Statistics  : The  p- value was calculated using the Student  t -test 
function in Excel (Microsoft, Seattle, WA).     
Verlag GmbH & Co. KGaA, Weinheim small 2013, 9, No. 1, 81–89



Microfabricated Nanotopological Surfaces
 Supporting Information 

 Supporting Information is available from the Wiley Online Library 
or from the author.    

   Acknowledgements   

 We acknowledge fi nancial support from the National Science Foun-
dation (CMMI 1129611) and the Department of Mechanical Engi-
neering at the University of Michigan, Ann Arbor. We thank M. Yang 
and C. S. Chen for sharing with us their MATLAB program to quan-
tify cellular traction forces. The Lurie Nanofabrication Facility at the 
University of Michigan, a member of the National Nanotechnology 
Infrastructure Network (NNIN) funded by the National Science Foun-
dation, is acknowledged for support in microfabrication.  

      [ 1 ]     B.   Geiger  ,   J. P.   Spatz  ,   A. D.   Bershadsky  ,  Nat. Rev. Mol. Cell Biol.  
 2009 ,  10 ,  21 .  

     [ 2 ]     M. M.   Stevens  ,   J. H.   George  ,  Science   2005 ,  310 ,  1135 .  
     [ 3 ]     V.   Vogel  ,   M.   Sheetz  ,  Nat. Rev. Mol. Cell Biol.   2006 ,  7 ,  265 .  
     [ 4 ]     N.   Sniadecki  ,   R. A.   Desai  ,   S. A.   Ruiz  ,   C. S.   Chen  ,  Ann. Biomed. 

Eng.   2006 ,  34 ,  59 .  
     [ 5 ]     A. J.   Engler  ,   S.   Sen  ,   H. L.   Sweeney  ,   D. E.   Discher  ,  Cell   2006 ,  126 , 

 677 .  
     [ 6 ]     D. E.   Discher  ,   P.   Janmey  ,   Y. L.   Wang  ,  Science   2005 ,  310 ,  1139 .  
     [ 7 ]     A.   Curtis  ,   C.   Wilkinson  ,  Biomaterials   1997 ,  18 ,  1573 .  
     [ 8 ]     V.   Brunetti  ,   G.   Maiorano  ,   L.   Rizzello  ,   B.   Sorce  ,   S.   Sabella  , 

  R.   Cingolani  ,   P. P.   Pompa  ,  Proc. Natl. Acad. Sci. USA   2010 ,  107 , 
 6264 .  
© 2013 Wiley-VCH Verlag Gmbsmall 2013, 9, No. 1, 81–89
     [ 9 ]     A.   Dolatshahi-Pirouz  ,   T.   Jensen  ,   D. C.   Kraft  ,   M.   Foss  ,   P.   Kingshott  , 
  J. L.   Hansen  ,   A. N.   Larsen  ,   J.   Chevallier  ,   F.   Besenbacher  ,  ACS Nano  
 2010 ,  4 ,  2874 .  

    [ 10 ]     R. J.   Mannix  ,   S.   Kumar  ,   F.   Cassiola  ,   M.   Montoya-Zavala  ,   E.   Feinstein  , 
  M.   Prentiss  ,   D. E.   Ingber  ,  Nat. Nanotechnol.   2008 ,  3 ,  36 .  

    [ 11 ]     M. J.   Dalby  ,   N.   Gadegaard  ,   R.   Tare  ,   A.   Andar  ,   M. O.   Riehle  , 
  P.   Herzyk  ,   C. D. W.   Wilkinson  ,   R. O. C.   Oreffo  ,  Nat. Mater.   2007 ,  6 , 
 997 .  

    [ 12 ]     D. H.   Kim  ,   C. H.   Seo  ,   K.   Han  ,   K. W.   Kwon  ,   A.   Levchenko  ,   K. Y.   Suh  , 
 Adv. Funct. Mater.   2009 ,  19 ,  1579 .  

    [ 13 ]     D. H.   Kim  ,   K.   Han  ,   K.   Gupta  ,   K. W.   Kwon  ,   K. Y.   Suh  ,   A.   Levchenko  , 
 Biomaterials   2009 ,  30 ,  5433 .  

    [ 14 ]     T. P.   Kunzler  ,   C.   Huwile  ,   T.   Drobek  ,   J.   Vörös  ,   N. D.   Spencer  ,  Bioma-
terials   2007 ,  28 ,  5000 .  

    [ 15 ]     A. I.   Teixeira  ,   G. A.   McKie  ,   J. D.   Foley  ,   P. J.   Berticsc  ,   P. F.   Nealey  , 
  C. J.   Murphy  ,  Biomaterials   2006 ,  27 ,  3945 .  

    [ 16 ]     C.   Gonzalez-Garcia  ,   S. R.   Sousa  ,   D.   Moratal  ,   P.   Rico  , 
  M.   Salmeron-Sanchez  ,  Colloids Surf. B   2010 ,  77 ,  181 .  

    [ 17 ]     M. J.   Dalby  ,   S.   Childs  ,   M. O.   Riehle  ,   H. J. H.   Johnstone  , 
  S.   Affrossman  ,   A. S. G.   Curtis  ,  Biomaterials   2003 ,  24 ,  927 .  

    [ 18 ]     K. L.   Elias  ,   R. L.   Price  ,   T. J.   Webster  ,  Biomaterials   2002 ,  23 ,  3279 .  
    [ 19 ]     M.   Schindler  ,   I.   Ahmed  ,   J.   Kamal  ,   A.   Nur-E-Kamal  ,   T. H.   Grafe  , 

  H. Y.   Chung  ,   S.   Meiners  ,  Biomaterials   2005 ,  26 ,  5624 .  
    [ 20 ]     E.   Metwalli  ,   C. G.   Pantano  ,  Nucl. Instrum. Methods B   2003 ,  207 ,  21 .  
    [ 21 ]     P. W.   Leech  ,  Vacuum   1999 ,  55 ,  191 .  
    [ 22 ]     D. Y.   Choi  ,   J. H.   Lee  ,   D. S.   Kim  ,   S. T.   Jung  ,  J. Appl. Phys.   2004 ,  95 , 

 8400 .  
    [ 23 ]     C.   Hahn  ,   M. A.   Schwartz  ,  Nat. Rev. Mol. Cell Biol.   2009 ,  10 ,  53 .  
    [ 24 ]     J.   Fu  ,   Y. K.   Wang  ,   M. T.   Yang  ,   R. A.   Desai  ,   X.   Yu  ,   Z.   Liu  ,   C. S.   Chen  , 

 Nat. Methods   2010 ,  7 ,  733 .  
    [ 25 ]     M. T.   Yang  ,   J. P.   Fu  ,   Y. K.   Wang  ,   R. A.   Desai  ,   C. S.   Chen  ,  Nat. Protoc.  

 2011 ,  6 ,  187 .  
    [ 26 ]     S. N.   Weng  ,   J. P.   Fu  ,  Biomaterials   2011 ,  32 ,  9584 .  
    [ 27 ]     J.   Garra  ,   T.   Long  ,   J.   Currie  ,   T.   Schneider  ,   R.   White  ,   M.   Paranjape  ,  J. 

Vac. Sci. Technol. A   2002 ,  20 ,  975 .  

    [ 28 ]     M. T.   Yang  ,   N. J.   Sniadecki  ,   C. S.   Chen  ,  Adv. Mater.   2007 ,  19 ,  3119 .    

 Received: May 20, 2012 
Published online: August 7, 2012 
89www.small-journal.comH & Co. KGaA, Weinheim




