
ONLINE COMPANION

Proof of Remark 1

Consider a feasible selection of jobs. It follows from Smith (1956) that, without loss of

generality, the sequence given in the Initialization step minimizes the lowest total weighted

completion time for that selection. Further, since q1 = · · · = qT , scheduling the processed

jobs with no inserted idle time is optimal. Finally, since the system values of all feasible

selections of jobs are compared within the state transitions, Algorithm GS generates the

maximum system value.

Regarding the time complexity, in the recurrence relation, there are O(n) values of i and

O(T ) values of t. For each i and t, there is a fixed number of values to compare. Therefore,

the overall time complexity of Algorithm GS is O(nT ).

Proof of Remark 2

The proof is by reduction from Partition: Given 2m elements with integer sizes a1, . . . , a2m,

where
∑2m

i=1 ai = 2A, does there exist a partition S1, S2 of the index set {1, . . . , 2m} such

that
∑

i∈S1
ai =

∑
i∈S2

ai = A?

Given an instance of Partition, we construct an instance of the scheduling problem where

n = 2m, pi = ai for i = 1, . . . , n, and T = A. Then, the scheduling problem has the

maximum possible value A if and only if the instance of Partition has a solution.

Proof of Remark 3

a. In an optimal schedule for any instance I, the total system value is Va(I) + Vb(I) ≤

2 max{Va(I), Vb(I)}, where Va(I) is the total reserve value of the unused time slots, and

Vb(I) is the total value of the processed jobs to their agents. We show that Algorithm GS

delivers a schedule for instance I with total system value of at least max{Va(I), Vb(I)}. First,

the total system value of a schedule found by Algorithm GS is at least the total reserve value

of all the time slots, and thus at least Va(I). Second, consider an instance I ′ that is identical

to instance I except that in I ′, the reserve values of all time slots are 0. From the definition

of I ′, we have Vb(I
′) ≥ Vb(I). Since an optimal schedule for I ′ is among the feasible schedules

compared by Algorithm GS when solving instance I, the algorithm finds a solution that has

an objective value of at least Vb(I
′) ≥ Vb(I).

b. Suppose that for instance I there exists an optimal schedule without unallocated time



slots. Consider the instance I ′ defined in part a of the proof. From Remark 1, Algorithm GS

finds an optimal schedule for instance I ′. The maximum system value in the two instances

is the same. Hence, Algorithm GS finds an optimal schedule for instance I.

Proof of Theorem 1

In any feasible schedule, the admitted bids are sequenced in nondecreasing order of ui val-

ues. Since the revenues for the facility owner of all possible state transitions within such

sequences are compared, Algorithm WD generates the maximum revenue for the facility

owner. Regarding the time complexity, the Initialization step requires O(n log n) time, and

the Optimal Solution Value step requires O(T ) time. In the recurrence relation, there are

O(n) possible values of i and O(un) possible values of t. For fixed i and t, only a fixed

number of comparisons is required. Therefore, the overall time complexity of Algorithm WD

is O(max{n log n, T, nun}).

Proof of Theorem 2

Consider an instance with n agents, where pi = wi = 1 and vi = pn + n, for i = 1, . . . , n− 1;

pn ≥ 1, wn = (pn + n− 2)/(n− 1), and vn = (pn + n− 2)(pn + n− 1)/(n− 1). The facility

owner has T = pn + n− 1 time slots. Let qt = 0, for t = 1, . . . , T .

In an optimal schedule σ∗, all jobs are scheduled consecutively and job n is processed in

the last position. The total revenue of schedule σ∗ is

n∑
i=1

vi = (n− 1)(pn + n) + (pn + n− 2)(pn + n− 1)/(n− 1); (2)

and the scheduling cost Sσ∗ of schedule σ∗ is

(n− 1)n/2 + (pn + n− 2)(pn + n− 1)/(n− 1). (3)

From (2) and (3), the system value Vσ∗ of schedule σ∗ is

(n− 1)pn + n2/2− n/2. (4)

Now define the prices of fixed time blocks such that ρ(pn,pn) = pn + n− 2 and ρ(1,pn+t) =

n− t− 1, for t = 1, . . . , n− 1. The prices of all other fixed time blocks are:

ρ(p,u) =


ρ(pn,pn), if u ≤ pn
ρ(pn,pn) +

∑u
t=pn+1 ρ(1,t), if u ≥ pn + 1 and u− p ≤ pn − 1∑u

t=u−p+1 ρ(1,t), if u ≥ pn + 1 and u− p ≥ pn.



We consider the above prices and a schedule σ that allocates block (pn, pn) to job n, and

block (1, pn + i), i = 1, . . . , n − 1, to job i. We show that this solution is in equilibrium at

the prices ρ.

First, consider job n. In the current solution, job n generates a profit of vn − wnCn −

ρ(pn,pn) = (pn+n−2)(pn+n−1)/(n−1)− (pn+n−2)pn/(n−1)− (pn+n−2) = 0. If job n

completes later than pn but earlier than 2pn, then it incurs both a higher price and a higher

work in process cost, and thus generates less profit for its agent. Now suppose job n completes

at time C ′n ≥ 2pn. The price for time block (pn, C
′
n) is ρ(pn,C′n) = pn(2n− 2C ′n + 3pn − 3)/2.

Thus, agent n achieves a profit of

vn − wnC ′n − ρ(pn,C′n)

=
(pn + n− 2)(pn + n− 1)

n− 1
− (pn + n− 2)C ′n

n− 1
− pn(2n− 2C ′n + 3pn − 3)

2

≤ (pn + n− 2)(pn + n− 1)

n− 1
− pn(2n+ 3pn − 3)

2
+

(n− 2)(pn − 1)(pn + n− 1)

n− 1

=
−pn(pn − 1)

2

≤ 0, since pn ≥ 1.

Therefore, agent n cannot increase its profit by purchasing other time blocks.

Next, consider job i, where i ∈ {1, . . . , n − 1}. In the current solution, agent i gains

a profit of vi − wiCi − ρ(1,pn+i) = (pn + n) − (pn + i) − (n − i − 1) = 1 for its agent.

If job i completes at time C ′i ≤ pn, then agent i gains a profit of vi − wiC
′
i − ρ(1,C′i)

=

(pn + n)−C ′i − (pn + n− 2) ≤ (pn + n)− 1− (pn + n− 2) = 1. Otherwise, if job i completes

at time C ′i with pn + 1 ≤ C ′i ≤ pn + n− 1, then agent i gains a profit of vi−wiC ′i − ρ(1,C′i)
=

(pn + n)−C ′i − (n− (C ′i − pn)− 1) = 1. Therefore, agent i ∈ {1, . . . , n− 1} cannot increase

its profit by purchasing other time blocks. As a result, the current solution is in equilibrium

at the prices ρ.

Since all jobs are scheduled, the total revenue of σ is given by (2). Also, the scheduling

cost Sσ of schedule σ is

(pn + n− 2)pn/(n− 1) + (n− 1)pn + (n− 1)n/2. (5)

From (2) and (5), the system value Vσ of schedule σ is

pn + n2/2 + n/2− 2. (6)



Then, from (3), (4), (5) and (6), if we let pn = nr, where 1 < r < 2, n is integer, and n→∞,

we have
Sσ
Sσ∗

=
2p2

n + (2n2 − 2n− 2)pn + n3 − 2n2 + n

2p2
n + (4n− 6)pn + n3 − 5n+ 4

→∞,

and
Vσ∗

Vσ
=

2(n− 1)pn + n2 − n
2pn + n2 + n− 4

→∞.

Proof of Theorem 3

a. We first prove that there exists an optimal schedule in which admitted bids are processed

in nondecreasing order of ui values. Suppose that there exists an optimal schedule σ which

contains two blocks Bi1 and Bi2 such that Bi1 precedes Bi2 but ui1 > ui2 . First, move block

Bi1 to be completed at the starting time of block Bi2 , and then move any blocks that are

processed between blocks Bi1 and Bi2 earlier by pi1 . Next, interchange blocks Bi1 and Bi2 .

Thus, we obtain a new schedule, denoted by σ′, which is feasible since ui1 > ui2 . Under the

assumption of nonincreasing reserve values, the total revenue of schedule σ′ for the facility

owner is no less than that of the schedule σ. By repeating such transformations, we find a

new schedule in which all the processed blocks are in nondecreasing order of ui values and

the total revenue of the facility owner is no less than that of schedule σ. The remainder of

the proof is similar to that of Theorem 1.

b. Suppose that, for instance I, there exists an optimal schedule without unallocated time

slots. Consider an instance I ′ that is identical to instance I, except that in I ′ the reserve

values of all time slots are 0. From part a of Theorem 3, Algorithm WD′ finds an optimal

schedule for instance I ′. Observe that the maximum revenue in instance I ′ is the same

as in instance I. Also, note that all schedules considered by WD′ for instance I ′ are also

considered for instance I, and in each case the revenue for instance I is at least as large.

Therefore, Algorithm WD′ finds an optimal schedule for instance I.

c. Recall that an instance defines a set of bids by all the agents. Clearly, Algorithm WD′

finds a solution with revenue for the facility owners that is at least that of a schedule found

by Algorithm WD. In an optimal schedule for any instance I, the total revenue of the facility

owner is Va +Vb ≤ 2 max{Va, Vb}, where Va is the total reserve value of the unallocated time

slots, and Vb is the total bid price of the allocated blocks. We show that Algorithm WD′

delivers a schedule with total revenue of at least max{Va, Vb}, from which the result follows.



First, the total revenue of a schedule found by Algorithm WD′ is at least the total reserve

value of all the time slots, and thus at least Va. Second, consider an instance I ′ that is

identical to instance I except that in I ′, the reserve values of all time slots are 0. Since

accepting the same bids as in the optimal schedule to instance I is a feasible schedule, the

maximum revenue in instance I ′ is no less than Vb. From part a of the theorem, Algorithm

WD′ finds an optimal schedule for instance I ′. Further, all schedules compared by WD′ for

instance I ′ are also compared for instance I, and in each case the revenue for instance I is at

least as large. Therefore, for instance I, Algorithm WD′ finds a schedule with total revenue

at least Vb.

d. When all time slots have the same reserve value, it is easy to prove that the problem is

binary NP-hard, by reduction from the knapsack problem. The unary NP-hardness proof

for the more general case is by reduction from the following problem, which is known to be

unary NP-complete.

3-Partition: Given 3m elements with integer sizes a1, . . . , a3m, where
∑3m

i=1 ai = my and

y/4 < ai < y/2 for i = 1, . . . , 3m, does there exist a partition S1, . . . , Sm of the index set

{1, . . . , 3m} such that |Sj| = 3 and
∑

i∈Sj
ai = y for j = 1, . . . ,m?

Given an instance of 3-Partition, we construct an instance of the winner determination

problem, where T = my+m and n = 3m. The reserve values are 1 for time slots y+ 1, 2y+

2, . . . ,my+m and 0 for all the other time slots. The n bids are: B1 = 〈(a1,my+m), 1〉, B2 =

〈(a2,my + m), 1〉, . . . , Bn = 〈(an,my + m), 1〉. It is easy to verify that the instance of the

winner determination problem has maximum revenue 4m if and only if the instance of 3-

Partition has a solution.

Proof of Remark 5

Proof. Given an optimal schedule σ for an instance I with k ≥ 0 unallocated time slots for

an instance of the winner determination problem, consider the following changes.

1. Process all the admitted blocks in nondecreasing order of ui values from time 0, without

inserted idle time. Denote the new schedule by σ′.

2. Assign the reserve values of all the k unallocated time slots in schedule σ to the last

k time slots in schedule σ′, in nondecreasing order of reserve values. Denote the new

schedule by σ∗.

Observe that schedule σ∗ provides the same revenue as schedule σ for the facility owner.



Also, since Algorithm UB assigns all the largest reserve values to the unallocated time slots,

it finds a schedule with revenue no less than that of schedule σ∗. Therefore, the value

generated by Algorithm UB is an upper bound on the maximum revenue for instance I.

Proof of Corollary 1

The instance described in the first paragraph of the proof of Theorem 2 is also in equilibrium

with flexible time blocks as market goods, hence the result follows.

Proof of Theorem 4

Proof. We show the existence of an equilibrium solution by construction. Consider an

ascending auction where the facility owner optimally solves its winner determination problem

at each round. The agents employ the straightforward bidding policy where, among all

the time blocks that maximize an agent’s profit, the agent bids for one that contains the

maximum number of time slots. This bidding policy guarantees that, when an allocated time

block is reallocated, all the time slots within it are reallocated. Consequently, the ask price

of each time block is nondecreasing throughout the auction, and each agent cannot change

its bid to increase its profit. Thus, using the constant bid increment function ε(·) = ε→ 0,

a solution at closure is in equilibrium.

The nonuniqueness of equilibrium solutions is established by the following example. There

are two agents, where p1 = p2 = 1, v1 = 5, v2 = 3, w1 = 3 and w2 = 1. The facility owner

has two time slots to sell, with q1 = q2 = 0. Any solution where agent 1 wins time slot 1

paying 1 ≤ ρ1 ≤ 2, and agent 2 wins time slot 2 paying 0 ≤ ρ2 ≤ 1, is in equilibrium.

Proof of Remark 7

Consider two agents each with a job with unit processing time, revenue 1, and no scheduling

cost, which bid for a single time slot with reserve value 0. The auction reaches closure when

an agent bids price b with 0 < b < 1 and b+ε(·) ≥ 1. However, in either of the two nonunique

equilibrium solutions, one agent wins the time slot by paying exactly 1.

Proof of Theorem 5

Let F denote a globally optimal solution, where A′ ⊆ A is the set of agents with allocated

time blocks. If A′ = ∅, then the proof is complete. Otherwise, let xj denote the total reserve

value of the time slots contained in allocated time block j, where xmax = maxj{xj}. We define



prices for the three possible types of time blocks. First, let the price of each time block formed

entirely from unallocated time slots be the total reserve value of the time slots it contains.

Second, let the price of each fully allocated time block i be max{xmax,maxi∈A\A′{vi − fi}},

which is at least the total reserve value of the time slots it contains. Third, there can be time

blocks containing both unallocated time slots and time slots from allocated time blocks. For

each time block of this type, let its price be the total price of the time blocks containing at

least one time slot within the time block, plus the total reserve value of the unallocated time

slots within the time block. Observe that these prices satisfy the conditions of the theorem.

We complete the proof by showing that the prices also support an equilibrium solution.

We first establish two lower bounds on mini∈A′{vi−fi}. First, suppose that vi−fi < xmax,

for some i ∈ A′. Starting from solution F , reallocate the time block of agent i to the agent

currently allocated time block j, where xj = xmax. This transformation provides a new

solution with an increased total system value, which contradicts the optimality of solution

F . Second, if vj−fj > mini∈A′{vi−fi} for some j ∈ A \ A′, agent j will be allocated a time

block, which is a contradiction. Hence, mini∈A′{vi − fi} ≥ maxi∈A\A′{vi − fi}. Combining

these two results gives mini∈A′{vi − fi} ≥ max{xmax,maxi∈A\A′{vi − fi}}.

Consider the agents in A′. The total reserve value of each time block entirely containing

at least p unallocated time blocks is at least max{xmax,maxi∈A\A′{vi − fi}}, otherwise such

a time block will be allocated in solution F . Therefore, bidding for such a time block will

not increase the profit of any agent in A′. Also, since the prices of all the allocated time

blocks are the same, no agent in A′ can increase its profit by purchasing a different allocated

time block. Further, since mini∈A′{vi − fi} ≥ xmax, no agent in A′ can improve its profit by

withdrawing an admitted bid. Finally, the other time blocks have the same value for each

agent as the allocated ones, but cost more. Therefore, bidding for them cannot increase the

profit of an agent in A′.

Next, consider the agents in A \ A′. From the optimality of solution F , an agent cannot

increase its profit by purchasing a time block formed entirely from unallocated time slots.

Also, an agent cannot increase its profit by bidding for an allocated time block, since its

price is at least maxi∈A\A′{vi − fi}. Further, for the other time blocks, similar arguments

hold as for the agents in A′.

Finally, consider the facility owner. Note that the price of each time block is no less than



the total reserve value of time slots within the time block. When the market goods are fixed

time blocks, the schedule is fixed and thus the facility owner cannot improve its revenue.

When the market goods are flexible time blocks, given solution F , the facility owner can

still change its schedule. However, since the scheduling cost of each job is independent of its

completion time, an increase in profit for the facility owner also increases the total system

value. This contradicts the optimality of solution F .

Proof of Remark 8

Since the scheduling cost of each processed job is independent of its completion time, the

sequence of the processed jobs does not affect the system value. Since the system values of

all possible state transitions are compared, Algorithm GOS generates the maximum system

value. The analysis of the time complexity follows the proof of Theorem 1.


