
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2013; 25:918–931
Published online 14 June 2012 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.2871

Performance metrics and auditing framework using application
kernels for high-performance computer systems

Thomas R. Furlani 1,*,†, Matthew D. Jones 1, Steven M. Gallo 1, Andrew E. Bruno 1,
Charng-Da Lu 1, Amin Ghadersohi 1, Ryan J. Gentner 1, Abani Patra 1, Robert L.

DeLeon 1, Gregor von Laszewski 2, Fugang Wang 2 and Ann Zimmerman 3

1Center for Computational Research, University at Buffalo, State University of New York, 701 Ellicott Street, Buffalo,
NY 14203, USA

2Pervasive Technology Institute, Indiana University, 2719 East 10th Street, Bloomington, IN 47408, USA
3School of Information, University of Michigan, 105 S. State Street, Ann Arbor, MI 48109, USA

SUMMARY

This paper describes XSEDE Metrics on Demand, a comprehensive auditing framework for use by high-
performance computing centers, which provides metrics regarding resource utilization, resource perfor-
mance, and impact on scholarship and research. This role-based framework is designed to meet the following
objectives: (1) provide the user community with a tool to manage their allocations and optimize their
resource utilization; (2) provide operational staff with the ability to monitor and tune resource performance;
(3) provide management with a tool to monitor utilization, user base, and performance of resources; and
(4) provide metrics to help measure scientific impact. Although initially focused on the XSEDE program,
XSEDE Metrics on Demand can be adapted to any high-performance computing environment. The frame-
work includes a computationally lightweight application kernel auditing system that utilizes performance
kernels to measure overall system performance. This allows continuous resource auditing to measure all
aspects of system performance including filesystem performance, processor and memory performance, and
network latency and bandwidth. Metrics that focus on scientific impact, such as publications, citations and
external funding, will be included to help quantify the important role high-performance computing centers
play in advancing research and scholarship. Copyright © 2012 John Wiley & Sons, Ltd.

Received 23 September 2011; Revised 11 May 2012; Accepted 11 May 2012

KEY WORDS: HPC Metrics; application kernels; XSEDE; UBMoD; XDMoD; HPCMoD

1. INTRODUCTION

Historically, many separate and diverse monitoring tools have been used within supercomputing
centers to address the diverse needs of end-users, system administrators, and center directors. This
includes Nagios [1], a monitoring solution for hosts, services, and networks; Ganglia [2], a scalable
distributed monitoring system for high-performance computing systems, such as clusters and Grids;
Cacti [3] for network graphing solutions; and Inca [4] for user-level Grid monitoring with peri-
odic, automated user-level testing of the software and services required to support Grid operation.
Furthermore, Grid-related tools including Globus and Condor include explicit modifications to
incorporate auditing and monitoring features. Condor provides, through Hawkeye [5], a mechanism
for collecting, storing, and using information about computers. Globus provided the first notable
user level auditing tool, initially developed by von Laszewski [6] to augment the GridFTP service.
Most recently the Globus project has significantly enhanced this work while explicitly integrating an

*Correspondence to: Thomas R. Furlani, Center for Computational Research, University at Buffalo, State University of
New York, 701 Ellicott Street, Buffalo, NY 14203, USA.

†E-mail: furlani@ccr.buffalo.edu

Copyright © 2012 John Wiley & Sons, Ltd.



XDMOD PERFORMANCE METRICS AND AUDITING FRAMEWORK 919

auditing component into GRAM [7] that can interface with the local accounting system of a resource
provider. In addition, efforts in accounting and auditing have been conducted as part of the TeraGrid
[8–21]. Hardware performance monitoring is accomplished using kernel-based access to hardware
counters or at a higher level of abstraction through PAPI Services [22]. The Open Science Grid
has developed the Gratia accounting system that utilizes a number of probes and a central collector
and graphical display capability [23]. Department of Energy (DOE) and Department of Defense
(DOD) programs have contributed system management and monitoring tools, including the Depart-
ment of Defense high-performance computing (HPC) modernization program’s sustained systems
performance monitoring tools [24, 25], the National Energy Research Scientific Computing Center
performance monitoring tools [26] and Department of Energy ‘operational assessment’ metrics for
various HPC sites [27].

At the academic high-performance computing center level, the open-source tool UB Metrics on
Demand (UBMoD) [28], presents resource utilization (CPU cycles consumed, total jobs, average
wait time, etc.) for individual users, research groups, departments, and decanal units. A role-based
authentication scheme is used to display data in the format best suited to the end-user (for example,
student, research group leader, department chair, dean, etc.). A web-based user interface provides a
dashboard for displaying resource consumption along with fine-grained control over the time period
and resources displayed. The data warehouse back-end is populated with data from resource man-
agers commonly found in high-performance computing environments (TORQUE [29], OpenPBS
[30], and SGE [31] are currently supported), and can be customized to support new resource man-
agers. The most recent release of UBMoD adds the ability to apply custom tags to users and jobs
and to then filter all reports using those tags. This provides complete flexibility for organizing users
into departments, projects, and groups. For example, users can be tagged as members of one or more
projects and reports can be dynamically generated for those projects.

Although numerous and diverse, the monitoring tools described above are largely passive and
local in nature, reporting on data such as total number of jobs run, CPU cycles delivered, average
wait time, etc. Existing user-oriented tools such as Inca provide notification in response to specific
triggers but do not provide global metrics. Unfortunately, this type of monitoring is not well suited
to identify hardware and software weaknesses or deficiencies in the computing infrastructure. For
example users frequently encounter problems when running on compromised or faulty hardware
that cause their calculation to either fail outright (through no fault of their own) or run so slowly
that it runs into the time limit. It is often very difficult for system support personnel to preemptively
catch all such potential problems, with the result that the end-users are the ‘canaries’ that report
damaged or underperforming resources, often after investigations that are very expensive both in
terms of computational resources and personnel time.

Today’s monitoring tools for HPC are further limited in that they fail to consider important
metrics such as impact on science, publications, citations and external funding supported by access
to HPC infrastructure. Although typically much more difficult to collect and certainly more subjec-
tive in nature, these metrics are nonetheless important to the long-term sustainability of academic
HPC centers. Despite the clear and crucial role that campus-based HPC centers play in supporting
research and scholarship at a modern research university [32], it is safe to say that all too often,
given today’s financial pressures, administrative support for such centers is difficult to garner and
budgetary pressure is constantly applied. This is partly due to the lack of quantitative metrics that
clearly demonstrate the utility, service, competitive advantage, and return on investment that these
centers provide. Because resources are limited, it is incumbent on HPC centers to provide quantita-
tive evidence to justify the university’s continued investment, and accordingly these metrics should
be an integral part of a holistic approach to monitoring.

The auditing framework presented here, XSEDE Metrics on Demand (XDMoD), seeks to remedy
some of the above-mentioned deficiencies. It rests on a foundation of traditional system monitoring
and response. However, the framework is also designed to preemptively identify potential
bottlenecks from user applications by deploying customized, computationally lightweight ‘appli-
cation kernels’ that continuously monitor system performance and reliability from the application
users’ point of view. We use the term ‘application kernel’ in this case to represent micro and
standard benchmarks that represent key performance features of modern scientific and engineering

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:918–931
DOI: 10.1002/cpe



920 T. R. FURLANI ET AL.

applications, and small but representative calculations carried out with popular open-source high-
performance scientific and engineering software packages. The term ‘computationally-lightweight’
is used to indicate that the application kernel runs for a short period (typically less than 10 min) on a
small number of processors (less that 128 cores) and therefore requires relatively modest resources
for a given run frequency (say once or twice per week). Accordingly, through XDMoD, system
managers have the ability to proactively monitor system performance as opposed to having to rely
on users to report failures or underperforming hardware and software. In addition, through this
framework, new users can determine which of the available systems are best suited to address their
computational needs. We begin with a description of the XDMoD architecture.

2. XSEDE METRICS ON DEMAND ARCHITECTURE

The system is comprised of three major components: the XDMoD Data Warehouse, which ingests
data daily from the XSEDE (XD) central database, the XDMoD RESTful API, which provides
services to external applications, and the XDMoD Portal, which utilizes the RESTful API and
provides an interface to the world; each of these is described in detail below. Figure 1 provides
a high-level schematic of the XDMoD framework architecture.

2.1. XDMoD Data Warehouse

The XDMoD Data Warehouse is the local repository for data obtained from multiple sources such
as the XSEDE central database (XDCDB) and Inca, and is responsible for importing and aggregat-
ing this data. The XSEDE central database is an extensive, unified database containing job statistics
such as number of jobs, job size, CPU hours consumed, job wait times, etc., for all jobs run on
XSEDE resources. It also stores allocation and user information. Inca serves as the deployment
engine for all of the XDMoD application kernels. Through a process called ingestion, data from
these sources are retrieved, parsed, aggregated across multiple dimensions for faster access, and

Figure 1. XDMoD architecture schematic.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:918–931
DOI: 10.1002/cpe



XDMOD PERFORMANCE METRICS AND AUDITING FRAMEWORK 921

subsequently stored in the XDMoD data warehouse. As is typical of many large data warehouses,
the data have been selectively denormalized to improve performance by reducing the need for join
operations as opposed to being represented in 3rd Normal Form [33]. To facilitate the ingestion of
XSEDE job data, we maintain a local mirror of the XDCDB that is updated daily from the primary
database. In terms of scale, the daily ingestion process for the XSEDE central database imports,
aggregates, and summarizes an average of 30K records from more than 20 active resources with
a total of approximately 1500 active users. During this process, relationships between the various
datasets are established so that information can be easily compared with the XDCDB.

An ingestion API has been developed to simplify the development of ingesters for new data
sources and also provide access to the information stored in the data warehouse. The current imple-
mentation of the API supports time series queries, which aggregate data over time based on a user
specified aggregation unit (day, month, quarter, year), and simple aggregation queries that sum or
average over a user defined period of time. By ‘time series’ we simply mean a sequence of data
points measured at successive time instants. Query results may be limited or restricted to certain
dimensions and statistics in the data warehouse depending on the users’ role. The API also provides
functionality for visualizing the results as charts or datasets (i.e., spreadsheets). As described in
Section 3, time series based datasets can be plotted as area, line, or bar charts, while aggregate
datasets can be plotted as bar, line, or pie charts. Moreover, the API provides multiple export
formats: PNG, EPS, CSV, XML, and JavaScript Object Notation.

It is important to note that while XDMoD is currently tailored to work with the data stored in
the XDCDB, future releases will allow for custom databases containing similar data collected by
individual HPC centers through the use of custom ingesters. In the meantime, the open source
package UBMoD is available to provide useful utilization metrics for academic HPC centers [28].

The XDMoD data warehouse employs a dimensional starflake model for storage of the ingested
data. Most data warehouse designs use dimensional models, such as Star-Schema, Snow-Flake, and
Star-Flake [34, 35]. A star-schema is a dimensional model with fully denormalized hierarchies,
whereas a snowflake schema is a dimensional model with hierarchies represented in the 3rd Normal
Form [36]. A starflake schema, a combination of a star schema and a snow-flake schema, provides
the best solution because it allows for a balance between two extremes. For example, while some
of the dimensions having a very long list of attributes that may be used in a query perform better
by being ‘snowflaked’, other dimensions perform better by using the star schema where the dimen-
sion is denormalized [38]. Therefore, the decision whether or not to normalize a dimension is based
on the properties of the dimension. Upon ingestion, the transactional data of various data sources
(e.g., XDCDB) are partitioned into ‘facts’ or ‘dimensions’. Dimensions are the reference informa-
tion that give context to facts. For example an XD job transaction can be partitioned into facts such
as the job_id and total CPU time consumed, and into dimensions such as resource provider, field of
science, funding allocation, and the principal investigator of the project.

Although a careful review of our star-flake schema design decreased query times by an average
of 10 times and up to 30 times over the initial snowflake design, the data warehouse still needed to
address performance of aggregating data over dynamic timeframes. For this purpose, the data ware-
house fact tables are aggregated (i.e., pivoted) one more time over units of time as a new dimension.
In this phase, we aggregate data over its complete duration by day, month, quarter and year. Keeping
multiple resolutions of aggregated data allows for faster queries and is especially important for large
data sets covering long periods of time.

The data from the fact table is summarized into aggregates and stored physically in a different
table than the fact table. Aggregates can significantly increase the performance of the query because
the query will read fewer data from the aggregates than from the fact table. Because the time to read
data from physical disk is the largest bottleneck in query execution time, reducing the number of
rows that need to be accessed greatly improves the query performance of the data warehouse.

2.2. RESTful API

To better abstract the underlying implementation and data organization and insulate both external
and internal components from any necessary changes to XDMoD internals we have implemented

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:918–931
DOI: 10.1002/cpe



922 T. R. FURLANI ET AL.

a RESTful API (that is conforming to representational state transfer as defined by Roy Fielding
[37]) that provides access to all supported functionality. To assist third party developers (and
internal developers needing to interface with XDMoD components), we have implemented a self-
documenting feature to make this task easier. The XDMoD RESTful API Catalog provides a
mechanism for API developers to include documentation within the API implementation that is
automatically formatted into a description document and presented to third party developers to assist
them in utilizing the API.

2.3. XSEDE Metrics on Demand portal

The XDMoD portal is a web-based application developed using open source tools including the
LAMP (Linux, Apache, MySQL, PHP) software stack and the ExtJS [38] user interface toolkit.
XDMoD is developed using the Model-View-Controller [39, 40] software design pattern with
the View being implemented entirely using the ExtJS user interface toolkit to provide the look-
and-feel and advanced features of a desktop application within a web browser. The Controller serves
as a router where service requests are received and sent to the appropriate Model (e.g., charting,
report building, application kernels, etc.) for handling. Multiple Controllers can be created to handle
specific types of requests such as the generation of charts, creation of customized reports, and
queries for information such as available resources to feed the user interface. We have chosen to
use authenticated RESTful services as the interface to all backend data services (Controllers and
Models) and to completely decouple the user interface (View) from the backend services. This
decoupling allows us to immediately achieve the goal of providing a service API that can be utilized
by third-party data ingestion or display tools such as Google gadgets or other portal infrastructures.
ExtJS is an advanced cross-browser JavaScript user interface toolkit that provides a rich set of func-
tionality that one would typically expect to find in a desktop application including drag-and-drop
functionality, event handling, callbacks, and customizable widgets. This provides XDMoD devel-
opers with a wide variety of features to build into the portal such as: tree views for organizing
hierarchical data, tabbed display panels for organizing and displaying different types of informa-
tion, a mechanism for easily utilizing RESTful services, and components for automatically parsing
data returned from those services.

Because the XDMoD Portal service has to meet the needs of diverse classes of users, the interface
includes an on-going user needs analysis. Additionally, we have adopted a role-based scheme, which
presents a customized view for each category of user.

3. XSEDE METRICS ON DEMAND FUNCTIONALITY

XSEDE Metrics on Demand provides a role-based web portal for mining HPC metrics data and
performing statistical analysis. In the present implementation of XDMoD, data are ingested daily
and queries are tuned to provide results within a few seconds. Currently XDMoD is designed to
function within the XSEDE framework, although future versions will support activities at academic
and industrial HPC centers. The XDMoD portal (https://xdmod.ccr.buffalo.edu) provides a rich set
of features accessible through an intuitive graphical interface, which is tailored to the role of the
user. Currently, five roles are supported: Public, User, Principal Investigator, Center Director and
Program Officer. Although XDMoD will continue to evolve over time, it is useful to describe some
of its current functionality.

As shown in Figure 2, which is a screen capture of the XDMoD interface for the Program Officer
role, the interface is organized by tabs. Different functional tabs are displayed for different XDMoD
roles. For illustrative purposes, we will focus on the Program Officer role. The Summary tab shown
in Figure 2 displays a snapshot overview of XSEDE, with several small summary charts visible.
Clicking on the XSEDE button (in the row underneath the tab row) brings up a drop down menu
that allows one to narrow the scope of the metrics displayed to a particular service provider. The
default is to show utilization over the previous month, but the user may select from a range of preset
date ranges (week, month, quarter, year to date, etc.) or choose a custom date range. The Usage tab

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:918–931
DOI: 10.1002/cpe



XDMOD PERFORMANCE METRICS AND AUDITING FRAMEWORK 923

Figure 2. XDMoD Portal Interface. Shown are four charts summarizing XD performance. Key features of
the interface include the ability to export the data and chart, select custom date ranges, display the chart
in several formats (column, pie, line, and area), and generate a custom report containing any number of

desired charts.

presently provides access to a set of 22 XSEDE-wide metrics that are accessible through the tree-
structure on the left-hand side of the portal window. If logged in under the User role as opposed to
the Program Officer role, then the usage tab provides details specific to your utilization as opposed
to all of XSEDE. The Usage Explorer tab, which also provides access to all of the metrics avail-
able through the Usage tab, facilitates comparison among the various metrics by allowing multi-axis
plots, as shown in Figure 3. The App Kernels tab provides information on the application kernel per-
formance on XSEDE resources. The data generated by the application kernels is substantial, making
the exploration of the data challenging. However, the App Kernel Explorer tab provides an interface
that facilitates exploration of the application kernel performance metrics. Here the user can easily
select a specific application kernel or suite of application kernels, a specific resource, and a range
of job sizes for which to view performance. The Search Usage tab allows the Program Officer to
view the utilization data for any XSEDE user. The Report Generator tab gives the user access to the
Custom Report Builder that allows a user to create and save custom reports. For example, a user
may wish to have specific plots and data summarized in a concise report that they can download
for offline viewing. The user can also choose to have custom reports generated at a user specified
interval (daily, weekly, quarterly, etc.) and automatically send to them via email at the specified time
interval, without the need to subsequently log into the portal.

Accessing XDMoD through the Public role (https://xdmod.ccr.buffalo.edu) requires no password,
and although not all the functionality listed above is available in this view, it does allow users to
explore utilization metrics of XSEDE resources over an adjustable timeframe.

Metrics provided by XDMoD include: number of jobs, service units charged, normalized units
provided, CPUs used, wait time, wall time, minimum, maximum and average job size, average
service units charged, average normalized units provided, average CPU used, average wall time,
average wait time and user expansion factor. These metrics can be broken down by: field of science,
gateway, institution, job size, job wall time, National Science Foundation (NSF) directorate, NSF
user status, parent science, person, Principal Investigator, and by resource. Please note that in this
paper a metric is defined to be an analytical measurement intended to quantify the state of a system.
A context-sensitive drill-down capability has been added to many charts allowing users to access
additional related information simply by clicking inside a plot and then selecting the desired metric.
For example, in Figure 3, which is a plot of total CPU hours by job size for all XSEDE resources,

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:918–931
DOI: 10.1002/cpe



924 T. R. FURLANI ET AL.

Figure 3. XDMoD portal interface showing Usage Explorer tab and a plot of total CPU hours and user
expansion factor by job size. The tree structure on the left-hand side shows the wide range of metrics and

groupings available through the Usage Explorer tab.

one can select any column in the plot and obtain additional information (such as field of science)
specific to the range of data represented by the column.

A ‘breadcrumb trail’ has also been implemented to provide users with feedback as to how they
arrived at a particular chart and provide a mechanism for moving back and forth within that hier-
archy. Additional functional features include: the ‘Export’ button that allows data to be output in
a variety of formats (CSV, XML, PNG), EPS), the ‘Filter’ button, which allows the user to select
which data to display and which to hide in a given plot, and the ‘Help’ button, which allows the user
access to the XDMoD user guide. The ‘Display’ button allows the user to customize the type and
appearance of the chart and to toggle between the display of a given chart or the data set used in its
generation and also to display time series (that is data plotted as a function of time).

4. APPLICATION KERNEL AUDIT SERVICE

Most modern, multipurpose HPC centers mainly rely upon system related diagnostics, such as net-
work bandwidth, processing loads, number of jobs run, and local usage statistics to characterize
their workloads and audit the performance of their infrastructure. However, this is quite different
from having the means to determine how well the computing infrastructure is operating with respect
to the actual scientific and engineering applications for which these HPC platforms are designed
and operated. Some of this is discernable by running benchmarks; however, in practice benchmarks
are so intrusive that they are not run very often (see, for example, Ref. [25] in which the application
performance suite is run on a quarterly basis), and in many cases only when the HPC platform is
initially deployed. Today’s HPC infrastructure is a complex combination of resources and environ-
ments that are continuously evolving, so it is difficult at any one time to know if optimal performance
of the infrastructure is being realized. The key to a successful and robust science and engineering-
based HPC technology audit capability lies in the development of a diverse set of computationally
lightweight application kernels that will run frequently on HPC resources to monitor and mea-
sure system performance, including critical components such as the global filesystem performance,
local processor-memory bandwidth, processing speed, and network latency and bandwidth. The

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:918–931
DOI: 10.1002/cpe



XDMOD PERFORMANCE METRICS AND AUDITING FRAMEWORK 925

application kernels are designed to address this deficiency, and to do so from the perspective of the
end-user applications. As noted in the introduction, we use the term ‘application kernel’ to repre-
sent micro and standard benchmarks that represent key performance features of modern scientific
and engineering applications, and small but representative calculations carried out with popular
open-source high-performance scientific and engineering software packages.

The initial set of application kernels were drawn from community open-source scientific and
engineering codes like NWChem [41, 42], GAMESS [43–45], NAMD [46, 47], WRF [48], and
CESM [49], and established low-level and microbenchmark tools [50, 51], MPI benchmarks [52],
high-performance LINPACK [53], and GRAPH500 [54]. Categorizing the current set of kernels has
been accomplished by application area, but as the kernel population grows we anticipate also using
a more functional approach similar to the Berkeley ‘dwarfs’ [55]. A recent Department of Energy
study for Exascale computing needs [56] exemplifies this overlap between application areas and the
kernel ‘dwarf’ classification of the computationally intensive algorithms involved. Table I shows
our current sampling of the dwarfs by application kernels (in terms of the original seven dwarfs and
the application areas we have sampled thus far).

Our initial set of application kernels largely fall into the application areas of molecular physics,
computational chemistry, weather/climate modeling, and nanoscale science, plus we have lower
level microbenchmarks and benchmarks specifically for input/output (I/O). The GRAPH500 bench-
mark samples a different, expanded view of the dwarf classification [57] in data-intensive graph-
oriented combinatorial kernels. The list of application kernels will continually be expanded to ensure
a thoroughly representative sampling of application areas, even as new applications are developed.

We have distilled ‘lightweight’ benchmarking kernels from these that are designed to run quickly
with an initially targeted wall-clock time of less than 10 min. However, we also anticipate a need for
more demanding kernels to stress larger computing systems subject to the needs of HPC resource
providers to conduct more extensive testing. The goal is to touch all major performance issues to
be found in typical HPC compute and data environments, including (1) local scratch, (2) global
filesystems for file staging and parallel I/O, (3) local processor-memory bandwidth, (4) processing
speed, and (5) network latency and bandwidth. For some aspects of performance it will become nec-
essary to develop customized kernels, but we are initially leveraging existing applications as much
as possible, provided that they can be kept lightweight and therefore low-impact.

This preliminary list of application kernels was not meant to be exhaustive — indeed we intend
to use an open-source framework that will easily allow for end-users to donate their own application
kernels to the service. Application kernels will be preferred that satisfy the following profiling and
usability criteria: (1) the application needs to provide reliable low-level performance data that can
be used for measuring the metric of choice: for example, NWChem provides I/O statistics on scratch
space used to store temporary files that can be used to identify underperforming and nonperforming
disk space, while STREAM can similarly be used for processor-memory bandwidth. (2) Essential
pieces of the system (processor, memory, and input/output) can all be tested from the application’s
point of view. While a single application kernel will not simultaneously test all of these aspects of
machine performance, the full suite of kernels will stress all of the important performance-limiting
attributes.

It is important to note, however, that the application kernels will run at regular intervals from
the user’s perspective, in that a regular user account is employed to run the kernels at both planned

Table I. Correspondence between currently deployed application kernels and the Berkeley dwarfs (the
original seven dwarfs have been considered thus far of the extended list of 13).

Fast Dense Sparse
Structured Unstructured Fourier linear linear N- Monte

Kernel class grids grids Transform algebra algebra body Carlo

Biomolecular
p p p p

Computational Chemistry
p p p p

Fluid Dynamics
p p

Climate/Weather Modeling
p p

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:918–931
DOI: 10.1002/cpe



926 T. R. FURLANI ET AL.

and requested intervals on XSEDE resources (even if the application kernels are light enough that
they require only a few minutes each, it is likely that there will be enough of them that only a
subset is run at any given time). The resulting performance data (including overall run time, run
time of various subsystems and other data characteristic of the various application kernels) will be
archived within the XDMoD framework and used to provide immediate and long-term feedback on
the performance profile of the HPC resources. An automated schedule can also be put in place for
running the kernels, initially corresponding to system maintenance times to minimize the impact on
normal operations and accommodate the occasional need for performing runs at large scale. These
intervals can easily be adjusted, and we further anticipate implementing a responsive unit in which
system support personnel at various HPC resources can place requests for custom scheduling of
the application kernel test suites, and quantitative measures of the application kernel coverage of
given resources. Notifications of diagnostic failures can be sent to support personnel automatically,
while performance issues will be flagged for lower priority notification and further testing. Existing
software infrastructure has been leveraged for running the application test kernels — currently Inca
is being used [4]. Thus, as shown in Figure 1, data from the application kernels are readily ingested
into the XDMoD Data Warehouse for subsequent analysis and access to users.

Crucial to the success of the application testing strategy, however, is the inclusion of historical
test data within the XDMoD data warehouse and data management system. Site administrators can
easily monitor application kernel run failures for troubleshooting performance issues at their site.
As an example, consider Figure 4, which shows the unanticipated results brought to light by a peri-
odically running application kernel based on the popular NAMD molecular dynamics package [46].
The application kernel detected a roughly 25% degradation in the NAMD baseline performance that
was the unanticipated result of a routine system-wide upgrade of the application version. Possible
strategies for restoring the pre-upgrade performance include the use of more aggressive compiler
options, but care will need to be exercised to ensure the desired level of accuracy is maintained.
Without application kernels periodically surveying this space, the loss in performance would have
gone unnoticed.

Application users will also be able to examine a performance profile for an application kernel of
their choice (or even one that they themselves submitted and had incorporated into the application

Figure 4. Plot of execution time of NAMD-based application kernel on 8, 16, 32, and 64 cores over a 1
month time period. Jump indicates when NAMD application underwent routine system-wide upgrade in the
application version, which resulted in as much as a 25% degradation in performance (note automatic change

indicator symbols indicate when application was upgraded).

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:918–931
DOI: 10.1002/cpe



XDMOD PERFORMANCE METRICS AND AUDITING FRAMEWORK 927

kernel testing distribution) to better predict their job’s execution time and selectively target better-
performing resources. We anticipate creating a user-selectable application role within XDMoD to
better allow end-users to preferentially view application kernel statistics that overlap their area of
interest. There is also great utility in cross-site performance data, because resource providers and
planners can use the data (including the queue wait times and overall job statistics for the kernels
themselves) to better allocate and design new HPC resources.

A further important component of application kernel based auditing will be the development of an
Application Kernel Toolkit that will facilitate the development of novel application kernels by other
groups interested in devising metrics to help evaluate their computing infrastructure. The toolkit
also will allow other HPC centers and providers to access the application kernels developed under
XDMoD and install and run them on their own clusters to improve performance and the delivery of
resources. The toolkit will initially consist of documentation and examples on existing application
kernels, together with scripts needed for integration with the monitoring framework. As the appli-
cation kernels evolve, a custodial process will be developed in which user-developed and supplied
kernels can be adopted into the mainstream collection. We anticipate that growth in the pool of
application kernels will necessitate an organized collection, into application areas focused around
the Berkeley ‘dwarfs’ that characterize the computation and communication demands of scientific
and engineering applications [55, 57].

5. FUTURE WORK

We have laid a solid foundation for XDMoD from which to build upon. For example, we are
working on a function called ‘User Like Me’, which has the capability of allowing users to rank
XD computational resources based upon the type of calculation that they are performing and help
set expectation levels for application performance. Thus, a user will be better able to judge if the
performance and scaling of their application on a given resource is reasonable by comparing their
results to similar applications. We are also working on ingesting grant and publication information
into the XDMoD database to provide quantitative metrics regarding scientific impact. Initially the
application kernels were run solely on Center for Computational Research computational resources
but the deployment has now been extended to run on the FutureGrid systems (futuregrid.org) and
on select XSEDE resources. Ultimately we will extend this throughout XSEDE, FutureGrid, and to
other HPC systems putting together an application kernel data warehouse that can be accessed using
XDMoD. An application kernel toolkit to facilitate application kernel development and deployment
is also being developed.

Perhaps most noteworthy is the development of an open-source version of XDMoD (HPCMoD)
that can be utilized by academic and industrial HPC centers to have a more far-reaching impact.
HPCMoD will represent a substantial upgrade of UBMoD both in terms of capabilities and ease of
use. The information utilized by XDMoD to describe the XSEDE structure, resources, and operation
is very similar in nature to the information that describes resources available at a typical HPC center.
In fact, a typical HPC center can be treated conceptually as XSEDE with a single resource provider.
Figure 5 displays how the relationships between various XSEDE entities such as HPC resources
organization, user hierarchy, and scientific hierarchy can readily be mapped to similar entities in
an academic or commercial organization. Both XSEDE and HPC centers employ the concept of
users, jobs, help desk tickets, publications, and one or more resources (e.g., compute cluster, storage
pool, etc.). Users also fall into a similar hierarchical organizational structure differing only in the
terms used to describe nodes in the hierarchy. On XSEDE, users are associated with a particular
NSF directorate and field of science based on their allocation; an academic HPC center may group
users by decanal unit and department (as is carried out in UBMoD); an industrial HPC center may
group users by project and department. Similarly, the job level information collected can include a
job name, wall clock time, start and end dates, memory utilization, and so on.

In addition, user access roles bear a strong resemblance between XSEDE and a typical HPC
center. Where XDMoD utilizes roles for a Program Officer, Center Director, Principal Investigator,
Campus Champion, User, and Public, a university-based HPC center might require similar roles for

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:918–931
DOI: 10.1002/cpe



928 T. R. FURLANI ET AL.

Figure 5. Data associations between XDMoD and a typical HPC center.

Figure 6. Role associations between XDMoD and a typical HPC Center.

a President/Provost, Dean, Department Head, Center Director, System Administrator, PI, and User
as shown in Figure 6. HPCMoD will provide a facility for adjusting the access of these roles so that
they are appropriate for a particular installation.

While the open source HPCMoD will utilize the same data warehouse, analysis back-end, and
visualization user interface as XDMoD, deployment in a non-XSEDE HPC environment will require
some level of development and information gathering efforts. For example, XSEDE collects their
organization, resource, user, and job information in the XDCDB. XDMoD utilizes tools called
‘ingesters’ (see Figure 1) to consume this information and format it for inclusion into the local
XDMoD data warehouse. For an individual HPC center with job data stored in resource manager
(e.g., PBS, LSF) log files, a custom ingester will be needed to parse these log files and provide

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:918–931
DOI: 10.1002/cpe



XDMOD PERFORMANCE METRICS AND AUDITING FRAMEWORK 929

the extracted information to the HPCMoD data warehouse. Although we intend to develop custom
ingesters for some of the common resource managers, we expect that other HPC centers will con-
tribute their custom ingesters for inclusion in future releases. Information describing users, projects
and hierarchical structure of an organization will also be needed but this process will be facilitated
by interfaces and the API provided by HPCMoD.

It should be noted that the display and analysis of application kernel data will remain largely
unchanged between XDMoD and the open source HPCMoD. This is due to the fact that the
application kernel data are generally specific to the applications themselves rather than the individual
resources.

6. CONCLUSIONS

XSEDE Metrics on Demand has become a useful tool for rapid, high-level monitoring of the XSEDE
infrastructure that is currently utilized by XSEDE leadership, service providers, and NSF program
officers to monitor performance and guide policy decisions [58]. For example, XDMoD tools can
readily audit the XD system to compile weekly, monthly, quarterly, or annual reports breaking down
the services delivered by investigator, institution, scientific discipline or resource as desired for
high-level program officers. Indeed, it is now utilized to generate utilization reports for all service
providers for inclusion in the XSEDE quarterly reports. Furthermore, the initial application kernel
deployment has shown itself to be useful even in early testing. For example, during the process of
running application kernels and testing them for scalability on our local HPC resources we discov-
ered that one of our production level molecular dynamics applications was incorrectly compiled
causing a substantial performance degradation for parallel jobs that were larger than eight pro-
cessors. Without the application kernels, this likely would have gone undetected for some time,
resulting in longer execution times for our users and wasteful utilization of already oversubscribed
resources. The application kernels also uncovered a subtle bug [58] in a vendor-supplied low-level
IO routine for our parallel file system that resulted in sporadic severe performance degradation
for NWChem, a heavily utilized quantum chemistry software package. Once informed, the vendor
provided a software patch to correct the problem. Again, without the application kernels, this
likely would have gone unnoticed given its sporadic nature. Users would simply have had to deal
with failed jobs, resubmitting them and hoping for successful completion. Furthermore, once fully
running on all XSEDE resources, the application kernels will provide end-users with a way to
compare application performance across service providers, and therefore help determine which of
the XSEDE resources is best suited to their application.

We anticipate that the full value of the XDMoD system for XSEDE will be realized when it
is fully operational and used by program managers and end-users to optimize their utilization
of XSEDE resources in all areas — from allocation requests to reporting results to determining
which systems are best suited for their application. Furthermore, XSEDE resource providers will
be able to use the system to conduct analyses to set and adjust policies that maximize system
usability and importantly proactively troubleshoot their HPC environment to ensure it is operat-
ing optimally. We also anticipate XDMoD usage cases where the instantaneous access to met-
rics will aide resource providers in making infrastructure decisions. Importantly, the open source
version of XDMoD will have an impact beyond XSEDE — providing university and industrial HPC
centers with a tool to optimize the delivery of high-performance computing resources to their local
user community. Although functionality continues to be added to XDMoD, the features summa-
rized in this paper have already proven quite useful and provide a solid foundation for future
development.

ACKNOWLEDGEMENTS

This work was sponsored by NSF under grant number OCI 1025159 for the development of technology
audit services for XSEDE. We would like to thank Lizhe Wang for his contributions on the report generator.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:918–931
DOI: 10.1002/cpe



930 T. R. FURLANI ET AL.

REFERENCES

1. Nagios: The Industry Standard. IT Infrastructure Monitoring: (Available from: http://www.nagios.org/ [August 19,
2011]).

2. Matthew L, Massie B, Chun N, Culler DE. The ganglia distributed monitoring system: design, implementation, and
experience. Parallel Computing 2004; 30(8):817–840.

3. Cacti: The Complete RRDTool-based Graphing Solution. (Available from: http://www.cacti.net/ [August 19, 2011]).
4. Smallen S, Olschanowsky C, Ericson K, Beckman P, Schopf J. The Inca test harness and reporting framework.

Proceedings of Supercomputing, Pittsburg PA, 2004; 55–64. See also: Inca. http://inca.sdsc.edu [September 1, 2011].
5. Hawkeye: A Monitoring and Management Tool for Distributed Systems. (Available from: http://www.cs.wisc.edu/

condor/hawkeye/ [August 19, 2011]).
6. Laszewski V. Grid Usage Sensor Service. (Available from: http://128.150.4.107/awardsearch/showAward.do?

AwardNumber=0414407 [August 19, 2011]).
7. Martin S, Lane P, Foster I, Christie M. TeraGrid’s GRAM Auditing & Accounting, & Its Integration with the LEAD

Science Gateway, TeraGrid Workshop, 2007. (Available from: http://www.globus.org/alliance/publications/papers/
TG_GRAM_auditing_and_LEAD_Gateway_final_2.pdf [August 19, 2011]).

8. GPIR. (Available from: http://www.tacc.utexas.edu/projects/gpir.php [September 8, 2011]).
9. TeraGrid Knowledge Base: How can I check my TeraGrid account balance? (Available from: <http://teragrid.org/

cgi-bin/kb.cgi?docid=avvj&portal=1> [October 28, 2008]).
10. TeraGrid Knowledge Base: How can I tell if a TeraGrid resource is available? (Available from: <http://teragrid.org/

cgi-bin/kb.cgi?docid=auzl&portal=1> [May 16, 2008]).
11. TeraGrid Traffic Map. (Available from: https://network.teragrid.org/trafmap/ [August 19, 2011]).
12. TeraGrid Information Services. (Available from: <http://info.teragrid.org/> [September 8, 2011]).
13. TeraGrid Knowledge Base: On the TeraGrid, how do I convert service units on one platform to the equivalent

amount on another platform? (Available from: <http://teragrid.org/cgi-bin/kb.cgi?docid=awhb&portal=1> [October
28, 2008]).

14. TeraGrid Knowledge Base: What is Inca? (Available from: <http://teragrid.org/cgi-bin/kb.cgi?docid=avzd&portal=
1> [May 22, 2008]).

15. TeraGrid Knowledge Base: How does Inca work? (Available from: <http://www.teragrid.org/cgi-bin/kb.cgi?docid=
avzp> [July 21, 2008]).

16. Reporters and Reporter Repositories. (Available from: <http://inca.sdsc.edu/drupal/reporters> [August 19, 2011]).
17. (Available from: http://inca.sdsc.edu/repository/latest/cgi-bin/list_reporters.cgi [September 8, 2011]).
18. TeraGrid Knowledge Base: What is pfmon, and can I run it on the TeraGrid? (Available from: <http://teragrid.org/

cgi-bin/kb.cgi?docid=axcv&portal=1> [September 18, 2008]).
19. Katz DS, Hart D, Jordon C, Majumdar A, Navarro JP, Smith W, Towns J, Welch V, Wilkins-Diehr N. Cyberin-

frastructure usage modalities on the TeraGrid. IEEE International Parallell & Distributed Processing Symposium,
Anchorage AK, 2011; 932, DOI: 10.1109/1PDPS.2011.239.

20. Hart DL. Measuring TeraGrid: workload characterization for an HPC federation. IJHPCA 2011; 25(4):451–465.
DOI: 10.1177/1094342010394382. Advance online publication, Feb. 10, 2011.

21. Hart DL. Deep and wide metrics for HPC resource capability and project usage, SC11 state of the practice reports
(Seattle, WA), 2011. DOI: 10.1145/2063348.2063350.

22. TeraGrid Knowledge Base: What is PAPI, and where is it installed on the TeraGrid? (Available from: <http:
//teragrid.org/cgi-bin/kb.cgi?docid=axba&portal=1> [October 17, 2008]).

23. Canal P, Green C. GRATIA, a resource accounting system for OSG. CHEP, Victoria, B.C., 2007.
24. DOD HPC modernization program metrics. (Available from: http://www.hpcmo.hpc.mil/Htdocs/HPCMETRIC/

index.html [December 16, 2011]).
25. Bennett PM. Sustained systems performance monitoring at the U. S. Department of Defense high performance com-

puting modernization program. In State of the Practice Reports (SC ’11), Article 3. ACM: New York, NY, USA,
2011; 11 pages, DOI: 10.1145/2063348.2063352. http://doi.acm.org/10.1145/2063348.2063352.

26. NERSC performance monitoring tools. (Available from: https://www.nersc.gov/research-and-development/
performance-and-monitoring-tools/ [December 16, 2011]).

27. DOE “operational assessment” metrics for various HPC sites, for example ORNL. (Available from: http://info.ornl.
gov/sites/publications/files/Pub32006.pdf [December 16, 2011]).

28. University at Buffalo Metrics on Demand (UBMoD): Open source data warehouse and web portal for mining
statistical data from resource managers in high-performance computing environments. Developed at the Center
for Computational Research at the University at Buffalo, SUNY. Freely available under an open source license
at SourceForge at http://ubmod.sourceforge.net/ [May 1, 2012].

29. TORQUE Resource Manager. (Available from http://en.wikipedia.org/wiki/TORQUE_Resource_Manager, a fork of
OpenPBS that is maintained by Adaptive Computing Enterprises, Inc. (http://www.adaptivecomputing.com/)).

30. OpenPBS. (Available from http://www.mcs.anl.gov/research/projects/openpbs/, http://en.wikipedia.org/wiki/
Portable_Batch_System,andhttp://www.pbsworks.com/).

31. SGE (Sun Grid Engine), now known as Oracle Grid Engine. (Available from http://en.wikipedia.org/wiki/Oracle_
Grid_Engine, http://gridscheduler.sourceforge.net/).

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:918–931
DOI: 10.1002/cpe



XDMOD PERFORMANCE METRICS AND AUDITING FRAMEWORK 931

32. Apon A, Ahalt S, Dantuluri V, Gurdgiew C, Limayem M, Ngo L, Stealey M. High performance computing
instrumentation and research productivity in U.S. universities. Journal of Information Technology Impact 2010;
10(2):87–98.

33. Elmasri R, Navathe SB. Fundamentals of Database Systems. Pearson Education: New York, 2004. Print.
34. Levene M, Loizou G. Why is the snowflake schema a good data warehouse design? Information Systems 2003;

28(3):225–240. DOI: 10.1016/S0306-4379(02)00021-2. http://dx.doi.org/10.1016/S0306-4379(02)00021-2.
35. Moody DL, Kortink MAR. From: ER models to dimensional models: bridging the gap between OLTP and OLAP

design. Journal of Business Intelligence Summer(2003); 8:3.
36. Lin B (Betsy), Hong Y, Lee Z-H. Data warehouse performance. In Encyclopedia of Data Warehousing and Mining,

Wang John (ed.), 2nd edn. IGI Global: Hershey, PA, 2009; 318–322.
37. Fielding R. Architectural styles and the design of network-based software architectures retrieved from http://www.

ics.uci.edu/~fielding/pubs/dissertation/top.htm, 2000.
38. ExtJS Website. (Available from: http://www.sencha.com/products/extjs/ [May 25, 2012]).
39. Krasner GE, Pope ST. A cookbook for using the model-view controller user interface paradigm in smalltalk-80. J.

Object Oriented Programming 1988; 1(3):26–49.
40. Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M. Pattern-Oriented Software Architecture, A System of

Patterns. John Wiley & Sons: New York, 1996.
41. Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, van Dam HJJ, Wang D, Nieplocha J, Apra E,

Windus TL, de Jong WA. NWChem: a comprehensive and scalable open-source solution for large scale molecular
simulations. Computer Physics Communications 2010; 181:1477.

42. (Available from: http://www.nwchem-sw.org [December 16, 2011]).
43. Schmidt MW, Baldridge KK, Boatz JA, Elbert TS, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA,

Su S, Windus TL, Dupuis M, Montgomery JA. General atomic and molecular electronic structure system. Journal of
Computational Chemistry 1993; 14:1347–1363.

44. Gordon MS, Schmidt MW. Advances in electronic structure theory: GAMESS a decade later. In Theory and Applica-
tions of Computational Chemistry: the First Forty Years, Dykstra CE, Frenking G, Kim KS, G.E.Scuseria GE (eds).
Elsevier: Amsterdam, 2005; 1167–1189.

45. (Available from: http://www.msg.ameslab.gov/gamess [December 16, 2011]).
46. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten

K. Scalable molecular dynamics with NAMD. Journal of Computational Chemistry 2005; 26:1781–1802. DOI:
10.1002/jcc.20289.

47. (Available from: http://www.ks.uiuc.edu/Research/namd [December 16, 2011]).
48. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker M, Duda KG, Huang XY, Wang W, Powers JG. A

description of the advanced research WRF version 3. Technical Report, National Center for Atmospheric Research,
NCAR/TN–475+STR, 2008. (Available from: http://www.wrf-model.org).

49. (Available from: http://www.cesm.ucar.edu [May 25, 2012]).
50. McCalpin JD. Memory bandwidth and machine balance in current high performance computers. IEEE Computer

Society Technical Committee on Computer Architecture (TCCA) Newsletter, December 1995.
51. (Available from: http://www.cs.virginia.edu/stream/ref.html [May 25,2012]).
52. OSU Micro Benchmarks 3.3. (Available from: http://mvapich.cse.ohio-state.edu/benchmarks/ [September 1,

2011]). See also: Intel MPI Benchmarks 3.2.2. (Available from: http://software.intel.com/en-us/articles/
intel-mpi-benchmarks [September 1, 2011]).

53. Petitet A, Whaley RC, Dongarra J, Cleary A. HPL - a portable implementation of the high-performance
linpack Benchmark for distributed-memory computers. (Available from: http://netlib.org/benchmark/hpl [September
1, 2011]).

54. Murphy RC, Wheeler KB, Barrett BW, Ang JA. Introducing the Graph 500. Cray User’s Group (CUG), May 5, 2010.
(Available from: http://www.graph500.org/ [May 25, 2012]).

55. Asanovic K, Bodik R, Catanzaro B, Gebis J, Husbands P, Keutzer K, Patterson D, Plishker W, Shalf J,
Williams S, Yelik K. The landscape of parallel computing research: a view from Berkeley. Technical Report
UCB/EECS-2006-183, EECS Department, University of California at Berkeley, December 2006.

56. Ahern SD, Alam SR, Fahey MR, Hartman-Baker RJ, Barrett RF, Kendall RA, Kothe DB, Messer OEB, Mills RT,
Sankaran R, Tharrington AN, White JB, III. Scientific application requirements for leadership computing at the
exascale. Proceedings of the 2008 Cray User Group Meeting, Helsinki, Finland, May 5–8, 2008. Also available as
ORNL/TM-2007/238.

57. Dwarf Mine. (Available from: http://view.eecs.berkeley.edu/wiki/Dwarf_Mine [September 1, 2011]).
58. Furlani TR, Schneider BI, Jones MD, Towns J, Hart DL, Patra AK, DeLeon RL, Gallo SM, Lu C, Ghadersohi A,

Gentner RJ, Bruno AE, Boisseau JR, Wang F, von Laszewski G. Data analytics driven cyberinfrastructure operations,
planning and analysis using XDMoD. submitted SC12 Conference, Salt Lake City, Utah, November 2012.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:918–931
DOI: 10.1002/cpe


