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A micromechanical model for 2-D triaxial braided composites is presented. The tow ar-
rangement in the representative unit cell is modeled by solving the packing problem using
analytical optimization, avoiding the need to measure the geometric properties experimen-
tally. These results are used in the development of a closed-form micromechanical model
predicting the full 3-D sti�ness matrix of the homogenized representative unit cell. The
results show good agreement with experimental data; however, the true signi�cance of this
work is that it enables design optimization using 2-D triaxial braided composites because
the need for experimental calibration for each set of design variables is eliminated.

Nomenclature

F� fx�; y�; z�gT Plate frame
F fx; y; zgT Unit cell frame
F 0 fx0; y0; z0gT In-plane tow frame
F 00 fx00; y00; z00gT Undulated tow frame
Aa,Ab Tow area
~Aa, ~Ab Tow area projected along the other tow
da,db Tow diameter (major axis)
~da, ~db Tow diameter (major axis) projected along the other tow
h Plate thickness
H Unit cell height
La,Lb Tow undulation wavelength
L Unit cell length
ta,tb Tow thickness (minor axis)
ua,ub Tow undulation height
Vf Fiber volume fraction (�ber to tow)
Vt Tow volume fraction (tow to RUC)
V ,Vm Total, matrix volumes
Va,Vb Tow volumes
W Unit cell half-width
� In-plane tow rotation angle
� Undulation angle
� Bias tow angle
� Unit cell orientation angle
Subscript
a Axial tow
b Bias tow
m Matrix
t Tow

�PhD Candidate, Department of Aerospace Engineering.
yProfessor, Department of Aerospace Engineering.
zAssociate Professor, Department of Aerospace Engineering.

1 of 12

American Institute of Aeronautics and Astronautics

50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition
09 - 12 January 2012, Nashville, Tennessee

AIAA 2012-1257

Copyright © 2012 by the authors.  Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
A

pr
il 

3,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

2-
12

57
 



I. Introduction

In aircraft design, aeroelastic tailoring is the application of passive control in the design of the structure
to produce favorable deformations through the use of directional sti�ness.1 When this is achieved, there is a
synergistic coupling between aerodynamics and structures that contributes to overall performance bene�ts.
The application of aeroelastic tailoring to wing design has been considered for decades, and studies in the
literature show varying degrees of success, with most making use of composite materials.

Librescu and Song2 were one of the �rst to apply aeroelastic tailoring to composite wings by varying ply
angles in thin-walled composite beams. The additional exibility in transverse shear from using composite
materials ampli�ed the wash-in e�ects of forward sweep, which was found to contribute to the impact of
aeroelastic tailoring on the divergence speeds of forward swept wings. Eastep et al.3 performed aeroelastic
tailoring with strength and utter constraints on wings modeled with composite skins. They used [0�, 90�,
�45�] laminates and optimized the relative proportions of each ply for a range of layup orientations. Their
conclusion was that the e�ect of aeroelastic tailoring in this case was limited because the optimal designs
were relatively insensitive to layup orientation when multiple structural constraints were considered. How-
ever, a single layup orientation angle was used for the entire structure and only thicknesses were optimized
individually for each element in the top and bottom skins, so the design exibility a�orded for aeroelastic
tailoring was not signi�cant. Weisshaar and Duke4 performed aeroelastic tailoring using a laminated box
beam model coupled with a simple aerodynamic model based on horseshoe vortices. One of their results was
that the low-speed elliptical lift distribution lost at high speeds was recovered by laminate-induced wash-out
through aeroelastic tailoring. Overall, aeroelastic tailoring was found to be more e�ective at high subsonic
speeds, when aeroelastic e�ects are more dominant. Guo et al.5 performed a similar study using beam
elements and found that aeroelastic tailoring is the most e�ective for unswept wings.

The studies mentioned above report varying levels of performance improvements gained through aeroe-
lastic tailoring with the common theme that utter and divergence speeds are signi�cantly a�ected, but the
overall weight is relatively insensitive to the design variables. However, the low impact on weight is due to the
lack of variables with which to optimize and the corresponding lack of �delity in the structural model. For
instance, the fact that Eastep et al. found aeroelastic tailoring to have negligible e�ect was likely due to the
fact that the single layup orientation design variable was applied to the entire skin and the ply angles were
not actually varied. To address this shortcoming, what is desired is a high-�delity model with the exibility
to design each plate element individually and optimize con�guration-level variables simultaneously. With a
detailed structural model and a high-�delity aerodynamics model, a proper study on the potential impact of
aeroelastic tailoring can be performed, and it is expected that the result will be a framework that can truely
exploit the subtleties of aeroelastic coupling. Only recently, computing power and algorithms have advanced
to a point where this is feasible.

Kennedy and Martins6 proposed a multi-level aerostructural optimization framework incorporating a
panel-level weight minimization problem within a system-level optimization problem with aircraft perfor-
mance objectives. This framework couples a 3-D panel code and a shell-element structures code with a
coupled adjoint for sensitivity analysis, and it handles a large number of state variables (97236 structural
degrees of freedom and 9440 aerodynamic panels) through e�cient parallelization and a large number of
design variables (446) using an e�cient gradient-based optimizer. This level of �delity is required to have
the design exibility for e�ective aeroelastic tailoring.

In this approach, the panel-level design variables parametrize the geometry of sti�eners; however, the
ability to parametrize the plate itself would signi�cantly enhance the design freedom. Textile composites
represent a class of �ber-reinforced materials whose constituents are the matrix and �bers, arranged in a
regular pattern. As with straight-ply laminates, textile composites have more design exibility than isotropic
materials due to their geometric complexity. However, textile composites have three signi�cant advantages
over straight-ply laminates. First, their resistance to impact loading is signi�cantly greater because of the
geometry of the weaving patterns.7 This is a signi�cant issue with the use of straight-ply laminates because
impacts during ight or maintenance on an aircraft can cause delamination, which is much more di�cult
to detect than with metal. Secondly, textile composites have properties that are naturally more balanced,
which is bene�cial when unexpected or unusual loading conditions arise. With straight-ply laminates, a large
number of layers are required to achieve the same balance, reducing their advantage in strength-to-weight
ratio. The third major bene�t is that if a single layer is used | as is the case here | stretching, shear,
bending, and twisting are fully decoupled whereas all four are coupled in general for straight-ply laminates,
and only in-plane to out-of-plane coupling is removed with a symmetric laminate. An additional bene�t for
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textile composites is the ease and low cost of manufacturing because of the advanced processes developed in
the textile industry.

Among textile composites, 2-D triaxial braided composites (2DTBC) are examined in this work because
of the combination of design exibility and simplicity. 2-D woven composites have �ber tows in only the 0�

and 90� directions, so the design freedom is limited. 3-D woven and braided composites, as well as knitted
and stitched composites, are not as well understood and the potential for analytical modeling is limited.
Furthermore, their tows undulate signi�cantly more out-of-plane, weakening sti�ness, whereas 2DTBCs
represent a good mixture of structural e�ciency and balanced properties.

II. Multi-Scale Modeling and Design

The overall modeling approach involves multiple physical scales, as illustrated in Figure 1. The �rst is
the molecule level, where molecular dynamics simulations for predicting elastic constants is an ongoing area
of research. This scale of modeling is not considered for the current framework. The second is the tow
level, in which the transversely isotropic properties of the tow are computed based on the properties of the
constituent bundle of �bers and matrix material. The concentric cylinders model (CCM) is used here, with
the �ber volume fraction representing the packing e�ciency of the tow | i.e. the ratio between total �ber
area and tow area for a given cross section. The representative unit cell (RUC) is the smallest repeating
pattern in the textile composite. Given a tow volume fraction | the ratio between total tow volume and
total RUC volume | and an assumed RUC geometry, the objective here is a model predicting the full 3-D
sti�ness matrix for the RUC idealized as a homogeneous entity. In this paper, only 2-D triaxial braided
composites are considered, and the derivation for the corresponding micromechanical model is presented in a
later section. The fourth level is the plate level, at which the RUCs for the constituent layers are assembled
to obtain the constitutive relations for the plate in terms of thickness-averaged quantities. The expressions
are greatly simpli�ed in the current approach since only one layer is used. Finally, the matrices representing
the constitutive relations for the plate are used in the thin-walled �nite element model of the structure.

10�9m 10�6m 10�2m 100m 102m

Molecule level: Molecu-
lar Dynamics

3

1 2

Tow level: Concentric
Cylinders Model

x

y z

RUC level: microme-
chanical model

x

y

z

Plate level: Classical
Lamination Theory

Airframe level: Finite
Element Analysis

Figure 1: Diagram representing how molecules, �bers, tows, braids, plates, and structures are built up in
sequence through a series of models.

A suggested multi-scale optimization process is shown in Figure 2. The �ber and matrix materials are
�xed; thus, tow and matrix sti�ness matrices are also constant during optimization. Axial tow area, bias tow
area, and bias tow angle are the design variables in the micromechanical model while unit cell orientation
and plate thickness are the design variables at the classical lamination theory (CLT) level.

A possible sequence of events is discussed briey. For the �rst iteration, an initial guess is made for all
�ve variables for each plate element since the stresses are unknown. The linear system from �nite element
analysis (FEA) is solved and the thickness-averaged stresses are calculated for each plate element. Using
these, the optimal unit cell orientation, tow areas, and bias tow angle are computed for each plate and used
in the next FEA solve. If the local variables are updated in this manner simultaneously with the system-
level optimization problem | involving variables using as sweep and span | it is likely that convergence
will require more iterations or it may never converge to the desired tolerance. In that case, there are two
options. First, the local variables can simply be considered as part of the system-level optimization, though
that signi�cantly increases the number of design variables and may create local minima in the system-level
problem. The second option is to separate the convergence of the system-level and plate-level variables. This
option is similar to the multidisciplinary feasible (MDF) architecture in multidisciplinary design optimization
(MDO) since the coupling between design variables of di�erent plates is fully resolved within a single iteration
of the system-level optimization problem.
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Fiber constants

Ef
1 , E

f
2 , G

f
12, ν

f
12, ν

f
23

Matrix constants
Em, νm

CCM volume fraction
Vf

Axial tow area Aa

Bias tow area Ab

Bias tow angle θ

Unit cell orientation φ
Plate thickness h

Local
numerical

optimization

Align with
principal
stress

Back-
substitution

Concentric
Cylinders
Model

Micro-
mechanical

model

Classical
Lamination
Theory

Finite
Element
Analysis

u,v,w,
ψx,ψy

Nx,Ny,Nxy,

Mx,My,Mxy

Ct C A,B,
D

Figure 2: Flowchart for optimization of the plate-level design variables. Based on the loads from the previous
FEA solve, the unit cell orientation is computed so that the axial tows are aligned with the largest principal
stress. Similarly, optimal axial tow area, bias tow area, and bias tow angle are all computed for each plate
element through numerical optimization. This process is repeated until the design variables converge.

III. Analytical Model

The representative unit cell is the smallest repeating unit in the 2DTBC architecture, shown in Figure
3. An RUC contains two wavelengths of the axial tow aligned with the unit cell coordinate frame as well as
one wavelength each of the +�� and ��� bias tows. The axial and bias tow undulations are shown in Figure
4.

The RUC has a height H, length L, and width 2W , where W is the distance between two adjacent axial
tows. The axial and bias tow areas, diameters, and thicknesses are represented by Aa, Ab, da, db, ta, and tb.
The axial tow area and diameter in the plane of the bias tow undulation are ~Aa and ~da; likewise, the bias
tow area and diameter in the plane of the axial tow undulation are ~Ab and ~db. The relationships between
these RUC dimensions are

La =
W

tan �
(1) da = ~da sin � (2) Aa = ~Aa sin � (3) Aa = �

da
2

ta
2

(4)

Lb =
2W

sin �
(5) db = ~db sin � (6) Ab = ~Ab sin � (7) Ab = �

db
2

tb
2
: (8)

The following description of the analytical model consists of two parts: the tow arrangement optimization,
which predicts the geometry of the RUC, and the micromechanical model, which estimates the full 3-D
sti�ness matrix using the modeled geometry.

III.A. Tow arrangement optimization

One of the requirements for design optimization with textile composites is a model for the tow geometry as
a function of the design variables. For any combination of Aa, Ab, and �, we want to be able to compute
undulation amplitudes ua and ub as well as tow cross-sectional properties. The most accurate approach would
be to perform a simulation of the textile process used in manufacturing, considering the full geometries of
the tows | including their tendency to twist and deform | while applying tensile loads to tighten the braid
as is done in reality. Miao et al.8 implemented such an approach, using a digital element model to obtain a
precise prediction of the tow geometry and correctly capturing the twisting e�ect due to interaction between
tows. Here, we desire closed-form expressions describing the tow geometry | in other words, an analytical
solution to the following optimization problem:
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Figure 3: The 2DTBC architecture and its representative unit cell for small diameter tows (top) and large
diameter tows (bottom).

maximize RUC �ber density

with respect to [da; db; ua; ub]
T

subject to inequality constraints enforcing geometric compatibility

The optimization problem essentially solves a packing problem, reecting actual manufacturing processes
which attempt to maximize the �ber volume fraction. Since the �ber and matrix densities are typically on
the same order but the �ber is much sti�er, particularly in the axial direction, it is productive to increase
the �ber volume fraction as much as possible.

The above optimization problem can be quanti�ed by assuming that the tows cross sections are always
elliptical (the tows do not deform) and that their undulation path is periodic with no twist. Still, it is too
complex to solve analytically because of the inequality constraints that ensure compatibility. This issue can
be resolved by making the following assumptions:

1. ua = 0

2. da + db
cos � = W

3. ub = ta
2 + tb

2

The �rst simpli�cation is the assumption that the axial tows do not undulate. Typically, the axial tow
is aligned with the direction in which the axial stress is the largest, so the axial tow is also the largest in
area and sti�est. More importantly, the wavelength of the axial tow is less than half of that of the bias
tow, which makes the axial tow tend to be more at because any undulation would yield a relatively large
spatial frequency. This assumption has been made in other models in the literature with good results.9

Qualitatively, the second simpli�cation is simply a statement that, during the textile process, the axial and
bias tows will widen until they are in contact with each other. Since the number of �bers in a tow is
�xed, the tow areas are also roughly constant, so the tendency of the tows to atten in order to decrease
their undulation amplitudes results in a corresponding increase in tow diameters. The �nal simpli�cation
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x

y
z

z′

x′
ta
2

tb
2

ua

ub

La

x

y
z

z′

x′
ta
2

tb
2 ua

ub

Lb

2

Figure 4: Side view of the axial (top) and bias (bottom) tows. Note the elliptical cross-sectional shapes of
the tows and the sinusoidal undulation of the tows. The analytical model simpli�es the sinusoidal undulation
as a piecewise quadratic.

is obvious from Figure 4. At the points at which the axial and bias tow cross over each other, the bias
tow undulation height is its undulation amplitude, which must be equal to half of the sum of the two tow
thicknesses since the bias tow would never undulate more than necessary.

With these simpli�cations, the analytical solution to the tow geometry optimization problem is

da =
W

1 +
q

Ab

Aa cos �

(9) db =
W

1 +
q

Aa cos �
Ab

(10)

ub =
2

�

"
Aa
W

 
1 +

r
Ab

Aa cos �

!
+

Ab
W cos �

 
1 +

r
Aa cos �

Ab

!#
: (11)

This solution gives closed-form expressions for tow diameters and undulation amplitudes (ua = 0) as a
function of axial tow area, bias tow area, and bias tow angle. Note that if Ab = Aa cos �, then da = db = W

2 ,
so the two tows share the available width equally. As one of the tow areas increases, more of the available
width is allocated to that tow, while the bias tow diameter increases as bias tow angle increases.

III.B. Micromechanical model

The objective is an analytical model that predicts the sti�ness matrix of the RUC, based on the tow geometry
optimization results. Analytical micromechanical models for textile composites have been studied for decades,
starting with Ishikawa and Chou.10 They presented three models for 2-D woven composites | the ‘mosaic
model’, the ‘�ber undulation model’, and the ‘bridging model’. The �rst is a 1-D model that assembles cross-
ply laminates either in series (iso-stress) or in parallel (iso-strain), the second introduces tow undulation,
and the third is a 2-D model that considers undulation in only one direction. Naik and Ganesh11 later
developed fully 2-D models that consider �ber undulation and continuity in both in-plane directions through
a CLT-based approach as well. These models were shown to agree well with results from �nite element
analysis; however, they are limited to prediction of in-plane properties as they are not 3-D models.

To overcome this limitation and obtain the full 6 � 6 sti�ness matrix, a 3-D computation of elastic
properties is necessary. Sheng and Hoa12 presented a general approach for deriving the micromechanical
model of any RUC from energy methods. For the iso-strain assumption, they derived the volume-averaged
sti�ness matrix by summing the total potential energy of the RUC to obtain the upper bound for sti�ness;
for the iso-stress assumption, they derived the volume-averaged compliance matrix by summing the total
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complementary potential energy to obtain the lower bound for sti�ness. By applying this approach to 2-D
woven composites and comparing with experimental results, they found that the iso-strain assumption is
more appropriate because the experimental data is much closer to the upper bound than the lower bound. In
fact, the upper bound was found to be a good estimate of the actual properties obtained through experiment.

Quek et al.9 took a similar approach, using the iso-strain assumption to derive a 3-D micromechanical
model. Their approach computes the equivalent sti�ness matrices as if the entire RUC were made of each of
the constituents (axial, bias tow, and matrix), and computes the weighted average based on the respective
volume fractions. The results showed good agreement with experiment as well, suggesting the approaches of
Sheng and Hoa and Quek et al. are both adequate models for the prediction of RUC elastic properties.

The approach adopted here is based on that of Sheng and Hoa, but the concentric cylinders model is
used, as is done by Quek et al., to obtain the properties of the tow. The total potential energy of the RUC
is given by Z

V

UdV =

Z
Va

UadVa +

Z
Vb+

Ub+dVb+ +

Z
Vb�

Ub�dVb� +

Z
Vm

UmdVm: (12)

Since we are assuming a state of constant strain, all terms can be written as U = 1
2�
TC �, so we can remove

the common strain terms from the respective integrals, resulting inZ
CdV = 2

Z
CtAadx+

Z
TT��T

T
�CtT�T��Abds

+

Z
TT� TT�CtT�T�Abds+

Z
CmdVm: (13)

Many studies in literature model the undulation path as a sinusoid, but approximating it as a piecewise
quadratic simpli�es analytical evaluation of the integrals in this case. Since the undulation path is related
to � by @z0

@x0 = tan�, we have

z0 = ub

"
1�

�
2 sin �

W
x

�2
#

(14)

ds =

������
s

1 +

�
@z0

@x0

�2
������ dx0 =

�
W 2

8ub sin2 �

�
sec3 �d�: (15)

To evaluate the integrals for the volume-averaged sti�ness, a coordinate transformation is performed so
that � is the variable of integration. The bounds are ��0 and �0, where �0 = tan�1

�
4ub sin �
W

�
, which is half

of the original integral, so the integrand must be doubled. The expression for the 6 � 6 homogenized RUC
sti�ness matrix is

C =
2Va
V

Ct +
W 2

8ub sin2 �

Ab
V

TT��

"Z �0

��0

TT�CtT�2 sec3 �d�

#
T��

+
W 2

8ub sin2 �

Ab
V

TT�

"Z �0

��0

TT�CtT�2 sec3 �d�

#
T� +

Vm
V

Cm; (16)

where Vb = 2ub

r2 Abc0s0 and Va = AaW
tan � (c0s0 is de�ned later). The T matrices in the above equations are

strain transformation tensors in matrix form. The directions of the transformations are shown in Figure 5.
They are given as follows:

7 of 12

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
A

pr
il 

3,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

2-
12

57
 



T� =

2666666664

cos2 � sin2 � 0 0 0 cos� sin�

sin2 � cos2 � 0 0 0 � cos� sin�

0 0 1 0 0 0

0 0 0 cos� � sin� 0

0 0 0 sin� cos� 0

�2 cos� sin� 2 cos� sin� 0 0 0 cos2 �� sin2 �

3777777775
(17)

T� =

2666666664

cos2 � sin2 � 0 0 0 � cos� sin�

sin2 � cos2 � 0 0 0 cos� sin�

0 0 1 0 0 0

0 0 0 cos� sin� 0

0 0 0 � sin� cos� 0

2 cos� sin� �2 cos� sin� 0 0 0 cos2 �� sin2 �

3777777775
(18)

T� =

2666666664

cos2 � 0 sin2 � 0 cos� sin� 0

0 1 0 0 0 0

sin2 � 0 cos2 � 0 � cos� sin� 0

0 0 0 cos� 0 � sin�

�2 cos� sin� 0 2 cos� sin� 0 cos2 � � sin2 � 0

0 0 0 sin� 0 cos�

3777777775
: (19)

�00 = T��
0 �0 = T�� � = T��

�

Undulation frame  ����� Tow frame  ����� RUC frame  ����� Plate frame

Figure 5: The tensorial strain transformation matrices relate strains in the plate, RUC, tow, and undulation
frames. � is a rotation in the negative sense in a right-handed coordinate system, reecting the de�nition of
positive �.

The integrals in the expression for the 6�6 homogenized RUC sti�ness matrix are evaluated analytically.
The matrix products in the integrand are evaluated �rst to obtain the tow sti�ness matrix in the tow undu-
lation frame with the undulation angle � removed, yielding expressions involving the transversely isotropic
sti�ness constants of the tow multiplied by fourth order sine and cosine terms. These are then multiplied
by sec3 �, which arises from the transformation from ds to d�. Among these, all odd terms can be ignored
since they are zero when integrated from ��0 to �0, and the even terms are integrated analytically.

For convenience, two variables are introduced, r = 4ub sin �
W and r0 =

p
1 + r2. The integrated expressions
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for each trigonometric term are

c4 =
4r

r0
(20)

c2s2 =
�4r

r0
+ 2 ln

�
1 + r

r0

1� r
r0

�
(21)

s4 =
4r

r0
+

1

1� r
r0
� 1

1 + r
r0
� 7

4
ln
�

1 +
r

r0

�
+

3

2
ln
�

1� r

r0

�
(22)

c2 = 2 ln

�
1 + r

r0

1� r
r0

�
(23)

s2 = 2rr0 � ln

�
1 + r

r0

1� r
r0

�
(24)

c0s0 = 2rr0 + ln

�
1 + r

r0

1� r
r0

�
; (25)

where c4 = 2
R �0

��0
cos4 � sec3 �d�, as an example. Then, the integrated sti�ness matrix in the F 0 frame is

2

Z �0

��0

TT�CtT� sec3 �d� =

2666666664

C 011 C 012 C 013 0 0 0

C 012 C 022 C 023 0 0 0

C 013 C 023 C 033 0 0 0

0 0 0 C 044 0 0

0 0 0 0 C 055 0

0 0 0 0 0 C 066

3777777775
(26)

C 011 = Ct11c4 + (2Ct12 + 4Ct55)c2s2 + Ct22s4 (27)

C 012 = Ct12c2 + Ct23s2 (28)

C 013 = Ct12c4 + (Ct11 + Ct22 � 4Ct55)c2s2 + Ct12s4 (29)

C 022 = Ct22c0s0 (30)

C 023 = Ct23c2 + Ct12s2 (31)

C 033 = Ct22c4 + (2Ct12 + 4Ct55)c2s2 + Ct11s4 (32)

C 044 = Ct44c2 + Ct66s2 (33)

C 055 = Ct55c4 + (Ct11 � 2Ct12 + Ct22 � 2Ct55)c2s2 + Ct55s4 (34)

C 066 = Ct66c2 + Ct44s2: (35)

IV. Application

IV.A. Validation

Table 1 compares the results obtained from the current model with those obtained experimentally and
analytically by Kier et al.13 In general, the current model does not agree as well as the Quek model with
one notable exception. The experimentally measured Gxy constant increases with increasing bias tow angle,
which is captured by the current model, but the opposite is true with the Quek model. It is hypothesized
that this di�erence is caused by the fact that the current model correctly predicts that with increasing bias
tow angle, the bias tow undulation increases, increasing the RUC volume and increasing the relative amount
of matrix in the RUC. Since the matrix material makes a larger contribution to in-plane shear sti�ness, this
trend o�sets the inuence of the bias tow contribution, which changes as the bias tow angle varies.

Overall, the current model is not as accurate as existing models, but the key di�erence is that the current
model computes the tow geometry automatically, with only tow areas, bias tow angle, and �ber volume
fraction required as input variables. Existing models require many more variables to be experimentally
measured to be able to compute the sti�ness matrix. With the current model, the trends were predicted
satisfactorily, and optimization is possible with this new model.
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30� Experimental Quek Current

Ex[GPa] 53:1� 0:8 58:3 50:5

Ey[GPa] 7:3� 0:5 8:06 9:19

Gxy[GPa] 8:3� 2:5 10:8 9:45

�xy 0:93 0:995 0:76

Gyx[GPa] 15:4� 3:2

45� Experimental Quek Current

Ex[GPa] 27:9� 1:1 29:4 30:3

Ey[GPa] 13:7� 1:2 13:9 17:6

Gxy[GPa] 10:8� 2:0 9:35 9:79

�xy 0:59 0:535 0:49

Gyx[GPa] 14:4� 4:0

60� Experimental Quek Current

Ex[GPa] 23:2� 0:8 28:4 27:0

Ey[GPa] 22:1� 0:1 22:6 26:9

Gxy[GPa] 11:8� 2:7 8:85 10:9

�xy 0:30 0:328 0:31

Gyx[GPa] 11:9� 1:3

Table 1: Comparison between the results from the current analytical model and the analytical results from
Quek’s model and experimental results presented in Kier et al.13

IV.B. Optimization Problem

For a single-layer homogeneous laminate, bending and stretching are not coupled and the vector of loads N
and M can be combined to form a single vector that induces a maximum in-plane strain of �:(

N

M

)
=

"
A 0

0 D

#(
�0

�

)
(36)

�0 = A�1N =
1

h
C�1N (37)

� = D�1M =
12

h3
C�1M (38)

� = �0 + z� =
1

h
C�1

�
N + z

12

h2
M

�
: (39)

The general optimization problem is

minimize RUC areal density

with respect to [�; h; �;Aa; Ab]
T

subject to tow strains less than 0:005

matrix shear stress less than 5 MPa

The tow strains are very insensitive to the magnitudes of Aa and Ab, so the plate thickness, h, is an
important variable for scaling the problem based on the magnitudes of the loads applied. The remaining
degrees of freedom | �, �, and Aa/Ab | all have a similar e�ect of redistributing sti�ness among the various
components as opposed to changing its e�ective magnitude.

To simplify the problem, it is assumed here that only in-plane stresses are applied. � can be chosen to
align the RUC with the principal directions such that the axial tow is parallel to the largest principal stress.
This yields a new Nx and Ny in the RUC frame with no shear stress component. If we denote N�x , N�y , and
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N�xy the stresses in the original plate frame, we have � = 1
2 tan�1

2N�xy

N�x�N�y and the tow strains can be found

using (
�a

�b

)
=

"
1 0

cos2 � sin2 �

#(
�x

�y

)
(40)

(
�a

�b

)
=

1

h

"
1 0

cos2 � sin2 �

#"
C11 C12

C12 C22

#�1(
Nx

Ny

)
(41)

(
�a

�b

)
=

1

h

"
1 0

cos2 � sin2 �

#"
C11 C12

C12 C22

#�1 "
cos2 � sin2 � 2 cos� sin�

sin2 � cos2 � �2 cos� sin�

#8><>:
N�x
N�y
N�xy

9>=>; : (42)

The elastic constants are insensitive to proportional increases to Aa and Ab; however, they are more
sensitive to the ratio between the tow areas. From the tow geometry optimization, Aa must be su�ciently
greater than Ab for the assumption to be valid that the axial tow does not undulate. However, the bias
tow area should not be too small as it serves a dual purpose of carrying the loads in the y direction and
providing more balanced sti�ness even when Ny is small for considerations such as impact resistance. For
the numerical optimization results that follow, a ratio of 4 is used as a compromise.

IV.C. Numerical Optimization

From the previous discussion, the remaining design variables are � and h. � is used to align the RUC with
the principal directions, and the tow areas are chosen to give a ratio of 4. Realistic values for the tow areas
are Aa=W

2 = 0:08 and Ab=W
2 = 0:02. The numerical optimization problem for a given plate with a given

loading is then as follows:

minimize RUC areal density

with respect to [�; h=W ]T

subject to j�aj � 0:005

j�bj � 0:005

Since the optimization problem is continuous, it is solved using SNOPT, a Sequential Quadratic Pro-
gramming (SQP) algorithm that handles nonlinear, convex optimization problems very well.14 SQP methods
de�ne a quadratic sub-problem with linearized constraints at every major iteration, approximating the Hes-
sian matrix with the widely-used BFGS update formula and using a line search along each computed search
direction. Here, gradients computed using the �nite di�erence method provide su�cient accuracy | opti-
mality and feasibility are converged to 10�10.

The optimization results are shown in Figure 6. For simplicity, only normal stresses are applied to remove
� from the problem, and the applied stresses are Nx = 1 MPa and Ny between 0 MPa and 1 MPa. Only this
range of Ny values are plotted because jNxj > jNyj by construction. The plate thickness bounds are never
active and the lower bound of 10� is active for � for low values of Ny=Nx because a high transverse sti�ness
is not required in this range.

Above roughly Ny=Nx = 0:2, the results are as expected. With increasing Ny=Nx, the required plate
thickness increases since the magnitude of the applied load grows larger. � is also increasing because more
and more sti�ness is needed in the transverse direction as Ny increases. From the behavior below roughly
Ny=Nx = 0:2, it is clear that the Lagrangian is multi-modal. There are likely two possible solutions due to
the fact that the optimizer can achieve an e�cient design with a very low value of � but a thicker plate or
with a higher value of � and a lower plate thickness. Evidently, the former option provides a lower areal
density for small Ny whereas the opposite is true for larger Ny because the increase in plate thickness for
the former option is too great due to the larger transverse load.
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Figure 6: Optimized values of � and h plotted versus Ny=Nx. The axial load applied is Nx = 1 MPa.

V. Conclusion

The model developed in this paper addresses some of challenges associated with performing aeroelas-
tic tailoring with 2-D triaxial braided composites. The RUC geometry is modeled using an optimization
formulation for the packing problem which provides a closed form solution that is used as part of the mi-
cromechanical model. Existing models require experimental measurement of numerous geometric properties
for a given RUC con�guration, which prohibits design optimization because these inevitably vary as the de-
sign variables change. The micromechanical uses a volume-averaged sti�ness approach under the iso-strain
assumption, and closed-form solutions are obtained here as well. The computed elastic constants show good
agreement with experiment in most cases, and when they do not, the error is likely due to the tow geome-
try model. Preliminary results from numerical design optimization of the RUC are robust and agree with
intuition.
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