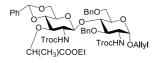
CHEMBIOCHEM

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2013

Glycan Sequence-Dependent Nod2 Activation Investigated by Using a Chemically Synthesized Bacterial Peptidoglycan Fragment Library


Ning Wang,^[a] Cheng-yuan Huang,^[a] Mizuho Hasegawa,^[b] Naohiro Inohara,^[b] Yukari Fujimoto,*^[a] and Koichi Fukase*^[a]

cbic_201200655_sm_miscellaneous_information.pdf

Supporting Information

Experimental Procedure of Synthesis / Spectroscopic Data

General procedures: ¹H NMR spectra were recorded in indicated solvents by using a JEOL ECA 400, or a JEOL JNM-LA 500, or a JEOL ECA 500, or a Varian INOVA 600 spectrometers. The chemical shifts in CDCl₃ are given in δ values from tetramethylsilane (TMS) as an internal standard. For the measurement in D₂O, HDO signal (4.718 ppm at 30 °C) was used as a reference. High resolution mass spectrometry was measured by using Bruker micrOTOFQII (ESI-QTOF). Silica-gel column chromatography was carried out using Kieselgel 60 (Merck, 0.040-0.063 mm) or Silica Gel 60 N (Kanto Chemical Co., spherical, neutral, 0.040-0.050 mm) at medium pressure (2-4 kg/cm2). Gel permeation chromatography (GPC) was carried out using Sephadex LH20 at atmospheric pressure. Precoated Kieselgel 60 F 254 (Merck Co., 0.5 mm) was used for preparative thin layer chromatography. TLC analysis was performed on Silica-gel 60 F₂₅₄ (Merck) and compound visualized by UV (254 nm), phosphomolybdic acid solution (5.0% in EtOH), 0.03% p-methoxybenzaldehyde in EtOH-conc.H₂SO₄-acetic acid buffer or 0.2% ninhydrin in EtOH-collidine-acetic acid buffer. MS4A was activated by heating at 250 °C in vacuo for 3 h before use. Unless otherwise stated all reactions were performed at room temperature. Non-aqueous reactions were carried out under argon atmosphere unless otherwise noted. Anhydrous CH₂Cl₂ was distilled from calcium hydride. Anhydrous THF was purchased from Kanto Chemicals, Tokyo, Japan. Anhydrous DMF was purchased from NACALAI TESQUE INC., Kyoto, Japan. Distilled water purchased from Otsuka (Tokyo, Japan) or prepared by a combination of Arium® 611 UV (Sautorius) or Toray Pure LV-308 (Toray) and GSL-200 (Advantec, Tokyo, Japan). All other reagents and solvents used were also purchased from commercial sources.

Allyl

3,6-di-O-benzyl-2-deoxy-4-O-[4,6-O-benzylidene-2-deoxy-3-O-{(R)-1-(ethoxycarbonyl)ethyl}-2-(2,2,2-trichloroethoxycarbonylamino)- β -D-glucopyranosyl]-2-(2,2,2-trichloroethoxycarbonylamino)- α -D-glucopyranoside (5)

To a mixture of the imidate **3** (411 mg, 0.59 mmol), the acceptor **4** (282 mg, 0.49 mmol), and MS4A in dry CH_2Cl_2 (20 mL) at -15 °C was added TMSOTf (9 μ L, 0.05 mmol). After being stirred at the same temperature for 20 min, the reaction was quenched with chilled saturated aqueous NaHCO₃ (10 mL), and the mixture was extracted with $CHCl_3$ (50 mL). The organic layer was washed with sat. NaHCO₃ aq (20 mL) and brine (20 mL), dried over Na_2SO_4 , and concentrated in vacuo. The residue was purified by silica-gel chromatography (60 g, toluene : EtOAc = 10 : 1) to

give **5** as a white solid (453 mg, 84%). 1 H NMR (500 MHz, CDCl₃) δ 7.42-7.24 (m, 15H), 6.61 (brs, 1H), 6.07 (brs, 1H), 5.86 (m, 1H), 5.62 (d, J = 7.5 Hz, 1H), 5.41 (s, 1H), 5.27-5.20 (m, 2H), 5.00 (d, J = 9.0 Hz, 1H), 4.93-4.88 (m, 3H), 4.78 (d, J = 11.5 Hz, 1H), 4.72-4.60 (m, 4H), 4.46-4.42 (m, 2H), 4.24-4.19 (m, 3H), 4.10-4.09 (m, 2H), 4.01-3.94 (m, 3H), 3.87 (d, J = 10.5 Hz, 1H), 3.67 (m, 1H), 3.61-3.49 (m, 4H), 3.40 (m, 1H), 3.26 (t, J = 10.5 Hz, 1H), 3.06 (m, 1H), 1.37 (d, J = 7.0 Hz, 3H), 1.30-1.27 (m, 3H); 13 C NMR (125 MHz, CDCl₃) δ 173.8, 163.4, 155.3, 154.2, 138.9, 137.9, 137.1, 133.3, 129.0, 128.7, 128.5, 128.3, 128.2, 127.4, 127.3, 125.9, 118.2, 102.2, 101.0, 96.6, 95.4, 82.3, 78.1, 78.1, 77.1, 75.1, 74.6, 74.4, 73.5, 70.6, 68.5, 67.6, 65.6, 61.1, 57.4, 54.7, 18.8, 14.2; HRMS (ESI-QTOF) Anal. Calcd for $C_{47}H_{54}Cl_6N_2O_{15}Na$ [M+Na]*: 1119.1553, found: 1119.1559.

Scheme S1. Preparation of Disaccharide 8

Allyl

$\label{eq:cartest} \begin{tabular}{ll} 2-acetylamino-4.$O-$[2-acetylamino-4.$6-$O-$benzylidene-2-deoxy-3-$O-$\{(R)-1-(ethoxy carbonyl)-ethyl\}-$\beta-D-glucopyranosyl]-3.$6-di-$O-$benzyl-2-deoxy-$\alpha-D-glucopyranosylde (6) \end{tabular}$

To a solution of 5 (50 mg, 1.9 mmol) in AcOH (2 mL) was added Zn-Cu (prepared from 300 mg of Zn), the mixture was stirred at room temperature for 30 min. The insoluble materials were filtered off and the filtrate was concentrated in vacuo. The residue solvent was removed by coevaporation with toluene (10 mL). The residue was dissolved in pyridine (2 mL) and acetic anhydride (2 mL) and the solution was stirred at room temperature for 1 h. The solution was removed by concentration with toluene (10 mL). The residue was purified by silica-gel chromatography (5 g, CHCl₃: acetone = 9 : 1) to give 6 as a white solid (28 mg, 74%). ¹H NMR (500 MHz, CDCl₃) δ 7.43-7.26 (m, 15H), 6.15 (d, J = 7.5 Hz, 1H), 5.84 (m, 1H), 5.44 (s, 1H), 5.28 (d, J =9.0 Hz, 1H), 5.23-5.19 (m, 2H), 4.86-4.84 (m, 2H), 4.77 (d, J = 12.0 Hz, 1H), 4.58 (d, J = 12.0 Hz, 1H, 4.48-4.39 (m, 3H), 4.19-4.11 (m, 5H), 3.98-3.72 (m, 5H), 3.62-3.60(m, 2H), 3.54-3.47 (m, 2H), 3.37 (t, J = 10.0 Hz, 1H), 3.13 (m, 1H), 2.00 (s, 3H), 1.84(s, 3H), 1.37 (d, J = 7.0 Hz, 3H), 1.27 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 174.6, 172.3, 170.3, 148.7, 140.2, 139.2, 138.1, 137.2, 133.6, 129.0, 128.5, 128.2, 128.1, 127.7, 127.3, 125.8, 125.6, 117.8, 102.1, 101.9, 96.2, 82.5, 77.7, 74.9, 74.0, 73.5, 70.9, 68.5, 68.3, 67.7, 75.7, 61.1, 55.7, 52.1, 23.5, 23.3, 18.8, 14.1; HRMS (ESI-QTOF) Anal. Calcd for C₄₅H₅₇N₂O₁₃ [M+H]⁺: 833.3861, found: 833.3839.

Ph O BnO O AcHN O AcHN O Mn

Prop-1-enyl

2-acetylamino-4-O-[2-acetylamino-4,6-O-benzylidene-2-deoxy-3-O-{(R)-1-(ethoxy carbonyl)-ethyl}- β -D-glucopyranosyl]-3,6-di-O-benzyl-2-deoxy- α -D-glucopyranos ide (7)

To a solution of 6 (50 mg, 0.06 mmol) in THF (2 mL) was added H₂-activated [Ir(cod)(MePh₂P)₂]PF₆ (2.5 mg, 0.003 mmol) in dry THF (1 mL). After being stirred under an argon atmosphere at room temperature for 1.5 h, the reaction mixture was quenched with sat. NaHCO₃ aq (10 mL) and the mixture was extracted with AcOEt (20 mL × 2). The organic layer was washed with sat. NaHCO₃ aq (20 mL) and brine (20 mL), dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by silica-gel chromatography (5 g, CHCl₃: acetone = 10:1) to give 7 as a white solid (34 mg, 68%). ¹H NMR (500 MHz, CDCl₃) δ 7.44-7.26 (m, 15H), 6.14 (d, J = 7.6 Hz, 1H), 6.09 (dd, J = 12.3 Hz, J = 1.6 Hz, 1H), 5.45 (s, 1H), 5.26 (d, J = 8.5 Hz, 1H), 5.12-5.08 (m, 1H), 5.04 (d, J = 3.8 Hz, 1H), 4.88 (d, J = 12.2 Hz, 1H), 4.76 (d, J = 12.2 Hz), 4.12.0 Hz, 1H), 4.61 (d, J = 12.2 Hz, 1H), 4.48-4.39 (m, 3H), 4.23-4.16 (m, 4H), 4.01 (t, J = 9.0 Hz, 1H), 3.79-3.76 (m, 2H), 3.69 (d, J = 15.0 Hz, 1H), 3.63 (d, J = 3.9 Hz, 1H), 3.59-3.53 (m, 2H), 3.48 (d, J = 5.1 Hz, 1H), 3.39 (t, J = 10.0 Hz, 1H), 3.15 (m, 1H), 1.97 (s, 3H), 1.81 (s, 3H), 1.53 (d, J = 6.4 Hz, 3H), 1.37(d, J = 7.0 Hz, 3H), 1.28 (t, J = 7.0 Hz, 3H), 1. = 7.1 Hz, 3H); 13 C NMR (125 MHz, CDCl₃) δ 174.3, 171.6, 169.9, 142.8, 139.2, 138.2, 137.3, 129.0, 128.6, 128.3, 128.3, 128.2, 128.1, 127.9, 127.4, 125.9, 104.7, 102.2, 101.0, 96.9, 82.6, 77.4, 77.4, 74.9, 74.3, 73.6, 71.2, 68.6, 67.5, 65.7, 61.0, 55.6, 51.9, 23.5, 23.3, 18.9, 14.2, 12.4; HRMS (ESI-QTOF) Anal. Calcd for $C_{45}H_{56}N_2O_{13}Na [M+Na]^+$: 855.3680, found: 855.3613.

Ph O BnO O AcHN O Mn CH(CH₃)COOH

Prop-1-envl

2-acetylamino-4-O-[2-acetylamino-4,6-O-benzylidene-2-deoxy-3-O-{(R)-1-carboxyethyl}- β -D-glucopyranosyl]-3,6-di-O-benzyl-2-deoxy- α -D-glucopyranosi de (8)

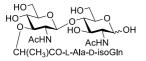
To a solution of 7 (23 mg, 0.03 mmol) in dioxane : THF : H_2O (2 : 4 : 1, 4.0 mL) was added LiOH (4 mg, 0.17 mmol) and stirred at room temperature for 1 h. The solution was neutralized with Dowex H⁺ (Dowex 50W × 8, 200-400 mesh H form, DowChemicals) and then applied to an HP-20 column (2 cm × 10 cm). Organic and inorganic salts were removed by elution with H_2O (160 mL), then eluted with MeOH and concentrated in vacuo to give a disaccharide with a free lactic acid moiety 8 as a white solid (22 mg, quant). HRMS (ESI-QTOF) Anal. Calcd for $C_{43}H_{52}N_2O_{13}Na$ [M+Na]⁺: 827.3367, found: 827.3291.

Scheme S2. Preparation of 1a

Ph O BnO O AcHN AcHN O CH(CH₃)CO-L-Ala-D-isoGln-OBn

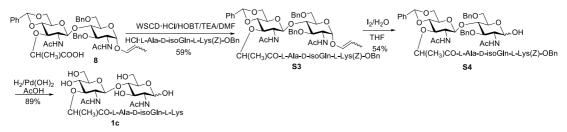
Prop-1-enyl

 $\label{lem:control} $$2$-acetylamino-4-$O-[[2-acetylamino-4,6-$O-benzylidene-2-deoxy-3-$O-[(R)-propion yl-{benzyl-(L-alanyl-D-isoglutaminate)}]-$\beta-D-glucopyranosyl]]-3,6-di-$O-benzyl-2-deoxy-$\alpha-D-glucopyranoside ($S1$)$

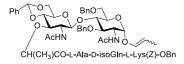

To a solution of 8 (20 mg, 0.025 mmol), HCl·L-Ala-D-isoGln-OBn (25 mg, 0.073 mmol), and HOBt (6 mg, 0.044 mmol) in DMF (3 mL) were added WSCD·HCl (6 mg, 0.037 mmol) and triethylamine (11 µL, 0.079 mmol) at 0 °C and the mixture was stirred at rt overnight. The mixture was concentrated and the residue was dissolved in CHCl₃. The CHCl₃ solution was washed with citric acid (1 M, 20 mL), H₂O (20 mL), sat. NaHCO₃ aq (20 mL), and brine (20 mL). The organic layer was dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by silica-gel chromatography (5 g, CHCl₃: MeOH = 20:1) to give S1 as a white solid (20 mg, 72%). ¹H NMR (500 MHz, CDCl₃ : CD₃OD = 4 : 1) δ 7.84 (m, 1H), 7.72 (m, 1H), 7.38-7.17 (m, 24H), 6.13 (d, J = 12.5 Hz, 1H), 5.45 (s, 1H), 5.09-5.03 (m, 3H), 5.02 (d, J = 3.5 Hz, 1H), 4.87 (d, J = 12.0 Hz, 1H), 4.75 (d, J = 12.0 Hz, 1H), 4.65-4.59 (m, J = 12.0 Hz, 1H)2H), 4.53-4.39 (m, 4H), 4.25-4.15 (m, 3H), 4.07-4.01 (m, 2H), 3.86-3.80 (m, 2H), 3.72-3.66 (m, 3H), 3.54-3.52 (m, 2H), 2.22-2.17 (m, 2H), 2.00-1.91 (m, 5H), 1.85 (s, 3H), 1.56-1.54 (m, 3H), 1.43-1.40 (m, 3H), 1.34-1.31 (m, 3H); ¹³C NMR (150 MHz, CDCl₃: CD₃OD = 4 : 1) δ 174.2, 173.5, 173.4, 173.0, 172.0, 171.4, 143.0, 139.1, 138.1, 137.2, 135.7, 129.3, 128.8, 128.6, 128.5, 128.5, 128.4, 128.4, 128.2, 127.9, 127.8, 127.7, 126.1, 105.0, 101.5, 101.1, 97.0, 81.5, 79.2, 76.7, 74.3, 73.9, 71.6, 68.7, 68.3, 67.0, 66.8, 65.9, 56.3, 52.5, 52.3, 30.6, 27.0, 23.2, 22.8, 17.6, 17.1, 12.4; HRMS (ESI-QTOF) Anal. Calcd for $C_{58}H_{71}N_5O_{16}Na$ $[M+Na]^+$: 1116.4794, found: 1116.4772.

PhO BnO OH AcHN AcHN OH CH(CH₃)CO-L-Ala-D-isoGln-OBn

2-Acetylamino-4-O-[[2-acetylamino-4,6-O-benzylidene-2-deoxy-3-O-[(R)-propion yl-{benzyl-(L-alanyl-D-isoglutaminate)}]- β -D-glucopyranosyl]]-3,6-di-O-benzyl-2-deoxy-D-glucopyranoside (S2)


To a solution of **S1** (20 mg, 0.018 mmol) in THF (5 mL), iodine (10 mg, 0.039 mmol)

and water (0.5 mL) were added and the reaction mixture was stirred for 2 h. The reaction was quenched by the addition of Na₂S₂O₃ aq (5%, 10 mL). The mixture was then extracted with CHCl₃ (20 mL). The organic layer was washed with Na₂S₂O₃ aq (5%, 10 mL × 2), sat. NaHCO₃ aq (20 mL × 2), and brine (20 mL), dried over Na₂SO₄, and then concentrated in vacuo. The residue was purified by silica-gel chromatography (5 g, CHCl₃ : MeOH = 10 : 1) to give 1-liberated **S2** as a white solid (12 mg, 64%). ¹H NMR (500 MHz, CDCl₃) δ 7.65 (m, 1H), 7.35-7.24 (m, 19H), 5.39 (s, 1H), 5.03 (m, 3H), 4.73 (d, J = 11.5 Hz, 1H), 4.62-4.53 (m, 3H), 4.42 (d, J = 11.5 Hz, 1H), 4.32 (brs, 1H), 4.10-4.01 (m, 4H), 3.93 (m, 1H), 3.83-3.63 (m, 4H), 3.48-3.39 (m, 4H), 2.42-2.36 (m, 2H), 2.11 (m, 1H), 1.88-1.81 (m, 7H), 1.25-1.19 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 173.9, 173.7, 173.0, 171.9, 171.2, 138.6, 137.6, 136.9, 135.4, 129.0, 128.4, 128.1, 128.1, 128.0, 128.0, 127.9, 127.5, 127.4, 125.8, 101.1, 100.7, 90.5, 87.8, 81.2, 78.6, 76.4, 73.7, 73.6, 70.9, 68.6, 68.3, 66.5, 65.7, 55.9, 52.2, 51.9, 30.2, 27.0, 22.9, 22.6, 19.0, 16.6; HRMS (ESI-QTOF) Anal. Calcd for C₅₅H₆₇N₅O₁₆Na [M+Na]⁺: 1076.4481, found: 1076.4492.



2-Acetylamino-4-*O*-[2-acetylamino-2-deoxy-3-*O*-{(*R*)-propionyl-(L-alanyl-D-isogl utamine)}-β-D-glucopyranosyl]-2-deoxy-D-glucopyranoside (1a)

To a solution of **S2** (11 mg, 0.01 mmol) in AcOH (4 mL) was added palladium hydroxide (60 mg) in AcOH and stirred under H₂ (2 MPa) for 1 d. The reaction was monitored by TLC analysis and the hydrogenolysis was continued until deprotection was completed. The Pd catalyst was filtered off by celite, and the filtrate was concentrated. The residue was lyophilized from acetonitrile-H₂O to give **1a** (6.5 mg, 91%) as a white solid. ¹H NMR (500 MHz, D₂O) δ 5.11 (d, J = 2.6 Hz, 1H), 4.50 (d, J = 8.6 Hz, 1H), 4.26-4.15 (m, 3H), 3.87-3.44 (m, 12H), 2.26 (dd, J = 7.8 Hz, J = 7.0 Hz, 2H), 2.06-1.87 (m, 8H), 1.36 (d, J = 7.2 Hz, 3H), 1.30 (d, J = 6.7 Hz, 3H); ¹³C NMR (125 MHz, D₂O) δ 177.0, 176.2, 175.8, 175.4, 175.1, 174.7, 102.0, 95.5, 91.1, 83.1, 79.9, 78.9, 76.3, 75.2, 73.2, 70.7, 69.9, 69.4, 61.2, 60.8, 60.7, 56.8, 55.7, 54.3, 53.9, 50.4, 33.3, 27.9, 22.9, 22.6, 19.4, 17.3; HRMS (ESI-QTOF) Anal. Calcd for C₂₇H₄₄N₅O₁₆Na₂ [M+2Na-H]⁺: 740.2578, found: 740.2542.

Scheme S3. Preparation of 1c

Prop-1-enyl

2-acetylamino-4-O-[[2-acetylamino-4,6-O-benzylidene-2-deoxy-3-O-[(R)-propion yl-{benzyl-(L-alanyl-D-isoglutamyl- ϵ -N-benzyloxycarbonyl-L-lysinate)}]- β -D-gluc opyranosyl]]-3,6-di-O-benzyl-2-deoxy- α -D-glucopyranoside (S3)

To a solution of **8** (14 mg, 0.017 mmol), HCl·L-Ala-D-isoGln-L-Lys-OBn (14 mg, 0.023 mmol), and HOBt (6 mg, 0.044 mmol) in DMF (1 mL) were added WSCD·HCl (6 mg, 0.037 mmol) and triethylamine (10 μ L, 0.079 mmol) at 0 °C and the mixture was stirred at rt overnight. The mixture was concentrated and the residue was dissolved in CHCl₃. The CHCl₃ solution was washed with citric acid (1 M, 20 mL), H₂O (20 mL), sat. NaHCO₃ aq (20 mL), and brine (20 mL). The organic layer was dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by silica-gel chromatography (5 g, CHCl₃ : MeOH = 18 : 1) to give **S3** as a white solid (14 mg, 59%). ¹H NMR (500 MHz, CDCl₃ : CD₃OD = 4 : 1) δ 7.79 (m, 1H), 7.44-7.29 (m, 28H), 6.13 (d, J = 13.5 Hz, 1H), 5.58 (m, 1H), 5.45 (s, 1H), 5.20-5.02 (m, 7H), 4.87 (d, J = 11.5 Hz, 1H), 4.73 (m, 1H), 4.62-4.59 (m, 2H), 4.60-4.45 (m, 4H), 4.28-4.00 (m, 5H), 3.88-3.67 (m, 5H), 3.54-3.52 (m, 2H), 3.13-3.11 (m, 2H), 2.31-2.27 (m, 2H), 2.11-2.09 (m, 1H), 1.93 (s, 4H), 1.85 (s, 4H), 1.73 (m, 1H), 1.55-1.54 (m, 3H), 1.48-1.42 (m, 4H), 1.36-1.26 (m, 6H); HRMS (ESI-QTOF) Anal. Calcd for $C_{72}H_{89}N_7O_{19}Na$ [M+Na]⁺: 1378.6111, found: 1378.6103.

2-Acetylamino-4-O-[[2-acetylamino-4,6-O-benzylidene-2-deoxy-3-O-[(R)-propion yl-{benzyl-(L-alanyl-D-isoglutamyl- ϵ -N-benzyloxycarbonyl-L-lysinate)}]- β -D-gluc opyranosyl]]-3,6-di-O-benzyl-2-deoxy-D-glucopyranoside (S4)

To a solution of **S3** (14 mg, 0.010 mmol) in THF (5 mL), iodine (10 mg, 0.039 mmol) and water (0.5 mL) were added and the reaction mixture was stirred for 2 h. The reaction was quenched by the addition of Na₂S₂O₃ aq (5%, 10 mL). The mixture was then extracted with CHCl₃ (20 mL). The organic layer was washed with Na₂S₂O₃ aq (5%, 10 mL × 2), sat. NaHCO₃ aq (20 mL × 2), and brine (20 mL), dried over Na₂SO₄, and then concentrated in vacuo. The residue was purified by silica-gel chromatography (5 g, CHCl₃ : MeOH = 10 : 1) to give 1-liberated **S4** as a white solid (7 mg, 54%). ¹H NMR (500 MHz, DMF-d7) δ 8.18 (d, J = 8.2 Hz, 2H), 7.87 (m, 1H), 7.68 (m, 1H), 7.54-7.34 (m, 19H), 7.08 (brs, 1H), 6.89 (d, J = 4.4 Hz, 1H), 5.76 (s, 1H), 5.24-4.94 (m, 4H), 4.79-4.70 (m, 3H), 4.44-4.42 (m, 2H), 4.24 (m, 1H), 4.15-3.93 (m, 7H), 3.87-3.83 (m, 2H), 3.76-3.68 (m, 2H), 3.40-3.36 (m, 4H), 2.50-2.40 (m, 2H), 2.19 (m, 1H), 2.03 (s, 3H), 1.97 (s, 4H), 1.54-1.34 (m, 8H), 1.18 (t, J = 7.1 Hz, 2H), 1.08 (t, J = 7.1 Hz, 2H); ¹³C NMR (125 MHz, DMSO-d6) δ 173.0, 172.0, 171.9, 171.8, 171.5, 169.5, 169.1, 156.0, 139.3, 138.4, 137.5, 137.2, 135.9, 128.7, 128.3, 128.3, 128.2, 128.0, 127.9, 127.9, 127.8, 127.7, 127.6, 127.6, 127.6,

127.3, 127.2, 127.1, 127.1, 127.0, 125.8, 100.0, 90.6, 79.9, 78.7, 77.5, 77.3, 76.6, 73.3, 71.9, 69.7, 67.7, 65.7, 65.6, 65.0, 55.6, 52.7, 52.1, 48.0, 31.4, 30.4, 28.9, 27.8, 23.0, 22.6, 22.5, 18.8, 18.2; HRMS (ESI-QTOF) Anal. Calcd for C₆₉H₈₅N₇O₁₉Na [M+Na]⁺: 1338.5798, found: 1338.5793.

$2-Acetylamino-4- O-[2-acetylamino-3-O-\{(R)-propionyl-(L-alanyl-D-isoglutamyl-L-lysine)\}-2-deoxy-\beta-D-glucopyranosyl]-2-deoxy-D-glucopyranoside (1c)$

To a solution of **S4** (5 mg, 0.01 mmol) in AcOH (4 mL) was added palladium hydroxide (17 mg) in AcOH and stirred under H₂ (2 MPa) for 1 d. The reaction was monitored by TLC analysis and the hydrogenolysis was continued until deprotection was completed. The Pd catalyst was filtered off by celite and the filtrate was concentrated. The residue was lyophilized from acetonitrile-H₂O to give **1c** (3 mg, 89%) as a white solid. ¹H NMR (500 MHz, D₂O) δ 5.11 (d, J = 2.6 Hz, 1H), 4.49 (d, J = 8.5 Hz, 1H), 4.27 (dd, J = 9.5 Hz, J = 4.5 Hz, 1H), 4.22-4.13 (m, 2H), 3.87-3.44 (m, 14H), 3.32-3.26 (m, 3H), 2.47-2.32 (m, 2H), 2.15-1.88 (m, 8H), 1.36-1.29 (m, 7H), 1.11-1.00 (m, 5H); ¹³C NMR (150 MHz, D₂O) δ 178.9, 175.9, 175.6, 175.1, 174.5, 174.2, 174.0, 101.3, 94.8, 90.4, 82.5, 79.7, 78.2, 75.6, 78.2, 75.6, 74.6, 72.5, 70.0, 69.3, 68.7, 61.3, 60.6, 60.1, 54.9, 53.6, 49.7, 39.3, 31.9, 31.1, 27.0, 26.3, 27.0, 26.3, 22.2, 22.1, 21.9, 18.8, 16.6; HRMS (ESI-QTOF) Anal. Calcd for C₃₃H₅₇N₇O₁₇Na [M+Na]⁺: 846.3709, found: 846.3697.

WSCD-HCI/HOBT/TEA/DMF THE HCI·L-Ala-D-isoGln-L-Lys(Z)-D-Ala-OBn AcHN AcHN AcHN 6 64% 48% CH(CH₃)COOH CH(CH₃)CO-L-Ala-D-isoGln-L-Lys(Z)-D-Ala-OBn НО H₂/Pd(OH)₂ AcHN AcHN AcHÌ CH(CH₃)CO-L-Ala-D-isoGln-L-Lys-D-Ala CH(CH₃)CO-L-Ala-D-isoGln-L-Lys(Z)-D-Ala-OBn 1e

Scheme S4. Preparation of 1e

Ph O BnO O AcHN O AcHN O CH(CH₃)CO-L-Ala-O-isoGln-L-Lys(Z)-D-Ala-O-Bn

Prop-1-envl

 $\label{lem:control_c$

To a solution of **8** (10 mg, 0.012 mmol), HCl·L-Ala-D-isoGln-L-Lys(Z)-D-Ala-OBn (12 mg, 0.019 mmol), and HOBt (6 mg, 0.044 mmol) in DMF (3 mL) were added WSCD·HCl (6 mg, 0.037 mmol) and triethylamine (6 μ L, 0.04 mmol) at 0 °C and the

mixture was stirred at rt overnight. The mixture was concentrated and the residue was dissolved in CHCl₃. The CHCl₃ solution was washed with citric acid (1 M, 20 mL), H₂O (20 mL), sat. NaHCO₃ aq (20 mL), and brine (20 mL). The organic layer was dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by silica-gel chromatography (5 g, CHCl₃: MeOH = 20: 1) to give S5 as a white solid (8.8 mg, 48%). ¹H NMR (400 MHz, DMF-d7) δ 8.30 (d, J = 7.2 Hz, 1H), 8.17-8.14 (m, 3H), 7.91 (d, J = 7.2 Hz, 1H), 7.59 (m, 1H), 7.49-7.28 (m, 26H), 7.11-7.07 (m, 2H), 6.30 (m, 1H), 5.69 (s, 1H), 5.16-5.02 (m, 6H), 4.89 (m, 1H), 4.74-4.60 (m, 3H), 4.44-4.35 (m, 4H), 4.19-3.54 (m, 14H), 3.31 (m, 1H), 3.08-3.05 (m, 2H), 2.32-2.30 (m, 2H), 2.19 (m, 1H), 1.96-1.75 (m, 7H), 1.61-1.20 (m, 18H); ¹³C NMR (100 MHz, DMF-d7) δ 174.1, 173.2, 172.7, 170.8, 170.2, 157.1, 139.7, 138.7, 138.5, 137.1, 129.4, 129.1, 129.0, 128.9, 128.7, 128.6, 128.4, 128.3, 128.1, 128.1, 128.0, 127.9, 127.9, 127.7, 126.7, 102.1, 101.3, 98.0, 81.5, 80.1, 78.8, 78.7, 74.5, 73.0, 69.3, 66.7, 66.0, 56.9, 53.9, 53.1, 49.8, 48.8, 41.2, 32.7, 32.6, 29.5, 29.0, 23.6, 22.7, 19.4, 18.1, 17.3, 12.4; HRMS (ESI-QTOF) Anal. Calcd for $C_{75}H_{94}N_8O_{20}Na$ [M+Na]⁺: 1449.6482, found: 1449.6439.

Ph BnO OH AcHN OH ACHN CH(CH₃)CO-L-Ala-D-isoGln-L-Lys(Z)-D-Ala-OBn

2-Acetylamino-4-*O*-[[2-acetylamino-4,6-*O*-benzylidene-2-deoxy-3-*O*-[(*R*)-propion yl-{benzyl-(L-alanyl-D-isoglutamyl-ε-*N*-benzyloxycarbonyl-L-lysyl)-D-alaninate}]-β-D-glucopyranosyl]]-3,6-di-*O*-benzyl-2-deoxy-D-glucopyranoside (S6)

To a solution of **S5** (4.5 mg, 0.004 mmol) in THF (2 mL), iodine (5 mg, 0.02 mmol) and water (0.5 mL) were added and the reaction mixture was stirred for 2 h. The reaction was quenched by the addition of $Na_2S_2O_3$ aq (5%, 10 ml). The mixture was then extracted with CHCl₃ (20 mL). The organic layer was washed with $Na_2S_2O_3$ aq (5%, 10 mL × 2), sat. $NaHCO_3$ aq (20 mL × 2), and brine (20 mL), dried over Na_2SO_4 , and then concentrated in vacuo. The residue was purified by silica-gel chromatography (5 g, CHCl₃ : MeOH = 10 : 1) to give 1-liberated **S6** as a white solid (2.8 mg, 64%). HRMS (ESI-QTOF) Anal. Calcd for $C_{72}H_{90}N_8O_{20}Na$ [M+Na]⁺: 1409.6169, found: 1409.6152.

2-Acetylamino-4-*O*-[**2-acetylamino-3-***O*-{(*R*)-propionyl-(L-alanyl-D-isoglutamyl-L-lysiyl-D-alanine)}-**2-deoxy-β-D-glucopyranosyl**]-**2-deoxy-D-glucopyranoside** (**1e**) To a solution of **S6** (1.6 mg, 0.001 mmol) in AcOH (1 mL) was added palladium hydroxide (10 mg) in AcOH and stirred under H₂ (2 MPa) for 1 d. The reaction was monitored by TLC analysis and the hydrogenolysis was continued until deprotection was completed. The Pd catalyst was filtered off by celite and the filtrate was concentrated. The residue was lyophilized from acetonitrile-H₂O to give **1e** (0.9 mg, 90%) as a white solid. ¹H NMR (500 MHz, D₂O) δ 5.06 (d, J = 3.0 Hz, 1H), 4.44 (d, J

= 8.0 Hz, 1H), 4.20-4.02 (m, 5H), 3.82-3.38 (m, 12H), 2.86 (t, J = 7.5 Hz, 2H), 2.31-2.28 (m, 2H), 2.04 (m, 1H), 1.91 (s, 3H), 1.86-1.82 (m, 4H), 1.74-1.62 (m, 4H), 1.32-1.30 (m, 5H), 1.25 (d, J = 6.3 Hz, 3H), 1.19 (d, J = 7.3 Hz, 3H); HRMS (ESI-QTOF) Anal. Calcd for $C_{36}H_{63}N_8O_{18}$ [M+H]⁺: 895.4260, found: 895.4213.

Ph BnO CF₃

TrocHN TrocHN NPh

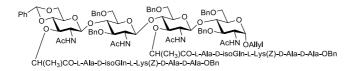
CH(CH₃)COOEt

3,6-Di-O-benzyl-2-deoxy-4-O-[4,6-O-benzylidene-2-deoxy-3-O-{(R)-1-(ethoxycarbonyl)ethyl}-2-(2,2,2-trichloroethoxycarbonylamino)- β -D-glucopyranosyl-2-(2,2,2-trichloroethoxycarbonylamino)-D-glucopyranosyl

(N-phenyl)trifluoroacetimidate (10b)

To a solution of 5 (0.87 g, 0.79 mmol), the solution of [Ir(cod)(MePh₂P)₂]PF₆ (32 mg, 0.04 mmol) activated with H₂ in dry THF (1 mL) was added. After being stirred at room temperature for 1.5 h, iodine (400 mg, 1.6 mmol) and water (2 mL) were added and the reaction mixture was stirred for additional 30 min. To the reaction mixture was rapidly added Na₂S₂O₃ aq (5%, 100 mL). The mixture was then extracted with EtOAc (50 mL). The organic layer was washed with Na₂S₂O₃ aq (5%, 50 mL × 2), sat. NaHCO₃ ag (100 mL × 2), brine (50 mL), dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by silica-gel chromatography (80 g, toluene : EtOAc = 5 : 1) to give 1-liberated-disaccharide (677 mg, 81%) as a pale yellow solid. HRMS (ESI-QTOF) Anal. Calcd for $C_{44}H_{50}Cl_6N_2O_{15}K$ $[M+K]^+$: 1095.0979, found: 1095.0933. To a solution of 1-liberated-disaccharide (329 mg, 0.31 mmol) in acetone (10 mL) at 0 °C was added Na₂CO₃ (987 mg, 9.3 N-phenyl-2,2,2-trifluoroacetimidoyl chloride (0.1 mL, 0.47 mmol). After being stirred for 3 d at rt, insoluble materials were filtered off through celite and the filtrate was concentrated. The residue was purified by silica-gel chromatography (30 g, toluene : EtOAc = 12:1) to give **10b** as a pale yellow solid (290 mg, 76%).

Allyl


3,6-di-O-benzyl-2-deoxy-4-O-[6-O-benzyl-2-deoxy-3-O-{(R)-1-(ethoxycarbonyl)et hyl}-2-(2,2,2-trichloroethoxycarbonylamino)- β -D-glucopyranosyl]-2-(2,2,2-trichloroethoxycarbonylamino)- α -D-glucopyranoside (11)

To a solution of **5** (138 mg, 0.125 mmol) and trimethylamine-borane (10 mg, 0.138 mmol) in dry CH₃CN (15 mL) at 0 °C was added boron trifluoride diethyl etherate (53 mg, 0.376 mmol) dropwise and the mixture was stirred at rt for 1 h. The reaction was then quenched with ice and sat. NaHCO₃ aq (20 mL) and the mixture was extracted with EtOAc (50 mL \times 2). The organic layer was washed with citric acid (1 M, 15 mL \times 4), sat. NaHCO₃ aq (50 mL), and brine (50 mL), dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by silica-gel chromatography (30 g, toluene: AcOEt = 5:1) to give **37** as a colorless solid (115 mg, 83%). ¹H NMR (500

MHz, CDCl₃) δ 7.39-7.26 (m, 15H), 5.84 (m, 1H), 5.73 (d, J = 6.5 Hz, 1H), 5.26-5.18 (m, 2H), 4.94-4.87 (m, 4H), 4.76 (d, J = 12.0 Hz, 1H), 4.71-4.61 (m, 5H), 4.43 (d, J = 11.9 Hz, 1H), 4.33 (s, 2H), 4.45-4.18 (m, 3H), 4.09-4.07 (m, 1H), 3.96-3.85 (m, 4H), 3.66 (d, J = 10.0 Hz, 1H), 3.59-3.55 (m, 3H), 3.52-3.50 (m, 3H), 3.26 (m, 1H), 3.15 (m, 2H), 1.38 (d, J = 6.9 Hz, 3H), 1.29 (t, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 174.6, 155.3, 154.2, 139.1, 137.9, 137.2, 133.3, 128.6, 128.5, 128.9, 127.9, 127.6, 127.4, 127.0, 118.1, 102.0, 96.6, 95.9, 79.7, 78.0, 75.4, 74.5, 74.3, 74.1, 73.7, 73.4, 71.8, 70.5, 68.4, 67.6, 61.2, 56.0, 54.7, 19.0, 14.2; HRMS (ESI-QTOF) Anal. Calcd for C₄₇H₅₆Cl₆N₂O₁₅Na [M+Na]⁺: 1121.1710, found: 1121.1663.

Tetrasaccharide tripeptide backbone (15)

To a solution of **13** (17 mg, 0.011 mmol), HCl·L-Ala-D-isoGln-L-Lys(Z)-OBn (26 mg, 0.044 mmol), and HOBt (5 mg, 0.033 mmol) in DMF (3 mL) were added WSCD·HCl (6 mg, 0.037 mmol) and triethylamine (10 μ L, 0.04 mmol) at 0 °C and the mixture was stirred at rt overnight. The mixture was concentrated, and the residue was dissolved in CHCl₃. The CHCl₃ solution was washed with citric acid (1 M, 20 mL), H₂O (20 mL), sat. NaHCO₃ aq (20 mL), and brine (20 mL). The organic layer was dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by silica-gel chromatography (5 g, CHCl₃ : MeOH = 12 : 1) to give **15** as a white solid (15 mg, 53%). ¹H NMR (500 MHz, CDCl₃) δ 7.52-7.26 (m, 50H), 5.83 (m, 1H), 5.45 (s, 1H), 5.15-5.07 (m, 8H), 4.82-3.12 (m, 54H), 2.28-2.17 (m, 4H), 2.04-1.74 (m, 16H), 1.43-1.25 (m, 24H); HRMS (ESI-QTOF) Anal. Calcd for C₁₄₁H₁₇₄N₁₄O₃₇Na₂ [M+2Na]²⁺: 1350.5980, found: 1350.5985.

Tetrasaccharide pentapeptide backbone (17)

solution of 13 (15 mg, 0.006 mmol) HCl·L-Ala-D-isoGln-L-Lys(Z)-D-Ala-D-Ala-OBn (22 mg, 0.019 mmol) in DMF (3 mL) were added HATU (11 mg, 0.019 mmol) and triethylamine (8 μL, 0.039 mmol) at 0 °C and the mixture was stirred at rt overnight. The mixture was concentrated and the residue was dissolved in CHCl₃. The CHCl₃ solution was washed with citric acid (1 M, 20 mL), H₂O (20 mL), sat. NaHCO₃ ag (20 mL), and brine (20 mL). The organic layer was dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by silica-gel chromatography (5 g, CHCl₃: MeOH = 15:1) to give 17 as a white solid (20 mg, 71%). HRMS (ESI-QTOF) Anal. Calcd for C₁₅₃H₁₉₄N₁₈O₄₁Na₂ [M+2Na]²⁺: 1492.6722, found: 1492.6753.