SCHOENHERR FRICTION COEFFICIENTS
 ［Smooth Surface Turbulent Flow．］

by
要郎。8

> The University of Michigan Naval Tank (inc. "Modern Methods for Computing the Surface Friction of Ships" by K. C. Barnaby

SCHOENHERR FRICTION COEFFICIENTS

[SMOOTH SURFACE TURBULENT FLOW] UNIVERSITY OF MICHIGAN NAVAL_ TANK

SCHOENHERR FRICTION COEFFICIENTS
 SMOOTH SURFACE - TURBULENT FLOW UNIVERSITY OF MICHIGAN NAVAL TANK $\frac{0,242}{-1 C_{f}}=\log _{10}\left(\operatorname{Re} \times C_{f}\right)$

Re 1-5.5 $\times 10^{6}$	$R 2$											
$10^{5} \times$	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10	
1.0	7.179	7.163	7.146	7.130	7.114	7.093	7.083	7.067	7.052	7.037	7.022	
1.1	7.022	7.008	6.993	5.979	6.965	6.951	6.937	6.923	6.910	6.896	6.883	
12	6883	6.870	6.857	6.844	6.831	6.819	6.806	6.794	6.782	6.770	6.758	
1.3	6.758	6716	6.735	6.723	6.712	6.700	6.689	6.678	6.667	6.656	6.645	
1.4	6.645	6.635	66.24	6613	$6.6,03$	6.593	6583	6.572	6.562	6.552	6.543	

$\left\{\begin{array}{|l|l}\hline 1.5 & 6.54 \\ 1.6 & 6 . \\ 1.7 & 6.3 \\ 1.8 & 6 . \\ 8.9 & 6 .\end{array}\right.$

SCHOENHERR FRICTION COEFFICIENTS
 SMOOTH SURFACE - TURBULENT FLOW UNIVERSITY OF MICHIGAN NAVAL TANK

Re 5.5-10 $\times 10^{5}$

$\begin{aligned} & R e \\ & 10^{2} x \end{aligned}$	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10
5.5	4.961	4.959	4.957	4.955	4.953	4.952	4.950	4.948	4.946	4.944	4943
5.6	4.943	4.941	4.939	4.937	4.936	4.934	4.932	4.930	4.929	4.927	4.925
5.7	4.925	4.923	4.922	4.920	4.918	4.916	4.915	4.913	4.911	4.910	4.908
5.8	4.908	4.906	4.904	4.903	4.901	4.900	4.898	4.896	4.894	4.893	4.891
5.9	4.891	4.889	4.888	4.886	4.884	4.883	4.881	4.880	4.878	4.876	4.875
6.0	4.875	4.873	4.871	4.870	4.868	4.867	4.865	4.863	4.862	4.860	4.859
6.1	4.859	4.857	4.855	4.854	4.852	4.851	4.849	4848	4.846	4.844	4.843
6.2	4.843	4.841	4.840	4.838	4.836	4.835	4833	4.832	4.830	4.829	4.827
6.3	4827	4.826	4.824	4.823	4.821	4820	4.818	4.817	4.815	4.814	4.812
64	4812	4.811	4.809	4.808	4.806	4.805	4803	4.802	4.800	4.799	4.797
6.5	4.797	4796	4794	4.793	4792	4.790	4.789	4.787	4.786	4.784	4.783
6.6	4783	4.781	4.780	4.778	4.777	4.776	4.774	4.773	4.771	4.770	4.768
6.7	4.768	4767	4766	4.764	4763	4.762	4.760	4.759	4.757	4.756	4.754
6.8	4.754	4.753	4752	4750	4.749	4.748	4.746	4.745	4.744	4.742	4.741
6.9	$4.74!$	4739	4.738	4737	4.735	4734	4.733	4.731	4.730	4.729	4.727
7.0	4.727	4.726	4725	4723	4.722	4721	4719	4.718	4.717	4.715	4.714
7.1	4.7	4713	4711	4710	4.709	4707	4706	4705	4704	4.702	4701
7.2	4701	4.700	4.698	4.697	4.696	4694	4693	4692	4691	4.690	4688
7.3	4.688	4.687	4.686	4.684	4.683	4.682	4.681	4.679	4.678	4.677	4676
7.4	4676	4.674	4.673	4672	4.671	4670	4.668	4.667	4666	4.665	4663.
7.5	4663	4.662	4.661	4.660	4658	4.657	4.656	4655	4.654	4.652	4651
7.6	4.651	4.650	4649	4.648	4.646	4.645	4.644	4.643	4.642	4.640	4.639
7.7	4.639	463	4.637	4.636	4.	4.633	4.6	4.	4.630	4.629	4.628
7.8	4.628	4.626	4.625	4.624	4.623	4.622	4.621	4.620	4.618	4.617	4.616
79	4.616	4.615	4614	4.613	4.612	4.610	4.609	4.608	4.607	4.606	4.615
8.0	4.605	4.604	4.602	4.601	4.600	4599	4.598	4.597	4596	4.595	$45<4$
8.1	4594	4.592	4591	4.590	4.589	4588	4.587	4.586	4.585	4.584	4.582
8.2	4	4.581	4.580	4.579	4.578	4.577	4.576	4.575	4.574	4.573	4.572
8.3	4.57	4570	4569	4.568	4.567	4.566	4565	4564	4563	4562	4.561
8.4	4.561	4.560	4559	4558	4.557	4.556	4.554	4.553	4.552	4.551	4550
8.5	4.550	4549	4548	4.547	4.546	4545	4.544	4.543	4.542	4.541	4.540
8.6	4.540	4.539	4.538	4.537	4.536	4.535	4.535	4.533	4.532	4.531	4.530
8.7	4.530	4.529	4.528	4.527	4.526	4.525	4.524	4.523	4.522	4.521	4.520
8.8	4.520	4.519	4.518	4.517	4.516	4.515	4.514	4.513	4.512	4.511	4.510
8.9	4.510	4.509	4.508	4.507	4.506	4.505	4.504	4.503	4.502	4501	4.500
9.0	4.500	4.499	4.498	4.497	4.496	4.495	4.494	4.493	4.492	4.491	4.490
9.1	4.490	4.489	4.488	4488	4487	4.486	4485	4.484	4.483	4.482	4.481
9.2	4.481	4.430	4.479	4.478	4.477	4476	4.475	4474	4.473	4.472	4472
9.3	4472	4471	4470	4469	4.468	4467	4466	4.465	4.464	4463	4462
9.4	4.462	4.461	4460	4.460	4.459	4458	4.457	4.456	4.455	4454	4453
9.5	4.453	4.452	4.452	4.451	4.450	4.449	4.448	4.447	4.446	4445	4444
9.6	4.444	4.443	4442	4442	4.441	4440	4.439	4.438	4.437	4436	4.435
9.7	4435	4434	4434	4.433	4.432	4431	4430	4.429	4.428	4427	i 4.27
9.8	4427	4.426	4425	4.424	4423	4422	4421	4.420	4.420	4419	4418
9.9	4.418	4.417	4416	4.415	4414	4414	4413	4.412	4411	4.410	$440{ }^{\circ}$

Multiply TAbunite :Mance $=\because 10^{-3}$

SCHCENHERR FRICTION COEFFICIENTS

SMOOTH SURFACE - TURBULENT FLOW
UNIVERSITY OF MICHIGAN NAVAL TANK
$\operatorname{Re} \times 10^{-5.5}$

$\begin{aligned} & R e \\ & 10^{6} x \end{aligned}$	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10
1.0	4.409	4.401	4.393	4.384	4.376	4.368	4.360	4.352	4.345	4.337	4.330
1.1	4.330	4.322	4.315	4.307	4.300	4.293	+ 288	4.279	4.272	4.265	4.258
1.2	4.258	4.252	4.245	4.238	4.232	4.226	4.219	4.213	4.207	4.200	4.194
1.3	4.194	4.188	4.182	4.176	4.170	4.165	4.159	4.153	4.148	4.142	4.136
1.4	4.136	4.131	4.125	4.120	4.115	4.109	4.104	4.099	4.094	4.088	4.083
1.5	4.083	4.078	4.073	4.068	4.063	4.058	4.054	4.049	4044	4.039	4.035
1.6	4.035	4.030	4.025	4.021	4.016	4.012	4.007	4.003	3.998	3.994	3.990
1.7	3.990	3.985	3.981	3.977	3.972	3.968	3.964	3.960	3.956	3.952	3.948
1.8	3.948	3.944	3.940	3.936	3.932	3.928	3.924	3.920	3.916	3.912	3.909
1.9	3.909	3.905	3.901	3.898	3.894	3.890	3.886	3.883	3.879	3.876	3.872
2.0	3.872	3.869	3.865	3.862	3.858	3.855	3.851	3.848	3.844	3.841	3.838
2.1	3.838	3.834	3.831	3.828	3.825	3.822	3.818	3.815	3.812	3.809	3.806
2.2	3.806	3.802	3.799	3.796	3.793	3.790	3.787	3.784	3.781	3.778	3.775
2.3	3.775	3.772	3.769	3.766	3.763	3.760	3.758	3.755	3.752	3.749	3.746
2.4	3.746	3.743	3.741	3.738	3.735	3.732	3.730	3.727	3.724	3.72?	3.719
2.5	3.719	3.716	3.714	3.711	3.708	3.706	3.703	3.700	3.698	3.695	3.693
2.6	3.693	3.690	3.688	3.685	3.683	3.680	3.678	3.675	3.673	3.670	3.668
2.7	3.668	3.665	3.663	3.661	3.658	3.656	3.654	3.651	3.649	3.646	3.644
2.8	3.644	3.642	3.640	3.637	3.635	3.633	3.630	3.628	3.626	3.624	3.622
2.9	3.622	3.619	3.617	3.615	3.613	3.611	3.608	3.606	3.604	3.602	3.600
3.0	3.600	3.598	3.596	3.594	3.592	3.589	3.587	3.585	3.583	3.581	3.579
3.1	3.579	3.577	3.575	3.573	3.571	3.569	3.567	3.565	3.563	3.561	3.559
3.2	3.559	3.557	3.555	3.553	3.551	3.549	3.547	3.546	3.544	3.542	3.540
3.3	3.540	3.538	3.536	3.534	3.532	3.530	3.529	3.527	3.525	3.523	3.521
3.4	3.52 d	3.520	3.518	3.516	3.514	3.512	3.510	3.509	3.507	3.505	3.503
3.5	3.503	3.502	3.500	3.498	3.4	3.495	3.493	3.491	3.490	3.488	3.486
3.6	3.486	3.484	3.483	3.481	3.479	3.478	3.476	3.474	3.473	3.471	3.470
3.7	3.470	3.468	3.466	3.465	3.463	3.461	3.460	3.458	3.457	3.455	3.453
3.8	3.453	3.452	3.450	3.449	3.447	3.446	3.444	3.442	3.44	3.439	3.438
3.9	3.438	3.436	3.435	3.433	3.432	3.430	3.429	3.427	3.426	3.424	3.423
4.0	3.423	3.421	3.	3.418	3.417	3.415	3.414	3.412	3.411	3.410	408
4.1	3.408	3.407	3.405	3.404	3.402	3.401	3.400	3.398	3.397	3.395	3.394
4.2	3.394	3.393	3.391	3.390	3.388	3.387	3.386	3.384	3.383	3.382	3.380
4.3	3.380	3.379	3.377	3.376	3.375	3.373	3.372	3.371	3.369	3.368	3.367
4.4	3.367	3.365	3.364	3.363	3.362	3.360	3.359	3.358	3.356	3.355	3.354
4.5	3.354	3.352	3351	3.350	3.349	3.34 .7	3.346	3.345	3.344	42	3.341
4.6	3.341	3.34	3.339	3.337	3.3	3.335	3.334	3.333	3.331	3.330	3.329
4.7	3.329	3.328	3.326	3.325	3.324	3.323	3.322	3.320	3.319	3.318	3.317
4.8	3.317	3.316	3.314	3.313	3.312	3.311	3.310	3.309	3.308	3.306	3.305
49	3.305	3.304	3.303	3.302	3.301	3.299	3.298	3.297	3.296	3.295	3.294
5.0	3.294	3.293	3.292	3.290	3.289	3.288	3.287	3.286	3.285	3.284	3.283
5.1	3.283	3.282	3.281	3.279	3.278	3.277	3.276	3.275	3.274	3.273	72
5.2	3.272	3.271	3.270	3.269	3.268	3.266	3.265	3.264	3.263	3.262	3.261
5.3	3.261	3.260	3.259	3.258	3.257	3.256	3.255	3.254	3.253	3.252	3.251
5.4	3.251	3.250	3.249	3.248	3.247	3.246	3.245	3.244	3.243	3.242	3.241

SCHOENHERR FRICTION COEFFICIENTS SMOOTH SURFACE - TURBULENT FLOW UNIVERSITY OF MICHIGAN NAVAL TANK

$\operatorname{Re} 5.5-10$
$\times 10^{6}$

$\begin{aligned} & R e \\ & 10^{6} x \end{aligned}$	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10
5.5	3.241	3.240	3.239	3.238	3.237	3.236	3.235	3.234	3.233	3,232	3.231
5.6	3.231	3.230	3.229	3.228	5.227	3.226	3.225	3.224	3.223	3.222	3.221
5.7	3.221	3.220	3.219	3.2 .18	3.217	3.216	3.215	3.214	3.214	3.213	3.212
5.8	3.212	3.211	3.210	3.209	3.208.	3.207	3.206	3.206	3.204	3.203	3.202
5.9	3.202	3.202	3.201	3.200	3.199	3.198	3.197	3.196	3.195	3.194	3.193
6.0	3.193	3.192	3.192	3.191	3.190	3.189	3.188	3.187	3.18 h	3.185	3.184
0.1	3.184	3.184	3.183	3.182	3.181	3.180	3.179	3.178	3.178	3.177	3.176
6.2	3.176	3.175	3.174	3.173	3.172	3.172	3.171	3.170	3.169	3.168	3.167
6.3	3.167	3.166	3.166	3.165	3.164	3.163	3.162	3.161	3.161	3.160	3.159
6.4	3.159	3.158	3.157	3.156	3.156	3.155	3.154	3.153	3.152	3.152	3.151
6.5	3.151	3.150	3.149	3.148	3.147	3.147	3.146	3.145	3.144	3.14 .3	3.143
6.6	3.143	3.142	3.141	3.140	3.139	3.139	3.138	3.137	3.136	31.35	3.135
6.7	3.135	3.134	3.133	3.132	3.132	3.131	3.130	3.129	$3.1<8$	3.128	3.127
6.8	3.127	3.126	3.125	3.125	3.124	3.123	3.122	3.122	3.121	3.120	3.119
6.9	3.119	3.119	3.118	3.117	3.116	3.116	3.115	3.114	3.113	3.113	3.112
7.0	3.112	3.111	3.110	3.110	3.109	3.108	3.107	3.107	3.106	3.105	3.104
7.1	3.104	3.104	3.103	3.102	3.102	3.101	3.100	3.099	3.099	3.098	3.097
7.2	3.097	3.096	3.096	3.095	3.094	3.094	3.093	3.092	3.092	3.091	3.090
7.3	3.090	3.090	3.089	3.088	3.087	3.087	3.086	3.085	3085	3.084	3083
7.4	3.083	3.083	3.082	3.081	3.080	3.080	3.079	3.078	3.078	3.077	3.076
7.6	3.076	3.076	3.075	3.074	3.074	3.073	3.072	3.072	3.071	3.070	3.070
7.6	3.070	3.069	3.068	3.068	3.067	3.066	3.066	3.065	3.064	3064	3.063
7.7	3.063	3.062	3.062	3061	3.060	3.060	3.059	3.058	3.058	3.057	3.056
7.8	3.056	3.056	3.055	3.054	3.054	3.053	3.053	3.052	3.051	3.051	3.051
7.9	3.050	3.049	3.049	3.048	3.047	3.047	3.046	3.046	3.045	3.044	3.044
8.0	3.044	3.043	3.042	3.042	3.041	3041	3.040	3.039	3.039	3.038	3.037
8.1	3.037	3.037	3.036	3.036	3.035	3.034	3.034	3.033	3.032	3.032	3.031
8.2	3.031	3.031	3.030	3.029	3.029	3.028	3.028	3.027	3.026	3.026	3.025
8.3	3.025	3.025	3.024	3.023	3.023	3.022	3.022	3.021	3.020	3.020	3019
8.4	3.019	3.019	3.018	3.018	3.017	3.016	3.016	3.015	3.014	3.014	3.013
8.5	3.013	3.013	3.012	3.012	3.011	3.010	3.010	3.009	3.009	3.008	3.008
8.6	3.008	3.007	3.006	3.006	3.005	3.005	3.004	3.004	3.003	3.002	3002
8.7	3.002	3.001	3.001	3000	3.000	2.999	2.998	2.998	2.997	2.997	2.976
8.8	2.996	2.996	2.995	2.994	2.994	2.993	2.993	2.992	2.992	2.991	2.991
8.9	2.991	2.990	2.990	2.989	2.988	2.988	2.987	2.987	2.986	2.986	2985
9.0	2.985	2.985	2.984	2.984	2.983	2.982	2.982	2.981	2.981	2.980	2.980
9.1	2.980	2.979	2.979	2.973	2.978	2.977	2.977	2.976	2.976	2.975	2.974
9.7	2.974	2.974	2.973	2.973	2.972	2.972	2.971	2.971	2.970	2.970	2.969
9.3	2.969	2.969	2.968	2.968	2.967	2.967	2.966	2.966	2.965	2.964	2.964
9.4	2.964	2.963	2.963	2.962	2.962	2.961	2.961	2.960	2.960	2959	2.959
9.6	2.959	2.958	2.958	2.957	2.957	2.956	2.956	2.955	2.955	2.954	2.954
2.6	2.954	2.953	2.953	2.952	2.952	2.951	2.951	2.950°	2.950	2.949	2.949
9.7	2.949	2.948	2.948	2.947	2.947	2.946	2.946	2.945	2.945	2.744	2.944
9.8	2.944	2.943	2.943	2.942	2.942	2.941	2.941	2940	2940	2.340	2.939
9.9	2.939	$2.93{ }^{\circ}$	2.938	2.938	2.937	2.937	2.936	2.936	2.935	2.935	2.934

Multiply Tabulated Values by 10^{-3}

SCHOENHERR FRICTION COEFFICIENTS SMOOTH SURFACE - TURBULENT FLOW UNIVERSITY OF MICHIGAN NAVAL TANK

Re 1-5.5

$\times 10^{7}$

$10^{7} \times$	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10
1.0	2.934	2.930	2.925	2.920	2.916	2.911	2.907	2902	2.898	2.893	2.88
1.1	2.889	2.885	2.881	2.877	2.873	2.868	2864	2.861	2857	2.853	2849
1.2	2.849	2.845	2.841	2.838	2.834	2.830	2827	2.823	2820	2816	2813
13	2.813	2809	2806	2802	2.799	2.796	2.792	2.789	2.786	2.783	2.780
14	2.780	2776	2.773	2.770	2.767	2.764	2.761	2.758	2.755	2.752	2.749
1.5	2.749	2.746	2.744	2.741	2.738	2.735	2.732	2.730	2.727	2.724	2.721
1.6	2.721	2.7	2.716	2.713	2.711	2.708	2.706	2.703	2.701	2.698	2696
1.7	2.696	2.693	2.691	2.688	2.686	2.683	2.681	2.678	2.676	2.674	2.672
18	2.672	2.669	2.667	2.665	2.662	2.660	2.658	2.656	2.653	2.651	2.649
1.9	2.649	2647	2.645°	2.642	2.640	2.638	2.636	2.634	2.632	2.630	2.628
2.0	2.628	2.626	2624	2.622	2.620	2618	2.616	2.614	2.612	2-6.10	2.608
2.1	2.608	2.606	2.604	2.602	2.600	2.599	2.597	2.595	2.593	2.591	2589
2.3	2.589	2.588	2.586	2.504	2.582	2580	2.579	2.577	2.575	2.573	2.572
2.3	2.572	2.570	2.568	2.567	2.565	2.563	2.562	2,560	2.558	2.557	2.555
2.4	2.555	2.553	2.552	2.550	2.549	2.547	2545	2.544	2.542	2541	2.539
2.5	2.539	2.538	2.536	2.534	2.533	2531	2530	2.528	527	2.525	2
2.6	2.524	2.52	2.521	2.519	2.518	2.516	2.515	2.514	2512	2.511	2.509
2.7	2.509	2.508	2.507	2.505	2.504	2.502	2.501	2.500	2.498	2.497	2.496
2.8	2.496	2.494	2.493	2497	2.490	2.489	2488	2486	2485	2.484	2.482
2.9	2.482	2.481	2480	2478	2.477	2.476	2.475	2.473	2472	2.471	2 A 70
3.0	2.470	2.468	2.467	2.466	2.465	2.463	2.462	2.461	2460	2.459	245
3.	2.457	2.456	2.455	2.454	2.453	2.451	2.450	2.449	2448	2.447	2446
3.2	2.446	2.444	2.443	2.442	2.441	2.440	2.439	2.438	2.436	2435	2934
33	2.434	2.433	2.432	2.431	2430	2.429	2.428	2427	2.426	2.424	2.423
3.4	2.423	2.422	2.421	2.420	2.419	2.418	2.417	2.416	2.415	2.414	2.413
3.5	2.413	2.412	2.411	2.410	2.409	2.408	2.407	2.406	2.405	2.404	2.403
3.6	. 2.403	2.402	2.401	2.400	2.399	2.398	2.397	2.396	2.395	2.394	2.393
3.7	2.393	2.392	2.391	2.390	2.389	2.388	2.387	2.386	2.385	2.384	2.383
3.8	2.383	2.382	2.382	2.381	2.380	2.379	2.378	2.377	2.376	2.375	2.374
3.9	2.374	2.373	2.372	2.372	2.371	2.370	2.369	2.368	2.367	2.366	2.365
4.0	2.365	2364	2.364	2.363	2.362	2.361	2.360	2.359	2358	2.358	2.357
4.1	2.357	2.356	2.355	2.354	2.353	2.352	2.352	2.351	2.350	2.349	2.348
4.2	2348	2.347	2.347	2.346	2.345	2.344	2.343	2.342	2.342	2.341	2340
4.3	2.340	2.339	2.338	2.338	2.337	2.336	2.335	2.334	2.334	2.333	2.3 .32
4.4	2.332	2.331	2.330	2.330	2.329	2.328	2.327	2.327	2.326	2.325	2.324
4.5	2.324	2.324	2.323	2.322	2.321	2.321	2.320	2.319	2.318	2318	2.317
4.6	2.317	2.316	2.315	2.315	2.314	2.313	2.312	$23 / 2$	2.311	2.310	2.310
4.7	2.310	2.309	2.308	2.307	2307	2.306	2.305	2.304	2.304	2.303	2.302
4.8	2,302	2.302	2.301	2.300	2.300	2299	2.298	2.298	2.297	2.296	2295
4.9	2.295	2.295	2.294	2293	2.293	2.292	2.291	2.291	2.290	2289	2289
5.0	2289	2.288	2.287	2.287	2.286	2.285	2.285	2.284	2.283	2283	2282
5.1	2282	2.281	2.281	2280	2279	2.279	2.278	2277	2.277	2.276	2276
5.2	2276	2275	2274	2.274	2.273	2.272	2.272	2271	2.270	2.270	2.269
5.3	2269	2.268	2.268	2267	2267	2.266	2.265	2.265	2264	2264	2.263
5.4	2.363	2.262	2.262	2.261	2.261	2260	2259	2259	2.258	2253	2257

SMOOTH SURFACE - TURBULENT FLOW UNIVERSITY OF MICHIGAN NAVAL TANK Re 5.5-10

Re $10^{\circ} \mathrm{x}$	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10
5.5	2.257	2.256	2.256	2.255	2.255	2.254	2.253	2.253	2.252	2.252	2.251
5.6	2.251	2.250	2.25	2.249	2.249	2.248	2.2<3	2.247	2.246	2.246	2.245
5.7	2.245	2.245	2.24	2.244	2. 243	2.242	$2 \cdot 42$	2.241	2.241	2.240	2.240
5.8	2.240	2.239	2.238	2.238	2.237	2.237	2.236	2.236	2.235	2.234	2.234
5.9	2.234	2.233	2.233	2.232	2.232	2.231	2.231	2.230	2.230	2.229	2.229
6.0	2.229	2.22	2.228	2.227	2.226	2.226	2.225	2.225	2.224	2.224	2.223
6.1	2.	2.	2.2	2.222	2.		2.220	220	2.	2.219	2.218
6.2	2.	2.218	21	2.216	2.216			2.	2.214	2.213	2.213
6.3	2.	2. 212	2.212	2.211	2.211	2.210	210	2.209	2.209	08	O8
6.4	2. 208	2.207	2.207	2.2	2.206	2.205	2.205	2.204	2.204	2.203	2.203
6.5	2.	2.202	2.202	2.202	2.201	2.201	2.200	0	2.199	9	98
6.6	2.	2.198	2.1	2.19	2.	96	2.195	2.195	2.194	2.194	93
6.7	2.193	2.193	2.192	2.192	2.192	2.191	2.190	2.190	2.190	2.189	2.189
6.8	2. 189	2.188	2.188	2.187	2.187	2.186	2.186	2.185	2.185	2.184	2.184
6.9	2.184	2.184	2.183	2.183	2.182	2.182	2.181	2.181	2.180	2.180	2.180
7.0	2.180	2.179	2.179	2.178	2.178	2.177	2.177	2.176	2.176	2.176	2.175
7.1	2.17	2.1	2.17	2	2.	2.	2.172		2.172	2.171	2.171
7.2	2.	2.170		2.170	2.16	2.1	2.168	2.	67	2.167	. 66
7.3	2.166	2.166	2.166	2.165	2.165	2.164	2.164	2.164	2.163	2.163	2.162
7.4	2.162	2.162	2.161	2.161	2.161	2.160	2.160	2.159	2.159	2.159	2.158
7.5	2.1	2.1	2.1			2.1				2.154	. 54
7.6	2.15	2.15	2.153	2.153	2.152	2.1		2.151	2.151	2.150	2.150
7.7	2.150	2.15	2.1	2.149	2.148	2.148	2.148	2.147	2.14	2.146	2.146
7.8	2.	2.	2.145	2.145	2.14	2.144	2.144	2.143	2.143	2.142	2.142
7.9	2.142	2.142	2.141	2.141	2.141	2.140	2.140	2.140	2.139	2.139	2.138
8.0	2.	2.138	2.138	2.137	2.13	2.136	36	36	2.135	2.135	. 35
8	2.1	2.1	'2.	2.13	2.133	2.133	2.132	2.132	2.1	2.	31
8.2	2.	2.	2.	2.130	2.	2.129	2.129	2.128	2.128	2.128	27
8.3	2.	. 12	2.12	2.126	2.	2.12	2.125	2.125	2.124	2.124	2.124
8.4	2.124	2.123	2.123	2.122	2.122	2.122	2.122	2.121	2.121	2.120	2.120
8.5	2.		2.119		2.119	2.118	2.118	2.118	2.117	2.117	2.116
8.6	2.116	2.116	2.116	15	2.115	2.115	2.114	2.114	2.114	2.113	2.113
8.7	2.113	2.113	2.112	2.112	2.112	2.111	2.111	2.111	2.110	2.110	2.110
8.8	2.	2.109	2.109	2.109	2.108	2.108	2.108	2.	2.107	2.107	2.106
8.9	2.106	2.106	2.106	2.105	2.105	2.105	2.104	2.104	2.104	2.103	2. 103
9.0			2.	2.102	2.102	2.101	101	101	2.100	2.100	. 100
9	2.	2.	2.09	2.099	2.098	2.098	2.098	2.097	2.097	2.097	2.096
9.2	2.096	2.0	2.096	2.096	2.095	2.095	2.094	2.094	2.094	2.094	2.093
9.3	2.093	2.093	2.093	2.052	2.092	2.092	2.091	2.091	2.091	2.090	2.090
9.4	2.090	2.090	2.089	2.089	2.089	2.088	2.088	2.088	2.088	2.087	2.087
9.5	2.087	2.08 .7	2.086	2.086	2.086	2.085	2.085	2.085	2.084	2.084	2.084
9.6	2.084	2.084	2.083	2.083	2.08	2.082	2.082	2.08	2.08	2.081	2.081
9.7	2.081	2.081	2.080	2.080	2.080	2.079	2.079	2.079	2.078	2.078	2.078
9.8	2.078	2.078	2.077	2.077	2.077	2.076	2.076	2.076	2.076	2.075	2.075
9.9	2.075	2.075	2.074	2.074	2.074	2.073	2.073	2.073	2.072	2.0	2.

SCHOENHERR FRICTION COEFFICIENTS
 SMOOTH SURFACE - TURBULENT FLOW
 UNIVERSITY OF MICHIGAN NAVAL TANK

Re 1-5.5
$\times 10^{8}$

Re 108 108	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10
1.0	2.07	2.069	2.066	2.063	2,061	2.058	2.055	2.052	2.0	2.047	5
1.1	2.045	2.042	2.039	2.637	, 34	2.	2.0	27	2.025	22	2
1.2	2.020	2.018	2.015	2.013	2.	2.008	2.006	2.004	2.002	2.000	1.998
1.3	1.998	1.995	1.993	1.991	1.989	1.987	1.985	1.983	1.981	1.979	977
1.4	1.917	1.975	1.973	1.972	1.970	1.968	1.966	1.964	1.962	1.960	1.959
1.5	1.959	1.957	1.955	1.953	1.952	1.950	1.948	1.946	1.945	1.943	971
1.6	1.941	1.940	1.938	1.936	1.935	1.933	1.932	1.930	1.928	1.927	15
1.7	1.925	1.924	1.922	1.921	1.919	1.918	1.916	1.915	1.913	1.912	1.911
1.8	1.911	1.909	1.908	1.906	1.905	1.904	1.902	1.901	1.899	1.898	1.897
1.9	1.897	1.895	1.894	1.893	1.891	1.890	1.889	1.887	1.886	1.885	1.884
2.0	1.884	1.882	1.881	1.880	1.878	1.877	1.876	1.875	1.874	72	871
2.1	1.871	1.8	1.869	1.868	1.866	1.865	1.864	63	1.862	61	60
2.2	1.860	1.858	1.857	1.856	1.855	1.854	1.853	1.852	1.851	. 850	1.848
2.3	1.848	1.847	1.846	1.84	1.844	1.843	1.842		1.840	89	38
2.4	1.83	1.837	1.836	1.835	1.834	1.833	1.852	1.831	1.830	1.829	1.828
2.5	1.828	1.8	26	1.8	1.8	1.823	2	21	20	20	1.819
2.6	1.819	1.8	1.817	1.816	1.8	1.814	1.813	1.812	11	1.810	10
2.7	1.810	1.809	1.808	1.807	1.806	1.805	1.804	1.8	1.803	2	81
2.8	1.801	1.800	1.799	1.798	1.79	1.797	1.796	1.795	1.794	1.793	2
2.9	1.712	1.742	1.791	1.790	1.789	1.788	1.788	1.787	1.786	1.785	784
3.0	1.784	1.7	1.783	1.782	1.7	1.781	1.780		78	1.778	77
3.	1.777	1.71	1.775	1.774	1.774	1.773	1.772	1.772	1.771	1.770	69
3.2	1.769	1.769	1.768	1.967	1.766	1.766	1.765	1.764	1.76	1.76	1.762
3.3	1.762		1.761	1.7	1.7	1.759	1.75	1.757	1.757	56	1.75 .5
3.4	1.755	1.755	1.754	1.753	1.753	1.752	1.751	1.751	1.750	1.744	1.749
3.5	1.749	1.	1.748	1.747	1.746	746	1.745	. 744	74	43	1.742
3.6	1.742	1.7	1.74	1.7	1.74	1.739	1.739	1.738	1.737	1.737	1.736
3.7	1.736	1.736	1.9	1.734	1.734	1.733	733	1.732	1.731	1.731	1.730
3.8	1.730	1.730	1.729	1.	1.728	1.727	1.727	1.726	1.72	1.725	1.724
3.9	1.724	1.724	1.723	1.722	1.722	1.721	1.721	72	1.720	1.719	1.719
4.0	1.719	1.718	1.718		1.7	1.716	1.715		14	1.714	713
4.1	1.713	1.713		1.712	1.7	1.71	1.710	1.769	1.709	1.708	1.798
4.2	1.708	1.7	1.70	1.70	1.708	1.705	1.705	1.704	1.704	1.70	1.703
4.3	1.703		1.7	1.70			1.			1.6	¢ 8
4.4	1.698	1.6	1.697	1.696	1.696	1.695	1.695	1.694	1.694	1.693	1.693
4.5			1.692	1.6	1.691	1.690	11.690	1.589	1.689	1.688	1.688
4.6	1.688	1.	1	1.687	1.686	1.686	1.685	1.685	1.684	1.684	1.683
4.7	1.68	1.683	1.682	1.6	1.682	1.681	1.681	1.680	1.680	1.679	1.679
4.8	1.679	1.678	1.678	1.677	1.677	:1,677	1.676	1.676	1.675	1.67	1.674
4.9	1.674	1.674	1.674	1.673	1.673	1.672	1.672	1.671	1.671	1.670	1.670
5.0	1.670	1.670	1.669	1.66	. 66	1.66	. 6.66	1.667	1.667	66	666
5.1	1.666	1.665	1.665	1.66	1.664	1.664	1.663	1.663	1.662	. 662	1.662
5.2	1.662	1.661	1.66	1.668	8.660	1.6	1.659	1.659	1.658	1.658	1.658
5.3	1.658	1.657	1.657	1.656	1.656	1.656	1.655	1.655	1.654	$1.65{ }^{1}$	1.654
5.4	1.654	1.653	1.653	1.655	1.652	1.652	1.651	1.651	1.651	1.650	1.650

SCHOENHERR FRICTION COEFFICIENTS
GMOOTH SURFACE - TURBULENT FLOW UNIVERSITY OF MICHIGAN NAVAL TANK

Re 5.5-10
$\times 10^{8}$

$\begin{aligned} & R e \\ & 10^{8} x \end{aligned}$	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10
5.5	1.650	1.650	1.649	1.649	1.648	1.648	1.648	1.647	1647	1646	1646
5.6	1646	1.646	1645	1.645	1.645	1.644	1.644	1644	1643	1643	1.642
5.7	1642	1.642	1642	1.641	1641	1.641	1.640	1.640	1.640	1.639	1639
5.8	1.639	1.638	1.638	1.638	1.637	1.637	1.637	1.636	1636	1636	1635
5.9	1.635	1.635	1.635	1.634	1.634	1.634	1.633	1633	1.632	1.632	1632
60	1632	1631	1.631	1.631	1.630	1630	1.630	1629	1.029	1.629	1.628
6.1	1.628	1.628	1628	1.627	1.627	1.627	1626	1.626	1.626	1.625	1625
6.2	1.625	1.625	11.624	1.624	1.624	1.623	1.623	1.623	1.622	1.622	1.622
63	1.622	1.621	1.621	1.621	1.620	1.620	1.620	1.619	1.619	1.619	1.618
6.4	1.618	1.618	1.618	1.618	1.617	1.617	1.617	1.616	1.616	1.616	1.615
6.5	1.615	1.615	1.615	1.614	1.614	1.614	1.613	1.613	1613	1.613	1.612
6.6	1612	1.612	1.612	1.611	1.611	1.611	1.610	1.610	1.610	1.610	1.609
67	1.609	1609	1609	1.608	1.608	1.608	1.607	1.607	1.607	1606	1.606
6.8	1.606	1.606	1.606	1.605	1.605	1.605	1.604	1.604	1.604	1.604	1.603
6.9	1603	1.603	1603	1.602	1.602	1.602	1.602	1.601	1.601	1.601	1.600
7.0	1600	1.600	1.600	1.600	1.599	1.599	1.599	$\cdot 1.598$	1598	1.598	1.598
7.1	1.598	1.597	164t	1.597	1.596	1.596	1.596	1.596	1.595	1.595	1.595
7.2	1.595	1.594	1.594	1.594	1.594	1.593	1.593	1.593	1.592	1.592	1.592
7.3	1592	1.592	1.591	1.591	1.591	1.590	1.590	1.590	1.590	1.589	1.589
7.4	1589	1.589	1.589	1.588	1.588	1.588	1.588	1.587	1.587	1.587	1.586
7.5	. 1.586	1.586	1586	1.586	1.585	1585	1.585	1585	1.584	1.584	1.584
7.6	1.584	1.584	1.583	1583	1.583	1.583	1.582	1.582	1.582	1.582	1.581
77.	1.581	1.581	1581	1.580	1.580	1580	1580	1.579	1.579	1.579	1.579
7.8	1.579	1.578	1.578	1.578	1.578	1.577	1577	1.577	1.577	1.576	1.576
79	1.576	1.576	1.576	1.575	1.575	1.575	1.575	1.574	1.574	1.574	1.574
0	1574	1.574	1.573	1.573	1.573	1.573	1.572	1.572	1.572	1.572	1571
8.1	1571	1.571	1.571	1571	1.570	1.570	1.570	1.570	1.569	1.569	1.569
8.2	1.569	1569	1.568	1568	1.568	1.568	1.568	1.567	1.567	1.567	1.567
8.3	1.567	1.566	1566	1.566	1.566	1.565	1.505	1.565	1.565	1.564	1564
8.4	1564	1.564	1.564	1.564	1.563	1.563	1.563	1.563	1.562	1.562	1.562
8.5	1.562	1.562	1.562	1.561	1.561	1.561	1.561	1.560	1.560	1.560	1.560
8.6	1.560	1.559	1.559	1.559	1.559	1.559	1.558	1. 558	1.558	1.558	1.558
87	1.558	1.557	1.557	1.557	1.557	1.556	1.556	1.556	1.556	1.556	1.555
8.8	1.555	1.555	1555	1.555	1.554	1.554	1.554	1.554	1.554	1.553	1.553
8.9	1.553	1.553	1.553	1.552	1.552	1.552	1.552	1.552	1551	1.551	1.551
. 90 ,	1551	1551	1551	1550	1.550	1550	1.550	1.550	1.549	1.549	1.549
91	1549	1.549	1.548	1.548	1.548	1.548	1.548	1.547	1.547	1.547	1.547
9.2	1.547	1.547	1.546	1.546	1.546	1.546	1.546	1.545	1.545	1.545	1.545
9.3	. 1.545	1544	1.544	1.544	1.544	1.544	1.543	1543	1.543	1.543	1.543
9.4	1.543	1.542	1.542	1.542	1.542	1.542	1.541	1.541	1.541	1541	1541
9.5	1.541	1.540	1.540	1.540	1.540	1.540	1.539	1.539	1.539	1.539	1.539
9.6	1.539	1.538	1.538	1.538	1.538	1.538	1.537	1.537	1.537	1.537	1.537
9.7	1.537	1.536	1.536	1. 536	1.536	1.536	1.535	1.535	1.535	1.535	1535
9.8	1.535	1.534	1.534	1. 534	1.534	1.534	1.534	1.533	1.553	1.533	1.533
9.9	1.533	1.533	1.532	1.532	. 1.532	1.532	1.532	1.531	1.531	1.531	1.531

SCHOENHERR FRICTION COEFFICIENTS
 SMOOTH SURFACE TURBULENT FLOW UNIVERSITY OF MICHEGAN NAVAI TANK

$\operatorname{Re} 1-5.5$
 $\times 10^{9}$

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10
1.0	1.531	1.529	1.527	1.525	1.524	1.522	1.520	1.518	1.517	1.515	1.513
1.1	1.513	1.512	1.510	1.508	1.507	1.505	1.503	1.502	1.500	1.499	1.497
1.2	1.497	1.496	1.494	1.493	1.491	1.490	i. 488	1.487	1.485	1.484	1.482
1.3	1.482	1.481	1.480	1.478	1.477	1.476	1.474	1.473	1.472	1.470	1.469
1.4	1.469	1.468	$\therefore .467$	1.466	1.464	1.463	1.462	1.461	1.459	1.458	1.457
1.5	1.4	1.456	1.4	457	1.4	1.45	1.	1.449	8	1	-
1.6	1.	1.	1.4	1.443	1.	1	1.440	1.438	1.437	1.436	35
1.7	1.	1.	1.4	1.	1.4	1.	1.4	1.428	1.428	1.427	26
1.8	1.	. 4	1.4	1.4	1.422	1.4	1.4	1.4	1.418	1.417	6
1.9	1.416	1.416	1.415	1.414	1.4	1.412	1.411	1.410	1.410	09	98
2.0	1.400	1.40	1.406	1.405	1.	1.404	1.403	1.402	1.401	1.401	400
2	1.	1.399	1.398	1.3	1.39	1.396	1.395	1.	1.394	1.393	2
2.2	1. 392	391	1.39	1.390	1.389	1.388	1.388	1.387	1.386	1. 386	1.385
2.3	1.385	1.384	1.383	1.363	1.382	1.38	1.381	1.380	1.379	1.379	1.378
2.4	1.378	1.377	1.376	1.376	1.375	1.374	1.374	1.373	1.373	1.372	1.371
2.5	$1 . .371$	1.371	1.37	1.369	1.369	1.368	1.3	1.367	1.366	1.366	365
2.6	1.36	1.36	1.3	1.	i. 363	1.36	1.36	1.	1.	1.	59
2.7	1.359	1.35	1.3	1.3	1.3	1.35	1.	5	1.354	1. 354	1.353
28	1.353	1.35	1	1	1.35	. 3	1.3	1.349	1.3	1.348	348
2.9	1.348	1.347	1.34	1.346	1.346	1.345	1.345°	1.344	1.343	1.343	1.342
3.0	1.342	1.342	1.341		1.340	1.340	1.339	1.339	388	8	1.337
3.	1.337	1.33	1.336	1.336	1.336	1.335	1.334	1.334	1.3	1.333	1.332
3.2	1.332	1.	33	1.33	1.330	1.330	1. 330	1.329	1.32	1.328	1.328
3.3	1. 328	1.327	1.32	1.326	1.326	1.325	1.32	1.324	1.32	1.32	1.323
3.4	1.323	1.323	1.322	1.322	1.321	1.321	1.320	1.320	1.320	1.319	1.319
3.5	1.319	1.	1.318	1	1.317	1.316	16	1.3	1.315	1.315	314
3.	1.314	1.	1.	1.3	1.313	1.3!2	1.312	1.	1.311	1.	1.310
37	1.3	1.3	1.310	1.	1.3	1.	1.308	1.	1.307	1.307	1.306
38	1.306	1.306	1.306	1.305	1.300	1.	1.304	1.304	1.303	1.303	1.302
3.9	1.302	1.302	1.302	1.301	1.301	1.300	1.300	1.300	1.299	1.299	1.299
4.0	1.299	1.2	1.2	1.297	1.297	1.297	1.2	1.296	1.296	1.295	295
4.1	1.295	1.29	1.2	1.294	1.293	1.293	1.293	1.2	1.292	1.292	1.291
4.2	1.291	1.291	1.29	1.290	1.290	1.290	1.289	1.289	1.289	1.288	1.288
4.3	1.288	1.288	1.287	1.28	1.28	1.286	1.286	1.286	1.285	1.285	1.285
4.4	1.285	1.284	1.284	1.284	1.283	1.283	1.283	1.282	1.282	1.282	1. 20 !
4.5	1.281	1.28	1.28		1.28	80	1.279	1.279	1.279	1.278	. 278
4.6	1.278	1.2	1.27	1.2	1.2	1. 276	1.276	1.276	1.276	1.27	1.275
4.7	1.275	1.275	1.274	1.27	1.27	1.273	1.273	1.273	1.272	1.272	1.272
4.8	1.272	1.272	1.271	1.271	1.27	1.270	1.270	1. 270	1.269	1.269	1.269
4.9	1.269	1.269	1.268	1.268	1.268	1.267	1.267	1.267	1.267	1.266	1.266
5.0	1.266	1.266	265	1.265	1.265	1.265	1.264	1.264	1.264	1.263	1.263
5.1	1.263	1.263	1.263	1.262	1.2	1.262	1.262	1.261	1. 26	1.261	1.260
5.2	1.260	1.260	1.260	1.260	1.259	1.259	1.259	1.258	1.258	1.258	1.258
5.3	1.258	1.25	1.257	1.257	1.25	1.256	1.256	1.256	1.256	1.255	1.255
5.4	1.255	1.255	1.254	1.254	1.254	1.254	1.253	1.253	1.253	1.253	. 252

SCHOENHERR FRICTION COEFFICIENTS
 SMOOTH SURFACE TURBULFNT FLOW UNIVERSITY OF MICHIGAN NAVAL TANK

 Re 5.5-10| $\begin{aligned} & 10^{9} x \\ & 10^{2} \end{aligned}$ | 0.00 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 | 0.10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5.5 | 1.252 | 1.252 | 1.252 | 1.252 | 1.251 | 1.251 | 1.251 | 1.251 | 1.250 | 1250 | 1.250 |
| 5.6 | 1.250 | 1.250 | 1.249 | 1. 249 | 1. 249 | 1.249 | 1. 248 | 1.248 | 1.248 | 1. 248 | 1.247 |
| 5.7 | 1.247 | 1.247 | 1.247 | 1. 247 | 1. 246 | 1. 246 | 1. 246 | 1. 246 | 1.245 | 1. 245 | 1.245 |
| 5.8 | 1.245 | 1. 245 | 1.244 | 1.244 | 1.244 | 1.244 | 1.243 | 1.243 | 1.243 | 1.243 | 1. 242 |
| 5.9 | 1.242 | 1.242 | 1.242 | 1.242 | 1.242 | 1.241 | 1.241 | 1.241 | 1.241 | 1.240 | 1.240 |
| 6.0 | 1.240 | 1.240 | 1.240 | 1.240 | 1.239 | 1.239 | 1.239 | 1.239 | 1.238 | 1. 238 | 1. 238 |
| 6.1 | 1.238 | 1.238 | 1.237 | 1.237 | 1.237 | 1.237 | 1.237 | 1. 236 | 1.236 | 1236 | 1.236 |
| 6.2 | 1.236 | 1.235 | 1.235 | 1.235 | 1.235 | 1.235 | 1.234 | 1.234 | 1. 234 | 1. 234 | 1.233 |
| 6.3 | 1.233 | 1.233 | 1.233 | 1.233 | 1. 233 | 1.232 | 1.232 | 1.232 | 1.232 | 1. 232 | 1231 |
| 6.4 | 1.231 | 1.231 | 1.231 | 1.231 | 1.230 | 1.230 | 1.230 | 1.230 | 1.230 | 1.229 | 1.229 |
| 6.5 | 1.229 | 1.229 | 1.229 | 1.229 | 1.228 | 1.228 | 1.228 | 1.228 | 1.228 | 1.227 | 1.227 |
| 6.6 | 1.227 | 1.227 | 1.227 | 1.227 | 1.226 | 1.226 | 1. 226 | 1.226 | 1. 226 | 1.225 | 1.225 |
| 6.7 | 1.225 | 1.225 | 1.225 | 1.224 | 1. 224 | 1.224 | 1.224 | 1.224 | 1.223 | 1.223 | 1.223 |
| 6.8 | 1.223 | 1.223 | 1.223 | 1. 222 | 1.222 | 1. 222 | 1.222 | 1.222 | 1.222 | 1.221 | 1.221 |
| 6.9 | 1.221 | 1.221 | 1.221 | 1.220 | 1.220 | 1.220 | 1.220 | 1.220 | 1.220 | 1.219 | 1.219 |
| 7.0 | 1.219 | 1.219 | 1.219 | 1.218 | 1.218 | 1.218 | 1.218 | 1.218 | 1.218 | 1.217 | 1.217 |
| 7.1 | 1.217 | 1.277 | 1.217 | 1.217 | 1.216 | 1.216 | 1.216 | 1.216 | 1.216 | 1.215 | 1.215 |
| 7.2 | 1.215 | 1.215 | 1.215 | 1.215 | 1.214 | 1. 214 | 1.214 | 1.214 | 1.214 | 1.214 | 1.213 |
| 7.3 | 1.213 | 1.213 | 1.213 | 1.213 | 1.213 | 1.212 | 1.212 | 1.212 | 1.212 | 1.212 | 1.212 |
| 7.4 | 1.212 | 1.211 | 1.211 | 1.211 | 1.211 | 1.211 | 1.210 | 1.210 | 1.210 | 1.210 | 1.210 |
| 7.5 | 1.210 | 1.210 | 1.209 | 1.209 | 1.209 | 209 | 1.209 | 1.208 | 1.208 | 1.208 | 208 |
| 7.6 | 1.208 | 1.208 | 1.208 | 1. 207 | 1. 207 | 1.207 | 1.207 | 1.207 | 1.207 | 26 | . 206 |
| 7.7 | 1.206 | 1.206 | 1.206 | 1.206 | 1.206 | 1.205 | 1.205 | 1.205 | 1.205 | 1.205 | 1. 204 |
| 7.8 | 1.204 | 1.204 | 1.204 | 1.204 | 1.204 | 1.204 | 1.203 | 1.203 | 1.203 | 1.203 | 1.203 |
| 7.9 | 1.203 | 1.203 | 1.202 | 1.202 | 1.202 | 1.202 | 1.202 | 1.202 | 1.201 | 1.201 | 1201 |
| 80 | 1.201 | 1.201 | 1.201 | 1.201 | 1.200 | 1.200 | 1.200 | 1.200 | 1.200 | 1.200 | 1.199 |
| 8.1 | 1.199 | 1.199 | 1.199 | 1.199 | 1.199 | 1.199 | 1.198 | 1.198 | 1. 198 | 1.198 | 1.198 |
| 82 | 1.198 | 1.198 | 1.197 | 1.197 | 1.197 | 1.197 | 1.197 | 1.197 | 1.196 | 1. 196 | 1.196 |
| 8.3 | 1.196 | 1.196 | 1.196 | 1.196 | 1.196 | 1.195 | 1.195 | 1.195 | 1. 195 | 1.195 | 1.195 |
| 8.4 | 1.195 | 1.194 | 1.194 | 1.194 | 1.194 | 1.194 | 1.194 | 1.194 | 1.193 | 1.193 | 1.193 |
| 8.5 | 1.193 | 1.193 | 1.193 | 1.193 | 1.192 | 1.192 | 1.192 | 1.192 | 1.192 | 1. 192 | 1. 192 |
| 8.6 | 1.192 | 1.191 | 1.191 | 1.191 | 1.191 | 1.191 | 1.191 | 1.190 | 1. 190 | 1.190 | 1.190 |
| 8.7 | 1.190 | 1.190 | 1.190 | 1.190 | 1.189 | 1.189 | 1.189 | 1.189 | 1.189 | 1.189 | 1.189 |
| 88 | 1.189 | 1.188 | 1.188 | 1.188 | 1.188 | 1. 188 | 1.188 | 1.188 | 1.187 | 1.187 | 1.15 |
| 8.9 | 1.187 | 1.187 | 1.187 | 1.187 | 1.186 | 1. 186 | 1.186 | 1.186 | 1.186 | 1.186 | 1.186 |
| 9.0 | 1.186 | 1.185 | 1.185 | 1.185 | 1.185 | 1.185 | 1.185 | 1. 185 | 1.184 | 1.184 | 1.184 |
| 9.1 | 1.184 | 1.184 | 1.184 | 1.184 | 1. 184 | 1. 183 | 1.183 | 1. 183 | 1.183 | 1. 183 | 1.183 |
| 9.2 | 1.183 | 1.183 | 1.182 | 1.182 | 1.182 | 1.182 | 1.182 | 1.182 | 1.182 | 1.181 | 1.181 |
| 9.3 | 1.181 | 1.181 | 1.181 | 1.181 | 1.181 | 1.181 | 1.180 | 1.180 | 1.180 | 1. 180 | 1. 180 |
| 9.4 | 1.180 | 1.180 | 1.180 | 1.180 | 1.179 | 1.179 | 1.179 | 1.179 | 1.179 | 1.179 | 1.179 |
| 9.5 | 1.179 | 1.178 | 1.178 | 1.178 | 1.178 | 1.178 | 1.178 | 1.178 | 1.177 | 1.177 | 1.177 |
| 9.6 | 1.177 | 1.177 | 1.177 | 1.177 | 1.177 | 1.177 | 1.176 | 1.176 | 1.176 | 1.176 | 1.176 |
| 9.7 | 1.176 | 1.176 | 1.176 | 1.176 | 1.175 | 1.175 | 1.175 | 1.175 | 1.175 | 1.175 | 1.175 |
| 9.8 | 1.175 | 1.174 | 1.174 | 1.174 | 1.174 | 1.174 | 1.174 | 1.174 | 1.174^{\prime} | 1.173 | 1.173 |
| 9.9 | 1.173 | 1.173 | 1.173 | 1.173 | 1.173 | 1.173 | 1.172 | 1.172 | 1.172 | 1.172 | 1.172 |

DENSITY OF WATER

IN ENGLISH ENGINEERING UNITS

Fresh		Sea Water	Fresh		Sea Water
Water	Temp.	3.5\% Salinity	Mater	Temp.	3.5\% Solinity
	DEG. F.			DEG. F.	

1.9399	32	1.9947	1.9381	61	1.9901
1.9399	33	1.9046	1.9379	62	1.9298
1.9400	34	1.9946	1. 9377	63	1.9395
1.9400	35	1.9945	1.9375	64	1.9893
			1.9373	65	1.9390
1.9401	36	1.9944			
1.9401	37	1.9943	1.9371	66	1.9898
$1.94 \cap 1$	38	1.9942	1.9369	67	1.9885
1.9401	39	1.9941	1.9367	68	1.9082
1.9401	40	1.9940	1.9365	69	1.9879
			1.9362	70	1.9876
1.94.01	41	1.9939			
1.9401	42	1.9937	1.9360	71	1.9873
1.9401	43	1.0936	1.9358	72	1.9870
1.9400	44	1.9934	1.9355	73	1.9867
1.9400	45	1.9933	$\begin{aligned} & 1.9352 \\ & 1.9350 \end{aligned}$	74 75	$\begin{aligned} & 1.9864 \\ & 1.9861 \end{aligned}$
1.9399.	46	1.9931			
1.9398	47	1.9930	1.9347	76	1.9858
1.9398	48	1.9928	1.9344	77	1.9854
1.9397	49	1.9926	1.9342	78	1.9851
1.9396	50	1.9924	$\begin{aligned} & 1.9339 \\ & 1.9336 \end{aligned}$	79 80	$\begin{aligned} & 1.9348 \\ & 1.9644 \end{aligned}$
1.9395	51	1.9923			
1.9394	52	1.0921	1.9333	81	7.9341
1.9393	53	1.9919	1.9330	32	1.9837
1.9392	54	1.9917	1.9327	83	1.9834
1.9390	55	1.9914	$\begin{aligned} & 1.9324 \\ & 1.9321 \end{aligned}$	84 85	$\begin{aligned} & 1.983 \\ & 1.9327 \end{aligned}$
1.9389	56	1.9912			
1.9387	57	1.9910	1.9317	86	1.9823
1.9386	58	1.9903			
1.9384	59	1.9905			
1.9383	60	1.9903			

1 FOOT $=0.30479449$ METER
1 POUND $=453.59243$ GRAMS

$$
\begin{aligned}
& g=9.80665 \quad \text { M. } / \text { SEC. }_{0}^{2} \\
& \frac{\mathrm{LB} \cdot \mathrm{X} \mathrm{SEC}_{0}}{\mathrm{FT}}=1.94018 \times \frac{\mathrm{GMS} .}{\mathrm{CM} \cdot 3}
\end{aligned}
$$

KINEMATIC VISCOSITY OF WATER
In English Engineering Onits

Fresh Water	Temp.	Sea Water 3.5\% Salinity	Presh Water	Temp.	3.5\% Salinity Sea Water	
$\checkmark \times 105$ (FT. ${ }^{2 / \mathrm{SEC.} \text {) }}$ DE.F.		$\sqrt{8} \times 10^{5}$ ($\left.\mathrm{PT}^{3} / \mathrm{SEC}.\right)$	$\sqrt{ } \times 10^{5}$ ($\mathrm{FT} .2 / \mathrm{SEC}$.)		$2 \mathrm{~s} \times 10^{5}$ ($\mathrm{FTa} / \mathrm{SEC}$.)	
			DEG.F.			
1.9291	32			1.1937	61	1.2470
1.8922	33		1.1769	62	1.2303	
1.8565	34		1.1605	63	1.2139	
1.8219	35		1.1444	64	1.1979	
			1.1287	65	1.1822	
1.7883	36 37			66		
1.7558	37		1.1133	66	1.1669	
1.7242	38 39		1.0983	67 68	1.1519	
1.6935 1.6638	39 40		1.0836 1.0692	68	1.1372	
1.6638	40		1.0692 1.0552	69 70	1.1229 1.1088	
1.6349	41	1.6846				
1.6068	42	1.6568	1.0414	71	1.0951	
1.5795	43	1.6298	1.0279	72	1.0816	
1.5530	44	1.6035	1.0147	73	1.0684	
1.5272	45	1.5780	1.0018	74	1.0554	
			0.98918	75	1.0427	
1.5021	46	1.5531				
1.4476	47	1. 5289	0.97680	76	1.0303	
1.4538	48	1.5053	0.96466	77	1.0181	
1.4306	49	1.4823	0.95276	78	1.0062	
1.4080	50	1.4599	$\begin{aligned} & 0.94111 \\ & 0.92969 \end{aligned}$	79 80	$\begin{aligned} & 0.99447 \\ & 0.98299 \end{aligned}$	
1.3860	51	1.4381	0. 2296			
1.3646	52	1.4168	0.91850	81	0.97172	
1.3437	53	1.3961	0.90752	82	0.96067	
1.3233	54	1.3758	-0.89676	83	0.94982	
1.3034	55	1.3561	$\begin{aligned} & 0.88621 \\ & 0.87586 \end{aligned}$	84 85	$\begin{aligned} & 0.93917 \\ & 0.92873 \end{aligned}$	
1.2840	56	1.3368				
1.2651	57	1.3180	0.86570	86	0.918 .47	
1.2466	58	1.2996				
1.2285	59	1.2817				
1.2109	60	1.2641				

POISE $=$ DYNE-SEC. PER CM. ${ }^{2}$
KINEMATIC VISCOSITY - VISCOSITY $=\frac{\mu}{\rho}$
1 FOOT = 0.30479449 METER
1 POUNDS $=453.59243$ GRAMS
$=0.80665$ M./SEC. ${ }^{2}$
KIN. VIS.: $\frac{\mathrm{FT}{ }^{2}}{\mathrm{SEC}}=10.764230 \times \frac{\mathrm{M}^{2}}{\mathrm{SEC}}$ 。
DENSITY: $\frac{\text { LB. X SEC, }{ }^{2}}{\text { FT. }{ }^{4}}=1.94018 \times \frac{\mathrm{gms}^{2}}{\mathrm{CM}_{4}{ }^{3}}$

WEIGHT OF WATER

Pounds per Cubic Foot

$g=32.174 \mathrm{ft}, / \mathrm{sec} .2$ at sea level
$g=32.1616 \mathrm{ft} . / \mathrm{sec} .{ }^{2}$ at Ann Arbor
Salinity of sea water is 3.5%

TEMP	$\begin{aligned} & \text { F.W } \\ & \text { SEALEVEL } \end{aligned}$	F.W.	S.W.	$\begin{gathered} \text { TEMP } \\ \text { OF } \end{gathered}$	$\underset{\text { SEALEVEL }}{\text { SEA }}$	$\begin{aligned} & \text { F.W. } \\ & A . A . \end{aligned}$	S.W.
32	62.415	62.391	64.177	61	62.356	62.332	64.929
33	62.416	62.392	64.176	62	62.350	62.326	64.021
34	62.417	62.393	64.174	63	62.343	62.320 62.313	64.012 64.004
35	62.418	62.394	64.171	64	62.337	62.313 62.307	64.996
36	62.419	62.395	64.168				
37	62.420	62.396	64.165	66	62.324	62.300	63.989
38	62.421	62.397	64.161	67	62.318	62.294	63.978 63.068
39	62.421	62.397	64.157	68	62.311 62.305	62.287 62.280	63.968 63.959
40	62.421	62.397	64.153	69 70	62.305 62.297	62.280 62.272	63.949
41	62.421	62.397	64.150				
42	62.420	62.396	64.146	71 72	62.289 62.282	62.265 62.258	63.930
43	62.419 62.418	62.395 62.394	64.142 64.137	73	62.273	62.249	63.920
45	62.417	62.393	64.132	74	62.263	62.240	63.910
				75	62.526	62.232	63.901
46	62.415	62.392	64.127				
47	62.413 62.411	62.389 62.387	64.122 64.116	76 77	62.248 62.238	62.223 62.214	63.881 63.880
49	62.409	62.385	64.110	78	62.230	62.205	63.869
50	62.406	62.381	64.103	79	62.221	62.197	63.858 63.847
51	62.403	62.377	64.100	8			
52	62.399	62.374	64.094	81	62.202	62.178	63.836
53	62.395	62.370	64.087	82	62.192	62.168	63.824
54	62.391	62.366	64.080	83	62,183	62.159	63.813
55	62.386	62.362	64.072	84 85	62.173 62.163	62.149 62.139	63.801 63.791
56	62.301	62.358	64.065				
57	62.376	62.353	64.058	86	62.152	62.128	63.779
58.	62.371 62.366	62.348 62.343	64.051 64.043				
60°	62.362	62.338	64.036				

F.W. - Sea Level - $500 \mathrm{~F} . ; 35.894 \mathrm{cu} . \mathrm{ft} .=1$ long ton
S.W. - Sea Level - $50^{\circ} \mathrm{F} . ; 34.944 \mathrm{cu} . \mathrm{ft} .=1$ long ton
F.W. - Ann Arbor -500F.; $35.908 \mathrm{cu} . \mathrm{ft} .=1$ long ton
F.W. - Ann Arbor - 680F.; $35.963 \mathrm{cu} . \mathrm{ft} . \pm 1$ long ton

0

ROUGHNESS FACTORS OF SHIPS' SURFACES

COMMENT
THE CURRENT THEORY OF SURFACE ROUGHNESS CONSIDERS THAT ANY GIVEN ROUGHNESS MAY be EXPRESSED in TERMS OF the SAND ROUGHNESS Which gives THE SAME FRICTIONAL RESISTANCE AT THE SAME LENGTH AND REYNOLD'S NUMBER. THE GIVEN ROUGHNESS IS THEN CONSIDERED TO FOLLOW THE SAME LAWS AS THE EQUIVALENT SAND ROUGHNESS; I.E., THE RESISTANCE OF THE GIVEN ROUGHNESS AT ANY OTHER LENGTH AND REYNOLDS NUMBER IS CONSIDERED TO BE THE SAME AS THAT OF THE EQUIVALENT SAND ROUGHNESS UNDER THOSE CONDITIONS. THE LATTER MAY BE DETERMINED FRON SCHLICTING'S SAND ROUGINESS CURVES AND FORMULAE (4).

REFERENCES

(1) KEMPF - "ON THE EFFECT OF ROUGHNESS ON THE RESISTANCE OF GHIPS," I. N.A. 1937
(2) KEMPF - "SHIP PERFORMANCE IN SMOOTH AND ROUGH WATER", S.N.A. \& M.E. 1936
(3) SCHULTI-GRUNOW - "FRICTIONAL RESISTANCE OF MODERATELY ROUGH SURFACES", SHIPBUILDER, APRIL 1938
(4) SCHLICHTING - "EXPERIMENTAL INVESTIGATION OF THE PROBLEM OF SURFACE ROUGHNESS," N.A.C.A.TECH.MEMO.NO. 823 , APRIL I937
((5) SCHOENHERR - "RESISTANCE OF FLAT SURFACES", S.N A.\& M.Ed 1932

Ghellstitute of Marne Evgineers Transacfions

1950, Vol. LXII, No. 8.

Modern Methods for Computing the Surface Friction of Ships*

K. C. BARNABY, O.B.E., B.Sc. (Member)

SURFACE FRICTION

Water is very far from being the perfect fluid that one is able to assume in hydrostatics. It may seem rather anomalous that in this branch of Naval Architecture it can be assumed that water is incompressible, incapable of resisting deformation and entirely frictionless, when in fluid dynamics surface friction is the major element in the resistance of all large vessels. There may even be a feeling that nature was a trifle careless with her specifications and that she might have made water rather more of a perfect fluid with a corresponding benefit to all forms of propulsion including the fish.

Table 1 examines the first point. It will be seen that the frictional drag for commercial vessels may be less than $01 \mathrm{pe}_{\mathrm{i}}$ cent of the displacement and that even on express Arlantiliners it may not exceed 0.4 per cent. These low ratios justify the neglect of viscosity in static calculations and suggest that such computations will remain accurate until ver: high spees are attained. It will also be noted from the table that tor commercial types surface friction accounts for from bo per cer: to just over 70 per cent of the total resistance. These resuls are, of course, for normal types. The most extreme case" mant the author's experience were a floating aerolrome with in.

Table 1.-Frictional drag and total resistance for various types

Type of ship	Length, feet (l)	Speed, knots (v)	Displacement, tons, (4)	Frictional drag, tons	Frictional drag, per cent of displacement	Total resistance to propulsion, tons	Friction. percent of total resistance	$\begin{gathered} \text { Sperg } \\ \text { erg:o } \\ 0: 1 \end{gathered}$
Cargo vessel	300	9.5	5,965	$5 \cdot 4$	0.091	8.2	66	0.55
Cargo vessel	450	13.0	16,000	17.9	$0 \cdot 112$	24.7	72	0.014
Coaster	195	10.5	1,640	2.72	$0 \cdot 166$	4.85	56	0.75
Intermediate liner-	... 465	17.0	15,820	30.4	0:192	45.4	67	0.788
Express liner	762	25.5	37,080	124.0	0.335	203.0	61	0.923
Express liner	962	31.0	79,000	288.0	0.364	$458 \cdot 0$	62.8	1.0
Sailing yacht	50	7.25	32	$0 \cdot 140$	0.438	0.26	54	1.027
Steam yacht	178	13.8 ;	768	$3 \cdot 12$	0.406	$6 \cdot 64$	47^{2}	1.034
Motor yacht	115	13.0	212	$1 \cdot 19$	0.562	3.29	$36 \cdot 2$	1.210
Motor launch	49	11.0	15	$0 \cdot 167$	$1 \cdot 11$	0.88	19	1.57
Destroyer (deep)	350	32.5	2,455	34.7	1.41	109.0	31.8	1.70
Destroyer	364	36.57	1,962	39.2	1.99	96.5	40.5	1.92
Destroyer	295	36.045	1,140	26.2	$2 \cdot 30$	64.6	$40 \cdot 6$	2.098
Destroyer	$\underline{271}$	37.52	884	23.9	$2 \cdot 70$. $55 \cdot 8$	$42 \cdot 8$	$2 \cdot 28$

* Read before the Southern Junior Branch I.N.A. and I.Mar.E. at Portsmouth Municipal College on 24th November 1948.
inconsiderable displacement of two million tons and a hydroplane with a speed of over 100 knots. The corresponding figures are given in Table 2. It will be clear that on account of

Table 2

Item	Type	
Length, $\mathrm{ft} .(L)$	Floating aerodrome	Skimmer
Displacement, tons (Δ)	2,000	35
Speed, knots (V)	$2,000,000$	6.2
V	7.0	103.7
\sqrt{L}	0.157	17.55
Total drag, tons	300	3.4
Drag, per cent of Δ	0.015	55

the high drag/displacement ratio, static methods would be completely out of place for the fast skimmer. Owing largely to the increasing ranges of modern aeroplanes the floating aerodrome never got beyond model and drawing board stages. This was a considerable relief to the author as he viewed the launching calculations-among other matters-with considerable trepidation.

Turning to the suggestion that nature might have made water rather less viscous, reflection shows that this would have had very unpleasant consequences. Storm waves would take longer to die out than the normal interval between gales so that the seas would be perpetually rough. Wave energy would, in fact, have to be largely dissipated on erosion of our foreshores and coast line. Ships would also roll more violently and capsize more readily so that one could be sure that not only
(1) the absence of slip at all rigid boundaries and (2) the presence of viscosity or shear resistance. It may be possible to insert small highly polished plates into a real fluid and obtain incomplete wetting. This is impossible with ordinary model or ship surfaces. The immersed portions are completely wetted and a film of water is attached to the surface, presumably by molecular attraction and interlocking. As a corollary, it is impossible to insert a plate, however thin, into a real fluid without changing the flow conditions in the vicinity of the plate. These changes will be discussed under the heading of "boundary layer".

the density of sea water

This depends on the salinity and the temperature and varies appreciably from place to place and at various seasons of the year. The variation of surface salinity in the oceans is primarily dependent on the difference between the average evaporation and the average rainfall. Minimum values occur in high latitudes towards the poles and maximum values at about the two tropics with a slight reduction at the equator. Owing to the effect of temperature, the less saline water near the poles is often denser than at the equator. The mean value normally assumed for ship calculations is 1.026 which is equivalent to 64 lb . per cu . ft . In this paper the author uses gravitational and not absolute units so that (p) for salt water $64 \div 32.2=1.99$ and for fresh water $=62.2 \div 32.2=1.94$.

THE VISCOSITY AND KINEMATIC VISCOSITY OF FRESH AND SALT WATER
Real fluids can withstand a slight amount of tension owing to molecular attraction between the particles. This sets up an apparent resistance to shear between any two adjacent streamlines or layers and is termed the viscosity of the fluid. The coefficient of viscosity μ is defined as the ratio between the viscous stress and the angle of distortion. Typical values for u are given in Table 3.

Table 3.-Typical values of ρ, μ and v

Temperature, deg.		$\begin{gathered} \text { Density, } p \\ \mathrm{ML}^{-3}=\mathrm{lb} . \times \mathrm{sec} .^{2} / \mathrm{ft} .^{4} \end{gathered}$		Viscosity $\mu \times 10^{5}$ $\mathrm{MT}^{-1} \mathrm{~L}^{-1}=\mathrm{lb} . \times \mathrm{sec} . / \mathrm{ft} .{ }^{2}$		Kinematic viscosity$v \times 10^{5} . \quad \text { Units }=\mathrm{L}^{2} \mathrm{~T}^{-1}=\mathrm{ft} .2 / \mathrm{sec} \text {. }$			
		American towing tank data				Lyle and Hosking values*		1942 valuest \dagger	
1	2	3	4	5	6	7	8	9	10
deg. C.	deg. F.	F.W.	S.W.	F.W.	S.W.	F.W.	S.W.	F.W.	S.W.
0	32	1.9399	1.9947	3.74	-	1.931	1.916	1.9291	-
10	50	1.9396	1.9924	2.73	2.91	1.409	1.419	1.4080	1.4599
15	59	1.9384	1.9905	2.38	2.55	1.232	1.247	1.2285	1.2817
20	68	1.9367	1.9882	$2 \cdot 10$	2.26	1.088	1.103	1.0836	1.1372
30	86	1.9317	1.9823	$1 \cdot 67$	1.82	0.868	0.888	0.8657	0.91847

* As adopted at the 1935 Paris conference of tank superintendents
would coastal areas be unpleasant and residential districts wasting assets, but shipbuilding itself would be a very depressing and discredited industry.

It must, therefore, be recognized that nature knew what she was about in making water an imperfect fluid and that she went as far as was desirable in giving it only about onethirteenth of the kinematic viscosity of air.

Before dealing with specific problems concerning the flow of liquids and the computation of surface friction, it would seem desirable to examine the actual qualities of water and the terms and units that are to be employed. This may seem elementary but, on the other hand, it is as well to be quite definite in the groundwork. There are two major differences definite in the groundwork, as a number of minor differences between a real fluid as well as a number of minor differences between a real luid
\dagger As adopted at the 1942 American towing tank conference
KINEMATIC VISCOSITY
The viscous stresses in a fluid are dependent on μ and on the velocity gradients but the effects on the motion are determined by the ratio of μ to the mass density of the fluid. This ratio $\frac{\mu}{\rho}$ is known as the kinematic viscosity and is denoted by the symbol v. Typical values of v are given in Table 3. It will be noted that two differing sets of values are given for both fresh and salt water. The first pair (7 and 8) are the Lyle and Hosking figures as adopted at the 1935 Paris Conference of Towing Tank Superintendents. The second pair are the figures adopted by the 1942 American Towing Tank Conference. There is little difference in the fresh water values but the salt water figures are about 3 per cent higher than the British values. The Americans state that the "fifth significant

Modern Methods for Computing the Surface Friction of Ships

figures are doubtful". This implies an accuracy of the order of 0.05 per cent.

If this high standard of accuracy has really been attained, the British figures for the kinematic viscosity of salt water are obviously much too small. It seems that this large difference ought to be examined.

laws of dimensional similarity and comparison

The comparison of small inclined plates with large ones, or of models with full sized vessels, can only be undertaken with confidence providing the connecting equation is known for each source of resistance. If a plate is inclined at a small angle to the stream flow, the tangential component is more important than the normal component and is mainly a viscosity effect. As the angle of inclination is increased, the reverse applies and the normal component becomes much more important than the tangential component and is mainly a pressure effect. Before dealing with the extent to which these results can be applied to a ship's hull, it is desirable to examine the form that the connecting equation must take (1) when both viscosity and gravity are included (2) when gravity is omitted and (3) when viscosity is omitted. For this purpose the law of dimensional similarity is an invaluable tool.

This law elaborates the rather obvious point that the dimensions on both sides of an equation must be identical. If a resistance is to be evaluated, the various factors must be so assembled as to give an answer with the dimensions of a force, that is in terms of MLT ${ }^{-2}$. For flat plates, aerofoils or ship-shaped forms moving in a real fluid, the various influencing factors can be set out as below.

Factor

(1) Length L as determining sizes ...
(2) Velocity V as determining spoed $\cdots \mathrm{LT}^{-1}$
(3) Mass density ρ as determining inertia ... ML \rightarrow
(4) Viscosity μ as influencing frictional drag $\mathrm{ML}^{-1} \mathrm{~T}^{-1}$
(5) Gravity g as affecting weight and energy LT ${ }^{-1}$
(6) Shape factors r_{1}, r_{2}, etc., as affecting the character and type of the stream flow pattern
(nondimensional)
(7) Roughness of surface r_{0} as affecting frictional drag and expressed as the ratio of the size of grain to the length
(nondimensional) The total resistance can then be written $R=\phi\left[L V \rho_{\mu} g r_{1} r_{2} r_{0}\right]$ where ϕ is an unknown function. This expression can be put in the following equations:-
(1) Including both viscositv and gravity

$$
R=L^{2} V^{2} \rho \phi\left[\left(\frac{v}{L V}\right)^{\mathrm{d}}\left(\frac{L g}{V^{2}}\right)^{\mathrm{e}}\right]
$$

(2) Including viscosity only

$$
R=L^{2} V^{2} \rho \phi\left[\frac{v}{L V}\right]
$$

(3) Including gravity only

$$
R=L^{2} V^{3} \rho \phi\left[\frac{L g}{V^{2}}\right]
$$

If a resistance is entirely viscous, equation (2) applies and shows that the essential requirement for dynamical similarity is the constancy of the unknown function $\phi\left[\frac{\nu}{L V}\right]$ Hence comparisons at different scales are valid only if made at constant $\left[\frac{v}{L V}\right]$ values.

If a resistance is entirely due to gravity (i.e., to wavemaking) and is unaffected by viscosity, equation (3) is applicable and shows that dynamical similarity is obtainable only when the function $\phi\left[\frac{L g}{V^{2}}\right]$ is constant. The more convenient
reciprocal form used in practice is $\frac{L V}{v}$ which is termed the "Reynolds number" after Professor Osborne Reynolds who discovered its significance in connexion with laminar and turbulent flow and $\frac{V}{\sqrt{L g}}$ termed the Froude number. As g is sensibly constant the more usual form for the latter is, of course, the familiar speed length ratio $\frac{V}{\sqrt{L}}$.

It should be specially noted that the law of dimensional similarity affords no justification whatever for the usual practice of treating viscous and gravity resistances as independent and additive, unless these sources of resistance are confined to different bodies of water. With smooth models, this is certainly the case. Viscous resistance is confined to a relatively narrow boundary layer, whereas gravity resistance or wavemaking affects a very large body of water that is mainly outside the boundary layer. Under these circumstances it was undoubtedly correct to treat viscous and gravity resistances on models as additive and independent and this is, of course, the basis of all tank experiments.

FROUDE'S EXPERIMENTS

It is just eighty years since William Froude submitted to the Admiralty his proposals for setting-up an experiment tank where the lavs of ship resistance could be investigated. There was a certain amount of opposition as at that date model tests were apparently in considerable disrepute owing to their seeming inconsistency. This defect was attributed by Froude to the results not being compared at the corresponding speeds given by his law of comparison and to the general crudity of the towing and recording apparatus. After some delay the proposal was accepted and the pioneer tank built on land adjoining Froude's house at Torquay. Extremely viluable results soon flowed from the new tank and araply vindicated the innovation.

Only one month after the completion of his Torquay tank, Froude started his classical experiments on the surface friction of planks. It was nosessary to find the variation of reaistance with speed and with the type and length of surface, since at that time (1872) these laws were completely unknown and it was assumed that the resistance varied with the scuare of the speed. Ships were in fact powered on the basis of an "Adminalty formula" which was speed ${ }^{3} \times \frac{\text { (immersed midship section area) }}{\text { i.h.p. }}$ $=$ constant. The appropriate values for this constant were supposed to vary from about 500 for a "short vesael" to about 600 for a long vessel. Both the significance of the Reynolds number and the dimensional argument of Lord Rayleigh had still to be demonstrated.

Froude took thin planks coated in various ways and varying from two to fifty feet in length. These were towed at increasing speeds and the corresponding resistances carefully measured. It was then found that the results could be expressed in an empirical formula $R=f S V^{n}$. These results are given in Table 4 and can be summarized as follows:-
(1) The coefficient f decreases with length, except at very short lengths.
(2) The index n is appreciably less than 2 except for rough surfaces when it is constant at 2.0 . It is greater than 2.0 in the case of a very short and very smooth surface.
(3) The degree of roughness has a great influence on the magnitude of f.
Despite some "perplexing anomalies" as Froude termed them, the general pattern was clear. The new formula $R=f S V^{n}$ was not only established with suitable coefficients but was supposed to have solved the problem of surface friction. Certainly the formula has been a very satisfactory guide and as late as 1935 the, Paris Conference of Tank Superintendents

Table 4,-Froude's original friction consiants converted to knots in formula $R=f S V^{\prime \prime}$

Nature of surface	Length of surface							
	2 feet		8 feet		20 feet		50 feet	
	n	f	n	f	n	f	n	f
Vamish	2.0	0.0117	1.85	0.0121	1.85	0.0104	1.83	0.0097
Parcifin wax	1.95 .	0.0118	1.94	0.0100	1.93	0.0088	1.83	$0 . \overline{0095}$
Tinfoil	2.16 1.93	0.0064 0.0281	1.99 1.92	0.0081 0.0206	1.90 1.89	0.0089 0.0184	1.83 1.87	0.0095 0.0170
Calico	1.93	0.0281	1.92 2.0	0.0206 0.0166	1.89	0.0184 0.0137	1.87 2.06	0.0170 0.0104
Fine sand	2.0 2.0	0.0231 0.0257	1.0 2.0	0.0166 0.0178	2.0 2.0	0.0137 0.0152	2.06 2.0	0.0104 0.0139
Miediuser sand	2.0 2.0	0:02514	2.0 2.0	0.0178 0.0204	2.0 2.0	0.0152 0.0168	2.0	0.0139

$R=$ Frictional resistance in $\mathrm{lb} . \quad S=$ Wetted surface in sq. ft.
agreed to the use of the Froude standard constants as given in Table 4(a) (tbridged).

These conistants were based on the Froude values as modified and extended by Froude's son and successor, R. E. Froude, who had also introduced his " 0 " values. With the latter f is defined as being equal to " 0 " $\times L^{0.0875}$. " 0 " values are also given in Table 4(a).

Froude hid not explained the extremely complicated mecharism of surface friction. He had produced a thoroughly practical and, on the whole, a very successful method for dealing with the problem. The full explanation started with Osborne Reynolds and is not complete even now particularly as tegards the effect of roughness.

Taple 4(a).-Froude's friction constants in the formula $R \Rightarrow A S V 1.825$ AND FROUDE'S "O" VALUES, BOTH AS ADOPTED AT THE 1935 PAlpis CONFRRENCE OF TANK SUPERINTENDENTS

Length, feet	f^{-}	" 0 "
10	0.011579	0-13409
$20 \times$	0.010524	$0 \cdot 1147$
- 30	0.010068	0.1059
. 40	0.009791	0.10043
50 \%	0.009607	+ 0.09664
- 60	0.009475	0.0938
80	0.009309	0.08987
100	0.009207	0.08716
120	0.009135 ,	0.08511
. 160	0.009046	0.08219
200	0.008992	0.08102
300	0.008902	0.07655
400	0.008832	0.07406
500	0.008776	0.07217
600 -	0.008726	0.07062
700	0.008680	. 0.06931
800	0.008639	-0.06818
900.	0.008608	0.06724
$\therefore 1,000$	0.008574	0.06636

R is in lb ., S in sq. ft. and V in knots.
f is for sea water; for fresh water multiply by 0.975 .

REYNOLDS NUMBER
Reynolds discovered the different laws governing laminar or streamline flow and turbulent or non-streamline flow and established the critical velocities at which these changes occurred. His formula for the lower critical velocity in straight paralled pipes and which is applicable to all fluids is $V_{c}=\frac{2000 \mu}{d \rho}$ where d is the diameter. The above formula can be written as $V_{c}=\frac{2000 \nu}{d}$ and differs from that already discussed (Equation 2) only by the substitution of d for L. With a parallel pipe, the mean velocity must remain constant. The actual velocity will vary from zero at the walls to a maximum at the centre or towards the centre in the case of large diameter pipes of short length. Both the mean velocity and the perimeter of the pipe are controlled by the diameter, hence the primary importance of d. In the case of long planks or of ship forms there is no such restrietion and the boundary layer (to be described later) can be regarded as a diverging pipe causing reduced velocity gradients with increase of length. The governing linear dimension is therefore length and not girth or draught. If a turbulent fluid is introduced into a pipe line at such a rate of flow that the Reynolds number is below the lower critical velocity the eddies will die out and the flow become streamline. A more important point for naval architects is the higher velocity at which the flow is definitely turbulent. For full models the Reynolds number for this is probably about $4 \times 10^{\circ}$ and for fine models about $6 \times 10^{6 *}$. The somewhat astronomical size of Reynolds number has militated against its general use. A convenient way of quickly calculating the R_{n} value is to base it on that of a ship of 100 feet and 7.384 knots. The R_{n} value for such a ship in salt water at 15 deg. C (59 deg. F.) is 1.0×10^{n}. For a ship of different speed and length, it is then only necessary to multiply by the new speed and new length and to divide by the old figures. Thus the R_{n} for a ship of $400 f$. and 18 knots in 15 deg. C. salt water would be $9.75 \times 10^{\circ}$.

The above relation will be found to simplify the use of Reynolds number in the normal case of standard temperature cenditions. If R_{n} is to be calculated $a b$ initio, speeds must, of course, ibe in ft. per sec.

GEBERS' EXPERMMENTS

After Lord Rayleigh's demonstration of the connexion between the Froude number and the Reynolds number, there was an uneasy feeling that the latter ought to be used as a basis for the estimation of surface friction, despite the apparent success of the empiric formula $R=f S V^{n}$. Dr. G. S. Bakert in 1915 was one of the first to plot friction on a basis of R_{n}. The matter has more recently assumed great importance for two reasons. There have been the publication of numerous friction "lines" and formulæ by Gebers, Prandll, Schlichting, Von Karman, Hiraga, Schoenherr and others. In addition, there is an increasing body of evidence that under certain

[^0]special conditions of length, speed and surface condition, the corlventional methods give results that are not in harmony -ith the recorded thrusts and powers.

Dr. Friedrich Gebers carried out an extensive series of friction tests in the Vienna tank. Starting with the idea that the Froude results contained a certain amount of residual aesistance, Gebers took very speejal precautions to ensure smooth and straight surfaces with well faired endings. The results obtained did show an appreciable reduction from Froude's coefficients but this was due primarily to the greater smoothness of Gebers' models.

Gebers found that if he ignored some specially low readings at low R_{n} walues the remaining results could be expressed by the formula (put into English units): -

$$
C_{1}=\frac{R_{t}}{\frac{\rho}{2} S V^{2}}=0.02058\left(R_{\mathrm{w}}\right)^{-1}
$$

If this expression is plotted on $\log -\log$ scale, it gives a straight line as in Fig. 1.

FIG. 1-Curves of skin friction resistance
The abscissxe are Reynolds numbers and the ordinates C_{0} In the above formula R_{1} is in 1 b ., S in sq. ft., and V in ft . per sec . Suppose one examines the deviation from the Froude values for a typical case. Let R_{11} be 4.6×10^{6} and the length of vessel 200 feet. Then by re-arranging the relation already given, $V=\frac{7.384 \times 4.6 \times 100}{200}=16.98$ knots. If the vessel is 500 feet long, the speed would be $7.384 \times .4 .6 \div 5=6.795$
knots. The calculated resistances per sq. ft . are then as
follows: (1) By Gebers formula $R_{f}=1.391 \mathrm{l}$. for 200 feet and 16.98 knots.
(2) By Fraudes formula $R_{f}=1.581 \mathrm{~b}$. for the above conditions.
(3) By Gebers formula $R_{f}=0.22 \mathrm{lb}$, for 500 feet and 6.795 knots.
(4) By Froudes formula $R_{j}=0.29 \mathrm{lb}$. for the above conditions.
The very considerable difference from the Froude values will be noted.

LAMINAR AND TRANSITIONAL FLOW

The probable critical value for Reynolds number for fine models has been given as 6×10^{6}. Plane surlaces for friction tests are nearest to the finest possible form so that the shother surfaces used by Froude and Gebers were well within the danger zone for transitional flow. The equation for laminar flow has been established by Blasius as $C_{y}=1.327 \mathrm{R}_{\mathrm{A}}^{-1}$ and is shown in Fig. 1. It follows that a high index n or a low coefficient in the Froude formula is prima facie evidence of transitional flow, since the coefficient C_{1}, has to rise from the Blasius curve during the transitional régime.

If the Froude results given in Table 4 are examined, it will be seen that the tin foil surface shows these indications of transitional flow for the shorter lengths. The tin foil was noted as being appreciably smoother than the other surfaces, so the reason for some of Froude's "perplexing anomalies" seems clear. Lackenby in 1937 gave canvincing evidence of the existence of transitional flow in both Froude's and Gebers' experiments. By plotting the actual trial spots in $\log -\log$ form Lackenby showed that at low R_{n}. values the eurves were definitely drooping below straight lines drawn through the high R_{n} spots.

"SMOOTH-TURBULENT" FRICTION LINES'

This somewhat contradictory description refers to fully turbulent flow over ideally smooth surfaces. Von Karman realized the need for completely turbulent flow at low R_{u} numbers if a satisfactory basis for extrapolation is to be obtained. His curve is higher than that of Gebers at low R_{n} values bus falls under it at high R_{u} values. This would give a still lower estimate of skin friction, whereas trisl reports seem to show that this would be inadmissible. Schoenherr from an analysis of existing data and certain trials of his own produced a formula $\frac{0.242}{\sqrt{ } C_{1}}=\log _{i p}\left(R_{n} C_{i}\right)$. The . Prandtl-Schlichting formula is $C_{1}=0.455 \log _{10}\left(R_{11}\right)^{-2.58}$. This gives almost identifriction "linies"

Table 5.-Modern

Reynolds' number R_{n}.	$\underline{\log } \mathrm{R}_{\mathrm{n}}$	Resistance in lb . $\rho / 2 S V^{2}$			
		Gebers	Schoenherr	Prandt-Schlichting	Lackenby*
$2 \longdiv { \times 1 0 6 }$	6.0	0.00366	0.00441	0.004470	0.00495
\%162 $\times 106$	$6 \cdot 5$	0.003169	0.003567	0.003637	0.00401
1×107	7.0	0.002744	0.002937	0.003004	0.00328
3162×107	7.5	0.002377	0.002452	0.002514	0.00271
1×108	8.0	0.002058	0.002073	0.002128	0.00225
3.162×108	8.5	0.001782	0.001772	- 0.001820	0.00190
1 $\times 100$	$9 \cdot 0$	0.001544	0.001532	0.001571	0.00162
$\int 162 \times 10^{9}$	9.5	D.001336	0.001333	0.001366	0.00140
+1010	$10 \cdot 0$	0.001157	0.001172	0.0 .001197	0.00123

${ }^{3}$ Modern Methods for Computing the Surface Friction of Ships

cal results to the Schoenherr formula and is shown in Fig. 1. The values for four friction lines are given in Table 5 and it will be noted that the differences are very small for the normal werking range, despite the apparent large variation in the formula.
.
BOUNDARY LAYER FLOW CONDITIONS
It is assumed that all measurable frictional resistance takes place within a relatively narrow belt of water termed the "boundary layer" since the velocity of flow the outer fringe is approximately that of the fluid. The boundary layer can be imagined as consisting of a number of thin stream bands each with gradually decreasing velocity from the surface to the outer fringe. Normal pressures are transmitted without loss across the stream bands, but no tangential stress is assumed beyond the outer boundary.

Flow within the boundary layer can be-entirely laminar, mainly turbulent, or entirely turbulent. The various changes are shown in diagrammatic form in Fig. 2 which exaggerates the thickness of the laminar film for the sake of clearness.

*) ; Euc, 2-Flow withiz the boundary layer

If the made is short there is a serious risk of laminar or at all ent of trapsitional flow near the bow. When laminar flow trest down there is a thickening of the boundary layer and aporyion of the original laminar boundary layer will continue as thin bminar film which may be less than $1 / 1,000$ inch in thet quess.' The layer then continues in what is called the "opiodth turtulem: conditign, If there are roughnesses exceodut bre liminar film, the 委tier will break down in wake of thetroughtieteos The film will be re-formed providing there is a frucient lingth of smooth portion.
Howing of its extrepac thinness, the laminar film cannot be fertected by Htot-tube theisurements. Any such measurements are taken in the ghyolant area gutside the film and when taken of close as possib) to the surface, they indicate a velocity of etbout 50 per cent of that of the hull or surface. The inferences to berdisine ate that (1) about 50 per cent of the total variation ha velecity at any section of the boundary layer must occur with the thin laminar hilp and (2) that all momentum changes can be considered as taking place within the turbulent region outside the film and affecting the emaining 50 per ceet of the velocity.
important experiments on the flow through artificiall roughened pipes were carried out by Nikuradsef at Gottinget Pipes of various diameter were coated with sand of differ. rearies of coarseness. The scale of roughness was taken, ís being represented by the factor ${ }_{\sqrt{2}}^{r}$ where r is the radius of 音e pipe and A is the average height of the sand grains. The resulis of the teats may be summarized as follows:-
(i) At sufficiently low Reynolds numbers, the resistannce curve followed the ofdiniary curve tor laminar-thw over smooth surfaces.
(2) Laminar flow broke down at the same R_{n} values for ill grades of roughness.
(3) The resistance coefficient followed down the smoothturbalent line for considerable range of R_{n} and then becume constant.
(4) The coastest grade of coatings gave coefficients that passed directly from the transitional flow , period yegion to a constant vilue and did not follow the smooth-turfurient line at all.
The infurences to be ctrawn are as follows:-
(a) Roughness has no effect on resistance provided the flow remained laminar.
(b) So long as the roughness does not protrude through the thin laminar layer film at high R_{n} values or through laminar boundary layer at low R_{n} values, the surface remains "hydraulically smooth" and there is no increase in resistance.
(c) Outside the limits indicated in (a) and a certain transitional period the resistance coefficient for any grade of roughness becomes constant at all values of R_{n}. This implies that at sufficiently high speeds, the effect of viscosity becomes negligible in comparison with that of roughness.

COMPARISON OF FROUDE'S CONSTANTS WITH MODERN FORMULATIONS
If the Froude formula $R_{f}=f S V^{1825}$ is inserted in the equation for the resistance constant, the latter can be written as $C_{f}=\frac{f S V^{1.825}}{\frac{\rho}{2} S v^{2}}=\frac{f}{2.824 V^{0.175}}$.

In the above equations $V=$ speed in knots and $v=$ speed in ft . per sec. With the Froude constants, f was seen to vary with length. By calculating C, from the above equation and taking a fixed length and varying speeds, a series of values are obtained which correspond with definite Reynolds numbers. Plotted in log-log form these values lie on a straight line as in Fig. 3. Thus at 400 feet length $f=0.008832$ and at 20 knots R_{n} by the relation method already stated $=1 \cdot 0 \times \frac{400}{100}$ $\times \frac{20}{7.384}=1.085 \times 10^{\prime}$. Hence $C_{f}=0.00185$.

In this way a series of parallel straight lines will be obtained each corresponding to some fixed length. If the Froude lines are accepted as being reasonably accurate for normal ship surfaces and the smooth-turbulent line for ideal surfaces, any differenices must be due to roughness. Also, no fixed constant will bring the two methods into agreement, except at one length. It will either be too great at short lengths or too small at long lengths.

- Fig. 3 can be used for the calculation of surface friction by either the smooth-turbulent line ant roughness corrections or by the Froude constants. Each intersection of a Froude line and an R_{n} ordinate corresponds with a definite speed. Fixed speed lines can thus be drawn and they enable the diagram to be used without vering to first work out the R_{n} value.

Suppose one requires the fyictional horse-power on a Froude constant baets for 15 knots and a 400 -feet shif of 9,500 tons. The C, value from Fig. 3 is 0.00195 ank the wetted surface, is $30,000^{\prime}$ sq. ft. Conversion factors will be needed as the C_{f} values are for ft . pèr sec. These factors are as follows :Resistance, R in lb. $C_{9} \rightarrow \frac{\rho}{2} S{ }^{2}\left(\frac{6080}{3600}\right)^{2}=2.824 C_{f} S V^{2}$ Power, f.h.p. $=C$, ${ }^{4} \frac{1}{2} S V^{\prime} \times\left(\frac{6080}{3600}\right)^{2}+5500=000867 C_{f} S V^{s}$ The above of tion give for 15 knots $R=37,200$ and frictional h

It is often coivenient to expreas the frictional horse-power in terms of sircular C and obtain this from C_{f} by means of a relation factol. Using the Taylor expression for wetted surface (C) $\mathrm{F}=3.7033 C_{f} c \sqrt{ } \mathrm{~L}^{*} \div \Delta \mathbf{t}^{2}$ Putting c at 15.39 this becomes (C) $=5 K C, \sqrt{ } L+\Delta$

Summing up:-
(1) Suface 4iction is not affected by the kind of surface stuch as wax, steel, tin foil or wood but only by the smoothness of that surface.
(2) There is no slip at the surface itself and all measureable frictional" resistance takes "place witnin the boundary layer.
(3) The frictional resistance of a hydraulically smooth surface can be expressed. with considerable accuracy by either the Schoenherr or the Prandt1-Schlichting

Modern Methods for Computing the Surface Friction of Ships

Fig．3－Based on a kinematic viscosity v for salt water at 15 deg．C．or $59 \mathrm{deg} . F$ ．
Frictional resistance，$R=C_{1} \frac{\rho}{2} S V^{2} \mathrm{lb}$ ．

$$
\begin{aligned}
R & =0.99 C_{7} S V^{2} \text { for salt water } \\
S & =\text { area of wetted surface, sq. } \mathrm{ft} . \\
V & =\text { speed in } \mathrm{ft} . \text { per sec. }
\end{aligned}
$$

Froude＇s coefficients
Geber＇s line
Shoenherr＇s smooth－ turbulent line
formula．Additional roughness coefficients have then to be added to C ，to represent actual ship surfaces． Precise values for these are a matter of great diffeulty．
（4）The frictional resistance of a smooth freshly painted ship surface can be expressed with reasonable accuracy by the Froude formula $R=f S V^{1.825}$ where f has the values of Table 4（a）．At least 6 per cent must，how－ ever，be added to represent the resistance of rivets and plate edges，etc．，on normal commercial vessels．
At the recent fonference of towing tank superintendents， the American delegation made a strong plea for the adoption of the Schoenherr method with the fixed roughness addition of $0 \cdot 0004$ ．This addition was admitted to be only tenkative．The British speakers took the view that while one might have to come to a smooth－turbulent method，the time foas hardly ripe as it was not yet certain what was the precisa formula to be used．It was therefore agreed that for the present bott the Schoenherr and the Froude methods could be used．The whole question is to be brought up at the next conference when further evidence will be available．

These two methods ifit be used for the next few years． Both cannot be equally correct，so jt seemed desirable to try and Bevise a methof of plotting surface friction which will indicate －quite slearly the differences between Scheenherr and Froude and， if possible，enable judgment to be made as to which is she more correct methed．The author suggests that one can accept the following：（1）That the law of dimertsional similarity must be followed；（2）That the standard Froude coeffioients do give＇with very considerable accuracy the resistance of the smooth freshly painted surface of a 400 feet vessel provided a suitable allow－ ance is added for rivet projection，plate edges，etc．；（3）That no ship surface can be＂hydraulically smooth＂．

The reason for postulating a 400 feet ship is that so many vessels of about this size have been tank tested，built and have given a satisfactory agreement between tank tests and trial results．Proceeding on these assumptions and from first prin－
ciples start by trying to comply with dimensitonal similarity． Both μ and g must be retained since a resistance due to bot viscosity and to gravity has to be evaluated．In air，or when very deeply submerged in water，one would not have to worry about wave－making resistance as there would be no free surface to be affected by the presşure changes consequent on diveraing the flow lines over or around an obstacle or infequatity．This would have enormously simplified the problem：Hating to retain both μ and g ，the resistance equation becom $\$$

$$
R_{F}=L^{3} V^{\prime} \rho \phi\left[\left(\frac{V L}{\zeta V}\right)^{-\phi}\left(\frac{V^{2}}{L g}\right)^{-\epsilon}\right]
$$

The indices d and e are not known and tieither is the relationship between the two expressions based respectyvely on the Reynolds number and on the Froude number．If the－slagic tionship is assumed to be additive as is usual and also that x ． units are based on R_{n} and y units are based on F_{n}

踑＂。

$$
\dot{R}_{T}=L^{2} V^{2} \rho \phi\left[火\left(R_{\mathrm{n}}\right)^{-d}+y\left(\frac{V^{2}}{\nu g} \times \frac{1}{R_{\mathrm{n}}^{*}}\right)^{-t}\right]
$$

This is based on the arithmetical relation $F_{n}=\frac{V^{s}}{v g} \times \frac{k}{R_{n}}$ This conversion may not help，but it suggests trying $\begin{aligned} & \nu g \\ & V^{2}+ \\ & \text { plot on }\end{aligned}$ \sqrt{g} as this is the relation factor by which one can conjert F_{n} usto R_{n} or vice versa．This has been done in Fig．4．Resis－ tance copefficients have beeh plotted in log－log form precisely： as for a smooth－turbulent line－and for both the Schoenherr and Froude methods．

The diagram shows atance at any point the precise difference between Schoenherr and Froude．One can read off at any speed the C ，values to be used by either method for a ship of any given length．The information is the same as in Fig． 3 but it is presented in a clearer fashion

On examination of the diagram it whil be noted that for short lengths，both methods show very similar coefficients which

Modern Methods for Computing the Surface Friction of Ships

Fig. 4-Based on a kinematic viscosity v for salt water at 61 deg. F.
Frictional resistance, $R=C_{t} \frac{\rho}{2} S V^{2} \mathrm{lb}$.
$R=0.99 C_{f} S V^{2}$ for salt water
$S=$ area of wetted surface, sq. ft.
$V=$ speed in ft. per sec.
$R=$ frictional resistance, lb .

Schoenherr's coefficients $---\frac{\mathbf{S}}{\mathbf{F}}-1$

vary very papidly with length. At long lengths theic are very large differences. The Fhoude values are varying very slowly with lengthy whereas the Schoenherr values are still varying more pipidly, Thus in going from 20 feet to 400 feet, the Sohooidien edecrease is about 34 per cenf compared with about 16 ber cent for Froude. In going from 400 to 1,000 feet the Schounherr decrease is about 10 per cent against only 3 per chat for Froude. These diferences are obviguily very serious.

The effect of roughness has been represerited in the dimensiomal formula by a roughness ratio in the form of height of inquasity divided by length. It is then non-dimensional and should only affect C_{l} by a numerical addition. Now paint is applied in the same grades, by the same paintors and by the seme brusts for both short and long vessels. Paint texture ratio thw decresses by about 60 per cent in going from a 400 -fty...3p to a 1,000 -feet vessel.

Rourgness due to rivet projection and plate edges will be appeoximately proportional to the thickness of the immersed stin plitine 符 the latter is assumed to be about 0.25 inch at 100 tate 0×52 inch at 400 feet and 0.71 inchi at 600 feet, thi would be in line with normal commercial practice. This wound give felative roughness ratios stik decreasing with length but 就 about hatif the rate of the paint ratio.

- Whatever proportion of the total C_{f} is assumed to be affected by hinesg toughiness changes it still follows that for a fixed and consthat foughness ratio, the 1,000 feet line must be Ilfted by freater amount than for the 400 feet line. This would deciease the already small gap between the two lines and seinder f in the Froude formula almost entirely independent of length and verging mainly with roughness retio. This relative inderpenience is not a theoretical result, it can be deduced by mere inspection of the Froude standard constants in Table 4. This will show the variation in f in going from 400 feet to 1,000 feet to be just 3 per cent or, as shown by Fig. 4. If, on the other hand, one is using Schoenherr for say 20 knots in both
cases, there is first a deduction of about 10 per cent for length in place of 3 per cent and then a very large addition for roughness. For a fixed addition of 0.0004 for the case in point about 30 per cent is being added.

Summing up the position, it can be said that the Froude lines for long vessels are empiric rough-turbulent lines which are not very far from the truth but which involve the assumption that the roughness addition nearly equals the length deduction and so nearly cancels it. The Schoenherr line is correct dimensionally for the smooth surfaces of models, but it involves the use of very large corrections. If these are fixed amounts, the combined formula can no longer be dimensionally correct for two reasons: (1) The grade of roughness should, as shown, decrease with length, and (2) some account should be taken of the parasitic wave-making effect of roughness at high speed length ratios.

Doubt may be entertained about the necessity of the second correction, but this point could be easily cleared up by tank experiment. The late Admiral Dyson produced curves showing the enormously increased appendage resistance at certain speed length ratios. There seems no reason to suppose that surface roughness does not produce a similar effect though this has been disregarded by both Schoenherr and Froude. If one accepts, as the author would propose, the necessity for such a correction then it must be based on the Froude number not on the Reynolds number.

What seems required is a basic rough-turbulent line to include some standard grade of roughness expressed as a ratio of the length. The quite small corrections needed for difference in roughness ratio could be made appropriate to the length and character of the surface. This is a job for research workers and the author can only make suggestions which may or may not be helpful. It would seem, however, that one ought to abandon trying to use a unique line connecting both a model and a ship and equally applicable at all Revnolds num-

Modern Methods for Computing the Surface Friction of Ships

Fig. 5-Based on a kìnematic viscosity v for salt water at 59 deg. F.
(Lyle and Hosking values)
bers. Coming to the ship, V and L in the Reynolds number can be divorced by plotting logarithmically on $\frac{V^{3}}{\nu g}$. It is then possible to consider one length only at a time as with Froude and the base line can be marked off in terms of both R_{n} and F_{n} or, if preferred, as R_{n} and $\frac{v}{\sqrt{L}}$. It is known that at low $\frac{V}{\sqrt{L}}$ values the effect of wave-making is very small so the gap at lowi values should be merely a numerical addition dependent on grade' of roughness. At very high $\frac{V}{\sqrt{L}}$-values, the gap should also be a numerical addition since wave-making effect should again be nearly constant.

The mean line should in some way diminish with speed. This is indicated by the general trend of Figs. 4 and 5 and by the following consideration. Any resistance varying with the Froude number can be expressed arithmetically in terms of the Reynolds number by means of the relation factor $V^{3}:-1 g$ as in the equation on p. 287. It should vary, therefore, with $\frac{1}{\mathrm{R}_{n}}$ that is a decrease with speed.

In Fig. 5, the Schoenherr and Proude lines for 400 feet have been lifted from Fig. 4 and provided with additional scales for both R_{n} and F_{n}. This combination can only be shown on a fixed length basis and it serves to remind one that if a resistance becomes independent of the Reynolds number it must also be independent of the Froude number. The practical naval architect is mainly interested in the fixed length of some ship or design and for this reason it is hoped that Figs. 3, 4 axd 5 will be found useful.

POSTSCRIPT
Since this paper was written, there have been some very important developments in connexion with surface friction. Walker, Allan and Conn (see references) have shown quite clearky that laminar flow may persist to much higher Reynolds numbers than those formerly thought to be limiting values. It has also been shown that the liability to laminar flow is specially marked with rather full models running at deep draughts. This has been proved, not merely by the abnormal increase of resistance when trip wires or other turbulence stimulators are used, but also visually by means of chemical detection nethods. These latter are described by Walker.

The general condition favouring the persistence of laminar flow is a negative pressure gradient, that is one in which the pressure decreases in the direction of motion. The potential flow is then accelerating and the boundary layer tends to become
thinner. This delays the transition point because, as already seen (Fig. 2) a boundary layer becomes thicker and not thinner at the transition point. A sharply raking bow also seems to delay transition.

It is probable that all tank models will in futute be fitted with trip wires, cr at least check tested to ensure that they are not needed. These precautions are no doubt more necessary with commercial models than with naval mojets which are usually of finer form and higher speeds. Fears have been expressed that, owing to the absence of turbulefter stimulatign in the past, many of the earlier tank-experiments and the derived data are inaccurate. This is probably an over-statememt but the early experiments on bow form and ande of entrance, etc., must be regarded with some suspicion until repeated with turbulence stimulation. Mr. Emerson of the N.P.L. is now doing work of this character. It is also possible that some of the residuary resistance values in Taylor's standard series have bsen under-estimated owing to laminar flow. It is known that Taylor had a masterful way in fairing out "rogue spots" and it is quite possible that these were sometimes connected with a delayed transition.

The other development that should be chonicled is due to Telfer. His "Extrapolator" method did not meet with mueb approval when it was first introduced, but in 1949 Dr . Telfer put forward a greatly improved version. A fundamental assumption is the very reasonable suggestion that one should divide turbulent friction into two portions, one affected by viscosity (but not, of course, by gravity) gmid the "ther by neither viscosity nor gravity. Putting this idea through the dimensional mill, one can add a fourth equation to the thres given on p. 284. This is:- $R=L^{2} V^{2} \rho k_{\lambda} \quad \ldots, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ Adding this to the viscosity effect equation (2), one gets for the combined equation:-

$$
R=L^{2} V^{2} \rho\left(k_{1}+k_{2}\left[\frac{v}{L V}\right]^{\mathrm{d}}\right)
$$

From Gebers and other fesults Telfer deduced the following values, $k_{1}=0.0012, k_{2}=0.34$ and the index $\mathrm{d}=\frac{1}{3}$. The specific resistance coefficient according to Telfer should therefore be:-$C_{l}=0.0012+0.34\left(\mathrm{R}_{\mathrm{n}}\right)^{-\mathrm{t}}$.
This formula will be found to give almost identical values to those of Schoenherr at about $\mathrm{R}_{\mathrm{n}}=4 \times 10^{\circ}$ and at about $\mathrm{R}_{\mathrm{n}}=10^{\circ}$, that is at about the normal small model range and also at about the normal ship range. At intermediate points, the Telfer values lie rather below either the Schoenherr or Prandtl-Schlichting values.

Dr. Telfer's treatment of roûghness is on somewhat similar lines. As with his "Extrapolator" values, he plots the additional

Modern Methods for Computing the Surface Friction of Ships

roughness $C_{f r}$ on a basis of the inverse cube root of the Reynolds number. He then finds that for most actual ships the values lie between a "unity roughness ray" having the equation $C_{f r}=0.34\left(R_{n}\right)^{-1}$ and a "double roughness ray" of $C_{f r}=0.68\left(\mathrm{R}_{\mathrm{n}}\right)^{-i}$

The author has pleaded for a basic "rough-turbulent" line which would avoid the very large increases that are necessary in going from a smooth model surface to an actual plated ship hull. If one was to accept the Telfer "unity roughness ray" for this purpose one would have an expression:-

$$
C_{1}=0.00112+0.68\left(\mathrm{R}_{n}\right)^{-1}
$$

Such a line would give values remarkably near the Froude values and would have the advantages of dimensional accuracy and great simplicity. It would also avoid a fundamental defect of all one term lines which reduce C, to zero value at an infinite R_{n}-an obvious absurdity.

Space precludes examination of Telfer's further and very ingenious suggestions for predicting ship $C_{\text {r }}$ direct from model $C_{r r}$ that is without first having to separate out the frictional component. Time alone will show if this is destined to supersede the conventional Froude method.

REFERENCES

Proude, W. 1874. Institution of Naval Architects, Transactions, Volume 15, p. 36, "On Experiments with H.M.S. Greyhound".
Froude, R. E. 1888. Institution of Naval Architects, Transactions, Volume 29, p. 304, "On the 'Constant' System of Notation of Results of Experiments on Models used at the Admiralty Experiment Works".
Nikuradse. Ver Deutsch. Ing., Forschungsheft, 361 (1933).
Colebrook and White. Proc.Roy.Soc., Volume 161, "Experiments with Fluid Friction in Roughened Pipes"
Reynolds Experiments. Phil.Trans., 1883.
Prandtl. N.A.C.A. Tech. Memo. 452, "On the motion of fluids with very little viscosity"
Prandtl and Tietjens. 1934. (McGraw Hill, New York), "Applied hydro-and aero-mechanics"
Gebers, F. 1919. Schiffbau, Volume 22, "Das aehnlichkeitsgesetz Bei in wasser Geradlinig Fortbewegter Platten".
Stanton, Dr. T. E. and Marshall, D. (Miss). 1924.
"Engineering", Volume 117, p. 718, "The Effect of Length on the Skin Friction of Flat Surfaces".
Schoenherr, K. E. 1932. Society of Naval Architects and Marine Engineers, N.Y., Transactions, Volume 40, p. 279, "Resistance of Flat Surfaces Moving through a Fluid".
Telfer, E. V. 1928/9. North East Coast Institution of Engineers and Shipbuilders, Transactions, Volume 44, p. 115, "Frictional Resistance and Ship Resistance Similarity
Kempf, G. 1936. Society of Naval Architects and Marine Engineers, N.Y., Transactions, Volume 44, p. 195, A Study of Ship Performance in Smooth and Rough Water".
Hiraga, Y. 1934. Institution of Naval Architects, Transactions, Volume 76, p. 284, "Experimental Investigations on the Resistance of Long Planks and Ships"
Bairstow, L 1934. Institution of Naval Architects, Transactions, Volume 76, p. 327, "Skin Friction Correction".
Abel, Sir Westcott. 1934. Institution of Naval Architects, Transactions, Volume 76, p. 243, "William Froude".
Payne, M. P. 1936. Institution of Naval Architects, Transactions, Volume 78, p. 93, "Historical Note on the Derivation of Froude's Skin Friction Constants".
Kempf, G. 1937. Institution of Naval Architects, Transactions, Volume 79, p. 109, "On the Effect of Roughness on the Resistance of Ships"
Lackenby, H. 1937. Institution of Naval Architects, Transactions, Volume 79, p. 120, "Re-analysis of William Froude's Experiments on Surface Friction, and their Extension in the Light of Recent Developments".
Gertler, M. U.S.N. Report 576, "The prediction of the effective horse-power of ships by methods in use at the David Taylor Model Basin".
Walker, W. P. 1949. Institution of Naval Architects, Transactions, Volume 91, p. 220, "Detection of Laminar Flow on Ship Models"
Telfer, E. V. 1950. Institution of Naval Architects, Transactions, Volume 92, p. 1, "Frictional Resistance and Ship Resistance Similarity"
Allan, J. F. and Conn, J. F. C. 1950. Institution of Naval Architects, Transactions, Volume 92, p. 107, "Effect Laminar Flow on Ship Models"

,

[^0]: * See postscript, p. 289.
 + Baker, G. S. 1915. Trans.N.E.C.I.E.S., Vol. 32, p. 41, 'Notes on Model Experiments".

