

SCHOENHERR FRICTION COEFFICIENTS

[SMOOTH SURFACE TURBULENT FLOW] UNIVERSITY OF MICHIGAN NAVAL TANK

Department of Naval Architecture and Marine Engineering University of Michigan 450 West Engineering Building Ann Arbor, Michigan

Re 1-5,5

ķ

 $\frac{0.242}{\sqrt{Cf}} = \log_{10} (\text{Re} \times C_f)$

× 105				-JCf							
Re 10 ⁵ ×	0.00	0.01	0.02	0.03	0.04	0.05	0.06	. 0.07	0.08	0.09	0.10
1.0	7.179	7.163	7.146	7.130	7.114	7.098	7.083	7.067	7.052	7.037	7.022
1.1	7.022	7.008	6.993	6.979	6.965	6.951	E .937	6 .923	6.910	6 .896	6.883
12	6883	6.870	6.857	6.844	6 .831	6.819	6.806	6.794	6 .782		6.758
1.3	6.758	6716	6.735	6.723	6.712	6.700		6.678		6.656	6.645
1.4	6.645	6.635		6 613		6-593		6.572		6.552	6.543
1.5	6.543	6.533	6 523	G.514	1	1	6485			6.458	
1.6	6.4.49	6.440	6.431		6.413		6 396				
1.7	6.362	6.354	6.345	6.337	6.329	6.321		6.305		G'.289	6.282
1.8	6.282	6.274	6.266		6.251	6 2 4 4		6.22.9	6.222	6.2.14	6 207
1.9	6.207	6.200	6.193	6.186	6.179	6.172	6,:65		6.151	6.144	6.137
2.0	6.137	6.131	6.124.	6.117	6.111	6.:04	6.098		6.085	6.078	6.072
2.1	6.072	6.066	6.060	6.053	6.047	6.041	6.035		6 .023	6.017	6011
2.2	5.011	6.005	5.999	5.993	5.987	5.982	5. 976	5.970	5964	5.959	5 953
2.3	5.953	5.948	5.942	5.936	5.931	5 926	5 920	5.915	5 9 0 9	5.904	5.899
2.4	5.899	5.893	5.888	5.883	5.878	5 872	5 837	5.862	5 857	5.852	58-7
2.5	5.847	5.842	5.837	5.832	5.827	5.822	5817	5.812	5 807	3.802	5.798
-2,6	5.798	5.793	5.788	5.783	5.779	5.774	5 769	5.765	5 760	5756	5.751
2.7	5.751	5.146	5.742	5.737	5.733	5 728	5.724	5720	5.7:5	5.711	5.706
28	F.706	5.702	5.698	5.694	5.689	5.685	5.681	5 676	5 672	5.668	5.664
2.9	5 664	5 660	5.656	5.652	5.648	5.643	5.639	5 635	5.631	5.627	5.623
3.0	5.623	5.619	5.615	5.612	5.608	5.604	5.600	5.596	5.592	5.588	5.584
3.1	5.584	5.581	5.577	5.573	5.569	5.566	5.562	5.558	5 554	5.551	5.547
3.2	5.547	5.544	5.540	5.536	5.533	5.529	5.525	5.522	5518	5.515	5.511
3.3	5.511	5.508	5.504	5.501	5.491	5.494	5.490	5.487	5.484	5.480	5,477
3.4	5.477	5.474	5.470	5.467	5.464	5.460	5.457	5.4.54	5.450	5.447	5444
3.5	5.444	5.440	5.437	5.434	5.431	5.428	5.424	5.421	5.418	5.415	
3.6	5.412	5.409	5.405	5.402	5:399	5.396 5.366	5.393 5.363	5.390 5.360	5.387 5. 35 7	5.384 5.354	5.381 5.351
3.7	5.381 5.351	5.378 5.348	5.315	5.372	5.369 5.340	5.337	5.334	5.331	5.328	5.325	5.322
3.8	5.322	5.319	5.317	5.314	5.340	5.308	5.305	5.303	5.300	5.297	5.294
<u>3.9</u> 4.0	5.294	5.292	5.289	5 286	5.284	5.281	5.278	5 275	5 273	5.270	5.267
-4.1	5.267	5.265	5 262	5.2.59	5 257	5254	5 252	5 249	5 246	5.244	5.241
4.2	5.241	5.239	5.236	5.234	5.231	5.228	5 226	5223	5 221	5.218	5.216
4.3	3.216	5.213	5 211	5.208	5 206	5 204	5201	5199	5 196	3194	5.191
4.4	5 191	5-189	5186	5:84	5182	5179	5 177	5.174	5 172	5110	5.167
4.5	5167	5165	5163	5160	5158	3156	5.153	5151	5149	3 146	5.144
4.6	5.144	5 142	5140	5137	5.135	5.133	5131	5128	5.123	5 124	5.122
4.7	5.122	5.119	5.117	5115	5.113	5.11	5108	5.100	5 104	5.102	5.100
4.8	5.100	5.098	5.095	5.093	5.091	3 089	5 087	5.085	5 082	5 080	5 078
4.9	5 078	3 076	5.074	5072	5 070	5 0 68	5 0 6 8	5064	5 062	5 0 5 9	5 0 5 7
5.0	5 057	5.055	5 053	5 051	5049	5047	5045	5043	5041	5 0 39	5 037
5.1	5.037	5.035	5,033	5.031	5.029	5 0 27	3 025	5.02 3	5021	5.019	5017
5.2	5.017	5.015	5013	5.011	50.0	5008	5006	5004	5002	5 000	4998
5.3	4.998	4.996	4.994	4.992	4.990	4.988	4987	4985	4 983	4981	49-9
5.4	7979	4 977	4975	4 974	4.972	4 970	4 568	4 966	1.964	4 962	4 961
L						- h	Real and a second second		h	- K	.

Re 5.5 - 10 × 105

1

•

× 10-		r		t	r	T	T	1	1	1	T
Re 10 ⁸ ×	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10
5.5	4.961	4.959	4.957	4.955	4.953	4.952	4.950	4.948	4.946	4.944	4 943
5.6	4.943	4.941	4.939	4.937	4.936	4.934	4.932	4.930	4.929	4.927	4.925
5.7	4.925	4.923	4.922	4.920	4.918	4.916	4.915	4.913	4.911	4.910	4.908
5.8	4.908	4.906	4.904	4.903	4.901	4.900	4.898	4.896	4.894	4.893	4.89
5.9	4.891	4.889	4.888	4.886	4.884	4.883	4.881	4.880	4.878	4.876	4.875
6.0	4.875	4.873	4.871	4.870	4.868	4.867	4.865	4.863	4.862	4.860	4.859
6.1	4.859	4.857	4.855	4.854	4.852	4.851	4.849	4848	4.846	4.844	4.84
6.2	4.843	4.841	4.840	4.838	4.836	4.835	4 833	4.832	4.830	4.829	4.821
6.3	4 827	4.826	4.824	4.823	4.821	4820	4.818	4.817	4.815	4.814	4.812
64	4 812	4.8!1	4.809	4.808	4.806	4.805	4 803	4.802	4.800	4.799	4.797
6.5	4.797	4 796	4794	4.793	4 792	4.790	4.789	4.787	4.786	4.784	4.783
6.6	4 783	4.781	4.780	4.778	4.777	4.776	4.774	4.773	4.771	4.770	4.768
6.7	4.768	4 767	4 766	4.764	4 763	4.762	4.760	4.759	4.757	4.756	4.754
6.8	4.754	4.753	4 752	4 750	4.749	4.748	4.746	4.745	4.744	4.742	4.74
6.9	4.741	4 739	4.738	4 737	4.735	4734	4.733	4.731	4.730	4.729	4.727
7.0	4.727	4.726	4 7 2 5	4 723	4.722	4721	4719	4.718	4.717	4.715	4.714
7.1	4.714	4713	4711	4710	4.709	4 707	4 706	4 705	4 704	4.702	4 70
. 7.2	4 701	4.700	4.698	4.697	4.696	4 694	4 6 9 3	4 692	4 691	4.690	4 68
7.3	4.688	4.687	4.686	4.684	4.683	4.682	4,681	4.679	4.678	4.677	4 676
7.4.	4 676	4.674	4.673	4 672	4.671	4 670	4.668	4.667	4 666	4.665	4663
7.5	4663	4.662	4.661	4.660	4 658	4.657	4.656	4 655	4.654	4.652	465
7.6	4.651	4.650	4 649	4.648	4.646	4.645	4.644	4.643	4.642	4.640	4.639
7.7	4.639	4638	4.637	4.636	4.634	4.633	4.632	4.631	4.630	4.629	4.628
7.8	4.628	4.626	4.625	4.624	4.623	4.622	4.621	4.620	4.618	4.617	4.616
79	4.616	4.615	4614	4.613	4.612	4.610	4.609	4.608	4.607	4.606	4.605
8.0	4.605	4.604	4.602	4.601	4.600	4 599	4.598	4.597	4 5 9 6	4.595	4 5%
8.1	4 594	4.592	4591	4.590	4.589	4 588	4.587	4.586	4.585	4.584	4.582
8.2	4 582	4.581	4.580	4.579	4.578	4.577	4.576	4.575	4.574	4.573	4.572
8.3	4.572	4 570	4 569	4.568	4.567	4.566	4 565	4 564	4 563	4 562	4.56
8.4	4.561	4.560	4 559	4 558	4.557	4.556	4.554	4.553	4.552	4.551	4 550
8.5 .	4.550	4 5 4 9	4548	4.547	4.546	4 5 4 5	4.544	4.543	4.542	4.541	4.540
8.6	4.540	4.539	4.538	4.537	4.536	4.535	4.535	4.533	4.532	4.531	4.530
8.7	4.530	4.529	4.528	4.527	4.526	4.525	4.524	4.523	4.522	4.521	4.520
8.8	4.520	4.519	4.518	4.517	4.516	4.515	4.514	4.513	4.512	4.511	4.510
8.9	4.510	4.509	4.508	4.507	4.506	4.505	4.504	4.503	4.502	4 5 0 1	4.50
9.0	4.500	4.499	4.498	4.497	4.496	4.495	4.494	4.493	4.492	4.491	4.490
9.1	4.490	4.489	4.488	4 4 8 8	4 487	4.486	4 4 8 5	4.484	4.483	4.482	4.48
9.2	4.481	4.430	4.479	4.478	4.477	4476	4.475	4 474	4.473	4.472	4 472
9.3	4472	4471	4470	4469	4.468	4 467	4466	4.465	4.464	4 463	4 46
9.4	4.462	4.461	4460	4460	4.459	4 458	4.457	4.456	4.455	4 4 5 4	4 4 5 3
9.5	4.453	4.452	4.452	4.451	4.450	4.449	4.448	4.447	4.446	4 4 4 5	4444
9.6	4.444	4.443	4442	4 4 4 2	4.441	4 4 4 0	4.439	4.438	4.4 37	4 4 36	4.435
9.7	4435	4 4 3 4	4 4 3 4	4.433	4.432	4 4 3 1	4 4 30	4.429	4.428	4427	A 4.27
9.8	4 427	4.426	4 4 2 5	4.424	4 4 2 3	4 4 2 2	4 4 2 1	4.420	4.420	4 4 19	4 418
				4.415	4414	4414	4 4 13	4.412	4 411		440

MULTIPLY TABULATED VALUES DY 10-3

4

Re 1-5.5 × 10⁶

: (

x 10*								·			
Re 10 ⁶ x	0.00	001	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10
1.0	4.409	4.401	4.393	4.384	4.376	4.368	1.360	4.352	4.345	4.337	4.330
l. I	4.330	4.322	4.315	4.307	4.300	4.293	.1286	4.279	4.272	4.265	4.258
1.2	4.258	4.252	4.245	4.238	4.232	4.226	4.219	4.213	4,207	4.200	4.194
1.3	4.194	4.188	4.182	4.176	4.170	4.165	4.159	4.153	4.148	4.142	4.136
1.4	4.136	4.131	4.125	4.120	4.115	4.109	4.104	4.099	4.094	4.088	4.083
1.5	4.083	4.078	4.073	4.068	4.063	4.058	4.054	4.049	4044	4.039	4.035
1.6	4.035	4.030	4.025	4.021	4.016	4.012	4.007	4.003	3.998	3.994	3.990
1.7	3.990	3. 98 5	3.981	3.977	3.972	3.968	3.964	3.960	3.956	3.952	3.948
1.8	3.948	3.944	3.940	3.936	3.932	3.928	3.924	3.920	3.916	3.912	3.909
1.9	3.909	3.905	3.901	3.898	3.894	3.890	3.886	3.883	3.879	3.876	3.872
2.0	3.872	3.869	3.865	3.862	3.858	3.855	3.851	3.848	3.844	3.841	3.838
2.1	3.838	3.834	3.831	3.828	3.825	3.822	3.818	3.815	3.8IZ	3.809	3.800
2.2	3.806	3.802	3.799	3. 79 6	3.793	3.7 9 0	3.787	3.784	3.781	3.778	3.775
2,3	3.775	3.772	3.769	3.766	3.763	3.760	3.758	3.7 <i>55</i>	3.752	3.749	3.746
2.4	3.746	3.743	3.741	3.738	3.735	3.732	3.730	3.727	3.724	3.72?	3.719
2.5	3.719	3.716	3.714	3.711	3.708	3.706	3.703	3.700	3.698	3.695	3.693
2.6	3.693	3.690	3.688	3.685	3.683	3.680	3.678	3.675	3.673	3.670	3.668
2.7	3.668	3.665	3.66 3	3.661	3.658	3.656	3.654	3.651	3.649	3.646	3.644
2.8	3.644	3.642	3.640	3.637	3.635	3.633	3.630	3.628	3.62 6	3.624	3.622
2.9	3.622	3.619	3.617	3.615	3.613	3.611	3.608	3.606	3.604	3.602	3.600
3.0	3.600	3.598	3.596	3.594	3.592	3.589	3.587	3.585	3.583	3.581	3.579
3.1	3.579	3.577	3,575	3.573	3.571	3.569	3,567	3.565	3.563	3.561	3.559
3.2	3.559	3.557	3.555	3.553	3.551	3.549	3.547	3.546	3.544	3.542	3.540
3.3	3.540	3.538	3.536	3.534	3.532	3.530	3.529	3.527	3.525	3.523	3.52
3.4	3.524	3.520	3.518	3.516	3.514	3.512	3.510	3.509	3.507	3.505	3.503
3.5	3.503	3.502	3.500	3.498	3.496	3.495	3.493	3.491	3.490	3.488	3.480
3.6	3.486	3.484	3.483	3.481	3.479	3.478	3.476	3.474	3.473	3.471	3.47
3.7	3.470	3.468	3.466	3.465	3.463	3.461	3.460	3.458	3.457	3.455	3.45
3.8	3,453	3.452	3.450	3.449	3.447	3.4 46	3.444	3.442	3.441	3.439	3.438
3.9	3.438	3.436	3.435	3.433	3,432	3.430	3.429	3.427	3.426	3.424	3.42
4.0	3.423	3.421	3.420	3.418	3.417	3.415	3.414	3,412	3.411	3.410	3.40
4.1	3.408	3.407	3.405	3,404	3.402	3.401	3,400	3.398	3.397	3.395	3.39
4.2	3.394	3.393	3,391	3, 390	3,388	3,387	3,386	3.384	3.383	3.38Z	3,380
4.3	3.380	3.379	3.377	3.376	3.375	3.373	3.372	3.371	3.369	3, 368	3.36
4.4	3.367	3.365	3.364	3.363	3.362	3,360	3.359	3.358	3.356	3.355	3.354
4.5	3,354	3.352	3351	3,350	3.349	3.347	3 .346	3.345	3.344	3.342	3.34
4.6	3.341	3,340	3.339	3.337	3.336	3.335	3.334	3.333	3.331	3.330	3.329
4.1	3.329	3.328	3.326	3.325	3,324	3.323	3.322	3.320	3.319	3.318	3.317
4.8	3,317	3.316	3.314	3.313	3.312	3.311	3.310	3.309	3.308	3.306	3,30
4.9	3,305	3.304	3.303	3.302	3.301	3.299	3.298	3.297	3.296	3,295	3,29
5.0	3.294	3.293	3.292	3.2.90	3,289	3.288	3,287	3.286	3.285	3.284	3,28
5.1	3.283	3.282	3.280	3,279	3,278	3.277	3.276	3.275	3.274	3.273	3.272
5.2	3.272	3.271	3.270	3,269	3.268	3.266	3.265	3.264	3.2.63	3.262	3.26
5.3	3,261	3.260	3.259	3,258	3.257	3.2.56	3. Z55	3.254	3.253	3.252	3,25
5.4	3.251	3. Z50	3.249	3.248	3.247	3.246	3.245	3.244	3.243	3.242	3.24

Re	5.5	٠	10
×	106		

1

× 10*			<u>, </u>								
Re 10 ⁶ X	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10
5,5	3.241	3.240	3,239	3,238	3.237	3,236	3,235	3.234	3.233	3,232	3,231
5.6	3,231	3.230	3.229	3.228	3.227	3.2.26	3,225	3.224	3,223	3.222	3,221
5.7	3.221	3.220	3.219	3,2.18	3.217	3.216	3.215	3.214	3.214	3.213	3.212
5.8	3.212	3.211	3.210	3.209	3.208	3.207	3.206	3.205	3.204	3.203	3.202
5.9	3.202	3.202	3.201	3.200	3,199	3.198	3.197	3.196	3.198	3.194	3.193
6.0	3,193	3,192	3.192	3.191	3.190	3.189	3188	3.187	3.186	3.185	3.184
6,1	3,184	3.184	3,183	3,182	3,181	3,180	3,179	3.178	3.;78	3.177	3.176
6.2	3.176	3.175	3.174	3.173	3,172	3.172	3,171	3.170	3169	3.168	3.167
6.3	3.167	3.166	3.166	3.165	3.164	3.163	3.162	3.161	3.161	3.160	3.159
6,4	3,159	3.158	3.157	3.156	3.156	3.155	3.154	3.153	3.152	3.152	3.151
6,5	3151	3.150	3,149	3.148	3.147	3.147	3.146	3.145	3.144	3143	3.143
6.6	3.143	3.142	3.141	3.140	3,139	3133	3.138	3.137	3.136	3135	3.135
6.7	3.135	3.134	3,133	3.132	3.132	3.131	3.130	3.129	3.128	3.128	3.127
6.8	3.127	3.126	3.125	3,125	3.124	3.123	3.122	3.122	3.121	3.120	3.119
6.9	3,119	3119.	3.118	3.117	3.116	3.116	3.115	3.114	3.113	3.113	3.112
7.0	3.112	3,111	3110	3.110	3.109	3.108	3.107	3.107	3.106	3.105	3.104
7.1	3.104	3.104	3.1 03	3.102	3.102	3.101	3.100	3.099	3.099	3.098	3.097
7.2	3.097	3.096	3.096	3.095	3.094	3.094	3.093	3.092	3.0 92	3.031	3.090
7.3	3.090	3090	3,089	3.088	3.087	3087	3.086	3.085	3085	3.084	3083
7.4	3083	3.083	3.082	3.081	3.080	3080	3.079	3.078	3.078	3.077	3.076
7.5	3.076	3.076	3.075	3.074	3074	3.073	3.072	3.072	3.071	3.070	3.070
7.6	3,070	3,069	3.068	3.068	3.067	3.066	3.066	3,065	3,064	3064	3.063
7.7	3, o 6 3	3.062	3.062	3061	3.060	3.060	3.059	3.058	3058	3.057	3.056
7.8	3056	3.056	3.055	3.054	3.054	3.053	3.053	3.052	3.051	3.051	3.051
7.9	3.050	3.049	3049	3.048	3.047	3.047	3.046	3.046	3.045	3.044	3.044
8.0	3.0 44	3.043	3.042	3.042	3.041	3041	3.040	3.039	3.039	3.038	3.037
8.1	3.037	3037	3,036	3,036	3.035	3.034	3.034	3.033	3,032	3032	3,031
8 .2	3.031	3.031	3.030	3.029	3.029	3.028	3.028	3.027	3.026	3.026	3.025
8.3	3025	3.025	3.024	3.023	3.023	3,022	3.022	3.021	3,020	3.020	2019
8.4	3019	3.019	3.018	3.018	3017	3.016	3,016	3.015	3,014	3,014	3.013
8 .5	3,013	3,013	3.012	3.012	3.011	3,010	3.010	3.009	3.009	3,008	3.008
8.6	3.008	3.007	3.006	3.006	3.005	3,005	3.004	3.004	3.003	3.002	2002
8.7	3.002	3.001	3.001	3000	3,000	2.999	2.998	2.998	2.997	2.997	2.996
8.8	2,996	2.996	2.995	2.994	2.994	2.9 93	<i>2</i> .993	2.992	2.99 2	2.991	2.991
8.9	2.991	2.990	2.990	2.989	2,988	2.988	2.987	2.987	2.986	2,986	2985
9.0	2 .985	2.985	2.98+	2.98+	2.983	2.982	2.982	2.981	2.981	2.980	2.980
9.1	2.980	2.979	2.979	2.973	2.978	2.977	2.977	2.976	2.976	2.975	2.974
9,7	2.974	2.974	2.973	2.973	2.972	2.972	2.971	2.971	2.970	2.970	2.969
9.3 9.4	2.969	2.969	2,968	2.968	2.967	2.967	2.966	2.966	2.965	2.96+	2.964
9.4	2.964	2.963	2.963	2.962	2.962	2.961	2.961	2.960	2.960	2959	2.959
9,6	2.959	2,958	2,958	2.957	2.957	2.956	2.956	2.955	2.955	2.954	2.954
२ ८	2,954	2.953	2,953	2.952	2.952	2.951	2.951	2.950	2.950	2.949	2.949
9.7	2.949	2.948	2,9 1 8	2.947	2,947	2.946	2.946	2.945	2.945	2.944	2.944
9.8 90	2.911	2.943	2.943	2.9 +2	2.942	2.941	2.941	2940	29+0	2.340	2.939
9,9	2,939	2.939	2.938	2.938	2.937	2.937	2.936	2.936	2.935	2.935	2.934
A				1 3	N						

× 107 Re		0.01	0.00	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10
10 ⁷ X	0.00	0.01	0.02	0.03	0.04	2.911	2.907	2902	2.898	2.893	2.88
1.0	2.934	2.930	2.925	2.920	2.916	2.868	2.864	2.861	2.857	2.853	284
1.1	2.889	2.885	2.881	2.877			2827	2.823	2.820	2816	2.81
1.2	2.849	2.845	2.841	2.838	2. 834 2.799	2.830 2.796	2 792	2.789	2.786	2.783	2.78
13	2.813	2809	2 806	2 802	2.767	2.764	2.761	2.758	2.755	2.752	2.74
1.4	2 780	2776	2.773 2.744	2.770	2.738	2.735	2.732	2.730	2.727	2.724	2.72
1.5	2.749	2.746 2.719	2.716	2.713	2.756	2.708	2.706	2.703	2.701	2.698	269
1.6	2:721 2:696	2.693	2.691	2.688	2.686	2.683	2681	2.678	2.676	2.674	Z.67
1.7	2.672	2.669	2.667	2.665	2.662	2.660	2.658	2.656	2.653	2 651	2.64
18	2.649	2647	2.645	2.642	2.640	2.638	2.636	2.634	2.632	2.630	2.62
	2.628	2.626	2 624	2.622	2.620	2618	2.616	2.614	2.612	2-610	2.60
2.0	2.608	2.606	2.604	2.602	2.600	2.599	2.597	2.595	2.593	2.591	258
2.1 2.2	2.589	2.588	2.586	2.584	2 582	2 580	2.579	2.577	2,575	2.573	2.57
2.3	2.572	2.570	2.568	2.567	2.565	2.563	2.562	2.560	2.558	2.557	2.5
2.4	2.555	2.553	2.552	2.550	2.549	2.547	2 5 4 5	2.544	2.542	2.541	2.5
2.5	2.539	2 538	2.536	2.534	2.533	2 531	2 530	2.528	2.527	2.525	2.52
2.6	2.524	2.522	2.521	2.519	2.518	2.516	2.515	2.514	2.512	2.511	2.50
27	2.509	2.508	2.507	2.505	2.504	2.502	2.501	2.500	2.498	2.497	2.49
2.8	2.496	2.494	2.493	2.491	2.490	2.489	2 488	2 4 86	z 485	2.484	2.48
2.9	2.482	2 481	2 480	2 478	2.477	2.476	2.475	2.473	2472	2.471	ZAT
3.0	2.470	2468	2.467	2.466	2.465	2.463	2.462	2.461	2460	2.459	24
3.1	2457	2 456	2.455	2.454	2.453	2.451	2.450	2.449	2 4 4 8	2.447	2.44
3.2	Z.446	2.444	2.443	2 442	2.441	2.440	2.439	2438	2.436	2 435	2.93
3.3	2.434	2.433	2.432	2 431	2 430	2.429	Z 428	2 427	2.426	2.424	2.42
3.4	2.423	2.422	2.421	2.420	2.419	2.4/8	2.4/7	2.416	2.4!5	2.4/4	2.4 /
3.5	2.413	2412	2.411	2.4/0	2.409	2.408	2.407	2.406	2.405	2.404	2.40
3.6	.2.403	2.402	2.401	2.400	2.399	2.398	2.397	2.396	2.395	2.394	2.39
3.7	2.393	2.392	2.391	2.390	2.389	2.388	2.387	2.386	2.385	2.384	2.38
38	2.383	2.382	2.382	2.38/	2.380	2.379	2.378	2.377	2.376	2.375	2.37
3 .9	2.374	2.373	2.372	2.372	2.371	2.370	2.369	2.368	2.367	2.366	2.36
4.0	2.365	2364	2.364	2.363	2.362	2.36/	2.360	2.359	2358	2.358	2.35
4.1	2.357	2.356	2.355	2.354	2.353	2.352	2.352	2.35/	2.350	2.349	2.34
4.2	2348	2.347	2.347	2.346	2.345	2.344	2.343	2342	2342	2.341	2.34
4.3	2.340	2.339	2.338	2.338	2.337	2.336	2.335	2.334	2.334	2.333	2.33
4.4	2.332	2.331	2.330	2.330	2.329	2.328	2.327	2.327	2.326	2.325	2.32
4.5	2.324	2.324	2.323	2.322	2.321	2.321	2.320	2.319	2.318	2.3/8	2.3!
4.6	2.317	2,316	2.315	2.315	2.314	2.3/3	2.312	23/2	2.311	2.3/0	2.31 2.30
4.7	2.310	2.309	2.308	2.307	2.307	2.306	2.305	2.304	2.304	2.303	229
4.8	2,302	2.302	2.301	2.300	2.300	2299	2.298	2298	2.297 2.290	2.296 2.289	228
4.9	2.295	2.295	2.294	2293	2.293	2.292	2.291 2.285	2.29/ 2.284	2.283	2283	220
5.0	2.289	2.288	2.287	2.287	2.286	2.285	2.205	2.204	2.205	2.276	22
5.1	2282	2.28/	2.28/	2280	2279	2.279	2.272	2271	2.270	2.270	2.20
5.2	2276	2275	2274 2268	2.274	2267	2.266	2.265	2.265	2264	2264	2.20
53	2269	2.268 2.262	2262	2.261	2.261	2260	2.259	2.259	2.258	2.253	225
5.4	2.263	E.EOL	C.C.0C	2.201	1	1		1 /			1

MULTIPLY TABULATED VALUES BY 10-3

Re 1-5.5

Re 5.5 - 10 × 107

. . .

× (0'			T	T	r	T	Т	1	T	T	1
Re 107 ×	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10
5.5	2,257	2.256	2.256	2.255	2.255	2.254	1 -	2.253	2.252	2.252	2.251
5.6	2.251	2.250	2.250	2.249	2.249	2.248	1	2.247	2.246	2.246	2.245
5.7	2.245	2.245	2.244	2.244	2.243	2.242	1	2.241	2.241	2.240	2.240
5.8	2.240	2.239	2.2.38	1	2.237	2.237	2.236	2.236	2.235	2.234	2.234
5.9	2.234	2.233	2.233	2.232	2.232	2.231	2.231	2.230	2.230	2.2.29	2.229
6.0	2. 229	2.228	2.228	2.227	2.226	2.226	2.225	2.225	2.224	2.224	2.223
6.1	2.223	2.223	2.2.22	2.2.22	2.221	2.221	2.220	2.220	2.219	2.219	2.218
6.2	2.218		2.217	2.216	2.216	2.216	2.215	2.214	2.214	2.213	2.213
6.3	2.213	2. 212	2.212	2.211	2.211	2.210	2.210	2.209	2.209	2.208	2.208
6.4	2.208	2.207	2.207	2.206		2.205	2.205	2.204	2.204	2.203	2.203
6.5	2.203	2.202	2.202	2.202	2.201	2.201	2.200	2.200	2.199	2.199	2.198
6.6	2.198	2.198	2.197	2.197	2.196	2.196	2.195	2.195	2.194	2.194	2.193
6.7	2.193	2.193	2.192	2.192	1	2.191	2.190	2.190	2.190	2.189	2.189
6,8	2.189	2.188	2.188	2.187	2.187	2.186	2.186	2.185	2.185	2.184	2.184
6.9	2.184	2.184	2.183	2.183	2.182	2.182	2.181	2.181	2.180	2.180	2.180
7.0	2.180	2.179	2.179	2.178	2.178	2.177	2.177	2.176	2.176	2.176	2.175
7.1	2.175	2.175	2.174	2.174	2.173	2.173	2.172	2.172	2.172	2.[7]	2.171
7.2	2.171	2.170	2.170	2.170	2.169	2.169	2.168	2.168	2.167	2.167	2.166
7.3	2.166	2.166	2.166	2.165	2.165	2.164	2.164	2.164	2.163	2.163	2.162
7.4	2.162	2.162	2.161	2.161	2.161	2.160	2.160	2.159	2.159		2.158
7.5	2.158	2.158	2.157	2.157	2.156	2.156	2.156	2.155	2.155	2.154	2.154
7.6	2.154	2.154	2.153	2.153	2.152	2.152	2.152	2.151	2.151	2.150	2,150
7.7	2.150	2.150	2.149	2.149	2.148	2.148	2.148	2.147	2.147	2.146	2.146
7.8	2.146	2.146	2.145	2.145	2.144	2.144	2.144	2.143	2.143	2.142	2.142
7.9	2.142	2.142	2.141	2.141	2.141	2.140	2.140	2.140	2.139	2.139	2.138
8.0	2.138	2.138	2.138	2.137	2.137	2.136	2.136	2.136	2.135	2.135	2.135
8.1	2.135	2.134	2.134	2.133	2.133	2.133	2.132	2.132	2.132	2.131	2.131
8.2	2.131	2.130 2.127	2.130	2.130	2.129	2.129	2.129	2.128	2.128	2.128	2.127
8.3	2.127 2.124	2.121	2.126	2.126	2.126	2.125	2.125	2.125	2.124	2.124	2.124
<u>8.4</u> 8.5	2.124	2.125	2.123	2.122	2.122	2.122	2.122	2.121 2.118	2.121 2.117	2.120	2.120
8.6	2.1120	2.120	2.119	2.119	2.115	2.110	2.118	2.110	2.11	2.117 2.113	2.116 2.113
8.7	2.113	2.113	2.110	2.112	2.115	2.11	2.114	2.114	2.114	2.113	2.115
8.8	2.113	2.109	2.109	2.109	2.108	2.108	2.108	2.107	2.107	2.107	2.10
8.9	2.106	2.106	2.106	2.105	2.105	2.105	2.104	2.104	2.107	2.107	2.103
9.0	2.103	2.103	2.102	2.102	2.102	2.101	2.101	2.101	2.100	2.103	2.100
9.1	2.100	2.099	2.099		2.098	2.098	2.098	2.097	2.097	2.097	2.096
9.2	2.096	2.096		2.096	2.095		2.094	2.094	2.094	2.094	2.093
9.3	2.093	2.093		2.092		2.092	2:091	2.091	2.094	2.090	2.093
9.4	2.090	2.090		2.089	2.089	2.088	2.088	2.088	2.088	2.087	
9.5	2.087	2.087		2.086	2.086	2.085	2.085	2.085	2.084	2.084	2.084
9.6	2.084	2.084		2.083	2.083	2.082	2.082	2.082	2.082	2.081	2.081
9.7	1	2.081	2.080	2.080	2.080	2.079	2.079	2.079	2.078	2.018	
9.8	1	2.078	2.077	2.077	2.077	2.076		2.076	2.076		2.075
9.9	2.075	2.075	2.074	2.074	2.074	1.073		2.073		2.072	
L					ļ						

Re 1-5.5 × 10⁸

× 10°		T	r		r	1	T	r	r	r	1
Re lo ⁸ ×	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10
1.0	2,072	2.069	2.066	2.063	2,061	1	2.055	2.052	2.050	2.047	2.045
1.1	2.045	2.042	2,039	2.037	2.034	2.032	2.029	2.027	2.025	2.022	2020
1,2	2.020	2,018	2.015	2.013	2.011	2,008	2.006	2.004	2.002	2.000	1.998
1.3	1.998	1.995	1.993	1.991	1.989	1.987	1.985	1.983	1.981	1.979	1.977
1.4	1.997	1.975	1.973	1.972	1.970	1.968	1.966	1.964	1.962	1.960	1.959
1.5	1.959	1.957	1.955	1.153	1.952	1.950	1.948	1.946	1.945	1.943	1.941
1.6	1.941	1.940	1.938	1.936	1.935	1.933	1.932	1.930	1.928	1.927	1.925
17	1.925	1.924	1.922	1.921	1.919	1.918	1.916	1.915	1.913	1.912	1.911
1.8	1.911	1.909	1.908	1.906	1.905	1.904	1.902	1.901	1.899	1.818	1,897
1.9	1.817	1.815	1.894	1.893	1.891	1.890	1.889	1.887		1.885	1.884
2.0	1.884	1.882	1.881	1.880	1.878	1.877	1.876	1.875	1.874	1.872	1.871
2.1	1.871	1.870	1.869	1.868	1.866	1.865	1.864	1.863	1.862	1.861	1.860
2.2	1.860	1.858	1.857	1.856	1.855	1.854	1.853	1.852	1.851	1.850	1.848
2.3	1.848	1.847	1.846	1.845	1.844	1.843	1.842	1.841	1.840	1.839	1.838
2.4	1.838	1.857	1.836	1.835	1,834	1.833	1.892	1.831	1.830	1.829	1.828
2.5	1.828	1.827	1.826	1.825		1.823	1.822	1.821	1.820	4820	1.819
2.6	1.819	1.818	1.817	1.816	1.815	1.8 14	1.813	1,812	1.811	1.810	1.810
2.7	1.810	1.809	1.808	1.807	1.806	1.805	1	1.803	1.803	1.802	1.801
2.8	1.801	1.800	1.799	1.798	1.797	1.797	1.796	1.795	1.794	1.79 3	1.792
2.9	1.792	1.792	1.791	1.790	1.789	1.788	1.788	1.787	1.786	1785	1.784
3.0	1.784	1.784	/.783	1.782	1.781	1.781	1.780	1.779	1.778	1.778	1.777
3.1	1.777	1.776	1.775	1.774	1.774	1.773	1.772	1.772	1.771	1.770	1.769
3.z	1.769	1.769	1.768	1.767	1.766	1.766	1.765	1.764	1.764	1.763	1.762
3.3	1.762.	1.762	1.761	1.760	1.760	1.759	1.758	1.757	1.757	1.756	1.755
3.4	1.755	1.755	1.754	1.753	1.753	1.752	1.751	1.751	1.750	1.749	1.749
3.5	1.749	1.748	1748	1.747	1.746	1.746		1.744	1.744	1.743	
3.6	1.742	1.742	1.741	1.740	1.740	1.73 f	1.739	1.738	1.737	1.737	1736
3.7	1.736	1.736	1.735	1.734	1.734	1.733	1.733	1.732	1.731	1.731	1.730
3.8	1.730	1.730	1.729	1.728	1.728	1.727	1.727	1.726	1.725	1.725	1.724
3.9	1.72.4	1.724	1.723	1.722	1.722	1.721	1.721	1.720	1.720	1.719	1.719
4.0	1.719	1.718	1.718	1.71	1.716	1.716	1.715	1.715	1.714	1.714	1.713
4.1	1.713	1.713	1.712	1712	1.711	1.710	1.710	1.709	1.709	1.7•8	1.7 • 8
4.2	1.708	1.707	1.707	1.706	1.706	1.705	1.705	1.704	1.704	1.703	
4.3	1.703	1.702	1.702	1.701	1.701	1.700	1.700	1.699		1.698	1.6,8
9,4	1.698	1.697	1.697	1.696	1.696	1.695			the same of		
4.5	1.693	1.692	1.692	1.691	1.691	1.690	1.690	1,589	1.689	1.688	1.688
4.6	1.688	1.688	1.687	1.687	1.686	1.686	1.685	1.685	1.684	1.684	1.683
4.7	1.683	1.683	1.682	1.682	1.682	1.681	1.681	1.680	1.680	1.679	1.679
4.8	1.679	1.678	1.478	1.677	1.677	:/.677	1,676	1.676	1.675	1.675	1.674
4.9	1.674	1.674	1.674	1.673	1.673	1.672	1.672	1.671	1.671	1.670	1.666
· 5.0	1.670	1.670	1.669	1.669		1.668	1.668	1.667 1.663	1.667 1.662	1.662	1.662
5.1	1.666.	1.665	1.665	1.665	1.664	1.664	1	1.659	1.658	1.658	1.658
5.2	1.662	1.661	1.661	1.660	1.656	1.650	1.659 1.655	1.659	1.654	1.657	1.454
5.3 54	1.658	1657	1.657	1.656	1.652	1.652	1.651	1.651	1.651	1.65¢	1.650
5.4	1.654	1.653	1.653	1.633	1.63 5	1.07 44	11621	***21	****1		1

Re 5.5-10 × 108

× 108						·····	r				<u>, </u>
Re lo ^s X	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10
5.5	1.650	1.650	1.649	1.649	1.648	1.648	1.648	1.647	1647	1646	1646
5.6	1646	1.646	1645	1.645	1.645	1.644	1.644	1644	1643	1643	1.642
5,7	1642	1.642	1642	1.641	1641	1.641	1.640	1.640	1.640		1639
5.8	1.639	1.638	1.638	1.638	1.637	1.637	1.637	1.636	1636	1636	1635
5.9	1.635	1.635	1.635	1.634	1.6 34	1.634	1.633	1633	1.632	1.632	1632
60	1632	1631	1.631	1.631	1.630	1630	1.630	1629	1.629	1.629	1.628
6.1	1.628	1.628	1628	1.627	1.627	1.627	1626	1.626	1.626	1.625	1625
6.2	1.625	1.625	41.624	1.624	1.624	1.623	1.623	1.623	1.622	1.622	1.622
63	1.622	1.621	1.621	1.621	1.620	1.620	1.620	1.619	1.619	1.619	1.618
6.4	1.618	1.618	1.618	1.618	1.617	1.617	1.617	1.616	1.616	1.616	1.615
6.5	1.615	1.615	1.615	1.614	1.614	1.614	1.613	1.613	1613	1.613	1.612
6.6	1612	1.612	1.612	1.611	1.611	1.611	1.610	1.610	1.610	1.610	1.609
67	1.609	1 609	1609	1.608	1.608	1.608	1.607	1.607	1.607	1606	1.606
6.8	1.606	1.606	1.606	1.605	1.605	1.605	1.604	1.604	1.604	1.604	1.603
6.9	1603	1.603	1603	1.602	1.602	1.602	1.602	1.601	1.601	1.601	1.600
7.0	1600	1.600	1.600	1.600	1.599	1.599	1.599	1.598	1598	1.598	1.598
7.1	1.598	1.597	1.597	1.597	1.596	1.596	1.596	1.596	1.595	1.595 1.592	1.595 1.592
7.2	1.595	1.594	1.594	1.594	1.594 1.591	1.593 1.590	1.593 1.590	1.593 1.590	1.592 1.590	1.592	1.589
7.3 7.4	1 592 1589	1.592 1.589	1.591 1.589	1.591 1.588	1.771 1.58B	1.588	1.588	1.590	1.587	1.587	1.586
7.5	1.586	1.586	1586	1.580	1.985	1585	1.585	1585	1.584	1.584	1.584
7.6	1.584	1.584	1.583	1.583	1.583	1.583	1.582	1.582	1.582	1.582	1.581
77.	1.981	1.581	1.505	1.580	1.580	1580	1580	1.579	1.579	1.579	1.579
7.8	1.579	1.578	1.578	1.578	1.578	1.577	1577	1.577	1.577	1.576	1.576
79	1.576	1.576	1.576	1.575	1.575	1.575	1.575	1.574	1.574	1.574	1.574
80	1574	1.574	1.573	1.573	1.573	1.573	1.572.	1.572	1.572	1.572	1571
8.1	1571	1.571	1.571	1 371	1.570	1.570	1.570	1.570	1.569	1.569	1.569
82	1.569	1569	1.568	1568	1.568	1.568	1.568	1.567	1.567	1.567	1.567
8.3	1.567	1.566	1566	1.566	1.566	1.565	1.565	1.565	1.565	1.564	1564
8.4	1564	1.564	1.564	1.564	1.563	1.563	1.563	1.563	1.562	1.562	1.962
8.5	1.562	1.562	1.562	1.561	1.561	1.561	1.561	1.560	1.560	1.560	1.560
86	1.560	1.599	1.559	1.559	1.559	1.559	1.558	1.558	1.558	1.558	1.558
87	1.558	1.557	1.557	1.557	1.557	1.556	1.556	1.556	1.556	1.556	1555
8.8	1.555	1.555	1555	1.555	1.554	1.554	1.554	1.5 54	1.554	1.553	1.553
8.9	1.553	1.553	1.553	1.552	1.552	1.552	1.552	1.552	1551	1.551	1.551
90	1551	1551	1551	1550	1.550	1550	1.5 50	1.550	1.549	1.549	1.549
91	1549	1.549	1.548	1.548	1.548	1.548	1.548	1.547	1.547	1.547	1.547
9.2 '	1.547	1.547	1.546	1.546	1.546	1.546	1.546	1.545	1.5 45	1.545	1.545
9.3	+ 1.545	1544	1.544	1.544	1.544	1.544	1.543	1543	1.543	1.543	1.543
9.4	1.543	1.542	1.542	1.542	1.542	1.542	1.541	1.541	1.541	1541	1541
9.5	1.541	1.540	1.540	1.540	1.540	1.540	1.5 39	1.539	1.539	1.539	1.539
9.6	1.539	1.538	1.538	1.538	1.538	1.538	1.537	1.537	1.537	1.537	1.537
9.7	1.537	1.5 36	1.536	1.536	1.536	1.536	1.535	1.535	1.535		1535
9.8	1.535	1.534	1.534	1.534	1.534	1.534	1.534	1.533	1.533	1.533	1.533
9.9	1.533	1.533	1.532	1,532	.1.532	1.532	1.532	1.531	1.531	1.531	1.531

.

Re 1-5.5 × 109

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	× 109	•						· ·				.
		0 00		0 02	0 03	0 04	0 05	0.06	0 07	0 08	0 09	0.10
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							+			<u>}</u>	+	+
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1			1	t i i i i i i i i i i i i i i i i i i i		1	1	1		-	1 1
	1							1	1			1
1.4 1.469 1.469 1.461 1.463 1.462 1.451 1.452 1.452 1.452 1.452 1.452 1.451 1.452 1.452 1.451 1.452 1.451 1.452 1.451 1.452 1.451 1.440 1.442	1			-		-		1	1			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						-	1	1			1.	1 1
1.6 1.446 1.445 1.447 1.442 1.440 1.438 1.437 1.436 1.435 1.7 1.435 1.433 1.432 1.431 1.430 1.429 1.428 1.328 1.32								1	+		·	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									1			
1.8 1.426 1.425 1.424 1.423 1.422 1.421 1.420 1.449 1.440								1	1			
1.91.4161.4161.4141.4131.421.4111.4101.4001.4031.4001.4031.4011.						-	-	1			-	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1						1.					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								-				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1							-	1			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										-	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1		•							-		1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 1								1 1			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 1											
2.91.3481.3471.3461.3461.3451.3451.3441.3431.3431.3431.3433.01.3421.3421.3411.3411.3401.3391.3391.3361.3381.3373.11.3371.3371.3321.3361.3361.3351.3351.3341.3331.3331.3333.21.3321.3271.3261.3321.3301.3301.3301.3261.3241.3273.31.3281.3271.3221.3221.3221.3221.3241.3241.3241.3243.41.3231.3221.3221.3221.3211.3221.3241.3241.3273.41.3231.3271.3221.3211.3251.3201.3201.3241.3243.41.3231.3271.3221.3211.3211.3201.3201.3241.3243.41.3231.3211.3221.3211.3211.3201.3201.3241.3243.51.3141.3141.3121.3171.3161.3661.3661.3611.3671.3683.61.3061.3061.3091.3091.3081.3081.3011.3011.3023.71.3101.3101.3091.3041.3041.3041.3021.3023.81.3021.3021.3011.3011.3041.3041.3031.3023.91.3221.228 <td>1 1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td>1</td>	1 1	1										1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				1						-		
3.11.3371.3371.3361.3361.3351.3351.3341.3341.3331.3331.3323.21.3321.3321.3311.3311.3301.3301.3301.3301.3241.3241.3241.3243.31.3281.3271.3271.3261.3251.3251.3241.3241.3241.3241.3233.41.3231.3231.3221.3221.3211.3211.3201.3201.3201.3201.3241.3143.61.3191.3161.3181.3171.3171.3161.3261.3201.3201.3201.3211.3173.61.3191.3161.3181.3171.3161.3161.3161.3161.3171.3163.71.3101.3101.3101.3091.3091.3081.3061.3071.3071.3063.81.3061.3061.3051.3051.3041.3041.3041.3071.3063.81.3021.3021.3011.3011.3001.3001.3041.3041.3071.3063.91.3021.3021.3021.3011.3011.3001.3001.2961.2971.2994.01.2991.2981.2951.2971.2971.2971.2961.2961.2921.2921.2924.11.2951.2941.2941.2931.2971.2971.2971.2971.2921.292 <td></td>												
3.21.3321.3321.3311.3311.3301.3301.3301.3291.3291.3291.3281.3283.31.3281.3271.3271.3261.3261.3251.3241.3241.3241.3241.3233.41.3231.3231.3221.3221.3211.3211.3201.3201.3201.3201.3211.3213.51.3191.3181.3171.3171.3161.3161.3161.3151.3171.3163.61.3141.3141.3141.3131.3121.3121.3221.3211.3201.3201.3203.71.3101.3101.3011.3091.3091.3081.3081.3071.3071.3063.71.3001.3001.3021.3021.3021.3031.3031.3081.3081.3071.3071.3063.91.3021.3021.3021.3011.3091.3081.3041.3041.3071.3071.3023.91.3021.3021.3021.3011.3051.3041.3041.3041.3031.3071.3071.3024.01.2991.2981.2941.2971.2971.2961.2961.2991.2991.2994.11.2851.2811.2811.2811.2811.2811.2811.2811.2814.11.2861.2841.2871.2871.2861.2861.2851.282 <td>1</td> <td></td> <td></td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1			1	1							
3.31.3281.3271.3271.3261.3261.3251.3241.3241.3241.3241.3243.41.3231.3231.3221.3221.3211.3211.3201.3201.3201.3271.3193.51.3191.3181.3121.3211.3201.3201.3201.3151.3171.3163.61.3141.3141.3141.3131.3131.3121.3121.3121.3171.3171.3163.71.3101.301.3091.3091.3081.3081.3061.3071.3063.81.3061.3061.3051.3051.3041.3041.3041.3071.3073.91.3021.3021.3021.3011.3011.3041.3041.3041.3073.91.3021.3021.3021.3011.3001.3001.2091.2991.2994.01.2991.2981.2971.2971.2971.2961.2961.2961.2971.2974.11.2951.2941.2941.2931.2971.2931.2921.2921.2974.11.2951.2841.2841.2831.2831.2861.2851.2851.2854.31.2861.2881.2871.2871.2831.2831.2821.2821.2854.31.2861.2881.2841.2831.2831.2831.2851.2851.2854.4 <td>4 1</td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	4 1	1	1									
3.41.3231.3231.3221.3221.3211.3211.3201.3201.3201.3201.3191.3193.51.3191.3181.3181.3171.3171.3161.3161.3161.3151.3151.3173.61.3141.3141.3141.3151.3131.3221.3221.3221.3211.3171.3163.71.3101.3101.3101.3061.3091.3091.3081.3081.3081.3071.3071.3063.81.3061.3061.3061.3051.3091.3081.3081.3041.3041.3031.3071.3063.91.3021.3021.3021.3011.3011.3001.3001.3001.2991.2991.2994.01.2991.2981.2981.2981.2971.2971.2971.2961.2961.2961.2974.11.2951.2911.2911.2911.2911.2911.2911.2911.2911.2911.2911.2914.21.2911.2911.2911.2901.2971.2861.2861.2861.2861.2861.2861.2864.31.2881.2841.2841.2871.2831.2831.2821.2821.2821.2854.41.2851.2841.2841.2841.2831.2831.2831.2821.2821.2824.41.2851.2841.2841.284 <td>1 1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>i i</td>	1 1	1										i i
3.51.3191.3181.3171.3171.3161.3161.3161.3151.3171.3163.61.3141.3141.3141.3131.3131.3121.3121.3121.3121.3111.3111.3113.71.3101.3011.3011.3091.3091.3051.3081.3081.3081.3071.3071.3063.81.3061.3061.3061.3051.3051.3051.3041.3041.3041.3031.3073.91.3021.3021.3021.3011.3011.3001.3001.3041.3041.3041.3033.91.3021.3021.3021.3011.3011.3001.3001.3041.3041.3041.3034.01.2991.2981.2981.2971.2971.2961.2961.2961.2991.2994.01.2991.2911.2941.2941.2971.2971.2961.2961.2921.2974.11.2951.2911.2911.2911.2901.2901.2931.2931.2921.2921.2921.2974.21.2911.2911.2911.2911.2901.2901.2901.2891.2891.2851.2851.2854.31.2881.2881.2871.2871.2871.2831.2821.2821.2821.2854.31.2811.2811.2811.2811.2811.2811.281 <td>1 1</td> <td>1</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>Į</td> <td></td> <td>1</td>	1 1	1			1					Į		1
3.61.3141.3141.3141.3131.3131.321.3121.321.3121.3111.3111.3111.310371.3101.3001.3011.3091.3091.3081.3081.3081.3041.3071.3071.306381.3061.3061.3061.3051.3051.3051.3041.3041.3041.3031.3071.3023.91.3021.3021.3021.3011.3011.3001.3001.3011.2961.2961.2971.2974.01.2991.2981.2981.2971.2971.2971.2961.2961.2921.2971.2974.11.2951.2911.2911.2941.2911.2911.2911.2911.2911.2911.2911.2911.2914.21.2811.2881.2871.2871.2871.2861.2861.2851.2851.2851.2854.31.2861.2881.2871.2871.2871.2861.2861.2851.2851.2854.41.2851.2841.2811.2801.2801.2801.2801.2801.2811.2811.2814.51.2811.2811.2811.2811.2801.2801.2801.2791.2791.2791.2754.51.2811.2811.2811.2811.2801.2801.2791.2791.2791.2774.51.2811.281 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
371.3101.3101.3001.3091.3081.3081.3081.3071.3071.3071.306381.3061.3061.3061.3051.3051.3041.3041.3041.3041.3031.3031.302391.3021.3021.3021.3011.3051.3001.3001.2991.2991.2991.2994.01.2991.2981.2981.2971.2971.2971.2961.2961.2921.2921.2974.11.2951.2941.2941.2941.2931.2931.2931.2921.2921.2921.2974.21.2911.2911.2911.2911.2911.2901.2901.2701.2891.2891.2851.2854.31.2861.2881.2871.2871.2871.2861.2861.2851.2851.2854.41.2851.2841.2841.2831.2831.2831.2821.2821.2821.2824.51.2811.2811.2811.2801.2801.2791.2791.2751.2754.51.2811.2811.2811.2811.2801.2801.2801.2761.2761.2764.61.2781.2751.2771.2771.2771.2731.2731.2721.2721.2754.71.2751.2751.2741.2741.2731.2701.2701.2691.2691.2694.	1 1	1		1								1
38 1.306 1.306 1.306 1.305 1.304 1.304 1.304 1.303 1.303 1.303 1.302 3.9 1.302 1.302 1.302 1.302 1.302 1.302 1.301 1.300 1.300 1.300 1.299 1.299 1.299 4.0 1.299 1.298 1.298 1.297 1.297 1.297 1.296 1.296 1.296 1.295 1.295 1.298 4.1 1.295 1.294 1.294 1.294 1.297 1.297 1.296 1.296 1.292 1.292 1.292 4.2 1.291 1.291 1.294 1.294 1.293 1.293 1.293 1.293 1.292 1.2	1 1	1		1			-		1			1
3.91.3021.3021.3021.3011.3011.3001.3001.3001.2991.2991.2991.2994.01.2991.2981.2981.2971.2971.2971.2961.2961.2961.2951.2954.11.2951.2941.2941.2941.2931.2931.2931.2921.2921.2921.2924.21.2911.2911.2911.2911.2911.2901.2901.2891.2891.2851.2851.2854.31.2881.2881.2871.2871.2871.2861.2861.2851.2851.2854.41.2851.2841.2841.2841.2831.2831.2831.2821.2821.2821.2824.51.2811.2811.2811.2811.2801.2771.2761.2791.2791.2751.2754.61.2781.2751.2741.2741.2731.2731.2731.2751.2754.71.2751.2721.2711.2711.2701.2701.2701.2691.2691.2664.91.2691.2691.2651.2651.2651.2641.2641.2641.2641.2634.81.2721.2721.2711.2711.2701.2701.2671.2671.2661.2665.01.2661.2651.2651.2651.2671.2671.2641.2641.2631.263 <td< td=""><td> </td><td></td><td>1</td><td>1</td><td></td><td></td><td></td><td>I</td><td></td><td>1</td><td></td><td></td></td<>			1	1				I		1		
4.01.2991.2981.2981.2971.2971.2971.2961.2961.2961.2961.2951.2951.2954.11.2951.2941.2941.2941.2931.2931.2931.2931.2921.2921.2921.2954.21.2911.2911.2911.2911.2911.2911.2911.2901.2901.2891.2891.2891.2851.2881.2884.31.2881.2881.2871.2871.2871.2861.2861.2851.2851.2851.2854.41.2851.2841.2841.2841.2831.2831.2831.2821.2821.2821.2824.51.2811.2811.2811.2811.2811.2801.2801.2801.2791.2791.2791.2781.2784.61.2781.2781.2771.2771.2771.2771.2761.2761.2761.2751.2754.71.2751.2751.2711.2711.2711.2701.2701.2701.2691.2691.2694.81.2691.2691.2681.2681.2651.2671.2671.2671.2671.2665.01.2661.2651.2651.2651.2671.2671.2671.2671.2641.2631.2635.11.2631.2631.2631.2651.2651.2621.2621.2621.2621.2641.2641			1	1				'	4		-	
4.11.2951.2941.2941.2931.2931.2931.2931.2921.2921.2921.2921.2914.21.2911.2911.2911.2911.2911.2901.2901.2891.2891.2891.2891.2881.2884.31.2881.2881.2881.2871.2871.2871.2861.2861.2851.2851.2851.2854.41.2851.2841.2841.2831.2831.2831.2821.2821.2821.2821.2824.51.2811.2811.2811.2811.2801.2801.2801.2791.2791.2791.2751.2754.61.2781.2781.2771.2771.2771.2761.2761.2761.2751.2754.71.2751.2751.2741.2741.2741.2731.2731.2731.2721.2724.81.2721.2721.2711.2711.2701.2701.2691.2691.2694.91.2691.2661.2651.2651.2651.2671.2671.2671.2674.91.2691.2641.2631.2631.2631.2631.2631.2635.01.2661.2661.2651.2651.2651.2671.2671.2671.2675.11.2631.2631.2631.2631.2631.2631.2631.2635.21.2601.2601.2601												
4.21.2911.2911.2911.2911.2901.2901.2901.2891.2891.2891.2891.2881.2884.31.2881.2881.2881.2871.2871.2861.2861.2861.2851.2851.2851.2854.41.2851.2841.2841.2831.2831.2831.2831.2831.2821.2821.2821.2821.2821.2824.51.2811.2811.2611.2801.2801.2801.2791.2791.2791.2791.2781.2784.61.2781.2781.2771.2771.2771.2761.2761.2761.2751.2754.61.2781.2781.2771.2771.2771.2761.2761.2761.2761.2771.2754.71.2751.2751.2711.2711.2711.2701.2701.2701.2691.2691.2694.91.2691.2691.2681.2681.2681.2651.2671.2671.2671.2671.2661.2665.01.2661.2661.2651.2651.2651.2651.2641.2641.2631.2635.01.2661.2661.2651.2651.2651.2651.2641.2641.2641.2631.2635.11.2631.2631.2631.2631.2601.2651.2651.2651.2661.2661.2661.2665.2 <td>I. I</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td></td> <td>1</td> <td>1</td> <td></td> <td>1</td> <td></td>	I. I	1	1	1	1			1	1		1	
4.31.2881.2881.2871.2871.2861.2861.2861.2851.2851.2851.2854.41.2851.2841.2841.2841.2831.2831.2831.2821.2821.2821.2821.2824.51.2811.2811.2811.2811.2801.2801.2801.2791.2791.2791.2791.2781.2784.61.2781.2781.2771.2771.2771.2761.2761.2761.2751.2754.71.2751.2751.2741.2741.2741.2731.2731.2731.2721.2724.81.2721.2721.2711.2711.2701.2701.2701.2671.2671.2694.91.2691.2681.2651.2651.2651.2671.2671.2671.2661.2665.01.2661.2651.2651.2651.2641.2641.2641.2631.2635.11.2631.2631.2631.2651.2651.2621.2611.2641.2641.2645.21.2601.2601.2601.2601.2601.2571.2571.2581.2581.2581.2585.31.2581.2551.2541.2571.2541.2541.2541.2541.2531.2531.2531.2535.41.2551.2551.2541.2541.2541.2541.2541.2531.2531.253 <td>} 1</td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td>	} 1			1		1	1	1				
4.4 1.285 1.284 1.284 1.283 1.283 1.283 1.282 1.272 1.278 1.278 1.278 1.278 1.278 1.278 1.275 1.275 1.275 1.275 1.275 1.275 1.272	1 1					1			1			
4.5 1.281 1.281 1.261 1.280 1.280 1.280 1.279 1.279 1.279 1.279 1.278 1.278 4.6 1.278 1.278 1.277 1.277 1.277 1.277 1.276 1.276 1.276 1.276 1.275 1.275 4.7 1.275 1.275 1.274 1.274 1.274 1.273 1.273 1.273 1.272 1.272 1.272 4.8 1.272 1.272 1.271 1.271 1.270 1.270 1.270 1.269 1.269 1.269 1.269 4.9 1.269 1.269 1.268 1.268 1.268 1.267 1.267 1.267 1.267 1.269 5.0 1.266 1.265 1.265 1.265 1.267 1.264 1.264 1.264 1.264 1.263 1.263 5.0 1.263 1.256 1.256 1.256 1.256 1.256 1.256 1.256 1.256 1.256 <td>1 1</td> <td>1</td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td> <td>_</td> <td>)</td>	1 1	1		1	1	1		1			_)
4.6 1.278 1.278 1.277 1.277 1.277 1.276 1.276 1.276 1.276 1.276 1.275 1.275 4.7 1.275 1.275 1.274 1.274 1.274 1.273 1.273 1.273 1.272 1.272 1.272 4.8 1.272 1.272 1.271 1.271 1.271 1.270 1.270 1.270 1.269 1.269 1.269 4.9 1.269 1.269 1.268 1.268 1.268 1.265 1.267 1.267 1.267 1.267 5.0 1.266 1.266 1.265 1.265 1.265 1.267 1.264 1.263 1.263 5.0 1.266 1.266 1.265 1.265 1.265 1.267 1.267 1.267 1.267 5.0 1.266 1.266 1.265 1.265 1.265 1.267 1.267 1.267 1.267 5.1 1.263 1.263 1.263 1.263 1.263 1.263 1.263 1.263 1.263 5.2 1.260 1.260 1.260 1.260 1.257 1.257 1.258 1.258 1.258 1.258 1.258 5.3 1.258 1.257 1.257 1.257 1.254 1.254 1.253 1.253 1.253 1.253 1.253 1.253 5.4 1.255 1.254 1.254 1.254 1.253 1.253 1.253 1.253 1.253 1.253 <td></td>												
4.7 1.275 1.275 1.274 1.274 1.273 1.273 1.273 1.272 1.272 1.272 1.272 1.272 4.8 1.272 1.272 1.271 1.271 1.270 1.270 1.270 1.270 1.269 1.263 1.253 1.253 1.253 1.253 1.253 1.253 1.253 1.253	1 1			1		1		1	1	ſ		
4.8 1.272 1.272 1.271 1.271 1.270 1.270 1.270 1.269 1.260 1.260 1.260 1.260 1.263 1.258 1.258 1.258 1.258 1.258 1.258 1.258 1.255 1.254 1.254 1.254 1.253 <th< td=""><td> </td><td></td><td></td><td>1</td><td>1</td><td></td><td>1</td><td></td><td>1</td><td>1</td><td>1</td><td>1</td></th<>				1	1		1		1	1	1	1
4.9 1.269 1.269 1.268 1.268 1.268 1.267 1.267 1.267 1.267 1.267 1.266 1.266 5.0 1.266 1.266 1.265 1.265 1.265 1.267 1.267 1.267 1.267 1.263 5.0 1.266 1.266 1.265 1.265 1.265 1.267 1.267 1.267 1.263 1.263 5.1 1.263 1.263 1.263 1.263 1.262 1.262 1.262 1.261 1.261 1.261 1.261 5.2 1.260 1.260 1.260 1.260 1.259 1.259 1.258 1.258 1.258 1.258 1.258 5.3 1.258 1.257 1.257 1.257 1.256 1.256 1.256 1.256 1.255 1.255 5.4 1.255 1.255 1.254 1.254 1.254 1.253 1.253 1.253 1.253 1.253			1				. 1		1	1	1	
5.0 1.266 1.265 1.265 1.265 1.265 1.264 1.264 1.263 1.263 5.1 1.263 1.263 1.263 1.263 1.263 1.263 1.263 1.263 1.263 1.263 1.263 5.2 1.260 1.260 1.260 1.260 1.260 1.260 1.260 1.260 1.260 1.260 1.260 5.2 1.260 1.260 1.260 1.260 1.250 1.259 1.259 1.259 1.258 1.258 1.258 1.258 1.258 1.258 1.258 1.257 1.257 1.257 1.256 1.256 1.256 1.256 1.255 1.255 1.255 5.4 1.255 1.255 1.254 1.254 1.254 1.253 <	1 1	1	1		1	1		1	1	1		,
5.1 1.263 1.263 1.263 1.263 1.262 1.262 1.262 1.262 1.261 1.252												
5.2 1.260 1.260 1.260 1.250 1.259 1.259 1.259 1.258 1.255 1.255 1.255 1.255 1.255 1.254 1.254 1.254 1.253 1.253 1.253 1.253 1.253 1.253 1.253 1.253 1.252 1.252 1.252 1.252 1.252 1.253		1			1		1	i	1		1	1
5.3 1.258 1.257 1.257 1.256 1.256 1.256 1.256 1.256 1.256 1.256 1.256 1.256 1.256 1.255 1.255 1.255 1.255 1.254 1.254 1.254 1.254 1.253 1.253 1.253 1.253 1.253 1.253 1.253 1.252 0	1 1	1		- 1	1	1						
3.4 1.255 1.255 1.254 1.254 1.254 1.254 1.254 1.253 1.253 1.253 1.253 1.253		1				1					1	(
	1 1	1	1		- 1				1		1	1
			L			1.274	1.217	1.202	1.2.5	1.200	2.7.5	1.272 0

Re	5.5-	10
×	109	

t

x lo ⁴ Re	. 0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10
10 ⁹ ×	1			<u> </u>	1.251	1,251	1,251	1,251	1.250	1 250	1.250
5.5	1.252	1.252	1.252	1,252	1	1.249	1.248	1.248	1.248	1.248	1.247
5.6	1.250	1.250	1.249	1.249	1.249	1	1.246	1.246	1.245	1.245	1.245
5.7	1.247	1.247	1.247	1.247	1.246	1.246		1.248	1.243	1.243	1.242
5.8	1.245	1.245	1.244	1.244	1.244	1.244	1.243		1.245	1.240	1.240
5.9	1.242	1.242	1.242	1.242	1.242	1.241	1.241	1.241			
60	1.240	1.240	1.240	1.240	1.239	1.239	1.239	1.239	1.238	1.238	1.238
6.1	1.238	1.238	1.297	1.237	1.237	1.237	1.237	1.236	1.236	1 236	1.236
6.2	1.236	1.235	1.235	1.235	1.235	1.235	1.234	1.234	1.234	1.234	1.233
6.3	1.233	1.233	1.233	1.233	1.233	1.232	1.232	1.232	1.232	1.232	1 231
6.4	1. 231	1.231	1.231	1.231	1.230	1.230	1.230	1.230	1.230	1.229	1.229
6 .5	1.229	1.229	1.229	1.229	1.228	1.228	1.228	1.228	1.228	1.227	1.227
6.6	1.227	1.227	1.227	1.227	1.226	1.226	1.226	1.226	1.226	1.225	1.225
67	1.225	1.225	1.225	1.224	1.224	1.224	1.224	1.224	1.223	1.223	1.223
68	1.223	1.223	1.223	1.222	1.222	1.222	1.222	1.222	1.222	1.221	1.221
6.9	1,221	1.221	1.221	1.220	1.220	1.220	1.220	1.220	1.220	1.219	1.219
7.0	1.219	1.219	1.219	1.218	1.218	1.218	1.218	1.218	1.218	1.217	1.217
7.1	1.217	1.2₹7	1.217	1.217	1,216	1.216	1.216	1.216	1.216	1.215	1.215
7.2	1.215	1.215	1.215	1.215	1.214	1.214	1.214	1.214	1.214	1.214	1.213
7.3	1.213	1.213	1.213	1.213	1,213	1.212	1.212	1.212	1.212	1.212	1.212
7.4	1.212	1.211	1.211	1.211	1.211	1.211	1.210	1.210	1.210	1.210	1.210
7.5	1.210	1.210	1.209	L209	1.209	1.209	1.209	1.208	1.208	1,208	1.208
7.6	1.208	1.208	1.208	1.207	1.207	1.207	1.207	1.207	1.207	1,206	1.206
7.7	1.206	1.206	1.206	1.206	1.206	1.205	1.205	1.205	1.205	1.205	1.204
7.8	1.204	1.204	1.204	1.204	1.204	1.204	1.203	1.203	1.203	1.203	1.203
7.9	1.203	1.203	1.202	1.202	1.202	1.202	1.202	1.202	1.201	1.201	1201
80	1.201	1.201	1.201	1.201	1.200	1.200	1.200	1.200	1.200	1.200	1.199
8.1	1.199	1.199	1.199	1.199	1.199	1.199	1.198	1.198	1.198	1.198	1.198
82	1.198	1.198	1.197	1.197	1.197	1.197	1.197	1.197	1.196	1.196	1.196
83	1.196	1.196	1.196	1.196	1.196	1.195	1,195	1.195	1.195	1.195	1,195
8.4	1.195	1.194	1.194	1.194	1.194	1.194	1.194	1.194	1.193	1.193	1.193
8.5	1.193	1.193	1.193	1.193	1.192	1.192	1.192	1.192	1.192	1.192	1,192
8.6	1.192	1.191	1.191	1.191	1.191	1.191	1.191	1.190	1.190	1.190	1.190
8 .7	1.190	1.190	1.190	1.190	1.189	1.189	1.189	1.189	1.189	1.189	1.189
88	1.189	1.188	1.188	1.188	1.188	1.188	1.188	1.188	1.187	1.187	1.151
89	1.187	1.187	1.187	1.187	1.186	1.186	1.186	1.186	1.186	1.186	1.186
9.0	1.186	1.185	1.185	1.185	1.185	1.185	1.185	1. (85	1.184	1.184	1.184
9.1	1.184	1.184	1.184	1.184	1.184	1.183	1.183	1.183	1.183	1.183	1.183
9.2 9.3	1 183	1.183	1.182	1.182	1.182	1.182	1.182	1.182	1.182	1.181	1.181
1	1.181	1.181	1.181	1.181	1,181	1.181.	1.180	1.180	1.180	1.180	1.180
94	1.180	1.180	1.180	1.180	1.179	1. 79	1.179	1.179	1.179	1.179	1.179
9.5	1.179	1.178	1.178	1.178	1.178	1.178	1.178	1.178	1.177	1.177	1.177
9.6 9.7	1.177	1.177	1.177	1.177	1.177	1.177	1.176	1.176	1.176	1.176	1.176
9.7 9.8	1.176	1.176	1.176	1.176	1.175	1.175	1.175	1.175	1.175	1.175	1.175
9.8	1.175	1.174	1.174	1.174	1.174	1.174	1.174	1.174	1.174	1.173	1.173
27	1.173	1.173	1.173	1.173	1.173	1.173	1.172	1.172	1.172	1.172	1.172

MULTIPLY TABULATED VALUES BY 10-3

.

DENSITY OF WATER

IN ENGLISH ENGINEERING UNITS

Fresh Water Temp. DEG. F.	Sea Water 3.5% Salinity	Fresh Water	Temp. DEG. F.	Sea Water 3.5% Selinity
	Į.			
1.9399 32 1.9399 33 1.9400 34 1.9400 35	1.9947 1.9946 1.9946 1.9945	1.9381 1.9379 1.9377 1.9375 1.9373	61 62 63 64 65	1.9901 1.9898 1.9895 1.9893 1.9893
1.9401 36 1.9401 37 1.9401 38 1.9401 39 1.9401 40	1.9944 1.9943 1.9942 1.9941 1.9940	1.9371 1.9369 1.9367 1.9365 1.9365	66 67 68 69 70	1.9888 1.9885 1.9882 1.9879 1.9879
1.9401 41 1.9401 42 1.9401 43 1.9400 44 1.9400 45	1.9939 1.9937 1.9936 1.9934 1.9933	1.9360 1.9358 1.9355 1.9352 1.9350	71 72 73 74 75	1.9873 1.9870 1.9867 1.9864 1.9861
1.9399 46 1.9398 47 1.9398 48 1.9397 49 1.9396 50	1.9931 1.9930 1.9928 1.9926 1.9924	1.9347 1.9344 1.9342 1.9339 1.9336	76 77 78 79 80	1.9853 1.9854 1.9851 1.9348 1.9344 1.9644
1.9395 51 1.9394 52 1.9393 53 1.9392 54 1.9390 55	1.9923 1.9921 1.9919 1.9917 1.9914	1.9333 1.9330 1.9327 1.9324 1.9321	81 82 83 84 85	1.9841 1.9837 1.9834 1.9339 1.9327
1.9389 56 1.9387 57 1.9386 58 1.9384 59 1.9383 60	1.9912 1.9910 1.9903 1.9905 1.9903	1.9317.	86	1.9823

1 FOOT = 0.30479449 METER 1 POUND=453.59243 GRAMS g = 9.80665 M./SEC.² <u>LB. X SEC.</u> <u>DENSITY = FT.⁴</u> = 1.94018 x <u>GMS.</u>

KINEMATIC VISCOSITY OF WATER

• • .

In English Engineering Units

Fresh Water	Temp.	Sea Water 3.5% Salinity	Fresh Water	Temp.	3.5% Salinity Sea Water
√x 10 ⁵ (FT.		18× 10 ⁵ (FT?/SEC.)	√x 10 ⁵ (FT.		/s x 10 ⁵ (FT./SEC.)
	DEG.F.	·	1 1000	DEG.F.	1 0460
1.9291	32	y ,	1.1937	61	1.2470
1.8922	33	•	1.1769	62	1.2303
1.8565	34		1.1605	63	1.2139
1.8219	35		1.1444	64	1,1979
			1,1287	65	1.1822
1.7883	36 37			,	
1.7558	37		1.1133	66	1.1669
1,7242	38		1.0983	67 68	1.1519
1.6935	39		1.0836	68	1.1372
1.6638	40		1.0692	69	1,1229
			1.0552	70	1.1088
1.6349	41	1.6846	,	, •	
1.6068	42	1.6568	1.0414	71	1,0951
1.5795	43	1.6298	1.0279	72	1.0816
1.5530	44	1.6035	1.0147	73	1.0684
	45		1.0018	74	1.0554
1.5272	47	1.5780	0.98918	75	1.0427
1 6001		7	0.90910	()	1.0427
1.5021	46	1.5531	0.00600	64	1 0202
1.4476	47	1.5289	0.97680	76	1.0303
1.4538	48	1.5053	0.96466	77 78	1.0181
1.4306	49	1.4823	0.95276	78	1.0062
1,4080	50	1.4599	0.94111	79 80	0.99447
	- 4-		0.92969	80	0.98299
1.3860	51 52	1.4381		-	
1.3646	52	1.4168	0.91850	81	0.97172
1.3437	53	1.3961	0.90752	82	0.96067
1.3233	54	1.3758	0.89676	83	0.94982
1.3034	55	1.3561	0.88621	84	0.93917
-			0.87586	85	0.92873
1.2840	56 57 58	1.3368		-	
1.2651	57	1.3180	0.86570	86	0.91847
1.2466	58	1.2996	• • • • • •		
1.2285	59	1.2817			
1.2109	6 Ó	1.2641	•		
~ • • • • • • /	~~				

POISE = DYNE-SEC. PER CM. ²	
KINEMATIC VISCOSITY • $\frac{VISCOSITY}{DENSITY} = \frac{A}{P}$	
1 FOOT = 0.30479449 METER	
1 POUNDS = 453, 59243 GRAMS	
= 9.80665 M./SEC. ²	
FT 2 M.C	
KIN. VIS.: $\overline{SEC.} = 10.764230 \times \overline{SEC}$.	
DENSITY: LB. X SEC.2 . 1.94018 x	gma.
FT.4	CM. 3
	¢

WEIGHT OF WATER

Pounds per Cubic Foot g = 32.174 ft, /sec.² at sea level g = 32.1616 ft. /sec.² at Ann Arbor

Salinity of sea water is 3.5%

TEMP	F.W. SEALEVEL	F.W. A.A.	5.W.	TEMP. °F	F.W. SEALEVEL	F.W. A.A.	S.W.
32 33 34 35	62.415 62.416 62.417 62.418	62.391 62.392 62.393 62.394	64.177 64.176 64.174 64.171	61 • 62 63 64 65	62.356 62.350 62.343 62.337 62.331	62.332 62.326 62.320 62.313 62.307	64.929 64.021 64.012 64.004 63.996
36 37 38 39 40	62.419 62.420 62.421 62.421 62.421	62.395 62.396 62.397 62.397 62.397	64.168 64.165 64.161 64.157 64.153	66 67 68 69 70	62.324 62.318 62.311 62.305 62.297	62.300 62.294 62.287 62.280 62.272	63, 989 63, 978 63, 968 63, 959 63, 949
41 42 43 44 45	62.421 62.420 62.419 62.418 62.417	62.397 62.396 62.395 62.395 62.394 62.393	64.150 64.146 64.142 64.137 64.132	71 72 73 74 75	62.289 62.282 62.273 62.263 62.526	62.265 62.258 62.249 62.240 62.232	63.940 63.930 63.920 63.910 63.901
46 47 4 8 49 50	62.415 62.413 62.411 62.409 62.406	62.392 62.389 62.387 62.385 62.381	64.127 64.122 64.116 64.110 64.103	76 77 78 79 80	62.247 62.238 62.230 62.221 62.212	62.223 62.214 62.205 62.197 62.188	63.891 63.880 63.869 63.858 63.847
51 52 53 54 55	62.403 62.399 62.395 62.391 62.386	62.377 62.374 62.370 62.366 62.362	64.100 64.094 64.087 64.080 64.072	81 82 83 84 85	62.202 62.192 62.183 62.173 62.163	62.178 62.168 62.159 62.149 62.139	63.836 63.824 63.813 63.801 63.791
56 57 58 59	62.301 62.376 62.371 62.366 62.362	62.358 62.353 62.348 62.343 62.338	64.065 64.058 64.051 64.043 64.036	86	62,152	62.128	63.779

F.W. - Sea Level - $50^{\circ}F.$; 35.894 cu. ft. = 1 long ton S.W. - Sea Level - $50^{\circ}F.$; 34.944 cu. ft. = 1 long ton F.W. - Ann Arbor - $50^{\circ}F.$; 35.908 cu. ft. = 1 long ton F.W. - Ann Arbor - $68^{\circ}F.$; 35.963 cu. ft. = 1 long ton

ROUGHNESS FACTORS OF SHIPS' SURFACES

ESSEL OR EXPERI	MENTER	CONDITION OF SURFACE	LENGTH	LOGR	Cfk	Cf	Ck	C _{K/}	L/	and the second se	<u>{</u>
AND REFERE			Μ.		× 10 ³	× 10 ³	>103	1C5	L/ks	MM.	FT×10
KEMPF	(1)	CLEAN NORMAL STEEL PLATING, TWO COATS SHIP PAINT	67.	8.5	1.90	1.82	.08	.045	2 × 10°	.03	.10
u		SAME WITH BUTTS 20 MM. HIGH SPACED 5 M.	G7.	8.5	2.03	1.82	.21	.115	1.1 ×10 ⁶	.06	.20
	н	CLEAN, PAINTED, WITH RIVETS AND TWO SEAM LAPS	21.	8.0	2.50	213	.37	.17	2.6 ×10 ⁵	.08	.26
۴	u	SAME WITH BUTTS 20 MM. HIGH SPACED 5 M.	21.	8.0	2.50	2.13	.37	.17	2.6 ×10 ⁵	.08	.26
*		CLEAN, PAINT ROUGHENED WITH SAND IMPRESSIONS	21.	8.0	3.10	2.13	.97	.45	9.5 ×10 ⁴	.22	.72
SCHULTZ-GRUNOW	(3)	NORMAL RUSTED; BLACK OR GALV.; ORIG. PAINT 2 COATS								*	.
	(0)	ANTI-CORR., I COAT ANTI-FOUL ; PAINT AFTER EXPOSURE									
		2 COATS ANTI-FOUL, EXPOSURE:									
		14 DAYS, SALT WATER AND SALT AIR								.318	1.04
		42 DAYS, CLEANED WITH WIRE BRUSH OR CHIPPING						·		.195	.64
"YUDACHI"-HIRAGA	(1)(2)	OLD HULL RUSTED AND NEWLY PAINTED	71.	8 .75	2.45	1.68	.77	.45	4.5 ×10 ⁵	.16	.52
	(1)(5)		120.	8.75	2.18	1.68	.50	.30	7 .5 ×10 ⁵	.16	.52
"HAMBURG"		NEW HULL NORMAL RUSTED	201.	9.11	2.30	1.52	78	.51	7.2 .105	.28	.92
"COEVIIOUND"- FDOU	(1) DF (1)(2)	DETERIORATED COPPER SHEATHING	52.5	8.45	2.83	1.85	.98	.53	1.75 - 105	.30	1.00
		NEW HULL NORMAL RUSTED	275.	9.41	2.23	1.39	.84	.60	7.8 ×10 ⁵	.35	1.15
TUGBOAT-HIRAGA	(1)	NORMAL RUSTED	35.	8.04	3.10	2.10	1.00	.48	9.5 -104	.37	1.21
KEMPF	(1)(2)	CLEAN, PAINTED, BARNACLES 1.2 MM. OVER 75% AREA	21.	8.00	4.35	2.13	2.22	1.04	1.85-104	1.14	3.74
			21.	8.00	5.47	2.13	3.34	1.57	6.25-10 ³	3.36	11.0

DEFINITIONS

REYNOLD'S NUMBER OF TEST R

COEFFICIENT OF TOTAL FRICTIONAL RESISTANCE, INCLUDING ROUGHNESS, OBTAINED FROM TEST Cfk - SMOOTH Cf **

CORRESPONDING TO R (SCHLICHTING FORMULA) DUE TO ROUGHNESS, $C_{k} = C_{fk} - C_{f}$

CK/CS RELATIVE INCREASE OF L'/Ks EQUIVALENT RELATIVE SAND ROUGHNESS CORRESPONDING TO CSL AND R

ke SAND ROUGHNESS "

- ADDED

COMMENT

Cĸ

THE CURRENT THEORY OF SURFACE ROUGHNESS CONSIDERS THAT ANY GIVEN ROUGHNESS MAY BE EXPRESSED IN TERMS OF THE SAND ROUGHNESS WHICH GIVES THE SAME FRICTIONAL RESISTANCE AT THE SAME LENGTH AND REYNOLD'S NUMBER. THE GIVEN ROUGHNESS IS THEN CONSIDERED TO FOLLOW THE SAME LAWS AS THE EQUIVALENT SAND ROUGHNESS; LE., THE RESISTANCE OF THE GIVEN ROUGHNESS AT ANY OTHER LENGTH AND REYNOLD'S NUMBER IS CONSIDERED TO BE THE SAME AS THAT OF THE EQUIVALENT SAND ROUGHNESS UNDER THOSE CONDITIONS. THE LATTER MAY BE DETERMINED FROM SCHLICTING'S SAND ROUGHNESS CURVES AND FORMULAE (4).

REFERENCES

(1) KEMPF - "ON THE EFFECT OF ROUGHNESS ON THE RESISTANCE OF SHIPS," I. N.A. 1937

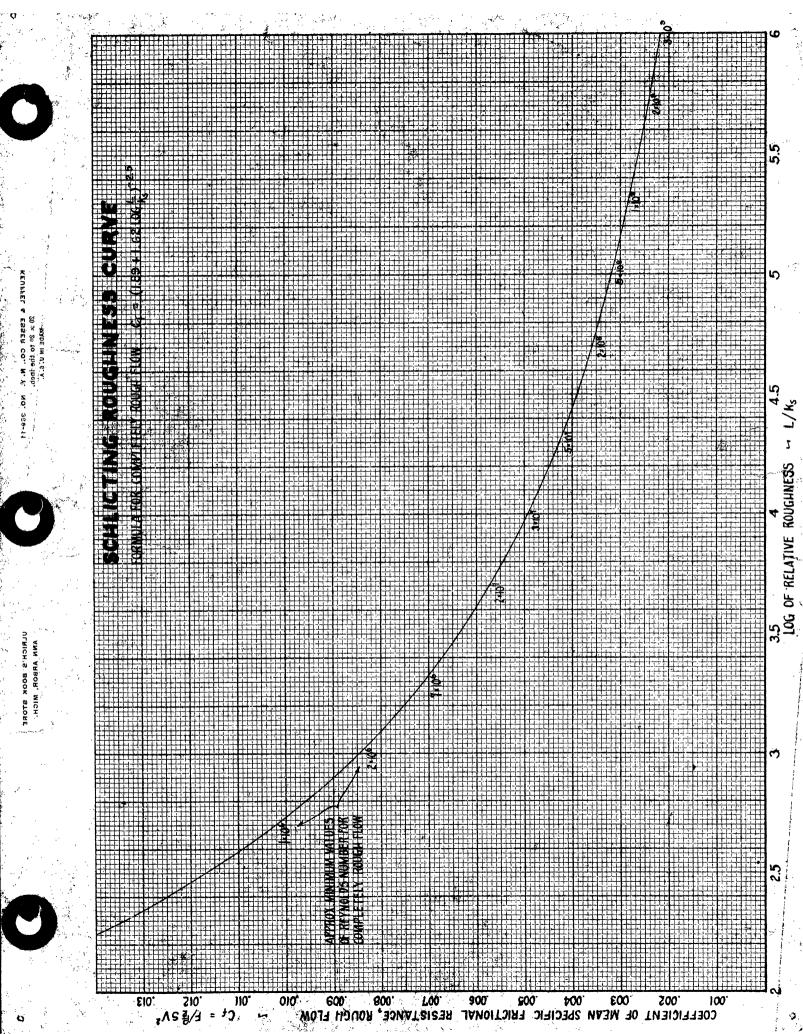
(2) KEMPF - "SHIP PERFORMANCE IN SMOOTH AND ROUGH WATER", S.N.A. & M.E. 1936

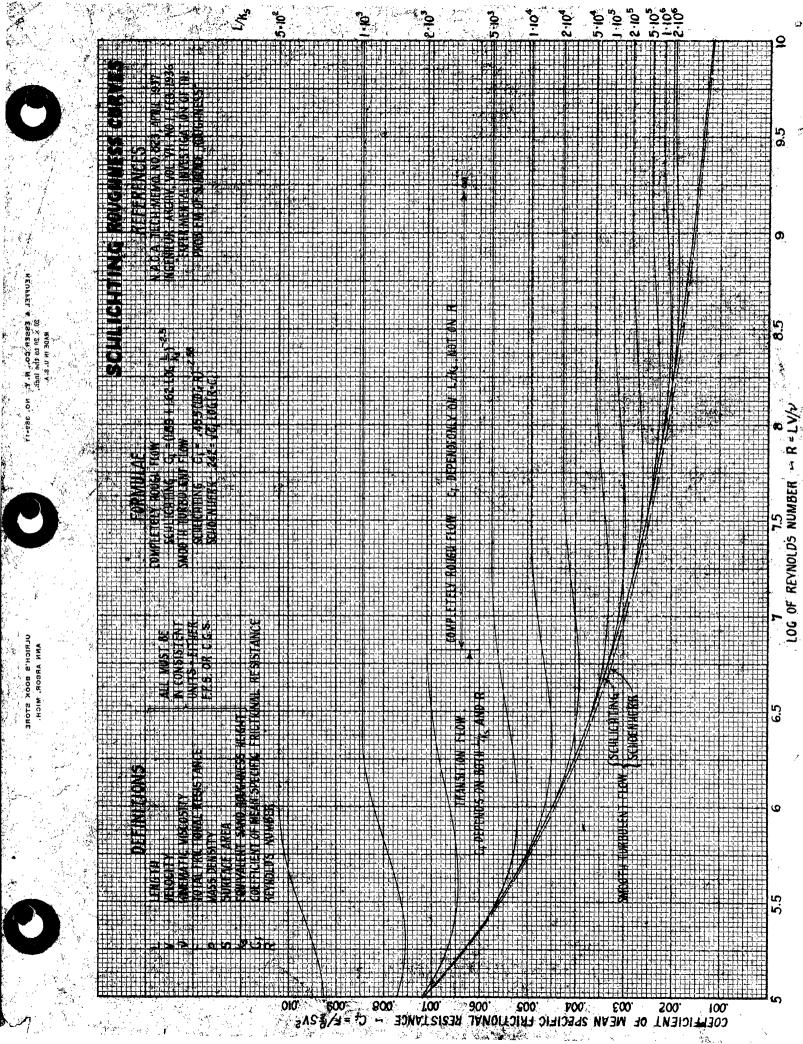
(3) SCHULTZ-GRUNOW - "FRICTIONAL RESISTANCE OF MODERATELY ROUGH SURFACES", SHIPBUILDER, APRIL 1938

(4) SCHLICHTING - "EXPERIMENTAL INVESTIGATION OF THE PROBLEM OF SURFACE ROUGHNESS," N.A.C.A. TECH. MEMO. NO. 823, APRIL 1937

(5) SCHOENHERR - "RESISTANCE OF FLAT SURFACES", S.N.A.& M.E.1932

1.00 .0.30 FLUSH WELDED


 $\hat{}$


AV. CK = 0.55 To 0.65 × 10-3

BUTTS

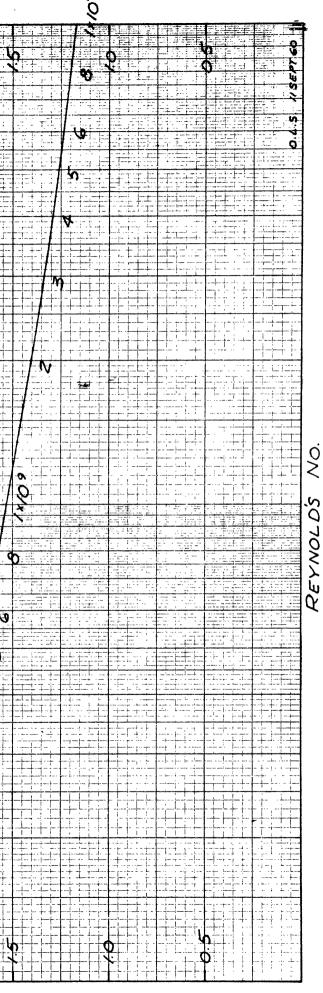
OLD

KEMPF 2 "

CYCLES.
a¾-inch
234 BY 2
LOGARITHMIC
NO. 3123.

0

. • •


6						<u> </u>						6 +															tr.												25%	
	· · · ·																		1-	· · · · ·									1							+		- Y - X - X	reix	
4-,1 4-,1 				4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1			· · · ·				+ ·		r 					- +						-	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	12		: . 1 . 	 								×		_
	- 17 - 7	· · · · · ·		1 1 1 1 1 1 1			1-1. 1 1 1 1 1 1 1				· · ·			····	••••••••••••••••••••••••••••••••••••••		., _			.i -					· · · · · · · · · · · · · · · · · · ·								 	-	• • • • • • •			d C VOD	BALE	
н. 	111. 11.									14	· · · ·		· · · ·				1			f		·····			11 Fy 			1: r +	•					- +-	ء ۔ حد ،			8	4	
	r H												-	-													<i> </i> -			1 1										
						Ť					· · · · · ·									r			1	-							· · · · ·									
						•					1.4.					· · · · · · · · · · · · · · · · · · ·	· -				- T.		Γ	1. j	•			1.5					· · · · · · · · · · · · · · · · · · ·							
															: :	-																								
														::-										• • •	1						· • • • •	- - - -			· · · ·					- 01
	,			.				4									+										+		····		 									- 7
	+			1+				···, · · · · · · ·		· · · · ·					: 						-	·		1				· · · · · · · · · · · · · · · · · · ·	·		· • · · ·			· · · ·			· · · · · · · · · · · · · · · · · · ·			-
						· • •				•	· · ·			 - 		. <u> </u> .]							20							 	· • • • •		·		+ +				k	<
		0.455				5.0											1						<i>[</i>]					+ 1											· · · · · · · · · · · · · · · · · · ·	- 0
井江			Œ	,it		2 × R		<u><u></u></u>								· · ·							+	· · · · · · · · · · · · · · · · · · ·						•	· · · · ·				· · · · · · · · · · · · · · · · · · ·					N
+++	Ţ	in L			i - [1 - [1	P																1				· · · · · · · · · · · · · · · · · · ·														- 0
			11.			0	·:.·							1					:		11						1.			·										
::	T				. E '	-			-		1		·										· · · · ·											1.			· 			- (7)
i i	1	1		+	· · · ·	X		111					•			1		- -	[: - : -		· · · ·																· · · ·	- ,	······································	
		1 = 4 ~		· · · · · · · · · · · · · · · · · · ·		NAR 1								· · · ·		· · · ·	-				· 4.					· · · · · · · · · · · · · · · · · · ·		· · ·	•	. 13 	· · · · · · · · · · · · · · · · · · ·				-				·····	-
		200				- Von										• f • · · ·		ΠĮ.	Ţ Ţ						: : : : : :				11	11.1	·			1						
		8	1			·- +	11211	+ + + + +	17 17	* * * *	1 Aur + + - + -	1 1 1 1 1			- 1- - 1-			$\left \right $	/				<u>'</u>		:					· · ·										-
11																		1			-1							7	ゆ		17 									

.

0

CODEX BOOK COMPANY, INC NORWOOD, MASSACHUSETTS

8
3
/
N

9

2 Ś Q YNOL Lu

MODE	(1)	VGTH FEET		(H) FWD AFT		$LACE - T (\Delta)$	WETTED SURF(S)FT.	TEMP	DENSITY(P) LB.SEC ⁹ /FT ²	KINEMI VISCOS PT-13	TIC TITY EE	APPE	NDAGE	51	12. R. 20172-03-02-02-03-02-02-02-02-02-02-02-02-02-02-02-02-02-	$\lambda = C_B$
SHIF				HFT FWD AFT						· 					2 - 2003 - 107 - 20 31 alifean 10 in Shidhe	- C y = C =
1	2	3	4	- T	5	6	7	8	9	10	11	12	13	/4	15	16
v	v ²	Rt/2	1,2 Rt	Re	MODEL	av ²	Ct	Cf	Cr	VK	VK/VES	VK	V	V ²	ResHIP	⊊,
															C.	
														n,antios,∞puxremane		
																and in the second second
													******	- 	1977 - 18 38 - 18 - 18 - 18 - 18 - 18 - 18 - 18 -	
								-						and and a constant a subserve		
								-							. 1.27.986 \$ 51 35 1 70 E E	* +
											1				1.1723	+
														6.6%, AB\$\$\$1Q\$3.6.4%, AB\$7Q\$2.78.7		
												-+		1.0200 Z. (2007) 2027-00820000		
						} 						·				1
	,		·							·				aldayayay madalah sa a a	.,	**************************************
	alan hala daga daga daga daga daga daga daga d														e saa gebeure oor oo	No
													_	د بیشد مهینه و میطودیم – م		• • • • • • • • • • • • • • • • • • •
						 				*****				and a state of the		
							•							an a		
								+							i 	
·																
									<u> </u>		<u> </u>					
	DDEL T LUARE			S OF	SPEE	D IN FE	EET/SEC.						,	COL.7-C		
				OF R	ESIST	ANCE/	SPEED				10 - 1	K =	V 5889 VI	$=\frac{100}{1.68}$	89 1 = -	<u> </u>
			TANCE				·)						is col			a.
						COL. 1×-) =(COL.1×(12 - V,	$k = \frac{V_{K}}{V_{L}},$	$\sqrt{L_s} = 0$	COL.11×¥	$\overline{L_5} = COL.$	# # * {
6-a	$=\frac{\rho}{2}S$	=	<u>) (</u>)) = ()				13-0	= 1.68	89 VK	= 1.6889	x COL.12	
7 - Ct	$=\frac{Rt}{P_{e}}$		COL.4										E COL.I		15 00"	11° 🕿 .
	2			0 - 51/0 k)	D / P	CICTON		110 Min 1	D. FRAM CO	•			r 3		LS = COL VS	
O-FR	UM TA	OLE	UF FRI		ML KE	31317110	LE LUEFF.	USING K	Re FROM CO	2.5 1			HOLE U			

	/Bx			MODEL	L SHIP	MODEL	Nº		PI	ROJ. Nº	
E	3×/H		LWL			TEST O	ATE		SA	HIP	
	10.01	4) ³ =	LBP			TEST E	17		D	ATE	
			Bx			STIMUL	ATION		CA	LC. BY	
17		18	19	20	21	22	23	24	25	26	27
Cf+D	Cf	Cr	Ct	$A v^2$	Rt	EHP					
er man før førstature											
. 2. 1. Kina Marak											
• 1200-1-103 P - 10-201		-							<i>i</i>		
,				11.9 4							
Norten - Las rea											
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				2.7 allo. 							
				р 1 39			~				+
				I.							
										! 	
				•			•				· ·
*											
											+
	2										
		1									
		а і • ,		18 - 54 19 - C _t	DL.16+ΔCf AME AS COL = Cf+ΔCf	$+C_{r}=COL$.17+COL	18			
2				1	$= \frac{f}{2} S = \frac{f}{2} S$)			
J				1	= C _t			COL./2 × C	OL.21		
)			REMAK							
	= CO	×.13×(

The INSTITUTE of MARINE ENGINEERS Transactions

1950, Vol. LXII, No. 8.

Modern Methods for Computing the Surface Friction of Ships*

K. C. BARNABY, O.B.E., B.Sc. (Member)

SURFACE FRICTION

Water is very far from being the perfect fluid that one is able to assume in hydrostatics. It may seem rather anomalous that in this branch of Naval Architecture it can be assumed that water is incompressible, incapable of resisting deformation and entirely frictionless, when in fluid dynamics surface friction is the major element in the resistance of all large vessels. There may even be a feeling that nature was a trifle careless with her specifications and that she might have made water rather more of a perfect fluid with a corresponding benefit to all forms of propulsion including the fish. Table 1 examines the first point. It will be seen that the frictional drag for commercial vessels may be less than 0.1 per cent of the displacement and that even on express Atlantic liners it may not exceed 0.4 per cent. These low ratios justify the neglect of viscosity in static calculations and suggest that such computations will remain accurate until very high speeds are attained. It will also be noted from the table that for commercial types surface friction accounts for from 60 per cent to just over 70 per cent of the total resistance. These results are, of course, for normal types. The most extreme cases within the author's experience were a floating aerodrome with the not

Type of ship	Length, feet (l)	Speed, knots (v)	Displace- ment, tons, (4)	Frictional drag, tons	Frictional drag, per cent of displacement	Total resistance to propulsion, tons	Friction, per cent of total resistance	Speed length ratio r $\sqrt{7}$
Cargo vessel	300	9.5	5,965	5.4	0.091	8.2	66	0.55
Cargo vessel	450	13.0	16,000	17.9	0.112	24.7	72	0.014
Coaster	195	10-5	1,640	2.72	0.166	4.85	56	0.752
Intermediate liner	465	17.0	15,820	30.4	0:192	45.4	67	0.788
Express liner	762	25.5	37,080	124.0	0.335	203.0	61	0.923
Express liner	962	31.0	79,000	288.0	0.364	458·0	62.8	1.0
Sailing yacht	50	7.25	32	0.140	0.438	0.26	54	1.027
Steam yacht	178	13.8	768	3.12	0.406	6.64	47	1.034
Motor yacht	115	13.0	212	1.19	0.562	3.29	36-2	1.210
Motor launch	49	11.0	15	0.167	1.11	0.88	19	1.57
Destroyer (deep)	350	32.5	2,455	34.7	1.41	109.0	31.8	1.70
Destroyer	364	36.57	1,962	39.2	1.99	96.5	40.5	1.92
Destroyer	295	36.045	1,140	26.2	2.30	64.6	40.6	2.098
Destroyer	271	37.52	884	23-9	2.70	· 55·8	42.8	2.28

TABLE 1.-FRICTIONAL DRAG AND TOTAL RESISTANCE FOR VARIOUS TYPES

* Read before the Southern Junior Branch I.N.A. and I.Mar.E. at Portsmouth Municipal College on 24th November 1948.

inconsiderable displacement of two million tons and a hydroplane with a speed of over 100 knots. The corresponding figures are given in Table 2. It will be clear that on account of

		LI	

	Туре			
Item	Floating aerodrome	Skimmer		
Length, ft. (L)	2,000	3.5		
Displacement, tons (1)	2,000,000	6.2.		
Speed, knots (V)	7.0	103.7		
$\frac{V}{\sqrt{L}}$	0.157	17.55 -		
Total drag, tons	300	3.4		
Drag, per cent of \varDelta	0.015	55		

the high drag/displacement ratio, static methods would be completely out of place for the fast skimmer. Owing largely to the increasing ranges of modern aeroplanes the floating aerodrome never got beyond model and drawing board stages. This was a considerable relief to the author as he viewed the launching calculations—among other matters—with considerable trepidation.

Turning to the suggestion that nature might have made water rather less viscous, reflection shows that this would have had very unpleasant consequences. Storm waves would take longer to die out than the normal interval between gales so that the seas would be perpetually rough. Wave energy would, in fact, have to be largely dissipated on erosion of our foreshores and coast line. Ships would also roll more violently and capsize more readily so that one could be sure that not only (1) the absence of slip at all rigid boundaries and (2) the presence of viscosity or shear resistance. It may be possible to insert small highly polished plates into a real fluid and obtain incomplete wetting. This is impossible with ordinary model or ship surfaces. The immersed portions are completely wetted and a film of water is attached to the surface, presumably by molecular attraction and interlocking. As a corollary, it is impossible to insert a plate, however thin, into a real fluid without changing the flow conditions in the vicinity of the plate. These changes will be discussed under the heading of "boundary laver".

THE DENSITY OF SEA WATER

This depends on the salinity and the temperature and varies appreciably from place to place and at various seasons of the year. The variation of surface salinity in the oceans is primarily dependent on the difference between the average evaporation and the average rainfall. Minimum values occur in high latitudes towards the poles and maximum values at about the two tropics with a slight reduction at the equator. Owing to the effect of temperature, the less saline water near the poles is often denser than at the equator. The mean value normally assumed for ship calculations is 1.026 which is equivalent to 64lb. per cu. ft. In this paper the author uses gravitational and not absolute units so that (ρ) for salt water = $64 \div 32.2 = 1.99$ and for fresh water = $62.2 \div 32.2 = 1.94$.

THE VISCOSITY AND KINEMATIC VISCOSITY OF FRESH AND SALT WATER

Real fluids can withstand a slight amount of tension owing to molecular attraction between the particles. This sets up an apparent resistance to shear between any two adjacent streamlines or layers and is termed the viscosity of the fluid. The coefficient of viscosity μ is defined as the ratio between the viscous stress and the angle of distortion. Typical values for μ are given in Table 3.

			sity, ρ × sec. ² /ft. ⁴		$\mu \times 10^{\circ}$ lb. \times sec./ft. ²	v ×	Kinematic v 10 ⁵ . Units =		?/sec.
Temperature, deg.			American tov	ving tank data	ı	Lyle and Hosking values*		1942 values†	
1	2	3	4	5	6	7	8	9	10
deg. C.	deg. F.	F.W.	S.W.	F.W.	S.W.	F.W.	S.W.	F.W.	S.W.
0	32	1.9399	1.9947	3.74	-	1.931	1.916	1.9291	-
10	50	1.9396	1.9924	2.73	2.91	1.409	1.419	1.4080	1.4599
15	59	1.9384	1.9905	2.38	2.55	1.232	1.247	1-2285	1.2817
20	68	1.9367	1.9882	2.10	2.26	1.088	1.103	1.0836	1.1372
30	86	1.9317	1.9823	1.67	1.82	0.868	0.888	0.8657	0.91847

TABLE 3.—TYPICAL VALUES OF ρ , μ AND ν

* As adopted at the 1935 Paris conference of tank superintendents

would coastal areas be unpleasant and residential districts wasting assets, but shipbuilding itself would be a very depressing and discredited industry.

It must, therefore, be recognized that nature knew what she was about in making water an imperfect fluid and that she went as far as was desirable in giving it only about onethirteenth of the kinematic viscosity of air.

Before dealing with specific problems concerning the flow of liquids and the computation of surface friction, it would seem desirable to examine the actual qualities of water and the terms and units that are to be employed. This may seem elementary but, on the other hand, it is as well to be quite definite in the groundwork. There are two major differences as well as a number of minor differences between a real fluid such as water and an ideal fluid. The two main points are

† As adopted at the 1942 American towing tank conference

KINEMATIC VISCOSITY

The viscous stresses in a fluid are dependent on μ and on the velocity gradients but the effects on the motion are determined by the ratio of μ to the mass density of the fluid. This ratio $\frac{\mu}{\rho}$ is known as the kinematic viscosity and is denoted

by the symbol ν . Typical values of ν are given in Table 3. It will be noted that two differing sets of values are given for both fresh and salt water. The first pair (7 and 8) are the Lyle and Hosking figures as adopted at the 1935 Paris Conference of Towing Tank Superintendents. The second pair are the figures adopted by the 1942 American Towing Tank Conference. There is little difference in the fresh water values but the salt water figures are about 3 per cent higher than the British values. The Americans state that the "fifth significant figures are doubtful". This implies an accuracy of the order of 0.05 per cent.

If this high standard of accuracy has really been attained, the British figures for the kinematic viscosity of salt water are obviously much too small. It seems that this large difference ought to be examined.

LAWS OF DIMENSIONAL SIMILARITY AND COMPARISON

The comparison of small inclined plates with large ones, or of models with full sized vessels, can only be undertaken with confidence providing the connecting equation is known for each source of resistance. If a plate is inclined at a small angle to the stream flow, the tangential component is more important than the normal component and is mainly a viscosity effect. As the angle of inclination is increased, the reverse applies and the normal component becomes much more important than the tangential component and is mainly a pressure effect. Before dealing with the extent to which these results can be applied to a ship's hull, it is desirable to examine the form that the connecting equation must take (1) when both viscosity and gravity are included (2) when gravity is omitted and (3) when viscosity is omitted. For this purpose the law of dimensional similarity is an invaluable tool.

This law elaborates the rather obvious point that the dimensions on both sides of an equation must be identical. If a resistance is to be evaluated, the various factors must be so assembled as to give an answer with the dimensions of a force, that is in terms of MLT⁻². For flat plates, aerofoils or ship-shaped forms moving in a real fluid, the various influencing factors can be set out as below.

g iac	tors can be set out as below.	
	Factor	Dimensions
(1)	Length L as determining sizes	L
	Velocity V as determining speed	LT ⁻¹
(3)	Mass density ρ as determining inertia	ML-•
(4)	Viscosity μ as influencing frictional drag	$ML^{-1}T^{-1}$
	Gravity g as affecting weight and energy	LT-1
(6)	Shape factors r_1, r_2 , etc., as affecting the character and type of the stream flow	
	pattern	(non-

(nondimensional)

(7) Roughness of surface r_0 as affecting frictional drag and expressed as the ratio of the size of grain to the length

(nondimensional)

The total resistance can then be written $R = \phi [LV \rho \mu g r_1 r_2 r_0]$ where ϕ is an unknown function. This expression can be put in the following equations: ----

(1) Including both viscosity and gravity

$$\mathbf{R} = L^2 V^3 \rho \phi \left[\left(\frac{\nu}{LV} \right)^d \left(\frac{Lg}{V^2} \right)^e \right]$$

(2) Including viscosity only

$$R = L^3 V^3 \rho \phi \left[\frac{\nu}{L V} \right]$$

(3) Including gravity only

$$R = L^{3}V^{3}\rho\phi \left[\frac{Lg}{V^{2}}\right]$$

If a resistance is entirely viscous, equation (2) applies and shows that the essential requirement for dynamical similarity is the constancy of the unknown function $\phi \begin{bmatrix} v \\ LV \end{bmatrix}$ Hence comparisons at different scales are valid only if made at constant $\frac{v}{LV}$ values.

If a resistance is entirely due to gravity (i.e., to wave-making) and is unaffected by viscosity, equation (3) is applicable and shows that dynamical similarity is obtainable only when the function $\phi \begin{bmatrix} Lg \\ V^2 \end{bmatrix}$ is constant. The more convenient reciprocal form used in practice is $\frac{LV}{v}$ which is termed the "Reynolds number" after Professor Osborne Reynolds who discovered its significance in connexion with laminar and turbulent flow and $\frac{V}{\sqrt{Lg}}$ termed the Froude number. As g is sensibly constant the more usual form for the latter is, of course, Vthe familiar speed length ratio $\frac{V}{\sqrt{I}}$.

It should be specially noted that the law of dimensional similarity affords no justification whatever for the usual practice of treating viscous and gravity resistances as independent and additive, unless these sources of resistance are confined to different bodies of water. With smooth models, this is certainly the case. Viscous resistance is confined to a relatively narrow boundary layer, whereas gravity resistance or wavemaking affects a very large body of water that is mainly outside the boundary layer. Under these circumstances it was undoubtedly correct to treat viscous and gravity resistances on models as additive and independent and this is, of course, the basis of all tank experiments.

FROUDE'S EXPERIMENTS

It is just eighty years since William Froude submitted to the Admiralty his proposals for setting-up an experiment tank where the laws of ship resistance could be investigated. There was a certain amount of opposition as at that date model tests were apparently in considerable disrepute owing to their seeming inconsistency. This defect was attributed by Froude to the results not being compared at the corresponding speeds given by his law of comparison and to the general crudity of the towing and recording apparatus. After some delay the proposal was accepted and the pioneer tank built on land adjoining Froude's house at Torquay. Extremely valuable results soon flowed from the new tank and amply vindicated the innovation.

Only one month after the completion of his Torquay tank, Froude started his classical experiments on the surface friction of planks. It was necessary to find the variation of resistance with speed and with the type and length of surface, since at that time (1872) these laws were completely unknown and it was assumed that the resistance varied with the square of the speed. Ships were in fact powered on the basis of an "Admiralty formula" which was speed' × (immersed midship section area)

i.h.p. = constant. The appropriate values for this constant were supposed to vary from about 500 for a "short vessel" to about 600 for a long vessel. Both the significance of the Reynolds number and the dimensional argument of Lord Rayleigh had still to be demonstrated.

Froude took thin planks coated in various ways and vary-ing from two to fifty feet in length. These were towed at increasing speeds and the corresponding resistances carefully measured. It was then found that the results could be expressed in an empirical formula $R = fSV^n$. These results are given in Table 4 and can be summarized as follows: -

- (1) The coefficient f decreases with length, except at very short lengths.
- The index n is appreciably less than 2 except for (2) rough surfaces when it is constant at 2.0. It is greater than 2.0 in the case of a very short and very smooth surfaœ.
- (3) The degree of roughness has a great influence on the

magnitude of f. Despite some "perplexing anomalies" as Froude termed them, the general pattern was clear. The new formula $R = fSV^n$ was not only established with suitable coefficients but was supposed to have solved the problem of surface friction. Certainly the formula has been a very satisfactory guide and as late as 1935 the Paris Conference of Tank Superintendents

	1			Length of	surface						
	2	feet	8	feet	20	feet	50	feet			
Nature of surface	ħ	f	n	f	n	f	n	f			
Varnish Paraffin wax Finfoil Dalico Fine sand Medium sand Coarse sand	2.0 1.95 2.16 1.93 2.0 2.0 2.0 2.0	0.0117 0.0118 0.0064 0.0281 0.0231 0.0257 0.0314	1.85 1.94 1.99 1.92 2.0 2.0 2.0	0.0121 0.0100 0.0081 0.0206 0.0166 0.0178 0.0204	1.85 1.93 1.90 1.89 2.0 2.0 2.0 2.0	0.0104 0.0088 0.0089 0.0184 0.0137 0.0152 0.0168	1.83 1.83 1.87 2.06 2.0	0.0097 0.0095 0.0170 0.0104 0.0139			

Table 4,—Froude's original friction constants converted to knots in formula $R = fSV^{n}$

R = Frictional resistance in lb. S = Wetted surface in sq. ft.

agreed to the use of the Froude standard constants as given in Table 4(a) (sbridged).

These constants were based on the Froude values as modified and extended by Froude's son and successor, R. E. Froude, who had also introduced his "0" values. With the latter f is defined as being equal to $\frac{"0" \times L^{0.0875}}{14.165}$.

"0" values are also given in Table 4(a).

Froude had not explained the extremely complicated mechanism of surface friction. He had produced a thoroughly practical and, on the whole, a very successful method for dealing with the problem. The full explanation started with Osborne Reynolds and is not complete even now particularly as regards the effect of roughness.

TABLE 4(A).—FROUDE'S FRICTION CONSTANTS IN THE FORMULA $R = fSV^{1.525}$ and FROUDE'S "O" VALUES, BOTH AS ADOPTED AT THE 1935 PARIS CONFERENCE OF TANK SUPERINTENDENTS

Length, feet	ſ,ſ,ſ,	"O"
10	0-011579	0-13409
20	0-010524	0.1147
30	- 0.010068	0.1059
40	0-009791	0-10043
50	0.009607	Q-09664
60	0.009475	0.0938
80	0-009309	0.08987
100	0.009207	0.08716
120	0-009135	-0.08511
. 160	0-009046	0.08219
200	0.008992	0.08102
300	0.008902	0.07655
400	0.008832	0.07406
500	0.008776	0.07217
600	0.008726	0.07062
700	0.008680	0.06931
800	0.008639	0.06818
900	0-008608	0.06724
1,000	0.008574	0.06636

R is in lb., S in sq. ft. and V in knots.

f is for sea water; for fresh water multiply by 0.975.

REYNOLDS NUMBER

Reynolds discovered the different laws governing laminar or streamline flow and turbulent or non-streamline flow and established the critical velocities at which these changes occurred. His formula for the lower critical velocity in straight parallel 2000_{H} pipes and which is applicable to all fluids is $V_c =$ dp where d is the diameter. The above formula can be written as $V_e = \frac{2000\nu}{d}$ and differs from that already discussed (Equation 2) only by the substitution of d for L. With a parallel pipe, the mean velocity must remain constant. The actual velocity will vary from zero at the walls to a maximum at the centre or towards the centre in the case of large diameter pipes of short length. Both the mean velocity and the perimeter of the pipe are controlled by the diameter, hence the primary importance of d. In the case of long planks or of ship forms there is no such restriction and the boundary layer (to be described later) can be regarded as a diverging pipe causing reduced velocity gradients with increase of length. The governing linear dimension is therefore length and not girth or draught. If a turbulent fluid is introduced into a pipe line at such a rate of flow that the Reynolds number is below the lower critical velocity the eddies will die out and the flow become streamline. A more important point for naval architects is the higher velocity at which the flow is definitely turbulent. For full models the Reynolds number for this is probably about $4 \times 10^{\circ}$ and for fine models about $6 \times 10^{6*}$. The somewhat astronomical size of Reynolds number has militated against its general use. A convenient way of quickly calculating the R_n value is to base it on that of a ship of 100 feet and 7.384 knots. The R_n value for such a ship in salt water at 15 deg. C. (59 deg. F.) is $1.0 \times 10^{\circ}$. For a ship of different speed and length, it is then only necessary to multiply by the new speed and new length and to divide by the old figures. Thus the R_n for a ship of 400ft, and 18 knots in 15 deg. C. salt water would be $9.75 \times 10^{\circ}$.

The above relation will be found to simplify the use of Reynolds number in the normal case of standard temperature conditions. If R_n is to be calculated ab initio, speeds must, of course, ibe in ft. per sec.

GEBERS' EXPERIMENTS

After Lord Rayleigh's demonstration of the connexion between the Froude number and the Reynolds number, there was an uneasy feeling that the latter ought to be used as a basis for the estimation of surface friction, despite the apparent success of the empiric formula $R = fSV^n$. Dr. G. S. Bakert in 1915 was one of the first to plot friction on a basis of R_n. The matter has more recently assumed great importance for two reasons. There have been the publication of numerous friction "lines" and formulæ by Gebers, Prandtl, Schlichting, Von Karman, Hiraga, Schoenherr and others. In addition, there is an increasing body of evidence that under certain

^{*} See postscript, p. 289.

⁺ Baker, G. S. 1915. Trans.N.E.C.I.E.S., Vol. 32, p. 41, "Notes on Model Experiments".

epecial conditions of length, speed and surface condition, the conventional methods give results that are not in harmony with the recorded thrusts and powers.

Dr. Friedrich Gebers carried out an extensive series of friction tests in the Vienna tank. Starting with the idea that the Froude results contained a certain amount of residual resistance, Gebers took very special precautions to ensure smooth and straight surfaces with well faired endings. The nesults obtained did show an appreciable reduction from Froude's coefficients but this was due primarily to the greater smoothness of Gebers' models.

Gebers found that if he ignored some specially low readings at low R_n values the remaining results could be expressed by the formula (put into English units): —

$$C_{I} = \frac{R_{I}}{\frac{\rho}{2}SV^{2}} = 0.02058(R_{n})^{-1}$$

It this expression is plotted on log-log scale, it gives a straight line as in Fig. 1.

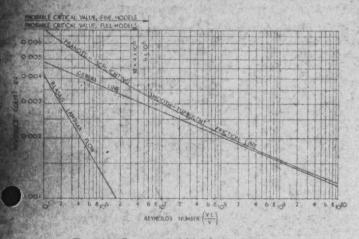


FIG. 1-Curves of skin friction resistance

The abscisse are Reynolds numbers and the ordinates C_n . In the above formula R_i is in lb., S in sq. ft., and V in ft. per sec. Suppose one examines the deviation from the Froude values for a typical case. Let R_n be $4.6 \times 10^\circ$ and the length of vessel 200 fect. Then by re-arranging the relation already given, $V = \frac{7\cdot384 \times 4\cdot6 \times 100}{200} = 16.98$ knots. If the vessel is 500 fect long, the speed would be $7\cdot384 \times 4\cdot6 \pm 5 = 6\cdot795$ knots. The calculated resistances per sq. ft. are then as follows: ---

- (1) By Gebers formula $R_1 = 1.391b$, for 200 feet and 16.98 knots.
- (2) By Froudes formula $R_t = 1.581b$. for the above conditions.
- (3) By Gebers formula R_f = 0.22lb, for 500 feet and 6.795 knots.
 (4) By Froudes formula R_f = 0.29lb, for the above con-
- (4) By Produces formula $K_i = 0.2910$. for the above conditions.

The very considerable difference from the Froude values will be noted.

LAMINAR AND TRANSITIONAL FLOW

The probable critical value for Reynolds number for finemodels has been given as 6×10^6 . Plane surfaces for friction tests are nearest to the finest possible form so that the shorter surfaces used by Froude and Gebers were well within the danger zone for transitional flow. The equation for laminar flow has been established by Blasius as $C_f = 1.327 \text{ R}_n^{-1}$ and is shown in Fig. 1. It follows that a high index n or a low coefficient in the Froude formula is prima facile evidence of transitional flow, since the coefficient C_f has to rise from the Blasius curve during the transitional régime.

If the Froude results given in Table 4 are examined, it will be seen that the tin foil surface shows these indications of transitional flow for the shorter lengths. The tin foil was noted as being appreciably smoother than the other surfaces, so the reason for some of Froude's "perplexing anomalies" seems clear. Lackenby in 1937 gave convincing evidence of the existence of transitional flow in both Froude's and Gebers' experiments. By plotting the actual trial spots in log-log form Lackenby showed that at low R_n values the curves were definitely drooping below straight lines drawn through the high R_n spots.

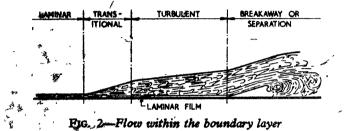
"SMOOTH-TURBULENT" FRICTION LINES

This somewhat contradictory description refers to fully turbulent flow over ideally smooth surfaces. Von Karman realized the need for completely turbulent flow at low R_u numbers if a satisfactory basis for extrapolation is to be obtained. His curve is higher than that of Gebers at low R_u values but falls under it at high R_u values. This would give a still lower estimate of skin friction, whereas trial reports seem to show that this would be inadmissible. Schoenherr from an analysis of existing data and certain trials of his own produced 0.242

a formula $\frac{0.242}{\sqrt{C_l}} = \log_{10}(R_nC_l)$. The · Prandtl-Schlichting formula is $C_l = 0.455 \log_{10}(R_n)^{-2.58}$. This gives almost identi-

TABLE 5 .- MODERN FRICTION "LINES"

		$C_1 = \frac{\text{Resistance in lb.}}{\rho/2 SV^*}$					
Reynolds' number R _a	Log R _n	Gebers	Schoenherr	Prandtl-Schlichting	Lackenby*		
× 10 ⁶	6.0	0.00366	0.00441	0.004470	0-00495		
162 × 10%	6.5	0.003169	0.003567	0.003637	0.00401		
× 10 ⁷	. 7.0	0.002744	0.002937	0-003004	0.00328		
162 × 10 ⁷	7.5	0.002377	0.002452	0.002514	0.00271		
× 108	8.0	0.002058	0.002073	0.002128	0.00225		
162 × 108	8.5	0.001782	0.001772	0.001820	0.00190		
× 109	9-0	0.001544	0.001532	0-001571	0.00162		
162 × 100	9.5	D·001336	0.001333	0.001366	0.00140		
1010	10.0	0.001157	0.001172	0.001197	0.00123		


* From formula $G_1 = 0.0006 + 0.0791 R_n^{-21}$ for Froude-Kempf data

cal results to the Schoenherr formula and is shown in Fig. 1. The values for four friction lines are given in Table 5 and it will be noted that the differences are very small for the normal working range, despite the apparent large variation in the formulæ.

BOUNDARY LAYER FLOW CONDITIONS

It is assumed that all measurable frictional resistance takes place within a relatively narrow belt of water termed the "boundary layer" since the velocity of flow at the outer fringe is approximately that of the fluid. The boundary layer can be imagined as consisting of a number of thin stream bands each with gradually decreasing velocity from the surface to the outer fringe. Normal pressures are transmitted without loss across the stream bands, but no tangential stress is assumed beyond the outer boundary.

Flow within the boundary layer can be entirely laminar, mainly turbulent, or entirely turbulent. The various changes are shown in diagrammatic form in Fig. 2 which exaggerates the thickness of the laminar film for the sake of clearness.

If the model is short there is a serious risk of laminar or at all counts of transitional flow near the bow. When laminar flow breaks down there is a thickening of the boundary layer and a portion of the original laminar boundary layer will continue as a thin huminar film which may be less than 1/1,000 inch in thickness. The layer then continues in what is called the "action the laminar film, the film will be re-formed providing there

of the roughnesses. The him wai be re-formed providing there is a sufficient length of smooth portion. Dwing to its extreme thinness, the laminar film cannot be detected by Pitot-tube massurements. Any such measurements are taken in the provident area gutside the film and when taken at close as possible to the surface, they indicate a velocity of about 50 per cent of that of the hull or surface. The inferences to be drawn are that (1) about 50 per cent of the total varia-tion in velocity at any action of the boundary layer must occur within the thin laminar film and (2) that all momentum changes can be considered as taking place within the turbulent region outside the film and affecting the remaining 50 per cent of the velocity.

important experiments on the flow through artificially

pipe and h is the average height of the sand grains. The results of the tests may be summarized as follows :-

- (1) At sufficiently low Reynolds numbers, the resistance curve followed the ordinary curve for laminar flow over smooth surfaces.
- (2) Laminar flow broke down at the same R_n values for all grades of roughness.
- (3) The resistance coefficient followed down the smoothturbulent line for a considerable range of Rn and then became constant.
- (4) The coarsest grade of coatings gave coefficients that passed directly from the transitional flow period region to a constant value and did not follow the smooth-turbulent line at all.

1

The inferences to be drawn are as follows:-

...

- (a) Roughness has no effect on resistance provided the flow remained laminar.
- (b) So long as the roughness does not protrude through the thin laminar layer film at high R_n values or through laminar boundary layer at low R_n values, the surface remains "hydraulically smooth" and there is no increase in resistance.
- (c) Outside the limits indicated in (a) and a certain transitional period the resistance coefficient for any grade of roughness becomes constant at all values of R_n. This implies that at sufficiently high speeds, the effect of viscosity becomes negligible in comparison with that of roughness.

COMPARISON OF FROUDE'S CONSTANTS WITH MODERN FORMULATIONS

If the Froude formula $R_f = fSV^{1825}$ is inserted in the equation for the resistance constant, the latter can be written as

$$C_{f} = \frac{fSV^{1.825}}{\frac{\rho}{2}Sv^{3}} = \frac{f}{2\cdot824V^{0.175}}$$

In the above equations V = speed in knots and v = speed in ft. per sec.. With the Froude constants, f was seen to vary with length. By calculating C_f from the above equation and taking a fixed length and varying speeds, a series of values are obtained which correspond with definite Reynolds numbers. Plotted in log-log form these values lie on a straight line as in Thus at 400 feet length f = 0.008832 and at 20 knots Fig. 3. 400

 R_n by the relation method already stated = 1.0. × 10° × $\frac{400}{100}$ 20

$$\times \frac{20}{7\cdot 384} = 1.085 \times 10^{\circ}$$
. Hence $C_f = 0.00185$.

In this way a series of parallel straight lines will be obtained each corresponding to some fixed length. If the Froude lines are accepted as being reasonably accurate for normal ship surfaces and the smooth-turbulent line for ideal surfaces, any differences must be due to roughness. Also, no fixed constant will bring the two methods into agreement, except at one length. It will either be too great at short lengths or too small at long lengths.

Fig. 3 can be used for the calculation of surface friction by either the smooth-turbulent line and roughness corrections or by the Froude constants. Each intersection of a Froude line and an R_n ordinate corresponds with a definite speed. Fixed speed lines can thus be drawn and they enable the diagram to be used without having to first work out the R_n value.

Suppose one requires the frictional horse-power on a Froude constant basis for 15 knots and a 400-feet ship of 9,500 tons. The C, value from Fig. 3 is 0.00195 and the wetted surface is 30,000 sq. ft. Conversion factors will be needed as the C, values are for ft. per sec. These factors are as follows :-

Resistance, R in lb. $\frac{\rho}{2}SV^{2} \times \left(\frac{6080}{3600}\right)$ $= 2.824 C_{f}SV^{2}$ important experiments on the new through at interaction of the results of the sand of difference over, f.h.p. = $C_1 \times 2SV^3 \times \left(\frac{6080}{3600}\right)^2 + 550 = 0.00867 C_1SV^4$ grades of coarseness. The scale of roughness was taken as the radius of the sand of the results of the sand grains. The results of th

in terms of kircular C and obtain this from C_1 by means of a relation factor. Using the Taylor expression for wetted surface $\bigcirc_{\mu} = 3.7033 C_{fc} \sqrt{L^{2} + \Delta t}$. Putting c at 15.39 this becomes $\widetilde{\mathfrak{O}}_{\mathfrak{p}} = 5 \mathscr{F} C_1 \sqrt{L} + \Delta \widetilde{\mathfrak{f}}.$

- Surface friction is not affected by the kind of surface .(1) such as wax, steel, tin foil or wood but only by the smoothness of that surface.
- (2) There is no slip at the surface itself and all measureable frictional resistance takes place within the boundary layer.
- The frictional resistance of a hydraulically smooth surface can be expressed with considerable accuracy by either the Schoenherr or the Prandtl-Schlichting

286

Modern Methods for Computing the Surface Friction of Ships

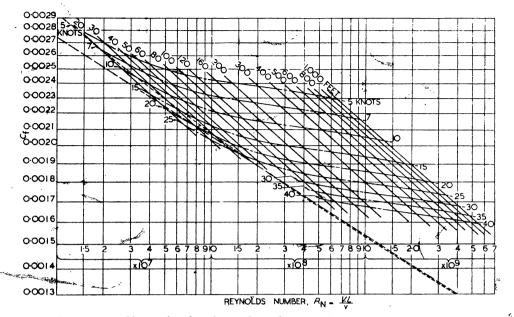


FIG. 3-Based on a kinematic viscosity v for salt water at 15 deg. C. or 59 deg. F.

Frictional resistance, $R = C_1 \frac{\rho}{2} S V^2$ lb.

 $R = 0.99 C_f SV^2$ for salt water

$$S =$$
 area of wetted surface, sq. ft

formula. Additional roughness coefficients have then to be added to C_f to represent actual ship surfaces. Precise values for these are a matter of great difficulty. (4) The frictional resistance of a smooth freshly painted ship surface can be expressed with reasonable accuracy by the Froude formula $R = fSV^{1.825}$ where f has the

values of Table 4(a). At least 6 per cent must, however, be added to represent the resistance of rivets and plate edges, etc., on normal commercial vessels.

At the recent conference of towing tank superintendents, the American delegation made a strong plea for the adoption of the Schoenherr method with the fixed roughness addition of 0.0004. This addition was admitted to be only tentative. The British speakers took the view that while one might have to come to a smooth-turbulent method, the time was hardly ripe as it was not yet certain what was the precise formula to be used. It was therefore agreed that for the present both the Schoenherr and the Froude methods could be used. The whole question is to be brought up at the next conference when further evidence will be available.

These two methods will be used for the next few years. Both cannot be equally correct, so it seemed desirable to try and devise a method of plotting surface friction which will indicate quite clearly the differences between Scheenherr and Froude and, if possible, enable judgment to be made as to which is the more correct method. The author suggests that one can accept the following: (1) That the law of dimensional similarity must be followed: (2) That the standard Froude coefficients do give with very considerable accuracy the resistance of the smooth freshly painted surface of a 400 feet vessel provided a suitable allowance is added for rivet projection, plate edges, etc.; (3) Thatno ship surface can be "hydraulically smooth".

The reason for postulating a 400 feet ship is that so many vessels of about this size have been tank tested, built and have given a satisfactory agreement between tank tests and trial results. Proceeding on these assumptions and from first principles start by trying to comply with dimensional similarity. Both μ and g must be retained since a resistance due to both viscosity and to gravity has to be evaluated. In air, or when very deeply submerged in water, one would not have to worry about wave-making resistance as there would be no free surface to be affected by the pressure changes consequent on diversing the flow lines over or around an obstacle or inequality. This would have enormously simplified the problem. Having to retain both μ and g, the resistance equation becomes

$$R_{P} = L^{3} V^{2} \rho \phi \left[\left(\frac{VL}{V} \right)^{-d} \left(\frac{V^{2}}{Lg} \right)^{-e} \right]$$

The indices d and e are not known and theither is the relationship between the two expressions based respectively on the Reynolds number and on the Froude number. If the relationship is assumed to be additive as is usual and also that x units are based on R_n and y units are based on F_n

$$R_{T} = L^{2} V^{2} \rho \phi \left[w(R_{n})^{-d} + y \left(\frac{V^{2}}{vg} \times \frac{1}{R_{n}^{2}} \right)^{-\epsilon} \right]$$

This is based on the arithmetical relation $F_n = \frac{V^3}{vg} \times \frac{1}{R_n}$ This conversion may not help, but it suggests trying plot on $\frac{V^3}{vg}$ as this is the relation factor by which one can convert F_n but R_n or vice versa. This has been done in Fig. 4. Resistance coefficients have been plotted in log-log form precisely: as for a smooth-turbulent line and for both the Schoenherr and Froude methods.

The diagram shows at a plance at any point the precise difference between Schoenherr and Froude. One can read off at any speed the C, values to be used by either method for a ship of any given length. The information is the same as in Fig. 3 but it is presented in a clearer fashion.

On examination of the diagram it will be noted that for short lengths, both methods show very similar coefficients which

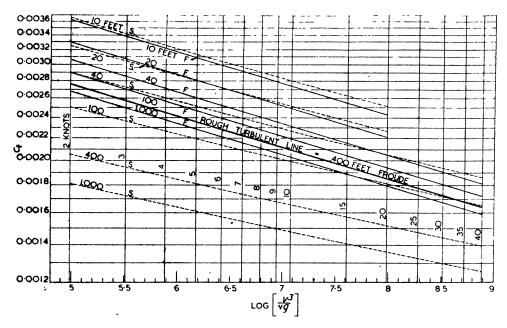
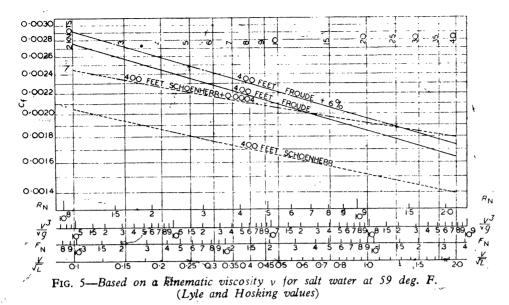


FIG. 4—Based on a kinematic viscosity v for salt water at 61 deg. F.

Frictional resistance, $R = C_1 \frac{p}{2} S V^2$ lb. $R = 0.99 C_1 S V^2$ for salt water S = area of wetted surface, sq. ft. V = speed in ft. per sec. R = frictional resistance, lb. Scheenherr's coefficients ----- S Froude's coefficients -----

vary very rapidly with length. At long lengths there are very large differences. The Froude values are varying very slowly with length, whereas the Schoenherr values are still varying more rapidly. Thus in going from 20 feet to 400 feet, the Schoenherr decrease is about 34 per cent compared with about 16 per cent for Froude. In going from 400 to 1,000 feet the Schoenherr decrease is about 10 per cent against only 3 per cent for Froude. These differences are obviously very serious. The effect of roughness has been represented in the dimensional formula by a roughness ratio in the form of height of inequality divided by length. It is then non-dimensional and should only affect C_i by a numerical addition. Now paint is applied in the same grades, by the same painters and by the same bruches for both short and long vessels. Paint texture ratio the texture to a 1,000-feet vessel.


Roughness due to rivet projection and plate edges will be approximately proportional to the thickness of the immersed shell plating. If the latter is assumed to be about 0.25 inch at 100 feet, 0.52 inch at 400 feet and 0.71 inch at 600 feet, this would be in line with normal commercial practice. This would give relative roughness ratios still decreasing with length but at about half the rate of the paint ratio.

Whatever proportion of the total C_j is assumed to be affected by these roughness changes it still follows that for a fixed and constant roughness ratio, the 1,000 feet line must be lifted by a greater amount than for the 400 feet line. This would decrease the already small gap between the two lines and render f in the Froude formula almost entirely independent of length and varying mainly with roughness ratio. This relative independence is not a theoretical result, it can be deduced by mere inspection of the Froude standard constants in Table 4. This will show the variation in f in going from 400 feet to 1,000 feet to be just 3 per cent or, as shown by Fig. 4. If, on the other hand, one is using Scheenherr for say 20 knots in both cases, there is first a deduction of about 10 per cent for length in place of 3 per cent and then a very large addition for roughness. For a fixed addition of 0.0004 for the case in point about 30 per cent is being added.

Summing up the position, it can be said that the Froude lines for long vessels are empiric rough-turbulent lines which are not very far from the truth but which involve the assumption that the roughness addition nearly equals the length deduction and so nearly cancels it. The Schoenherr line is correct dimensionally for the smooth surfaces of models, but it involves the use of very large corrections. If these are fixed amounts, the combined formula can no longer be dimensionally correct for two reasons: (1) The grade of roughness should, as shown, decrease with length, and (2) some account should be taken of the parasitic wave-making effect of roughness at high speed length ratios.

Doubt may be entertained about the necessity of the second correction, but this point could be easily cleared up by tank experiment. The late Admiral Dyson produced curves showing the enormously increased appendage resistance at certain speed length ratios. There seems no reason to suppose that surface roughness does not produce a similar effect though this has been disregarded by both Schoenherr and Froude. If one accepts, as the author would propose, the necessity for such a correction then it must be based on the Froude number not on the Reynolds number.

What seems required is a basic rough-turbulent line to include some standard grade of roughness expressed as a ratio of the length. The quite small corrections needed for difference in roughness ratio could be made appropriate to the length and character of the surface. This is a job for research workers and the author can only make suggestions which may or may not be helpful. It would seem, however, that one ought to abandon trying to use a unique line connecting both a model and a ship and equally applicable at all Reynolds num-

bers. Coming to the ship, V and L in the Reynolds number can be divorced by plotting logarithmically on $\frac{V^3}{vg}$. It is then possible to consider one length only at a time as with Froude and the base line can be marked off in terms of both R_n and F_n or, if preferred, as R_n and $\sqrt[V]{L}$. It is known that at low $\frac{V}{\sqrt{L}}$ values the effect of wave-making is very small so the gap at low values should be merely a numerical addition dependent on grade of roughness. At very high $\frac{V}{\sqrt{L}}$ values, the gap should also be a numerical addition since wave-making effect should again be nearly constant.

The mean line should in some way diminish with speed. This is indicated by the general trend of Figs. 4 and 5 and by the following consideration. Any resistance varying with the Froude number can be expressed arithmetically in terms of the Reynolds number by means of the relation factor $V^3 + vg$ as

in the equation on p. 287. It should vary, therefore, with $\overline{R_n}$ that is a decrease with speed.

In Fig. 5, the Schoenherr and Proude lines for 400 feet have been lifted from Fig. 4 and provided with additional scales for both R_n and F_n . This combination can only be shown on a fixed length basis and it serves to remind one that if a resistance becomes independent of the Reynolds number it must also be independent of the Froude number. The practical naval architect is mainly interested in the fixed length of some ship or design and for this reason it is hoped that Figs. 3, 4 and 5 will be found useful.

POSTSCRIPT

Since this paper was written, there have been some very important developments in connexion with surface friction. Walker, Allan and Conn (see references) have shown quite clearly that laminar flow may persist to much higher Reynolds numbers than those formerly thought to be limiting values. It has also been shown that the liability to laminar flow is specially marked with rather full models running at deep draughts. This has been proved, not merely by the abnormal increase of resistance when trip-wires or other turbulence stimulators are used, but also visually by means of chemical detection nethods. These latter are described by Walker.

The general condition favouring the persistence of laminar flow is a negative pressure gradient, that is one in which the pressure decreases in the direction of motion. The potential flow is then accelerating and the boundary layer tends to become thinner. This delays the transition point because, as already seen (Fig. 2) a boundary layer becomes thicker and not thinner at the transition point. A sharply raking bow also seems to delay transition.

It is probable that all tank models will in future be fitted with trip wires, or at least check tested to ensure that they are not needed. These precautions are no doubt, more necessary with commercial models than with naval models which are usually of finer form and higher speeds. Fears have been expressed that, owing to the absence of turbulence stimulation in the past, many of the earlier tank experiments and the derived data are inaccurate. This is probably an over-statement but the early experiments on bow form and angle of entrance, etc., must be regarded with some suspicion until repeated with turbulence stimulation. Mr. Emerson of the N.P.L. is now doing work of this character. It is also possible that some of the residuary resistance values in Taylor's standard series have been under-estimated owing to laminar flow. It is known that Taylor had a masterful way in fairing out "rogue spots" and it is quite possible that these were sometimes connected with a delayed transition.

The other development that should be cheonicled is due to Telfer. His "Extrapolator" method did not meet with much approval when it was first introduced, but in 1949 Dr. Telfer put forward a greatly improved version. A fundamental assumption is the very reasonable suggestion that one should divide turbulent friction into two portions, one affected by viscosity (but not, of course, by gravity) and the other by neither viscosity nor gravity. Putting this idea through the dimensional mill, one can add a fourth equation to the three given on p. 284. This is:

$$= L^2 V^2 \rho k_1 \qquad (4)$$

Adding this to the "viscosity effect equation (2), one gets for the combined equation: —

R

From Gebers and other results Telfer deduced the following values, $k_1 = 0.0012$, $k_2 = 0.34$ and the index d = $\frac{1}{3}$. The specific resistance coefficient according to Telfer should therefore be: $C_1 = 0.0012 + 0.34(\mathbf{R}_n)^{-\frac{1}{3}}$.

This formula will be found to give almost identical values to those of Schoenherr at about $R_n = 4 \times 10^6$ and at about $R_n = 10^\circ$, that is at about the normal small model range and also at about the normal ship range. At intermediate points, the Telfer values lie rather below either the Schoenherr or Prandtl-Schlichting values.

Dr. Telfer's treatment of roughness is on somewhat similar lines. As with his "Extrapolator" values, he plots the additional roughness C_{tr} on a basis of the inverse cube root of the Reynolds number. He then finds that for most actual ships the values lie between a "unity roughness ray" having the equation $C_{fr} = 0.34(R_n)^{-1}$ and a "double roughness ray" of $C_{fr} = 0.68(\mathbf{R}_n)^{-1}$

The author has pleaded for a basic "rough-turbulent" line which would avoid the very large increases that are necessary in going from a smooth model surface to an actual plated ship hull. If one was to accept the Telfer "unity roughness ray" for this purpose one would have an expression : -

 $C_{1} = 0.00112 + 0.68(R_{n})^{-1}$

Such a line would give values remarkably near the Froude values and would have the advantages of dimensional accuracy and great simplicity. It would also avoid a fundamental defect of all one term lines which reduce C_j to zero value at an infinite R_n—an obvious absurdity.

Space precludes examination of Telfer's further and very ingenious suggestions for predicting ship C, direct from model C, that is without first having to separate out the frictional component. Time alone will show if this is destined to supersede the conventional Froude method.

REFERENCES

- FROUDE, W. 1874. Institution of Naval Architects, Transactions, Volume 15, p. 36, "On Experiments with H.M.S. Greyhound"
- FROUDE, R. E. 1888. Institution of Naval Architects, Transactions, Volume 29, p. 304, "On the 'Constant' System of Notation of Results of Experiments on Models used at the Admiralty Experiment Works"

NIKURADSE. Ver Deutsch. Ing., Forschungsheft, 361 (1933). COLEBROOK AND WHITE. Proc. Roy. Soc., Volume 161, "Experi-

ments with Fluid Friction in Roughened Pipes".

REYNOLDS EXPERIMENTS. Phil. Trans., 1883.

- PRANDTL. N.A.C.A. Tech. Memo. 452, "On the motion of fluids with very little viscosity"
- PRANDTL AND TIETJENS. 1934. (McGraw Hill, New York), "Applied hydro-and aero-mechanics'
- GEBERS, F. 1919. Schiffbau, Volume 22, "Das aehnlichkeitsgesetz Bei in wasser Geradlinig Fortbewegter Platten"

STANTON, DR. T. E. and MARSHALL, D. (MISS). 1924.

"Engineering", Volume 117, p. 718, "The Effect of Length on the Skin Friction of Flat Surfaces".

- SCHOENHERR, K. E. 1932. Society of Naval Architects and Marine Engineers, N.Y., Transactions, Volume 40, p. 279, "Resistance of Flat Surfaces Moving through a Fluid".
- TELFER, E. V. 1928/9. North East Coast Institution of Engineers and Shipbuilders, Transactions, Volume 44, p. 115, "Frictional Resistance and Ship Resistance Similarity".
- KEMPF, G. 1936. Society of Naval Architects and Marine Engineers. N.Y., Transactions, Volume 44, p. 195, Study of Ship Performance in Smooth and Rough Water".
- HIRAGA, Y. 1934. Institution of Naval Architects, Transactions, Volume 76, p. 284, "Experimental Investigations on the Resistance of Long Planks and Ships"
- BAIRSTOW, L 1934. Institution of Naval Architects, Trans-actions, Volume 76, p. 327, "Skin Friction Correction". ABEL, SIR WESTCOTT. 1934. Institution of Naval Architects.
- Transactions, Volume 76, p. 243, "William Froude".
- PAYNE, M. P. 1936. Institution of Naval Architects, Transac-tions, Volume 78, p. 93, "Historical Note on the Derivation of Froude's Skin Friction Constants"
- KEMPF, G. 1937. Institution of Naval Architects, Transactions, Volume 79, p. 109, "On the Effect of Roughness on the Resistance of Ships'
- LACKENBY, H. 1937. Institution of Naval Architects, Transactions, Volume 79, p. 120, "Re-analysis of William Froude's Experiments on Surface Friction, and their Extension in the Light of Recent Developments".
- GERTLER, M. U.S.N. Report 576, "The prediction of the effective horse-power of ships by methods in use at the David Taylor Model Basin"
- WALKER, W. P. 1949. Institution of Naval Architects, Transactions, Volume 91, p. 220, "Detection of Laminar Flow on Ship Models".
- TELFER, E. V. 1950. Institution of Naval Architects, Transactions, Volume 92, p. 1, "Frictional Resistance and Ship Resistance Similarity".
- ALLAN, J. F. and CONN, J. F. C. 1950. Institution of Nava Architects, Transactions, Volume 92, p. 107, "Effect of Laminar Flow on Ship Models"

14

÷,É,