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Appendix S4 Methods for the hierarchical analysis of response as a function of magnitude of the climate 
treatment. 
 
 
 

 
 
Figure S4.1 Graphical representation of the hierarchical model’s (a) structure and (b) functional 
relationship of analysis of effect size as a function of magnitude of treatment. : vector of parameters 
included in the analysis (a: maximum effect size and b: half-saturation constant), o: origin (native and 
non-native), t: terrestrial, a: aquatic, temp: temperature, prec: precipitation. 
 
 
Supplementary methods for the hierarchical analysis 
 
We explored the relationship between effect size (i.e., magnitude of performance response) and the 

treatment magnitude (i.e., degree of climatic change) within a hierarchical framework. For species i in 

study s (analyzed separately for negative and positive responses), the likelihood of observing that effect 

size was calculated as: 

 

ESobs i,s ~ Normal(ESi,s,σi
2) 

 

with process model: 
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The variance associated with each effect size, σi
2, was estimated as a combination of the observed 

variance in response size and an overall variance: 22
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iobsi

.  obs(i)
2 , the observed variance, was 

calculated from the standard deviation (SD) or standard error reported in the original study for the 

response variable. To estimate the observed variance associated with each effect size, we ran 10,000 

simulations calculating effect size from the mean response and reported SD. If measurements of 

variability around each effect size were not available (219 out of 755 observations), we then estimated 

this variance as 1 / obs(i)
2 ~ Gamma 0.01, 0.01  . The overall variance, 2, was estimated from a 

distribution with non-informative priors, 1 /2 ~ Gamma 0.01, 0.01 . 

The parameters, associated with the process model, for maximum effect size (parameter a) and 

the half saturation constant (parameter b) were estimated hierarchically as: 

 

  aorigin,system,driver ~ Normal(a1origin,system,σa
2) 

  a1origin,system ~ Normal(a2origin, σa1
2) and σa ~ Uniform(0,1000) 

  a2origin ~ LogNormal(0,10000) and σa1 ~ Uniform(0,1000) 

 

and 

 

  borigin,system,driver ~ Normal(b1origin,system,σb
2) 

  b1origin,system ~ Normal(b2origin, σb1
2) and σb ~ Uniform(0,1000) 

  b2origin ~ LogNormal(0,10000) and σb1 ~ Uniform(0,1000) 

 

We used non-informative priors for the hyperparameters, a2 and b2, and the variances, 2, and lognormal 

distributions for the overall parameters, a2 and b2, to ensure positive values. This structure allowed us to 

make comparisons between native and non-native species at three levels: overall, parameters a2origin and 
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b2origin; within each system, parameters a2origin,system and b2origin,system; and within system for each driver, 

parameters a2origin,system,driver and b2origin,system,driver. Additional fixed (e.g., response type, latitude, or study 

duration) or random effects (e.g., study) did not improve the model fit (based on Deviance Information 

Criterion; Spiegelhalter et al. 2000); thus, results from the basic model were reported in the main text. 
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