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ABSTRACT

Age-related osteoporosis is characterized by a decrease in
bone-forming capacity mediated by defects in the number
and function of osteoblasts. An important cellular mecha-
nism that may in part explain osteoblast dysfunction that
occurs with aging is senescence of mesenchymal progenitor
cells (MPCs). In the telomere-based Wrn

2/2
Terc

2/2

model of accelerated aging, the osteoporotic phenotype of
these mice is also associated with a major decline in MPC
differentiation into osteoblasts. To investigate the role of
MPC aging as a cell-autonomous mechanism in senile

bone loss, transplantation of young wild-type whole bone
marrow into Wrn2/2Terc2/2 mutants was performed and
the ability of engrafted cells to differentiate into cells of
the osteoblast lineage was assessed. We found that whole
bone marrow transplantation in Wrn2/2Terc2/2 mice
resulted in functional engraftment of MPCs up to 42
weeks, which was accompanied by a survival advantage as
well as delays in microarchitectural features of skeletal
aging. STEM CELLS 2013;31:607–611
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INTRODUCTION

Skeletal aging of bone is characterized by loss of mineral con-
tent and microarchitectural changes that decrease bone strength
and predispose bone to damage from repeated loading [1, 2].

Osteoporosis is common in the Werner and dyskeratosis
congenita premature aging syndromes, both characterized by
telomere dysfunction [3, 4]. One of the targets of WRN heli-
case is telomeric DNA, but need for WRN at telomeres is
minimized in mice by long telomeres and abundant telomer-
ase, making Wrn knockout mice relatively unaffected [5, 6].
However, combining Wrn mutation with shortened telomeres
of telomerase (Terc) knockout mice results in an accelerated
aging model [5, 7]. Deficiencies in Wrn�/�Terc�/� mutant
mice cause a low bone mass phenotype due to impaired
osteoblast differentiation in the context of intact osteoclast

differentiation [8, 9]. This impaired differentiation is associ-
ated with telomere dysfunction, as measured by the associa-
tion of DNA damage proteins with telomeres in mesenchymal
progenitor cells (MPCs) isolated from double mutant mice
[9]. MPCs from Wrn�/�Terc�/� mutants have a reduced in
vitro lifespan but also display impaired osteogenic potential
with dysfunctional telomeres independently of proliferative
state [9]. Here, we test the hypothesis that MPC aging con-
tributes to bone loss in an accelerated aging mouse model
that recapitulates many aspects of age-related bone loss.

MATERIALS AND METHODS

Detailed Materials and Methods are described in supporting
information.
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RESULTS

Wild-Type Whole Bone Marrow Transplantation
into Wrn

2/2
Terc

2/2
Mutants Confers a Survival

Advantage

To test the role of telomere-based MPC aging on age-related
osteoporosis, Wrn�/�Terc�/� mutants were transplanted at 3
months of age with whole bone marrow (BM) from young
wild-type donors. At 10.5 months after transplantation or
when animals exhibited signs of significant distress and
impending demise (whichever occurred first), mutants were
sacrificed for analysis of functional MPC engraftment and
concomitant measurements of skeletal microarchitectural fea-
tures. As shown in Figure 1, transplanted animals exhibited a
survival advantage, having a mean life span approximately
30% longer than untransplanted controls (12.89 6 0.21
months vs. 10 6 0.57 months). This difference is particularly

remarkable given that telomerase-deficient mice are hypersen-
sitive to ionizing radiation and otherwise would have been
expected to incur substantial harm from irradiation associated
with bone marrow transplantation (BMT) [10].

Long-Term Functional Engraftment of MPCs in
Wrn2/2Terc2/2 Mice

Enhanced green fluorescent protein-positive (GFPþ) wild-
type mice were used as donors in all BMT experiments.
GFPþ MPCs in BM aspirates were identified from trans-
planted animals by fluorescent immunohistochemistry and
represented 54.0% 6 7.1% of plastic adherent stromal cells
after 30 hours in culture. Expanded MPC cultures from young
wild-type donor animals are essentially CD45� Sca-1þ

cells and can differentiate in vitro into osteoblasts and
adipocytes (supporting information Fig. S1). CD45� Sca-1þ

MPCs are present after long-term BMT in Wrn�/�Terc�/�

mice (Fig. 2).
MPCs demonstrate functional engraftment as differenti-

ated GFPþ osteoblasts and osteocytes in bone sections from
recipient Wrn�/�Terc�/� mice (Fig. 3, supporting information
Fig. S2). MPC functional engraftment is present up to 10.5
months after BMT. In femur sections from transplanted
animals, 20% 6 8% of cortical osteocytes and 6% 6 2% of
trabecular osteocytes were derived from engrafted precursors.
Among endocortical and trabecular bone-lining osteoblasts,
15% 6 6% and 5% 6 1% were from precursors of donor ori-
gin, respectively. Differentiation of engrafted MPCs was most
evident as endocortical osteocytes (supporting information
Fig. S2).

Delays in Microarchitectural Features of Skeletal
Aging in Wrn

2/2
Terc

2/2
Mutants After BMT

Despite being �30% older than nontransplanted double
mutants, Wrn�/�Terc�/� BMT recipients had preserved or
improved measures of bone microarchitecture. Transplanted
animals showed no statistically significant changes in

Figure 1. Overall survival advantage of Wrn�/�Terc�/� mice after
BMT. Kaplan-Meier plot of Wrn�/�Terc�/� mutants with (n ¼ 13)
and without (n ¼ 8) wild-type whole BMT. p ¼ .00035 by log-rank
test. Abbreviation: BMT, bone marrow transplantation.

Figure 2. Long-term engraftment of CD45�Sca-1þ mesenchymal progenitor cells (MPCs) after bone marrow transplantation. Serial bone sec-
tions were stained with the indicated antibodies at left. Representative examples of engrafted MPCs in a Wrn�/�Terc�/� recipient are shown by
arrows. Scale bar ¼ 20 lm. Abbreviations: DAPI, 4’,6-diamidino-2-phenylindole; GFP, green fluorescent protein.
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trabecular bone volume/total volume, trabecular number, or in
cortical thickness (Fig. 4). Interestingly, there was a statisti-
cally significant increase in the ratio of cortical area to total
area, suggesting that transplanted mice were able to improve
endocortical bone mass. Similarly, Wrn�/�Terc�/� BMT
recipients had preserved osteoblasts/bone surface and no
increase in the number of osteoclasts/bone surface (supporting
information Fig. S3).

DISCUSSION

Although the causal role(s) of telomere dysfunction in age-
related osteoporosis are not completely established, there is
evidence of its importance. Telomere lengthening mechanisms
are not present in human BM MPCs [11]. Exogenous telomer-
ase expression extends in vitro proliferative capacity, acceler-
ates osteogenic differentiation, and enhances bone formation

upon subcutaneous transplantation into mice [12, 13]. In addi-
tion, progeroid syndromes on which the Wrn�/�Terc�/�

mutants are based (Werner syndrome and dyskerostis congen-
ita, respectively) display premature osteoporosis [3, 4].

Although we cannot exclude that hematopoietic precursors
including hematopoietic stem cells (HSCs), transplanted along
with MPCs, may support mesenchymal engraftment and/or
differentiation into cells of the osteoblast lineage, it is
unlikely that CD45� Sca-1þ MPCs are derived directly from
HSCs. However, there may be an early common BM progeni-
tor for hematopoietic cells and osteoblasts delineated as
Lin�Sca-1þcKitþCD45þ [14, 15].

Soluble hematopoietic factors alone may be sufficient to
exert effects on bone remodeling, or development of osteo-
blasts may depend on the proximity of hematopoietic cells.
Sca-1, a cell-surface molecule also expressed on HSCs, appears
to be necessary to maintain self-renewal of MPCs and suggests
that the latter is plausible. In support of this, Sca-1 knockout
mice develop age-dependent osteoporosis [16].

Figure 3. Donor mesenchymal progenitor cells differentiate into bone-lining osteoblasts (and subsequently osteocytes) that are incorporated
into bone. Arrowheads indicate bone-lining cells. Arrows indicate osteocytes located in their lacunae. Scale bar ¼ 10 lm. Abbreviations: DAPI,
4’,6-diamidino-2-phenylindole; GFP, green fluorescent protein.

Figure 4. Microarchitectural features of skeletal aging are delayed in Wrn�/�Terc�/� mutants after BMT. (Top panels) Representative micro-
CT 3-dimentional reconstructions of trabecular and cortical bone in Wrn�/�Terc�/� mutants without (n ¼ 6) and with BMT (n ¼ 6) are shown.
(Bottom panels) Quantification of trabecular and cortical bone parameters in Wrn�/�Terc�/� mutants demonstrates preservation of microarchitec-
tural features with BMT. Note that BMT recipients were approximately 30% older than non-BMT controls. ****, p < .002. Abbreviations: BMT,
bone marrow transplantation; BV, bone volume; Ct Th, cortical thickness; Ct.Ar; cortical area; TV, total volume; Tb.N, trabecular number;
Tt.Ar, total area.
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There could be systemic effects of BMT which may influ-
ence skeletal engraftment and differentiation of MPCs. Also,
microenvironmental factors (including oxidative stress) may
be at play. For example, we previously showed that osteoblast
differentiation of MPCs from Wrn�/�Terc�/� mutants is res-
cued by reducing oxidative stress [9]. Increased oxidative
stress favoring senescence in BM MPCs has also been postu-
lated based on proteome screening of these cells from young
and old rodents [17]. Muscle-derived stem/progenitor cells
from young wild-type mice transplanted into a murine proge-
ria model extended life span and improved degenerative
changes in tissues where donor cells are not detected [18].
Although we cannot be sure that extraskeletal effects of BMT
are responsible for life span extension in Wrn�/�Terc�/�

mutants, the fact that GFPþSca-1þCD45� MPCs are present
in bone tissue after long-term transplantation suggests that
they play a role in maintenance of bone microarchitectural
features over the period of extended survival.

To the extent that bone loss with physiologic aging
involves telomere-based aging, our data indicate MPC senes-
cence is a contributory mechanism. However, BMT as a
therapeutic strategy may be limited by inadequate MPC
engraftment [19]. It is debatable whether donor MPCs from
human or mouse sources have sustained engraftment in host
BM; however, our and other reports indicate that this is so
[20–26]. Therefore, it is reasonable to suggest that decreased
bone regeneration with age may be partially reversed by
transplantation of young donor MPCs.

Wrn�/�Terc�/� mutants may have altered BM stroma
which permits effective engraftment of donor MPCs. Thus
BMT, performed for other reasons in telomere-based acceler-
ated aging syndromes (e.g., aplastic anemia), may also confer
beneficial effects in stabilizing or delaying premature

osteoporosis. In fact, aplastic anemia in individuals with telo-
mere-based progeroid syndromes may actually occur due to
defective (telomerase-deficient) stroma which cannot support
HSCs. Whole BMT in these patients may be successful [27]
because it theoretically will correct both the stromal as well
as the hematopoietic defects.

CONCLUSIONS

Replacement of aging MPCs with young cells results in
delays or amelioration of aspects of skeletal aging. Wrn�/

�Terc�/� recipients of whole BMT have functional reconstitu-
tion of MPCs and stable or improved bone microarchitectural
features compared to much younger, nontransplanted mice.
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