CHEMBIOCHIEM

Supporting Information

© Copyright Wiley-VCH Verlag GmbH \& Co. KGaA, 69451 Weinheim, 2013

Glycan Sequence-Dependent Nod2 Activation Investigated by Using a Chemically Synthesized Bacterial Peptidoglycan Fragment Library

Ning Wang, ${ }^{[a]}$ Cheng-yuan Huang, ${ }^{[a]}$ Mizuho Hasegawa, ${ }^{[b]}$ Naohiro Inohara, ${ }^{[b]}$ Yukari Fujimoto, ${ }^{*[a]}$ and Koichi Fukase* ${ }^{\text {[a] }}$

cbic_201200655_sm_miscellaneous_information.pdf

Supporting Information

Experimental Procedure of Synthesis / Spectroscopic Data

General procedures: ${ }^{1} \mathrm{H}$ NMR spectra were recorded in indicated solvents by using a JEOL ECA 400 , or a JEOL JNM-LA 500, or a JEOL ECA 500, or a Varian INOVA 600 spectrometers. The chemical shifts in CDCl_{3} are given in δ values from tetramethylsilane (TMS) as an internal standard. For the measurement in $\mathrm{D}_{2} \mathrm{O}$, HDO signal (4.718 ppm at $30^{\circ} \mathrm{C}$) was used as a reference. High resolution mass spectrometry was measured by using Bruker micrOTOFQII (ESI-QTOF). Silica-gel column chromatography was carried out using Kieselgel 60 (Merck, $0.040-0.063 \mathrm{~mm}$) or Silica Gel 60 N (Kanto Chemical Co., spherical, neutral, $0.040-0.050 \mathrm{~mm}$) at medium pressure ($2-4 \mathrm{~kg} / \mathrm{cm} 2$). Gel permeation chromatography (GPC) was carried out using Sephadex LH20 at atmospheric pressure. Precoated Kieselgel 60 F 254 (Merck Co., 0.5 mm) was used for preparative thin layer chromatography. TLC analysis was performed on Silica-gel $60 \mathrm{~F}_{254}$ (Merck) and compound visualized by UV (254 nm), phosphomolybdic acid solution (5.0\% in EtOH), 0.03\% p-methoxybenzaldehyde in EtOH-conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$-acetic acid buffer or 0.2% ninhydrin in EtOH -collidine-acetic acid buffer. MS4A was activated by heating at $250^{\circ} \mathrm{C}$ in vacuo for 3 h before use. Unless otherwise stated all reactions were performed at room temperature. Non-aqueous reactions were carried out under argon atmosphere unless otherwise noted. Anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled from calcium hydride. Anhydrous THF was purchased from Kanto Chemicals, Tokyo, Japan. Anhydrous DMF was purchased from NACALAI TESQUE INC., Kyoto, Japan. Distilled water purchased from Otsuka (Tokyo, Japan) or prepared by a combination of Arium® 611 UV (Sautorius) or Toray Pure LV-308 (Toray) and GSL-200 (Advantec, Tokyo, Japan). All other reagents and solvents used were also purchased from commercial sources.

Allyl
 3,6-di-O-benzyl-2-deoxy-4-O-[4,6-O-benzylidene-2-deoxy-3-O-\{(R)-1-(ethoxycarb onyl)ethyl $\}$-2-(2,2,2-trichloroethoxycarbonylamino)- β-D-glucopyranosyl]-2-(2,2,2 -trichloroethoxycarbonylamino)- α-D-glucopyranoside (5)

To a mixture of the imidate $3(411 \mathrm{mg}, 0.59 \mathrm{mmol})$, the acceptor 4 ($282 \mathrm{mg}, 0.49$ $\mathrm{mmol})$, and MS4A in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $-15^{\circ} \mathrm{C}$ was added TMSOTf ($9 \mu \mathrm{~L}, 0.05$ $\mathrm{mmol})$. After being stirred at the same temperature for 20 min , the reaction was quenched with chilled saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, and the mixture was extracted with $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$. The organic layer was washed with sat. NaHCO_{3} aq (20 mL) and brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by silica-gel chromatography (60 g , toluene : $\mathrm{EtOAc}=10: 1$) to
give 5 as a white solid ($453 \mathrm{mg}, 84 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.24$ (m , $15 \mathrm{H}), 6.61(\mathrm{brs}, 1 \mathrm{H}), 6.07(\mathrm{brs}, 1 \mathrm{H}), 5.86(\mathrm{~m}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~s}$, $1 \mathrm{H}), 5.27-5.20(\mathrm{~m}, 2 \mathrm{H}), 5.00(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.93-4.88(\mathrm{~m}, 3 \mathrm{H}), 4.78(\mathrm{~d}, J=$ $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.72-4.60(\mathrm{~m}, 4 \mathrm{H}), 4.46-4.42(\mathrm{~m}, 2 \mathrm{H}), 4.24-4.19(\mathrm{~m}, 3 \mathrm{H}), 4.10-4.09(\mathrm{~m}$, $2 \mathrm{H}), 4.01-3.94(\mathrm{~m}, 3 \mathrm{H}), 3.87(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.49(\mathrm{~m}, 4 \mathrm{H})$, $3.40(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, 1.30-1.27 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.8,163.4,155.3,154.2,138.9$, 137.9, 137.1, 133.3, 129.0, 128.7, 128.5, 128.3, 128.2, 127.4, 127.3, 125.9, 118.2, 102.2, 101.0, 96.6, 95.4, 82.3, 78.1, 78.1, 77.1, 75.1, 74.6, 74.4, 73.5, 70.6, 68.5, 67.6, $65.6,61.1,57.4,54.7,18.8,14.2$; HRMS (ESI-QTOF) Anal. Calcd for $\mathrm{C}_{47} \mathrm{H}_{54} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{O}_{15} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1119.1553$, found: 1119.1559.

Scheme S1. Preparation of Disaccharide 8

Allyl
2-acetylamino-4-O-[2-acetylamino-4,6-O-benzylidene-2-deoxy-3-O-\{(R)-1-(ethoxy carbonyl)-ethyl $\}-\beta$-D-glucopyranosyl]-3,6-di- O-benzyl-2-deoxy- α-D-glucopyranos ide (6)
To a solution of $\mathbf{5}(50 \mathrm{mg}, 1.9 \mathrm{mmol})$ in $\mathrm{AcOH}(2 \mathrm{~mL})$ was added $\mathrm{Zn}-\mathrm{Cu}$ (prepared from 300 mg of Zn), the mixture was stirred at room temperature for 30 min . The insoluble materials were filtered off and the filtrate was concentrated in vacuo. The residue solvent was removed by coevaporation with toluene $(10 \mathrm{~mL})$. The residue was dissolved in pyridine (2 mL) and acetic anhydride (2 mL) and the solution was stirred at room temperature for 1 h . The solution was removed by concentration with toluene $(10 \mathrm{~mL})$. The residue was purified by silica-gel chromatography ($5 \mathrm{~g}, \mathrm{CHCl}_{3}$: acetone $=9: 1)$ to give 6 as a white solid ($28 \mathrm{mg}, 74 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.43-7.26(\mathrm{~m}, 15 \mathrm{H}), 6.15(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~m}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.19(\mathrm{~m}, 2 \mathrm{H}), 4.86-4.84(\mathrm{~m}, 2 \mathrm{H}), 4.77(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}$, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.39(\mathrm{~m}, 3 \mathrm{H}), 4.19-4.11(\mathrm{~m}, 5 \mathrm{H}), 3.98-3.72(\mathrm{~m}, 5 \mathrm{H}), 3.62-3.60$ $(\mathrm{m}, 2 \mathrm{H}), 3.54-3.47(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.84$ $(\mathrm{s}, 3 \mathrm{H}), 1.37(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~m}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.6$, 172.3, 170.3, 148.7, 140.2, 139.2, 138.1, 137.2, 133.6, 129.0, 128.5, 128.2, 128.1, 127.7, 127.3, 125.8, 125.6, 117.8, 102.1, 101.9, 96.2, 82.5, 77.7, 74.9, 74.0, 73.5, 70.9, 68.5, 68.3, 67.7, 75.7, 61.1, 55.7, 52.1, 23.5, 23.3, 18.8, 14.1; HRMS (ESI-QTOF) Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{57} \mathrm{~N}_{2} \mathrm{O}_{13}[\mathrm{M}+\mathrm{H}]^{+}: 833.3861$, found: 833.3839.

Prop-1-enyl
2-acetylamino-4- O-[2-acetylamino-4,6-O-benzylidene-2-deoxy-3- O - $\{(R)$-1-(ethoxy carbonyl)-ethyl $\}$ - β-D-glucopyranosyl]-3,6-di- O-benzyl-2-deoxy- α-D-glucopyranos ide (7)
To a solution of $6(50 \mathrm{mg}, 0.06 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ was added H_{2}-activated $\left[\operatorname{Ir}(\operatorname{cod})\left(\mathrm{MePh}_{2} \mathrm{P}\right)_{2}\right] \mathrm{PF}_{6}(2.5 \mathrm{mg}, 0.003 \mathrm{mmol})$ in dry THF $(1 \mathrm{~mL})$. After being stirred under an argon atmosphere at room temperature for 1.5 h , the reaction mixture was quenched with sat. NaHCO_{3} aq $(10 \mathrm{~mL})$ and the mixture was extracted with AcOEt $(20 \mathrm{~mL} \times 2)$. The organic layer was washed with sat. $\mathrm{NaHCO}_{3} \mathrm{aq}(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by silica-gel chromatography $\left(5 \mathrm{~g}, \mathrm{CHCl}_{3}:\right.$ acetone $\left.=10: 1\right)$ to give 7 as a white solid ($34 \mathrm{mg}, 68 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.26(\mathrm{~m}, 15 \mathrm{H}), 6.14(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.09(\mathrm{dd}, J=12.3 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 5.12-5.08 (m, 1H), $5.04(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.39(\mathrm{~m}, 3 \mathrm{H}), 4.23-4.16(\mathrm{~m}, 4 \mathrm{H}), 4.01(\mathrm{t}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.59-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~m}, 1 \mathrm{H})$, $1.97(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.37(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.3,171.6,169.9,142.8,139.2$, $138.2,137.3,129.0,128.6,128.3,128.3,128.2,128.1,127.9,127.4,125.9,104.7$, $102.2,101.0,96.9,82.6,77.4,77.4,74.9,74.3,73.6,71.2,68.6,67.5,65.7,61.0,55.6$, 51.9, 23.5, 23.3, 18.9, 14.2, 12.4; HRMS (ESI-QTOF) Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{56} \mathrm{~N}_{2} \mathrm{O}_{13} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 855.3680$, found: 855.3613 .

Prop-1-enyl
2-acetylamino-4- O-[2-acetylamino-4,6- O-benzylidene-2-deoxy-3-O-\{(R)-1-carboxyethyl\}- β-D-glucopyranosyl]-3,6-di- O-benzyl-2-deoxy- α-D-glucopyranosi de (8)
To a solution of $7(23 \mathrm{mg}, 0.03 \mathrm{mmol})$ in dioxane : THF : $\mathrm{H}_{2} \mathrm{O}(2: 4: 1,4.0 \mathrm{~mL})$ was added $\mathrm{LiOH}(4 \mathrm{mg}, 0.17 \mathrm{mmol})$ and stirred at room temperature for 1 h . The solution was neutralized with Dowex H^{+}(Dowex $50 \mathrm{~W} \times 8,200-400$ mesh H form, DowChemicals) and then applied to an HP-20 column ($2 \mathrm{~cm} \times 10 \mathrm{~cm}$). Organic and inorganic salts were removed by elution with $\mathrm{H}_{2} \mathrm{O}(160 \mathrm{~mL})$, then eluted with MeOH and concentrated in vacuo to give a disaccharide with a free lactic acid moiety $\mathbf{8}$ as a white solid (22 mg , quant). HRMS (ESI-QTOF) Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{O}_{13} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}$: 827.3367, found: 827.3291.

Scheme S2. Preparation of 1a

Prop-1-enyl
2-acetylamino-4- O-[[2-acetylamino-4,6-O-benzylidene-2-deoxy-3-O-[(R)-propion yl-\{benzyl-(L-alanyl-D-isoglutaminate) \}]- β-D-glucopyranosyl]]-3,6-di-O-benzyl-2-deoxy- α-D-glucopyranoside (S1)
To a solution of $8(20 \mathrm{mg}, 0.025 \mathrm{mmol}), \mathrm{HCl} \cdot \mathrm{L}-A l a-D-i s o G l n-O B n(25 \mathrm{mg}, 0.073$ $\mathrm{mmol})$, and $\mathrm{HOBt}(6 \mathrm{mg}, 0.044 \mathrm{mmol})$ in DMF $(3 \mathrm{~mL})$ were added $\mathrm{WSCD} \cdot \mathrm{HCl}(6 \mathrm{mg}$, $0.037 \mathrm{mmol})$ and triethylamine $(11 \mu \mathrm{~L}, 0.079 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at rt overnight. The mixture was concentrated and the residue was dissolved in CHCl_{3}. The CHCl_{3} solution was washed with citric acid ($1 \mathrm{M}, 20 \mathrm{~mL}$), $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, sat. NaHCO_{3} aq $(20 \mathrm{~mL})$, and brine $(20 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by silica-gel chromatography $\left(5 \mathrm{~g}, \mathrm{CHCl}_{3}: \mathrm{MeOH}=20: 1\right)$ to give $\mathbf{S} 1$ as a white solid $(20 \mathrm{mg}$, 72%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}=4: 1$) $\delta 7.84(\mathrm{~m}, 1 \mathrm{H}), 7.72(\mathrm{~m}, 1 \mathrm{H})$, $7.38-7.17(\mathrm{~m}, 24 \mathrm{H}), 6.13(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 5.09-5.03(\mathrm{~m}, 3 \mathrm{H}), 5.02$ $(\mathrm{d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.65-4.59(\mathrm{~m}$, $2 \mathrm{H}), 4.53-4.39(\mathrm{~m}, 4 \mathrm{H}), 4.25-4.15(\mathrm{~m}, 3 \mathrm{H}), 4.07-4.01(\mathrm{~m}, 2 \mathrm{H}), 3.86-3.80(\mathrm{~m}, 2 \mathrm{H})$, $3.72-3.66(\mathrm{~m}, 3 \mathrm{H}), 3.54-3.52(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.91(\mathrm{~m}, 5 \mathrm{H}), 1.85(\mathrm{~s}$, $3 \mathrm{H}), 1.56-1.54(\mathrm{~m}, 3 \mathrm{H}), 1.43-1.40(\mathrm{~m}, 3 \mathrm{H}), 1.34-1.31(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}=4: 1\right) \delta 174.2,173.5,173.4,173.0,172.0,171.4,143.0,139.1$, $138.1,137.2,135.7,129.3,128.8,128.6,128.5,128.5,128.4,128.4,128.2,127.9$, $127.8,127.7,126.1,105.0,101.5,101.1,97.0,81.5,79.2,76.7,74.3,73.9,71.6,68.7$, $68.3,67.0,66.8,65.9,56.3,52.5,52.3,30.6,27.0,23.2,22.8,17.6,17.1,12.4$; HRMS (ESI-QTOF) Anal. Calcd for $\mathrm{C}_{58} \mathrm{H}_{71} \mathrm{~N}_{5} \mathrm{O}_{16} \mathrm{Na} \quad[\mathrm{M}+\mathrm{Na}]^{+}$: 1116.4794, found: 1116.4772.

2-Acetylamino-4- O-[[2-acetylamino-4,6-O-benzylidene-2-deoxy-3-O-[(R)-propion yl-\{benzyl-(L-alanyl-D-isoglutaminate) \}]- β-D-glucopyranosyl]]-3,6-di-O-benzyl-2-deoxy-D-glucopyranoside (S2)
To a solution of S1 ($20 \mathrm{mg}, 0.018 \mathrm{mmol}$) in THF (5 mL), iodine ($10 \mathrm{mg}, 0.039 \mathrm{mmol}$)
and water $(0.5 \mathrm{~mL})$ were added and the reaction mixture was stirred for 2 h . The reaction was quenched by the addition of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aq $(5 \%, 10 \mathrm{~mL})$. The mixture was then extracted with $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$. The organic layer was washed with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aq $(5 \%, 10 \mathrm{~mL} \times 2)$, sat. NaHCO_{3} aq $(20 \mathrm{~mL} \times 2)$, and brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated in vacuo. The residue was purified by silica-gel chromatography ($5 \mathrm{~g}, \mathrm{CHCl}_{3}: \mathrm{MeOH}=10: 1$) to give 1 -liberated $\mathbf{S 2}$ as a white solid ($12 \mathrm{mg}, 64 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.24(\mathrm{~m}, 19 \mathrm{H}), 5.39$ (s, 1H), 5.03 (m, 3H), 4.73 (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.53(\mathrm{~m}, 3 \mathrm{H}), 4.42$ (d, $J=11.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.32(\mathrm{brs}, 1 \mathrm{H}), 4.10-4.01(\mathrm{~m}, 4 \mathrm{H}), 3.93(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.63(\mathrm{~m}, 4 \mathrm{H})$, 3.48-3.39 (m, 4H), 2.42-2.36 (m, 2H), 2.11 (m, 1H), 1.88-1.81 (m, 7H), 1.25-1.19 (m, 6 H) ${ }^{13}{ }^{1} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.9,173.7,173.0,171.9,171.2,138.6,137.6$, 136.9, 135.4, 129.0, 128.4, 128.1, 128.1, 128.0, 128.0, 127.9, 127.5, 127.4, 125.8, 101.1, 100.7, 90.5, 87.8, 81.2, 78.6, 76.4, 73.7, 73.6, 70.9, 68.6, 68.3, 66.5, 65.7, 55.9, $52.2,51.9,30.2,27.0,22.9,22.6,19.0,16.6$; HRMS (ESI-QTOF) Anal. Calcd for $\mathrm{C}_{55} \mathrm{H}_{67} \mathrm{~N}_{5} \mathrm{O}_{16} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1076.4481$, found: 1076.4492.

2-Acetylamino-4-O-[2-acetylamino-2-deoxy-3-O-\{(R)-propionyl-(L-alanyl-D-isogl utamine) $\}$ - β-D-glucopyranosyl]-2-deoxy-D-glucopyranoside (1a)

To a solution of $\mathbf{S} \mathbf{2}(11 \mathrm{mg}, 0.01 \mathrm{mmol})$ in $\mathrm{AcOH}(4 \mathrm{~mL})$ was added palladium hydroxide (60 mg) in AcOH and stirred under $\mathrm{H}_{2}(2 \mathrm{MPa})$ for 1 d . The reaction was monitored by TLC analysis and the hydrogenolysis was continued until deprotection was completed. The Pd catalyst was filtered off by celite, and the filtrate was concentrated. The residue was lyophilized from acetonitrile $-\mathrm{H}_{2} \mathrm{O}$ to give $\mathbf{1 a}(6.5 \mathrm{mg}$, $91 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 5.11(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.15(\mathrm{~m}, 3 \mathrm{H}), 3.87-3.44(\mathrm{~m}, 12 \mathrm{H}), 2.26(\mathrm{dd}, J=7.8 \mathrm{~Hz}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.06-1.87(\mathrm{~m}, 8 \mathrm{H}), 1.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 177.0,176.2,175.8,175.4,175.1,174.7,102.0,95.5,91.1$, 83.1, 79.9, 78.9, 76.3, 75.2, 73.2, 70.7, 69.9, 69.4, 61.2, 60.8, 60.7, 56.8, 55.7, 54.3, 53.9, 50.4, 33.3, 27.9, 22.9, 22.6, 19.4, 17.3; HRMS (ESI-QTOF) Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{~N}_{5} \mathrm{O}_{16} \mathrm{Na}_{2}[\mathrm{M}+2 \mathrm{Na}-\mathrm{H}]^{+}: 740.2578$, found: 740.2542 .

Scheme S3. Preparation of 1c

Prop-1-enyl

2-acetylamino-4- O-[[2-acetylamino-4,6-O-benzylidene-2-deoxy-3-O-[(R)-propion yl-\{benzyl-(L-alanyl-D-isoglutamyl- ε - \boldsymbol{N}-benzyloxycarbonyl-L-lysinate) $\}]-\beta$-D-gluc opyranosyl]]-3,6-di-O-benzyl-2-deoxy- α-D-glucopyranoside (S3)
To a solution of $8(14 \mathrm{mg}, 0.017 \mathrm{mmol}), \mathrm{HCl} \cdot \mathrm{L}-A l a-D-i s o G l n-L-L y s-O B n ~(14 \mathrm{mg}$, $0.023 \mathrm{mmol})$, and $\mathrm{HOBt}(6 \mathrm{mg}, 0.044 \mathrm{mmol})$ in DMF $(1 \mathrm{~mL})$ were added WSCD $\cdot \mathrm{HCl}$ $(6 \mathrm{mg}, 0.037 \mathrm{mmol})$ and triethylamine $(10 \mu \mathrm{~L}, 0.079 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at rt overnight. The mixture was concentrated and the residue was dissolved in CHCl_{3}. The CHCl_{3} solution was washed with citric acid ($1 \mathrm{M}, 20 \mathrm{~mL}$), $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, sat. NaHCO_{3} aq $(20 \mathrm{~mL})$, and brine $(20 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by silica-gel chromatography $\left(5 \mathrm{~g}, \mathrm{CHCl}_{3}: \mathrm{MeOH}=18: 1\right)$ to give $\mathbf{S 3}$ as a white solid (14 mg , 59%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}=4: 1\right) \delta 7.79(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.29(\mathrm{~m}$, $28 \mathrm{H}), 6.13(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~m}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 5.20-5.02(\mathrm{~m}, 7 \mathrm{H}), 4.87$ $(\mathrm{d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~m}, 1 \mathrm{H}), 4.62-4.59(\mathrm{~m}, 2 \mathrm{H}), 4.60-4.45(\mathrm{~m}, 4 \mathrm{H}), 4.28-4.00$ $(\mathrm{m}, 5 \mathrm{H}), 3.88-3.67(\mathrm{~m}, 5 \mathrm{H}), 3.54-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.13-3.11(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.27(\mathrm{~m}, 2 \mathrm{H})$, $2.11-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 4 \mathrm{H}), 1.85(\mathrm{~s}, 4 \mathrm{H}), 1.73(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.54(\mathrm{~m}, 3 \mathrm{H})$, 1.48-1.42 (m, 4H), 1.36-1.26 (m, 6H); HRMS (ESI-QTOF) Anal. Calcd for $\mathrm{C}_{72} \mathrm{H}_{89} \mathrm{~N}_{7} \mathrm{O}_{19} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1378.6111$, found: 1378.6103 .

2-Acetylamino-4- O-[[2-acetylamino-4,6-O-benzylidene-2-deoxy-3-O-[(R)-propion yl-\{benzyl-(L-alanyl-D-isoglutamyl- ε - N-benzyloxycarbonyl-L-lysinate) \}]- $\boldsymbol{\beta}$-D-gluc opyranosyl] $]$-3,6-di- O-benzyl-2-deoxy-D-glucopyranoside (S4)
To a solution of $\mathbf{S 3}(14 \mathrm{mg}, 0.010 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$, iodine $(10 \mathrm{mg}, 0.039 \mathrm{mmol})$ and water $(0.5 \mathrm{~mL})$ were added and the reaction mixture was stirred for 2 h . The reaction was quenched by the addition of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aq $(5 \%, 10 \mathrm{~mL})$. The mixture was then extracted with $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$. The organic layer was washed with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \mathrm{aq}$ $(5 \%, 10 \mathrm{~mL} \times 2)$, sat. NaHCO_{3} aq $(20 \mathrm{~mL} \times 2)$, and brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated in vacuo. The residue was purified by silica-gel chromatography $\left(5 \mathrm{~g}, \mathrm{CHCl}_{3}: \mathrm{MeOH}=10: 1\right)$ to give 1 -liberated $\mathbf{S 4}$ as a white solid ($7 \mathrm{mg}, 54 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMF}-\mathrm{d} 7$) $\delta 8.18(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{~m}, 1 \mathrm{H})$, $7.68(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.34(\mathrm{~m}, 19 \mathrm{H}), 7.08(\mathrm{brs}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~s}$, $1 \mathrm{H}), 5.24-4.94(\mathrm{~m}, 4 \mathrm{H}), 4.79-4.70(\mathrm{~m}, 3 \mathrm{H}), 4.44-4.42(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{~m}, 1 \mathrm{H})$, 4.15-3.93 (m, 7 H$), 3.87-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.76-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.40-3.36(\mathrm{~m}, 4 \mathrm{H})$, 2.50-2.40 (m, 2H), $2.19(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 4 \mathrm{H}), 1.54-1.34(\mathrm{~m}, 8 \mathrm{H}), 1.18(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.08(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d6) $\delta 173.0$, $172.0,171.9,171.8,171.5,169.5,169.1,156.0,139.3,138.4,137.5,137.2,135.9$, $128.7,128.3,128.3,128.2,128.0,127.9,127.9,127.8,127.7,127.6,127.6,127.4$,
127.3, 127.2, 127.1, 127.1, 127.0, 125.8, 100.0, 90.6, 79.9, 78.7, 77.5, 77.3, 76.6, 73.3, 71.9, 69.7, 67.7, 65.7, 65.6, 65.0, 55.6, 52.7, 52.1, 48.0, 31.4, 30.4, 28.9, 27.8, 23.0, 22.6, 22.5, 18.8, 18.2; HRMS (ESI-QTOF) Anal. Calcd for $\mathrm{C}_{69} \mathrm{H}_{85} \mathrm{~N}_{7} \mathrm{O}_{19} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 1338.5798, found: 1338.5793.

2-Acetylamino-4-O-[2-acetylamino-3-O-\{(R)-propionyl-(L-alanyl-D-isoglutamyl-L -lysine) \}-2-deoxy- $\boldsymbol{\beta}$-D-glucopyranosyl]-2-deoxy-D-glucopyranoside (1c)
To a solution of $\mathbf{S 4}(5 \mathrm{mg}, 0.01 \mathrm{mmol})$ in $\mathrm{AcOH}(4 \mathrm{~mL})$ was added palladium hydroxide (17 mg) in AcOH and stirred under $\mathrm{H}_{2}(2 \mathrm{MPa})$ for 1 d . The reaction was monitored by TLC analysis and the hydrogenolysis was continued until deprotection was completed. The Pd catalyst was filtered off by celite and the filtrate was concentrated. The residue was lyophilized from acetonitrile- $\mathrm{H}_{2} \mathrm{O}$ to give $\mathbf{1 c}(3 \mathrm{mg}$, 89%) as a white solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 5.11(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=9.5 \mathrm{~Hz}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.13(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.44(\mathrm{~m}$, $14 \mathrm{H}), 3.32-3.26(\mathrm{~m}, 3 \mathrm{H}), 2.47-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.15-1.88(\mathrm{~m}, 8 \mathrm{H}), 1.36-1.29(\mathrm{~m}, 7 \mathrm{H})$, 1.11-1.00 (m, 5H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 178.9,175.9,175.6,175.1,174.5$, $174.2,174.0,101.3,94.8,90.4,82.5,79.7,78.2,75.6,78.2,75.6,74.6,72.5,70.0$, 69.3, 68.7, 61.3, 60.6, 60.1, 54.9, 53.6, 49.7, 39.3, 31.9, 31.1, 27.0, 26.3, 27.0, 26.3, 22.2, 22.1, 21.9, 18.8, 16.6; HRMS (ESI-QTOF) Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{57} \mathrm{~N}_{7} \mathrm{O}_{17} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 846.3709$, found: 846.3697 .

Scheme S4. Preparation of 1e

Prop-1-enyl

2-acetylamino-4-O-[[2-acetylamino-4,6-O-benzylidene-2-deoxy-3-O-[(R)-propion yl-\{benzyl-(L-alanyl-D-isoglutamyl- ε - N-benzyloxycarbonyl-L-lysyl)-D-alaninate\}]-$\boldsymbol{\beta}$-D-glucopyranosyl]]-3,6-di-O-benzyl-2-deoxy- α-D-glucopyranoside (S5)
To a solution of $\mathbf{8}(10 \mathrm{mg}, 0.012 \mathrm{mmol}), \mathrm{HCl} \cdot \mathrm{L}-A l a-D-i s o G l n-L-L y s(Z)-D-A l a-O B n$ $(12 \mathrm{mg}, 0.019 \mathrm{mmol})$, and $\mathrm{HOBt}(6 \mathrm{mg}, 0.044 \mathrm{mmol})$ in DMF $(3 \mathrm{~mL})$ were added WSCD $\cdot \mathrm{HCl}(6 \mathrm{mg}, 0.037 \mathrm{mmol})$ and triethylamine $(6 \mu \mathrm{~L}, 0.04 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and the
mixture was stirred at rt overnight. The mixture was concentrated and the residue was dissolved in CHCl_{3}. The CHCl_{3} solution was washed with citric acid ($1 \mathrm{M}, 20 \mathrm{~mL}$), $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, sat. NaHCO_{3} aq (20 mL), and brine $(20 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by silica-gel chromatography ($5 \mathrm{~g}, \mathrm{CHCl}_{3}: \mathrm{MeOH}=20: 1$) to give $\mathbf{S 5}$ as a white solid $(8.8 \mathrm{mg}$, 48%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMF}-\mathrm{d} 7$) $\delta 8.30(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.17-8.14(\mathrm{~m}, 3 \mathrm{H})$, $7.91(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.28(\mathrm{~m}, 26 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.30$ $(\mathrm{m}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 5.16-5.02(\mathrm{~m}, 6 \mathrm{H}), 4.89(\mathrm{~m}, 1 \mathrm{H}), 4.74-4.60(\mathrm{~m}, 3 \mathrm{H}), 4.44-4.35$ $(\mathrm{m}, 4 \mathrm{H}), 4.19-3.54(\mathrm{~m}, 14 \mathrm{H}), 3.31(\mathrm{~m}, 1 \mathrm{H}), 3.08-3.05(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.30(\mathrm{~m}, 2 \mathrm{H})$, $2.19(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.75(\mathrm{~m}, 7 \mathrm{H}), 1.61-1.20(\mathrm{~m}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMF-d7) $\delta 174.1,173.2,172.7,170.8,170.2,157.1,139.7,138.7,138.5,137.1,129.4,129.1$, $129.0,128.9,128.7,128.6,128.4,128.3,128.1,128.1,128.0,127.9,127.9,127.7$, 126.7, 102.1, 101.3, 98.0, 81.5, 80.1, 78.8, 78.7, 74.5, 73.0, 69.3, 66.7, 66.0, 56.9, 53.9, 53.1, 49.8, 48.8, 41.2, 32.7, 32.6, 29.5, 29.0, 23.6, 22.7, 19.4, 18.1, 17.3, 12.4; HRMS (ESI-QTOF) Anal. Calcd for $\mathrm{C}_{75} \mathrm{H}_{94} \mathrm{~N}_{8} \mathrm{O}_{20} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1449.6482$, found: 1449.6439.

2-Acetylamino-4- O-[[2-acetylamino-4,6-O-benzylidene-2-deoxy-3-O-[(R)-propion yl-\{benzyl-(L-alanyl-D-isoglutamyl- $\varepsilon-N$-benzyloxycarbonyl-L-lysyl)-D-alaninate\}]-$\boldsymbol{\beta}$-D-glucopyranosyl]]-3,6-di- \boldsymbol{O}-benzyl-2-deoxy-D-glucopyranoside (S6)
To a solution of $\mathbf{S 5}(4.5 \mathrm{mg}, 0.004 \mathrm{mmol})$ in THF (2 mL), iodine ($5 \mathrm{mg}, 0.02 \mathrm{mmol}$) and water $(0.5 \mathrm{~mL})$ were added and the reaction mixture was stirred for 2 h . The reaction was quenched by the addition of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aq $(5 \%, 10 \mathrm{ml})$. The mixture was then extracted with $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$. The organic layer was washed with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aq $(5 \%, 10 \mathrm{~mL} \times 2)$, sat. NaHCO_{3} aq ($20 \mathrm{~mL} \times 2$), and brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated in vacuo. The residue was purified by silica-gel chromatography $\left(5 \mathrm{~g}, \mathrm{CHCl}_{3}: \mathrm{MeOH}=10: 1\right)$ to give 1 -liberated $\mathbf{S 6}$ as a white solid ($2.8 \mathrm{mg}, 64 \%$). HRMS (ESI-QTOF) Anal. Calcd for $\mathrm{C}_{72} \mathrm{H}_{90} \mathrm{~N}_{8} \mathrm{O}_{20} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 1409.6169, found: 1409.6152.

2-Acetylamino-4-O-[2-acetylamino-3-O-\{(R)-propionyl-(L-alanyl-D-isoglutamyl-L -lysiyl-D-alanine)\}-2-deoxy- $\boldsymbol{\beta}$-D-glucopyranosyl]-2-deoxy-D-glucopyranoside (1e) To a solution of $\mathbf{S 6}(1.6 \mathrm{mg}, 0.001 \mathrm{mmol})$ in $\mathrm{AcOH}(1 \mathrm{~mL})$ was added palladium hydroxide (10 mg) in AcOH and stirred under $\mathrm{H}_{2}(2 \mathrm{MPa})$ for 1 d . The reaction was monitored by TLC analysis and the hydrogenolysis was continued until deprotection was completed. The Pd catalyst was filtered off by celite and the filtrate was concentrated. The residue was lyophilized from acetonitrile- $\mathrm{H}_{2} \mathrm{O}$ to give $\mathbf{1 e}(0.9 \mathrm{mg}$, 90%) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 5.06(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J$
$=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.02(\mathrm{~m}, 5 \mathrm{H}), 3.82-3.38(\mathrm{~m}, 12 \mathrm{H}), 2.86(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 2.31-2.28 (m, 2H), $2.04(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.82(\mathrm{~m}, 4 \mathrm{H}), 1.74-1.62(\mathrm{~m}, 4 \mathrm{H})$, $1.32-1.30(\mathrm{~m}, 5 \mathrm{H}), 1.25(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$; HRMS (ESI-QTOF) Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{63} \mathrm{~N}_{8} \mathrm{O}_{18}[\mathrm{M}+\mathrm{H}]^{+}: 895.4260$, found: 895.4213.

3,6-Di- O-benzyl-2-deoxy-4- O-[4,6-O-benzylidene-2-deoxy-3- O - $\{(R)$-1-(ethoxycarb onyl)ethyl\}-2-(2,2,2-trichloroethoxycarbonylamino)- β-D-glucopyranosyl]-2-(2,2,2 -trichloroethoxycarbonylamino)-D-glucopyranosyl
(N -phenyl)trifluoroacetimidate (10b)
To a solution of $5(0.87 \mathrm{~g}, 0.79 \mathrm{mmol})$, the solution of $\left[\operatorname{Ir}(\operatorname{cod})\left(\mathrm{MePh}_{2} \mathrm{P}\right)_{2}\right] \mathrm{PF}_{6}(32 \mathrm{mg}$, $0.04 \mathrm{mmol})$ activated with H_{2} in dry THF $(1 \mathrm{~mL})$ was added. After being stirred at room temperature for 1.5 h , iodine ($400 \mathrm{mg}, 1.6 \mathrm{mmol}$) and water $(2 \mathrm{~mL})$ were added and the reaction mixture was stirred for additional 30 min . To the reaction mixture was rapidly added $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aq $(5 \%, 100 \mathrm{~mL})$. The mixture was then extracted with EtOAc (50 mL). The organic layer was washed with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aq $(5 \%, 50 \mathrm{~mL} \times 2)$, sat. NaHCO_{3} aq ($100 \mathrm{~mL} \times 2$), brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by silica-gel chromatography (80 g , toluene : EtOAc $=5: 1$) to give 1 -liberated-disaccharide ($677 \mathrm{mg}, 81 \%$) as a pale yellow solid. HRMS (ESI-QTOF) Anal. Calcd for $\mathrm{C}_{44} \mathrm{H}_{50} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{O}_{15} \mathrm{~K} \quad[\mathrm{M}+\mathrm{K}]^{+}$: 1095.0979, found: 1095.0933. To a solution of 1-liberated-disaccharide ($329 \mathrm{mg}, 0.31 \mathrm{mmol}$) in acetone $(10 \mathrm{~mL})$ at $0 \quad{ }^{\circ} \mathrm{C}$ was added $\mathrm{Na}_{2} \mathrm{CO}_{3} \quad(987 \mathrm{mg}, \quad 9.3 \mathrm{mmol})$ and N-phenyl-2,2,2-trifluoroacetimidoyl chloride ($0.1 \mathrm{~mL}, 0.47 \mathrm{mmol}$). After being stirred for 3 d at rt , insoluble materials were filtered off through celite and the filtrate was concentrated. The residue was purified by silica-gel chromatography (30 g , toluene : $\mathrm{EtOAc}=12: 1)$ to give $\mathbf{1 0 b}$ as a pale yellow solid ($290 \mathrm{mg}, 76 \%$).

Allyl

3,6-di-O-benzyl-2-deoxy-4-O-[6-O-benzyl-2-deoxy-3-O-\{(R)-1-(ethoxycarbonyl)et hyl\}-2-(2,2,2-trichloroethoxycarbonylamino)- β-D-glucopyranosyl]-2-(2,2,2-trichlo roethoxycarbonylamino)- α-D-glucopyranoside (11)
To a solution of $\mathbf{5}(138 \mathrm{mg}, 0.125 \mathrm{mmol})$ and trimethylamine-borane $(10 \mathrm{mg}, 0.138$ mmol) in dry $\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added boron trifluoride diethyl etherate (53 $\mathrm{mg}, 0.376 \mathrm{mmol}$) dropwise and the mixture was stirred at rt for 1 h . The reaction was then quenched with ice and sat. NaHCO_{3} aq $(20 \mathrm{~mL})$ and the mixture was extracted with $\operatorname{EtOAc}(50 \mathrm{~mL} \times 2)$. The organic layer was washed with citric acid $(1 \mathrm{M}, 15 \mathrm{~mL}$ $\times 4)$, sat. NaHCO_{3} aq (50 mL), and brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by silica-gel chromatography (30 g , toluene : AcOEt = 5:1) to give $\mathbf{3 7}$ as a colorless solid ($115 \mathrm{mg}, 83 \%$). ${ }^{1} \mathrm{H}$ NMR (500
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.26(\mathrm{~m}, 15 \mathrm{H}), 5.84(\mathrm{~m}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.26-5.18$ $(\mathrm{m}, 2 \mathrm{H}), 4.94-4.87(\mathrm{~m}, 4 \mathrm{H}), 4.76(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71-4.61(\mathrm{~m}, 5 \mathrm{H}), 4.43(\mathrm{~d}, J=$ $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H}), 4.45-4.18(\mathrm{~m}, 3 \mathrm{H}), 4.09-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.96-3.85(\mathrm{~m}, 4 \mathrm{H})$, $3.66(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.55(\mathrm{~m}, 3 \mathrm{H}), 3.52-3.50(\mathrm{~m}, 3 \mathrm{H}), 3.26(\mathrm{~m}, 1 \mathrm{H}), 3.15$ (m, 2H), $1.38(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 174.6,155.3,154.2,139.1,137.9,137.2,133.3,128.6,128.5,128.9,127.9$, 127.6, 127.4, 127.0, 118.1, 102.0, 96.6, 95.9, 79.7, 78.0, 75.4, 74.5, 74.3, 74.1, 73.7, 73.4, 71.8, 70.5, 68.4, 67.6, 61.2, 56.0, 54.7, 19.0, 14.2; HRMS (ESI-QTOF) Anal. Calcd for $\mathrm{C}_{47} \mathrm{H}_{56} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{O}_{15} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 1121.1710$, found: 1121.1663.

Tetrasaccharide tripeptide backbone (15)
To a solution of $\mathbf{1 3}$ ($17 \mathrm{mg}, 0.011 \mathrm{mmol}$), $\mathrm{HCl} \cdot \mathrm{L}-A l a-D-i s o G l n-L-L y s(Z)-O B n(26 \mathrm{mg}$, 0.044 mmol), and HOBt ($5 \mathrm{mg}, 0.033 \mathrm{mmol}$) in DMF (3 mL) were added WSCD $\cdot \mathrm{HCl}$ $(6 \mathrm{mg}, 0.037 \mathrm{mmol})$ and triethylamine $(10 \mu \mathrm{~L}, 0.04 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at rt overnight. The mixture was concentrated, and the residue was dissolved in CHCl_{3}. The CHCl_{3} solution was washed with citric acid ($1 \mathrm{M}, 20 \mathrm{~mL}$), $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, sat. NaHCO_{3} aq (20 mL), and brine $(20 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by silica-gel chromatography ($5 \mathrm{~g}, \mathrm{CHCl}_{3}: \mathrm{MeOH}=12: 1$) to give $\mathbf{1 5}$ as a white solid (15 mg , $53 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.26(\mathrm{~m}, 50 \mathrm{H}), 5.83(\mathrm{~m}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H})$, 5.15-5.07 (m, 8H), 4.82-3.12 (m, 54H), 2.28-2.17 (m, 4H), 2.04-1.74 (m, 16H), 1.43-1.25 (m, 24H); HRMS (ESI-QTOF) Anal. Calcd for $\mathrm{C}_{141} \mathrm{H}_{174} \mathrm{~N}_{14} \mathrm{O}_{37} \mathrm{Na}_{2}$ $[\mathrm{M}+2 \mathrm{Na}]^{2+}: 1350.5980$, found: 1350.5985 .

Tetrasaccharide pentapeptide backbone (17)
To a solution of $\mathbf{1 3}$ ($15 \mathrm{mg}, 0.006 \quad \mathrm{mmol})$ and $\mathrm{HCl} \cdot \mathrm{L}-\mathrm{Ala}-\mathrm{D}-\mathrm{isoGln}-\mathrm{L}-\mathrm{Lys}(\mathrm{Z})$-D-Ala-D-Ala-OBn ($22 \mathrm{mg}, 0.019 \mathrm{mmol}$) in DMF (3 mL) were added HATU ($11 \mathrm{mg}, 0.019 \mathrm{mmol}$) and triethylamine ($8 \mu \mathrm{~L}, 0.039 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at rt overnight. The mixture was concentrated and the residue was dissolved in CHCl_{3}. The CHCl_{3} solution was washed with citric acid $(1 \mathrm{M}, 20 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, sat. NaHCO_{3} aq $(20 \mathrm{~mL})$, and brine (20 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by silica-gel chromatography ($5 \mathrm{~g}, \mathrm{CHCl}_{3}: \mathrm{MeOH}=15: 1$) to give $\mathbf{1 7}$ as a white solid ($20 \mathrm{mg}, 71 \%$). HRMS (ESI-QTOF) Anal. Calcd for $\mathrm{C}_{153} \mathrm{H}_{194} \mathrm{~N}_{18} \mathrm{O}_{41} \mathrm{Na}_{2}$ $[\mathrm{M}+2 \mathrm{Na}]^{2+}: 1492.6722$, found: 1492.6753 .

