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Enhanced finite elements are elements with an embedded analytical solution that can 

capture detailed local fields, enabling more efficient mesh independent finite element 

analysis.  In earlier research, this method was applied to adhesively bonded joints.  The 

adherends were modeled as composite Euler-Bernoulli beams, and the adhesive layer was 

modeled as a bed of linear shear and normal springs.  The field equations were derived using 

the principle of minimum potential energy, and the resulting solutions for the displacement 

fields were used to generate shape functions and a stiffness matrix for a single bonded joint 

finite element.  In this study, the capability to model large rotations and non-linear adhesive 

constitutive behavior is developed, and progressive failure of the adhesive is modeled by re-

meshing the joint as the adhesive fails.  The results obtained using this enhanced  joint 

element is compared with experimental results.  

I. Introduction 

ITH the increased use of fiber reinforced composite materials, adhesively bonded joints become an 

increasingly critical topic.  As bonded joints increase in popularity and use, the demand for modeling 

techniques increases also.  In the past, analytical models have been favored as the preferred method of predicting 

stresses and strength 
1–5

, but finite element (FE) methods have emerged as the new standard in preliminary design 

due to necessity of analyzing and designing components that contain multiple joints where analytical techniques 

become intractable.  FE based methods have been proven to be extremely powerful, but the small scale of the 

adhesive thickness when compared to the dimensions of the surrounding structure has kept joint FE analysis largely 

out of global vehicle models.  A fine mesh is needed to correctly model the adhesive layer producing an 

incompatibility in simultaneously analyzing the joint stresses accurately in conjunction with a very coarse model of 

an entire vehicle.  Therefore, the actual design and sizing of joints is often put off until a later time, when small sub-

models are used to look into the details of a vehicle.  

To address this problem, a bonded joint finite element has been created 
6–9

.  This joint element considers the 

adherends to behave like beams and the adhesive to be made up of  a bed of shear on normal springs.  The governing 

equations of this structural model are found and solved to produce enhanced shape functions.  Furthermore, the 

element has been generalized to allow multiple adherend/adhesive layers and ply drops/thickness tapers, providing 

the capability to model various different joint types with very few elements.   

This paper presents and extension of the joint element to model progressive failure of a joint and ultimately 

predict the strength using very few elements.  Modern polymeric adhesives are usually highly nonlinear, causing 

linear elastic analysis to be insufficient.  Furthermore, the eccentricity of many joint configurations results in large 

rotations early on in the loading 
5,10,11

, necessitating the consideration of nonlinear geometric effects   

Therefore, geometric nonlinear effects due to large rotations and material nonlinearity are pivotal in predicting 

the strength of a joint.  This paper will extend the previously created joint element to include these effects.  
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Additionally, a method of growing an adhesive crack internally within an element during the analysis will be 

presented in order to preserve the original intent of the joint element, which is to model a joint with very few 

elements.   

Currently, the scientific community seems to model the progressive failure of joints with dense-mesh finite 

elements using damage mechanics methods like cohesive zone models, or continuum mechanics 
12

.  Since the joint 

element is merely a tool, it will accommodate using inputs derived from either of these philosophies to govern the 

stress-strain relation of the adhesive.  A method will be shown of characterizing the adhesive layer using either bulk 

adhesive tensile data as would someone using continuum mechanics damage progression, or fracture mechanics 

inputs like mode I strength and fracture toughness.  The application of each will be demonstrated and results will be 

compared with published experiments. 

II. Formulation 

The formulation of the joint element has been broken up into discrete parts, namely the co-rotational 

formulation, material nonlinearities, crack growth, and adhesive constitutive modeling.  Each section presents a 

formulation to address a certain aspect of the progressive failure of the joints.  The co-rotational formulation 

addresses large rotations in joint problems while material nonlinearities show how nonlinear constituents are 

modeled.  The crack growth formulation deals with the failure of the adhesive layer.  Finally, the last section 

illustrates a few methods of defining the properties of the adhesive based on several different experimental 

techniques.   

A. Co-Rotational Formulation 

Consider a structure consisting of N layers of thin plates under cylindrical bending joined together by N-1 thin 

layers of a much more compliant adhesive material (see Figure 1a).  The plates are assumed to behave as “wide” 

Euler Bernoulli beams (hence the cylindrical bending assumption).  The adhesive joining the plates is modeled as a 

Winkler foundation.  The plates can be isotropic, transversely isotropic, or a layered composite.  The plates and 

adhesive are assumed to be under proportional loading, and are modelled as nonlinear elastic materials. 

 

 
Figure 1.  Overlap region of an adhesively bonded joint with multiple bonded layers: a) geometric parametrs 

(width in the y-direction is b) and b) finite element discretization. 

A co-rotational formulation is used to capture large rotations, and has been primarily adapted from prior work by 

Belutschko and Hsieh  
13

 and Crisfield and Moita 
14

.  This formulation tracks the rigid body rotation of an element 

through a local rotational coordinate system, and considers the rotations and deformations measured with respect to 

this rotated frame of reference to be small.  The main benefit of this formulation is that the previously implemented 

code for the small rotation problem 
7–9

 can be utilized in subsequent calculations. 

The element has 2N nodes located at the boundaries of the centerline of the plates (numbered as shown in Figure 

1b), and the nodal displacements are defined as: 

 1
T

i N 
 

q q q q  (1)  

where the superscript represents the adherend or plate, and  

adherend i1
ilq

2
ilq

3
ilq 1

irq

2
irq

3
irq

( 1)
1

i lq 

( 1)
2
i lq 

( 1)
3
i lq 

( 1)
1

i rq 

( 1)
2
i rq 

( 1)
3
i rq 

adherend i+1

adhesive i

l

ηai

ti

ti+1

x

zi

zi+1

zai

ui(x), wi(x)

ui+1(x), wi+1(x)

a) b)
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1 2 3 1 2 3

i il il il ir ir irq q q q q q 
 

q  (2)  

refers to the horizontal, vertical, and rotational displacements of the left and right nodes in plate i respectively. 

1. Rigid Body Displacements 

  The element has a local rotated coordinate system, x̂ , which is rotated and translated relative to the fixed 

coordinate system, x , by an angle  and a vector 1
tq  respectively (Figure 2). The translation and rotation will be 

properly defined later.  The nodal displacements of the element in the fixed coordinate system can be decomposed 

into rigid body displacements, rigq , and displacements which only cause deformation in the body, defq , with the 

relation: 

 
rig def q q q . (3)  

The rigid body nodal displacements, rigq , can be further decomposed into rigid body displacements resulting from 

rigid body rotation, rq , and displacements resulting from rigid body translation, tq : 

 rig t r q q q . (4)  

 
Figure 2.  The nodal displacements can be broken up into two parts: a) rigid translation and rotations and b) 

local deformations. 

The translational displacements, tq , are defined as:  

 1 1
T

t t t
 
 

q q q  (5)  

which is the horizontal and vertical displacements of the left node of the first plate and the rotation of the first 

adherend: 

 1 1 1
1 2t q q  

 
q . (6)  

Although the rotation is not necessarily part of the rigid body translation, it is more convenient to insert it into the 

translational rigid body displacements because each adherend will be rigidly rotated by the angle .   

To find the rigid body displacements due to the rotation of the element about the first node, consider the right 

node of the ith adherend, node ir (Figure 3a).  Initially, node ir can be located relative to the first node by a position 

vector irx .  When the element rotates about the first node by the angle , its new position relative to the first node 

can be expressed by an orthogonal transformation matrix as 1
T

irT x , where  

a) b)

z

x


ẑ x̂

ẑ

x̂

1
tq
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1

0

0

0 0 1

c s

s c

 
 

  
  

T  (7)  

and s and c denote the sine and cosine of the angle  .  Therefore, the displacement vector, ir
rotq , of node ir due to 

rigid body rotation can be expressed as 

 
1( )ir T

rot ir q T I x . (8)  

 

Figure 3.  Displacements a) ir
rotq  of node ir due to a rigid body rotation of the joint element b) and initial and 

current lengths of the 1st adherend are used to determine the rotation angle.. 

Translating this to all nodes and combining with Equation 4, the displacements due to rigid body rotation are  

 ( )T
rig t  q q T I X  (9)  

where 

 
1

1

 
 

  
  

T

T

T

 (10)  

and the vector X  is simply a collection of the initial x and z coordiantes of the nodes, and is defined explicitly as 

 
1 1

T

l r il ir Nl Nr  X X X X X X X  (11)  

where the first subscript identifies the plate number, and the following letter, either l or r, refers to the left or right 

node respectively.  The nodal coordinate vector for the ith adherend and the left node is defined as 

 0il il ilx z  X  (12)  

while the coordinate vector of the right node is defined in an identical fashion.   

2. Determination of the Rotation Angle 

If the rotation is not constant within the joint, the rotation angle is an approximation.  Adhering to the 

conventional approach for co-rotational beam formulations, the rotation angle was chosen to be the rotation of the 


irx

ir
rotq

1
T

irT x

node ir

1l

1
2
rq

1
1

rq

1
1

lq

1
2
lq

la) b)
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first adherend as shown in Figure 3a.  To find the transformation matrix of Equation 7, the sine and cosine of the 

rotation angle can be expressed as 

 
1

1

sin zl
s

l
   (13)  

and 

 
1

1

cos xl
c

l
   (14)  

which are defined in terms of the nodal displacements of the first adherend by 

 1 1
1 1 1

r l
xl l q q  

,  

 1 1
1 2 2

l r
zl q q    

(15)  

where l is the original length of the element and l1, 1xl , and 1zl  refer to the current length of the 1
st
 adherend and the 

length decomposed into x  and z  components Figure 3b.   

3. Local Coordinate System 

First, the internal force vector and stiffness matrix will be found in the local, rotating coordinate system.  The 

stress and strain of the adherends and adhesive are assembled together in one stress and one strain vector as shown: 

 
1 1 1 ( 1)ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

T

a i ai N a N N 
   σ σ σ σ σ σ σ σ  (16)  

and  

 
1 1 1 ( 1)ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

T

a i ai N a N N 
   ε ε ε ε ε ε ε ε  (17)  

where the overbar caret denotes quantities in the local rotating coordinate system.  The local stress and strain vectors 

for the ith adherend, ˆ iσ and ˆiε , contain only the axial compenents of stress/strain in the x-direction, ˆi  and î .  The 

local stress and strain vectors for the ith adhesive, ˆaiσ and ˆaiε , contain peel and shear compenents of the stress, ˆai  

and âi , and the strain, î  and ˆ
ai .  Using beam theory and assuming small strains from the rotated coordinate 

system, the strains are related to the adherend centerline displacements, û , by the equation 

 ˆ ˆε Gu  (18)  

where the adherend centerline displacements are a collection of centerline displacement vectors for each adherend 

layer given as 

 
1

T
T T T

i N
 
 

u u u u  (19)  

and the centerline displacement vector of adherend i is given as 

 
, , , ,( ) ( ) ( ) ( ) ( ) ( )

T

i i i x i i x i xx i xxxu x u x w x w x w x w x   u . (20)  
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where u and w are x- and z-direction displacements of the adherend centerline and the subscript ,x denotes the 

derivative with respect to x.  Additionally, G is an assembly of the contributions of the adherend and adhesive layers 

assembled in the form 

  1

1

1

( 1)

a

i

ai

N

a N

N





 
 
   
 
 

   
     
 
 

   
  

  
    

G

G

G

GG

G

G

G

 (21)  

where the sub-matrices are defined as .   

 0 1 0 0 0

0 0 0 0 0 0

i

i

z 
 
 

G =

 

(22)  

and 

 1 1

11 1
2 2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

ai ai

t ti i
ai ai ai ai ai

 

   



 

 
 
 
 
  

G =

 

(23)  

Furthermore, since the deflections in the local, rotated coordinate system are considered small, the shape functions, 

N , derived for the linearly elastic case are used 
7–9

.  Using the shape functions for the linear case, the local strain 

and displacements in the rotated coordinate system are related by the equation 

 ˆˆ ε Bq  (24)  

where B  is defined as  

 B = GN . (25)  

The principle of virtual work of the element can be written as: 

 ( ) 0Int ExtW W    (26)  

and the internal work can be written as the internal nodal forces multiplied by the nodal virtual displacements, or the 

integral of the strain energy density over the volume of the element: 

 ˆˆ ˆ( )Int T Int

V
W W dV    q f q  (27)  
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where V is the volume of the element, and ˆ( )W q  is the strain energy density of the element resulting from a virtual 

displacement.  Since the deformations are small relative to the rotated coordinate system, the internal virtual work 

can be rewritten as 

 ˆ ˆInt T T

V
W dV   q B σ . (28)  

Assuming that external forces only occur as nodal forces and moments, the external virtual work of the element 

becomes, 

 ˆˆExt T ExtW  q f . (29)  

Finally, using Equation 26, and noting the fact that the virtual displacements are arbitrary, the resulting equilibrium 

equation is, 

 ˆˆT Ext

V
dV  B σ f . (30)  

Now, the local internal nodal forces are 

 ˆ ˆInt T

V
dV f B σ  (31)  

with the local stiffness matrix being given by 

 ˆ T

V
dV k B DB  (32)  

where the stiffness matrix, D , is given as,  

 ˆ

ˆ

d

d


σ
D

ε
. (33)  

Note that for linear elastic materials, the integration can be carried out analytically, resulting in a reduced equation 

which only requires integration in x. 

4. Global Coordinate System 

Now we seek to find the residual and the stiffness matrix in the global coordinate system.  Since the internal 

work is not dependant on the frame of reference, one can write 

 ˆˆT Int T Int q f q f  (34)  

where the nodal virtual displacements in the global frame are related to those in the local rotated coordinate frame 

through the equation: 

 ˆ
rig   q q T q  (35)  

making Equation 34 

 ˆ( )T Int T T T Int
rig   q f q q T f . (36)  

Since rigid body motion does not result in the generation of internal forces,  
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 ˆ 0T T Int
rig q T f  (37)  

and Equation 36 becomes  

 ˆT Int T T Int q f q T f . (38)  

With the virtual displacements being arbitrary, the internal nodal force vector in the global coordinate system 

becomes  

 ˆInt T Intf T f . (39)  

To find the global tangent stiffness matrix, differentiation of Equation 36 gives 

 ˆ ˆInt T Int T Int   f T f T f . (40)  

The second term in the above equation becomes 

 ˆ ˆ ˆˆT Int T T T
rig     T f T k q T kT q T kT q . (41)  

The last term vanishes because, as before, displacements resulting in rigid body translation and rotation do not 

generate any internal force.  The first term on the right side of Equation 40 is more difficult to obtain.  The difficulty 

lies in the fact that T  contains sines and cosines of  , which in turn contain 1q  and l .  However, Crisfield 
15

 

provides an approximation, which assumes that the extension l  is small.  Based on this assumption, the first term 

in Equation 40 can be rewritten as 

 
, ,

ˆ ˆT Int T Int
   qT f T f q . (42)  

where 

 
1,

,

1,







 
 

  
 
 

T

T

T

 (43)  

and 

 

1,

0

0

0 0 0

s c

c s

 
 

   
  

T . (44)  

Similarly,  

 
, 1, 0 0    q q  (45)  

and 
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 1,

1

1
0 0s c s c

l
   q . (46)  

Combining all of these equations, the global tangent stiffness matrix can be written as a combination of the material 

stiffness, matk , and the geometric stiffness, geok , in the relation 

 
mat geo k k k  (47)  

where 

 
, ,

ˆT Int
geo   qk T f  (48)  

and 

 ˆT
mat k T kT . (49)  

Both the geometric and material stiffness matrices are functions of the nodal displacements, making the system 

of equilibrium equations nonlinear.  The Newton-Raphson method can be utilized to find the solution.  It was 

already noted that one of the benefits of this method is that the formulation of the linear element, introduced before
9
 

can be utilized.  Another major advantage of this method lies in the fact that the local rotational frame stiffness and 

internal force vectors are not functions of the nodal displacements.  Since numerical integration is used in finding 

these vectors/matrices, the integration must only be carried out once during the analysis.  This saves a considerable 

amount of computational time, especially for an element like the joint element, which requires more refined 

integration for the higher order shape functions.  

B. Material Nonlinearities 

Since modern polymeric adhesives often display highly nonlinear material behavior, it was necessary to include 

material nonlinearities in the joint element to estimate joint strengths more correctly.  A particularly simple 

nonlinear elastic stress law was chosen: 

 ˆ ˆ ˆ( )σ σ ε  (50)  

where the stress is some general function of the strain.  The only major change from the previous co-rotational 

formulation is that Equation 31 becomes 

 ˆ ˆ( )T

V
dV k B D q B  (51)  

where the local stiffness matrix in the rotated coordinate system is now a function of the local displacements.   

Although it would be more correct to use an incremental flow type plasticity formulation that distinguishes 

loading and unloading stiffness, the simple nonlinear elastic relation, which assumes no permanent plastic strain, 

was chosen for several reasons.  While this was chosen for simplicity sake, this decision can also be justified.  The 

joint element is meant to be a design tool to give general approximations, so it is not expected that such a tool will 

be used in situations requiring unloading capabilities.  Additionally, the nature of adhesively bonded joints is such 

that the high stresses occur in concentrated form at the joint edges.  Since the failing adhesive domain is eliminated 

in the iteration process (to be described later) the assumption of a nonlinear elastic type stress-strain law suffices for 

this modeling process since potential regions of “unloading” are minimal and contained in the regions which are 

eliminated. Thus, this assumption does lead to a meaningful rendition of the joint physics, yet facilitating an 

efficient (in the computational sense) solution strategy. 

One other aspect worthy of discussion is the integration requirements for the nonlinear material formulation.  

When the adherends have a nonlinear stress-strain relationship, Equations 31 and 51 must be integrated over x̂  and 
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ẑ  at each Newton-Raphson iteration to allow a general stress-strain relationship.  This causes a considerable 

increase in computational time.  However, there are some cases when this is not necessary.  If only the adhesive 

layers have a nonlinear stress-strain relation, integration over ẑ  can be avoided because the stress is constant 

through the thickness of the adhesive layer.  Additionally, if the functions for the nonlinear stress-strain relations are 

known (and simple enough), integration over ẑ  can be accomplished analytically.  However, this would mean that 

the formulation is only good for that specific stress-strain relation, and cannot be extended to other general relations.   

C. Crack Growth 

When some user defined failure criterion is reached in some part of the adhesive layer, that portion of the 

adhesive is considered “failed” and can carry no load and has no stiffness.  Setting the stress and stiffness of that 

portion of the adhesive to zero is an easy way to model the failure of the adhesive, but the shape functions for the 

joint element were not originally calculated based on a joint with failed adhesive, and cannot accurately model this 

new situation.  Therefore, as with more traditional shape function prescribed finite elements, more elements are 

required to accurately find the solution.  In the case of failed adhesive, a great number of elements may be needed, 

as will be illustrated later.   

 
Figure 4.  Diagram showing a) an uncracked joint element, b) a partially cracked element, and c) a fully 

cracked joint element. 

In order to increase the accuracy of the joint element after adhesive failure and crack growth, a method of 

removing the adhesive and adapting the mesh to the crack was devised.  Since the joint element is meant to be used 

as a user defined element in a larger global assembly in commercially available finite element software, the mesh 

change would have to be strictly internal to the element so that the surrounding model does not have to change.  

Therefore, a sub-assembly method was devised to handle adhesive failure (Figure 4) and is outlined in Figure 5. 

First, when failure in the adhesive is detected, the element is replaced by a sub-assembly with three elements as 

shown in Figure 4b.  The length of the crack determines the lengths of the sub-assembly elements.  Within a 

Newton-Raphson type solver, the nodal displacements are prescribed (guessed) and the stiffness and internal force 

vector for the element are calculated.  These vectors/matrices for all of the elements in the assembly are assembled, 

boundary conditions and loads are applied, and the residual (error of the initial nodal displacement guess) is 

calculated.  If the residual isn’t within some tolerable state, a new nodal displacement “guess” is calculated based on 

the previous displacement, residual, and stiffness values and the whole cycle repeats.   

In the case of a joint element with a crack, only the outer nodal displacements are prescribed since the global 

finite element assembly isn’t aware of the existence of the sub-assembly and the inner nodes.  Therefore, the sub-

assembly becomes a nonlinear model within another nonlinear model and must be solved with its own Newton-

Raphson type solution procedure.  The prescribed nodal displacements of the outer nodes become the boundary 

conditions for the sub-assembly, and the whole system is solved using a nonlinear solver.  When the desired error 

tolerance is reached, a stiffness matrix and internal force vector for the sub-assembly has been calculated.  However, 

these quantities still have the inner degrees of freedom contained within.  The force vector and stiffness matrix are 

then reduced using the Guyan Reduction Method 
16–18

.  Once the internal degrees of freedom are removed, the 

stiffness matrix and force vector can be considered to be that of the equivalent joint element, and can be passed on to 

the global assembly.   

1
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After the global system is solved, there is a check to see if the crack has grown, or if new adhesive failure has 

been detected.  If this is the case, the sub-assembly is adjusted by changing the lengths of the sub-assembly 

elements, and the global system is re-solved.  This is done until no new adhesive failure occurs and the crack is in 

equilibrium.  A crack scaling constant, 1C , has been introduced to speed up or slow down crack growth as needed, 

and is used in the equation 

 
1( )prevcur cur cur

crack crack crack crackl l C l l    (52)  

where 
prev
crackl is the previous crack length (prior to the global Newton-Raphson procedure) and cur

crackl is the current 

crack length.  Setting 1 0C  causes the crack to grow further than detected, and is useful when multiple iterations 

are needed to find crack equilibrium.  Setting 1 0C   causes the crack to grow less than detected, and is necessary 

when crack overshoot is a concern.  

The advantage of this method is that fewer elements are needed in order to accurately capture crack growth.  One 

can use the minimum elements needed to accurately capture the material and geometric nonlinear effects without 

crack growth being a factor.  This can mean dramatically reducing the number of elements required, especially when 

there is little material nonlinearity, and when strains in the joint are small.   

One of the major disadvantages of this method is the increased computational time.  A local nonlinear problem 

must be solved within each iteration of the global nonlinear problem.  Although the local nonlinear problem is 

always limited to three elements, it can significantly increase the runtime.  Furthermore, the global load increment is 

repeated if the crack grows and the sub-assemblies need to be created or re-meshed.  Although the crack scaling 

 
Figure 5.  Flow chart showing how cracked element Sub-Assembly is incorporated into joint element solution 

procedure. 
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parameter can significantly help in limiting the iterations needed to find crack equilibrium this process can still be 

costly.  However, the costs can be justified if joint strength prediction is of concern. Joint strength has been 

identified as a controlling factor in the ultimate load bearing capacity of many bonded structures. 

D. Adhesive Model Characterization 

One of the most important inputs for determining the strength of a joint is the characterization of the adhesive 

constitutive response.  There have been many methods of characterizing the adhesive material, but two have 

emerged as the most common: bulk adhesive tensile test and fracture mechanics characterization tests (DCB, ENF, 

etc.).  Therefore, the following sections outline methods of using both bulk adhesive tensile test data and fracture 

mechanics inputs to characterize the joint.  Ultimately, the test data available and personal preferences of the user 

will decide which route to take. 

1. Bulk Adhesive Tensile Characterization 

One common way of characterizing adhesive materials is by performing tensile tests on bulk adhesive 

specimens, such as those depicted in Figure 6.  The following section will outline an approximate method for 

modeling the adhesive based on such adhesive characteristic data, and will discuss the formulation and underlying 

assumptions involved. 

 
Figure 6.  Adhesive may be characterized by (a) experimental bulk adhesive tensile tests, then (b) fitting a 

curve to the stress-strain plot. 

If the adhesive is much deeper than it is thick (bai << ηai), it can be considered to be in a state of plane strain in 

the z-x plane (Figure 7), and the stress-strain relation for plane strain can be applied.  Furthermore, if we assume that 

the adhesive is perfectly bonded to the adherends and that the adherends are much stiffer than the adhesive (Eai << 

Ei), then it can be argued that the extensional strain in the adhesive is much smaller than the peel and shear 

components ( ˆ ˆ ˆ,xai ai ai   ) which is the root of the assumption: 

 ˆ 0xai  . (53)  
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This assumption gives 

rise to the common 

practice in adhesive joint 

analysis of ignoring the 

extensional stress and 

strain in the formulation.  

With the extensional 

strains being relatively 

small, the strain energy of 

the adhesive layer is 

virtually unaffected and 

does not necessarily need 

to be included.  Although 

the extensional strain is 

negligible, the extensional 

stress (in both the x- and 

y-directions) is not 

insignificant, placing the 

adhesive in a state of triaxial stress 
19

.  Using these assumtpions and linear elasticity, the extensional stress in the 

adhesive, ˆxai , can be written in terms of the peel strain:  

 
2

ˆˆxai ai aiC    (54)  

where   

 

  2
1 1 2

ai

ai ai

E
C

 


 
 (55)  

and where aiE and
 ai  are the Young’s modulus and Poisson’s ratio of the ith adhesive layer,.  The axial adhesive 

stress can be written in terms of the peel stress:  

 
ˆ ˆ

1
ai

xai ai
ai


 




 .
 (56)  

The same relation is true for the extensional stress in the y-direction, ˆyai .  This can be used to find the extensional 

stress without necessarily including it into the formulation.  Furthermore, the peel stress becomes a function of the 

peel strain only: 

 1
ˆˆ .

(1 2 )(1 )
ai

ai ai ai
ai ai

E


 
 




 
 (57)  

This shows that the effective “resistance” to deformation in the z-direction is amplified by a factor that depends on 

Poisson’s ratio.  Although this relation is intended for linear elasticity, the relation was assumed to hold for the 

nonlinear stress-strain relation as well.  Therefore, the stress-strain relation was redefined as:  

 1
ˆˆ ( )

(1 2 )(1 )
ai

ai ai
ai ai

f


 
 




 
 (58)  

which effectively increases the adhesive modulus. 

A Von Mises failure criterion was chosen for this particular formulation, although the same formulation could 

easily be altered for a different criterion 
20

.  Applying the notation for the adhesive layer, assuming the shear stresses 

 
Figure 7.  Assuming that the adhesive is perfectly bonded to the adherends, the 

adhesive can be considered a constrained body under triaxial stress. 
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in the xy and yz planes to be negligible, and using Equation 56, the Von Mises equivalent stress in terms of the shear 

and peel stress components are  

 2

2 2 21 2
3

1
ai

vm ai ai
ai


  



 
  

  .
 (59)  

Although the Von Mises equivalent stress is normally used to find the yield stress, in this case it will be assumed to 

hold for the entire nonlinear adhesive stress/strain response.  Therefore, the Von Mises equivalent stress for a certain 

adhesive will be a nonlinear function of the adhesive strain found using bulk adhesive tensile tests (Figure 6a): 

 ( )vm Bulk Bulkf    . (60)  

To find the nonlinear curves approximating the peel and shear stress in the adherend, one more relation must be 

defined.  A new variable will be introduced, i , which represents the ratio of peel to shear stress for adhesive layer i 

of a particular joint configuration: 

 ˆ

ˆ
ai

i
ai





  (61)  

allowing the shear stress to be defined as a function of the bulk stress: 

 

 

2
2

2
1 2 2
1

ˆ

3 ai

ai

Bulk
ai

i














 .
 

(62)  

The method of finding the strain was a bit more arbitrary.  Others have done this by utilizing a Von Mises strain 

criterion or similar methods 
5,11,21

.  For the current formulation, it was assumed that the bulk adhesive tensile 

specimen strain and the adhesive layer strains were linearly related to each other through the equations 

 
3

ˆ
ai BulkC   (63)  

and 

 
4âi BulkC   (64)  

where the constants C3 and C4 are found such that the initial slopes of the shear and peel stress-strain curves become 

the normal and shear modulus respectively. 

For an actual joint, the ratio of peel to shear stress, i , not only varies across the joint, but changes during 

loading due to nonlinear geometric effects and nonlinear material effects.  Therefore, this value will in actuality be a 

function of the joint geometry, loading, materials, and location within the adhesive in question.  However, to 

simplify the determination of this value, it is proposed that one assume that the ratio of peel to shear doesn’t change 

significantly during the loading event and that only the stress at ends of the joint where the stress concentrations 

reside is important.  The correctness of this first assumption will be tested later.  Therefore, this value can be 

approximated by taking the ratio of the maximum peel to shear stress of the linearly elastic case as illustrated in 

Figure 8.   
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Figure 8.  The peel to shear ratio for adhesive i can be approximated by dividing the maximum peel stress by 

the maximum shear stress for the linear elastic adhesive case. 

For balanced joints with the same adherend materials and geometries, the maximum occurs on both ends of the 

adhesive and is identical on either end.  However, for unbalanced joints, the stress concentrations at the ends of the 

adhesive can be of unequal magnitude.  Finding the peel to shear ratio based on the higher and lower of the two 

stress concentrations can provide a good upper and lower bound to the nonlinear solution. 

In order to approximate the Von Mises failure criterion for uncoupled shear and peel, an uncoupled strain-based 

criterion was chosen that simply considered the adhesive failed when 

 ˆ
1ai

c




  or 

ˆ
1ai

c




 . (65)  

 where c  and c  are critical peel and shear strain values.  These values are found by applying Equations 63 and 64 

to the maximum strain of the bulk adhesive tensile test data. 

Though it might seem unusual to use a strain-based criterion to approximate the Von Mises stress, it should be 

kept in mind that a Von Mises yield criterion was already applied to get from the bulk adhesive tensile test data to 

the peel and shear stress-strain relations.  If the peel to shear ratio, i , was chosen correctly, both the shear and peel 

components should be close to their respective critical values at the same time. 

2. Fracture Mechanics Characterization 

The joint element model is very similar to the Cohesive Zone Models (CZM) 
10,22–24

 and is inherently suited for 

fracture mechanics-type inputs.  One of the main differences between most mainstream cohesive zone models and 

the joint element adhesive model lies in the thickness of the cohesive zone.  Most CZM’s have no thickness, and lie 

at the interface between continuum elements.  Since it has no thickness, a traction-separation law rather than a 

stress-strain law is defined for the CZM.  Thus, cracks in the center of the adhesive layer can be differentiated from 

cracks at the interface by placing CZM elements at different locations within the adhesive, although this is 

computationally very costly.  The joint element, on the other hand, resembles a cohesive zone with an explicit 

thickness.  The entire adhesive layer is a single cohesive zone, and cracks in the middle of the adhesive are not 

differentiated from those at the interface.   The traction-separation law can be transferred approximately to a stress-

strain law by dividing the separation by the thickness as shown in Figure 9. 

For this type of adhesive characterization, the shear and peel responses are isolated and characterized in a series 

of experiments 
25

.  The peel and shear responses are considered to be uncoupled and depend solely on the vertical 

and horizontal separations of the adherends respectively.  Typically, a critical stress and fracture toughness are 

identified for Mode I and Mode II.  Since the joint element model does not have continuum elements to represent the 

adhesive, it is recommended that the initial slopes of the stress-strain laws be set to the elastic modulus for peel and 

shear. 

Finally, adhesive failure can be defined as occurring when 
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1.

i j

I II

IC IIC

G G

G G

   
    

   
 (66)  

The values of i and j can be chosen based on the preference of the element user. 

 
Figure 9.  Fracture mechanics properties such as critical stress and fracture toughness can be used to form an 

adhesive stress-strain law for the joint element. 

Results and Validation 

A. Geometric Nonlinearities 

To validate the co-rotational formulation, several example joint configurations were analyzed using the joint 

element and compared with 2-D dense mesh finite element solutions with nonlinear geometric effects to demonstrate 

the joint element’s ability to capture large rotation situations and to show how many elements are typically required.   

The first example was an unbalanced single overlap joint, using the joint elements with a single adhesive layer 

and two adherends.  The unbalanced single lap joint illustrated in Figure 10 was pulled in a displacement-controlled 

manner.  The adherends were titanium (E=110 GPa) and aluminum (E=70 GPa), with EA 9394 as the adhesive layer 

(E=4 GPa, G=1.79 GPa).  As before, the shallow width of the joint required the use of a plane stress joint element 

formulation and the use of 2-D plane stress elements for the dense 2-D finite element mesh model.  The joint 

element model had 40 beam elements with one joint element, while 154,000 elements were used for the 2-D dense 

mesh model (Figure 11a).  A comparison of the load-displacement plots of the different models is shown in Figure 

11b.  The joint element model was able to replicate the response quite well, even with only one beam element rather 

than 40.  The actual joint region requires fewer elements because all of the bending takes place outside of the 

overlap region.  The increased flexural rigidity of the overlap region causes it to rotate rigidly rather than bend.  

Therefore, more elements are required outside the overlap regions to capture the nonlinear geometric effects of the 

joint.   
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Figure 10.  Single lap joint used to validate joint element co-rotational formulation. 

 

 
Figure 11.  Comparison of (a) joint element and 2-D dense mesh finite element representation of unbalanced 

single lap joint and (b) the resulting load vs displacement plot. 

B. Material Nonlinearities 

The material nonlinearity examples featured in this section only highlight adherend nonlinearity and adhesive 

nonlinearity separately to show the strengths and weaknesse.  Tthe limitations and abilities of the joint element in 

modeling nonlinear adherends are shared by beam elements in general, and more in-depth discussion on these 

limitations and how to overcome them are dealt with extensively in literature 
26–33

. 

The example of adherend material nonlinearity is the single lap joint shown in Figure 10, but with elastic-

perfectly plastic adherends.  The yield stress for the titanium was set at 1050 MPa, and the aluminum was at 300 

MPa.  Large rotations were considered in the analysis, and the adhesive was given linear material properties to 

isolate the effect of nonlinear adherends.  Figure 12a shows the load-displacement plot for the joint element model 

using different numbers of elements.  As can be seen, none of the models are that far off of each other, but more 

elements are certainly necessary for a converged solution.  However, the load-displacement plot did not resemble 

that of the Abaqus 2-D dense mesh model shown in Figure 12b.  The load predicted by the 2-D dense mesh model 

drops after a peak, whereas the joint element model does not drop, but continues to hold more load.  There are two 

explanations for this.  First, since the stress-strain relation for the adherend is nonlinear elastic, unloading of the 

adherends is inaccurate.  When the adherends first yield, the strain increases dramatically at one point (localization) 

while the rest of the adherend unloads.  Since unloading is inaccurately captured in the joint element model, it 

continues to increase in load.  The second discrepancy is that beam models still have the assumption that the 

displacement and strain vary linearly in the z-direction.  Since this is not the case after yielding, the model is 

inaccurate after initial yielding.  
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Figure 12 .  Plots showing the effect of element size on the load-displacement response of the single lap joint 

featured in Figure 10 with nonlinear adherends for the (a) joint element, and (b) dense 2-d finite element 

mesh. 

 

Another observation about the 2-D dense mesh finite element model is that the solution continues to change 

when the element size is reduced.  This is due to the stress singularity at the reentrant corners.  As the element size is 

decreased, the stress concentration rises and the adherends yield sooner and more dramatically.  Furthermore, the 

solution cuts off after the peak for an element size of 0.15 and 0.1 mm.  This cutoff was due to the commercial FE 

analysis software, which ends the analysis after the step size has become too small.  This is also probably due to the 

stress singularity at the reentrant corners, and illustrates some of the potential difficulties of modeling joints. 

This example illustrates why one should avoid using the joint element when failure of the joint is dominated by 

adherend yielding.  It also brings out the need of applying some of the measures adopted for beam elements to the 

joint element to better capture the material softening of the adherends.   

The second example, illustrating nonlinear adhesive, is the same joint discussed previously, except with linear 

adherends and a nonlinear adhesive stress-strain relation. The adhesive had an elastic-perfectly plastic bulk adhesive 

tensile test stress-strain relation with the linear properties being that of EA 9394 (E=4 GPa, G=1.5 GPa) and the bulk 

yield stress was 40 MPa.  The procedure outlined previously was followed to find the peel and shear yield stress, 

aY  and aY .  The adhesive was allowed to yield indefinitely so that no crack would form or grow.  This is an 

upper-bound prediction of joint strength according to the global yielding criterion proposed by Crocombe 
34

.   

Since the joint was unbalanced, two peel to shear ratios were found; one on each side of the adhesive.  The left 

side was the side with the greatest magnitude of adhesive stress, while the right side was a bit lower.  Since the 

adhesive can yield indefinitely, the maximum load will not be reached until both sides of the adhesive begin to yield.  

Therefore, it was expected that the peel to shear ratio of the right side, the last side to yield, would result in the most 

realistic solution.  The peel to shear ratios and peel and shear yield stresses, along with predicted joint strengths, are 

shown in Table 1.  A comparison of the load-displacement response using the peel to shear ratio from the left (high 

ratio) and the right (low ratio) is shown in Figure 13a.  This is expected to provide bounds for the solution.   

The load-displacement plot for different sizes of elements using the 2-D dense mesh model is shown in Figure 

13b, while the same plot for different numbers of joint elements with  is shown in Figure 13b.  As with the nonlinear 

adherend solution (Figure 12), the reentrant corners caused stress singularities, which cause the solution to be mesh 

dependent for the 2-D dense mesh model.  However, it appears that for the element sizes shown, the joint element 

predictions provide an upper and lower bound for the 2-D dense mesh solution. 
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Figure 13.  Load displacement plots for the joint depicted in Figure 10  with an elastic perfectly plastic 

adhesive with yield stress of 40 MPa.  Plots show (a) the results of basing the constitutive properties on the 

peel to shear ratio of the highest stressed side and the lower side, and elemental convergence for the (b)  2-D 

dense mesh model, and (c) joint element model. 

 

Table 1.  For an unbalanced joint, the peel to stress ratio is different on each side and produces a different 

strength prediction. 

Side of 

Adhesive 
Stress 

Concentration  

ψ 
aY  

(MPa) 
aY  

(MPa) 

Predicted Strength 

(kN) 

Left Higher 1.63 29.0 17.1 710 

Right Lower 1.04 21.3 20.5 819 

 

C. Crack Growth 

To illustrate the benefits of growing a crack by re-meshing rather than just setting the failed adhesive stiffness 

and stress to zero, a bi-layered beam was pulled apart as shown in Figure 14a.  The beam was 5 mm wide, and the 

adherends had a stiffness of 100 GPa.  The adhesive had a Young’s modulus of 1 GPa, and was linear up to failure, 

which occurred at 500 MPa (see Figure 14b).  The simplistic linear-until-failure adhesive was chosen because an 

analytical solution can be found and because it allows crack growth without material nonlinearity, isolating this 

aspect of the joint element. 
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Figure 14.    Example of the peeling of a (a) layered beam where the adhesive is modeled as (b) linear until 

failure to demonstrate the joint element crack growth ability. 

 

Two different models were compared to show the benefits of re-meshing.  First, rather than removing the 

adhesive and re-meshing, the stress and stiffness of the adhesive were simply set to zero when the stress reached 500 

MPa.  Second, the failed adhesive was removed and the element was replaced by a sub-assembly as illustrated in 

Figure 4.  The results of the two models with different ways of handling crack growth are shown in Figure 15.  The 

benefits of re-meshing are clear.  For the first model, the post-peak solution oscillates around the analytical solution 

with the oscillation amplitude reducing for more elements.  The second model with the re-meshing, on the other 

hand, is extremely close to the analytical solution with just a single element.  There is some oscillation after the 

peak, but this is suspected to be caused by crack overshoot.  This effect, however, disappears entirely with only four 

elements.  This example dramatically shows that re-meshing the element to represent crack growth can result in 

huge elemental savings over zeroing the adhesive stiffness. 

 

 
Figure 15.  Load displacement plots for the peeling of a layered beam with different numbers of joint 

elements using (a) no re-meshing and (b) re-meshing. 

D. Experimental Validation 

Lastly, the joint element was compared with experimental data published by Harris and Adams 
11

 on single lap 

joints.  The tests were carried out according to ASTM D1002-72 specifications.  The geometric parameters are 

shown in Figure 16.  The adhesive was MY750 and three different aluminum alloys served as the adherends.  The 

only difference between the alloys was the 0.2% proof stress, as shown in 

Table 2.  The adherends were modeled with an elastic-perfectly plastic stress-strain relation.  The adhesive, 

MY750, was characterized using bulk adhesive tensile tests, and the bulk adhesive stress-strain relation is shown in 

Figure 17a.   
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Figure 16.  Geometric parameters for single lap joint tested by Harris and Adams 

11
. 

 

Table 2.  Material properties of the single lap joint adherends and adhesive 
11

. 

 E (GPa) υ 0.2% Proof Stress (MPa) 

MY750 3.44 0.4 - 

Aluminum 2L73 70 0.34 430 

Aluminum BB2hh 70 0.34 220 

Aluminum BB2s 70 0.34 110 

 

The method outlined in previously was followed to find the adhesive peel and shear stress-strain relation.  First, 

the joint was analyzed with linear material properties and small rotations, and the peel to shear ratio,   was found 

to be 1.4.  Using this value, the Young’s modulus, and the Poisson’s ratio, the bulk adhesive tensile data was 

converted to the peel and shear stress-strain relations shown in Figure 17a.  Using this, the joint was modeled with 

20 beam elements and one joint element and was loaded in a displacement controlled manner until the peak load had 

been reached.  The load-displacement plots for the single lap joints with different aluminum alloys are shown in 

Figure 17b, and the results are compared with the experimental values found by Harris and Adams 
11

 in Table 3.   

 
Figure 17.  (a) Stress-strain relation for bulk adhesive, along with peel and shear components for a single lap 

joint with ψ=1.4, and (b) corresponding load-displacement plots. 

 

Table 3.  Experimental and predicted strengths of the single lap joint. 

Adherend Experimental Strength (kN) Predicted Strength (kN) 

2L73 4.8 ± 0.57 4.46 

BB2hh 5.0 ± 0.38 4.52 

BB2s 3.5 ± 0.32 5.00 
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The joint with the 2L73 adherends failed without the adherends reaching the yield stress, while the BB2hh 

adherend joint had small amounts of adherend yielding and the BB2s joint was dominated by the effects of adherend 

yielding.  Looking back to the single lap joint example of Section B, the point was made that adherend yielding is 

not accurately captured by the current formulation of the joint element.  As expected, the specimen with no signs of 

adherend yielding, 2L73, had a predicted strength well within the experimental error.  The specimen with slight 

yielding, BB2hh, had a predicted strength slightly outside of the error range of the experiment.  Finally, the BB2s 

adherend joint, being totally dominated by adherend yielding, had a predicted strength much higher than the 

experimental value.  However, if one again uses the single lap joint of Section B as an example, one could easily 

imagine that if adherend plasticity were accounted for in a more accurate manner, the predicted peak load would be 

somewhere around the elbow where the slope first drops, around 3 kN.  This would bring the prediction much closer 

to the experimental value.  Unfortunately, as predicted in Section B, the joints with more adherend yielding predict 

strengths increasingly deviating from the 

experimental value.  

If the elbow is taken to be the point of 

failure for the BB2s specimens, all three 

predictions would be lower than the 

experimental strength.  There are several 

possibilities for this discrepancy.  The first is 

that the actual joints had quite sizeable fillets 

at the ends of the adhesive.  Although it has 

been shown that spring-type joint models, like 

the joint element, predict stresses within the 

bondline similar to those in joints with fillets 
5
, 

the fillet might reduce the stress enough to 

increase the strength slightly.  Furthermore, the 

peel to shear ratio, ψ, was only approximated 

base on the linear elastic joint.  However, large 

rotations and the accompanying nonlinearities 

change the peel to shear ratio, making it a 

function of the loading.  Figure 18 shows the 

value of ψ as a function of the end 

displacement, Δ.  It can be seen that the peel to 

shear ratio drops early on in the loading.  Therefore, ψ could be adjusted to yield a more accurate answer.  

This comparison showed that, as expected, the joint element is less than accurate with regards to adherend 

material nonlinearity.  However the method devised to use bulk adhesive tensile data appears to have been 

successful in approximating the strength of this single lap joint.  For most advanced composite joints, the adherends 

display brittle failure, so capturing adherend yielding is of secondary importance.  However, a more precise model 

could be implemented to consider adherend damage. 

III. Conclusion 

In this study, the linear elastic joint element concept was extended to include large rotations, material 

nonlinearity, and adhesive failure.  Large rotations, which occur commonly in adhesively bonded joints, were 

handled through a co-rotational formulation.  This formulation separated the displacements into rigid body 

displacement and local deformations about some rotated local coordinate system.  The local deformations are 

assumed to be small, so a linear formulation can still be used.   Material nonlinearities were included into the 

formulation.  However, a nonlinear-elastic model was adopted for simplicity.  It was shown through examples that, 

while this model was sufficient for the adhesive layers with high stress concentrations and often small plastic zones, 

it was not accurate for a description of the adherend materials, especially in the post-yielded stated.  Problems arise 

with excessive adherend yielding and it is suggested the modeling of such joints with the joint element be avoided.  

On a positive note, the joint load associated with adherend yielding can be viewed as an upper limit load for the 

structural joint, predicted using the joint element. 

Adhesive failure and crack formation and growth were accounted for through an internal re-meshing process.  

The element with an internal crack was replaced by a sub-assembly with the failed adhesive removed.  This method 

added to the computational steps that needed to be taken during the analysis, but decreased the number of elements 

needed to capture progressive failure.   

 
Figure 18.  Peel to shear stress ratio in adhesive layer of the 

single lap joint as a function of end displacement. 
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Finally, methods of finding the nonlinear peel and shear stress-strain curves for the adhesive based on 

experimental procedures were outlined.  First, using bulk adhesive tensile data, the response was broken up into 

shear and peel components for a certain joint configuration.  This allowed the adhesive to be characterized with one 

test, but limited the shear and peel characterization to be specific to a certain joint type, geometry, and materials.  

Next, the resemblance of the adhesive model to cohesive zone models made it a natural candidate for fracture 

properties such as strength and fracture toughness.  Tests were conducted to isolate the shear and peel “modes” and 

characterize them separately.  This has the disadvantage of requiring more tests, but seems to have fewer 

assumptions involved.   
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