A FLEET DEPLOYMENT OPTIMIZATION MODEL FOR LINER SHIPPING

Diego I. Jaramillo

Submitted in partial fulfillment of the requirements for the degree
 of MASTER OF SCIENCE
 IN
 NAVAL ARCHITECTURE AND MARINE ENGINEERING

THE UNIVERSITY OF MICHIGAN
February 1990

A FLEET DEPLOYMENT OPTIMIZATION MODEL FOR LINER SHIPPING

Diego I. Jaramillo

B.S. in Marine Engineering, Naval Academy of Colombia
to Professor Harry Benford with appreciation. D. Jaramillo.

Submitted in partial fulfillment of the requirements for the degree
of
MASTER OF SCIENCE
IN
NAVAL ARCHITECTURE AND MARINE ENGINEERING
at
THE UNIVERSITY OF MICHIGAN
February 1990

A FLEET DEPLOYMENT OPTIMIZATION MODEL FOR LINER SHIPPING

by

Diego I. Jaramillo

Submitted to the Department of
Naval Architecture and Marine Engineering on February 21, 1990, in partial fulfillment of the requirements for the degree of Master of Science in Naval Architecture and Marine Engineering

Abstract

We use Linear Programming for solving the problem of the optimal deployment of an existing fleet of multipurpose or fully containerized ships, among a given set of routes, including information for lay-up time, if any, and type and number of extra ships to charter. A detailed and realistic model for the calculation of the operating costs of all the ship types in every route is developed. The optimization model is also applicable to the problem of finding the best fleet composition and deployment, in a given set of trade routes, which may be the case when a shipping company is considering new or modified services, or a renewal of the existing fleet. In addition, two promising mixed linear-integer programming formulations are suggested.

Acknowledgements

I would like to express my gratitude to the supervisor of this thesis and faculty advisor throughout my studies at the department of Naval Architecture and Marine Engineering, Professor Anastassios Perakis. His experience and deep knowledge in the area of fleet deployment in particular, and Operations Research in general, made his guidance and suggestions extremely valuable to this thesis. I am also grateful for the overall support and encouragement he provided during my studies.

I also thank Nikiforos Papadakis, formerly a doctoral student of Prof. Perakis and currently a postdoctoral associate at MIT, who has extensive research experience in the area, for his comments and suggestions during the early stages of this thesis. They were an important ingredient for the present work.

I am also grateful to Professor John Birge of the department of Industrial and Operations Engineering for his advise and suggestions in part of this work.

Finally, I want to thank to the faculty, secretaries and colleagues of the Department of Naval Architecture and Marine Engineering for the help, advise and friendship that I received from them during my studies at The University of Michigan.

Table of Contents

Abstract 2
Acknowledgements 3
Table of Contents 4
List of Tables and Figures 6
List of Symbols 7
1.Introduction and Outline 9
2.Problem Description 11
2.1 General Aspects 11
2.2 Present Situation in Flota Mercante Grancolombiana. 12
2.2.1 Routing 12
2.2.2 Cargo Types 12
2.2.3 Ship Allocation and Speed Assignment 12
3.Literature Survey 14
4 Optimization Model 16
4.1 Objectives 16
4.2 Assumptions 18
4.2.1 Cargo Units 18
4.2.2 Routing 18
4.2.3 Cargo Requirements and Frequency of Service 19
4.2.4 Speed- Fuel Consumption for Different Loadings 19
4.2.5 Other Assumptions 20
4.3. Frequency of Service and Cargo Movements 20
4.3.1 General Aspects 20
4.3.2 Amounts of Cargo per Port 21
4.3.3 Vessel Loading Levels 21
4.4 Cost Estimation Model 23
4.4.1 Ship Daily Running Costs 23
4.4.2 Voyage Costs 24
4.4.3 Costs at Sea 25
4.4.4 Costs at Ports 27
4.4.5. Lay-up Daily Costs 29
4.4.6 Total Time per Voyage 29
4.5 Optimal Speed Calculation 29
4.6 Linear Programming Formulation 32
4.6.1 Decision Variables 32
4.6.2 Objective Function 32
4.6.3 Constraints 32
4.7 Optimization Procedure 34
4.7.1 Basic Inputs 34
4.7.2 Frequencies and Cargo Related Data 35
4.7.3 Speed Determination 38
4.7.4 Cost and Time Coefficients for the L.P 39
4.7.5 Input of the L.P. Program 39
4.7.6 Output and Sensitivity Analysis 40
4.7.7 Calculation of Number of Ships Allocated to Routes 41
4.7.8 Speed and Coefficients Adjustment 42
4.7.9 Operating Costs Recalculation 43
5 Optimization Example 44
5.1 Basic Data 44
5.2 Frequency Analysis 44
5.3 Speed Calculation. 50
5.4 Cost and Time Coefficients 51
5.5 Linear Programming Input 52
5.6 Results and Sensitivity Analysis 52
6 Conclusions and Extensions 57
6.1 General Model 57
6.2 Particular Example 57
6.3 Extensions of this Thesis 58
6.3.1 Mixed Linear-Integer Programming 58
6.3.2 A LP-IP Formulation with Speed as Discrete Variable 59
7 References 62
Appendices 63

List of Tables and Figures

Page \#
Figure 1
Typical Plot Ship Capacity vs Frequency of Service 36
Figure 2
Typical Plot Ship Cargo Level vs. Distance 37
Figure 3
Typical Plot Optimal Speed vs. Daily Costs 38
Figure 4
Typical Plot Optimal Speed vs. Fuel Price 39
Figure 5
Ship Cargo Levels Route 1 46
Figure 6
Ship Cargo Levels Route 2 47
Figure 7
Ship Cargo Levels Route 3 47
Figure 8
Ship Cargo Levels Route 4 48
Figure 9
Ship Cargo Levels Route 5 48
Figure 10
Ship Cargo Levels Route 6 49
Figure 11
Ship Cargo Levels Route 7 49
Figure 12
Optimal Speed vs. Daily Cost Ship 1 50
Figure 13
Optimal Speed vs.Fuel Price Ship 1 51
Table 1
Ship Maximum Loading vs. Frequency of Service 45
Table 2
Present Utilization Factors of FMG's Ships 45
Table 3
Present Ship Allocation 53
Table 4
Resultant Allocation in Example 54
Table 5
Modified Target Frequencies 54
Table 6
Allocation of Ships for Modified Frequencies 55
Table 7
Required Decrease in Lay-up Costs 56

List of Symbols

$A_{i r k}^{p} \quad$ Operating costs per unit time for vessel k at the $i^{\text {th }}$ port of route r.
$\mathbf{A}_{\mathrm{kr}}^{\mathbf{s}} \quad$ Operating costs per unit time at sea for ship k on route r .
$\mathbf{a}_{\mathbf{k}} \quad$ Coefficient in the speed-fuel consumption relationship for ship \mathbf{k}.
$B_{r s} \quad$ Zero-one variable indicating the speed s for the ships on route r.
$\mathbf{b}_{\mathbf{k}} \quad$ Exponent in the speed-propulsion power relationship for ship \mathbf{k}.
$\mathbf{C}_{\mathbf{k r}}^{\mathbf{p}} \quad$ Operating costs at ports per voyage for the ship k on route r .
$\mathbf{C}_{\mathrm{kr}}^{\mathbf{s}} \quad$ Operating costs at sea per voyage for ship k on route r .
$\mathbf{c}_{\mathbf{k}} \quad$ Coefficient in the speed-propulsion power relationship for ship k .
$\mathbf{C}_{\mathbf{k r}} \quad$ Operating costs per voyage of ship k on route r .
$\mathrm{C}_{\mathrm{krs}}$ Operating costs per voyage of ship k on route r at speed s.
$\mathbf{c d}_{\mathbf{r}}$ Length of the canal on route r .
$c_{r} \quad$ Canal fee on route r.
$\mathbf{c n}_{\mathbf{r}} \quad$ Number of canal crossings/voyage on route r .
$\mathbf{C w}_{\mathbf{r}}$ Waiting time per canal crossing on route r .
$\mathbf{d}_{\mathbf{i r}}^{\mathrm{m}}$ Distance of restricted waters associated with the $i^{\text {th }}$ port of route r.
$\mathbf{d}_{\mathbf{r}}^{\mathbf{m}} \quad$ Distance of restricted waters in route r .
$\mathbf{D}_{\mathbf{k}}$ Additional daily cost of ship k while laid-up, including anchorage charges, transportation for the crew in and out of the ship, etc.
$\mathbf{d}_{\mathbf{r}}$ Total sailing distance on route r .
$\mathbf{e}_{k} \quad$ Total lay-up costs per day for ship k.
$\mathbf{F}_{\mathbf{r}} \quad$ Frequency of service in route r (an integer number).
$\mathbf{f}_{\mathbf{k}} \quad$ Propulsion-fuel consumption per unit time of ship k.
$\mathbf{g}_{\mathbf{k}}^{\mathbf{p}} \quad$ Average electricity generation-fuel consumption per unit time, at ports, of ship k.
$\mathbf{g}_{\mathbf{k}}^{\mathbf{s}}$ Electricity generation-fuel consumption per unit time, at sea, of ship k .
$\mathbf{g}_{\mathbf{k} 1}$ Generator fuel consumption per unit time in lay-up condition.
$\mathbf{H}_{\mathbf{k}} \quad$ Daily running costs in normal operation of ship k.
\mathbf{h}_{k} Daily running costs of the ship k while laid-up.
$\mathrm{I}_{\mathrm{r}} \quad$ Number of ports on route r .
$\mathbf{L}_{\mathbf{i j r}} \quad$ Amount of cargo onboard a ship sailing from port i to port j of route r, for a frequency of one voyage per year.
$\mathbf{L}_{\mathbf{r}} \quad$ Maximum value of $\mathrm{L}_{\mathrm{ijf}}$ for all legs ij in route r .
$\mathbf{m}_{k r} \quad$ Canal fees per voyage for ship k on route r.
$\mathbf{M}_{\mathbf{r}} \quad$ Number of voyages per year (a real number) on route r .
$\mathbf{n}_{\text {ir }}$ Productivity or rate of loading and unloading cargo in port i of route r.
$\mathbf{N}_{\mathbf{k}}^{\max }$ Number of ships type k available.
$\mathbf{P}_{\mathbf{k}} \quad$ Brake power required to propel the vessel type k (at a given speed).
$\mathbf{p}_{\mathbf{r}}^{\mathbf{f}} \quad$ Price of propulsion-fuel on route r .
$\mathbf{p}_{\mathbf{r}}^{\mathbf{g}} \quad$ Price of fuel for electricity generation on route r .
$\mathbf{p}_{1} \quad$ Price of fuel for generation at the lay-up location .
$\mathbf{Q}_{i j r}$ Amount of cargo to be carried per annum from port i to port j on route r.
Qir Amount of cargo to be moved (loaded and unloaded) per annum at port i of route r by all ships.
$\mathbf{q}_{\text {ir }} \quad$ Amount of cargo to be unloaded and loaded per voyage at the $i^{\text {th }}$ port of route r .
$\mathbf{Q}_{\mathrm{jlr}}$ Amount of cargo to be carried per annum from port j to port i on route r .
$\mathbf{R C}_{\mathbf{r}}$ Minimum required capacity of ships that are to operate on route r .
$\mathbf{R T}_{\mathrm{kr}}$ Register tonnage of ship k , for the canal in route r .
$\mathbf{R V}_{\mathbf{r}}$ Minimum required number of voyages per year on route r .
$\mathbf{S}_{\mathbf{k}} \quad$ Service speed of vessel \mathbf{k}.
$\mathbf{S}_{\mathbf{m}} \quad$ Average speed in restricted waters for all ships .
$\mathbf{t}_{\mathbf{k r}} \quad$ Voyage time of ship k on route r .
$\mathbf{t}_{\mathbf{r}}^{\mathbf{m}} \quad$ Total delay due to restricted waters operation for any ship on route r .
$\mathrm{t}_{\mathrm{ir}}^{\mathrm{p}}$ Time spent per voyage (by any ship) at the $\mathrm{i}^{\text {th }}$ port of route r .
$\mathbf{t}_{\mathbf{r}}^{\mathbf{p}} \quad$ Total time spent at ports, per voyage, on route r .
$\mathbf{t}_{\mathbf{k r}}^{\mathbf{s}} \quad$ Sailing time per voyage of ship k on route r .
$\mathbf{t}_{\mathbf{r}}^{\mathbf{w}} \quad$ Waiting time due to canal queues per voyage on route r , for any ship.
$t_{k r s} \quad$ Voyage time of ship k on route r at speed s.
$\mathbf{T}_{\mathbf{k}}$ Duration of shipping season for ship k .
$\mathbf{u}_{\text {irk }}$ Fixed costs per call at port i of route r for ship k.
$\mathbf{v}_{\text {irk }}$ Variable port fees (per unit time) for the ship k at port i of route r .
$\mathbf{V}_{\mathbf{k}} \quad$ Cargo capacity of ship k.
$\mathbf{w}_{\text {ir }}$ Allowance per call for inactive time at port i of route r.
\mathbf{X}_{kr} Number of voyages per year of ship k on route r .
$X_{k r s}$ Number of voyages per year of ship k on route r at speed s.
$\mathbf{Y}_{\mathbf{k}} \quad$ Number of lay-up days per year for ship k.

1.Introduction and Outline

Liner Shipping is the type of maritime transportation that has received the least attention by researchers, at least in the quantitative aspects of it. This is possibly due to the noncontrollable nature of some of the dominant variables and factors that affect the operation of this type of companies, like government regulations, subsidies, minimum required service frequencies, etc, which discourage any attempt for a systematic approach to the transportation system analysis and optimization.

Furthermore, the research that has been done so far in Liner Shipping operations has relied mainly on heuristics or simulation techniques, as opposed to other, more exact methods like non-linear, linear or integer programming, which have been extensively used for the optimization of fleets of tankers and bulk carriers. Such techniques can provide good practical solutions in many cases. It has to be born in mind that a simulation model can only help to choose the best from a limited group of alternatives submitted to it. We believe that techniques like Linear, Integer or Non-Linear programming can be successfully applied in Liner Shipping fleet deployment and scheduling problems, provided that the cargo forecasts are reliable.

Liner carriers specialize in the transport of high value goods and competition is often restricted to service rather than price; Liner Shipping companies are mainly committed to provide a regular and reliable service, in line with customers' requirements. In contrast, Tramp and Industrial shipping operations involve mainly dry bulk carriers and tankers. Tramp carriers specialize in the transportation of cargo that is irregularly generated and their rates are not subject to regulations from any conference. Most of the tramp operators are small independent owners, and although their number is large, little research has been done in their allocation, routing and scheduling.
"Industrial" carriers are also the owners of the cargo, and their operations have the objective of arranging the transportation of their goods at minimal cost. This type of operations have received more research attention than Tramp or Liner shipping.

In both Tramp and Industrial shipping, the operator's objective implies the maximization of the ship's cargo in the "loaded" leg of the voyage, and there are no strict timing requirements. In Liner Shipping timing is important, and in times of low cargo supply, the ships have to operate at low utilization levels, in order to comply with the schedules.

Operators of liner vessels are compelled in many instances to take ships in charter for one or more voyages in order to cover unexpected fluctuations in the demand; in other times, reductions in charter rates make it profitable to modify the deployment of the fleet by taking ships in long-term charter and slow-steaming or even laying-up part of the owned fleet.

The thesis is organized as follows:
In Chapter 2, the problem that motivated the present thesis is described; Chapter 3 is dedicated to a survey of past research in the area of Fleet Deployment.

The optimization model is described in Chapter 4; we first establish (Sections 4.1 and 4.2) the objectives and main assumptions of the model; Section 4.3 is dedicated to explain a method for calculating the amounts of cargo to be moved at different ports and
amounts of cargo onboard the ships in the various sailing legs of a given route, and their relationship with the service frequency, with the goals of establishing a target value of frequency of service for each of the routes and/or determining the minimum required capacity of the ships that may be allocated in each route.

Section 4.4 is dedicated to the development of a mathematical model of the operating costs and voyage times of the different ship types while operating in every one of the possible routes. The results are the required coefficients for the linear programming formulation.

Section 4.5 focuses on the determination of the optimal speed for a ship operating in a given route, as an independent problem. In Section 4.6 a Linear Programming formulation is presented, which is the core of our Optimization Model.

In Section 4.7, the overall optimization procedure is outlined. It is important to note that the routing problem, i.e., the assignment of the sequence of ports that forms each route, is out of the scope of this thesis. It is assumed that the routes are already established. Justifications of this and other assumptions are given in Section 4.2. The scheduling situation is implied in the requirements of service frequency, which are considered given, but important considerations in this regard are discussed in Section 4.7.

In Chapter 5, an example is carried out, based on the information provided by Flota Mercante Grancolombiana S.A. (FMG), a large liner shipping company which operates in various trade routes between Colombia and Europe, the U.S. and the Far East. The results of this example show that substantial savings in the present operating costs can be achieved if the resultant deployment strategy is followed.

Finally in Chapter 6 the conclusions and suggested extensions of this work are presented. In this final part, two very appropriate mixed linear-integer programming formulations are explained.

2. Problem Description

2.1 General Aspects

Due to structural changes in their operating environment, caused by diverse factors such as changes in government regulations, dramatic changes in cargo forecasts, new competition or other pressure that forces freight rates up, etc, liner shipping companies are from time to time forced to make strategic decisions related to the deployment of their fleets. Examples of such decisions are the re-allocation of the existing owned fleet, what type of ships, how many and for how long, to take in charter to complement the operation of the owned fleet, and/or whether and for how long to lay-up the owned ships.

Managers of these companies rely mainly on the economic evaluation and comparison of a limited set of alternatives that are chosen by "common sense" and are based heavily on the experience of the operations personnel. Sometimes this task is not difficult, as when the number of ships in the fleet is small and/or their allocation to the routes is commanded by very specific ship characteristics, that leave on the table a very limited set of feasible allocation alternatives. However, when large fleets are involved, the number of feasible alternatives grows and it is not easy to pick the best of them for the analysis.

On the other hand, the companies have to decide what types of ships to build and their relevant characteristics like cargo carrying capacity, cargo moving equipment, hull form, engine type and power, crew size, etc; some of those factors interact to define the speed- fuel consumption relationship, the ship's operating costs, the life cycle costs, etc.

After defining the basic design characteristics and other operative requirements of the ships, there will be a number of alternatives of ship types from which the new fleet can be selected. A correct systematic approach for the selection of the new fleet or new set of ships is crucial for the future profitability of the shipping company. This approach has to take into account the existing fleet so that all the implications are considered in the economic analysis.

Tied to the allocation problem is the problem of determining the service speeds of the ships in the various routes, which for a given required service frequency, will determine the number of ships that has to be assigned to each route. A higher speed implies lower voyage time and therefore better utilization of the existing fleet. On the other hand a higher speed will increase more than proportionally the fuel costs per voyage. These interactions deserve a careful and comprehensive quantitative analysis.

Port constraints regarding maximum draft are not important in liner shipping, since the vessels are of moderate sizes (usually not bigger than 30,000 DWT); these relatively small sizes (compared with sizes of bulkers and tankers) are explained by the frequency requirements that constrain liner operations. However, port conditions regarding cargo handling equipment, days and hours at which stevedores work in a given port, stevedoring rates during weekends and night hours make timing an important
consideration in liner operations. Consequently, the schedules are designed to take into account those port conditions.

2.2 Present Situation in Flota Mercante Grancolombiana.

2.2.1 Routing

The routing (set of routes and sequence of ports in each) is determined following obvious geographic considerations, cargo requirements and required transit times. In some of the routes double calls are necessary, one for unloading and another for loading, in order to keep transit times at a reasonable level (for the cargo that is loaded/unloaded in these double calls) and to ensure that there is enough capacity onboard for the available cargo.

There are in each of the routes "regular" and "optional" ports. When the amount of cargo to be loaded/unloaded in a regular port is low enough, and/or the ship is very delayed in its itinerary, a call to an optional or even a regular port may be canceled. In this case, the cargo that is on the ship addressed to that port may be unloaded in a nearby regular port and transported by truck to the final destination.

Some of the routes are composed of two or more "sub-routes" which are followed alternatively by the vessels assigned to the main route. This arrangement implies different service frequencies to the ports of the same main route.

2.2.2 Cargo Types

There are three basic categories of cargo carried by the company:

- General Cargo (about 60\%)
- Refrigerated Cargo (about 10\%)
- Containers (about 30\%)

Some of the routes are almost 100% containerized. There is a trend towards more containerization, but this trend is slow, because of the limitation in equipment and opposition from stevedore unions in the home ports, which are owned and operated by a state-owned company.

As happens in other countries, there are government regulations in Colombia which require that a given percentage of the cargo in and out of the country, must be moved by national flag vessels or vessels chartered by national shipping companies. There are limitations however, to the number of ships that the company is allowed to charter.

2.2.3 Ship Allocation and Speed Assignment

In practice, the ships are assigned to the routes without any special technique or systematic method, the experience of the line managers plays a major role. Some of the
major factors for determining the ships' allocation are the ships characteristics, especially their capacity and ability to carry each of the different types of cargo (including containers), and the types of cargo typically moved in a route.

The speed for the normal operation of the owned ships is fixed by the operations and engineering departments, within a feasible range, according to the ship's main engine manufacturer recommendations.

3.Literature Survey

Alexis [1] presents a comprehensive survey of the models in routing and scheduling in marine transportation, available until 1982; as this author points out, due to the complexity and the uncertainty of the operations of liner vessels, most models in liner operations consist of simulation and heuristic procedures emphasizing scheduling and routing.

For the present work, however, not only the research oriented towards liner operations, but also research for bulk and tanker shipping was reviewed. In fact, the formulations of some problems in bulk and tanker shipping (within tramp or industrial operations) are similar to the one in this thesis, with the main exeption of the service frequency requirement. For this reason, we will refer in the next paragraphs to such works in addition to the works specifically focused on liner shipping.

Datz et al. [2] developed a simulation approach for liner operations which generates a schedule based on the cargos offered and its profitability, including probability quantifications of the event of "promised" cargo disappearing.

In another research on liner shipping, Boffey et al. [3] developed an interactive computer program and an heuristic optimizing model, for scheduling containerships in the North Atlantic route. Several components of "level of service" were considered like the frequency of the service, the day the ships sail (it was argued that Friday sailings generate more cargo than sailings at other days of the week), the transit time of the ships between port pairs, and the reliability of the service provided. Both parts of the work were tried in actual operations of a carrier, the interactive computer program was better accepted/ understood by the management. This computer program was not a truly optimizing tool but instead a method that provided information on profitability, timing, transit times and total slack for different inputs of ship speeds and combinations of ports to be called.

Olson, Sorenson and Sullivan [9] used a deterministic simulation model to provide medium term regular schedules for a fleet of cargo ships involved in a liner trade. The model was also used to investigate the effects of factors like waiting in port for additional cargo or increasing competition.

In the present thesis the expression Fleet Deployment implies the allocation of ships to routes, their general scheduling (i.e., the assignment of service frequencies), and the chartering of vessels, if any, to complement the owned fleet in the fulfillment of the transportation mission. Very little has been written about Fleet Deployment, as we have defined it, for liner shipping. However, in the solution of a scheduling problem, a fleet deployment strategy may be implied, and vice versa. The most recent research dealing with fleet deployment applies to the transportation of bulk commodities in the framework of tramp and industrial shipping operations, i.e. not subject to frequency or timetable requirements. Some of such work is mentioned in the next paragraphs.

Benford in [4], formulates the problem of finding the best mix of ships (from an existing fleet) for the purpose of moving a given amount of bulk cargo in a period of time between two ports, and presents a simple solution procedure. Perakis [5] solved the same problem by mathematical and numerical methods obtaining appreciable improvement; the operating costs were modeled as a nonlinear function of the ship's speed and the nonlinear constrained optimization problem was solved with nonlinear
optimization algorithms, and Lagrange multiplier techniques. Perakis and Papadakis [6] presented various, more detailed fleet deployment optimization models for the same problem. In all these cases both full load and ballast speeds were considered.

The authors of [6] also developed in a nonlinear approach [7], for the problem of minimum cost operation of a fleet of ships that has to carry a specific amount of cargo from a set of loading ports to a set of unloading ports. Here again the operating costs are nonlinear functions of the ships' full load and ballast speeds; the fuel consumption is the cause of the nonlinearity and a realistic speed-fuel consumption relationship is presented. An alternative linear approach for certain conditions is described; the linear objective function results after the ship's speed is fixed at its optimal value by an iterative approach. This optimal speed is found in an independent formulation to that of the main problem.

In few of the studies on fleet deployment/ ship scheduling for tramp or industrial shipping has the operating cost of the ships while in port, played a major role. Similarly, detailed models of the time spent in loading/ unloading and its associated costs are usually not presented. This situation can be explained by the fact that port costs are small as compared with the costs at sea in that type of shipping operations.

Other research deals with the tradeoffs implied in the slow steaming of ships independently of the allocation problem. Ronen [8] presents three methods to find the optimal speed of bulk carriers under each one of three operative states, which depend on the leg on which the ship is sailing.

Everet et al. [10], used linear programming to find the best fleet of large bulkers and tankers that was intended to carry 15\% of the U.S. foreign trade in the major dry and liquid bulk commodities. The optimal fleet was chosen from a menu of ship types and in the same process ships were assigned to voyages. Four structural elements were considered; namely, commodity movements, voyages, a menu of ships, and port constraints. A sensitivity analysis was one of the important elements of the optimization, as the aim of the investigation was to produce a combination of ships and voyages that is optimum not only in the sense that it minimizes the life cycle cost of the fleet for a given distribution of demands, but which produces a minimum cost over as wide a range of probable demands as is possible. The results indicated that the fleet cost and composition are very sensitive to the opportunities for backhauls and to port constraints, but insensitive to small or medium changes in the mission.

Another linear programming approach was carried out by Conley et al. [11]; their objective was to minimize the total cost of moving an homogeneous product from overseas origins through United States ports to over 400 inland destinations. The formulation allocates a fleet of about 50 ships to routes between given groups of overseas and U.S. ports, it also assigns mainland destinations to ports and select inland modes of transportation. The size of the problem was reduced by introducing a fictitious port (the funnel) through which all the cargoes are moved. The model does not consider the return of the ships to the loading ports.

4 Optimization_Model

4.1 Objectives

The model considered here is concerned with minimizing the annual operating costs of a fleet of liner ships. This minimization is equivalent to maximizing profits per unit time; the reason for this is that the cargo movement requirements are met, the freight rates are assumed fixed, and the revenue is therefore constant.

The costs referred in this work as "operating costs", are the following:

- Fuel Costs
- Fuel for propulsion
- Fuel for electricity generation
- "Daily Running Costs" (Explained in a following section)
- Port charges
- Charges per call which do not depend on the time of stay
(docking/undocking, pilotage, tugboat charges, port maintenance fees, etc)
- Charges per unit of time of stay at port (wharfage, anchorage, etc)
- Canal fees

Several important costs are excluded from the model because they are effectively fixed, as per our assumptions. Those costs are:

- Stevedoring costs for loading/ unloading
- Agency fees
- Commissions to cargo brokers
- Communications billed by the agents; most of them are cargo related
- Container rental and maintenance.

All the above listed costs depend on the types, amounts, origins and destinations of the cargoes carried. All these factors are assumed given and constant in the present thesis; therefore, the costs depending on them are also constant. The overhead costs are also excluded, as they are independent of the fleet deployment.

It is pertinent to note that the stevedoring costs associated with each cargo shipment depend on the agreement made with the shipper; there are four basic types of agreements, depending on who pays the stevedoring charges:

- "liner terms": the shipping company pays both loading and unloading stevedoring charges.
- "free in, liner out": the shipper pays the loading charges and the shipping company pays the unloading ones
- "liner in, free out": the shipping company pays the loading charges and the shipper pays the unloading ones
- "free in and out": the shipper pays the stevedoring charges at both loading and unloading.

The first case, "liner terms" is the most common. The particular freight rate applied depends on which of the above mentioned types of agreement is chosen.

The model should include the costs at ports, as these are a major component of the operating costs of liner shipping companies. The port charges depend on the number of calls to the port, the time spent at port and the type of ship (wharfage and anchorage charges are usually classified according the ship's length or draft).

The output of the optimization model should include the following information:

- Allocation of the owned ships to the routes
- Number and type of ships to take in charter and for how long
- Whether to lay-up owned ships, of which type and for how long (in this point the possibility of chartering out or scrapping should be considered by the shipping company).

The problem of the optimal speed determination will be decoupled from the allocation problem. The most profitable speed for each ship should be found, and in this way the operating costs of the ships at sea for a given voyage will be fixed.

On the other hand, a minimum required frequency of service for each one of the routes is one of the most important inputs. Despite that, a method will be presented for assisting in the adjustment of such frequency, if that is allowed, and/or finding the minimum vessel size that can move the amount of cargo per voyage defined by a given service frequency. In practice, shipping companies do adjust the service frequencies, within small ranges. The customers of course, prefer a high frequency, but a higher frequency will normally result in a higher total operating cost.

The formulation should be applicable to the problem of the configuration of a fleet of ships (to be acquired), to comply with a given cargo movement requirement, in a set of given routes, or to the case of renovating part of the existing fleet. This thesis will not address the routing problem (defined as the determination of the set of routes, their ports and the port sequence). The goal of the optimization model is of a strategic nature, rather than oriented to the day-to-day decision process, which involves decisions about adjustment of schedules, slight routing modifications, etc, for which human intervention is essential.

In order to enable the application of linear programming, the speed of the ships has to be fixed. In this case, the determination of the best speed for each ship type has to be decoupled from the main problem. However, it is recognized that all the ships assigned to the same route should operate at the same speed, in order to keep a constant and stable frequency of service. Times at port per voyage in a given route are the same for all the ships. Delays caused by waiting and sailing in channels and restricted waters in general are also the same for all the ship types operating in the same route; consequently total voyage times are equal for all the ships in a given route. In this way, the intervals between arrivals of consecutive ships to a port are constant.

The delays due to restricted operation may be considerable in certain routes because of the amount of miles to be sailed in canals, rivers or other access to ports. Therefore the present model will consider those delays.

Finally, an important note about the notation used. Subscript k, as will be used in the present thesis, may denote either a single ship or a ship type, depending on the
particular application. In this way the model can allow both the precise output due to including the singularities of ships (even among those of the same type), or to save formulation and computing time by dealing only with ship types.

This last alternative is most appropriate when the problem is the determination of the best ships to build or acquire among a menu of ship types available but not owned already by the shipping company. A parameter representing the number of ships of each type will be included in the model; in the case of k representing a single ship that variable will be assigned the value one.

4.2 Assumptions

4.2.1 Cargo Units

The cargo amounts are assumed to be the number of containers or units of weight of general (dry) cargo. We do not consider this a major source of difficulty, and for most companies carrying multiple types of cargo, the model shall be appropriate. Weight units are more suitable than volume ones for the general cargo case, since the stowage factor is less than one cubic meter per metric ton for the overwhelming majority of cargo types; therefore the active limit for a ship's loading is the cargo weight and not the cargo volume.

In line with this, a ship's cargo capacity as well as the data of the cargo to be carried between pairs of ports can be given in terms of metric tons, or number of TEU's (twety-foot equivalent container units).

4.2.2 Routing

As mentioned before, in the present thesis we will not address the routing problem. It is assumed that the routes have been already determined, taking into account factors as ports to be served, amounts of cargo to be carried between pairs of ports in a given period, distances between the ports, required transit times between port pairs, etc.

For the purpose of routing determination, well known models like the traveling salesman problem can be applied. However, it is often obvious which is the best sequence of ports in a given trade, because of geographic considerations alone; the set of routes may be also be obvious, when the trades are geographically separated; therefore, the routing problem may not be difficult.

As mentioned in Chapter I, double calls per voyage to a port are sometimes done, for carrying out the loading and unloading separately in order to overcome stowage difficulties. This case is covered in our model by assigning different port designations to each one of the port calls in the same route-voyage; for example in a given route a ship rotates:

In this case, port A(unloading) may be denoted as "port 1 " and port A(loading) as "port 3 " of that route. The notation of the ports in a route should represent the exact sequence in which the ports are called. This is essential for the correct computation of the amount of cargo on board in each leg of the voyage and the verification of capacity compatibility ship-route, for different values of the frequency of service.

4.2.3 Cargo Requirements and Frequency of Service

There is a fixed amount of cargo to be carried per year between a given pair of ports belonging to a given route. The ships must call the ports in regular intervals for loading/ unloading.

The term "frequency of service", or just "frequency", is often used in practice in the liner shipping business and especially in journal publications about liner services, for denoting the time between sailings from a port in a given route by a liner company. The time between sailings is equal to the time between arrivals of the ships to that port in that route (assuming that port stay is fixed).

In order to be consistent with this practice, the time between arrivals (or sailings) to (from) a port is called "Frequency of Service" in the present thesis. This Frequency of Service or port interarrival time defines a number of calls per year to that port, which is the service frequency rigorously speaking (365 divided by the value of Frequency of Service). In our model, it is assumed that there is exactly one call per voyage to each "port", therefore the number of calls per voyage to a port is also the number of voyages per year in that route.

The cases of cargoes with origins and destinations other than the established ports of call, are included; in such cases, the cargoes are transported by feeder services from the origin to the nearest or most convenient regular port of call, and through the nearest or most convenient port to the cargo destination.

Inventory costs are excluded, as they do not play an important role in the actual operations of a liner shipping company.

4.2.4 Speed- Fuel Consumption for Different Loadings

One of the important assumptions in this thesis is that the relationship speed vs. resistance of the ships is basically the same for the typical (different) loading conditions that occur in liner operations. This implies the assumption that there are no long sailing legs where the ships are in a pure ballast condition, i.e., with no cargo or very small amount of cargo on board.

This is a realistic assumption in many cases. For the present thesis the data regarding speeds and specific fuel consumptions of the ships operated by FMG, in a period of moderate length and typical operation were analyzed. No clear relationship between the fuel consumption and the loading condition at a given speed was found. This may be explained by the number of factors that influence the performance of the ship in a given sea passage, like weather, currents, hull condition, etc., which make a precise analysis difficult.

On the other hand, we have to take into account that the DWT to total displacement ratio in medium or small ships (like most liner ships) is not as high as in larger ships (typically bulkers and tankers), and therefore in smaller ships the change in hydrodynamic conditions when the ship passes from loaded to ballast situations is not as dramatic. In addition, when the ship is in off-design conditions (like in the ballast case), its performance may not improve substantially, in spite of the significant reduction in displacement.

4.2.5 Other Assumptions

As the present model is intended to be a decision tool for the long-term operation of the fleet, the initial condition of the ships will not be included in the problem formulation.

The cargo (offered) is evenly generated throughout the year. In real life that is not exactly true, but the variations of cargo offerings from month to month are not large anyway.

There is a menu of ship types available for short or long term charter at given rates. A maximum number of ships of each type can be chartered; this is realistic, as there is always a limit in the number of ships of any type available in the market.

4.3. Frequency of Service and Cargo Movements

4.3.1 General Aspects

The model presented in this thesis requires a matrix of cargo movements per year from port to port in each route, as an input. Those values may be the typical cargo offerings for the company when operating in normal conditions, as per the company's statistics.

A method of analysis will be presented, for the determination of the minimum required size (capacity) of the ships allocated to that trade; we make the assumption that the total amount of cargo offered per year between pairs of ports is independent of the service frequency. Therefore, for frequencies different to the ones corresponding to the cargo statistics taken as input, the total amount of cargo to be carried per year remains constant. This assumption implies that the shipping company will neither lose nor gain customers if frequencies of service are modified; that is realistic for the case of moderate variations. The appropriate range of allowed frequency variations can only be determined by the liner shipping company.

Given the amounts of cargo to be moved between port pairs and the frequencies of service in each one of the routes, an amount of cargo to be moved at each call (i.e., per voyage) can be computed. We assume that the ship's stay at port is largely determined by that amount of cargo, given a standard "productivity" associated to that port; this productivity is given as a number of container units or weight units (loaded and/or unloaded) per unit time; most shipping companies keep records of that measure for the ports their ships call.

In the case of multiple types of cargo, it is obvious that a different productivity value is associated with every mix of commodity types that may be loaded/ unloaded in a port. However, it is assumed here that the values of productivity for each port (to be given as an input for our model), correspond to the mix of cargo types foreseen in the time horizon considered for the fleet deployment decision. This is not an unrealistic assumption, since liner companies usually maintain a stable/ loyal clientele, therefore the cargo mix to be moved at each port is not likely to change substantially.

The units for all the cargo data are given in TEU's or tons, depending on the type of cargo carried by the liner company.

4.3.2 Amounts of Cargo per Port

4.3.2.1 Cargo Loaded/Unloaded Per Year

From a (given) three-dimensional matrix \mathbf{Q} representing the amounts of cargo (tons or containers) to be moved per year from port i to port j on route r, the amounts of cargo to be loaded and unloaded in every port can be computed as follows:

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{ir}}=\sum_{\mathrm{j}=1}^{\mathrm{I}_{\mathrm{r}}}\left[\mathrm{Q}_{\mathrm{ijr}}+\mathrm{Q}_{\mathrm{jir}}\right] \tag{1}
\end{equation*}
$$

where:
$\mathrm{Q}_{\mathrm{ir}}=$ amount of cargo to be moved (loaded and unloaded) per annum, by all ships at port i of route r
$\mathrm{Q}_{\mathrm{ijr}}=$ amount of cargo to be carried per annum from port i to port j in route r
$\mathrm{Q}_{\mathrm{jir}}=$ amount of cargo to be carried per annum from port j to port i in route r
$I_{r}=$ number of ports in route r

4.3.2.2 Cargo Loaded/Unloaded per Voyage

The targeted number of voyages per year define the amount of cargo that has to be loaded and unloaded per call (i.e. per voyage) at each port, as follows:

$$
\begin{equation*}
\mathrm{q}_{\mathrm{ir}}=\mathrm{Q}_{\mathrm{ir}}\left[\mathrm{~F}_{\mathrm{r}} / 365\right] \tag{2}
\end{equation*}
$$

where:
$\mathrm{q}_{\mathrm{ir}}=$ amount of cargo to be unloaded and loaded at the ith port of route r $\mathrm{F}_{\mathrm{r}}=$ Frequency of Service, as defined before; the term [$\mathrm{F}_{\mathrm{r}} / 365$] is the inverse of the number of voyages per year in route r.

4.3.3 Vessel Loading Levels

The present model assumes, that cargo may be carried between any couple of ports of a given route. Of course once a given port sequence in a route is established, the possible
origin-destination couples are also defined; (on the other hand, that port sequence is established taking into consideration the normal flow of the cargo); for instance, if ports 1 and 2 are located in the U.S., ports 3 and 4 in Europe, and the port sequence is 1234 , the ships in this route should not pick cargo at port 2 for port 1 (assuming that the frequency may not be changed), because it will imply to carry that cargo to Europe and then back to the U.S., causing delays to the customers (excessive transit time), lost of cargo space and additional costs to the ship operator.

One important component of the present model is the calculation of the "loading level" of our ship for each one of the legs ij in a route, i.e, the amount of cargo remaining on board in those legs. These loading levels will suggest an optimal frequency of service, from the capacity utilization point of view only. This analysis, together with marketing considerations, will be the basic information that the shipping company shall use for the establishment of the service frequencies.

First, we assume that there is only one round voyage per year in each route and find the highest loading level in each one of them. With that information, we can find the optimal ship capacity for a given number of voyages per year or the optimal number of voyages per year for a given ship capacity. The number of voyages per year is just 365 divided by the value of Frequency of Service.

Let us define:
$L_{i j r}=$ amount of cargo onboard a ship sailing from port i to port j of route r, for the case of one voyage per year (a port is served every 365 days)

The above values can be computed as follows:

$$
\begin{array}{ll}
L_{i j r}=\sum_{f=1}^{i} \sum_{g=j}^{f} Q_{f g r}, & \left(\text { for } i=I_{r}\right) \\
L_{i j r}=\sum_{f=j}^{I_{r}} \sum_{g=j}^{f} Q_{f g r}+\sum_{f=1}^{i} \sum_{g=j}^{f} Q_{f g r}+\sum_{f=1}^{i} \sum_{g=j}^{I_{r}} Q_{f g r}, & \left(\text { for } i \neq I_{r}\right) \tag{3}
\end{array}
$$

where $Q_{f g r}$ is the amount of cargo to be carried per year from port f to port g in route r

The above equations can be verified in the following example. Take a route r of five ports; the established sequence is:
port1 - port2 - port3 - port4 - port5, or just 1-2-3-4-5

This sequence repeats itself as voyages complete. The amount of cargo on board for leg $51 \mathrm{r}\left(\mathrm{i}=\mathrm{I}_{\mathrm{r}}=5\right)$, will be:

$$
\begin{aligned}
L_{51 r}= & Q_{11 r}+ \\
& Q_{21 r}+Q_{22 r}+ \\
& Q_{31 r}+Q_{32 r}+Q_{33 r}+
\end{aligned}
$$

$$
\begin{aligned}
& Q_{41 \mathrm{r}}+Q_{42 \mathrm{r}}+Q_{43 \mathrm{r}}+Q_{44 \mathrm{r}}+ \\
& Q_{51 \mathrm{r}}+Q_{52 \mathrm{r}}+Q_{53 \mathrm{r}}+Q_{54 \mathrm{r}}+Q_{55 \mathrm{r}}
\end{aligned}
$$

The amount of cargo on board in the leg $23 \mathrm{r}\left(\mathrm{i} \neq \mathrm{I}_{\mathrm{T}}\right.$, as $\mathrm{i}=2, \mathrm{I}_{\mathrm{r}}=5$), will be:

$$
\begin{aligned}
L_{23 \mathrm{r}}= & Q_{33 \mathrm{r}}+Q_{43 \mathrm{r}}+Q_{44 \mathrm{r}}+Q_{53 \mathrm{r}}+Q_{54 \mathrm{r}}+Q_{55 \mathrm{r}}+ \\
& Q_{13 \mathrm{r}}+Q_{14 \mathrm{r}}+Q_{15 \mathrm{r}}+Q_{23 \mathrm{r}}+Q_{24 \mathrm{r}}+Q_{25 \mathrm{r}}+ \\
& Q_{11 \mathrm{r}}+Q_{21 \mathrm{r}}+Q_{22 \mathrm{r}}
\end{aligned}
$$

The amount of cargo in the most heavily loaded leg will be:

$$
L_{r}=\max L_{i j r}, \text { for all legs ij in route } r
$$

Now, the minimum required capacity of ships that are to operate in route r is:

$$
\begin{equation*}
R C_{\mathrm{r}}=\mathrm{L}_{\mathrm{r}} /\left(365 / \mathrm{F}_{\mathrm{r}}\right), \tag{4}
\end{equation*}
$$

where F_{r} is the established Frequency of Service
On the other hand, if ships of type k with given capacity V_{k} are assigned to route r, then the minimum required number of voyages per year in that route is:

$$
\begin{equation*}
R V_{r}=L_{\mathrm{T}} / V_{\mathrm{K}}, \tag{5}
\end{equation*}
$$

and the corresponding value of Frequency of Service is:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{r}}=365 / \mathrm{RV}_{\mathrm{r}} \tag{6}
\end{equation*}
$$

4.4 Cost Estimation Model

4.4.1 Ship Daily Running Costs

4.4.1.1. Daily Running Costs in Normal Operation

The concept of "daily running cost", or simply "daily cost" as will be called in the present thesis, will play a major role in our model. For the owned ships, this cost has typically the following components (approximate percentages are in brackets):
a- Equivalent daily cost of the ship; includes the payments for the ship's
purchase minus the salvage value (45\%)
b- Salaries and benefits of the crew (35\%)
c- Maintenance and repair (labor and parts) (10.5\%)
d- Insurance of hull and machinery (5.0\%)
e-Lubricants (1.5\%)
f- Supplies and miscellaneous (3\%)

The equivalent daily cost of the ship can be computed from the cash flows related with the purchase of the ship and the salvage value. The Net Present Value (NPV) of those cash flows should be computed. In the case that favorable financing was obtained for the ship's acquisition, an "Adjusted Net Present Value" (APV) should be computed. This APV is the result of subtracting the present value of the "subsidized borrowing" to the NPV. Finally, the equivalent annual cost (EAC) can be computed as follows:

$$
\begin{equation*}
\mathrm{EAC}=\mathrm{APV} / \operatorname{AF}(\mathrm{y}, \mathrm{t}) \tag{7}
\end{equation*}
$$

where
$A F(y, t)=y^{-1}(1+y)^{-t}\left[(1+y)^{t}-1\right]$
is a factor converting to present value an annuity of t years at an annual interest rate of y.
The equivalent daily cost (EDC) is the EAC divided by 365 . The EDC is added to the other costs per day summarized above in order to obtain the daily costs of the ship which will be denoted herein as H_{k} for the kth. ship. This value will be extensively used for the cost computations in the following sections.

For chartered vessels, $\mathrm{H}_{\mathbf{k}}$ is simply the hire rate (for long term charter).

4.4.1.2. Daily Running Costs in Lay-up Condition

When the ship k is laid-up for medium periods of time, some of the cost components of H_{k} reduce substantially (e.g., maintenance and lubricants costs); others may also reduce depending on the particular case; the type of labor contract with the crew will define how much crew reduction can the company make, this is usually the most important input in deciding to lay-up a ship. If crew can be reduced, food and other provisions can also be reduced.
Insurance costs could be reduced, depending on the agreement between the shipping and the insurance companies; frequently the insurance policies require payments in advance covering long periods. In such cases, no cost reduction is obtained for laying up the ship, at least during the first year or semester after the lay-up takes place.

The daily cost for the ship k while laid-up will be denoted in the present thesis as h_{k}.

4.4.2 Voyage Costs

In the following sections, a model for the calculations of the coefficients to be input to the L.P. program is developed. Those coefficients are the operating costs of each ship type on each route.

The total costs will be divided into costs at sea and costs at port. A "voyage" in the present thesis is defined as one round trip in one of the established routes.

$$
\begin{equation*}
\mathrm{C}_{\mathrm{kr}}=\mathrm{C}_{\mathrm{kr}}^{\mathrm{s}}+\mathrm{C}_{\mathrm{kr}}^{\mathrm{p}} \tag{9}
\end{equation*}
$$

where:
$\mathrm{C}_{\mathrm{kr}}=$ operating costs per voyage for ship k in route r
$C_{k r}^{s}=$ operating costs at sea per voyage for ship k in route r
$\mathrm{C}_{\mathrm{kr}}^{\mathrm{p}}=$ operating costs at port per voyage for ship k in route r

4.4.3 Costs at Sea

4.4.3.1 General Formula

The costs incurred by the ship k while at sea operating in route r, denoted by $\mathrm{C}_{\mathrm{kr}}^{\mathrm{s}}$, can be broken down as follows:

$$
\begin{equation*}
C_{k r}^{s}=t_{\mathrm{kr}}^{s} A_{\mathrm{kr}}^{\mathrm{s}}+\mathrm{m}_{\mathrm{lr}}+\mathrm{t}_{\mathrm{r}}^{\mathrm{m}} \mathrm{H}_{\mathrm{k}}, \tag{10}
\end{equation*}
$$

where:
$\mathrm{t}_{\mathrm{kr}}^{\mathrm{s}}=$ sailing time of ship k , per voyage on route r (days)
$A_{k r}^{s}=$ operating costs per unit time at sea for ship k on route r (\$/day)
$\mathrm{m}_{\mathrm{kr}}=$ canal fees per voyage for ship k on route r (\$/voyage).
$\mathrm{t}_{\mathrm{r}}^{\mathrm{m}}=$ delay due to sailing in restricted waters, include waiting for passing canals (days)

4.4.3.2 Sailing Time

The sailing time for ship k on route r can be calculated as follows:

$$
\begin{equation*}
\mathrm{t}_{\mathrm{kr}}^{\mathrm{s}}=\mathrm{d}_{\mathrm{r}} /\left(24 \mathrm{~S}_{\mathrm{k}}\right), \tag{11}
\end{equation*}
$$

where:
$\mathrm{d}_{\mathrm{r}}=$ total sailing distance in route r (nautical miles)
$S_{k}=$ service speed of vessel k (knots).

4.4.3.3 Daily Costs at Sea

The costs per day for vessel k at sea in route r are:

$$
\begin{equation*}
A_{k r}^{s}=f_{k} p_{r}^{f}+g_{k}^{s} p_{r}^{g}+H_{k} \tag{12}
\end{equation*}
$$

where:
$f_{k}=$ consumption per unit time of propulsion fuel of ship k (ton/day)
$p_{r}^{f}=$ price of propulsion fuel on route $r(\$ /$ ton)
$\mathbf{g}_{\mathbf{k}}^{\mathbf{s}}=$ consumption per unit time of fuel for electricity generation at sea of ship k (ton/day)
$p_{r}^{g}=$ price of fuel for electricity generation on route $r(\$ / t o n)$

4.4.4.4 Restricted Operation

i. Canal Fees

Canal fees are usually established per unit of the correspondent register ton. The costs due to canal fees are therefore calculated as follows:

$$
\begin{equation*}
m_{k r}=c f_{r} R T_{k r} n c_{r} \tag{13}
\end{equation*}
$$

where:
$\mathrm{cf}_{\mathrm{r}}=$ canal fee in route r (\$/register ton)
$\mathrm{RT}_{\mathrm{kr}}=$ register tonnage of ship k for the canal in route r
$\mathrm{cn}_{\mathrm{r}}=$ number of canal crossings /voyage in route r
Our model assumes only one canal (we refer here to the important canals costwise) is crossed in each of the routes; however with a slight change in notation the case of more than one canal can be adapted; cn_{r} is usually two or zero, as the voyages in liner shipping are round trips.

ii. Delays due to Restricted Operation

In addition to canal costs we take into account the cost due to delays caused by sailing in restricted waters (including canals and entries/ departures to/from ports) and by waiting in queues before passing canals. This delays are calculated as follows:

$$
\begin{equation*}
t_{\mathrm{r}}^{\mathrm{m}}=\left(d_{\mathrm{r}}^{\mathrm{m}} / 24\right)\left[\left(1 / S_{m}\right)-\left(1 / S_{k}\right)\right]+\mathrm{t}_{\mathrm{r}}^{\mathrm{w}} \tag{14}
\end{equation*}
$$

where:
$t_{\mathrm{I}}^{\mathrm{m}}=$ delay related to restricted waters operation (days)
$d_{r}^{m}=$ distance to be sailed in restricted waters in route r (nautical miles)
$S_{m}=$ average speed in restricted waters for all ships (knots).
$\mathrm{t}_{\mathrm{T}}^{\mathbf{w}}=$ waiting time (at anchorage) due to canal queues per voyage in route r , for any ship (days)
$\mathrm{t}_{\mathrm{T}}^{\mathrm{w}}$ can be estimated as a fixed amount of time per crossing times the number of crossings per voyage:

$$
\begin{equation*}
\mathrm{t}_{\mathrm{r}}^{\mathrm{w}}=\mathrm{cn}_{\mathrm{r}} \mathrm{cw}_{\mathrm{r}} \tag{15}
\end{equation*}
$$

where $\mathrm{cw}_{\mathrm{r}}=$ waiting time per canal crossing on route r (days)
d_{r}^{m} is the sum of the restricted waters distance associated with every port in the route, plus the length of sailing in canals:

$$
\begin{equation*}
\mathrm{d}_{\mathrm{r}}^{\mathrm{m}}=\sum_{\mathrm{i}=1}^{\mathrm{I}_{\mathrm{r}}} \mathrm{~d}_{\mathrm{ir}}^{\mathrm{m}}+\mathrm{cn}_{\mathrm{r}} \mathrm{~cd} \mathrm{~d}_{\mathrm{r}} \tag{16}
\end{equation*}
$$

where:
$\mathrm{d}_{\mathrm{ir}}^{\mathrm{m}}=$ distance of restricted waters sailing associated with port ir $\mathrm{cd}_{\mathrm{r}}=$ length of the canal in route r

4.4.4 Costs at Ports

4.5.4.1 General Formula

Our model considers for the cost calculation at ports both fixed (per call basis) and variable (per day of port stay) costs:

$$
\begin{equation*}
C_{k r}^{p}=\sum_{i=1}^{I_{r}}\left[t_{i r}^{p} A_{i r k}^{p}+u_{i r k}\right] \tag{17}
\end{equation*}
$$

where:
$\mathrm{C}_{\mathrm{kr}}^{\mathrm{p}}=$ operating costs at ports per voyage for the ship k on route r ,
$t_{i r}^{p}=$ time per call at port i of route r; can be called also time per voyage at that port, as we are denoting multiple calls per voyage to the same port as different ports,
$A_{i r k}^{p}=$ operating costs per unit time for vessel k at port i of route r (\$/day), and
$u_{i r k}=$ fixed costs per call at port i of route r for ship k.
The fixed costs per call, $\mathrm{u}_{\mathrm{irk}}$, include typically the following:

- Docking/ Undocking
- Pilotage
- Tugboat fees
- Navigation aids maintenance fees (if any)

Depending on the port authority, there may be other costs to be included in this category. The rates are usually based on the ship's length, draft, deadweight tonnage (DWT), or register tonnage.

4.5.4.2 Time at Port

The time a ship spends in a port is proportional to the amount of cargo loaded and unloaded. We assume that there is only one type of cargo (for example, containers), therefore a single loading/unloading rate (here called "productivity") can be applied in order to find the time needed to move the cargo requirements. In addition, in order to be realistic, our model includes an allowance for inactive time at port; this is a time interval during which the ship is not performing its normal operations at port. Inactivities can be classified depending on their cause, as follows:

- Caused by the port authority
- Caused by the agent
- Caused by the shipper (as when waiting for a given cargo to arrive to the loading port)
- Caused by the shipping company
- Other, like bad weather

For control purposes the shipping company further classifies the above listed types. Inactive intervals may occur before, during or after the cargo operations.

The time at port is calculated as follows:

$$
\begin{equation*}
\mathrm{t}_{\mathrm{ir}}^{\mathrm{p}}=\mathrm{q}_{\mathrm{ir}} / \mathrm{n}_{\mathrm{ir}}+\mathrm{w}_{\mathrm{ir}} \tag{18}
\end{equation*}
$$

where:
$\mathrm{n}_{\mathrm{ir}}=$ productivity or rate of loading and unloading cargo in port i of route r (tons or containers per day), and
$\mathbf{w}_{\text {ir }}=$ allowance per call for inactive time at port i of route r (days), as defined above.

4.5.4.3 Daily Cost at Port

For the cost per unit time of the ship while at port, the model includes the fuel cost, the ship's daily running cost and the variable port fees. This cost is computed as follows:

$$
\begin{equation*}
A_{i r k}^{p}=g_{k}^{p} p_{r}^{g}+H_{k}+v_{i r k} \tag{19}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \mathrm{g}_{\mathrm{k}}^{\mathrm{p}}=\text { average fuel consumption at ports (mainly for electricity } \\
& \quad \text { generation) } \\
& \mathrm{p}_{\mathrm{r}}^{\mathrm{g}}=\text { price of fuel for electricity generation in route } \mathrm{r}(\$ / \text { ton }) \\
& \mathrm{v}_{\mathrm{irk}}=\text { variable port fees (per unit time) for ship } \mathrm{k} \text { at port } \mathrm{i} \text { of route } \mathrm{r}
\end{aligned}
$$

The variable port fees depend on the specific port; the most usual fees in this category are anchorage and wharfage charges. As with the fixed or per call fees, the level of the variable fees, is established depending on the ship's length, draft, DWT, or register tonnage.

4.4.5. Lay-up Daily Costs

Following the discussion about the daily running costs of the ship while laid-up, in Section 4.4.1.2, the laid-up costs per day are defined as follows:

$$
\begin{equation*}
e_{k}=h_{k}+g_{k l} p_{1}+D_{k} \tag{20}
\end{equation*}
$$

where:
$e_{k}=$ total lay-up costs per day for ship k in route $r(\$)$,
$\mathrm{g}_{\mathrm{kl}}=$ generator fuel consumption in lay-up condition (ton/day),
$\mathrm{p}_{1}=$ price of fuel for generation at the lay-up location (\$/ton), and
$\mathrm{D}_{\mathrm{k}}=$ additional daily cost of ship k while laid-up, including anchorage charges, transportation for the crew in and out of the ship, etc.

4.4.6 Total Time per Voyage

The total voyage time is the sum of the times at sea and at port plus the delay due to restricted operation:
$t_{k r}=t_{k r}^{s}+t_{T}^{p}+t_{r}^{m}$
where $t_{\mathrm{r}}^{\mathrm{p}}=\sum_{\mathrm{i}=1}^{\mathrm{I}_{\mathrm{r}}} \mathrm{t}_{\mathrm{ir}}^{\mathrm{p}}$ is the total time at port in route r (days), and the other terms have already been defined.

4.5 Optimal Speed Calculation

As mentioned before, the speed assignment problem will be decoupled from the main (deployment) problem. In the following paragraphs, we formulate the problem of finding the optimal speed as a non-linear constrained optimization problem that can be solved by standard mathematical procedures. The resulting speeds should normally not be too different among ships of similar size and power.

The power P_{k} required to propel the vessel type k at speed S , may be expressed as:

$$
\begin{equation*}
P_{k}=c_{k} S^{b_{k}} \tag{22}
\end{equation*}
$$

where c_{k} and b_{k} are known coefficients, and b_{k} is close to 3 for all ships over their usual speed range.

The specific fuel consumption (SFC) i.e., the fuel consumption per unit of power per unit of time, may be expressed as a second order polynomial of the engine power used. However, for a narrow speed range (close to the design speed) the SFC can be assumed to be constant for the different levels of engine power. In this case, the speedfuel consumption per unit time relationship can be expressed as:

$$
\begin{equation*}
f_{k}=a_{k} S_{k}^{3} \tag{23}
\end{equation*}
$$

where:
$f_{k}=$ fuel consumption per unit time for the ship type k, and $\mathbf{a}_{\mathbf{k}}$ is a known coefficient.

Recognizing the possibility that the optimal speeds in each route may be different for the same ship, we add the subscript \mathbf{r} to $\mathrm{S}_{\mathbf{k}}$. Developing the expressions of our model and using the same notation defined before, the operating costs per voyage of ship type k in route r are:

$$
\begin{equation*}
\mathrm{C}_{\mathrm{kr}}=\frac{\mathrm{d}_{\mathrm{r}}}{24 \mathrm{~S}_{\mathrm{kr}}}\left[\mathrm{f}_{\mathrm{k}} \mathrm{p}_{\mathrm{r}}^{\mathrm{f}}+\mathrm{g}_{\mathrm{k}}^{\mathrm{s}} \mathrm{p}_{\mathrm{r}}^{\mathrm{g}}+\mathrm{H}_{\mathrm{k}}\right]+\mathrm{m}_{\mathrm{kr}}+\mathrm{t}_{\mathrm{r}}^{\mathrm{m}} \mathrm{H}_{\mathrm{k}}+\mathrm{C}_{\mathrm{kr}}^{\mathrm{p}} \tag{24}
\end{equation*}
$$

All the terms of the right hand side of this equation except the final one are the components of $\mathrm{C}_{\mathrm{kr}}^{\mathrm{s}}$ which have been already described. Replacing f_{k} by its expression (speed dependent) and rearranging, we have:

$$
\begin{equation*}
C_{k r}=\left(d_{r} / 24\right)\left[a_{k} p_{r}^{f} S_{k r}^{2}+S_{k r}^{-1}\left(g_{k}^{s} p_{r}^{g}+H_{k}\right)\right]+c_{k r} \tag{25}
\end{equation*}
$$

where:

$$
c_{k r}=m_{k r}+t_{r}^{m} H_{k}+C_{k r}^{p}
$$

Now, defining the following constants:

$$
\begin{align*}
& A_{k r}=d_{r} a_{k} p^{f} / 24 \tag{26}\\
& B_{k r}=\left[d_{r}\left(g_{k}^{s} p_{r}^{g}+H_{k}\right)\right] / 24, \tag{27}
\end{align*}
$$

we have:
$\mathrm{C}_{\mathrm{kr}}=\mathrm{A}_{\mathrm{kr}} \mathrm{S}_{\mathrm{kr}}^{2}+\mathrm{B}_{\mathrm{kr}} \mathrm{S}_{\mathrm{kr}}^{-1}+\mathrm{c}_{\mathrm{kr}}$,
expressing the operating costs per voyage as a nonlinear function of the service speed.

The first derivative of C_{kr} with respect to S_{kr} is;

$$
\begin{equation*}
\mathrm{d}\left(\mathrm{C}_{\mathrm{kr}}\right) / \mathrm{d} \mathrm{~S}_{\mathrm{kr}}=2 \mathrm{~A}_{\mathrm{kr}} \mathrm{~S}_{\mathrm{kr}}-\mathrm{B}_{\mathrm{kr}} \mathrm{~S}_{\mathrm{kr}}^{-2} \tag{29}
\end{equation*}
$$

Setting (29) equal to zero, we have:

$$
\begin{equation*}
2 A_{k r} S_{k r}=B_{k r} S_{k r}^{-2} \tag{30}
\end{equation*}
$$

therefore:

$$
\begin{equation*}
S_{\mathrm{kr}}^{*}=\left[\mathrm{B}_{\mathrm{kr}} / 2 \mathrm{~A}_{\mathrm{kr}}\right]^{(1 / 3)}, \tag{31}
\end{equation*}
$$

where:

$$
\mathrm{S}_{\mathrm{kr}}^{*}=\text { optimal speed of the ship } \mathrm{k} \text { while operating in route } \mathrm{r}
$$

We can check now whether this extremum is a maximum or a minimum by calculating the second derivative:

$$
\begin{equation*}
\mathrm{d}^{2} \mathrm{C}_{\mathrm{kr}} /\left(\mathrm{dS}_{\mathrm{kr}}\right)^{2}=2 \mathrm{~A}_{\mathrm{kr}}+2 \mathrm{~B}_{\mathrm{kr}} \mathrm{~S}_{\mathrm{k}}^{-3} \tag{32}
\end{equation*}
$$

At the extremum found, our function has the following value (replacing S_{kr} by $\mathrm{S}_{\mathrm{kr}}^{*}$):

$$
2 \mathrm{~A}_{\mathrm{kr}}+2 \mathrm{~B}_{\mathrm{kr}} 2 \mathrm{~A}_{\mathrm{kr}} / \mathrm{B}_{\mathrm{kr}}=6 \mathrm{~A}_{\mathrm{kr}}
$$

as $\mathrm{A}_{\mathrm{kr}}>0$, the extremum found is a minimum.
Replacing the components of B_{kr} and A_{kr}, in (31), we obtain the optimum speed of ship k in route r :

$$
\begin{equation*}
S_{k r}^{*}=\left[\left(g_{k}^{s} p_{\mathrm{r}}^{\mathrm{g}}+\mathrm{H}_{\mathrm{k}}\right) /\left(2 \mathrm{a}_{\mathrm{k}} \mathrm{p}_{\mathrm{r}}^{\mathrm{f}}\right)\right]^{(1 / 3)} \tag{33}
\end{equation*}
$$

To be valid, the resultant speed must lie within the feasible range indicated by the minimum and maximum speed limits of the ship; if outside those limits, the assigned speed should take the value of the limit it has exceeded.

The method described assumes that the time saved because of the higher speed translates directly into savings in daily running costs, H_{k}, as is the case for short term chartered ships; however, this model is not realistic for the owned ships if their lay-up costs are high, because sailing faster may imply spending the sailing time saved in an expensive lay-up condition. We suggest two courses of action at this point :
i) the fleet of owned ships is sufficient to fulfil the transportation mission, i.e. no chartering is required.
ii) the fleet of owned ships is insufficient to fulfil the transportation mission and additional ships have to be chartered anyway.

For the first case, instead of H_{k}, the value of $\left[H_{k}-e_{k}\right]$ should be used, e_{k} being the daily costs for the laid-up ship k.

For the second case, the value to be used instead of $\mathrm{H}_{\mathbf{k}}$ is the hire rate of a ship of similar type which would have eventually to be chartered as a direct consequence of the lower speed of owned ships. Long term chartered ships may be treated as owned ships.

4.6 Linear Programming Formulation

4.6.1 Decision Variables

The decision variables in our model are:
$X_{k r}=$ number of voyages per year of ship k in route r
$Y_{k}=$ number of lay-up days per year of ship k
for $k=1, \ldots, K$ and $r=1, \ldots, R$

4.6.2 Objective Function

The total operating costs of the shipping company have to be minimized; they can be expressed in terms of the decision variables described above, as follows:

$$
\begin{equation*}
\sum_{\mathbf{k}=1}^{\mathbf{K}} \sum_{\mathrm{r}=1}^{\mathrm{R}} \mathbf{C}_{\mathrm{kr}} \mathbf{X}_{\mathrm{kr}}+\sum_{\mathbf{k}=1}^{\mathbf{K}} \mathrm{e}_{\mathbf{k}} \mathbf{Y}_{\mathbf{k}} \tag{34}
\end{equation*}
$$

4.6.3 Constraints

4.6.3.1 Time Availability

The time used by the ship in all the assigned voyages and lay-up should equal one year. The time available (in one year, our time horizon) of all type k ships, is:

$$
\begin{equation*}
\sum_{r=1}^{R} t_{k r} X_{k r}+Y_{k}=365 N_{k}^{\max }, \text { for all } k \tag{35}
\end{equation*}
$$

where $N_{k}^{\max }$ is the number of type k ships available.
4.6.3.2 Frequency of Service
M_{r}, the number of voyages per year (a real number) in route r should satisfy the inequality:

$$
\begin{equation*}
\sum_{\mathrm{K}=1}^{\mathrm{K}} \mathrm{X}_{\mathrm{kr}} \leq \mathrm{M}_{\mathrm{kr}} \text {, for all } \mathrm{r} \tag{36}
\end{equation*}
$$

and,

$$
\mathrm{M}_{\mathrm{r}}=365 / \mathrm{F}_{\mathrm{r}}
$$

4.6.3.3 Ship-Route Incompatibility

Due to various reasons, a ship may be unable to operate on a specific route, as in the following cases:
a. Insufficient (total) cargo capacity
b. Lack of capacity of a special cargo type that is usually carried in the route (in the case of general cargo ships) like refrigerated cargo.
c. Impossibility of carrying special types of cargo because of (ship's) limitations in cargo handling equipment (realistic consideration for the cases of routes calling ports of developing countries.

Our constraint here is:
$X_{k r}=0$, for a given ship-route combination, (k,r).
Constraints of this type can be used during the optimization procedure for dealing with special cases, like when there are governmental regulations about the number of ships of given flags in a route.

4.6.3.4 Shipping Season

In the present model, the case of a ship being scheduled for drydocking, or, in general, repairs, within the time horizon of the deployment problem, is dealt with by assigning a shorter shipping season. The time interval during which the ship is unable to operate for other reasons is treated similarly; whenever the ship is not operating, it is assumed to be laid-up. The constraints that establish shipping seasons are of the form:

$$
\begin{equation*}
Y_{k} \geq\left(365-T_{k}\right) N_{k}^{\max } \tag{37}
\end{equation*}
$$

where T_{k} is the shipping season for type k ships, which takes into account the drydock/repair times programmed in the year.

4.6.3.5 Non-negativity

The decision variables should have values greater than, or equal to zero:

$$
\begin{equation*}
\mathrm{X}_{\mathrm{kr}}, \mathrm{Y}_{\mathrm{k}} \geq 0 \tag{38}
\end{equation*}
$$

4.7 Optimization Procedure

4.7.1 Basic Inputs

4.7.1.1 Cargo Data

Cargo Data refers to the amounts cargo to be moved between port pairs in all of the routes. It can be given as a three-dimensional matrix: route r, origin port i, destination port j (each element is denoted as $\mathrm{Q}_{\mathrm{ij})}$). Information about special types of cargo to be carried in given routes is also necessary in order to establish later the ship-route incompatibilities.

4.7.1.2 Vessel Data

The vessel related information is the following (using the notation defined before):
a. The names of the ships or ship types and their corresponding ID's k, are defined.
b. $H_{k}, h_{k}, g_{k}^{s}, g_{k}^{p} g_{k}^{1}, D_{k}, V_{k}, V_{k}, N_{k}^{\max }, \operatorname{TR}_{\mathbf{k}}$.
c. The speed vs. propulsion fuel consumption characteristics of the ship; these may be given as a discrete set of speed-consumption values (from which a regression can be obtained) or as a continuous function. This speedconsumption relationship can also be calculated from the following data:
-Curve of Delivered Power (power requirement after the stern tube) vs. Ship's speed; this curve is usually obtained in the ship trials by the shipyard.
-Information about the type of connection of the prime mover with the propeller, in order to calculate the efficiencies involved and use them in the calculation speed/ consumption.
-Curve of engine power vs. Specific Fuel Consumption (per unit power per unit time) vs engine RPM.

The parameters obtained here are: S_{k}, f_{k} and a_{k}
d. General technical information about the ships in order to determine their suitability for operation in specific routes (especially concerning holds and handling equipment) like:

[^0]
4.7.1.3 Route Data

a. Name of the routes and their correspondent ID numbers r
b. Ports in the routes and routing sequence; a port is assigned its ID number (i) according to its position in the routing sequence.
c. $\mathrm{d}_{\mathrm{T}}, \mathrm{p}_{\mathrm{r}}^{\mathrm{f}}, \mathrm{p}_{\mathrm{r}}^{\mathrm{g}}, \mathrm{cn}_{\mathrm{r}}, \mathrm{d}_{\mathrm{r}}^{\mathrm{m}}, \mathrm{t}_{\mathrm{r}}^{\mathrm{w}}, \mathrm{cd}_{\mathrm{r}}$.
d. Desired values of F_{r}, as per marketing considerations.

4.7.1.4 Port Data

a. $\mathrm{n}_{\mathrm{ir}}, \mathrm{w}_{\mathrm{ir}}, \mathrm{d}_{\mathrm{ir}}^{\mathrm{m}}$ (same for all ships)
b. $v_{\text {irk }}, u_{\text {irk }}$ (for every ship k at port ir)
c. Cargo handling equipment available (in order to establish ship-route incompatibilities)

4.7.2 Frequencies and Cargo Related Data

At this point, the following data regarding cargo is calculated as described in Section 4.3.3:

$$
L_{i j r}, L_{\mathrm{r}}, \mathrm{Q}_{\mathrm{ir}}, \mathrm{RC}_{\mathrm{r}}, \mathrm{RV}_{\mathrm{r}}
$$

For the calculation of the last two, different values of Frequency of Service F_{r}, and Ship's Capacity $\mathrm{V}_{\mathbf{k}}$ are used in formula (3), (4), and (5).

For the calculation of $L_{i j r}$ and L_{r}, which is relatively complex, as well as for the computation of Q_{ir}, we have written a suitable Fortran code (see Appendix 1) which applies formula (3).

Graphs of required ship capacity, RC_{r} vs. frequency of service, F_{r} are very useful for visualizing the frequency-capacity tradeoff in the different routes (see Figure 1). Graphs showing the loading condition of the ships in the various legs of a specific route (load levels vs. cumulative distance) provide insight on the utilization of the ships and provide hints for minor routing or frequency of service modifications (see Figure 2).

The goal at this stage is to establish target values of F_{r} (one for each route), based on the analysis of the frequency-capacity relationship mentioned above and on marketing considerations. At this point, the ship-route incompatibilities due to lack of cargo capacity are also determined. The incompatibilities due to special types of cargo and shipboard cargo handling equipment mentioned in Section 4.6.3.3 can also be established now.

Figure 1

Typical Plot
 Ship Capacity vs. Frequency of Service

Figure 2

Typical Plot
 Ship Cargo Level vs. Distance

4.7.3 Speed Determination

Coefficients \mathbf{q}_{k} are calculated for all type k ships from a regression of the available speed-fuel consumption data as described in Section 4.5. Then (33) is applied with the fuel price data for every route, resulting in r values of S_{k}^{*}, (one for each route). If there are no big differences in fuel prices among routes, it is convenient to use only one set of fuel prices in order to obtain one speed value for a given ship.

Graphs based on the relationships implied by (33) are very useful for visualizing the sensitivity of the optimal speed to variations in the parameters involved. The most important components of this formula are the fuel price, $\mathrm{p}_{\mathrm{r}} \mathrm{f}$, and the daily costs H_{k}; plots of optimal speed vs. daily costs for various fuel prices and of optimal speed vs fuel price for various daily costs are presented in Figures 3 and 4 respectively.

Figure 3
Typical Plot Optimal Speed vs. Daily Costs

(\$)

The key point in the speed determination is to find the correct value to use in place of daily cost as was discussed in Section 4.5. If the owned fleet is insufficient to fulfill the
transportation mission (H_{k} of a similar charter ship is used), or it is sufficient but the lay-up costs are low ($\mathrm{H}_{\mathrm{k}}-\mathrm{h}_{\mathrm{k}}$ is used, h_{k} a small value), a relatively high speed will be better; if the owned fleet is sufficient and the lay-up costs are high $\left(H_{k}-h_{k}\right.$ is used, h_{k} a high value), a lower speed is more economical.

Figure 4
Typical Plot
Optimal Speed vs. Fuel Price

4.7.4 Cost and Time Coefficients for the L.P.

The next step is the calculation of coefficients $C_{k r}, e_{k}$ and $t_{k r}$ by means of (9), (20) and (21) respectively, which require also the application of (10) to (19). This calculation can be carried out by means of a computer program or a spreadsheet (commercial software) arrangement.

4.7.5 Input of the L.P. Program

The particular format of the input file for the LP computer application depends on the software used. In the present thesis we use the LINDO Fortran code (Linear, Integer and Discrete Optimizer) [12]; this program uses the simplex method. The input format
for LINDO is basically the format of the mathematical formulation of the LP; for example:

Minimize
$3 X+4 Y$
Subject to
constr.1) $2 \mathrm{X}-\mathrm{Y}<6$
constr.2) $\mathrm{X}-3 \mathrm{Y}>1$
End
The non-negativity constraints need not be input as they are automatically taken into account by the program. The input file is created most conveniently by means of an editor program; in the same way the output can be diverted to an editor file, which is also convenient. LINDO allows a user subroutine that can interact with the main program, which is especially useful when the LP has to be run for a great number of times.

For running the program, the following (main) commands are required:
LINDO (opens the program)
TAKE
Filename (take the input file)
DIVERT
Filename (divert the output to this file)
GO (runs the program)
Do range (sensitivity) analysis?
Yes (do sensitivity analysis)
QUIT (quit the program)
A sample of the input file is provided in the next chapter

4.7.6 Output and Sensitivity Analysis

The output of LINDO gives the following basic information:

- Values of the controllable variables corresponding to the optimal solution
- Value of the objective function at the optimal solution,
- Number of steps before finding the optimal solution,
- "reduced cost" for each one the coefficients in the objective function; this term is defined as the amount by which the coefficient of the respective variable has to be reduced for the variable to appear in the optimal solution; if the variable already appears in the solution, its "reduced cost" is zero,
- Slack or surplus of each one of the constraints, i.e., the amount by which the right hand side (RHS) value of each constraint, must increase or decrease for the constraint to become active, and
- Dual prices of the constraints, i.e., the change in the objective function value due to an unitary relaxation (increase or decrease) in the right hand side (RHS) values of each constraint.

Additionally, under the optional sensitivity information, the following values are given:

- Allowable increase and decrease of the coefficients of the variables, i.e., the range of variation of those coefficients (one at a time) in which the optimal solution (mix of variables in the optimal solution) does not change; the objective function value, however, will normally change.
- Allowable increase and decrease of the RHS value of the constraints, i.e., the range in which the RHS values may vary without changing the dual prices reported

The values of variables X_{kr} will tell us the allocation of the ships to the routes and the values of Y_{k} will indicate the number of days for which ship k must be laid-up; these Y_{k} values include the times of repair/ drydock and that have been given in the input (constraints in Section 4.6.3.4)

The Reduced Cost will tell us how economical a particular type of ship is for a specific route (for ships other than the ones chosen in the optimal solution); for example, if the Reduced Cost of X_{23} is close to zero (which implies that X_{23} 's value is zero in the optimal solution), it means that ship 3 could operate in route 2 without much additional cost.

If a constraint has slack or surplus, it indicates that the constraint is not active (its Dual Price is therefore zero). In practice, this suggests that the shipping company should not spend money to increase the resources regulated by this constraint. The Dual Price of a constraint tells about how rewarding is to increase one those resources.

Taking into account the allowable increase or decrease in the coefficients of the controllable variables or RHS values of the constraints, one can know the reach of the sensitivity information and make the correct computations in case that adjustments in the optimal mix must be made; those changes are generally required because the number of ships of a given type allocated to a given route must be an integer, as we describe in the following section. However, due to the fact that in most instances changes have to be made to various (not just one) values of the controllable variables, a recomputation of the total cost is normally required as it is described in the following section.

4.7.7 Calculation of Number of Ships Allocated to Routes

The output of the LP will give us the number of voyages per year of every ship in every route (X_{kr}), to find the number of ships k to be allocated in route r , the following relationship must be used:

$$
\begin{equation*}
N_{k r}=X_{k r} t_{k r} / T_{k}, \tag{39}
\end{equation*}
$$

where N_{kr} is the number of ships k assigned to route r .
The resultant N_{kr} value will normally be non-integer; it therefore should be rounded to an integer number, verifying that the total number of ships available of each type, $\mathrm{N}_{\mathrm{k}}^{\max }$ is not surpassed. This is easily accomplished with the help of spreadsheet software, as will be explained in the example of the next chapter. A spreadsheet or small computer program can be designed to derive the total number of ships per type and the total operating cost after each alternative "rounded" solution is entered. The process here is basically trial and error.

4.7.8 Speed and Coefficients Adjustment

It is required that all the ships assigned to the same route sail at the same speed in order to keep the frequency of service constant; however, since the speed for each ship was determined independently, the speeds of the various ships assigned to a route at the previous step will probably be different from each other. There are various approaches to this situation:
a. If the speed differences are not large (let us say, less than 1.5 knots), the speed to be assigned may be an intermediate value within the feasible range of speeds of every ship the costs coefficients C_{kr} will change slightly. Although not exactly applicable in this case, the sensitivity information of the LP output can provide indication on the validity of the present solution with those changes. The voyage times will also change slightly and therefore the frequency of service will change. However this change is not important since the effects of increased speed in some ships and reduced in others will tend to cancel each other.
b. There are many other factors which cause delays/ advances in the schedules and are dealt in the day-to-day decision process by the operations department of a liner shipping company like bad weather (at sea and at port) cargo demand variations, etc. The small time differences due to small speed differences can be dealt in the same way in the day-to-day decision process. The decisions that we talk about are, for example, when must a ship sail (should it stop loading now and leave the rest of the cargo for the next ship?), how many stevedore gangs should work on a ship in particular day (this will determine the length of the port stay), etc. For example, the slower ships may be assigned (slightly) less cargo in ports or more stevedore gangs in order to reduce their port stay and compensate for the higher sailing time).
c. If the speed differences are big, i.e , if the LP output implies the allocation of "speed incompatible" ships in the same route, the ships may be reallocated using the sensitivity information; for this task, the information on Reduced Costs is very helpful, since it shows the best alternative routes for each particular ship. The inclusion of additional incompatibility constraints (in order to impede the assignment of incompatible ships to the same route) may be tried; in this case the LP should be run again, and a few iterations may be required before arriving at an acceptable solution.
d. Some applications may require more precision than others. If more precision is desired, the LP may be run iteratively with new, adjusted cost and time coefficients each time (correspondent to the new speeds and frequencies implied by the previous output), until a "good" solution is reached.

The alternatives described above may involve various iterations as the frequencies of service in each route and the voyage times change with every modification; however, those changes are usually not great and can be accepted and/or dealt with in the real operation. It is clear from our description above, that the knowledge of the particular situation (shipping company) is important for deciding the adjustments to be made and whether or not a particular solution is acceptable. The LP results are the foundation for that decision process.

Normally, ships of higher speeds will tend to be allocated to routes of relatively higher sailing distances and vice-versa; therefore, the assignment (by the LP) of ships of very different speeds to the same route is unlikely. This means that a "good" solution converges with no difficulty. In the example worked out in this thesis (described in the next chapter) a "good" solution was found after only one LP run with the appropriate constraints.

4.7.9 Operating Costs Recalculation

The rounding of the number of ships assigned to the routes and every modification of the original LP solution implies a change in the total operating costs. Therefore, after every modification, the operating costs must be recomputed and recorded. The monetary effects of each new constraint or adjustment can be assessed and consequently the impact of that constraint or adjustment of the costs can be assessed.

5 Optimization Example

5.1 Basic Data

The present example relates to the deployment of the liner fleet of FMG which operation was described in Section 2.2. A description of the aspects of the operation of this company related to the specific problem we are addressing, was provided in Chapter 2. There are 14 owned vessels of six types in the fleet and five types of ships that may be chartered. Their names and the basic input data for our model are presented in Appendix 2.

The company operates seven liner routes all of them involved in the transportation of Colombian imports and exports:

- U.S East Coast
- U.S. Gulf Coast
- U.S. West coast
- Europe-North
- Europe-Mediterraneum
- Japan
- South America West Coast

Most of the maritime (foreign) commerce of Colombia is performed by FMG. All but two of the routes require passing the Panama Canal twice per voyage. A description of the routes and the basic related inputs are shown in Appendix 3. The information concerned with the ports is included in Appendix 4. In this example, a port which is included in more than one route may have different productivity values (n_{ir}) in each of the routes because of the different cargo mix carried in each route.

The cargo information is displayed in Appendix 5 as origin-destination matrices for each route. The total quantities of cargo to be loaded/ unloaded at every port $i\left(\mathrm{Q}_{\mathrm{ir}}\right)$ per year are displayed to the right of each matrix; these values are used to calculate the times at port.

5.2 Frequency Analysis

The computer program for calculating $\mathrm{L}_{\mathrm{ijr}}$ and $\mathrm{L}_{\mathrm{ij} \mathrm{r}}$, which we mentioned in Section 4.7.2 (see Appendix 1), was run with the required inputs (quantities of cargo to carry from port to port in each route, number of routes and number of ports per route); the output of it was used as input for Figures 1, 2 and 5 through 11.

In Table 1 various values of F_{r} (not all of them feasible in this case) are indicated for the seven routes and the correspondent values of ship maximum loading (or RC_{r}, required ship capacity, calculated with (4)) are shown. In Figure 1 (Section 4.7.2) a graph of the relationship RC_{r} vs F_{r} for every route in our example is shown.

Table 1.
Ship Maximum Loading vs. Frequency of Service

	Mx.Load	Frequency of Service (port interarrival time), F_{r} (days)					
Route, r	L_{r}	14	15	21	24	30	35
1	91076	3493	3743	5240	5989	7486	8733
2	87282	3348	3587	5022	5739	7174	8370
3	73597	2823	3025	4234	4839	6049	7057
4	189516	7269	7788	10904	12461	15577	18173
5	41108	1577	1689	2325	2703	3379	3942
6	138936	5329	5710	7994	9136	11419	13323
7	66160	2538	2719	3806	4350	5438	6344

If the company fixes the frequencies in the present levels and commits to satisfy the present cargo demand, the ship maximum load and the ship utilization factors at each route as per our model, are shown in Table 2.

Table 2.
Present Utilization Factors of FMG's ships

Route, \mathbf{r}	F_{r} (days)	Ship Max. Load/voy, $\mathrm{L}_{\mathrm{r}} / 365$ (tons)	Ships k Presently Operating in the route	Ship Capacity, $\mathrm{V}_{\mathbf{k}}$ (tons)	Utilization Factor^{2} $\mathrm{~L}_{\mathrm{r}} \mathrm{F}_{\mathrm{r}} / 365 / \mathrm{V}_{\mathbf{k}}$
1	14	3500	1	14400	0.24
2	14	3400	5	11200	0.30
3	21	4300	6	11500	0.30
			8	11500	0.28
4	15	7800	1	14400	0.37
5			3	13900	0.54
6	24	9200	2	11	15800
			3	14300	0.22
7	35	6400	7	14300	0.64

It is clear that the utilization of FMG's fleet (as we have defined it in the above table), is rather low. In any case,we have to take into account that if in the specific case quality of service is a priority (as it normally is in liner shipping), a margin or allowance must be included in order to account for the seasonal variations of the cargo demand; however, even if a reasonable margin is included, the utilization factors will still be low, therefore modifications of the frequencies or changes in the fleet composition should be considered.

Figures 5 to 11 show the loading levels of a ship operating in a route vs. cumulative distance sailed; here the utilization of the ships in the overall voyage (not only on the most loaded leg) can be visualized and low utilization levels (when the ship capacities in the 11000 to 16000 ton range- are born in mind) are more evident. In the present example we will not change the frequencies at which FMG presently operates, in order to allow a suitable comparison of our results with the present fleet deployment situation of the company.

Figure 5 Ship Cargo Levels

Route 1

Figure 6 Ship Cargo Levels Route 2

Figure 7
Ship Cargo Levels Route 3

Figure 8
Ship Cargo Levels
Route 4

Figure 9
Ship Cargo Levels
Route 5

Figure 10 Ship Cargo Levels

Route 6

Figure 11
Ship Cargo Levels
Route 7

5.3 Speed Calculation

The speed for each ship speed was calculated with the method described before (Sections 4.5 and 4.7.3). Figure 12 shows a plot of the optimal speeds of the ships type 1 , versus daily running costs, for different propulsion fuel prices. Figure 13 shows a different version of the same situation, the optimal speed is plotted against the fuel prices, for various values of the daily running costs. Both figures are based on (33).

Figure 12
Optimal Speed vs. Daily Cost Ship 1

(\$)

In this example the owned fleet is insufficient, and therefore, additional ships must be chartered. Following our method, a charter rate of ships of similar type to the type 1 (owned) ship was used; this rate was around $\$ 7000$; for a fuel price of $\$ 80 /$ ton, it can be seen in Figure 12 (or 13) that the optimal speed is around 17.2 knots (for ship 1), however the maximum (continuous) speed of ship 1 is 15 knots; therefore 15 knots was the preferred operating speed for that ship type. In the same way the speeds for the other ships were calculated, their values and correspondent fuel consumption per day are shown in Appendix 2.

Figure 13
Optimal Speed vs. Fuel Price Ship 1

(\$)

5.4 Cost and Time Coefficients

The cost and time coefficients were computed following our model. The calculations were developed by means of a spreadsheet arrangement; the software used for this purpose was Microsoft EXCEL for the Macintosh computer. The main spreadsheet is composed of four parts linked to each other. The first part summarizes the values of coefficients C_{kr} (see Appendix 6). The second part contains ship related information (Appendix 2) and the calculations of the costs at sea and the total costs, (Appendix 7). The third part shows the route related information (Appendix 3), and the fourth component contains the information related to the ports (Appendix 4) and the calculations of the cost at ports (Appendix 8).

After the basic data of ships, ports and routes are introduced, the resultant C_{kr} values are displayed and the values of $\mathfrak{t}_{\mathrm{kr}}$ are summarized in another spreadsheet (see Appendix 9). The arrangement is such that any modification in the inputs produces the new coefficients C_{kr} and t_{kr}, which are the ones required in the LP input, automatically.

The first part of the main spreadsheet (Appendix 6) also provides the fields for the input and modification of the main parameters of our model, the speed (for each ship) and the frequency of service (for each route).

5.5 Linear Programming Input

The coefficients C_{kr} and t_{kr} from the previous point were used for the LP input which is presented in Appendix 10. The values of coefficients C_{kr} in the LP have been divided by 10^{3} and the variables X_{kr} are written as X followed by three digits, the first two of which are the values of k and the last one is the value of r ; for example, X012 indicates X_{kr}, where $\mathrm{k}=1$ and $\mathrm{r}=2$ (the zero is included for convenience in the input file presentation).

The first 11 constraints in the input file are the time constraints described in 4.6.3.1. The right hand side represents the number of ships available times the number of days of the year. The following seven are the frequency constraints of Section 4.6.3.2; the incompatibility constraints explained in 4.6.3.3 follow, and finally the constraints that establish shipping seasons and repair times as described in 4.6.3.4 appear in the input file.

The incompatibility constraints in the input file used for this example reflect the following cases:

> - Ships unable to carry enough quantities of some types of cargo which are typical of some routes, mainly refrigerated cargo and/or containers.
> - Lack of capacity of some ships to operate in some routes, as per the frequency-required ship capacity analysis of Section 5.2.
> - Impossibility of operating chartered ships in one of the routes.

The shipping seasons were assumed as 345 days per year (for all ships), which include allowances for repair/drydock time and unexpected delays.

5.6 Results and Sensitivity Analysis

The output of the LP program for the input described in the previous point is presented in Appendix 11; as per the results, ship types 8 and 9 should not be taken in charter; this is explained by the fact that those ships have the highest daily cost (i.e., hire rate) among the chartered ships except for ship type 7 which has a high hire rate but also a high lay-up cost due to the long-term Charter. The owned ships must be operated continually (i.e., no lay-up time should be allocated apart from the repair/ drydocking time) this is explained by the high lay-up cost of these ships.
The number of ships k allocated to route $r, N_{k r}$, was derived from the values of X_{kr} given by the LP output (as described Section 4.7.7) by means of the spreadsheet shown in Appendix 12. Those values of N_{kr} were rounded to integer numbers and the new (resultant) frequencies (and the changes with respect to the existing ones) were
computed and displayed by means of the spreadsheet shown in Appendix 13; the procedure described in Section 4.7.8 was followed.

The operating costs with the new allocation were calculated as explained in Section 4.7.9 using the spreadsheet displayed in Appendix 14. The mentioned spreadsheets (Appendices $12,13,14$) are suitably linked with each other and with the ones containing the values of the cost and time coefficients, C_{kr} and t_{kr}, so that the information that has not changed is not unnecessarily entered again.

In order to appreciate the difference between the actual allocation situation and the results of our example, in the Tables 3 and 4, respectively, both situations are presented.The total operating costs (as defined in the present thesis) in the present operation situation applying our model for the calculation are $\$ 93,148,000$.

The total operating costs for the fleet deployment suggested by the program output are $\$ 90,166,000$, an improvement of 3.2% (savings of $\$ 2,982,000$ per year), keeping the existing frequencies in all the routes and complying with all the operating restrictions (which are reflected in the constraints of the LP); the speeds of the ships is assumed the same in both cases, in order to facilitate the comparison; in practice some of the FMG's ships sail at a slightly lower speed but on the other hand additional ships are chartered for single voyages in order to be able to comply with the cargo requirements. From our example it can be concluded that those occasional charterings can be avoided by sailing the ships at a higher speed.

Table 3
Present Ship Allocation

		Number of Ships, N_{kr}						
$\begin{array}{\|c\|} \hline \text { Ship } \\ \text { Type, } \end{array}$	Total	Route 1	Route 2	Route 3	Route 4	Route 5	Route 6	Route 7
1	6	3			3			
2	2						2	
3	3				2		1	
4	1		1					1
5	1							
6	1			1				
7	1						1	
8	2		1	1				
9	0							
10	0							
11	2					2		
TOTAL	19	3	2	2	5	2	4	1

Table 4
Resultant Allocation in Example

		Number of Ships, \mathbf{N}_{kr}						
$\operatorname{Ship}_{\text {Type, }}$	Total Alloca.	Route 1	Route 2	Route 3	Route 4	Route 5	Route 6	Route 7
1	6	1			5			
2	2			1				1
3	3						3	
4	1		1					
5	1		1					
6	1						1	
7	1			1				
8	0							
9	0							
10	2					2		
11	2	2						
TOTAL	19	3	2	2	5	2	4	1

Table 5
Modified Target Frequencies

Route, r	Existing F_{r} (port interarrival time-days)	${\text { Modified } \mathrm{F}_{\mathrm{r}}}^{\text {Modified } \mathrm{F}_{\mathrm{r}}}$		
1	Existing M_{r} (number of voyages/ year)	M		
14	21	26	17	
2	14	21	26	17
3	21	28	17	13
4	15	18	24	20
5	30	35	12	10
6	23	23	16	16
7	35	45	10	8

We have carried out another example with some modifications to the frequencies of service in the less loaded routes especially, as per Table 5 . With the new frequencies, there are new voyage cost coefficients $C_{k r}$, new values of M_{r} (number of voyages per year in route r) and new ship-route incompatibilities due to the higher cargo capacity required with lower frequencies. With these adjusted values a new LP formulation was generated. In the rounding of the number of ships allocated to the routes (as per the LP
output), changes to the targeted frequencies were necessary. Most of those changes were small; only in route 3 the change is substantial (the cargo requirements are still satisfied); however, it can be partially compensated by increasing the speed of the only ship assigned to that route. The corresponding allocation appears in Table 6.

Table 6

Allocation of Ships for Modified Frequency

		Number of Ships, N ${ }_{\mathrm{kr}}$						
Ship Type, k	Total Alloca.	Route 1	Route 2	Route 3	Route 4	Route 5	Route 6	Route 7
1	6	3			1			2
2	2				1			
3	3				3			1
4	1		1					
5	1		1					
6	1						1	
7	1			1				
8	0							
9	0							
10	2					2		
11	0							
TOTAL	17	3	2	1	5	2	3	1

In this case the total operating costs are $\$ 81,398,000$ per year, a reduction of 12.6% ($\$ 11,750,000$ per year) respect to the present fleet deployment situation. The most notable changes in the solution due to this reduction in required frequencies apart from the different allocation, are the lower amount of required chartered ships (before five, now three) which is accompanied by a reduction of the number of ships allocated in some of the routes.

Although not strictly applicable in our case due to the rounding of the number of ships allocated to each route, the sensitivity analysis give us the following guidances:
a. The dual price of the time constraints indicate that if the number of owned ($k=1$ to 6) or long-term chartered ships ($k=7$) in the fleet increase, the operating costs increase by an average of $\$ 3000$ per day-ship. This means that if (with the present fleet) a new ship is aquired, (which means an increase of 365 days-ship) that will increase the annual operating costs by $365 \times 3000=\$ 1,095,000$. This effect is linear for an increase of up to two ships (as per the sensitivity information of the LP output.
b. An increase of one voyage/ year in the frequency requirements increases the operating costs in amounts that go from $\$ 355,000$ year in route 2 to $\$ 852,000$ in route 6 . This rate of change is valid for a wide range of increase/
decrease of frequency requirements. For example in route 4 the dual price of the frequency constraints is $\$ 843,460$; the present value of F_{4} is 15 (corresponding to a $\mathrm{M}_{4}=24,33$ voyages/ year), if it is reduced to $13\left(\mathrm{M}_{4}=\right.$ 28,07), the operating costs increase by $28.07-24.33=3.74$, times 843,460 , or $\$ 3,160,455$ per year. The same amount would be the decrease in costs if F_{4} is reduced by two days.
c. As per the "allowable decrease" in the daily cost of the laid-up ship (coefficients e_{k} of the objective function), the owned ships should not be laid-up unless the e_{k} for these ships reduce substantially. In Table 7, these sensitivity results are summarized.

Table 7
Required Decrease in Lay-up Costs

Ship k	$\mathbf{e}_{\mathbf{k}}$, Current Value (\$)	Required Decrease $(\$)$	$\mathbf{e}_{\mathbf{k}}$, Required Value (\$)
1	9100	5676	3424
2	9000	5526	3474
3	9000	5554	3446
4	7400	6741	659
5	7300	7100	200
6	8900	6363	2537

Ship types 1,2 and 3 are the most expensive to operate, and therefore are the first candidates for lay-up (if e_{k} reduces to below $\$ 3400$). These sensitivity results indicate that as long as ships 4 and 5 (the oldest owned ships of the fleet) remain with relatively low operating costs, with lay-up costs higher than $\$ 7000 /$ day (for instance because a high number of crew members while laid-up) and comply with the operative constraints like cargo capacities (for the different types of cargo), they should remain in operation.

The short term chartered ships have $\mathrm{e}_{\mathrm{k}}=0$, therefore in their case the lay-up decision is not an issue. The long term chartered ships are dealt with as owned ships, i.e. they have a high daily lay-up cost similar to the daily cost in normal operation.
d. The incompatibility constraints of ship 10 (the smallest of the chartered ships available as per our formulation) have high dual prices for all the routes, i.e. the increase of the RHS (maximum number of voyages allowed in each route, presently zero) of these constraints translates into high savings, this is not surprising as the voyage costs of this ship type are substantially smaller than the ones of the larger ships. The results of the sensitivity analysis here reveal potential savings in operating costs if the frequencies in some of the routes are adjusted (slightly increased) in such a way that the amount of cargoes per voyage reduce to the capacity levels that ship 10 is able to carry.

6 Conclusions and Extensions

6.1 General Model

We have successfully developed in this thesis a model for the optimum deployment of a liner fleet that may be composed by both owned and chartered ships subject to time, frequency and other realistic constraints. The problem is originally of non-linear nature; however fixing the two sources of non-linearity, namely the speed of the ships and the frequency of the service in each route, we arrive to a suitable Linear Programming formulation which allows the problem to be solved using LP codes of which there are a number in the market. We have used the Fortran program LINDO for the example presented in Chapter 5.

The LP formulation was used in our example with a procedure for adjusting the LP solution to comply with the integrality requirement of the number of ships of each type allocated to each route. The use of LP allows to use the detailed LP sensitivity analysis. This analysis is not exact because the original LP solution must be modified; however it allows to get insights into the effect of the various cost components and constraints in the profitability of the liner company. The sensitivity analysis showed here that the operating costs are very sensitive to the targeted frequency of service in each route and to the number of owned ships in the fleet (the more the owned ships the higher the operating costs).

The model developed here for the calculation of the costs is very useful not only for the purposes of calculating the cost and time coefficients for the LP formulation but also for analyzing the effects of the different cost components in the total operating costs. Our model also provides an appropriate degree of detail that makes it realistic and accurate and yet not too complicated.

6.2 Particular Example

The example of Chapter 5 shows that substantial savings may be achieved by applying our optimization model for the deployment of a liner fleet composed of owned and chartered vessels. The results of the example were compared against the present fleet deployment of a liner shipping company (FMG) showing a reduction of 3% of the operating costs without any modification in the service frequencies. When the frequencies were slightly reduced, the new deployment implied the reduction of two of the original five chartered ships and the reallocation of the remaining ones, resulting in savings of 13% of the operating costs ($\$ 11,750,000$ per year).

The solution indicates that the ships that are already owned by the company should be used as much as possible because of their high lay-up costs, and that additional ships should be chartered only if the owned ones are insufficient to carry all the cargo and comply with the frequencies.

As mentioned before, the sensitivity analysis showed that the operating costs are very sensitive to changes in the frequency of service and also to changes in the number of owned ships. This last result is due to the high costs (at both lay-up and normal operation) of the owned ships of FMG. It is therefore recommended to consider the possibility of selling or scrapping some of those ships, and charter ships instead if the present cost structure is not going to change in the short/ medium term.

The analysis of frequency vs ship capacity shows that FMG's ships are operating at low utilization factors in most of the routes which (if is going to continue) suggest two actions: reduce the frequencies of service or change the ships presently operating in those routes for smaller ships. It may not be advisable to reduce the service frequencies because, as we discussed in Chapter 1, the level of service is very important in liner shipping as the competition is centered mainly on that aspect of the operation (freight rates are usually fixed by the conference). Therefore, to use smaller owned ships (changing them for some of the existing big ones) may be a more appropriate solution. A study focusing specifically on that possibility, which considers all the aspects involved like specific selling/ scrapping and purchasing prices/ conditions, is required for that decision.

6.3 Extensions of this Thesis

6.3.1 Mixed Linear-Integer Programming

One of the shortcomings of the LP formulation is that the number of ships of each type, allocated to each of the routes is non-integer and in the rounding of it some variations to the targeted frequencies of service are implied. A mixed linear-integer programming (LP-IP) formulation will avoid this inconvenience; however, transforming/ modifying our LP formulation into an LP-IP formulation is not a straightforward task.

An LP-IP formulation suppressing variables Y_{k} is described in the following paragraphs. The integer variable N_{kr}, defining the number of ships k allocated to route r , and modifications to the previous formulation are introduced:
a. Objective Function

Minimize $\quad \sum_{\mathbf{k}=1}^{\mathrm{K}} \sum_{\mathrm{r}=1}^{\mathrm{R}} \mathrm{C}_{\mathrm{kr}} \mathbf{X}_{\mathrm{kr}}$ [over X_{kr}, the decision variables]
b. Constraints

1. (Time availability) $\quad X_{k r} t_{k r}-T_{k} N_{k r}=0$, for all (k, r)
2. (Frequency)

$$
\sum_{k=1}^{K} X_{k r} \leq M_{r}, \text { for all } r
$$

3. (Incompatibility ship-route)

$$
\mathrm{X}_{\mathrm{kr}}=0, \text { for given }(\mathrm{k}, \mathrm{r})
$$

4. (Ships available) $\sum_{\mathrm{r}=1}^{\mathrm{R}} \mathrm{N}_{\mathrm{kr}} \leq \mathrm{N}_{\mathbf{k}}^{\max }$, for all chartered ships

$$
\sum_{\mathrm{r}=1}^{\mathrm{R}} \mathrm{~N}_{\mathrm{kr}}=\mathrm{N}_{\mathbf{k}}^{\max } \text {, for all owned ships }
$$

5. (Non-negativity) $\quad X_{k r}, N_{k r} \geq 0$
where N_{kr}, the number of ships k allocated to route r are integer variables and the other parameters and variables have the same meaning described before.

In this formulation, the alternative of laying-up the owned ships does not exist; this may not be an inconvenience as in many real life cases (like the example developed here) the high lay-up cost of those ships practically exclude that possibility. The constraint 4 guarantees that all owned ships are in operation at all times and that the chartered ones are employed only as much as they are needed.

6.3.2 A LP-IP Formulation with Speed as Discrete Variable

The problem of the speed assignment to the ships with the restriction that all the ships in the same route must sail at the same speed (for all the ships in a route to have the same voyage times and maintain therefore a constant frequency in the routes) may be addressed and solved with a more comprehensive LP-IP formulation:
a. Objective Function

Minimize

$$
\sum_{\mathbf{k}=1}^{\mathbf{K}} \sum_{\mathrm{r}=1}^{\mathrm{R}} \sum_{\mathrm{s}=1}^{\mathbf{S}} \mathbf{C}_{\mathrm{krs}} \mathbf{X}_{\mathrm{krs}} \text { [over } \mathbf{X}_{\mathrm{krs}} \text {, the decision variables] }
$$

b. Constraints

1. (Time availability) $\sum_{s=1}^{S} X_{k r s} t_{k r s}-T_{k} N_{k r}=0$, for all (k,r)
2. (Frequency)

$$
\sum_{\mathbf{k}=1}^{\mathbf{K}} \sum_{\mathrm{s}=1}^{\mathbf{S}} \mathbf{X}_{\mathrm{krs}} \leq \mathrm{M}_{\mathrm{r}} \text {, for all } \mathbf{r}
$$

3. (Ship-route-speed incompatibility) $\mathrm{X}_{\mathrm{krs}}=0$, for given ($\mathrm{k}, \mathrm{r}, \mathrm{s}$)
4. (Ships available) $\sum_{r=1}^{R} N_{k r} \leq N_{k}^{\max }$, for all chartered ships

$$
\sum_{\mathrm{r}=1}^{\mathrm{R}} \mathrm{~N}_{\mathrm{kr}}=\mathrm{N}_{\mathrm{k}}^{\max } \text {, for all owned ships }
$$

5. (Speed homogeneity a) $\sum_{k=1}^{K} X_{k r s}-100 B_{r s}=0$, for all (r,s)
6. (Speed homogeneity b) $\sum_{s=1}^{S} B_{r s}=1$, for all r
7. (Non-negativity) $\mathrm{X}_{\mathrm{krs}}, \mathrm{N}_{\mathrm{kr}} \geq 0$,
where:
$X_{k r s}=$ number of voyages of ship k in route r at speed s
$\mathrm{C}_{\mathrm{krs}}=$ operating costs per voyage of ship k in route r at speed s
$\mathrm{t}_{\mathrm{krs}}=$ voyage time of ship k in route r at speed s
B_{rs} are zero-one variables indicating the best speed for the ships in route r; when $B_{r s}=1$, all the ships in route r should sail at speed s
$S=$ number of speed values considered
N_{kr}, the number of ships k allocated to route r are integer variables and the other parameters and variables are as defined before.

The coefficient of B_{rs} in constraint 5 can be any number larger than the maximum possible number of voyages in route r; there can be only one variable $B_{r s}$ with value one, as per constraint 6 , therefore if $\mathrm{B}_{\mathrm{rs}}=1$, constraint 5 guarantees that all ships assigned to route r sail at speed s.

A finite number of possible speeds is considered within a reasonable range, the same values for all ships; a reasonable set of speed values in knots could be $\{14,15,16,17\}$ assuming that the possible (upper range) speeds of the ships considered fall within this range, as happens in the case of our example.

Assuming $S=4, R=7, K=11$, there would be $4 \times 7 \times 11=308$ variables $X_{k r s}$, and $7 \times 11=77$ variables $N_{k r}, 77$ time constraints, seven frequency constraints, four ship availability constraints, 35 constraints 5 and seven constraints 6 , i.e., at least 137 constraints. The new size of the problem depends very much on the number of speed values chosen.

The output of the LP-IP program with this new formulation will be final (and optimal), not requiring the adjustments needed for the case of the LP formulation we have developed in the present thesis. The integer variables N_{kr} will tell directly the number of ships k to be allocated in route r and the zero-one variables B_{rs} will point the speed at which all the ships assigned to route r must sail.

It does not, however, allow the possibility of laying-up owned ships; In many applications, like the one of our example, this is not a difficulty, since the lay-up costs of the owned ships are so high that the optimal solution would never suggest the lay-up of those ships. The lay-up possibility for owned ships could be included if their lay-up costs were zero, by modifying constraint 4 as follows:
$\sum_{\mathrm{r}=1}^{\mathrm{R}} \mathrm{N}_{\mathbf{k r}} \leq \mathrm{N}_{\mathbf{k}}^{\max }$, for all ships k

7.References

1. G.A. Alexis, "A Survey of Routing and Scheduling Models in Ocean

Transportation," Unpublished Master Thesis, M.I.T. May, 1982.
2. I.M. Datz , C.M. Fixman, A.W. Friedberg, and V.A. Lewinson, "A Description of The Maritime Administration Mathematical Simulation of Ship Operations," Trans. SNAME, 1964.
3. T.B. Boffey, E.D. Edmond, A.I. Hinxman, and C.J. Pursglove, "Two Approaches to Scheduling Containerships with an Application to the North Atlantic Route," Joumal of the Operational Research Society, Vol.30, pp 413425, 1979.
4. H. Benford, "A Simple Approach to Fleet Deployment," Maritime Policy and Management, Vol.8, pp 223-228, 1981
5. A.N. Perakis, "A Second Look at Fleet Deployment," Maritime Policy and Management, Vol.12, pp. 209-214, 1985.
6. A.N. Perakis and N. Papadakis, "Fleet Deployment Optimization Models, Part I," Maritime Policy and Management, Vol.14, pp. 127-144, 1987.
7. N.A. Papadakis and A.N. Perakis, "A Nonlinear Approach to the Multiorigin, Multidestination Fleet Deployment Problem," Naval Research Logistics, Vol.36, No.5, pp. 515-528, 1989.
8. D. Ronen, "The Effect of Oil Price on the Optimal Speed of Ships," Journal of the Operational Research Society, Vol.33, pp 1035-1040, 1982.
9. C.A. Olson, E.E. Sorenson, and W.J. Sullivan, "Medium Range Scheduling for a Freighter Fleet" Operations Research, Vol.17, pp 565-582, 1969.
10. J.L. Everet, A.C. Hax, V.A. Lewinson, and Donald Nudds, "Optimization of a Fleet of Large Tankers and Bulkers: A Linear Programming Approach," Marine Technology, 1972.
11. J.H. Conley, R.S. Farnsworth, E. Koenigsberg, and U. Wiersema, "A Linear Programming Approach to the Total Movement of a Homogeneous Product," Transportation Science, Vol.2, pp 289-302, 1968.
12. L. Schrage, User's Manual for Linear, Integer and Quadratic Programming with LINDO, third edition, Redwood City, CA, The Scientific Press, 1987.

Appendices

Appendix 1

Computer Program for Calculation of L_{r} and $\mathrm{L}_{\mathrm{ijr}}$

```
C program to find L(r)
    real Lr, Lijr
    dimension Qijr(16,16,7), Qir(16,7), Ir(7), AQ(16,16,7),
    + EQ(16,16,7), CQ(16,16,7), DQ(16,16,7), Lijjr(16,16,7): Lr(7)
    + legx(7)
    open(6,file="cargo. out", status="new")
    open (5, file="cargo.dat')
    read {S: *)nr
C Read data for matrices Ir and Qijr
    do 100 k:=1,nr
    read(5,*)Ir (ki)
    do 100 i=1, Ir (k:)
    read (S,*)(Qijr(i,j,k), j=1, Ir (k))
100 continue
C Computations of the elements of Qijr
C k i m used instead of r for counting as r is real
    do 120 k:=1, nr
    do 120 i=1, Ir (k)
    sumq=0
    do 110 j=1,Ir (k)
    sumq = sumq + Qijr(i,j,k) + Qijjr(j,i,k)
110 continue
    Qir(i,k) = sumq
    write(6,301)i,k,Qir(i,k)
120 continue
C computations for Lr, maximum amount of cargo onboard any ship in
C in all the legs ij of route r if only one voyage per year is don
    do 135 k=1,nr
    Lr (k:)=0
    do 130 i=1, Ir (k)
    do 125 j=1,Ir (k:)
    if (j .ne. i+1) then
                                    goto 3O0
    end if
C calculation of first sumatory
    aq(i,j,k)=0
    do 150 m=j,Ir(k)
    do 150 n=j,m
    aq(i,j,t:) = aq(i,j,k) + Qijr(m,n,k)
15% continue
C calculation of the second sumatory
    bq(i,j,k)=0
    da 160 m=1,i
    do 160 n=1,m
    bq(i,j,k) = bq(i,j,k:) + Qijur (m,n,k)
160
    continue
```

[c:ajculation of the third sumatory
cq(i.,j,t.) $=0$
do $170 \mathrm{~m}=1 ., 1$
do $170 \quad \Pi_{1}=j, \operatorname{Ir}\left(k_{i}\right)$
cq(i,j,t) $=c q(i, j, k)+$ E! $u r(m, n, t)$
170 continue
C calc. of the elements of Lijr, amount of cargo on board in leg ij
C of route r, (case $j=i+1$)
$\operatorname{Lij} r(i, j, k)=\operatorname{aq}(i, j, k)+\operatorname{Lq}(i, j, k)+c q(i, j, k)$
goto 390
C verification that leg is in the route; for j not equal to $i+1$
$3 \mathbf{3 0}$ if (i . ne. Ir (k)) then
goto'125
end if
if (j . ne. 1) then
go to 125
end if
C calculation of the fourth sumatory (for the case $i=I r$)
$d q(i, j, k)=0$
do $180 \mathrm{~m}=1$; i
do $180 \quad n=j, m$
$d q(i, j, k)=d q(i, j, k)+\operatorname{Qijr}(m, n, k)$
180 continue
C assign value to elements of Lijr for case j not equal to $i+1$
Liju(i,j,k:) $=d q(i, j, k)$
C find Lr for each route r. Lr has been defined above
590 if (Lijr (i,j,k) .gt. Lr (k)) then
$\operatorname{Lr}(k:)=\operatorname{Li} j r(i, j, k)$
Legx (k)=i
end iff
C close the loop opened far above
125 continue
130 continue
135 continue
C print the array Lr (k)
do $500 k=1, n r$
500 write (6,101) k, Lr (k), 1 egx (k)
C print array Lijr
do $600 \mathrm{k}=1$, nr
do $600 \mathrm{i}=1$, $\operatorname{Ir}(k)$
6OO \quad write (6,401) (i,j,k: Liju (i,j,k), $j=1, \operatorname{Ir}(k))$
101 format ("Lr(",I2,")="F9.2." on departure of port".i2)
SO1 format (" Qir (".2i2, ") = ', f10.2)
401 format(" Lijr("Ji2,")=", f9.2)
stop
end

Appendix 2

Ship Basic Information

	14	15	16	17	18	19	20	21	22	23	24	25	26
22	MENU OF SHIPS												
23								LAID-UP	LAID-UP	LAY-UP			
24	NAME		ID. NBR.	SPEED	PROFUEL	GENFUE	DAILYC.	DARYC.	GENFUELCON	TOTAL COST	DWT	CAPACITY	REGISTERTONN
25				(kts)	(ton/day)	(ton/day)	(\$/day)	(\$/day)	(ton/day)	(\$/day)	(ton)	(ton)	PANAMA CAN.
26			k	Sk	fk	gk	Hk	Hkl	gkl	ok		Vk	TRk
27										150			
28								0.8	0.8	500			
29	OWNED											0.9	
30	TYPE "ALPAD"		1	15	32	5	10000	8000	4	9100	16010	14409	12520
31	TVPE "CIARM"		2	16.5	45	4.5	10000	8000	3.6	9040	15912	14320.8	14088
32	TYPE "CISAM ${ }^{\text {P }}$		3	16.5	45	4.5	10000	8000	3.6	9040	15450	13905	13622
33	TYPE "CIMAN"		4	16	40	4	8000	6400	3.2	7380	12148	10933.2	7981
34	TYPE "RIMAG"		5	16	35	3.5	8000	6400	2.8	7320	12450	11205	6809
35	TYPE "CIBUN"		6	16.5	35	3	10000	8000	2.4	8860	17330	15597	11065
36	CHARTERED												
37	TYPEGOLFODECH.		7	16.5	45	4.5	10000	8000	3.6	9040	15912	14320.8	14088
38	TYPE MEGHAN-A		8	16.5	35	3	8000	0	0	0	12720	11448	10303.2
39	TYPEMONSUN		9	16.5	32	3	10500	0	0	0	15400	13860	12474
40	TYPE METE SIF		10	14	13.5	1.5	6000	0	0	0	4482	4033.8	3884
41	TYPE ANGELIKI		11	14	30	3	6500	0	0	0	17654	15888.6	14299.74

Appendix 3

Route Basic Information

	70	71	72	73	74	75	76	77	78	79	80	81	82
42	ROUTE CHARACTERISTICS												
43													
44	NAME		ID.NBR.	DISTANCE	No.PTS	P.FUEL PRICE	G.FUEL PRICE	FREQSERV	PRESENT	NBR.CANAL	DIST.A.WAT	WAIT TIME	TOT.TIME
45				(n.miles)		(S/ton)	($\$ /$ ton)	(days)	No.SHIPS	PASGNOY	(n . miles)	CAN. (days)	R.WAT (day)
46			\boldsymbol{r}	dr	Ir	pfr	pgr	Fr		cnr	dmr	tcr	trm
47													
48												0.25	0.001
49	U.S EAST COAST		1	6914	12	87	170	14	3	2	788	0.5	1.594
50	U.S. GULF COAST		2	5727	8	80	166	14	3	2	498	0.5	1.192
51	U.S.WEST COAST		3	8730	12	78	167	21	2	0	290	0	0.403
52	EUROPE-NORTH\|		4	13586	16	80	138	15	5	2	1144	0.5	2.089
53	EUPOPE-MEDITERRANEUM		5	11505	15	87	164	30	2	2	280	0.5	0.889
54	JAPAN		6	18853	14	81	164	23	4	2	640	0.5	1.389
55	SOUTH AMERICA-WEST COAST		7	5307	5	107	192	35	1	0	58	0	0.081
56													
57	PORTS W THE ROUTES												
58													
59	U.S EAST COAST		1 (NYK)-STJ-PHP-BAL-CHN-MIA-SMA-BAQ-CTG-BUN-CTG-MIA										
60													
61	U.S. GULF COAST		2 (NOL)-HOU-SMA-BAQ-CTG-BUN-SJR-MIA										
62													
63	U.S.WEST COAST		3	(BUN)-PCD-ACJ-PQZ-SFC-VAI-STL-LAN-MZN-PQZ-ACJ-PCD									
64													
65	EUROPE-NOPTH		4	(HMB)-BRM-ATW-RTD-HVR-LPL-BLB-STD-SMA-BAQ-CTG-BUN-RTD-BRM-HMB-GTB									
66													
67	EUROPE-MEDITERRANEUM		5	(LVR)-GNV-MLL-BRC-CDZ-HLV-SMA-BAQ-CTG-BUN-CTG-CDZ-ALC-BRC-TLN									
68													
69	JAPAN		6	YKM-NAG-KBE-CBA-YKM-HSM-LAN-PQZ-ACJ-PCD-(BUN)-TBO-PQZ-YKM									
70													
71	SOUTH AMERICA-WEST COAST		7 (BUN)-CLL-VLP-TLC-CLL										

Appendix 4

Port Basic Information

	83	84	85	86	87	88	89	90	91	92	93	94	95	96
72	PORT RELATED INFORMATION													
73								0.5						
74	ROUTE		TIME AT	PRODUCTIV	ALLOWANC	PAST TOT	PORT TIME	PORT	PORT	DIS.RESTR	CARGO	Bir $=$ Qir/nin	FREQ	GFUEL
75	PORT		PORT		INACT	PORT COST	1988	VAR.COST	FIX.COST	OPERATION		1365		
76			(days)	(ton/day)	(days)	(\$)	(days)	(\$)	(\$)	(n.miles)	(tons/year)		(days)	(\$)
77	US EC-1	i, r	tpir	nir	wir			vir	uir	100	Qir		Fr	prg
78	NKK	'1,1	1.665075	1206	0.25	6302	3	1050.333	3151	40	44493	0.101077	14	170
79	STJ	-2,1	1.152325	1145	0.25	4518	2	1129.50	2259	10	26936	0.064452	14	170
80	PHP	'3,1	0.898006	1080	0.25	4778	1	2389.00	2389	184	18246	0.046286	14	170
81	BAL	-4,1	0.810026	1450	0.25	6407	1	3203.50	3203.5	304	21171	0.040002	14	170
82	ON	-5,1	1.729202	986	0.25	3550	3	591.67	1775	28	38025	0.105657	14	170
83	MIA	'6,1	0.562768	1160	0.25	4533	1	2266.50	2266.5	10	9459	0.022341	14	170
84	SMA	$\cdot 7,1$	1.325536	677	0.50	3012	2	753.00	1506	4	14571	0.058967	14	170
85	BAO	-8,1	1.539272	850	0.50	3026	2	756.50	1513	24	23031	0.074234	14	170
86	CTG	'9,1	2.241454	731	0.50	3673	2	918.25	1836.5	20	33189	0.12439	14	170
87	BUN	'10,1	5.663371	720	0.75	4422	3	737.00	2211	34	92231	0.350955	14	170
88	CTG	'11.1	1.624082	731	0.50	3673	2	918.25	1836.5	20	21423	0.080292	14	170
89	MIA	'12,1	0.634785	1160	0.25	4533	1	2266.50	2266.5	10	11637	0.027485	14	170
90		tpr $=$	19.8459						dmr=	788				
91	US GC-2									100				
92	NO	-1,2	1.245478	1356	0.25	4256	1	2128.00	2128	206	35193	0.071106	14	166
93	HOU	'2,2	2.742612	1281	0.25	4898	3	816.33	2449	98	83247	0.178044	14	166
94	SMA	'3,2	0.906537	803	0.50	3430	2	857.50	1715	4	8511	0.029038	14	166
95	BAQ	-4,2	2.051424	853	0.50	4009	3	668.17	2004.5	24	34502	0.110816	14	166
96	CTG	-5,2	3.692832	662	0.50	5280	4	660.00	2640	20	55106	0.228059	14	166
97	BUN	'6,2	2.35722	872	0.75	2005	3	334.17	1002.5	34	36539	0.114801	14	166
98	SUR	$\cdot 7,2$	0.750267	947	0.50	5570	2	1392.50	2785	2	6179	0.017876	14	166
99	MIA	'8,2	0.640486	986	0.25	5942	1	2971.00	2971	10	10038	0.027892	14	166
100		tpr=	14.38686						dmr=	498				
101	US WC-3									0				
102	BN	'1,3	4.095381	1775	0.75	9643	9	535.72	4821.5	34	103209	0.159304	21	167
103	PCD	'2,3	0.605358	865	0.50	7211	1	3605.50	3605.5	4	1584	0.005017	21	167
104	AGJ	-3,3	0.743686	896	0.50	1255	1	627.50	627.5	4	3795	0.011604	21	167
105	PGZ	-4,3	0.822821	1280	0.50	3948	1	1974.00	1974	4	7182	0.015372	21	167
106	SPC	'5,3	0.643468	4809	0.25	8627	1	4313.50	4313.5	36	32888	0.018737	21	167
107	VAI	'6,3	1.712296	2050	0.25	7396	2	1849.00	3698	174	52103	0.069633	21	167
108	STL	7.3	0.942587	1401	0.25	12910	1	6455.00	6455	8	16865	0.03298	21	167
109	LAN	-8,3	0.586965	2332	0.25	8608	1	4304.00	4304	10	13658	0.016046	21	167
110	MEN	'9,3	0.951196	900	0.50	4000	1	2000.00	2000	4	7058	0.021486	21	167
111	PCZ	'10,3	0.650623	1280	0.50	3948	1	1974.00	1974	4	3351	0.007173	21	167
112	AGJ	'11,3	0.68628	896	0.50	1255	1	627.50	627.5	4	2901	0.00887	21	167
113	PCD	-12,3	0.823788	865	0.50	7211	1	3605.50	3605.5	4	4868	0.015418	21	167
114		tpr=	13.26445						$\mathrm{dmr}=$	290				

	83	84	85	86	87	88	89	90	91	92	93	94	95	96
72	PORT RELATED INFORMATION													
73								0.5						
74	ROUTE		TIME AT	PRODUCTIV	ALlOWANC	PAST TOT	PORT TME	PORT	PORT	DIS.RESTR	CAPGO	Bir=Qir/nir	FPEQ	GFue
75	PORT		PORT		INACT	PORT COST	1988	VAR.COST	FIX.COST	OPERATION		- 1365		
76			(days)	(ton/day)	(days)	(\$)	(days)	(\$)	(\$)	(n.miles)	(tons/year)		(days)	(\$)
77	US EC-1	i, r	tpir	nir	wir			vir	uir	100	Qir		Fr	prg
150	JAPAN-6									100				
151	MOM	'1.6	0.845923	1350	0.25	12013	2	3003.25	6006.5	20	12767	0.02591	23	164
152	NAG	'2,6	0.98406	1394	0.25	12791	3	2131.83	6395.5	76	16239	0.031916	23	164
153	KBE	-3,6	2.649706	1118	0.25	12594	5	1259.40	6297	68	42576	0.104335	23	164
154	CBA	-4,6	2.962431	1286	0.25	11631	4	1453.88	5815.5	68	55356	0.117932	23	164
155	MM	-5,6	1.473679	1350	0.25	12013	2	3003.25	6006.5	40	26216	0.053203	23	164
156	HSM	'6,6	1.585362	1002	0.25	14316	2	3579.00	7158	190	21234	0.058059	23	164
157	LAN	$\cdot 7,6$	0.332989	1000	0.25	2559	1	1279.50	1279.5	20	1317	0.003608	23	164
158	PQZ	-8,6	2.000369	843	0.50	3982	1	1991.00	1991	4	20072	0.065233	23	164
159	ACJ	$\cdot 9,6$	0.819563	743	0.50	1161	1	580.50	580.5	4	3768	0.013894	23	164
160	$P C D$	'10,6	0.730257	821	0.50	9819	1	4909.50	4909.5	4	3000	0.010011	23	164
161	BUN	'11,6	7.843643	1609	0.75	17885	15	596.17	8942.5	34	181130	0.308419	23	164
162	TBO	'12,6	0.875678	1258	0.50	614	1	307.00	307	8	7500	0.016334	23	164
163	$P{ }^{\text {P }}$	'13,6	0.528255	843	0.50	3982	1	1991.00	1991	4	378	0.001228	23	164
164		tpr $=$	23.63192						dmr $=$	640				
165	S.AMER.WC-7									0				
166	BUN	'1.7	9.060057	861	0.75	10931	9	607.28	5465.5	34	74616	0.23743	35	192
167	Cl	'2,7	0.856648	1133	0.50	15169	2	3792.25	7584.5	8	4214	0.01019	35	192
168	VLP	'3,7	5.048678	823	0.50	16240	3	2706.67	8120	4	39040	0.129962	35	192
169	TLC	-4,7	1.957808	1400	0.50	13792	2	3448.00	6896	4	21284	0.041652	35	192
170	Cl	'5,7	1.418026	1133	0.50	15169	2	3792.25	7584.5	8	10847	0.026229	35	192
171		tpr=	18.34122						dmr $=$	58				

Appendix 5

Cargo Matrices

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
18		CARGO TO BE CARRIED PER YEAR BETWEEN PORTS IN ROUTE 1-EAST COASTU.S. (TONS)														
19							DESTINATION								UNLOAD	
20			NYK-1	STJ-2	PHP-3	BAL-4	CHN-5	MIA'-6	SMA-7	BAQ-8	CTG'-9	BUN-10	CTG"-11	MIA'-12	TOTAL	UNLOAD
21		NYK-1	0	0	0	0	0	0	2011.5	3759	5343	4783.5	0	0	15897	44943
22		STJ-2	0	0	0	0	0	0	6313.5	1624.5	181.5	3519	0	0	11639	26396
23		PHP-3	0	0	0	0	0	0	1735.5	2538	3463.5	4560	0	0	12297	18246
24		BAL-4	0	0	0	0	0	0	1587	6136.5	6483	2971.5	0	0	17178	21171
25	ORIGIN	CHN-5	0	0	0	0	0	0	2433	2838	7972.5	11538	0	0	24782	38025
26		MIA"-6	0	0	0	0	0	0	490.5	3807	2461.5	2700	0	0	9459	9459
27		SMA-7	0	0	0	0	0	0	0	0	0	0	0	0	0	14571
28		BAQ-8	417	106.5	399	1381.5	24	0	0	0	0	0	0	0	2328	23031
29		CTG'-9	0	0	0	0	0	0	0	0	0	7284	0	0	7284	33189
30		BUN-10	24711	8710.5	1960.5	840	12162	0	0	0	0	0	0	6490.5	54875	92231
31		CTG"-11	3918	5940	3589.5	1771.5	1057.5	0	0	0	0	0	0	5146.5	21423	21423
32		MIA'-12	0	0	0	0	0	0	0	0	0	0	0	0	0	11637
33		TOTAL														
34		UNLOAD	29046	14757	5949	3993	13244	0	14571	20703	25905	37356	0	11637	177161	354321

	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43
79	CARGO TO BE CARRIED PER YEAR BETWEEN PORTS IN ROUTE 3-WEST COAST U.S. (TONS)															
80								DESTINA	TION						TOTAL	
81			BUN-1	PCD'-2	ACJ'-3	PQZ'-4	SFC-5	VAl-6	STL-7	LAN-8	MZN-9	PQZ"-10	ACJ"-11	PCD"-12	LOAD	UNLOAD
82		BUN-1	0	354	1839	96	22104	6259.5	1365	5193	0	0	0	0	37211	103209
83		PCD'-2	0	0	0	0	1045.5	0	58.5	126	0	0	0	0	1230	1584
84		ACJ'-3	0	0	0	0	1425	438	52.5	40.5	0	0	0	0	1956	3795
85		PQZ'-4	0	0	0	0	4305	1807.5	345	628.5	0	0	0	0	7086	7182
86		SFC-5	3033	0	0	0	0	0	0	0	0	286.5	360	328.5	4008	32888
87	ORIGIN	VAI-6	40380	0	0	0	0	0	0	0	0	304.5	30	2883	43598	52103
88		STL-7	13149	0	0	0	0	0	0	0	0	204	1425	265.5	15044	16865
89		LAN-8	2508	0	0	0	0	0	0	0	2770.5	0	1086	1305	7669.5	13658
90		MZN-9	4287	0	0	0	0	0	0	0	0	0	0	0	4287	7057.5
91		PQZ"-10	2556	0	0	0	0	0	0	0	0	0	0	0	2556	3351
92		ACJ"-11	0	0	0	0	0	0	0	0	0	0	0	0	0	2901
93		PCD"-12	85.5	0	0	0	0	0	0	0	0	0	0	0	85.5	4867.5
94		TOTAL	65999	354	1839	96	28880	8505	1821	5988	2770.5	795	2901	4782	124730	
95		LOAD												124730		249459

	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
119	CARGO TO BE CARRIED PER YEAR BETWEEN PORTS IN POUTE 4 EUROPE NORTH (TONS)																			
120								DESTINATION											TOTAL	UNLOAD
121			HMB"-1	BRM"-2	ATW-3	RTD"-4	HVR-5	LPL-6	BLB-7	STD-8	SMA-9	BAQ-10	CTG-11	BUN-12	RTD'-13	BRM'-14	HMB'-15	GTB-16	LOAD	Qir
122		HMB"-1	0	0	0	0	0	0	0	0	715.5	6489	5034	2355	0	0	0	0	14594	14594
123		BRM"-2	0	0	0	0	0	0	0	0	331.5	2847	2530.5	3063	0	0	0	0	8772	8772
124		ATW-3	0	0	0	0	0	0	0	0	7756.5	8295	8920.5	7693.5	0	0	0	0	32666	40893
125		RTD"-4	0	0	0	0	0	0	0	0	288	2353.5	4224	1020	0	0	0	0	7885.5	7885.5
126		HVR-5	0	0	0	0	0	0	0	0	267	79.5	4071	561	0	0	0	0	4978.5	13632
127		LPL-6	0	0	0	0	0	0	0	0	2382	2905.5	3597	4695	0	0	0	0	13580	13604
128		BLB-7	0	0	0	0	0	0	0	0	1938	3589.5	2184	697.5	0	0	0	0	8409	8409
129	ORIGIN	STD-8	0	0	0	0	0	0	0	0	2838	18	1231.5	0	0	0	0	0	4087.5	4140
130		SMA-9	0	0	1368	0	5362.5	0	0	0	0	0	0	1498.5	7938	14921	7812	22610	61509	79446
131		BAQ-10	0	0	129	0	30	12	0	0	0	0	0	0	769.5	109.5	150	9	1209	30621
132		CTG-11	0	0	1174.5	0	1545	0	0	0	0	0	0	474	17795	14472	3237	1834.5	40532	73347
133		BUN-12	0	0	5556	0	1716	12	0	52.5	0	0	0	0	14189	26355	40355	0	88235	111422
134		RTD'-13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	40691
135		BRM'-14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	55857
136		HMB'-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	51554
137		GTB-16	0	0	0	0	0	0	0	0	1420.5	2835	1023	1129.5	0	0	0	0	6408	30861
138		TOTAL																		
139		UNLOAD	0	0	8227.5	0	8653.5	24	0	52.5	17937	29412	32816	23187	40691	55857	51554	24453	292863	585726
140																		292863		

	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82
162	CARGO	TOBE CAP	RRED PER	YEAR BE	WEENPO	ORTS Of	ROUTE 5-	EUROPE	MEDIERR	ANEUM	TONS)								
163									DESTINA	TION								TOTAL	UNLOAD
164			LVR-1	GNV-2	MLL-3	BRC"-4	CDZ"-5	HLA-6	SMA-7	BAQ-8	CTG'-9	BUN-10	CTG"-11	CDZ-12	ALC-13	BRC' 14	TLN-15	LOAD	Qir
165		LVR-1	0	0	0	0	0	0	316.5	4437	9897	334.5	0	0	0	0	0	14985	16082
166		GNV-2	0	0	0	0	0	0	207	1321.5	1234.5	889.5	0	0	0	0	0	3652.5	9523.5
167		MLL-3	0	0	0	0	0	0	6934.5	141	604.5	1723.5	0	0	0	0	0	9403.5	9403.5
168		BRC"-4	0	0	0	0	0	0	33	1501.5	1327.5	313.5	0	0	0	0	0	3175.5	3175.5
169		CDZ"-5	0	0	0	0	0	0	0	33	4215	0	0	0	0	0	0	4248	4248
170		HLA-6	0	0	0	0	0	0	0	0	7.5	5629.5	0	0	0	0	0	5637	5637
171		SMA-7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7491
172		BAQ-8	0	118.5	0	0	0	0	0	0	0	0	0	0	0	199.5	0	318	7752
173	ORIGIN	CTG'-9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		17286
174		BUN-10	0	0	0	0	0	0	0	0	0	0	0	27	0	148.5	0	175.5	9066
175		CTG"-11	1096.5	5752.5	0	0	0	0	0	0	0	0	0	4357.5	2229	10299	4321.5	28056	28056
176		CDZ-12	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	4384.5
177		ALC-13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2229
178		BRC'-14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	,	10647
179		TLN-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4321.5
180		TOTAL																	
181		UNLOAD	1096.5	5871	0	0	0	0	7491	7434	17286	8890.5	0	4384.5	2229	10647	4321.5	69651	139302
182																	69651		

	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99
203		CARGOT	OBECAR	RRIED PER	YEAR BE	TWEEN P	RTS OF	ROUTE 6	-JAPAN (T	ONS)							
204									DESTINA	TION						TOTAL	UNOAD
205			YKM'-1	NAG-2	KBE-3	CBA-4	YKM"-5	HSM-6	LAN-7	PQZ'-8	ACJ-9	PCD-10	BUN-11	TBO-12	PQZ"-13	LOAD	Qir
206		YKM'-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12767
207		NAG-2	0	0	0	0	0	0	0	0	0	0	6901.5	0	0	6901.5	16239
208		KBE-3	0	0	0	0	0	0	0	0	0	0	13491	0	0	13491	42576
209		CBA-4	0	0	0	0	0	0	0	0	0	0	55356	0	0	55356	55356
210		YKM ${ }^{\text {² }}$-5	0	0	0	0	0	0	0	0	0	0	18716	0	0	18716	26216
211		HSM-6	0	0	0	0	0	0	0	0	0	0	16313	0	0	16313	21234
212	ORIGIN	LAN-7	0	0	0	0	0	0	0	0	0	0	1317	0	0	1317	1317
213		PQZ'-8	0	0	0	0	0	0	0	0	0	0	20072	0	0	20072	20072
214		ACJ-9	0	100.5	3667.5	0	0	0	0	0	0	0	0	0	0	3768	3768
215		PCD-10	0	0	3000	0	0	0	0	0	0	0	0	0	0	3000	3000
216		BUN-11	12567	9237	22239	0	0	4921.5	0	0	0	0	0	0	0	48965	181130
217		TBO-12	0	0	0	0	7500	0	0	0	0	0	0	0	0	7500	7500
218		PQZ"-13	199.5	0	178.5	0	0	0	0	0	0	0	0	0	0	378	378
219		TOTAL															
220		UNLOAD	12767	9337.5	29085	0	7500	4921.5	0	0	0	0	132165	0	0	195776	391551
221															195776		

	100	101	102	103	104	105	106	107	108
236		CARGO TO BE CARRIED PER YEAR BETWEEN							
237		PORTS OF ROUTE 7-SOUTH AMERICA WEST COAST (TONS)							
238									
239				DESTINATION				TOTAL	UNLOAD
240			BUN-1	CLL'-2	VLP-3	TLC-4	CLL"-5	LOAD	Qir
241		BUN-1	0	3829.5	4627.5	0	0	8457	74616
242		CLL'-2	0	0	384	0	0	384	4213.5
243	ORIGIN	VLP-3	34029	0	0	0	0	34029	39041
244		TLC-4	21284	0	0	0	0	21284	21284
245		CLL"-5	10847	0	0	0	0	10847	10847
246		TOTAL							
247		UNLOAD	66159	3829.5	5011.5	0	0	75000	150000
248							75000		

Appendix 6

Cost Coefficients $\mathbf{C}_{\mathbf{k r}}$

Appendix 7

Calculation of Costs at Sea

	14	15	16	28	29	30	31	32	33	34	35	36	37	38	39
22	MENU OF SHIP														
23															
24	NAME		ID. NBR.).			OPERCOSTS	ROUTE 2 (r=2)...				OPERCOSTS	
25				SAILING TIM	VARIAB OPE	CANAL	OPERCOSTS	OPER COSTS		SAILING TIMI	VARIAB OPE	CANAL	OPER COSTS		OPERCOSTS
26			k		COST AT SE	COSTS	AT SEA	AT PORTS	TOTAL		COST AT SE	COSTS	AT SEA	AT PORTS	TOTAL
29	OWNED														
30	TYPE "ALPAD"		1	19.205556	13634	51081.6	328874.51	262955.62	591830	15.908333	13390	51081.6	276010.8	186714.56	462725.36
31	TYPE "CIARM"		2	17.459596	14680	57479.04	329730.28	261584.52	591315	14.462121	14347	57479.04	276883.71	185520.45	462404.17
32	TYPE "CISAM"		3	17.459596	14680	55577.76	327829	261584.52	589414	14.462121	14347	55577.76	274982.43	185520.45	460502.89
33	TYPE "CIMAN"		4	18.005208	12160.002	32562.48	264261.34	219890.01	484151	14.914063	11864.002	32562.48	219036.24	155552.63	374588.87
34	TYPE "RIMAG"		5	18.005208	11639.999	27780.72	250116.83	218203.11	468320	14.914063	11380.999	27780.72	207050.95	154358.52	361409.48
35	TYPE "CIBUN"		6	17.459596	13554.999	45145.2	297754.38	256208.01	553962	14.462121	13297.999	45145.2	249379.1	181938.13	431317.22
36	CHARTERED														
37	TYPE GOLFODECH.		7	17.459596	14680	57479.04	329730.28	261268.71	590999	14.462121	14347	57479.04	276883.71	185520.45	462404.17
38	TYPE MEGHAN-A		8	17.459596	11554.999	42037.056	256538.17	216516.2	473054	14.462121	11297.999	42037.056	214963.39	153164.42	368127.8
39	TYPE MONSUN		9	17.459596	13794.001	50893.92	308473.2	266130.96	574604	14.462121	13558.001	50893.92	259483.83	189131.55	448615.38
40	TYPE METE SIF		10	20.577381	7429.5012	15846.72	178293.02	171763.7	350057	17.044643	7329.0011	15846.72	147916.9	120808.38	268725.28
41	TYPE ANGELIKI		11	20.577381	9619.9989	58342.939	266661.16	186747.35	453409	17.044643	9397.999	58342.939	226274.28	131584.13	357858.41

	14	15	16	40	41	42	43	44	45	46	47	48	49	50	51
22	MENU OF SHIP														
23															
24	NAME		ID. NBR.	ROUTE 3 (r=3)				OPER COSTS	OPERCOSTS			-.....................		
25				SAILING TIM	VARIAB OPE	CANAL	OPER COSTS			ROUTE 4 ($r=4$)	VARIAB OPE	CANAL	OPERCOSTS	OPER COSTS	OPERCOSTS
26			k		COST AT SE,	COSTS	AT SEA	AT PORTS	TOTAL		COST AT SE,	COSTS	AT SEA	AT PORTS	TOTAL
29	OWNED														
30	TYPE "ALPAD"		1	24.25	13331	0	327304.49	209333.69	536638.18	37.738889	13250	60096	581025.05	522774.05	1103799.1
31	TYPE "CIARM"		2	22.045455	14261.5	0	318429	208226.11	526655.1	34.308081	14221	67622.4	576406.4	520268.48	1096674.9
32	TYPE "CISAM"		3	22.045455	14261.5	0	318429	208226.11	526655.1	34.308081	14221	65385.6	574169.6	520268.48	1094438.1
33	TYPE "CIMAN"		4	22.734375	11788.002	0	271215.05	180589.63	451804.68	35.380208	11752.002	38308.8	470808.1	445137.63	915945.73
34	TYPE "RIMAG"		5	22.734375	11314.499	0	260450.27	179482.05	439932.32	35.380208	11282.999	32683.2	448589.1	442632.06	891221.16
35	TYPE "CIBUN"		6	22.045455	13230.999	0	295711.14	204903.36	500614.5	34.308081	13213.999	53112	527347.73	512751.76	1040099.5
36	CHARTERED														
37	TYPE GOLFODECH.		7	22.045455	14261.5	0	318429	208226.11	526655.1	34.308081	14221	67622.4	576406.4	520268.48	1096674.9
38	TYPE MEGHAN-A		8	22.045455	11230.999	0	250814.68	178374.46	429189.14	34.308081	11213.999	49455.36	450897.17	440126.49	891023.66
39	TYPE MONSUN		9	22.045455	13497.001	0	301776.66	211535.59	513312.25	34.308081	13474.001	59875.2	544075.54	530908.08	1074983.6
40	TYPE METE SIF		10	25.982143	7303.5011	0	192177.26	148522.82	340700.08	40.434524	7287.0011	18643.2	325822.89	359984.5	685807.39
41	TYPE ANGELIKI		11	25.982143	9340.999	0	245317.21	158477.79	403795	40.434524	9313.999	68638.752	458823.58	385657.53	844481.11

	14	15	16	52	53	54	55	56	57	58	59	60	61	62	63
22	MENU OF SHIP														
23															
24	NAME		ID. NBR.	ROUTE 5 ($\mathrm{r}=5$	VARIAB OPE	L............................		OPER COSTS	OPERCOSTS	ROUTE 6 (r=6)...					
25				SAILING TIM		CANAL	OPERCOSTS			SAILING TIM	VARIAB OPE	CANAL	OPERCOSTS	OPER COSTS	OPERCOSTS
26			k		COST AT SE,	COSTS	AT SEA	AT PORTS	TOTAL		COST AT SE,	COSTS	AT SEA	AT PORTS	TOTAL
29	OWNED														
30	TYPE "ALPAD"		1	31.958333	13604	51081.6	494731.62	272401.06	767132.67	52.369444	13412	51081.6	767349.4	350226.03	1117575.4
31	TYPE "CARM"		2	29.05303	14653	57479.04	492081.95	270755.82	762837.77	47.608586	14383	57479.04	756122.15	348288.22	1104410.4
32	TYPE "CISAM"		3	29.05303	14653	55577.76	490180.67	270755.82	760936.49	47.608586	14383	55577.76	754220.87	348288.22	1102509.1
33	TYPE 'CMAN'		4	29.960938	12136.002	32562.48	403279.56	228982.8	632262.36	49.096354	11896.002	32562.48	627723.86	299086.57	926810.42
34	TYPE RRMAG"		5	29.960938	11618.999	27780.72	383007.92	227337.56	610345.49	49.096354	11408.999	27780.72	599032.06	297148.75	896180.81
35	TYPE "CIBUN"		6	29.05303	13536.999	45145.2	447324.9	265820.1	713145	47.608586	13326.999	45145.2	693513.61	342474.77	1035988.4
36	CHARTERED														
37	TYPE GOLFODECH.		7	29.05303	14653	57479.04	492081.95	270755.82	762837.77	47.608586	14383	57479.04	756122.15	348288.22	1104410.4
38	TYPE MEGHAN-A		8	29.05303	11536.999	42037.056	384332.93	225692.32	610025.25	47.608586	11326.999	42037.056	592410.53	295210.93	887621.46
39	TYPE MONSUN		9	29.05303	13776.001	50893.92	460461.8	275852.04	736313.85	47.608586	13584.001	50893.92	712192.27	354290.72	1066483
40	TVPE METE SIF		10	34.241071	7420.5012	15846.72	275265.95	180628.83	455894.78	56.110119	7339.5011	15846.72	436000.3	242133.65	678133.95
41	TYPE ANGELIKI		11	34.241071	9601.9989	58342.939	392903.43	195596.49	588499.92	56.110119	9421.999	58342.939	596040.16	259763.06	855803.23

	14	15	16	64	65	66	67	68	69
22	MENU OF SHIP								
23									
24	NAME		ID. NBR.						
25				ROUTE 7 (ra7	VARIAB OPE	CANAL	OPER COSTS	OPER COSTS	OPERCOSTS
26			k		COST AT SE,	COSTS	AT SEA	AT PORTS	TOTAL
29	OMNED								
30	TYPE "ALPAD"		1	14.741667	14383.998	0	212849.68	271213.95	484063.62
31	TVPE "CIARM"		2	13.401515	15679	0	210927.9	269453.19	480381.09
32	TYPE "CISAM"		3	13.401515	15679	0	210927.9	269453.19	480381.09
33	TYPE "CIMAN"		4	13.820313	13048.002	0	180971.91	231010	411981.91
34	TYPE "RIMAG"		5	13.820313	12416.999	0	172251.25	229249.24	401500.49
35	TYPE "CIBUN"		6	13.401515	14320.999	0	192728.63	264170.92	456899.55
36	CHARTERED								
37	TYPEGOLFODECH		7	13.401515	15679	0	210927.9	269453.19	480381.09
38	TYPE MEGHAN-A		8	13.401515	12320.999	0	165764.49	227488.49	393252.98
39	TYPEMONSUN		9	13.401515	14500.001	0	195167.81	273341.53	468509.34
40	TVPE METE SFF		10	15.794643	7732.5014	0	122615.43	185523.78	308139.21
41	TYPE ANGELKKI		11	15.794643	10285.999	0	162987.28	199976.66	362963.94

Appendix 8

Calculation of Cost at Port

	83	84	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116
72	PORT REL	ATED INFOI																				
73																						
74	ROUTE																					
75	PORT		gpk	hk	Airk	Cpirk																
76			K=1				$k=2,3$				k=4				k=5				k=6			
77	US EC-1	i, r																				
78	NK	'1,1	5	10000	11900	22966	4.5	10000	11815	22968	4	8000	9730	19353	3.5	8000	9645	19211	3	10000	11560	22400
79	STJ	'2,1	5	10000	11980	16063	4.5	10000	11895	16063	4	8000	9810	13563	3.5	8000	9725	13465	3	10000	11640	15671
80	PHP	'3,1	5	10000	13239	14278	4.5	10000	13154	14278	4	8000	11069	12329	3.5	8000	10984	12253	3	10000	12899	13972
81	BAL	-4,1	5	10000	14054	14587	4.5	10000	13969	14518	4	8000	11884	12829	3.5	8000	11799	12761	3	10000	13714	14312
82	CHN	-5,1	5	10000	11442	21560	4.5	10000	11357	21413	4	8000	9272	17808	3.5	8000	9187	17681	3	10000	11102	20972
83	MIA	'6,1	5	10000	13117	9648	4.5	10000	13032	9600.2	4	8000	10947	8426.8	3.5	8000	10862	8379	3	10000	12777	9456.7
84	SMA	'7,1	5	10000	11603	16886	4.5	10000	11518	16774	4	8000	9433	14010	3.5	8000	9348	13897	3	10000	11263	16436
85	BAQ	-8,1	5	10000	11607	19379	4.5	10000	11522	19248	4	8000	9437	16038	3.5	8000	9352	15907	3	10000	11267	18855
86	CTG	'9,1	5	10000	11768	28214	4.5	10000	11683	28024	4	8000	9598	23351	3.5	8000	9513	23160	3	10000	11428	27452
87	BUN	$\cdot 10,1$	5	10000	11587	67832	4.5	10000	11502	67351	4	8000	9417	55543	3.5	8000	9332	55062	3	10000	11247	65907
88	CTG	'11.1	5	10000	11768	20949	4.5	10000	11683	20811	4	8000	9598	17425	3.5	8000	9513	17287	3	10000	11428	20397
89	MIA	'12.1	5	10000	13117	10593	4.5	10000	13032	10539	4	8000	10947	9215.2	3.5	8000	10862	9161.2	3	10000	12777	10377
90		tpr=			Cpkr $=$	262956			Cpkr $=$	261585			Cpkr=	219890			Cpkr $=$	218203			Cpkr $=$	256208
91	US GC-2																					
92	Na	'1,2	5	10000	12958	18267	4.5	10000	12875	18164	4	8000	10792	15569	3.5	8000	10709	15466	3	10000	2626	
93	HOU	'2,2	5	10000	11646	34390	4.5	10000	11563	34163	4	8000	9480	28450	3.5	8000	9397	28222	3	10000	11314	33480
94	SMA	'3,2	5	10000	11688	12310	4.5	10000	11605	12235	4	8000	9522	10347	3.5	8000	9439	10271	3	10000	11356	2009
95	BAQ	-4,2	5	10000	11498	25592	4.5	10000	11415	25422	4	8000	9332	21149	3.5	8000	9249	20978	3	10000	11166	24911
96	CTG	'5,2	5	10000	11490	45071	4.5	10000	11407	44764	4	8000	9324	37072	3.5	8000	9241	36765	3	000	8	45
97	BuN	'6,2	5	10000	11164	27319	4.5	10000	11081	27123	4	8000	8998	22213	3.5	8000	8915	22018	3	10000	10832	26536
98	SUR	'7,2	5	10000	12223	11955	4.5	10000	12140	11893	4	8000	10057	10330	3.5	8000	9974	10268	3	0000	11891	06
99	MIA	'8,2	5	10000	13801	11810	4.5	10000	13718	11757	4	8000	11635	10423	3.5	8000	11552	10370	3	10000	13469	11598
100		tpr=			Cpkr=	186715			Cpkr $=$	185520			Cpkr	155553			Cpkr $=$	4359			Cpkr=	938
101	US WC-3																		3	10000	11037	
102	EUN	11,3	5	10000	11371	51389	4.5	10000	11287	51047	4	8000	9204	42514	3.5	8000	9120	42172	3	10000	14107	
103	PCD	'2,3	5	10000	14441	12347	4.5	10000	14357	12297	4	8000	12274	11035	3.5	8000	12190	10985	3	10000	14107	12145
104	ACJ	'3,3	5	10000	11463	9152	4.5	10000	11379	9089.9	4	8000	9296	7540.4	3.5	8000	9212	7478.3	3	10000	29	903.6
105	PCZ	4,3	5	10000	12809	12514	4.5	10000	12726	12445	4	8000	10642	10730	3.5	8000	10559	10662	3	10000	12475	12239
106	SPC	5,3	5	10000	15149	14061	4.5	10000	15065	14007	4	8000	12982	12667	3.5	8000	12898	12613	3	10000	14815	3846
107	VAI	6,3	5	10000	12684	25417	4.5	10000	12601	25274	4	8000	10517	21706	3.5	8000	10434	21563	3	10000	12350	24845
108	STL	'7,3	5	10000	17290	22752	4.5	10000	17207	22674	4	8000	15123	20710	3.5	8000	15040	20631	3	10000	6956	22438
109	LAN	'8,3	5	10000	15139	13190	4.5	10000	15056	13141	4	8000	12972	11918	3.5	8000	12889	11869	3	10000	14805	12994
110	MEN	'9,3	5	10000	12835	14209	4.5	10000	12752	14129	4	8000	10668	12147	3.5	8000	10585	12068	3	10000	12501	13891
111	PCZ	'10,3	5	10000	12809	10308	4.5	10000	12726	10254	4	8000	10642	8897.9	3.5	8000	10559	8843.6	3	10000	12475	10091
112	ACJ	-11,3	5	10000	11463	8494	4.5	10000	11379	8436.7	4	8000	9296	7006.8	3.5	8000	9212	6949.5	3	10000	11129	8264.8
113	PCD	-12,3	5	10000	14441	15501	4.5	10000	14357	15433	4	8000	12274	13716	3.5	8000	Cpkr $=$	179482	3	10000	Cpkr $=$	204903
114		tpr=			Cpkr=	209334			Cpkr $=$	208226			Cpkr=	180590			Cpkr $=$	179482			Cpkr=	204903

	83	84	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136
72	PORT REL	ATED INFOF																				
73																						
74	ROUTEI																					
75	PORT		gpk	hk	Airk	Cpirk	gpk	hk	Airk	Cpirk	gpk	hk	Airk	Cpirk	gpk	hk	Airk					
76			k=7				$k=8$				k=9			Cpirk	k=10	hk	Airk	Cpirk	k=11	hk	Airk	Cpi
77	US EC-1	i.r																				
78	NKK	'1.1	4.5	10000	11815	22824	3	8000	9560	19070	3	10500	12060	23232	1.5	6000	7305	15315	3	6500	8060	16572
79	STJ	'2,1	4.5	10000	11895	15965	3	8000	9640	13367	3	10500	12140	16248	1.5	6000	7385	10768	3	6500	8140	11638
80	PHP	'3,1	4.5	10000	13154	14201	3	8000	10899	12176	3	10500	13399	14421	1.5	6000	8644	10151	3	6500	9399	10829
81	BAL	'4,1	4.5	10000	13969	14518	3	8000	11714	12692	3	10500	14214	14717	1.5	6000	9459	10865	3	6500	10214	11477
82	CAN	'5,1	4.5	10000	11357	21413	3	8000	9102	17514	3	10500	11602	21837	1.5	6000	6847	13614	3	6500	7602	14920
83	MIA	'6,1	4.5	10000	13032	9600.2	3	8000	10777	8331.2	3	10500	13277	9738.1	1.5	6000	8522	7062.1	3	6500	9277	7487
84	SMA	'7.1	4.5	10000	11518	16774	3	8000	9263	13784	3	10500	11763	17098	1.5	6000	7008	10795	3	6500	7763	11796
85	BAQ	'8,1	4.5	10000	11522	19248	3	8000	9267	15777	3	10500	11767	19825	1.5	6000	7012	12306	3	6500	7767	13468
86	CTG	'9,1	4.5	10000	11683	28024	3	8000	9428	22969	3	10500	11928	28573	1.5	6000	7173	17915	3	6500	7928	19607
87	BuN	10,1	4.5	10000	11502	67351	3	8000	9247	54580	3	10500	11747	68739	1.5	6000	6992	41809	3	6500	7747	46085
88	CTG	'11.1	4.5	10000	11683	20811	3	8000	9428	17149	3	10500	11928	21209	1.5	6000	7173	13486	3	6500	7928	14713
89	MIA	'12,1	4.5	10000	13032	10539	3	8000	10777	9107.3	3	10500	13277	10694	1.5	6000	8522	7675.8	3	6500	9277	8155.1
90		tore			Cpkr	261269			Cpkr $=$	216516			Cpkr $=$	266131			Cpkr $=$	171764			Cpkr	186747
91	US GC-2																					
92	Na	-1,2	4.5	10000	12875	18164	3	8000	10628	15362	3	10500	13126	18476	1.5	6000	8377	12561	3	6500	9126	13494
93	HOU	'2,2	4.5	10000	11563	34163	3	8000	9314	27995	3	10500	11814	34851	1.5	6000	7065	21826	3	6500	7814	23881
94	SMA	'3,2	4.5	10000	11605	12235	3	8000	9356	10196	3	10500	11856	12482	1.5	6000	7107	8157.3	3	6500	7856	8836.3
95	BAO	-4,2	4.5	10000	11415	25422	3	8000	9166	20808	3	10500	11686	25937	1.5	6000	6917	16195	3	6500	7666	17731
96	CTG	'5,2	4.5	10000	11407	44784	3	8000	9158	36459	3	10500	11658	45691	1.5	6000	6909	28154	3	6500	7658	30920
97	BuN	'6,2	4.5	10000	11081	27123	3	8000	8832	21822	3	10500	11332	27715	1.5	6000	6583	18520	3	6500	7332	18286
98	SJR	'7,2	4.5	10000	12140	11893	3	8000	9891	10206	3	10500	12391	12081	1.5	6000	7642	8518.2	3	6500	8391	9080.1
99	MIA	'8,2	4.5	10000	13718	11757	3	8000	11469	10317	3	10500	13969	11918	1.5	6000	9220	8876.3	3	6500	9969	9356
100		tora			Cpkr=	185520			Cpkr	153164			Cpkr=	189132			Cpkr=	120808			Cpkr $=$	131584
101	US WC-3																					
102	BUN	- 1,3	4.5	10000	11287	51047	3	8000	9037	41830	3	10500	11537	52069	1.5	6000	6786	32614	3	6500	7537	35687
103	PCD	'2,3	4.5	10000	14357	12297	3	8000	12107	10934	3	10500	14607	12448	1.5	6000	9856	9571.9	3	6500	10607	10026
104	ACJ	-3,3	4.5	10000	11379	9089.9	3	8000	9129	7416.2	3	10500	11629	9275.5	1.5	6000	6878	5742.6	3	6500	7629	6300.7
105	PCZ	-4,3	4.5	10000	12726	12445	3	8000	10475	10593	3	10500	12975	12650	1.5	6000	8225	8741.3	3	6500	8975	9358.8
106	SFC	'5,3	4.5	10000	15065	14007	3	8000	12815	12559	3	10500	15315	14168	1.5	6000	10564	11111	3	6500	11315	11594
107	VAI	'6,3	4.5	10000	12601	25274	3	8000	10350	21420	3	10500	12850	25701	1.5	6000	8100	17567	3	6500	8850	18852
108	STL	- 7 , 3	4.5	10000	17207	22674	3	8000	14956	20552	3	10500	17456	22909	1.5	6000	12706	18431	3	6500	13456	19138
109	LAN	'8,3	4.5	10000	15056	13141	3	8000	12805	11820	3	10500	15305	13288	1.5	6000	10555	10499	3	6500	11305	10940
110	MEN	'9,3	4.5	10000	12752	14129	3	8000	10501	11989	3	10500	13001	14367	1.5	6000	8251	9847.8	3	6500	9001	10562
111	PCZ	'10,3	4.5	10000	12726	10254	3	8000	10475	8789.3	3	10500	12975	10416	1.5	6000	8225	7325	3	6500	8975	7813.3
112	ACJ	'11.3	4.5	10000	11379	8436.7	3	8000	9129	6892.2	3	10500	11629	8607.9	1.5	6000	6878	5347.7	3	6500	7629	5862.8
113	PCD	'12,3	4.5	10000	14357	15433	3	8000	12107	13579	3	10500	14607	15638	1.5	6000	9856	11725	3	6500	10607	12343
114		tpr=			Cpkr=	208226			Cpkr=	178374			Cpkr $=$	211536			Cpkr $=$	148523			Cpkr $=$	158478

	83	84	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116
72	PORT RELATED INFO,																					
73																						
74	ROUTE																					
75	PORT		gpk	hk	Airk	Cpirk																
76			$\mathrm{K}=1$				k=2,3				k=4				k=5				k=6			
77	US EC-1	i, r																				
115	EUR.NORTH-4																					
116	HMB	'1,4	5	10000	12742	17604	4.5	10000	12673	17553	4	8000	10604	16027	3.5	8000	10535	15976	3	10000	12466	17401
117	BPM	-2,4	5	10000	12188	14373	4.5	10000	12119	14334	4	8000	10050	13165	3.5	8000	9981	13126	3	10000	11912	14217
118	ATW	'3,4	5	10000	14766	34820	4.5	10000	14697	34696	4	8000	12628	30959	3.5	8000	12559	30834	3	10000	14490	34322
119	FID	'4,4	5	10000	12261	10518	4.5	10000	12192	10485	4	8000	10123	9505.7	3.5	8000	10054	9473	3	10000	11985	10387
120	HVR	'5,4	5	10000	12597	9591.6	4.5	10000	12528	9559.9	4	8000	10459	8611	3.5	8000	10390	8579.4	3	10000	12321	9465
121	LPL	'6,4	5	10000	14879	29045	4.5	10000	14810	28969	4	8000	12741	26677	3.5	8000	12672	26601	3	10000	14603	28739
122	BLB	'7,4	5	10000	12085	11486	4.5	10000	12016	11437	4	8000	9947	9947.9	3.5	8000	9878	9898.2	3	10000	11809	11288
123	STD	'8,4	5	10000	12170	7720	4.5	10000	12101	7693	4	8000	10032	6883.9	3.5	8000	9963	6856.9	3	10000	11894	7612
124	SMA	'9,4	5	10000	11375	111989	4.5	10000	11306	111330	4	8000	9237	91583	3.5	8000	9168	90925	3	10000	11099	109354
125	BAQ	-10,4	5	10000	11473	29164	4.5	10000	11404	29003	4	8000	9335	24167	3.5	8000	9266	24006	3	10000	11197	28519
126	CTG	'11,4	5	10000	11331	58516	4.5	10000	11262	58183	4	8000	9193	48201	3.5	8000	9124	47868	3	10000	11055	57184
127	BUN	'12,4	5	10000	11274	80412	4.5	10000	11205	79966	4	8000	9136	66602	3.5	8000	9067	66156	3	10000	10998	78629
128	FID	'13,4	5	10000	12261	21918	4.5	10000	12192	21821	4	8000	10123	18918	3.5	8000	10054	18821	3	10000	11985	21530
129	BPM	'14,4	5	10000	12188	34969	4.5	10000	12119	34814	4	8000	10050	30149	3.5	8000	9981	29993	3	10000	11912	34347
130	HMB	'15,4	5	10000	12742	33338	4.5	10000	12673	33202	4	8000	10604	29121	3.5	8000	10535	28985	3	10000	12466	32794
131	GTB	'16,4	5	10000	11158	17310	4.5	10000	11089	17224	4	8000	9020	14620	3.5	8000	8951	14534	3	10000	10882	16963
132		tpro			Cpkr=	522774			Cpkr	520268			Cpkr=	445138			Cpkr $=$	442632			Cpkr $=$	512752
133	EUR.MEDTT-5																					
134	LVR	'1,5	5	10000	12908	25131	4.5	10000	12826	24985	4	8000	10744	21288	3.5	8000	10662	21122	3	10000	12580	24546
135	GN	'2,5	5	10000	13108	13734	4.5	10000	13026	13663	4	8000	10944	11845	3.5	8000	10862	11773	3	10000	12780	13448
136	ML	'3,5	5	10000	12694	14998	4.5	10000	12612	14914	4	8000	10530	12761	3.5	8000	10448	12676	3	10000	12366	14659
137	BRC	'4,5	5	10000	12376	7023	4.5	10000	12294	6986.8	4	8000	10212	6067	3.5	8000	10130	6030.7	3	10000	12048	6878.1
138	COZ	'5,5	5	10000	12033	10070	4.5	10000	11951	10018	4	8000	9869	8695.2	3.5	8000	9787	8643.1	3	10000	11705	9861.8
139	HLA	'6,5	5	10000	13032	11507	4.5	10000	12950	11449	4	8000	10868	9963.5	3.5	8000	10786	9905	3	10000	12704	11273
140	SMA	-7,5	5	10000	12175	15357	4.5	10000	12093	15263	4	8000	10011	12868	3.5	8000	9929	12774	3	10000	11847	14980
141	BAQ	'8,5	5	10000	11670	22741	4.5	10000	11588	22593	4	8000	9506	18839	3.5	8000	9424	18691	3	10000	11342	22149
142	CTG	'9,5	5	10000	11531	36659	4.5	10000	11449	36418	4	8000	9367	30312	3.5	8000	9285	30072	3	10000	11203	35697
143	BN	-10,5	5	10000	11751	22367	4.5	10000	11669	22224	4	8000	9587	18591	3.5	8000	9505	18448	3	10000	11423	21794
144	CTG	'11.5	5	10000	11531	54136	4.5	10000	11449	53772	4	8000	9367	44510	3.5	8000	9285	44145	3	10000	11203	52677
145	CO2	-12,5	5	10000	12033	10220	4.5	10000	11951	10167	4	8000	9869	8817.9	3.5	8000	9787	8764.7	3	10000	11705	10007
146	ALC	'13,5	5	10000	11586	6617.4	4.5	10000	11504	6581.4	4	8000	9422	5667.7	3.5	8000	9340	5631.7	3	10000	11258	6473.4
147	bac	'14,5	5	10000	12376	12607	4.5	10000	12294	12533	4	8000	10212	10674	3.5	8000	10130	10601	3	10000	12048	12314
148	TLN	'15,5	5	10000	13176	9233.1	4.5	10000	13094	9190.3	4	8000	11012	8103.5	3.5	8000	10930	8060.7	3	10000	12848	9061.9
149		tpr=			Cpkr=	272401			Cpkr=	270756			Cpkr=	228983			Cpkr $=$	227338			Cpkr=	265820

	83	84	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136
72	PORT RELATED INFOF																					
73																						
74	ROUTEI																					
75	PORT		gpk	hk	Air k	Cpirk	gpk	hk	Airk													
76			k=7				k=8				k=9				k=10			Cpirk	givk	nk	Airk	pirk
77	US EC-1	1.1																	k=11			
115	EUR.NORTH-4		\cdots																			
116	HMB	-1,4	4.5	10000	12673	17553	3	8000	10466	15925	3	10500	12966	17769	1.5	6000	8259	14298	3	6500	8966	14819
117	BPM	'2.4	4.5	10000	12119	14334	3	8000	9912	13087	3	10500	12412	14499	1.5	6000	7705	11840	3	6500	8412	12240
118	ATW	-3,4	4.5	10000	14697	34696	3	8000	12490	30710	3	10500	14990	35225	1.5	6000	10283	26724	3	6500	10990	28000
119	FID	-4,4	4.5	10000	12192	10485	3	8000	9985	9440.4	3	10500	12485	10824	1.5	6000	7778	8395.3	3	6500	8485	8730.1
120	HVR	-5,4	4.5	10000	12528	9559.9	3	8000	10321	8547.7	3	10500	12821	9694.3	1.5	6000	8114	7535.5	3	6500	8821	7859.7
121	LPL	'6,4	4.5	10000	14810	28969	3	8000	12603	26524	3	10500	15103	29293	1.5	6000	10396	24080	3	6500	11103	24863
122	BLB	7.4	4.5	10000	12016	11437	3	8000	9809	9848.6	3	10500	12309	11647	1.5	6000	7602	8260.6	3	6500	8309	8769.3
123	STD	'8,4	4.5	10000	12101	7693	3	8000	9894	6829.9	3	10500	12394	7807.6	1.5	6000	7687	5966.8	3	6500	8394	6243.3
124	SMA	'9,4	4.5	10000	11306	111330	3	8000	9099	90266	3	10500	11599	114127	1.5	6000	6892	69203	3	6500	7599	75950
125	BAO	'10,4	4.5	10000	11404	29003	3	8000	9197	23845	3	10500	11697	29688	1.5	6000	6990	18687	3	6500	7697	20339
126	CTG	'11,4	4.5	10000	11262	58183	3	8000	9055	47535	3	10500	11555	59596	1.5	6000	6848	36887	3	6500	7555	40298
127	BuN	'12,4	4.5	10000	11205	79966	3	8000	8998	65710	3	10500	11498	81859	1.5	6000	6791	51454	3	6500	7498	56021
128	RID	'13,4	4.5	10000	12192	21821	3	8000	9985	18724	3	10500	12485	22232	1.5	6000	7778	15627	3	6500	8485	16619
129	BPM	'14,4	4.5	10000	12119	34814	3	8000	9912	29837	3	10500	12412	35474	1.5	6000	7705	24861	3	6500	8412	26455
130	HMB	'15,4	4.5	10000	12673	33202	3	8000	10466	28849	3	10500	12966	33780	1.5	6000	8259	24496	3	6500	8966	25890
131	GTB	'16,4	4.5	10000	11089	17224	3	8000	8882	14447	3	10500	11382	17592	1.5	6000	6675	11670	3	6500	7382	12560
132		tpr=			Cpkr=	520268			Cpkr=	440126			Cpkra	530908			Cpkr	359984			Cpkr $=$	385658
133	EUR.MEDIT-5																					
134	LVA	-1.5	4.5	10000	12826	24985	3	8000	10580	20975	3	10500	13080	25438	1.5	6000	8334	16966	3	6500	9080	18298
135	GN	2,5	4.5	10000	13026	13663	3	8000	10780	11702	3	10500	13280	13885	1.5	6000	8534	9740.3	3	6500	9280	10392
136	ML	-3,5	4.5	10000	12612	14914	3	8000	10366	12591	3	10500	12866	15176	1.5	6000	8120	10269	3	6500	8866	11041
137	BRC	-4.5	4.5	10000	12294	6986.8	3	8000	10048	5994.5	3	10500	12548	7099	1.5	6000	7802	5002.2	3	6500	8548	5331.8
138	COR	'5,5	4.5	10000	11951	10018	3	8000	9705	8591	3	10500	12205	10179	1.5	6000	7459	7164	3	6500	8205	7637.9
139	HLA	'6,5	4.5	10000	12950	11449	3	8000	10704	9846.5	3	10500	13204	11630	1.5	6000	8458	8244.4	3	6500	9204	8776.5
140	SMA	-7.5	4.5	10000	12093	15263	3	8000	9847	12680	3	10500	12347	15555	1.5	6000	7601	10096	3	6500	8347	10954
141	BAO	'8,5	4.5	10000	11588	22593	3	8000	9342	18543	3	10500	11842	23051	1.5	6000	7096	14494	3	6500	7842	15839
142	CTG	'9,5	4.5	10000	11449	36418	3	8000	9203	29831	3	10500	11703	37163	1.5	6000	6957	23244	3	6500	7703	25432
143	BUN	'10,5	4.5	10000	11669	22224	3	8000	9423	18305	3	10500	11923	22667	1.5	6000	7177	14386	3	6500	7923	15687
144	CTG	'11,5	4.5	10000	11449	53772	3	8000	9203	43780	3	10500	11703	54902	1.5	6000	6957	33789	3	6500	7703	37107
145	coz	-12,5	4.5	10000	11951	10167	3	8000	9705	8711.6	3	10500	12205	10331	1.5	6000	7459	7256.7	3	6500	8205	7739.9
146	ALC	'13,5	4.5	10000	11504	6581.4	3	8000	9258	5595.7	3	10500	11758	6692.9	1.5	6000	7012	4610	3	6500	7758	4937.4
147	BRC	'14.5	4.5	10000	12294	12533	3	8000	10048	10528	3	10500	12548	12760	1.5	6000	7802	8522.1	3	6500	8548	9188.2
148	TUN	'15,5	4.5	10000	13094	9190.3	3	8000	10848	8017.9	3	10500	13348	9322.9	1.5	6000	8602	6845.5	3	6500	9348	7234.9
149		tpre			Cpkr=	270756			Cpkr=	225692			Cpkr=	275852			Cpkr=	180629			Cpkr=	195596

	83	84	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116
72	PORT REL	ATED INFOI																				
73																						
74	ROUTE																					
75	PORT		gpk	hk	Airk	Cpirk																
76			$\mathrm{K}=1$				k 2,3				k=4				$\mathrm{k}=5$				k=6			
77	US EC-1	i, 1																				
150	JAPAN-6																					
151	WM	'1,6	5	10000	13823	17700	4.5	10000	13741	17631	4	8000	11659	15869	3.5	8000	11577	15800	3	10000	13495	17422
152	NAG	'2,6	5	10000	12952	19141	4.5	10000	12870	19060	4	8000	10788	17011	3.5	8000	10706	16931	3	10000	12624	18818
153	KBE	'3,6	5	10000	12079	38304	4.5	10000	11997	38087	4	8000	9915	32570	3.5	8000	9833	32353	3	10000	11751	37435
154	CBA	'4.6	5	10000	12274	42176	4.5	10000	12192	41933	4	8000	10110	35765	3.5	8000	10028	35522	3	10000	11946	41204
155	WM	'5,6	5	10000	13823	26378	4.5	10000	13741	26257	4	8000	11659	23188	3.5	8000	11577	23068	3	10000	13495	25894
156	HSM	'6,6	5	10000	14399	29986	4.5	10000	14317	29856	4	8000	12235	26555	3.5	8000	12153	26425	3	10000	14071	29466
157	LAN	'7.6	5	10000	12100	5308.5	4.5	10000	12018	5281.2	4	8000	9936	4587.9	3.5	8000	9854	4560.6	3	10000	11772	5199.3
158	PCZ	'8,6	5	10000	12811	27618	4.5	10000	12729	27454	4	8000	10647	23289	3.5	8000	10585	23125	3	10000	12483	26962
159.	ACJ	'9,6	5	10000	11401	9923.9	4.5	10000	11319	9856.7	4	8000	9237	8150.4	3.5	8000	9155	8083.2	3	10000	11073	9655.1
160	PCD	'10,6	5	10000	15730	16396	4.5	10000	15648	16336	4	8000	13566	14816	3.5	8000	13484	14756	3	10000	15402	16157
161	BuN	'11,6	5	10000	11416	98487	4.5	10000	11334	97844	4	8000	9252	81513	3.5	8000	9170	80870	3	10000	11088	95914
162	TBO	'12,6	5	10000	11127	10051	4.5	10000	11045	9978.9	4	8000	8963	8155.7	3.5	8000	8881	8083.9	3	10000	10799	9763.4
163	PCZ	'13,6	5	10000	12811	8758.5	4.5	10000	12729	8715.2	4	8000	10647	7615.3	3.5	8000	10565	7572	3	10000	12483	8585.2
164		tor $=$			Cpkr	350226			Cpkr=	348288			Cpkr $=$	299087			Cpkr $=$	297149			Cpkr $=$	342475
165	S.AMER.W	C-7																				
166	BuN	'1.7	5	10000	11567	110266	4.5	10000	11471	109396	4	8000	9375	90406	3.5	8000	9279	89536	3	10000	11183	106787
167	CLI	'2,7	5	10000	14752	20222	4.5	10000	14656	20140	4	8000	12560	18344	3.5	8000	12464	18262	3	10000	14368	19893
168	VLP	'3,7	5	10000	13667	77119	4.5	10000	13571	76634	4	8000	11475	66052	3.5	8000	11379	65567	3	10000	13283	75180
169	TLC	-4,7	5	10000	14408	35104	4.5	10000	14312	34916	4	8000	12216	30813	3.5	8000	12120	30625	3	10000	14024	34352
170	CL	-5,7	5	10000	14752	28504	4.5	10000	14656	28367	4	8000	12560	25395	3.5	8000	12464	25259	3	10000	14368	27959
171		tor=			Cpkr=	271214			Cpkr $=$	269453			Cpkr=	231010			Cpkr $=$	229249			Cpkr=	264171

	83	84	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136
72	PORT RELATED INFOF																					
73																						
74	ROUTE																					
75	PORT		gpk	hk	Alik	Cpirk	gpk	hk	Alik	Cpirk	gpk	hk	Airk	Cpirk	gpk	hk	Airk	Cpirk	gpk	hk	Airk	Cpirk
76			k=7				$k=8$				k=9				$k=10$				$\mathrm{k}=11$			
77	US EC-1	i, 1																				
150	JAPAN-6		\cdots																			
151	HM	'1,6	4.5	10000	13741	17631	3	8000	11495	15731	3	10500	13995	17845	1.5	6000	9249	13831	3	6500	9995	14462
152	NAG	'2,6	4.5	10000	12870	19060	3	8000	10624	18850	3	10500	13124	19310	1.5	6000	8378	14640	3	6500	9124	15374
153	KBE	'3,6	4.5	10000	11997	38087	3	8000	9751	32135	3	10500	12251	38760	1.5	6000	7505	28184	3	6500	8251	28161
154	CBA	-4,6	4.5	10000	12192	41933	3	8000	9946	35279	3	10500	12446	42686	1.5	6000	7700	28626	3	6500	8446	30836
155	MM	-5,6	4.5	10000	13741	26257	3	8000	11495	22947	3	10500	13995	26631	1.5	6000	9249	19637	3	6500	9995	20736
156	HSM	'6,6	4.5	10000	14317	29856	3	8000	12071	26295	3	10500	14571	30258	1.5	6000	9825	22734	3	6500	10571	23917
157	LAN	${ }^{1} 7.6$	4.5	10000	12018	5281.2	3	8000	9772	4533.3	3	10500	12272	5365.8	1.5	6000	7526	3785.4	3	6500	8272	4033.8
158	PGZ	'8,6	4.5	10000	12729	27454	3	8000	10483	22961	3	10500	12983	27982	1.5	6000	8237	18468	3	6500	8983	19960
159	ACJ	'9,6	4.5	10000	11319	9856.7	3	8000	9073	8016	3	10500	11573	10065	1.5	6000	6827	6175.2	3	6500	7573	6786.6
160	PCD	'10,6	4.5	10000	15848	16336	3	8000	13402	14696	3	10500	15902	16522	1.5	6000	11158	13056	3	6500	11902	13601
161	EUN	'11,6	4.5	10000	11334	97844	3	8000	9088	80227	3	10500	11588	99836	1.5	6000	6842	62610	3	6500	7588	68461
162	TBO	'12,6	4.5	10000	11045	9978.9	3	8000	8799	8012.1	3	10500	11299	10201	1.5	6000	6553	6045.3	3	6500	7299	6698.6
163	PCZ	'13,6	4.5	10000	12729	8715.2	3	8000	10483	7528.7	3	10500	12983	8849.3	1.5	6000	8237	6342.2	3	6500	8983	6736.3
164		tpr=			Cpkr=	348288			Cpkr $=$	295211			Cpkr	354291			Cpkr $=$	242134			Cpkr $=$	259763
165	S.AMER.W	C-7																				
166	BN	1.7	4.5	10000	11471	109396	3	8000	9183	88867	3	10500	11683	111317	1.5	6000	6895	67937	3	6500	7683	75076
167	CL	'2,7	4.5	10000	14656	20140	3	8000	12368	18180	3	10500	14868	20321	1.5	6000	10080	16220	3	6500	10868	16895
168	VLP	'3,7	4.5	10000	13571	76634	3	8000	11283	65083	3	10500	13783	77704	1.5	6000	8995	53531	3	6500	9783	57510
169	TLC	-4,7	4.5	10000	14312	34916	3	8000	12024	30437	3	10500	14524	35331	1.5	6000	9736	25957	3	6500	10524	27500
170	Cl	'5,7	4.5	10000	14656	28367	3	8000	12368	25123	3	10500	14868	28668	1.5	6000	10080	21878	3	6500	10868	22996
171		tpra			Cpkr	269453			Cpkr=	227488			Cpkr=	273342			Cpkr $=$	185524			Cpkr $=$	199977

Appendix 9

Time Coefficients t_{kr}

Appendix 10

LP example input

```
MINIMIZE
592 X011 + 463 X012 + 537 X013 + 1104 X014 + 767 X015 + 1117 X016 +
484 X017 + 9.1 Y01 +
591 X021 + 462 X022 + 527 X023 + 1097 x024 + 763 x025 + 1104 x026 +
480 X027 + 9.0 Y02 +
589 X031 + 460 X032 + 527 X033 + 1094 X034 + 761 X035 + 1102 X036 +
480 X037 + 9.0 Y03 +
484 X041 + 375 X042 + 451 x043 + 0916 x044 + 632 x045 + 0927 X046 +
412 X047 + 7.4 Y04 +
468 X051 + 361 x052 + 440 X053 + 0891 X054 + 610 X055 + 0896 X056 +
402 X057 + 7.3 Y05 +
554 X061 + 431 X062 + 501 X063 + 1040 X064 + 713 X065 + 1036 X066 +
457 X067 + 8.9 Y06 +
591 X071 + 462 x072 + 527 x073 + 1097 X074 + 763 x075 + 1104 X076 +
480 X077 + 9.0 Y07 +
473 X081 + 368 X082 + 429 X083 + 0891 X084 + 610 X085 + 0888 X086 +
393 X087 + 0.0 Y08 +
575 X091 + 449 X092 + 513 X093 + 1075 X094 + 736 x095 + 1066 X096 +
468 X097 + 0.0 Y09 +
350 X101 + 269 X102 + 340 X103 + 0686 X104 + 456 X105 + 0678 X106 +
308 X107 + 0.0 Y10 +
453 X111 + 358 X112 + 404 X113 + 0844 X114 + 588 X115 + 0856 X116 +
363 X117 + 0.0 Y11
SUBJECT TO
1TIMEK) 40.6 X011 + 31.5 X012 + 37.9 X013 + 76.1 X014 + 52.9 x015 +
77.4 x016 + 33.2 x017 + Y01 = 2190
2TIMEK) 38.9 X021 + 30.0 X022 + 35.7 X023 + 72.7 X024 + 50.0 X025 +
72.6 X026 + 31.8 X027 + Y02 = 730
3TIMEK) 38.9 X031 + 30.0 X032 + 35.7 X033 + 72.7 X034 + 50.0 X035 +
72.6 x036 + 31.8 x037 + Y03 = 1095
4TIMEK) 39.4 X041 + 30.5 X042 + 36.4 X043 + 73.8 X044 + 50.9 X045 +
74.1 X046 + 32.2 X047 + Y04 = 365
5TIMEK) 39.4 X051 + 30.5 X052 + 36.4 X053 + 73.8 X054 + 50.9 X055 +
74.7 X056 + 32.2 X057 + Y05 = 365
6TIMEK) 38.9 X061 + 30.0 X062 + 35.7 X063 + 72.7 X064 + 50.0 X065 +
72.6 X066 + 31.8 X067 + Y06 = 365
7TIMEK) 38.9 X071 + 30.0 X072 + 35.7 X073 + 72.7 X074 + 50.0 x075 +
72.6 X076 + 31.8 X077 + Y07 = 365
8TIMEK) 38.9 X081 + 30.0 X082 + 35.7 X083 + 72.7 X084 + 50.0 X085 +
72.6 X086 + 31.8 X087 + Y08 = 1095
9TIMEK) 38.9 X091 + 30.0 X092 + 35.7 X093 + 72.7 X094 + 50.0 X095 +
72.6 x096 + 31.8 x097 + Y09 = 1095
10TIMEK) 42.0 X101 + 32.6 X102 + 39.6 X103 + 78.8 X104 + 55.2 X105 +
81.1 X106 + 34.2 X107 + Y10 = 1095
11TIMEK) 42.0 X111 + 32.6 X112 + 39.6 X113 + 78.8 X114 + 55.2 X115 +
81.1 X116 + 34.2 X117 + Y11 = 1095
1VOYAGES) X011 + X021 + X031 + X041 + X051 + X061 + X071 + X081 +
x091 + X101 + X111 > 26.071
2VOYAGES) X012 + X022 + X032 + X042 + X052 + X062 + X072 + X082 +
X092 + X102 + X112 > 26.071
3VOYAGES) X013 + X023 + X033 + X043 + X053 + X063 + X073 + X083 +
X093 + X103 + X113 > 17. 381
4VOYAGES) X014 + X024 + X034 + X044 + X054 + X064 + X074 + X084 +
X094 + X104 + X114 > 24.333
5VOYAGES) X015 + X025 + X035 + X045 + X055 + X065 + X075 + X085 +
x095 + X105 + X115 > 12.167
6VOYAGES) X016 + X026 + X036 + X046 + X056 + X066 + X076 + X086 +
X096 + X106 + X116 > 15.870
7VOYAGES) X017 + X027 + X037 + X047 + X057 + X067 + X077 + X087 +
X097 + X107 + X117 > 10.42
41INCOMP) X041 = 0
43INCOMP) X043 = 0
44INCOMP) X044 = 0
46INCOMP) X046 = 0
```

```
51INCOMP) X051 = 0
53INCOMP) X053 = 0
54INCOMP) X054 = 0
56INCOMP) X056 = 0
101INCOM) X101 = 0
102INCOM) X102 =0
103INCOM) X103 = 0
104INCOM) X104 = 0
106INCOM) X106 = 0
107INCOM) X107 = 0
77INCOMP) X077 = 0
87INCOMP) X087 = 0
97INCOMP) X097 = 0
117INCOM) X117 = 0
1ALLOW) Y01 > }12
2ALLOW) Y02 > 40
3ALLOW) Y03 > 60
4ALLOW) Y04 > 20
5ALLOW) Y05 > 20
6ALLOW) Y06 > 20
7ALLOW) Y07 > 20
8ALLOW) Y08 > 60
9ALLOW) Y09 > }6
10ALLOW) Y10 > 60
11ALLOW) Y11 > }6
END
LEAVE
```


Appendix 11

LP example output

OBJECTIVE FUNCTION VALUE

1)	89572.5800	
VARIABLE	VALUE	REDUCED COST
X011	10.726691	. 000000
X012	.000000	. 268738
X013	. 000000	4.256989
X014	21.478270	. 000000
X015	. 000000	129.889200
X016	. 000000	. 204651
X017	. 000000	. 800476
Y01	120.000000	. 000000
X021	. 000000	2.870819
X022	. 000000	2.900848
X023	7.717135	. 000000
X024	. 000000	. 997253
X025	.000000	133.312130
X026	1.145210	. 000000
X 027	10.420000	. 000000
Y02	40.000000	. 000000
X031	. 000000	1.942444
X032	. 000000	1.727295
X033	. 000000	. 983459
X034	2.854730	. 000000
X035	. 000000	132.689510
X036	11.397540	. 000000
X037	. 000000	. 876038
Y03	60.000000	. 000000
X041	. 000000	. 000000
X042	11.311480	. 000000
X043	. 000000	. 000000
X044	. 000000	. 000000
X045	. 000000	142.433410
X046	. 000000	. 000000
X047	. 000000	21.230834
Y04	20.000000	. 000000
X051	. 000000	. 000000
X052	11.311480	. 000000
X053	. 000000	. 000000
X054	. 000000	. 000000
X055	. 000000	143.797300
X056	. 000000	. 000000
X057	. 000000	26.011170
Y05	20.000000	. 000000
X061	. 000000	2.306091
X062	3.448048	. 000000
X063	. 000000	7.438019
X064	. 000000	12.090881
X065	. 000000	130.144040
X066	3.327253	. 000000
X067	. 000000	6.785156
Y06	20.000000	. 000000
X071	. 000000	2.870850
X072	. 000000	2.900848
X073	9.663865	. 000000
X074	. 000000	. 997253
X075	. 000000	133.312130
X076	. 000000	. 000000
X077	. 000000	. 000000
Y07	20.000000	. 000000
X081	. 000000	20.000000

X082
$\times 083$
x 084
X085
X086
$\times 087$
x 091
X092
X093
X094
$\times 095$
$\times 096$
X097
X101
X102
X103
X104
X105
X106
X107
X111
x 112
X113
X114
X115
X116
X117
Y08
Y09
Y10
Y11

ROW
1TIMEK)
2TIMEK)
3TIMEK)
5TIMEK)
6TIMEK)
7TIMEK)
8TIMEK)
9TIMEK
10TIMEK
11TIMEK
1VOYAGES
2VOYAGES)
3VOYAGES
4VOYAGES
6VOYAGES)
7VOYAGES
41INCOMP
43INCOMP)
44INCOMP)
$46 I N C O M P$)
51 INCOMP)
53INCOMP)
54INCOMP)
56INCOMP)
101INCOM 102INCOM 103INCOM) 104INCOM)
.000000
.000000
.000000
.000000
.000000
.000000
. 000000
. 000000
.000000
.000000
. 000000
. 000000
.000000
.000000
. 000000
.000000
.000000
12.167000
.000000
.000000
15.344310
.000000
.000000
.000000
.000000
.000000
.000000
1095.000000
1095.000000
423.381600
450.539100

SLACK OR SURPLUS
.000000
. 000000
. 000000
.000000
. 000000
. 000000
. 000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
. 000000
.000000
.000000
.000000
.000000
.000000
. 000000
.000000
.000000
.000000
.000000
. 000000
.000000
.000000
13.113590
26.013153
47.539430
154.000000
36.194824 .000000
122.000000
94.113590
110.013200
231.539420
280.000000
214.194820
.000000
.000000
. 000000
. 000000
. 000000
. 000000
. 000000
.000000
. 000000
3.113586
1.013153
. 539429
132.000000
4.194824
.000000
.000000
. 000000
.000000
. 000000

DUAL PRICES
-3. 423645
-3.473758
-3.446210
-. 659462
-. 200445
-2.537119
-3. 473758
.000000
.000000
.000000
. 000000
-453. 000000
-354.886410
-402.986840
-843. 460600
-456.000000
-851. 805200
-369. 534500
-5. 017212
-24.008760
-23.871154
-26. 328674
-7. 102448
-29.716950
-32.746582
-29. 221560
103.000000
85.886413
62.986850
157.460600

106INCOM)	.000000	173.805200
107INCOM)	.000000	61.534484
77INCOMP)	.000000	-.000031
87INCOMP)	.000000	-23.465520
97INCOMP)	.000000	-98.465520
117INCOM)	.000000	6.534485
1ALLOW)	.000000	-5.676354
2ALLOW)	.000000	-5.526242
3ALLOW)	.000000	-5.553790
4ALLOW)	.000000	-6.740538
5ALLOW)	.000000	-7.099554
6ALLOW)	.000000	-6.362881
7ALLOW)	.000000	-5.526242
8ALLOW)	1035.000000	.000000
9ALLOW)	1035.000000	.000000
10ALLOW)	363.381600	.000000
11ALLOW)	390.539100	.000000

NO. ITERATIONS= 44
RANGES IN WHICH THE BASIS IS UNCHANGED:

VARIABLE	CURRENT
	COEF
X011	592.000000
X012	463.000000
X013	537.000000
X014	1104.000000
X015	767.000000
X016	1117.000000
X017	484.000000
Y01	9.099999
X021	591.000000
X022	462.000000
X023	527.000000
X024	1097.000000
X025	763.000000
X026	1104.000000
X027	480.000000
$Y 02$	9.000000
X031	589.000000
X032	460.000000
X033	527.000000
X034	1094.000000
X035	761.000000
X036	1102.000000
X037	480.000000
$Y 03$	9.000000
X041	484.000000
X042	375.000000
X043	451.000000
X044	916.000000
X045	632.000000
X046	927.000000
X047	412.000000
$Y 04$	7.400000
X051	468.000000
X052	361.000000
X053	440.000000
X054	891.000000
X055	610.000000
X056	896.000000
X057	402.000000

OBJ	COEFFICIENT	RANGES	
	ALLOWABLE		ALIOWABLE
	INCREASE		DECREASE
	1.936755		. 287790
	INFINITY		. 268738
	INEINITY		4.256989
	. 204933		3.630223
	INFINITY		129.889200
	INFINITY		. 204651
	INFINITY		. 800476
	INEINITY		5.676354
	INFINITY		2.870819
	INFINITY		2.900848
	. 983459		. 000000
	INEINITY		. 997253
	INFINITY		133.312130
	. 000000		1.827502
	. 800476		369.534500
	INFINITY		5.526242
	INFINITY		1.942444
	INFINITY		1.727295
	INFINITY		. 983459
	. 997254		. 204933
	INFINITY		132.689510
	. 204651		. 995882
	INFINITY		. 876038
	INFINITY		5.553790
	INFINITY		INFINITY
	20.109954		INFINITY
	INFINITY		INFINITY
	INFINITY		INFINITY
	INFINITY		142.433410
	INFINITY		INFINITY
	INFINITY		21.230834
	INFINITY		6.740538
	INFINITY		INFINITY
	24.637910		INFINITY
	INFINITY		INFINITY
	INFINITY		INEINITY
	INFINITY		143.797300
	INFINITY		INFINITY
	INFINITY		26.011170

Y05	7.300000	INFINITY	7.099554
x 061	554.000000	INFINITY	2.306091
X062	431.000000	. 268738	20.109954
X063	501.000000	INFINITY	7.438019
X064	1040.000000	INFINITY	12.090881
X065	713.000000	INFINITY	130.144040
X066	1036.000000	4.303914	. 650345
X067	457.000000	INFINITY	6.785156
Y06	8.900000	INFINITY	6.362881
x071	591.000000	INFINITY	2.870850
x 072	462.000000	INFINITY	2.900848
X 073	527.000000	. 000000	INFINITY
X 074	1097.000000	INFINITY	. 997253
x 075	763.000000	INFINITY	133.312130
x 076	1104.000000	INFINITY	. 000000
x 077	480.000000	INFINITY	INFINITY
Y07	9.000000	INFINITY	5.526242
x081	473.000000	INFINITY	20.000000
x 082	368.000000	INFINITY	13.113590
X083	429.000000	INFINITY	26.013153
X084	891.000000	INFINITY	47.539430
x 085	610.000000	INFINITY	154.000000
X086	888.000000	INFINITY	36.194824
X087	393.000000	INFINITY	INFINITY
X091	575.000000	INFINITY	122.000000
X092	449.000000	INFINITY	94.113590
x 093	513.000000	INFINITY	110.013200
x094	1075.000000	INFINITY	231.539420
X095	736.000000	INFINITY	280.000000
X 096	1066.000000	INFINITY	214.194820
X097	468.000000	INFINITY	INFINITY
x101	350.000000	INFINITY	INFINITY
X102	269.000000	INFINITY	INFINITY
X103	340.000000	INFINITY	INFINITY
X104	686.000000	INFINITY	INFINITY
X105	456.000000	129.889200	456.000000
$\times 106$	678.000000	INFINITY	INFINITY
X107	308.000000	INFINITY	INFINITY
X111	453.000000	. 287790	5.915108
$\times 112$	358.000000	INFINITY	3.113586
X113	404.000000	INFINITY	1.013153
X114	844.000000	INFINITY	. 539429
$\times 115$	588.000000	INFINITY	132.000000
$\times 116$	856.000000	INFINITY	4.194824
$\times 117$	363.000000	INFINITY	INFINITY
Y08	. 000000	. 437120	INFINITY
Y09	. 000000	2.950342	INFINITY
Y10	. 000000	8.260869	2.353065
Y11	. 000000	. 140836	. 403670
ROW	RIGHTHAND SIDE RANGES		
	CURRENT	ALLOWABLE	ALLOWABLE
	RHS	INCREASE	DECREASE
1 TIMEK	2190.000000	622.978820	377.521110
2TIMEK	730.000000	595.145320	83.142272
3TIMEK	1095.000000	595.145320	207.538840
4TIMEK	365.000000	105.165500	210.997830
5TIMEK	365.000000	105.165500	210.997830
6TIMEK	365.000000	595.145320	207.538840
7TIMEK	365.000000	275.501730	83.142272
8TIMEK	1095.000000	INFINITY	1035.000000
9TIMEK	1095.000000	INFINITY	1035.000000
OTIMEK	1095.000000	INFINITY	363.381600
1TIMEK	1095.000000	INFINITY	390.539100

1VOYAGES
2VOYAGES
3VOYAGES
4VOYAGES
5VOYAGES
6VOYAGES
7VOYAGES
41INCOMP
43INCOMP
44INCOMP
46INCOMP
51INCOMP
53INCOMP
54INCOMP
56INCOMP
101INCOM
102INCOM
103INCOM
104INCOM
106INCOM
107INCOM
77INCOMP
87INCOMP
97INCOMP
117INCOM
1ALLOW
2ALIOW
3ALIOW
4ALLOW
5ALLOW
6ALLOW
7ALLOW
8ALLOW
9ALLOW
10ALLOW
11ALLOW
26.071000
26.071000
17.381000
24.333000
12.167000
15.870000
10.420000
.000000
.000000
. 000000
. 000000
.000000
. 000000
.000000
.000000
. 000000
.000000
.000000
.000000
.000000
. 000000
.000000
.000000
.000000
.000000
120.000000
40.000000
60.000000
20.000000
20.000000
20.000000
20.000000
60.000000
60.000000
60.000000
60.000000

9.298550	15.344310
6.917962	3.448048
2.328915	7.717135
4.960856	8.186318
6.583000	12.167000
2.858662	8.197595
2.614537	10.420000
5.355276	.000000
6.746828	.000000
2.859050	.000000
3.314231	.000000
5.355276	.000000
6.746828	.000000
2.859050	.000000
3.287611	.000000
8.651942	.000000
3.448048	.000000
7.717135	.000000
4.611442	.000000
4.480661	.000000
10.420000	.000000
10.420000	.000000
10.420000	.000000
10.420000	.000000
10.420000	.000000
377.521110	120.000000
83.142272	40.000000
207.538840	60.000000
210.997830	20.000000
210.997830	20.000000
207.538840	20.000000
83.142272	20.000000
1035.000000	INFINITY
1035.000000	INFINITY
363.381600	INFINITY
390.539100	INFINITY

Appendix 12

Number of Ships Allocated

Appendix 13

Rounding of Number of Ships Allocated

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
1																									
2	ROUNDING OF THE NUMBER OF SHIPS, Nkr AND RECALCULATION OF FREQUENCIES																								
3																									
4																									
5	SHP'S TYPE		ID. NB ${ }^{\text {P }}$	$\mathrm{r}=1$			$r=2$			$\mathrm{P}=3$			$r=4$			$\mathrm{r}=5$			$r=6$			$\mathrm{r}=7$			TOT
6						input	SHIPS																		
7			(k)	Xkr	t kr	Nkr	Xkr	t kr	Nkr	Xkr	tkr	Nkr	Xkr	t kr	Nkr	Xkr	t kr	Nkr	Xkr	tkr	Nkr	Xkr	tkr	Nkr	
8	OWNED																								
9	TYPE ALPAD		1	8.49	40.6	1	0	31.5	0	0	37.9	0	22.7	76.1	5	0	52.9	0	0	77.4	0	0	33.2	0	6
10	TYPE CIARM		2	0	38.9	0	0	30	0	9.66	35.7	1	0	72.7	0	0	50	0	0	72.6	0	10.8	31.8	1	2
11	TYPE CISAM		3	0	38.9	0	0	30	0	0	35.7	0	0	72.7	0	0	50	0	14.3	72.6	3	0	31.8	0	3
12	TYPE CIMAN		4	0	39.4	0	11.3	30.5	1	0	36.4	0	0	73.8	0	0	50.9	0	0	74.1	0	0	32.2	0	1
13	TYPERIMAG		5	0	39.4	0	11.3	30.5	1	0	36.4	0	0	73.8	0	0	50.9	0	0	74.1	0	0	32.2	0	1
14	TYPE CIBUN		6	0	38.9	0	0	30	0	0	35.7	0	0	72.7	0	0	50	0	4.75	72.6	1	0	31.8	0	1
15	CHARTERED																								
16	TYPE "GOLFO		7	0	38.9	0	0	30	0	9.66	35.7	1	0	72.7	0	0	50	0	0	72.6	0	0	31.8	0	1
17	TYPE "MEGHA		8	0	38.9	0	0	30	0	0	35.7	0	0	72.7	0	0	50	0	0	72.6	0	0	31.8	0	0
18	TYPE MONSU		9	0	38.9	0	0	30	0	0	35.7	0	0	72.7	0	0	50	0	0	72.6	0	0	31.8	0	0
19	TYPE MEETES		10	0	38.9	0	0	30	0	0	39.6	0	0	78.8	0	12.5	55.2	2	0	81.1	0	0	34.2	0	2
20	TYPE "ANGEL		11	16.4	42	2	0	32.6	0	0	39.6	0	0	78.8	0	0	55.2	0	0	81.1	0	0	34.2	0	2
21	ACTUAL VOY			24.9	$\mathrm{Nr}=$	3	22.6	$\mathrm{Nr}=$	2	19.3	$\mathrm{Nr}=$	2	22.7	$\mathrm{Nr}=$	5	12.5	$\mathrm{Nr}=$	2	19	$\mathrm{Nr}=$	4	10.8	$\mathrm{Nr}=$	1	
22				26.1			26.1			17.4			24.3			12.2			15.9			10.4			
23	PREDD.VOY DIFF			-1.2			-3.4			1.94			-1.7			0.33			3.13			0.41			
24	-																								
25		ACTUAL FRE		14.7			16.1			18.9			16.1			29.2			19.2			33.7			
26		RECD.FPEQ		14			14			21			15			30			23			35			
27			DIFF	0.65			2.13			-2.1			1.11			-0.8			-3.8			-1.3			

Appendix 14

Operating Cost Recalculation

UNIVERSITY OF MICHIGAN

[^0]: -Type, quantity and capacity of the cargo handling equipment
 -Hold and hatch forms and dimensions
 -Refrigerated capacity and equipment
 -Container capacity
 -Electric supply to refrigerated containers

