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The smeared crack approach (SCA) is revisited to describe post-peak softening in lam-
inated composite materials. First, predictions of the SCA are compared against linear
elastic fracture mechanics (LEFM) based predictions for the debonding of an adhesively
bonded double cantilever beam. A sensitivity analysis is performed to establish the in-
uence of element size and cohesive strength on the load-deection curves. The SCA is
further validated by studying the in-plane fracture of a laminated composite. In doing so,
issues related to mesh size and their e�ects (or non-e�ects) are discussed and compared
against other predictive computational techniques. Finally, the SCA is specialized to or-
thotropic materials. The application of the SCA is demonstrated for failure mechanics of
the open hole tension test.

Nomenclature

a Crack length
b Width of cantilever beam
Dco Continuum sti�ness
Dcr Unloading sti�ness

Dda Damping matrix
E Elastic modulus
Ecr Crack sti�ness normal to the crack surface
Ecrf Crack sti�ness in the �ber direction

Ecrm Crack sti�ness perpendicular to the �ber direction (in the matrix direction)
GIC Strain energy release rate
Gcr Crack shear sti�ness tangential to the crack surface
Gcrm Crack shear sti�ness in the matrix
I Area moment of inertia
N Transformation from global to crack coordinate system
ecr Crack strain in crack coordinate systems
h Characteristic length
scr Crack stress in crack coordinate system
�t Time increment
" Total strain
"co Continuum strain
"cr Crack strain
_"cr Crack strain rate
"crf Crack strain in the �ber direction

"crm Crack strain perpendicular to the �ber direction (in the matrix direction)
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"crnormCrack strain normal to the crack surface
"el Elastic strain
"pl Plastic strain
crm Crack shear strain in the matrix
crt1 Crack strain tangential to the crack surface
crt2 Crack strain tangential to the crack surface
� Damping coe�cient
� Stress
�crf Crack stress in the �ber direction

�crm Crack stress perpendicular to the �ber direction (in the matrix direction)
�crnormCrack stress normal to the crack surface
� crt1 Crack stress tangential to the crack surface
� crt2 Crack stress tangential to the crack surface
� crm Shear crack stress in the matrix

I. Introduction

Validated computational methods are required to ensure Structural Integrity and Damage Tolerance
(SIDT) of laminated composites used in primary aerospace structures. These computational methods serve
to duplicate and drastically reduce the number of tests associated with several layers in the building-block
approach to aerospace material quali�cation, leading to cost reduction. Virtual testing and integrated
computational engineering of composite structures is now an active �eld of research and development in the
quest to certify composite structures for insertion into various aerospace structural platforms. For SIDT to
be successful in a virtual platform, the various mechanisms that govern the onset and progression of fracture
and damage needs in laminated composites to be understood across disparate length scales and modeled
e�ciently using advanced, validated, computational methods. There are a variety of theories and numerical
implementations with respect to the modeling of progressive damage and failure in solids. These studies were
initially focussed on modeling the failure of brittle concrete. A comprehensive discussion of the theories, and
to some degree their numerical implementation, is available in the text-book by Ba�zant and Cedolin.1 In
this paper, the smeared crack approach (SCA), �rst conceived by Bazant and Oh2 as the crack band model,
and later re�ned by Rots,3 will be adopted to investigate delamination failure in composite laminates. When
properly implemented it promises a large degree of objectivity with respect to numerical discretization while
requiring little or no modi�cation to standard, commercial �nite element codes. This latter aspect is of great
concern to practising engineers in industry who are concerned with virtual testing related to SIDT.

II. Summary of failure models

The modeling of failure in the context of the �nite element method (FEM) can be roughly divided into
two categories: discrete and continuum approaches. In the discrete approach, cracks are modeled as strong
discontinuities. Examples are the virtual crack closure technique (VCCT),4 cohesive zone models (CZM)5

and discrete cohesive zone models (DCZM).6 A drawback of these methods is the need to specify the crack
path a-priori. This is not the case for the variational multiscale cohesive method-VMCM,7 and the extended
�nite element method (X-FEM).8 In these methods, the crack path may be arbitrary. However calculations
of the X-FEM method are time consuming, which is in part due to the change in sparsity pattern associated
with the FEM matrices, as additional nodes and degrees of freedom get activated as the crack progresses. This
point of concern was resolved by VMCM where the degrees of freedom associated with the cohesive law are
condensed out and solved for at the element level, leading to a reduction in computational cost, particularly
as the problem complexity grows (for instance, as the number of cracks to be modeled increases, the VMCM
computational cost does not increase, whereas the XFEM cost does increase, see9). For all discrete methods,
the prediction of crack direction and crack tracking is a di�cult task in 3D implementations.10 As all of
these approaches are concerned with the crack as a strong discontinuity with a well de�ned boundary, no
further attention need to be given to the continuum representation of material next to the crack or in other
parts of the structure. Here standard procedures of continuum mechanics can be used to model the material.
Computational approaches based on the strong discontinuity formulation, in general, are mesh objective,
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di�ering in cost between the di�erent implementations (for example, VMCM vs. X-FEM, see9).
Compared to explicit modeling of cracks (as in the strong discontinuity approach), continuum damage

mechanics (CDM) approaches11{14 model the e�ect of cracks on progressive failure much more e�ciently,
and thus these methods may be better suited for integrated computational frameworks for the building-block
approach. However care needs to be taken to avoid spurious mesh dependence. In CDM approaches, cracks
are not modeled explicitly, instead their e�ects on mechanical response are modeled. This is usually due
to the fact that large amounts of small cracks and voids are distributed over a �nite volume, and it would
be too exhaustive to model them individually. This type of behavior can be found in concrete as well as in
the matrix material of composites,15 but also in some metals. A major advantage of CDM (compared to
plasticity theory based approaches) is its ability to capture post-peak softening.12,13 With CDM, two stages
can be distinguished - pre-peak and post-peak response. Both are sometimes referred to as "softening", but
with di�erent connotations. Before the peak load is reached, the secant sti�ness (in the case of pure damage)
or the unloading sti�ness (in the case of damage combined with a permanent set/ plasticity) decreases. Here
the softening refers to a reduction of sti�ness. However the tangent sti�ness remains positive. After the
peak load is reached, the secant and the tangent sti�ness are negative and the load decreases with increasing
strain. This is also termed softening (especially in the civil engineering community that deals with concrete).
Only the second type of softening is of concern in the context of mesh objectivity. Once the tangent sti�ness
turns negative, a material description in terms of stress and strain is no longer objective. Failure will localize
into a zone, distinguished by a characteristic length scale. If classical continuum mechanics is used in the
context of FEM, the only characteristic length scale present in the model is the element size. Therefore
localization will take place within one element, regardless of its size. Consequently the energy dissipated
during the failure process will be a function of element size and zero dissipation will occur in the limit of
vanishing element size. This behavior is not associated with errors due to numerical discretization, but of
the underlying mathematical description associated with capturing post-peak response.1 To restore mesh
objectivity, a characteristic length scale needs to be incorporated into the underlying continuum equations.
Techniques that adopt this, include non-local16 and gradient based theories,17{19 and Cosserat-Continua.20

While these approaches are academically quite appealing, the correct (experimental) determination of the
characteristic length scale remains an area of ongoing debate and discussion.

Alternatively, instead of using a material description based on stress and strain, one based on stress
and displacement can be employed to restore objectivity. The idea here is to demarcate material in the
pre-peak (positive de�nite tangent sti�ness) as being governed by classical continuum theories and those
in the post-peak (negative de�nite tangent sti�ness) as being governed by traction-separation laws, and
including a characteristic length scale. This is the same approach that is used in the DCZM, where the crack
on-set and progression is governed through a traction-separation law. The SCA,3 crack band approach2 and
weak discontinuity approach21 all refer to such a transition from a strain based to a displacement based
description. These approaches can be interpreted in two ways. The �rst refers to the original motivation of
damage mechanics: during the localization of the material many distributed micro cracks are present in a
crack band of �nite size. Their combined e�ect causes a globally observed softening. A second interpretation
is the hiding of a discrete crack inside a a �nite element, representing a �nite volume of material. This last
viewpoint emphasizes the need to transition from a continuum to a non-continuum description when the
material enters a non-positive de�nite tangent sti�ness.

III. Governing equations of smeared crack approach

Two slightly di�erent approaches will be presented in the following. A three dimensional model for
isotropic materials will be introduced �rst. Such a model is useful to describe the crack progression in the
matrix material in a composite. Then, a 2D orthotropic SCA model is presented. It can be used to model
the crack and damage progression within the layers of a laminate.

A. 3D isotropic model

In the following, the SCA approach similar to the one by Rots et al.,3 is extended to damage and failure
in orthotropic materials, so that progressive damage development and failure of composite laminates can
be tackled in a mesh objective manner. In the pre-peak regime, standard continuum descriptions of the
material are assumed to hold. In the post peak regime, it is assumed that the total strain " may be split up
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into a continuum part "co and a crack part "cr

" = "co + "cr (1)

If a plastic model, such as Hills anisotropic plasticity theory, is used, the continuum strain is additionally
decomposed into elastic and plastic contributions.

" = "el + "pl + "cr (2)

All the quantities are given in the global coordinate system. The crack strains can be transformed from
the global to the local coordinate system via the transformation law N , as

"cr = Necr = N

264 "crnorm
crt1
crt2

375 (3)

Here "crnorm is the crack component normal to the crack and ct1 and t2 are the components tangential
to the crack surface. In a similar fashion, the global stress state � can be transformed to yield the tractions
at the crack interface scr

scr =

264 �crnorm
� crt1
� crt2

375 = NT� (4)

Various criteria to calculate the transformation matrix N are possible. If the Rankine criterion of
maximum principle stress is used to determine crack onset, it is convenient to use the principle stress
directions as the crack directions. The tractions at the crack interface are related to the crack strains trough
the secant sti�ness matrix Dcr3 and a damping matrix by

scr = Dcrecr +Dda _ecr (5)

The damping matrix makes the crack progression a time-dependent property. It can also be used to
smoothen the numerical solution scheme. Any numerical solution scheme involves a discrete time step. The
crack strain rate is accordingly approximated with �nite di�erences.

_ecr � ecr(t+ �t) � ecr(t)
�t

=
ecr � ecrold

�t
(6)

The crack stress can �nally be expressed as

scr = Dcrecr +
1

�t
Ddaecr � 1

�t
Ddaecrold (7)

The expanded equation (7) yields

264 �crnorm
� crt1
� crt2

375 =

264 Ecr("crnorm) 0 0

0 Gcr("crnorm) 0

0 0 Gcr("crnorm)

375
264 h � "crnorm

h � crt1
h � crt2

375
+

1

�t

264 � 0 0

0 � 0

0 0 �

375
264 h � "crnorm

h � crt1
h � crt2

375� 1

�t

264 � 0 0

0 � 0

0 0 �

375
264 h � "crnorm

h � crt1
h � crt2

375
old

(8)

where �norm is the normal traction across the crack surface and Ecr("
cr
norm) is the tensile secant sti�ness

across the crack surface. The crack shear sti�ness Gcr is given here as a function of the normal crack opening
"cracknorm only. This implies that locally the crack opening is purely mode I dominated. It is also possible make
the shear sti�ness a function of the crack shear opening crt . However this might be di�cult to justify on a
micromechanical basis.
The constitutive relation for the continuum is given by
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� = Dco"el; (9)

where Dco is the secant sti�ness of the continuum. Combining all equations yields an implicit relation
between the crack strain and the total elastic strain.

ecr =

�
Dcr(ecr) +NTDcoN +

1

�t
Dda

��1 �
NTDco"elcr +

1

�t
Ddaecrold

�
(10)

Finally, the relation between total stress and total strain in the post peak regime are found as

� =

"
Dco �DcoN

�
Dcr +NTDcoN +

1

�t
Dda

��1

NTDco

#
"elcr

� 1

�t

�
Dcr(ecr) +NTDcoN +

1

�t
Dda

��1

Ddaecrold (11)

The total stress-strain description, such as equation (11), which is more suited for large time increments
during reversed loading, is pursued here. It has been noted that the incremental approach can lead to a
deviation from the prescribed traction-separation law, if the strain increments are too large.22 An analogy
to this behavior might be found in the incremental theory of plasticity. When an explicit integration scheme
of the governing equations is used, the equivalent stress can deviate from the yield surface. This behavior
led to the emergence of various return mapping schemes, which enforces that the stress at the end of an
increment does not exceed the yield stress. In the same manner, eq (11) ensures that the stress at the end
of an increment is in accordance with the traction-separation law.

Due to the requirement for the crack stresses to trace the traction-separation law, eq. (10) is a (highly)
non-linear equation for the crack strain. It is solved via Newton’s Method by de�ning a function that is to
be minimized

f(ecr) =

�
Dcr(ecr) +NTDcoN +

1

�t
Dda

�
ecr �NTDco"� 1

�t
Ddaecrold = 0: (12)

The crack strain is then found iteratively, where successive iterations are given by

[ecr]
(k+1)

= [ecr]
(k) �

�
df

decr

��1

f(ecr) (13)

Once the consistent crack strains are found, eq. 11 can be used to �nd the stress at the end of an
increment.

The strain values in equation (8) are multiplied with a characteristic length scale, to transform it into a
true traction-separation law. The characteristic length is obtained by requiring that the energy dissipation
during fracture of a continuum element of a given size has to be the same as a cohesive element of the same
size, described in terms of a traction-separation law. Typically the size of the element projected onto the
crack normal is used, as shown in �gure 1.

h

Crack 

orientation

Crack 

normal

Figure 1: Characteristic element length from projection of crack normal

Here it should be noted that the critical strain energy release rate is the integral of the traction over the
separation (see �gure 2), and is de�ned as,
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GIC =

Z �ult

0

�d� (14)

=

Z "crult

0

�hd"cr (15)

norm

h· cr
norm

h·Ecr

GIC

h· cr
norm,ult

Figure 2: Crack interface sti�ness

In practical applications, the secant sti�ness matrix is chosen such the tractions will follow the traction
separation law as shown in �gure 3 exactly. To determine the secant sti�ness, the current crack strain is
found from equation (10) for a given current total strain. Then, the secant modulus can be found from the
traction-separation law. As equation (10) is given in terms of total stress and total strain, some additional
provisions to prevent crack "healing" are required. Speci�cally it has to be ensured that _Ecr < 0 and
_Gcr < 0. In practice this is done by storing the previous and the current secant sti�ness in memory. During

a possible unloading the crack opening decreases. This leads to a decrease in crack strain and an increase in
secant crack sti�ness. In this case, the old crack secant sti�ness is used. As a result the crack strain follows
on a straight line to the origin during an unloading phase. In a subsequent loading phase, the traction will
increase linearly with the crack strain until the envelope given by the original traction-separation law is
reached and further softening occurs. Repeated loading and unloading behavior is also shown in �gure 3.

norm

cr
norm

Ecr cr,2     

Ecr cr,3     

Ecr cr,1    

cr,3
norm

cr,2
norm

cr,1
norm

norm

norm

norm

Figure 3: Evolution of crack interface sti�ness during repeated loading and unloading

The softening of individual elements will cause convergence issues in a static, implicit analysis, because
unless provisions are made for local snap-back (i.e. to accommodate local, unstable equilibrium paths; a
remedy is to use an arc-length solver, such as the Riks method in ABAQUS. Further details are given in23),
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the solution will diverge. In these instances, an explicit scheme has an advantage, however these schemes
are time intensive due to lack of unconditional stability. An implicit dynamics solution procedure, on the
other hand, is a compromise, and has been used in conjunction with the commercial �nite element code
ABAQUS24 for the results presented in this paper.

B. 2D orthotropic model

The derivation for the 2 dimensional SCA model for an orthotropic model that is speci�cally tailored for
composite laminae are described next. For �ber reinforced lamina, the crack direction is not calculated as
a function of the stress �eld. Instead it lines up with the �bers of a laminate, since �ber/matrix splitting
is energetically more favorable that �ber breaking, for cracks that traverse across a lamina. This choice of
crack direction is physically motivated and is not a restriction of the SCA method pursued here, as will be
evident. Therefore the direction of crack progression is not calculated from the current stress �eld, but the
possible failure directions are instead �xed. Figure 4 shows the possible failure modes. They are: (a) Mode I
crack opening perpendicular to the �ber direction (\�ber brakeage"), (b) Mode I crack opening parallel to
the �ber direction and (c) Mode II crack opening/ sliding parallel to the �ber direction. Failure mode (a)
is dominated by �ber strength and �ber breaking toughness, while mode (b) and (c) are dominated by the
matrix strength and matrix toughness. Due to the signi�cantly higher strength of the �ber failure modes,
modes (b) and (c) can be expected to be observed in most cases. This will be further illustrated in the
results section.

2

1

(a) Mode I fracture perpendicular to
the �ber direction

2

1

(b) Mode I fracture parallel to the �ber
direction

2

1

(c) Mode II fracture parallel to the �ber
direction

Figure 4: Fracture modes in a �brous composite

With the �ber direction denoted by \1", and the crack planes �xed parallel and perpendicular to the
�ber direction, no coordinate transformation between the global frame and the crack frame is necessary and
the transformation matrix N is unity. Therefore eq (3) can be modi�ed to be

"cr = ecr =

264 "crf
"crm
crm

375 (16)

Accordingly the stresses across the crack surfaces can be described by

�cr = scr =

264 �crf
�crm
� crm

375 (17)

It should be noted, that eqs. (16) and (17) represent two orthogonal cracks in two dimensions. Therefore
two direct strain and stress components can be found. However, it is assumed that all shear is due to pure
sliding parallel to the �bers.

Next, the constitutive law across the crack surfaces will be stated. For clarity, damping terms will be
neglected.
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�cr = Dcr"cr (18)

or expanded 264 �crf
�crm
� crm

375 =

264 Ecrf ("crf ) 0 0

0 Ecrm ("crm) 0

0 0 Gcrm(crm )

375
264 "crf
"crm
crm

375 (19)

Here the sti�ness is coupled to the crack opening in the corresponding direction. Compared to eq (8),
the sti�ness terms in eq (19) evolve di�erently. This is due to the fact that multiple crack opening modes
are considered simultaneously, which have di�erent values for the fracture toughness. Next, the expression
to �nd the fracture strain at the current time can be deduced from eq (10), by noting that N = I and by
neglecting damping and any nonlinear behavior in the pre-crack stage to be

ecr = [Dcr(ecr) +Dco]
�1
Dco" (20)

Finally the stress can be found from

� =
h
Dco �Dco (Dcr +Dco)

�1
Dco

i
": (21)

IV. Results

A. Double cantilever beam

1. Model

As a �rst boundary value problem, a double cantilever beam (DCB) model will be investigated. The geometry
is summarized in �gure 5 and table 2. The material properties of the adherend and the adhesive layer are
given in table 1.

L

h

t

F, d

a

Figure 5: Geometry of DCB specimen

Adherent

Elastic Modulus E 70 GPa

Poisson’s ratio 0.3

Adhesive

Mode I strain energy release rate 7.480 N/mm

Cohesive strength 503 MPa

Table 1: Material properties
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Length L 100 mm

Height h 5 mm

Plane stress thickness b 1 mm

Initial crack length a 30 mm

Baseline crack thickness t 0.1 mm

Table 2: Geometry of DCB specimen

2. Comparison with fracture mechanics

A comparison of linear elastic fracture mechanics (LEFM) with the SCA is provided in �gure 6. In the case
of plane stress, the end load of a DCB specimen as a function of crack length is analytically evaluated as25,26

F =
1

a

p
EGICbI: (22)

where F is the applied end load, a is the crack length, I is the area moment of inertia and b is the beam
width. Responses of the numerical and analytical solution are given in �gure 6. They compare quite well.
The LEFM solution shows a higher load for a smaller crack length. With increasing crack length, the SCA
solution shows higher loads compared to the LEFM solution. This can be attributed to the incorporation
of nonlinear geometric e�ects into the numerical simulation. The cantilever beams show an appreciable
deection which leads to a geometric sti�ening e�ect. As the LEFM solution is based on small deection
beam theory, those e�ects are not represented in the LEFM solution.

30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

1600

Crack length [mm]

F
o
rc

e
 [
N

]

 

 

analytical LEFM solution

FEM smeared crack solution

Figure 6: Comparison of the analytical and numerical solution of the end force as a function of crack length

3. Inuence of element number, fracture strength and crack band thickness

Figure 7 shows the convergence of the load-displacement response of the DCB simulation with respect to the
number of elements used in the adhesive layer. A clear oscillatory pattern is visible for a smaller number of
elements along the crack direction. This is related to the integration scheme used to calculate nodal forces:
stress and strain are evaluated at the integration points. When the stress at the integration point reaches a
critical value, failure and softening is initiated. This softening inuences the entire integration point volume.
With increasing element number the amplitude and frequency due to failing integration points diminish.
The solutions of 200, 400 and 800 elements are almost identical, suggesting that the solution is converged
and is also mesh objective.
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0 1 2 3 4 5 6 7 8 9 10
0
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1000

1500

Displacement [mm]

F
o

rc
e

 [
N

]

 

 

50 elements

100 elements

200 elements

400 elements − baseline

800 elements

Figure 7: Convergence of the load-displacement curve with respect to number of elements

A valid criticism of using a two parameter model (cohesive strength and stain energy release rate) for a
problem governed by linear elastic fracture mechanics (LEFM) is that the latter is only dependent on one
material parameter (strain energy release rate or fracture toughness). The inuence of the cohesive strength,
from the LEFM point of view arti�cial, is depicted in �gure 8. The curves for 1000 MPa, 503 MPa and
100 MPa show a clear convergence behavior: an increase in fracture strength yields a higher maximum load.
Secondly the transition from the linear (loading) regime to the non-linear unloading and crack progression
regime is sharper. Thirdly the numerically induced oscillations increase. The last two e�ects can be explained
from considering that the fracture energy (per unit volume) is the area under the stress-fracture strain curve.
As fracture energy is preserved, a decrease in fracture strength causes in increase in ultimate fracture strain.
The implication of this is an increase in process zone size. In the case of high fracture stress only one or two
elements fail at the same time. At lower fracture stress, the process zone is increased and several elements
fail simultaneously. The result is a smoother force-deection curve. In the cases of 10 MPa and 1 MPa
fracture strength, the ultimate fracture strain, for the given strain energy release rate, is so large, that the
process zone extends along the entire specimen length and even after an apparent separation of the two DCB
arms a force is transmitted along the failure interface. Clearly, within the con�nes of the numerical model
and LEFM, a desirable value of fracture strength is one that causes the process zone to extend over two
or three elements at most. Thus, at this point, not just the unloading slope of the stress-strain law, but
also fracture strength can be made a function of the mesh size. On the other hand, when looking beyond
LEFM, it is physically hard to justify a di�erent fracture strength than the one that would be measured
from an independent test (such as the button-peel test, as described in,27 or an appropriate tensile test.
Therefore the reverse question can be posed as well: what is the maximum element size allowed, such that
the the fracture process zone extends across at least two or three elements? When diverging from LEFM,
the ultimate strain (or maximum opening/sliding) will govern the fracture process zone size or bridging
zone size. It has been noted that laminated composites show a signi�cant bridging in the wake of a crack.7

A proper choice of cohesive strength and strain energy release rate will lead not only lead to the correct
load-displacement prediction, but also to a correct prediction of the bridging zone, which is important to
predict size e�ects.

In the context of fracture mechanics, the crack is in�nitesimally thin and in�nitesimally sharp. However
standard �nite elements are not capable of resolving such singularities. Figure 9 shows the inuence of the
crack (band) thickness on the load-displacement response of the DCB. A decrease in the crack band thickness
causes a reduction in maximum load and a less sharp transition from the loading to the unloading/ crack
progression regime. The reduction in maximum load can be attributed to the approach of a near singular
stress �eld at the crack tip upon decrease of the crack band thickness. At the same time, the fracture energy
is �xed. This means that a decrease in crack band size and element thickness increases the fracture ultimate
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Figure 8: Inuence of fracture stress/ strength on the load-displacement curve of DCB

strain (the ultimate \fracture displacement" is �xed). This causes a smoother transition from the loading
to the unloading regime. When interpreting the results in �gure 9 it should be kept in mind that the arms
of the DCB setup have a thickness of 5 mm. Therefore the question of what constitutes an in�nitesimally
thin or sharp crack should be evaluated relative to other geometric dimensions.
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Figure 9: Inuence of the crack band thickness on the load-displacement curve of DCB

4. DCB test of composite - Comparison with DCZM, VCCT and interface elements

Next, the SCA will be used to analyze the debonding of a laminated composite. Values are taken from
Alfano and Cris�eld,28 who used an interface model to simulate an experiment. Xie and Waas29 used the
Discrete Cohesive Zone Element (DCZM) to do the same. They also provide a comparison with the virtual
crack closure technique (VCCT).

The material properties are given in table 3.28 The elastic modulus E, Poisson’s ratio � and layer
thickness t of the adhesive are values that are not typically used in DCZM and similar approaches that use
interface elements. Here they are necessary as the interface layer is represented by continuum elements.
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Composite

E11(GPa) E22 = E33(GPa) G12(GPa) �12 = �13 �23

135.3 9.0 5.2 0.24 0.46

Interface

GIC(N/mm) �f (MPa) E(GPa) � t(mm)

0.28 57.0 5.0 0.3 0.1

Table 3: Material properties for debonding of laminated composite beam

The comparison of the four models is given in �gure 10. The smeared crack approach compares very well
with the three other methods. The VCCT and DCZM method show an increase in sti�ness at a crack length
of about 8 mm which corresponds to the mathematical solution of a crack of that length. The smeared crack
approach on the other hand shows a drop in load at this point. Here the crack has extended along the entire
length of the specimen and the two beams are separated.
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Alfano and Crisfiled − Interface Element

Figure 10: Comparison of smeared crack model with models that discretely represent the interface layer

B. Mesh convergence of single edge notch three-point bending specimen

To show convergence with respect to mesh size, consider an edge notch three-point bending (SETB) test.
A typical test setup is described in �gure 13. Three di�erent mesh sizes have been chosen. The meshes
are depicted in �gure 11. The meshes consist of C3D6 wedge elements. The mesh sizes are 454, 1976 and
41140 elements. The results for the load-deection response are very similar across all mesh sizes, as shown
in �gure 12. It can be noted that for the smallest mesh size, the initial elastic response is slightly sti�er
due to a coarser discretization. The initial sti�ness of the the second and third meshes are much closer.
The di�erent levels of discretization will also have an impact on the simulation of the crack progression, as
smaller elements are better suited to resolve the stress �eld close to the crack tip.

C. Fracture of laminated composite

Next, the in-plane fracture of a laminated �ber reinforced composite was investigated using the example of
a single edge notch three-point bending specimen. Rudraraju et al.30 have investigated size e�ects using
geometrically scaled specimens. Details of the experimental studies and numerical predictions using the
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(a) 454 elements

(b) 1976 elements

(c) 41140 elements

Figure 11: Three meshes used in SETB simulation
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Figure 12: Comparison of the SETB response for di�erent mesh sizes

VMCM are given in.30 The geometry of the smallest size is depicted in �gure 13. The laminate has a
quasi-isotropic lay-up with an Elastic Modulus E=51.5 GPa and a Poisson’s ratio �=0.32.

203 mm

177 mm

7
6
 m

m

3
8
 m

m

F, d

Figure 13: Geometry of single edge notch bending (SETB) specimen

Experimental results are matched well with the SCA predictions as shown in �gure 14. It is noted that
crack initiation takes place in the rising part of the load-deection response. Further growth leads to a
load maximum and beyond this maximum, the load drops with increasing crack advancement. The SCA
predictions are shown to be mesh objective. Furthermore, both experimental and numerical simulations
show a large bridging zone in the wake of the crack tip.

D. Open hole tension test of single layer laminate composite

The application of the the 2 dimensional orthotropic SCA is demonstrated using the open hole tension test
of a single lamina, with the �ber direction oriented at various angles relative to the loading direction. The
problem is described in �gure 15. The hole diameter to width ratio is chosen to be 1/5. Additionally the
loaded edges of the specimen are modeled as an isotropic soft material to reduce edge e�ects and to prevent
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Figure 14: Normalized load-displacement response of SETB specimen

failure at the grips. The mesh of of the FE model is shown in �gure 16. The mesh around the hole is
�ner than at the edges because of the stress gradients near the hole. The mesh consists of 15,425 reduced
integration rectangular shell elements (S4R) in ABAQUS.

Fiber direction

θ 

Soft grips

Figure 15: Single layer open hole test

Five di�erent angles have been investigated: 0�, 5�, 45�, 85� and 90�. There is a clear shift in fracture
modes noticeable. In the 0� and 5� case, the fracture strains for mode II are large, while the other fracture
strains remain non existent. Therefore these cases are mode II dominated. On the other hand, the fracture
strains for 45�, 85� and 90� are large for mode I parallel to the �bers (\matrix mode I"). This crack pattern
is in agreement with the linear elastic stress distribution that can be used to draw conclusions about the
nature of the fracture onset. In the case of 0� and 5�, the shear stress �12 is dominant, while in the cases 45�,
85� and 90�, the stress component perpendicular, to the �bers �22 is largest. In all cases, the crack direction
lines up with the �ber direction. These results are encouraging and current work is aimed at incorporating
the SCA in a laminate model for studying progressive failure and damage in multi-directional laminates.
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Figure 16: Setup of loading of single layer open hole laminate

V. Conclusion

The smeared crack approach (SCA) to capture post-peak softening, mesh objectively, in fracture and
delamination of composites has been demonstrated. The loading stages of this technique can be interpreted
in two ways. Prior to reaching an allowable stress, strain or a combined (in terms of stress and strain, in the
form of f(�ij ; �ij) = 0), onset criterion, a classical continuum description is used. After reaching the onset
criterion, the behavior has to be modeled through a description that departs from continuum mechanics.
In the present work, we have used fracture energy and fracture strength, in opening and slides modes, as
quantities that supply characteristic length scale/s, to describe the post-peak non-continuum response. The
introduction of these characteristic length scales, which are based on physically measured properties that
describe the failure of the composite material, leads to a mesh objective description that is necessary for
predicting progressive damage and failure in composite structures. For the cases presented, the present
approach leads to a high degree of objectivity with respect to mesh size used.
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(a) 0�

(b) 5�

(c) 45�

(d) 85�

(e) 90�

Figure 17: Crack opening strain
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