
 

American Institute of Aeronautics and Astronautics 
 

 

1 

Gust Response Sensitivity Characteristics of Very Flexible 

Aircraft 

 
Matthew J. Dillsaver

1
, Carlos E.S. Cesnik

2
, Ilya V. Kolmanovsky

3 

The University of Michigan, Ann Arbor, Michigan, 48109, USA 

This paper studies the effect of varying structural stiffness parameters on the gust 

response of a very flexible aircraft (VFA). Twelve different aircraft models, as well as the 

baseline model, are subjected to a temporally and spatially distributed gust of varying 

durations. The open loop response of the models is examined as a function of different 

natural frequencies and frequency ratios. Linear models are extracted from the nonlinear 

data using system identification.  These linear models are then examined to determine their 

stability and controllability properties. A Linear Quadratic Gaussian (LQG) controller is 

used to determine the closed loop response of the models to a pitch step command in the 

presence of gust. Finally, the models are given a 0° pitch command in order to examine the 

ability of the LQG controller to maintain level flight while encountering gust.    

I. Introduction 

S aircraft designers increasingly pursue high performance, low cost Unmanned Aerial Vehicle (UAV) 

solutions, Very Flexible Aircraft (VFA) characteristics are becoming more prominent .  One type of particular 

interest is the High Altitude, Long Endurance (HALE) aircraft which is of interest for both military and civilian 

uses, In order to optimize flight performance in HALE flight, aircraft are normally built with relatively long and 

slender high-aspect ratio wings, allowing for high lift-to-drag ratios, thereby maximizing aerodynamic efficiency. 

These mission requirements lead HALE aircraft designers to minimize weight to the greatest extent possible, often 

resulting in a low structural weight fraction, and causing HALE aircraft to be very flexible, with large wing 

deformations possible during flight. Additionally, VFA tend to exhibit an overlap in the lowest elastic mode 

frequencies and the rigid-body flight dynamic frequencies.
1
   

 These VFA attributes can make the aircraft very susceptible to external disturbances, such as atmospheric gust.  

This was apparent in June 2003 on the Aerovironment Helios aircraft.  After encountering unexpected turbulence the 

aircraft entered into a high dihedral configuration.  As a result, the aircraft began an unstable, diverging pitch 

oscillation with airspeed excursions doubling on every oscillation.  After the design airspeed was eventually 

exceeded, the aircraft broke apart and fell into the Pacific Ocean.
2
  The nonlinearities present as well as the 

frequency overlap seen in VFA lead to difficulties in modeling, simulation and control.  One of the 

recommendations from the Helios mishap report was to, “develop more advanced, multi-disciplinary (structures, 

aeroelastic, aerodynamics, atmospheric, materials, propulsion, controls, etc.) time-domain analysis methods 

appropriate to highly-flexible, morphing vehicles.”
2
 

 Recently, there has been much research into the modeling and dynamics of VFA.  Patil, Hodges and Cesnik
3
 

studied VFA flight dynamics and aeroelasticity, and showed that the large deformations of flexible wings can cause 

significant changes in aircraft dynamics.  Additionally, they showed that the wing shape of VFA can vary greatly 

across differing flight conditions.  Su and Cesnik
4
 demonstrated that aeroelastic analysis of VFA must be 

accomplished at the actual trimmed shape of the aircraft for the given flight conditions.  Palacios and Cesnik
5
 

compared displacement-based, strain-based, and geometrically nonlinear beam models and determined that a 

combination of a displacement-based method for the fuselage and tails and a strain-based or geometrically nonlinear 

beam model for the flexible wing provides the best solution.  Shearer and Cesnik
6
 used a representative HALE 

aircraft model to show that a rigidized aircraft model is not sufficient to capture the flight dynamics of VFA.  

Furthermore, they established that a linearized model is sufficient for simple, symmetric maneuvers, but a full 

nonlinear model is needed for more complex maneuvers. 
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 There has been little research in the sensitivity of VFA gust response to variations in aircraft parameters.  

Layton
7
 studied the effect of varying structural and geometric properties on the gust response of a finite span wing.  

He found that increasing the bending-to-torsional stiffness ratio increases the root mean square (RMS) of the pitch 

angle.  There is a much larger body of work on control of VFA in the presence of gust.  The authors of Ref. [8] 

showed that an LQG controller can be used effectively to reduce the gust response of a small VFA model and that a 

reference governor can be augmented to enforce hard limits on the wing curvature while tracking a pitch angle 

command.  Gibson, Annaswamy, and Lavretsky
9
 demonstrated that an adaptive LQG/LTR controller performed 

better than a linear LGQ/LTR for stabilizing a VFA undergoing large dihedral excursions. 

 This paper presents a study of the sensitivity of a VFA aircraft model to the variations in structural stiffness 

parameters.  Various open loop and closed loop gust response metrics are compared, and stability and controllability 

properties of the different models are examined.  The results are presented as a function of various frequency ratios, 

as well as a function of the frequencies themselves.  

II. Background 

 

In this section, we review the gust and aircraft modeling fundamentals, as well as the control concepts which are 

subsequently used in our analysis. 

A. Gust Modeling 

 

There are multiple approaches to modeling wind gust for simulation purposes.  The two most popular approaches 

are based on discrete or stochastic methods.  In the stochastic models, such as the von Karman model and the 

Dryden model, the gust is represented as a stationary, random, Gaussian process.  The power spectral density of the 

gust is then determined based on turbulence field properties, such as the turbulence scale and RMS gust velocity.
10

  

The discrete gust method assumes the gust field exhibits a one-minus-cosine distribution.  For example, the Federal 

Aviation Regulations (FAR) Part 23
11

 uses a discrete model given by: 

 

  
   

 
        

   

   
   

(1) 

 

where U is the gust velocity, s is the distance penetrated into the gust, C is the mean geometric chord and Ude is the 

derived gust velocity which varies from 38 to 66 ft/s, depending on altitude, aircraft category and air roughness.
11

  

The Defense Advanced Research Project Agency (DARPA) defined a discrete, non-uniform spanwise gust model 

for use on the Vulture II program.
12

  The model is based on a one-minus-cosine distribution with a sinusoidal 

spanwise variation, and considers vertical gust velocity only.  The single-amplitude gust velocity is given by: 

 

    
   

 
 
 

  
 

 
  

 
(2) 

 

where b is the aircraft span, and L is the characteristic length of reference gust from von Karman PSD model.  The 

placement of the spanwise distribution is determined in such a way as to cause the largest spar root bending 

moment.
12

  

B. Aircraft Modeling 

 

The aircraft is modeled using the University of Michigan Nonlinear Aeroelastic Simulation and Toolbox 

(UM/NAST).  UM/NAST implements a strain-based elastic formulation and is capable of simulating rigid body, 

linearized and nonlinear aircraft dynamics.
13

 The unsteady aerodynamic forces are calculated using the finite state 

inflow method developed by Peters and Johnson.
14

 

A strain-based formulation of the nonlinear equations of motion for flexible aircraft based upon the principle of 

virtual work used in this study is given by:
6
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(3) 

 

where   is the generalized mass matrix,   is the structural damping matrix,   is the stiffness matrix,   represents 

the generalized forces, the subscript F denotes flexible terms, the subscript B denotes terms in the body-fixed 

coordinate system,   is the strain vector containing the four strain elements (extensional strain, twist of the beam 

reference line, and bending about the y and z axis),   is the rigid body velocity vector containing three translational 

and three rotational velocities, ζ represents the four quaternions,   is a position vector for the body,     is a 

translation matrix for the body fixed coordinate system to the inertial system. The last equation calculates the 

unsteady aerodynamic forces and moments. 

In this formulation two coordinate systems are used which are shown in Figure 1.  The global, or G, frame is an 

inertial frame fixed to the ground.  The rigid body velocities are calculated using the body, or B, frame centered at 

the origin.  Note that the origin is an arbitrarily defined point on the body and is, in general, not at the center of 

gravity.
1
 The positive x-axis of the B frame points out the right wing, the positive y-axis is in the direction of 

forward flight and the positive z-axis is in the up direction.   

 

 
 

Figure 1. Coordinate systems used. 

C. Stability and Controllability 

 

 We use standard notations and criteria for stability. The equilibrium point, xe, of the system show in Eq. (4) is 

said to be stable in the sense of Lyapunov (ISL) if the following holds: for all ε > 0, there exists a δ > 0, such that 

        < δ implies that           < ε for all t ≥ 0.  If an equilibrium point is stable and additionally 

                = 0, then it is said to be asymptotically stable.
15

 This means that if a trajectory starts close to a 

stable equilibrium point, it will stay close.  Alternatively, if a trajectory starts close to an asymptotically stable 

equilibrium point, it will not only stay close to the equilibrium point, but as time goes to infinity it will approach that 

point. Consider a linear, time invariant system of the form: 

 

          
        (4) 
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where x is the state vector and u is the control input.  Then the equilibrium is stable if, and only if, all eigenvalues of 

A have non-positive real parts and that all zero eigenvalues possess a full set of eigenvectors.  The equilibrium point 

is asymptotically stable if, and only if, all eigenvalues of A have strictly negative real parts.
15

 

 The states of the system in Eq. (4) are said to be controllable if there exists a control, u, such that an arbitrary 

final state can be achieved for an arbitrary initial state over a given time interval.
16

 The system in Eq. (4) is said to 

be completely controllable if all the states are controllable.  One test for controllability is that: 

 

                 
 

 

 
(5) 

 

where the greater than sign signifies positive definiteness, the superscript T indicates the matrix transpose and W is 

the controllability gramian.  Many texts present the condition in Eq. (5) slightly differently, stating that W must be 

non-singular.  The two conditions are equivalent because the gramian is always positive semi definite, therefore if W 

is positive definite that implies that W is nonsingular.
17

 In many cases, the full state vector, x, is not available for 

control, but rather only a smaller set of outputs is available.  Therefore, the notion of output controllability can be 

useful.  Similar to the definition of state controllability, an output is controllable if there exists a control such that an 

arbitrary final output can be achieved from an initial output at the origin in finite time.  A test for output 

controllability is that the output controllability gramian defined as              is positive definite. 

 One way of determining the relative controllability of a system is to calculate the minimum control effort 

required to drive a system from the origin to a specified final state, xf.  The minimum control effort, assuming free 

arrival time, can be found using the following relation:
18

 

   

    
       (6) 

 

 If one is interested in driving the system from a zero output to a final output yf, the output control effort can be 

defined as: 

          
        

     (7) 

 

which is a useful measure of relative controllability in situations when states lose their physical meaning (e.g. after 

model reduction or through system identification).   

D. Linear Quadratic Gaussian Control 

 

The Linear Quadratic Gaussian (LQG) controller is a broadly accepted method of aircraft control.  The LQG 

allows the designer to trade off regulation performance and control effort, while taking into account process and 

measurement noise.
19

  The LQG is essentially the combination of a Kalman filter for optimal estimation and a 

Linear Quadratic Regulator (LQR) providing optimal control.  The use of the Kalman filter allows for the estimation 

of the full state vector, based on the outputs, to be fed into the LQR.  The separation principle allows the Kalman 

filter and the LQR to be designed independently. A block diagram for a typical LQG controller is shown in Figure 2, 

where w is the disturbance signal, y is the vector of the measured outputs, u is the control signal generated by the 

LQR, and    is the state estimate produced by the Kalman filter.  Refer to Ref. [8] for further details on LQG 

controller design and tuning. 
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Figure 2. Generic closed loop block diagram, with LQG block represented by dotted block. 

 

III. Numerical Studies 

A.  VFA Model 

 

The baseline VFA model used in this study is based on the work by Patil and Hodges
20

 and by Su and Cesnik.
1
 

Figure 3 shows the geometry of the flying wing model.  The aircraft has a rectangular planform with a chord 0f 

2.44m and a span of 72.8m, with the outboard one-third of the semi-span having a dihedral of 10°.  The aircraft has 

five motors mounted at even intervals across the portion of the wing with no dihedral.  Additionally, the model has 

three pods.  The two side pods have a mass of 22.7kg each and the center pod has a mass of 27.23kg and can also 

carry a payload ranging from 0kg to 227kg.   

 
 

Figure 3. Aircraft Geometry.
1
 

 

The aircraft is then trimmed for level flight at sea level at 12.2m/s.  The trim shape is very sensitive to the 

payload of the center pod.  Figure 4 shows a comparison of trim shapes versus the undeformed shape for two 

different center pod payloads.  The trimmed shape as well as the deformed wing shape of the 0kg payload is shown 

on the left.  The trim shape is virtually identical to the undeformed shape because the aircraft is span loaded.  

Conversely, on the right the trimmed shape for the 227kg payload is shown with the undeformed shape.  There is a 

significant difference between both the trimmed shape and the undeformed shape, as well as between the trimmed 

shapes of the 0kg and the 227kg payloads, even thought the flight conditions and wing material properties are 

identical.  
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Figure 4. Comparison of trimmed shape for 0kg (left) and 227kg (right) center pod payloads.  Undeformed 

geometry is shown in black mesh and trimmed shape is solid color (virtually identical for 0kg payload case). 

 

The stability of the phugoid mode is also dependent on the trimmed shape, and therefore on the payload as well.  

The stability was examined by linearizing the nonlinear equations of motion about the trimmed state.  This was done 

for varying payloads ranging from 0kg to 227kg.  A plot of the phugoid mode poles while varying the center pod 

payload is shown in Figure 5.  As seen in Figure 5, the plot crosses the imaginary axis, and therefore the aircraft 

dynamics become unstable, at a payload between 140kg and 150kg.  For the study of the effects of gust, a payload 

of 140kg was chosen because, although is close to the stability boundary, the aircraft is still statically stable.   

 
 

Figure 5.  Plot of phugoid mode poles varying center pod payload from 0kg (square) to 227kg (triangle) with 

140kg shown by the diamond symbol. 

 

The gust model chosen for this paper is based on the DARPA model described above.  The gust amplitude at the 

center of the aircraft is determined by: 
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(8) 

 

 

where Uref  is the reference gust velocity, t, is the current time and tg is the gust velocity.  Once the derived gust 

velocity Ude is determined from Eq. (8), the single amplitude gust velocity is calculated using Eq. (2).  The gust is 

applied at 111 nodes along the aircraft wing in UM/NAST model.  The gust applied at the i-th node is given by: 

 

 

                
  

  
  (9) 

 

where xi is the x-coordinate of node   .  Figure 6 shows a gust distribution for a 2-s duration gust, with a reference 

gust velocity of 10m/s.  

 

 

 
 

Figure 6.  DARPA gust profile. 

 

In order to determine the gust response sensitivity to variations in stiffness properties, the bending, torsional and 

in-plane bending stiffness values are varied as shown in Table 1.  Variations in the extensional stiffness were 

observed to have virtually no effect on the response, so it was not varied in this study.  Originally, the variation was 

intended to be plus and minus one order of magnitude, but it was found that a limiting stiffness value existed, below 

which the model was simply too flexible to determine an accurate trim solution. 
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Table 1. VFA Model Properties 

Parameter Baseline value Variation 

Elastic axis 25% chord 
 

Center of gravity 25% chord  

 Stiffness properties  

Bending stiffness 1.03 X 10
6
 N·m

2
 5 X 10

5
 – 9 X 10

6
 N·m

2
 

Torsional stiffness 1.65 X 10
5
 N·m

2
 3 X 10

4
 – 7 X 10

5
 N·m

2
 

In-plane bending stiffness 1.24 X 10
7
 N·m

2
 1 X 10

6
 – 7 X 10

7
 N·m

2
 

 Inertia properties  

Mass per unit length 8.93 kg/m  

Bending mass moment of inertia 0.69 kg·m  

Torsional mass moment of inertia 4.15 kg·m  

In-plane bending mass moment of inertia 3.46 kg·m  

 

 

The effects of parameter variations were first examined by creating plots of the phugoid mode poles, which are 

shown in Figure 7.  In each case, all parameters are kept constant at the baseline value with the exception of the 

parameter being examined, and 140kg is used for the center pod payload.  As Figure 7 demonstrates, the stability of 

the phugoid mode is dependent on the values chosen for the torsional and bending stiffness.  Both of these 

parameters have a limiting value, above which the phugoid mode becomes unstable.  Interestingly, the phugoid 

mode shows the opposite trend when the in-plane bending stiffness is varied.  As the stiffness is lowered, the 

phugoid mode damping becomes more negative, indicating the mode is becoming “more stable.”  
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Figure 7.  Plot of phugoid mode poles varying stiffness parameters (torsional – top left, bending – top right, in-

plane bending – bottom) from lower bound (red triangle) to upper bound (green square) to rigid (black diamond). 

 

After the upper and lower bounds were chosen, a method was needed to determine how to optimally space out 

the twelve simulation cases on the three-dimensional sample space.  Latin Hypercube Sampling (LHS) was chosen 

to maximize the minimum distance between any two points.  A matrix of points ranging from zero to one was 

created by using the MATLAB command “lhsdesign” and running one million simulations.  In each case, MATLAB 

creates a distribution within the sample space, and then after all cases have been run it outputs the case in which the 

minimum distance between any two points has been maximized.  The simulation cases were then generated by 

multiplying this matrix by the upper and lower bounds, giving the simulation parameters to be used for each case, 

which are shown in Table 2.  The phugoid mode for all cases, with the exception of Model 5, is asymptotically 

stable, with frequencies ranging from 0.325 to 0.383 rad/s.  

 

Table 2.  Simulation model’s stiffness parameters. 

                                          Bending Stiffness (N·m
2
)    

Model Bending  Torsional  In-plane  

Base 1.03 X 10
6
 1.65 X 10

5
 1.24 X 10

7
 

1 6.93 X 10
6
 1.73 X 10

5
 1.80 X 10

7
 

2 2.08 X 10
6
 5.11 X 10

5
 2.69 X 10

7
 

3 4.79 X 10
6
 0.78 X 10

5
 4.51 X 10

7
 

4 4.35 X 10
6
 3.60 X 10

5
 6.91 X 10

7
 

5 0.74 X 10
6
 1.14 X 10

5
 3.08 X 10

7
 

6 3.03 X 10
6
 2.36 X 10

5
 0.77 X 10

7
 

7 5.82 X 10
6
 4.58 X 10

5
 1.09 X 10

7
 

8 7.32 X 10
6
 6.18 X 10

5
 3.73 X 10

7
 

9 8.96 X 10
6
 4.11 X 10

5
 5.95 X 10

7
 

10 3.11 X 10
6
 6.68 X 10

5
 5.38 X 10

7
 

11 1.01 X 10
6
 3.00 X 10

5
 6.00 X 10

7
 

12 1.20 X 10
6
 6.01 X 10

5
 1.50 X 10

7
 

 

E. Open Loop Gust Response  

 

The gust response of the baseline model was simulated in UM/NAST using the DARPA gust model varying the 

gust duration and amplitude, starting from the initial trimmed flight at sea level and velocity of 12.2m/s.  Figure 8 

shows the baseline response to gust durations of 2-s, 4-s and 8-s, with a reference gust velocity of 10m/s.  Even with 

a reference gust velocity of 10m/s, the maximum gust amplitude is roughly 1.8m/s which is much lower than the 

certification values found in FAR 23.
11 

The maximum value in FAR 23 corresponds to approximately 20m/s. The 

four outputs used in this study are the forward speed, altitude, pitch angle, and curvature about the y-axis at the 

center of the wing, representing where the wing root would be on a conventional aircraft design, which gives a 

measure of the shape of the wing.  Figure 8 shows that as the aircraft encounters a gust of equal amplitude, but 

longer duration, the response has higher amplitude excursions for all four outputs tracked, with all being 

asymptotically stable.  The duration of the turbulence can be an important factor.  In fact, the turbulence that caused 

the Helios mishap was within limits, but the aircraft was in the turbulence field for longer than on previous flights 

due to a shallower than normal climb out.
2
  As the gust duration increases, the root curvature remains at a higher 

value for a longer period of time and takes significantly longer to return to the equilibrium value.  Additionally, the 

aircraft reaches a new equilibrium state for altitude, with the longer duration gusts causing a larger drop in altitude.  
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Figure 8. Gust response of baseline model to gust durations of 2-s, 4-s and 8-s with 10m/s reference velocity.  

 

Next, the baseline model was subjected to larger reference gust velocities of 10, 20, 30 and 40m/s with gust 

duration of 2-s.  Figure 9 shows that the larger gust amplitudes cause larger aircraft responses.  Additionally, the 

plots show that the gust response is nonlinear.  If the system were linear, one would expect the output to scale to the 

input.  For example, the aircraft response to the 20m/s gust would be double that of the 10m/s response.  This trend 

does not show up in these plots.  The 20 and 30m/s responses of maximum speed deviation and root curvature 

roughly scale up linearly, but the 40m/s response does not scale up linearly for any of the four outputs.  The speed, 

curvature and pitch plots show that the 40m/s response is less than the four times the amplification expected in a 

linear system and are respectively 3.55, 3.67 and 2.91 times the 10m/s plots.  The altitude plots show the opposite 

trend with the nonlinear responses higher than one would expect in a linear system.  The 20, 30 and 40m/s responses 

are respectively 2.40, 3.86 and 5.06 times the 10m/s response.  Even though the gust disturbances are large, the 

aircraft states do not leave the domain of attraction of the stable equilibrium, and after the gust has receded, the 

states converge to the equilibrium. 
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Figure 9. Gust response of baseline model to reference velocities of 10, 20, 30 and 40m/s with 2s gust duration.  

 

In an effort to determine the effect of varying the stiffness parameters, and therefore the flexible mode 

frequencies, various open loop gust response metrics are determined as a function of the flexible mode frequencies. 

Since the phugoid mode frequency is also changing as the stiffness parameters are varied, the gust response metrics 

are also plotted as a function of the frequency ratios.  Linear fits are presented on all plots in order to help determine 

any trends that are present in the data.  In all cases, the gust used has a 10m/s reference velocity and gust durations 

of 2-s, 4-s and 8-s. 

The maximum pitch angle of the aircraft during the gust encounter, as well as the trim pitch angle for the aircraft 

in still air are shown in Figure 10.  The data show that as the phugoid-to-1
st
 bending ratio, phugoid-to-1

st
 in-plane 

bending ratio and 1
st
 torsion-to-1

st
 in-plane bending frequency ratios increase, the maximum pitch angle decreases. 

One property of VFA is that they have a phugoid-to-1
st
 bending frequency ratio near or above one.  This indicates 

that there is a frequency overlap, and therefore likely a coupling between the rigid body and flexible modes.   

Additionally, as the 1
st
 bending and 1

st
 in-plane bending frequencies increase, the maximum pitch angle decreases.  

Combining these, it is clear that as the aircraft becomes more flexible, thus causing a higher frequency ratio and a 

lower frequency of the flexible modes, the maximum pitch angle decreases.  These results can be rationalized by 

noting that as the aircraft becomes more flexible, more of the gust energy goes into the flexible modes and less 

energy is converted to rigid body pitch angle changes.   Also, the data show that increasing the 1
st
 torsion to 1

st
 in-

plane bending frequency ratio causes a decrease in maximum pitch angle.  It should also be noted that other 

frequencies and frequency ratios, such as phugoid-to-1
st
 torsion ratio, 1

st
 bending-to-1

st
 in-plane bending ration and 

1
st
 torsional frequency were also examined, but the data were scattered and showed no real trend.   
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Figure 10. Maximum pitch angle. 

 

The maximum root curvature of the wing resulting from the gust encounter was then examined.  The data tends 

to be more scattered than the maximum pitch angle and most plots showed no discernible trends.  The two 

exceptions are the maximum root curvature versus phugoid-to-1
st
 bending frequency ratio and the maximum root 

curvature versus 1
st
 bending frequency plots which are shown in Figure 11.  The plots show that as the wing 

becomes more flexible in the bending direction, a higher root curvature is observed.  This trend can also be seen in 

the trimmed values, with the more flexible models having a higher trim curvature.  These observations are in direct 

conflict with the maximum pitch angle results.  It is reasonable to believe that aircraft designers, for most 

applications, would be more concerned with minimizing wing curvatures and therefore, in the absence of any 

additional information, would tend to choose the less flexible models and accept the penalty of a larger maximum 
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pitch angle in the presence of gust. Note that at high altitudes pitch deviations may present less of a safety of flight 

risk than large deformations of the wings. 

    
Figure 11. Maximum root curvature.  

 

To further illustrate the reciprocal relationship between the maximum pitch angle and the maximum curvature of 

the aircraft models in a gust field, the maximum pitch angle is plotted versus the maximum curvature in Figure 12.  

It is evident in the plot that a higher maximum pitch angle is obtained in the models with the lowest curvature value. 

Note the wide range of trimmed curvatures, indicating a significant difference in the trimmed shape of the aircraft 

while the trimmed pitch angle stays relatively constant. 

  
Figure 12. Maximum wing curvature versus maximum pitch angle. 

F. Closed Loop Gust Response 

 

During the flight the aircraft will be under closed-loop control, therefore the closed-loop characteristics and 

responses to gust are now examined.  In order to investigate various closed loop performance metrics, 20
th

-order 

linear models were obtained from the nonlinear simulations using system identification.  The linear models are 

extracted using the MATLAB system identification toolbox applied to data obtained from simulations of 

UM/NAST.  In all cases the gust inputs used were the same as used in Figure 8 for the baseline model as well as 3 

50-s sine sweeps with beginning frequencies ranging from 0.05-0.11Hz and final frequencies ranging from 0.06-

0.39Hz.  The elevator and aileron models were identified using doublets with periods of 1-s and 5-s.  The models 

have three control inputs:  the elevators constrained to move together, as well as the two ailerons which are free to 

move independently of each other. The decision was made to use a 20
th

 order model as a tradeoff between nonlinear 

model matching and the desire to obtain the lowest order linear model possible.  For all the aircraft models, which 

correspond to different stiffness values, several different state space models are created with the best linear model 

chosen for each to match the nonlinear solution with the means removed from the data. At first, there was some 

difficulty matching the curvature data, due to their relatively small values compared to the other outputs.  To address 
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this, the curvature outputs are multiplied by 100, which puts their value close to unity, the identification performed, 

and then the bias removed from the resulting C-matrix.  A comparison of the nonlinear and linear models for the 

baseline aircraft are shown in Figure 13. 

 

    
Figure 13. Comparison between linear (blue) and nonlinear (red-dashed) data for baseline case subjected to 

10m/s gust reference velocity and 8s duration. 

 

 The output control effort was calculated based on Eq. (7) to drive the system from an initial pitch angle of 0° to 

a final output of 10°.  The data, excluding points for Model 1 from Table 2 because it was a significant outlier, are 

normalized to the largest output control effort and are plotted in Figure 14. Despite the scatter in the data, several 

trends can be observed.  Specifically, the output control effort increases as the bending stiffness decreases.  This is 

reasonable given that more of the energy fed into the system is absorbed by the flexible modes as the stiffness 

decreases.  Additionally, the data show that the output control effort is proportional to the phugoid-to-1
st
 in-plane 

bending frequency ratio and decreases with an increase in the 1
st
 bending-to-1

st
 torsion frequency ratio. 
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   Figure 14. Output control effort required from pitch angle of 0° to 10°. 

 

The closed-loop response to a 2° pitch step input command in the presence of a 2-s duration gust was then 

calculated using linearized models and an LQG controller. The LQG controller was designed with an integrator 

added on pitch angle.  State cost is applied to all outputs, with the cost of the pitch angle half the cost of the other 

outputs. The controller gains are first tuned to minimize the overshoot and settling time of the pitch angle response 

based on the baseline model simulations.  Once acceptable performance was obtained for the baseline model, based 

on Ref [20], separate LQG controllers are designed for other models in Table 2 using the same state and control 

weights as for the baseline model.  The time history for the models with the highest and lowest overshoot is shown 

in Figure 15.  When the simulations are run without the gust present, all the models match the command almost 

exactly, although some are over-damped. Additionally, for all of the controllers used in this study, no actuator 

dynamics are included and no limits imposed on the deflection of the control surfaces.  These additional factors will 

be examined in a later paper.  

 

  
Figure 15. Time plots for lowest (blue) and highest (black dash-dot) overshoot to 2° step command (red dash) in 

presence of 2-s duration gust. 

 

  The first parameter examined is the maximum overshoot, seen in Figure 16.  There are several trends apparent 

in the linear fits of the data, although the data are fairly scattered. The plots show the least amount of overshoot as 

the models become more flexible in bending and stiffer in torsion and in-plane bending, respectively.  The plots also 

show good performance by all the models, with the maximum overshoot at roughly 15% of the command. 
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Figure 16. Maximum overshoot in pitch angle to a 2° pitch command using LQG control. 

 

Next, the settling time was calculated for all the models in response to the same 2° pitch angle step command 

and the results are shown in Figure 17.  The settling time is based on the response entering, and staying within 2% of 

the step command.  The settling time decreases as the ratio of the phugoid to all three frequency ratios increases.  

Additionally, the settling time increases with the 1
st
 bending frequency.  These results show that the more flexible 

the aircraft, the longer the settling time. 

     

      
 

Figure 17. Settling time of pitch angle response to a 2° pitch command using LQG control. 
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We have also investigated the ability of the controller to regulate pitch command to 0° in the presence of a 2-s 

duration gust.  This gives a measure of how well an LQG controller can hold the aircraft flying straight and level 

while encountering gust.  The resulting plots of maximum pitch angle excursion are shown in Figure 18.  The plots 

are similar to those in Figure 16, with the same trends showing up in the plots.   

 

        
 

Figure 18. Maximum overshoot to a 0° pitch command using LQG control. 

 

Additionally, the settling time for the models using an LQG controller to follow a 0° pitch command while 

encountering a 2-s duration gust is shown in Figure 19.  The settling time is defined as the time when the pitch angle 

enters and remains in the bound of plus/minus 0.01°.  The plots confirm similar trends to those  in Figure 17.  The 

first three plots show that as the ratio of the phugoid to flexible frequencies increase, indicating the aircraft is stiffer, 

the settling time decreases.   
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Figure 19. Settling time to a 0° pitch command using LQG control. 

 

Finally, we compare the open loop gust response of the linearized models to the response of the closed loop 

system with a 0° pitch angle command and in the presence of gust.  An additional integrator on root curvature is 

added to the LQG to more effectively reduce the maximum root curvature caused by the gust, and the state 

weighting for the pitch angle and root curvature is reversed from the previous controller.  The maximum root 

curvature of the open loop linearized system was compared to the maximum curvature of the closed loop system 

with integrator added to pitch angle only, denoted as controller 1, and closed loop system with integrators on both 

root curvature and pitch angle, denoted as controller 2, with a 0° pitch command, with gust durations of 2-s, 4-s and 

8-s. The additional integrator is needed in controller 2 because in some cases, controller 1 produced a root curvature 

much larger than the open loop system.  Figure 20 illustrates this point by showing the open loop as well as closed 

loop with both controller 1 and controller 2 for Model 5 in a 2-s gust. While controller 2 performs better at reducing 

the root curvature, there is a small increase in maximum pitch angle over controller 1 values.  The maximum 

curvature is reduced from the linearized, open loop system by 12% for the 2-s duration, 29% for the 4-s duration and 

61% for the 8-s duration using controller 2.  This controller performs better at reducing the curvature for the longer 

duration gusts because the gust onset is slower for these longer duration gusts.   

 

   
Figure 20. Comparison of open and closed loop performance with controllers 1 and 2 of Model 5 with 2-s durations 

gust. 

 

 Controller 2 was then used to assess the abilities of the aircraft to follow the 2° pitch step command.  Overall, the 

models show a much higher overshoot than using controller 1, but are significantly more effective at reducing the 

root curvatures.  Figure 21 shows the response of Model 5 to the 2° pitch command in the presence of the 2-s gust.  

In this example, the maximum curvature is reduced by roughly a factor of 10, while the maximum overshoot is 3 

times higher. 
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Figure 21.  Comparison of root curvature and pitch angle response to a 2° pitch step command using controllers 1 

and 2 in the presence of a 2-s duration gust. 

IV. Concluding Remarks 

 

The gust response of VFA is a very important area of study.  As was the case with Helios, gusts can cause 

significant perturbations to aircraft dynamics leading to instability.  Through the use of a representative baseline 

VFA model, response to varying amplitudes and durations of gust was studied.  The response of the baseline aircraft 

to gusts of differing amplitudes was found to be nonlinear.  Specifically, the pitch angle, speed and curvature 

excursions were less than one would expect scaling up the 10m/s response linearly, while the altitude was more than 

expected based on linear scaling.  It was also shown that the longer the aircraft is in the gust field, the larger is the 

response, even while the gust amplitude is held constant. 

The bending, in-plane bending and torsional stiffness were then varied to determine the sensitivity to parameter 

variation of gust response.  Twelve models, in addition to the baseline model, were simulated encountering a gust 

field with reference amplitude of 10m/s and gust durations of 2-s, 4-s and 8-s.  The response was then examined as a 

function of various frequency ratios and the frequencies themselves.  The maximum pitch angle excursion was 

found to decrease with the increase in both the bending and in-plane bending frequencies and increase 

proportionally to the ratio of the phugoid frequency to these two frequencies.  Additionally the maximum pitch 

angle excursion during a gust encounter was found to be highly dependent on the ratio of the 1
st
 torsion-to-1

st
 in-

plane bending frequency.  The maximum root curvature was found to be a function of the 1
st
 bending frequency as 

well as the ratio of the phugoid-to-1
st
 bending frequency.  The trends for the maximum curvature were the exact 

opposite of those for maximum pitch angle.   

Finally, the output controllability and closed loop responses of 20
th

-order linearized models derived using system 

identification were investigated.  The output control effort required to drive the systems from a pitch angle of 0° to a 

final pitch angle of 10° was found to be a function of the bending and in-plane bending frequencies as well as the 1
st
 

torsion to 1
st
 bending frequency ratio.  In general stiffer models, as well as those with smaller bending to torsion 

ratios, were found to require lower output control efforts, indicating they may be easier to control.    The maximum 

overshoot and settling time in response to a 2° pitch angle step command in the presence of gust using an LQG 

controller was calculated.  The overshoot was found to be a proportional to the 1
st
 bending-to-1

st
 torsion and 1

st
 

bending-to-1
st
 in-plane bending frequency ratios.  The settling time plots show that the more flexible the models are, 

the longer the settling time.  The models were then given a 0° pitch angle command while encountering the gust to 

determine their ability to maintain level flight.  The results for maximum pitch deviation and settling time are very 

similar to the 2° step case with the exception of the 1
st
 torsional frequency, which does not seem to play a role.  

While the original controller performed well at regulating pitch angle, it did a poor job at minimizing root curvature 

values.  An additional integrator was added on root curvature, which reduced root curvature values due gust by up to 

61% when compared to the open loop linearized model.  This new controller then demonstrated excellent root 

curvature reduction and adequate pitch control when tracking a 2° pitch angle step command. 

Overall, with the exception of open loop pitch angle performance, the stiffer models perform better both in open 

and closed loop, but when dealing with VFA designing a stiffer airplane in bending is not an option.  However, this 

study shows there may be other options involving the torsional and in-plane bending stiffness that are available to 
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the designer to improve performance.  Additionally other trends may warrant further investigation.  For example, the 

open loop pitch angle response seems to be very dependent on the ratio of the 1
st
 torsion-to-1

st
 in-plane bending 

frequencies.  Overall, the in-plane bending frequency variation plays a large role in response.  
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