
Online	
  appendix	
  to	
  accompany:	
  

	
  

Accounting	
  for	
  Price	
  Dependencies	
  in	
  Simultaneous	
  Sealed-­‐Bid	
  
Auctions	
  
	
  
BRANDON	
  A.	
  MAYER,	
  ERIC	
  SODOMKA,	
  AMY	
  GREENWALD,	
  Brown	
  University	
  
MICHAEL	
  P.	
  WELLMAN,	
  University	
  of	
  Michigan	
  

	
  

body	
  of	
  paper	
  published	
  in	
  Proceedings	
  of	
  EC-­‐13	
  

Fourteenth	
  ACM	
  Conference	
  on	
  Electronic	
  Commerce	
  
Philadelphia,	
  June	
  2013	
  



Proceedings Article

A. ONLINE APPENDIX

A.1. Proofs regarding bounds

Lemma A.1. Given joint price prediction fQQQ and bid vector bbb, E[cj(bbb,QQQ)] = E[cj(bbb,Qj)].

Proof.

E[cj(bbb,QQQ)] =

∫
qqq

fQQQ(qqq)cj(bbb, qqq)dqqq (4)

=

∫
qj

∫
qqq−j

fQj (qj)fQQQ−j |Qj
(q−j |qj)cj(bbb, qqq)dqjdqqq−j (5)

=

∫
qj

∫
qqq−j

fQj
(qj)fQQQ−j |Qj

(q−j |qj)cj(bbb, qj)dqjdqqq−j (6)

=

∫
qj

fQj (qj)cj(bbb, qj)dqj

∫
qqq−j

fQQQ−j |Qj
(q−j |qj)dqqq−j (7)

=

∫
qj

fQj
(qj)cj(bbb, qj)dqj (8)

= E[cj(bbb,Qj)] (9)

Eq. 4 holds by the definition of expectation. Eq. 5 holds by the chain rule. Eq. 6 holds
by the definition of cj . Eq. 7 follows from algebra. Eq. 8 holds because the integral of a pdf
is 1. Eq. 9 holds by the definition of expectation.

Proof of Theorem 3.1.

E[c(bbb,QQQ)] = E

 m∑
j=1

cj(bbb,QQQ)

 (10)

=

m∑
j=1

E[cj(bbb,QQQ)] (11)

=

m∑
j=1

E[cj(bbb,Qj)] (12)

=

m∑
j=1

E[cj(bbb,QQQ
′)] (13)

= E

 m∑
j=1

cj(bbb,QQQ
′)

 (14)

= E[c(bbb,QQQ′)] (15)

Eqs. 10 and 15 follow from the definition of c. Eqs. 11 and 14 follow from linearity of
expectations. Eq. 12 follows from Lemma A.1. Eq. 13 follows from the fact that QQQ′ is the
product of marginals: i.e., the prices across goods are independent.

Proof of Theorem 3.2. The proof follows exactly the same reasoning as the proof of
Thm. 3.1, which shows that fQQQ′ is sufficient to compute expected costs (which are additive
across goods, like valuations are in this case).

Proof of Theorem 3.3. To maximize E[v(bbb,QQQ′)]−E[v(bbb,QQQ)], it can be shown that the
adversary’s optimal play is to spread the joint probability evenly amongst bundles that are



Proceedings Article

missing a single item. That is, each wX whose X is missing only a single item gets probability
1/m. In such a case, the marginal probability of winning each good is (m−1)/m. Perceived
expected value is v

∏m
j=1

m−1
m = v(m−1

m )m. Actual expected value is 0, since the agent will
never actually receive all m goods, and that is the only time it gets any value.

To minimize E[v(bbb,QQQ′)] − E[v(bbb,QQQ)], the adversary’s optimal play is to put weight
m1/(1−m) onto the bundle in which all items are won, and puts the remaining weight onto
the bundle in which no items are won. The marginal probability of winning each good is
m1/(1−m). Perceived expected value is v

∏m
j=1m

1/(1−m) = v
(
mm/(1−m)

)
. Actual expected

value is v
(
m1/(1−m)

)
.

Proof of Theorem 3.4. To maximize E[v(bbb,QQQ′)] − E[v(bbb,QQQ)], it can be shown that
adversary’s optimal play is to put weight m1/(1−m) onto the bundle in which no items are
won, and to put the remaining weight on the bundle in which all items are won. In such a
case, the marginal probability of winning each good is 1−m1/(1−m).

To minimize E[v(bbb,QQQ′)] − E[v(bbb,QQQ)], the adversary’s optimal play is to spread the joint
probability evenly amongst all bundles that only win a single good, so that each has weight
1/m. In such a case, the marginal probability of winning each good is 1/m. Perceived

expected value is v
[
1−∏j(1− 1/m)

]
= v[1 − (1 − 1/m)m]. Actual expected value is v.

The difference between these is v(1− 1/m)m.

Proof of Theorem 3.5. Let bbb∗ ∈ argmaxbbb E[u(bbb,QQQ)]; let bbb′ ∈ argmaxbbb E[u(bbb,QQQ′)]; and
let bbb be the bid vector that ensues by following strategy s(fQQQ′ , v).

E[u(bbb∗,QQQ)]− E[u(bbb,QQQ)] ≤ [E[u(bbb∗,QQQ′)] + α(u)]− [E[u(bbb,QQQ′)]− α(u)] (16)

≤ [E[u(bbb′,QQQ′)] + α(u)]− [E[u(bbb,QQQ′)]− α(u)] (17)

≤ [(E[u(bbb,QQQ′)] + β) + α(u)]− [E[u(bbb,QQQ′)]− α(u)] (18)

= β + α(u) + α(u)

Eq. 16 holds by the definitions of α(u) and α(u). Eq. 17 holds because bbb′ is optimal under
fQQQ′ , so it must have expected utility at least that of bbb∗ under fQQQ′ . Eq. 18 holds because
strategy s places bids within β of optimal under fQQQ′ .

A.2. Details of bounds on α and α

Combining the error bounds for expected value and expected costs, we achieve bounds on
the maximum error (in terms of both over and underestimation) of using fQQQ′ to compute
expected utility for both perfect complements and perfect substitutes.

α(u) = max
fQQQ,bbb
{E[v(bbb,QQQ′)]− E[v(bbb,QQQ)]} α(u) = min

fQQQ,bbb
{E[v(bbb,QQQ′)]− E[v(bbb,QQQ)]}

Let ucomp represent a utility function that has perfect complements, and usub a utility
function that has perfect substitutes. Plugging in the (tight) bounds from Thms. 3.3 and 3.4,
we get

α(ucomp) = v

(
m− 1

m

)m

α(ucomp) = −v
(

m− 1

m(m1/(m−1))

)

α(usub) = v

(
m− 1

m(m1/(m−1))

)
α(usub) = −v

(
m− 1

m

)m

A.3. Proofs regarding local searches

Proof. The proof of Proposition 5.3 relies on the following observations:



Proceedings Article

(1) w(bbb, qqq) = ∪kw(bk, qk) = w(bbb−j , qqq−j) ∪ w(bj , qj)
(2) w(bbb, qqq) ∪ {j} = w(bbb−j , qqq−j) ∪ w(bj , qj) ∪ {j} = w(bbb−j , qqq−j) ∪ {j}
(3) w(bbb, qqq) \ {j} = (w(bbb−j , qqq−j) ∪ w(bj , qj)) \ {j} = w(bbb−j , qqq−j)

JointLocal.

bj ← E[v(w(bbb,QQQ) ∪ {j})]− E[v(w(bbb,QQQ) \ {j})]

=

∫ ∞
q1=0

∫ ∞
q2=0

· · ·
∫ ∞
qm=0

[v(w(bbb, qqq) ∪ {j})− v(w(bbb, qqq) \ {j})] fQQQ(q1, q2, . . . , qm)dq1dq2 · · · dqm

=

∫
qj

∫
qqq−j

[v(w(bbb−j , qqq−j) ∪ {j})− v(w(bbb−j , qqq−j))] fQQQ−j |Qj
(qqq−j | qj)fQj

(qj)dqqq−jdqj

=

∫
qqq−j

[v(w(bbb−j , qqq−j) ∪ {j})− v(w(bbb−j , qqq−j))] fQQQ−j
(qqq−j)dqqq−j

∫
qj

fQj (qj)dqj (19)

=

∫
qqq−j

[v(w(bbb−j , qqq−j) ∪ {j})− v(w(bbb−j , qqq−j))] fQQQ−j
(qqq−j)dqqq−j

=

∫
qqq−j

[v(w(bbb−j , qqq−j) ∪ {j})− v(w(bbb−j , qqq−j))]
∏
k 6=j

fQk
(qk)dqqq−j (20)

We apply the independence assumption first in deriving line 19, and then again in deriving
line 20.

CondMVLocal.

bj ← E [v(w(bbb,QQQ) ∪ {j}) | Qj ≤ bj − v(w(bbb,QQQ) \ {j}) | Qj ≤ bj ]
= E [v(w(bbb−j ,QQQ−j) ∪ {j})− v(w(bbb−j ,QQQ−j)) | Qj ≤ bj ]

=

∫
qqq−j

[v(w(bbb−j , qqq−j) ∪ {j})− v(w(bbb−j , qqq−j))]

∫ bj
qj=0

fQQQ(qqq−j , qj)dqj∫
qqq−j

∫ bj
qj=0

fQQQ(qqq−j , qj)dqjqqq−j
dqqq−j

=

∫
qqq−j

[v(w(bbb−j , qqq−j) ∪ {j})− v(w(bbb−j , qqq−j))]
fQQQ(qqq−j , qj ≤ bj)
fQj (qj ≤ bj)

dqqq−j

=

∫
qqq−j

[v(w(bbb−j , qqq−j) ∪ {j})− v(w(bbb−j , qqq−j))]
fQQQ−j |Qj

(qqq−j | qj ≤ bj)fQj
(qj ≤ bj)

fQj
(qj ≤ bj)

dqqq−j

=

∫
qqq−j

[v(w(bbb−j , qqq−j) ∪ {j})− v(w(bbb−j , qqq−j))] fQQQ−j |Qj
(qqq−j | qj ≤ bj)dqqq−j

=

∫
qqq−j

[v(w(bbb−j , qqq−j) ∪ {j})− v(w(bbb−j , qqq−j))] fQQQ−j
(qqq−j)dqqq−j (21)

=

∫
qqq−j

[v(w(bbb−j , qqq−j) ∪ {j})− v(w(bbb−j , qqq−j))]
∏
k 6=j

fQk
(qk)dqqq−j (22)

We apply the independence assumption first in deriving line (21), and then again in deriving
line (22).

A.4. Counterexamples for local search heuristics

The local search heuristics introduced in this paper are not optimal. In this appendix, we
present counterexamples that demonstrate their suboptimality.

Example 1. Suppose m = 2; valuations are perfect complements with value 50 for winning
both goods and value 0 otherwise; price predictions are such that two price vectors are
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equally likely: (30, 0) and (0, 30); and bbb = (25, 25). Further, suppose JointLocal is currently
updating its bid for good j = 1. In such a case, JointLocal’s bid for good j is:

b1 ← E [v(w(bbb,QQQ) ∪ {1})]− E[v(w(bbb,QQQ) \ {1})]
= [.5v(w((25, 25), (30, 0)) ∪ {1}) + .5v(w((25, 25), (0, 30)) ∪ {1})]−

[.5v(w((25, 25), (30, 0)) \ {1}) + .5v(w((25, 25), (0, 30)) \ {1})]
= [.5v({2} ∪ {1}) + .5v({1} ∪ {1})]− [.5v({2} \ {1}) + .5v({1} \ {1})]
= [.5(50) + .5(0)]− [.5(0)]

= 25

First, observe that this setup is symmetric, so that updating its bid on good 2 would also
yield 25, meaning JointLocal converges to bbb = (25, 25). Second, the bid vector bbb = (25, 25)
yields an expected utility of 0: the agent will never win both goods, so it will never receive
any value. A better bid on good 1 would have been 31, because the bid vector bbb = (31, 25)
yields an expected utility of 10.

Example 2. As above, suppose m = 2; valuations are perfect complements with value
50 for winning both goods and value 0 otherwise; and bbb = (25, 25). But this time assume
that three price vectors are equally likely: (30, 10), (10, 30), and (10, 10). Finally, as above,
suppose CondMVLocal is currently updating its bid for good j = 1. In such a case, Cond-
MVLocal’s bid for good j = 1 (and j = 2, by symmetry) is:

b1 ← E [v(w(bbb,QQQ) ∪ {1})− v(w(bbb,QQQ) \ {1}) | Q1 ≤ b1]

= .5[v(w((25, 25), (10, 30)) ∪ {1})− v(w((25, 25), (10, 30)) \ {1})] +

.5[v(w((25, 25), (10, 10)) ∪ {1})− v(w((25, 25), (10, 10)) \ {1})]
= .5[v({1} ∪ {1})− v({1} \ {1})] + .5[v({1, 2} ∪ {1})− v({1, 2} \ {1})]
= .5[0− 0] + .5[50−−0]

= 25

First, observe that this setup is symmetric, so that updating its bid on good 2 would also
yield 25, meaning CondLocal converges to bbb = (25, 25). Second, the bid vector bbb = (25, 25)
yields an expected utility of 10

3 : the agent wins both goods with probability 1
3 , in which

case it earns a utility of 30 (50-20), and it wins one good with probability 2
3 , in which cases

it incurs costs of 10. A better bid on good 1 would have been 31, which yields an expected
utility of 10: 1

3 (30) + 1
3 (10) + 1

3 (−10).

A.5. Optimization Experiments: Raw Data

Table VI presents the mean and standard deviations of expected utility for the optimization
experiments described in Sec. 7.
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Table VI. Local Search Optimization Results (mean,std)

Env TC MargLocal MargDownHill JointLocal JointDownHill

L1[2,5] 0.07447 (1.481, 3.048) (1.479, 3.047) (1.481, 3.048) (1.483, 3.049)
S[2,5] 0.3135 (4.147, 6.295) (4.136, 6.3) (4.148, 6.295) (4.173, 6.284)

L1[3,5] 0.161 (1.276, 3.239) (1.274, 3.239) (1.276, 3.239) (1.284, 3.245)
S[3,5] 0.8411 (4.901, 7.603) (4.832, 7.636) (4.875, 7.617) (4.973, 7.578)

L1[4,5] 0.2663 (1.231, 3.266) (1.227, 3.264) (1.231, 3.267) (1.231, 3.266)
S[4,5] 1.283 (5.149, 8.242) (5.071, 8.264) (5.138, 8.254) (5.134, 8.271)
S[5,2] 4.477 (8.983, 11.04) (9.006, 11.3) (9.686, 11.74) (10.08, 11.56)
S[5,4] 2.136 (6.645, 9.785) (6.593, 9.838) (6.673, 9.794) (6.67, 9.84)

L1[5,5] 0.3989 (1.892, 4.585) (1.89, 4.588) (1.892, 4.585) (1.886, 4.583)
S[5,5] 1.835 (5.341, 8.687) (5.22, 8.648) (5.319, 8.687) (5.29, 8.694)
S[5,6] 1.627 (4.903, 8.231) (4.828, 8.236) (4.909, 8.247) (4.918, 8.235)
S[5,8] 1.381 (4.022, 7.567) (4.0, 7.606) (4.014, 7.58) (4.006, 7.617)

L1[6,5] 0.5486 (2.492, 5.523) (2.489, 5.524) (2.496, 5.521) (2.492, 5.526)
S[6,5] 2.583 (6.206, 9.583) (6.153, 9.601) (6.235, 9.583) (6.205, 9.687)

L1[7,5] 0.5605 (3.852, 6.958) (3.838, 6.962) (3.854, 6.958) (3.835, 6.954)
S[7,5] 3.302 (6.482, 10.17) (6.449, 10.26) (6.62, 10.28) (6.587, 10.33)
S[8,5] 4.126 (6.584, 10.84) (6.56, 10.89) (6.664, 10.91) (6.636, 10.94)

L1[8,5] 0.6069 (4.598, 7.693) (4.571, 7.692) (4.586, 7.688) (4.571, 7.706)
L1[9,5] 0.6522 (5.818, 8.501) (5.786, 8.497) (5.811, 8.495) (5.782, 8.494)
S[9,5] 5.058 (6.948, 11.17) (6.853, 11.32) (7.035, 11.24) (6.949, 11.36)

L1[10,5] 0.6593 (6.023, 9.03) (5.975, 9.028) (6.01, 9.019) (5.975, 9.013)
S[10,5] 5.969 (6.557, 11.12) (6.477, 11.2) (6.767, 11.23) (6.59, 11.37)


