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The  traditional  point-based  design  process  is  highly  iterative  and  can  be  inefficient, 
particularly for for multidisciplinary problems. Set-based design constitutes a design space 
reduction process  that  offers  improvements  over  the  point-based approach.  In  set-based 
design, designers begin with a broad set of values for the design variables, then gradually 
narrow the sets as more information becomes available. The principles of set-based design 
are reflected in the development of a new multidisciplinary design optimization algorithm. 
The algorithm returns the optimal choice for the reduced design space, instead of a single 
specific  value  for  each  design  variable.  The  new  multidisciplinary  design  optimization 
algorithm  inspired  by  set-based  design  was  used  in  a  multidisciplinary  ship  design 
application.

I. Introduction
HE conventional  design  approach  is  point-based  and  iterative.  Designers  begin  by  selecting  a  variety  of 
possible solutions, then choosing one to investigate further. The single design is  evaluated and modified as 

necessary, then re-evaluated and changed again, in an iterative process which continues until a satisfactory design 
has been found. This process can be inefficient because new designs must continually be evaluated. The problem 
becomes more complex for multidisciplinary problems, with multiple likely-conflicting discipline analyses, where 
different disciplines may even be the responsibility of different teams of engineers.  

T

Set-based design is a design methodology that seeks to offer improvements over the traditional point-based 
design approach. Set-based design was popularized in a series of articles1-3 discussing Toyota's success with set-
based design practices.  The fundamental idea behind set-based design is to utilize sets of values for the design 
variables so that engineers communicate about the design in terms of those sets, instead of points. Singer, Doerry, 
and Buckley4 outline the following four features of set-based design:

1. Initially define a broad set of values for the design parameters.
2. Delay narrowing the sets to increase the amount of information available when making decisions. 
3. Narrow the sets gradually as the design is improved.
4. Increase the design fidelity as the sets are narrowed. 

In set-based design, engineers from different areas of the design (or disciplines) determine sets of feasible values 
for  their  own analysis,  possibly  also  including  preference  information.  Engineers  share  the  set  information  to 
determine areas of feasible overlap, then gradually reduce the sets to focus on the feasible region.

In this paper, three advantages of set-based design are considered: (1) communicating with sets leads to less 
rework than point-based design, (2) delaying decisions means that decisions are better-informed, (3) working with 
sets and delaying decisions allows for better to handling of uncertainty during the design process.

The first advantage of set-based design is that it can reduce the amount of rework required in the design process. 
In point-based design, changes are made to the (single) design of interest when moving from one iteration to the 
next. It is unlikely that properties of the new design are the same as the previous iterations so the analyses for the 
design must be performed again with the new design characteristics. Therefore, a clear disadvantage of point-based 
design the constant rework and re-analysis2. In set-based design, engineers work with sets of values for the design 
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variables, and the sets are gradually narrowed as work progresses. Because the sets are being narrowed, no new 
designs are added to the design space1, and the previous analysis performed on the larger set is still valuable for the 
reduced set. 

The second advantage of set-based design is that design decisions are more informed because the decisions are 
delayed.  The  amount  of  information  about  a  design  increases  with  time,  as  more analyses  are  performed and 
requirements become more clear.  Therefore, when design decisions are made early in the design process, there is 
less information available on which to base the decisions. This may lead to increased iterations with point-based 
design because it is highly unlikely that the first few iterations will be based on accurate information. One of the 
principles of set-based design is to delay decisions until more information is available, because designers are much 
more likely to make a good decision when they have more information3. 

Not only does utilizing sets and delaying decisions improve decision-making, but it also improves the process' 
response to uncertainty.  By using sets of  values for the design variables,  the design maintains flexibility  in an 
uncertain environment3. The advantage over the point-based method is expressed concisely by Lee5: “... designers 
can represent sets of design possibilities instead of guessing one design if there are uncertainties.” With set-based 
design, small changes due to uncertainty do not necessarily push the design into an unfeasible region or require 
rework.

A relatively small number of analytical formulations for set-based design have become available in the literature. 
Wang and Terpenny6 developed an evolutionary design synthesis procedure that handles populations of designs with 
the principles of genetic algorithms. The method utilizes fuzzy set theory to handle modeling inaccuracies, and 
principles of set-based design are included in the evolutionary procedure for generating and selecting designs.

Nahm and Ishikawa7 developed a set-based design method which uses interval arithmetic to map from the design 
space to the performance space. The authors created an aggregated preference and robustness index that measures 
the designer's preference, and that includes robustness for handling uncertainty in the preference metrics. Shahan 
and Seepersad8 developed a set-based design technique where Bayesian networks are used indicate the regions of 
interest in the design space for each discipline, and the networks are shared to communicate information about the 
design. 

Madhavan  et  al.9 developed  a  set-based  design  method  where  a  compromise  decision  support  problem  (a 
mathematical model for multiobjective decision-making) is developed for each discipline. The disciplines calculate 
and share target values for coupled parameters, then the disciplines use the target values to generate Pareto optimal 
solutions.  Malak,  Aughenbaugh,  and  Paredis10 developed  an  approach  for  conceptual  design  that  handles 
imprecision, or the lack of specific knowledge for the design. The authors implemented features from multi-attribute 
utility theoryand set-based design. 

Finally, Avigad and Moshaiov11 developed a computational approach for multiobjective problems to incorporate 
the set-based design concept of intentionally delaying decisions about the design. The authors utilized a tree 
representation of the design space, where different branches represent different possible decisions, and the trees are 
pruned as decisions are made. 

In  this  paper,  the  principles  of  set-based  design  are  used  in  the  formulation  of  a  multidisciplinary  design 
optimization (MDO) algorithm which studies the design variables in terms of sets. The techniques and advantages of 
set-based design are used to develop a novel MDO algorithm and the mathematical formulation of the new MDO 
algorithm is described. The new set-based design MDO algorithm is applied to a ship design analysis, and results are 
presented to demonstrate the effectiveness of the algorithm. 

A. Problem Definition for Multidisciplinary Design Optimization
To ensure clear and consistent notation, a general MDO problem is defined as follows. Let there be  n design 

variables contained in the vector x, and for each design variable denote the allowable range of values as

xi  [xi,LB, xi,UB]    i = 1, …, n (1)

where the subscripts  LB and UB indicate lower bounds and upper bounds, respectively. The space defined by the 
bounds on the design variables is denoted χ.
 Let there be p disciplines in the MDO problem; each discipline has one objective function that depends on the 
values of the design variables, denoted fi(x), i = 1, …, p. Let there be mi constraints in discipline i contained in the 
vector gi(x). Then the goal of the multidisciplinary design optimization is to solve 
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                     min
x∈χ

f i(x)     i = 1, …, p (2)

subject to    gi(x) ≤ 0

The goal of the MDO algorithm is to solve a problem of the form of Eq. (2). 

II. Multidisciplinary Design Optimization Algorithm
The new MDO algorithm inspired by the principles of set-based design is presented in this section.  The new 

algorithm  allows  for  greater  flexibility  when  dealing  with  evolving  requirements  compared  to  a  single-point 
optimization. The principles of set-based design which are included in the MDO algorithm are identified in the 
following sections and then transformed into mathematical statements for the optimization algorithm. Information is 
also presented from five areas of the algorithm: system design variables, objective function scaling, flexibility in 
constraints, the system optimization statement, and the discipline level optimization statement.

A. System Design Variable Definition
In the MDO problem of Eq. (2), there are n design variables contained in the vector x, and p disciplines with p 

corresponding objective functions fi(x) which are contained in the vector f(x). The vector of constraints gi(x) applies 
to discipline i. The allowable ranges for the design variables are denoted χ; the ranges for the design variables can be 
defined with lower and upper bounds:

xi ∈ [ xi, LB , xi ,UB ]  i = 1, …, n (3)

The range of allowable values for xi can be viewed as the set of values between the lower bound xi,LB and the upper 
bound xi,UB.

As described in the previous section, one of the principles of set-based design is to describe the design variables 
by sets which change while the design progresses. Because the bounds on the design variables change during the 
optimization, the bounds on the design variables at any state are defined as

xi ∈ [ xi,min , x i, min+∆ xi ]  i = 1, …, n (4)

This expression indicates that the new lower bound on xi is xi,min and the new upper bound on xi is xi,min + Δxi, where 
Δxi is the width of the interval for xi. While it may seem simpler to define a maximum for xi, instead of the sum xi,min 

+ Δxi, the purpose of this formulation is to easily track the width of the interval. 
Figure 1 illustrates the change in the bounds on the design variables for a simple case with only two design 

variables. The figure shows the original design space as the 
large outer rectangle, and the new design space is the smaller, 
lightly shaded region. The new design space is defined by the 
dashed  lines  which  indicate  the  new  ranges  on  the  design 
variables. 

The  purpose  of  the  new  MDO  algorithm  is  to  use  the 
principles  of  set-based  design  to  motivate  the  design 
optimization.  This  means  that  the  design  space  is  changed 
through the optimization process; the design space is defined 
using the sets for the design variables defined in Equation (4). 
Therefore,  the choice for the design variables in  the system 
optimization statement are not the design variables  x, but the 
variables which define the sets: xi,min and Δxi. 

Additionally, before beginning the optimization, scaling of 
the design variables is important for accurate performance of 
the optimizer. The system design variables are scaled to take 
values between zero and one, denoted zi,min and Δzi. 

In  summary,  the  system  level  optimization  includes  2n 
design variables:  zi,min and Δzi (i = 1, …, n), or as vectors  zmin 

and Δz; these design variables describe the size and location of 
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Figure 1. Illustration of the reduction in size of 
the design space by changing the ranges of the 
design variables. 

x
1,LB

x
1,UB

x
2,LB

x
2,UB

x
2,min

Δx
2

x
1,min Δx

1

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
A

pr
il 

3,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

2-
54

44
 



the new design space. Furthermore, the system level design variables describe the design space in terms of sets for 
the design variables, which is a fundamental requirement for set-based design.

B. Objective Function Scaling
The MDO problem includes  p objective functions which may have different units of measurement and vastly 

different magnitudes. Additionally, some objective functions may vary greatly throughout the design space, while 
others exhibit less variation. Therefore, in order to include any evaluation and comparison of the different objective 
functions, they must be scaled, or normalized. The objective functions are normalized as12:

Fi (x )=
f i (x )− f i

∗

f i
m− f i

∗ (5)

where Fi is the normalized form of objective function fi.  fi
* is the minimum of fi when considering only discipline i, 

or

f i
∗= f i(xi

∗) = min
x

f i(x) (6)

subject to   gi(x) ≤ 0

fi
m indicates the maximum value of fi, and fi

m can be approximated according to12

f i
m = max

j
f i (x j

∗)     i ≠ j (7)

Typically, the objective functions are conflicting (otherwise the problem is not a true multidisciplinary problem); 
then fi

m is close to the worst performance that may be encountered in objective i.
Equation (5) yields values for the normalized objective function Fi in the range between 0 and approximately 1. 

The discipline optimum xi
* gives the best possible performance for fi, and at that point Fi is 0. The value of Fi can be 

interpreted as an amount of compromise in objective fi; small values of Fi indicate little compromise, while values 
close to 1 indicate that the current point is far from fi

*. 

C. Flexibility in Constraints
When an engineer configures a real design, it may not be preferable (or possible) to select a design that exactly 

satisfies  all  of  the  constraints.  Instead,  it  may  be beneficial  to  relax  a  constraint  if  it  allows for  a  significant 
improvement of the objective function. For example, consider a single-objective optimization problem where the 
objective is to maximize the speed of a vehicle, subject to a constraint for the maximum cost of the vehicle. For a 
real design problem, the designer may be willing to compromise on the cost constraint; if a small violation in the 
cost constraint (say, 1%) allows for a 20% increase in speed, the designer could choose to allow the slightly higher 
cost. One way to handle compromise in the constraints would be to determine the maximum allowable compromise, 
and simply shift the constraint by that amount. However, this does not ensure that the compromise in the constraint 
will correspond to a significant improvement in the objective function. 

A method to handle the compromise in the constraints and the corresponding changes in the objective functions 
is  included in  the system level  optimization  of the  new MDO algorithm.  A new design variable  denoted  ε is 
introduced where each element in ε corresponds to a constraint in the MDO problem:

gj(x) ≤ εj (8)

This expression indicates that the original constraint gj can be violated by as much as εj. However, because εj is a 
design variable, not a constant, the amount by which the constraint can be violated will vary during the optimization. 

Furthermore, it is possible that flexibility is not desired in some constraints. These constraints are denoted hi for 
discipline i and must satisfy

hi(x) ≤ 0 (9)
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D. System Level Optimization Statement
The  purpose  of  the  system  level  optimization  is  to  coordinate  the  discipline  optimizations.  The  system 

optimization problem has 2n + m design variables, zmin, Δz, and ε  (when n is the number of design variables for the 
original problem and m is the total number of constraints with flexibility). The system level optimization statement 
is:

min
zmin ,∆ z ,ε

exp(∆ z1⋅...⋅∆ zn)+∑
j

exp( ε j
ε j , max )+∑

i=1

p

exp (F i(xi
new)) (10)

subject to    gj(xi
new) ≤ εj    for all j and i = 1, … , p

                                hk(xi
new) ≤ 0    for i = 1, … , p and k = 1, … , p

The  first  term  in  the  system  objective  function  describes  the  size  of  the  design  space  (the  hypervolume 
Δz1·...·Δzn).  The first term is used reduce the size of the design space as much as possible, because minimization of  
this term reduces the size of the design space. Therefore, this term implements the principle of set-based design to 
gradually reduce the size of the design space. 

The  second  term in  the  system objective  includes  the  compromise  values  ε.  During  the  optimization,  the 
compromise values allow the constraint  j to be violated by as much as εj. However, the amount of compromise 
should be as little as possible, thus the system objective function minimizes the compromise values. The summation 
over  index  j represents  the  summation  over  all  constraints  which  allow  for  compromise;  this  allows  for  the 
possibility that some constraints cannot be relaxed. 

The third  term includes  the  effects  of  the  discipline objective functions.  The term includes  the  function  Fi 

evaluated at the point xi
new, where xi

new denotes the current value for the design variables returned by the discipline i 
optimization (details of the discipline level optimization are given in the following section). The purpose of the third 
term is to evaluate the current performance of the (normalized) objective functions. Because of the normalization, Fi 

takes values close to zero when xi
new is close to xi

*; therefore, minimization of the sum of Fi seeks to minimize the 
discipline objective functions.

The system objective function is composed of a sum of terms that represent a multiobjective problem (the first 
term describes the size of the design space, the second term describes the constraint flexibility, and the third term 
describes the improvement in the disciplines' objective functions). Objective functions which are stated as a sum of 
other functions sometimes  are not  well-behaved,  because the Pareto front  for  the corresponding multiobjective 
problem is not necessarily convex. In Eq. (10), the system objective function evaluates the exponential of each term. 
The  purpose  of  this  choice  is  to  make  the  Pareto  front  convex13,  which  can  improve  the  performance  of  the 
optimization.

Finally,  the  system  optimization  statement  includes  the  constraints  gj and  hk from  all  disciplines  and  the 
constraints are evaluated at each of the new discipline optima i; that is, every constraint is checked at each discipline 
optimum xi

new. The constraints ensure that all of the new discipline optima are feasible for all disciplines, or that all 
(new) discipline optima lie within the common feasible space. This enforces the concept of set-based design that 
designs must be found in the intersection of  the sets. The solution of the system optimization returns the optimal 
values  zmin

* and  Δz*. The values describe  the reduced design space, not a specific choice for the original design 
variables x. This is in agreement with the set-based design perspective of viewing the design space in terms of sets 
instead of point designs. 

E. Discipline Level Optimization Statement
The purpose of the discipline level optimization statement is to call the discipline analyses and calculate the new 

design point xi
new for each discipline i. At each iteration in the optimization, discipline optimizations are performed, 

but  with  the  bounds  on  the  design  variables  determined  by  the  current  values  of  zmin and  Δz.  The  discipline 
optimization statement is

min
x ∈ χ( zmin ,∆ z)

f i(x ) (11)

subject to   gj(x) ≤ εj   for all j in discipline i

hi(x) ≤ 0
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The difference between this discipline optimization statement and the independent discipline optimization in Eq. 
(6) is the allowable ranges of the design variables, χ. For the discipline level optimization statements, χ is a function 
of the current values of the system design variables zmin and Δz. Therefore, the discipline optimization is performed 
over the reduced design space described by zmin and Δz, so the results for the discipline level optimization will be 
different from the discipline optimization of Eq. (6). 

The discipline level optimization also includes the flexibility in the constraints, ε. The optimization statement of 
Eq. (11) requires that the constraints gj for discipline i are satisfied with the appropriate level of flexibility given by 
the corresponding values of εj. The values for ε are the current values from the system level optimization and they 
will  change  during  the  system  optimization  process.  The  discipline  optimization  statement  also  includes  the 
constraints for discipline i without flexibility, hi.

The discipline level optimization with the new variable bounds  χ(zmin,  Δz) returns  the optimum values for the 
design variable values  xi

new and objective function value  fi(xi
new). The purpose of the discipline optimization is to 

locate the the discipline optimum within the current design space,  defined by the sets at  the system level;  this 
ensures that the algorithm takes into account the discipline optima (or viewed as discipline preference), which is part 
of the set-based design approach. 

III. Ship Multidisciplinary Design Optimization Application
The MDO algorithm using set-based design was applied to a complex ship design problem, using simulation 

software  for  performance  evaluation.  Fortran  codes  were  used  for  conducting  resistance,  maneuvering,  and 
seakeeping computations based on mathematical models from the literature. The results from the set-based design 
MDO algorithm are compared with results from a point-based multiobjective optimization. 

A. Ship MDO Problem Definition
A tanker hull that was readily available from the 

website  of  the  commercial  naval  architecture 
software MaxSurf was selected for this study. The 
design  variables  for  ship  model  are  length  L, 
length-to-beam ratio  L/B,  and  beam-to-draft  ratio 
B/T. Ratios are selected as design variables instead 
of  the  dimensions  (such  as  beam)  because  the 
mathematical models used for the discipline analyses have requirements on the ratios in order to be valid. The lower 
and upper bounds on the design variables ensure that the values for the length, length-to-beam ratio, and beam-to-
draft ratio meet the requirements for the discipline analyses. The allowable ranges for the design variables are given 
in Table 1; the table also includes the values for the parent hull as a reference. 

While it is possible to use MaxSurf's parametric transformation capabilities to generate new hull forms based on 
the values of the design variables, including MaxSurf within the optimization loop was considered infeasible since 
manual operations are required for using the program. Instead, parametric models were developed to evaluate all of 
the  information  necessary  to  run  the  discipline  analysis  codes;  the  following  section  presents  the  parametric 
modeling information. The remainder of the section defines the MDO problem, which includes three disciplines: 
resistance, maneuvering, and seakeeping. 

B. Hull Modeling
The codes for the discipline analyses require a variety of input information that describes the hull form. In order 

to run the discipline analyses, parametric models for the inputs were developed so that the necessary inputs could be 
calculated from the three design variables. 

Several of the discipline analysis codes have requirements on the value for the block coefficient CB, where

CB=
∆

L B T (12)

All disciplines include the block coefficient constraints:

0.56 ≤ CB ≤ 0.87 (13)

American Institute of Aeronautics and Astronautics
6

Table 1.     Ranges for the design variables.

Lower Bound Upper Bound Parent Hull

L (m) 250.0 320.0 315.0

L/B 5.60 8.00 6.20

B/T 2.25 3.75 3.00
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C. Resistance Discipline
The objective function for the resistance discipline is the hull resistance, which is evaluated using the powering 

prediction method of Holtrop and Mennen14-15. The resistance discipline includes the two constraints on the block 
coefficient from Eq. (13). Then the resistance discipline optimization problem is

min
x

RTOTAL (14)

subject to  
0.56−C B≤0
C B−0.87≤0

where RTOTAL denotes the total resistance of the hull, and x is the vector containing the three design variables L, L/B, 
and B/T.

D. Maneuvering Discipline
The second discipline is the maneuvering performance, which is evaluated using the Maneuvering Prediction 

Program  (MPP)16,  which  uses  the  methods  of  Clarke,  Gedling,  and  Hine17.  The  objective  function  of  the 
maneuvering discipline is the tactical diameter, which is to be minimized. The maneuvering discipline includes the 
constraints on the block coefficient from Eq. (13). The maneuvering discipline also includes a constraint on the 
stability criterion C, which is required to be positive. Then the maneuvering discipline optimization problem is  

min
x

DT (15)

subject to  
0.56−C B≤0
C B−0.87≤0
−C≤0

where DT is the tactical diameter of the ship.

E. Seakeeping Discipline
The third discipline is the seakeeping performance, which is evaluated using the Seakeeping Prediction Program 

(SPP)16 that is an implementation of the SCORES Program18. The objective function of the seakeeping discipline is a 
metric which represents the maximum combined motion:

M max=max(RMS heave)+ L
2

max(RMS pitch)+B
2

max (RMS roll) (16)

where roll is evaluated at a 30 degree heading, heave is evaluated in beam seas, and pitch is evaluated at a 120 
degree heading; the sum in Eq. (16) does not represent the actual motion of any part of the ship, but a multiobjective 
metric for the ship motion. The seakeeping discipline includes the constraints on the block coefficient from Eq. (13). 
The seakeeping discipline also includes a stability constraint on the metacentric height GM, where an approximation 
for the GM (as calculated by SPP) is required to be greater than the US Coast Guard GM requirement, GMUSCG. 
Then the seakeeping discipline optimization problem is

min
x

M max (17)

subject to  
0.56−CB≤0
C B−0.87≤0

GMUSCG−GM≤0

F. Cost Estimate
An additional  constraint  was introduced on  the cost  of  the  ship.  A simple  linear  cost  model  based on  the 

recommendations of Parsons19 is used to evaluate the cost of the ship, where the subscript “0” indicates properties of 
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the parent hull:

cost (x )=[1+1.01
(L−L0)

L0

+0.58
(B−B0)

B0

+0.40
(T−T 0)

T 0

+0.22
(C B−C B0)

CB0 ] (18)

Based on this cost formulation,  the cost of the parent hull is  1 and variations can be viewed as percentage 
increases or  decreases in  cost  from the parent  hull  (for  example,  the cost  of  another  hull  may be 1.02,  which 
indicates a 2% increase in cost). A cost constraint is defined so that the cost of the new hull must be less than or 
equal to the cost of the parent hull:

gcost(x) = cost(x) – 1 ≤ 0 (19)

Flexibility was only considered in the cost constraint; no flexibility was included in the other four constraints 
because the they help ensure that the discipline analyses run properly (for example, the seakeeping analysis code 
will error if the ship has a negative GM due to flexibility introduced in the corresponding constraint). 

G. MDO Problem Summary
The  disciplines  can  be  optimized 

individually  by  solving  the  independent 
optimization  statements  in  Eqs.  (14),  (15), 
and  (17).  Results  for  the  independent 
discipline optimizations are given in Table 2; 
the  results  show  that  the  optima  occur  at 
different  points  for the different disciplines, 
which  is  expected  for  a  multidisciplinary 
problem. 

Additionally, the constraints at the three discipline optima were evaluated and the results are summarized in 
Table 3. The Discipline 1 optimization statement includes only the constraints on the block coefficient, so it is not 
surprising that the optimum violates the constraint for GM. The conflicts between the different disciplines illustrate 
that this ship design problem comprises a good MDO example because compromise must be achieved to ensure that 
all discipline optima are feasible. 

Table  3  also  includes  the  cost 
constraint  evaluated  at  the  discipline 
optima;  the  cost  constraint  was  not 
enforced  during  the  discipline 
optimizations  and  all  three  discipline 
optima  violate  the  cost  constraint. 
Therefore,  significant  compromise  is 
expected  during  the  multidisciplinary 
analysis for either the cost constraint or 
the  location  of  the  final  design  space. 
Figure 2 summarizes the structure of the 
set-based design MDO problem.
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Table 3.   Independent discipline optimization constraint values. 

Discipline 1
Optimum

Discipline 2
Optimum

Discipline 3
Optimum

g1 = 0.56 – CB -1.4710-1 -3.1010-1 -3.0910-1

g2 = CB – 0.87 -1.6310-1 -1.9610-11 -1.2510-3

g3 = -C -2.3310-5 -3.0010-7 -2.0010-6

g4 = GMUSCG – GM 1.61 -6.66 -7.83

gcost = cost – 1 0.075 0.034 0.062

Table 2.   Independent discipline optimization results.

Design Variables x* Objective Function fi
*

L (m) L/B B/T

 Discipline 1 320.00 6.8889 2.2500 4.2301109 N

 Discipline 2 303.18 5.6000 3.5633 869.78 m

 Discipline 3 314.22 5.7716 3.7291 22.178 m

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
A

pr
il 

3,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

2-
54

44
 



Fig. 2.   Summary diagram of the ship design MDO problem. 

H. Results from the Set-Based Design MDO Analysis
When implementing the set-based design MDO for the ship design example, the cost constraint from Eq. (19) 

was included at the system level. The system optimization optimization statement for the ship design problem is

min
zmin ,∆ z ,ε

exp(∆ z1⋅∆ z2⋅∆ z3)+exp( ε
εmax )+∑

i=1

3

exp (F i(xi
new)) (20)

subject to    gcost(xi
new) ≤ ε   for i = 1, 2, 3

hk(xi
new) ≤ 0    for k = 1, 2, 3 and for i = 1, 2, 3

The maximum relaxation of the constraint εmax was 
set to 0.1. 

The results for the optimization are tabulated in 
Table  4.  The  upper  half  of  the  table  shows  the 
bounds  on  the  new,  reduced  design  space.  The 
lower half of the table shows the properties for the 
discipline  optimizations  when  performed  in  the 
reduced design space. The resulting value for the 
relaxation of the cost constraint is ε = 0.046. 

The results are also shown in Figure 3, which 
shows the original  design space and the reduced 
design  space  indicated  by  dashed  lines.  The 
individual discipline optima are marked with small 
dots and the discipline optima within the reduced 
space are marked with stars. 
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Table  4.   Results  from  the  set-based  design  inspired 
MDO algorithm. 

Reduced design space results

Initial Optimal

L min 250.00 302.12

L max 320.00 314.86

L/B min 5.60 6.66

L/B max 8.00 7.02

B/T min 2.25 2.69

B/T max 3.75 3.08

Properties of the discipline optima in the new design space

Discipline 1 Discipline 2 Discipline 3

L* 314.86 309.99 310.23

L/B* 6.66 6.66 6.66

B/T* 2.69 2.69 2.70

fi
* 8.1882109 995.30 25.566

Discipline 3: Seakeeping

   min   M
max

   subject to 
0.56 – C

B
 ≤ 0

C
B
 – 0.87 ≤ 0

GM
USCG

 – GM ≤ 0

Discipline 2: Maneuvering

   min   D
T

   subject to 
0.56 – C

B
 ≤ 0

C
B
 – 0.87 ≤ 0

-C ≤ 0

Discipline 1: Resistance

   min   R
TOTAL

   subject to 
0.56 – C

B
 ≤ 0

C
B
 – 0.87 ≤ 0

Cost Constraint with Flexibility
cost – 1 ≤ ε
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Fig. 3.   Reduced design space returned by the set-based design MDO algorithm.

The relaxation in the constraint returned by the optimization was ε = 0.046. Relaxation of the cost constraint was 
expected because as shown in the single discipline optimizations (Table 3), much of the original design space did 
not  satisfy the  cost  constraint,  including the individual  discipline optima.  The results  are  valuable  because the 
algorithm seeks to allow only the minimum relaxation necessary. Even though εmax was 0.1, the new algorithm was 
able to find a suitable solution without having to relax the constraint to the maximum amount.

The set-based design MDO algorithm returns a reduced portion which represents preferred region of the original 
design space. The reduced space can be used as the design space for conducting a point-based optimization at later 
stages of the design process when the requirements are better defined.

I. Comparison to Point-Based Design
The results of the new set-based design MDO algorithm were compared to results from a single point design 

multiobjective optimization. The purpose of the comparison is to illustrate the advantages of the set-based design 
MDO  algorithm  by  modeling  flexibility  in  the  constraints.  For  the  comparison,  three  different  point-based 
optimizations  were performed:

1. Point-based optimization without the cost constraint in the original design space.
2. Point-based optimization with the relaxed cost constraint in the original design space.
3. Point-based optimization without the cost constraint in the reduced design space. 

Case 1: The ship MDO problem was studied using a point-based optimization approach (a weighted sum of the 
objective  functions)  in  the  original  design  space.  The  point-based  optimization  included  all  of  the  disciplines' 
constraints but did not include the cost constraint. The optimization statement is:

min
x∈χ

∑
i=1

3

F i(x) (21)

subject to    hMO(x) ≤ 0

where χ is the original design space defined in Table 1. Fi are the normalized objective functions, where the three 
disciplines objective functions (RTOTAL,  DT, and Mmax) are scaled according to Eq. (5). The vector  hMO contains the 
constraints from all  three disciplines (a total of four constraints),  but not the cost constraint.  Omitting the cost 
constraint represents a situation where the design is initially driven by technical requirements and cost enters the 
decision-making process at a later stage.  

American Institute of Aeronautics and Astronautics
10

260

280

300

320
6

6.5
7

7.5
8

2.4

2.6

2.8

3

3.2

3.4

3.6

 

L/B

Design Space: MDO Optimum Space

L

 

B
/T

D1*
D2*
D3*
System D1*
System D2*
System D3*

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
A

pr
il 

3,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

2-
54

44
 



The results of the point-based 
optimization are shown in Table 
5  in  the  row labeled  “Case  1,” 
and  the  results  are  plotted  with 
comparison  to  the  individual 
discipline optima in Figure 4 (the 
plot is rotated to the same angle as Figure 3 for 
comparison).

The point-based solution satisfies the four 
constraints  from  the  disciplines.  The 
performance of the three discipline objective 
functions  at  the  point-based  optimum  is 
inferior to the individual optima, as expected. 
However,  upon  visual  inspection  (Figure  4) 
the multiobjective solution may not be a good 
candidate for a solution because it is located in 
a  corner  of  the  design  space;  this  does  not 
illustrate much compromise between all three 
disciplines,  and   leaves  almost  no  room  to 
adjust  the  design  should  any  changes  in 
requirements occur. 

Additionally,  the  cost  constraint  was  not 
considered in the multiobjective optimization. 
Without  accounting  for  cost,  neither  the 
discipline  optima  nor  the  multiobjective 
optimum satisfy the cost constraint; the value 
of  the  cost  constraint  is  0.081  at  the 
multiobjective optimum. Starting from this specific design point, it would be difficult to approach the problem with 
the cost constraint because none of the current solutions are feasible. 

Case 2: The ship MDO problem was next solved using a point-based optimization including the cost constraint 
in the original design space. The cost constraint was relaxed according to εmax to model the situation that the designer 
has decided that the constraint may be violated by as much as εmax; this is the same statement made for the set-based 
design MDO, except that  the set-based design MDO algorithm can reduce the constraint  relaxation during the 
optimization. The optimization statement is:

min
x∈χ

∑
i=1

3

F i(x) (22)

subject to    hMO(x) ≤ 0

                      gcost(x) ≤ εmax

where  hMO contains all  of the constraints from the disciplines.  This optimization problem represents the situation 
where the designer has encountered a new, strict constraint during the point-based design process and the constraint 
has been relaxed in order to locate feasible solutions. 

The results for the second point-based optimization are shown in Table 5 in the row labeled “Case 2.” The 
solution is almost identical to the solution for Case 1; this result is expected because the solution to Case 1 yielded a 
cost constraint violation of 0.081, which is less than εmax = 0.1. Addition of the cost constraint with the maximum 
relaxation of 0.1 has no effect on the solution because it is not active, and therefore the design from Case 2 has not  
incorporated any changes due to the cost requirements when compared to Case 1. 

Case 3: To demonstrate the benefits of the set-based design MDO algorithm, a  point-based optimization was 
conducted using the reduced design space determined by the set-based design MDO algorithm. The optimization 
statement is

American Institute of Aeronautics and Astronautics
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Table 5. Comparison of results for multiple point-based optimizations. 
Case L* L/B* B/T* f1

* f2
* f3

* gcost(x*)
1 314.91 5.6000 3.7473 11.963109 989.2 23.296 0.081
2 314.89 5.6000 3.7471 11.972109 989.0 23.295 0.081
3 314.00 6.6609 2.7000 8.999109 1,057 26.917 0.029

Fig. 4.   Point-based optimization results.
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min
x∈χS

∑
i=1

3

F i(x) (23)

subject to    hMO(x) ≤ 0

where χS is the reduced design space located by the set-based design MDO algorithm (listed in Table 4). The cost 
constraint  was  not  included  in  the  optimization  statement.  The  results  of  the  multiobjective  optimization  are 
summarized in Table 5 in the row labeled “Case 3;” the results are clearly very different compared to the previous 
two cases. The results are plotted in Figure 5 along with contours of the cost constraint. 

As  Figure  5  shows,  the  discipline 
optima and the multiobjective optimum are 
closely  grouped  within  the  new  design 
space;  they are  also  located very close to 
the cost constraint boundary.  Even though 
the cost constraint was not included in the 
multiobjective  optimization,  the  value  of 
the  cost  constraint  at  the  multiobjective 
optimum is 0.029; not only is this a smaller 
constraint  violation  compared  to  the 
previous  multiobjective  optimization,  but 
0.029 is also less than the relaxation of the 
constraint  from  the  MDO  solution  (ε = 
0.046). Thus the single-point multiobjective 
optimization solution achieved by operating 
within the reduced design space satisfies the 
relaxed cost constraint even though the cost 
constraint  was  not  included  in  the 
multiobjective  optimization.  This  is 
accomplished  because  the  cost  constraint 
was  accounted  for  when  determining  the 
reduced  design  space  by  the  set-based 
design MDO algorithm.

IV. Conclusion
This paper presents a new MDO algorithm developed using the principles of set-based design. The mathematical 

formulation is discussed and the performance of the algorithm is demonstrated through a ship design application. 
The multidisciplinary ship design application includes resistance, maneuvering, and seakeeping disciplines along 
with a simple cost estimate. The new set-based design MDO algorithm is used to identify a reduced design space.

Additionally, a multiobjective optimization is performed within the reduced design space located by the MDO 
algorithm, and the results are preferable to the results of a similar multiobjective optimization performed within the 
original design space. This ship design application illustrates that is it is valuable to first utilize a space-reducing 
technique (using sets to describe the design variables) before approaching a problem with a single point-based 
optimization.  Furthermore,  incorporating flexibility  in  the  constraints  of  the  set-based design  MDO allows the 
optimization to handle a problem with very strict  constraints in a rational manner and minimize  the relaxation 
introduced in the constraints.

References
1Ward, A., Liker, J. K., Cristiano, J. J., and Sobek, D. K. II, “The second Toyota paradox: How delaying decisions can make 

better cars faster,” Sloan Management Review, Vol. 36, No. 3, 1995, pp. 43-61. 
2Liker, J. K., Sobek, D. K. II, Ward, A. C., and Cristiano, J. J., “Involving suppliers in product development in the United 

States and Japan: Evidence for set-based concurrent engineering,” IEEE Transactions on Engineering Management, Vol. 43, No. 
2, 1996, 165-178. 

3Sobek, D. K. II, Ward, A. C., and Liker, J. K., “Toyota's principles of set-based concurrent engineering,” Sloan Management  
Review, Vol. 40, No. 2, 1999, pp. 67-83.

4Singer, D. J., Doerry, N., and Buckley, M. E., “What is set-based design?” Naval Engineers Journal, Vol. 121, No. 4, 2009, 

American Institute of Aeronautics and Astronautics
12

Fig.  5.     Multiobjective optimization results for the new design 
space with contours of the cost constraint. The constraint is satisfied 
on the left side of the contours.

260
280

300
320

6
6.5

7
7.5

8

2.4

2.6

2.8

3

3.2

3.4

3.6

 

LL/B
 

B
/T

D1*
D2*
D3*
MO*

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
A

pr
il 

3,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

2-
54

44
 



pp. 31-43.
5Lee,  J.,  “Set-based design  systems  for  stampings  and flexible  fixture  workspaces,”  Ph.D.  Dissertation,  Department  of 

Mechanical Engineering, University of Michigan, Ann Arbor, MI, 1996.
6Wang, J., and Terpenny, J., “Interactive evolutionary solution synthesis in fuzzy set-based preliminary engineering design,” 

Journal of Intelligent Manufacturing, Vol. 14, 2003, pp. 153-167. 
7Nahm, Y. E., and Ishikawa, H., “Novel space-based design methodology for preliminary engineering design,” International  

Journal of Advanced Manufacturing Technology, Vol. 28, 2006, pp. 1056-1070.
8Shahan,  D.,  and  Seepersad,  C.  C.,  “Bayesian networks  for  set-based collaborative  design,”  Proceedings  of  the  ASME 

International  Design  Engineering  Technical  Conferences  and  Computers  and  Information  in  Engineering  Conference, 
DETC2009/85741, ASME, New York, NY, 2009.

9Madhavan, K., Shahan, D., Seepersad, C., Hlavinka, D. A., and Benson, W., “An industrial trial of a set-based approach to 
collaborative design,” Proceedings of the ASME International Design Engineering Technical Conferences and Computers and  
Information in Engineering Conference, DETC2008/49953, ASME, New York, NY, 2008. 

10Malak, R. J. Jr., Aughenbaugh, J. M., and Paredis, C. J. J., “Multi-attribute utility analysis in set-based conceptual design,” 
Computer-Aided Design, Vol. 41, 2009, pp. 214-227.

11Avigad, G., and Moshaiov, A., “Set-based concept selection in multi-objective problems involving delayed decisions,” 
Journal of Engineering Design, Vol. 21, No. 6, 2010, pp. 619-646.

12Marler,  R.  T.,  and  Arora,  J.  S.,  “Survey  of  multi-objective  optimization  methods  for  engineering,”  Structural  and 
Multidisciplinary Optimization, Vol. 26, 2004, pp. 369-395.

13Athan, T. W., and Papalambros, P., “A note on weighted criteria methods for compromise solutions in multi-objective 
optimization,” Engineering Optimization, Vol. 27, 1996, pp. 155-176. 

14Holtrop, J., and Mennen, G. G. J., “An approximate power prediction method,” International Shipbuilding Progress, Vol. 
29, No. 335, 1982, pp. 166-170.

15Holtrop, J., “A statistical re-analysis of resistance and propulsion,” International Shipbuilding Progress, Vol. 31, No. 363, 
1984, pp. 272-276.

16Parsons,  M.  G.,  Li,  J.,  and Singer,  D.  J.,  “Michigan conceptual  ship  design software  environment  –  User's  manual,” 
University of Michigan Department of Naval Architecture and Marine Engineering, Report No. 338, Ann Arbor, MI, 1998.

17Clarke,  D.,  Gedling,  P.,  and  Hine,  G.,  “The  application  of  manoeuvring  criteria  in  hull  design  using  linear  theory,” 
Transactions RINA, Vol. 124, 1982, pp. 45-68.

18Raff, A. I., “Program SCORES – Ship structural response in waves,” Ship Structure Committee, Report SSC-230, 1972.
19Parsons, M. G., “Parametric design,” Ship design and construction, edited by T. Lamb, Society of Naval Architecture and 

Marine Engineers, Jersey City, NJ, 2003, pp. 11-1 – 11-48.

American Institute of Aeronautics and Astronautics
13

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
A

pr
il 

3,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

2-
54

44
 


