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Summary
Since its introduction in 1965, minimum alveolar concentration (MAC) has served as the standard measure of

potency for volatile anaesthetic agents. It is defined as the minimum alveolar concentration of inhaled anaesthetic at

which 50% of people do not move in response to a noxious stimulus. Within the last 20 years, it has been discovered

that volatile anaesthetics inhibit mobility largely through action on the spinal cord, whereas the amnesic and hyp-

notic effects are mediated by the brain. Studies suggest that the concentration of volatile anaesthetic needed to pre-

vent explicit memory from developing, and to produce unconsciousness, is usually substantially lower than the

concentration required to prevent movement in response to surgery. This review highlights the contributions and

limitations of MAC and its derivatives as metrics of anaesthetic potency with respect to particular behavioural out-

comes. Recent evidence is presented suggesting that a protocol that alerts anaesthetists whenever MAC falls to < 0.5

or 0.7 has the potential to decrease intra-operative awareness with explicit recall, possibly to a similar extent as does

a protocol based on processed electroencephalography-driven alerting.
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For more than 165 years, inhaled volatile anaesthetics

have played a central role in anaesthetic practice [1].

They are relatively inexpensive, convenient to use, and

have predictable therapeutic and side-effects. Today,

measurement of end-tidal anaesthetic concentrations

provides real-time feedback, and facilitates target-

controlled titration of volatile anaesthetic agent

administration.

Between the 1840s and the 1960s, the introduction

of new agents underscored the need for methods to

measure and compare anaesthetic potencies and to

determine adequacy of dosing [1]. Early methods

proposed to assess depth of anaesthesia were based on

clinical observations. Guedel defined stages of anaes-

thesia based on alterations in breathing, muscle tone,

pupil diameter, lacrimation and eyelid reflex [2].

In Woodbridge’s concept of ‘nothria’ (a term intended

to encompass mental and motor inactivity coupled

with insensibility) depth of anaesthesia was assessed

clinically according to changes in sensation, move-

ment, reflexes and mentation [3]. However, these qual-

itative assessments varied with different anaesthetics,

limiting their clinical utility. In 1965, Eger et al. intro-

duced the concept of minimum alveolar concentration
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(MAC), relating concentration or partial pressure of

inhaled anaesthetics to a single clinically relevant end-

point of general anaesthesia: immobility in response to

a surgical stimulus [4].

The utility and reliability of MAC as an anaes-

thetic metric assumes that the end-tidal anaesthetic

partial pressure is an accurate reflection of alveolar

partial pressure, which in turn reflects partial pressure

at the effect site. Pharmacokinetic studies report that

partial pressures do indeed equilibrate in the alveoli,

arteries, brain and other tissues at varying rates,

depending on the physical properties of the particular

volatile anaesthetic agent [5, 6]. By determining the

relationship of measured anaesthetic partial pressures

to a given anaesthetic effect, specifically the suppres-

sion of movement in response to a surgical stimulus,

Eger et al. created a measure of potency. Unlike the

earlier qualitative methods proposed by Guedel and

Woodbridge to assess anaesthetic potency, MAC is

quantitative and can be applied to all inhaled anaes-

thetics [4, 7]. Early studies demonstrated that MAC

was a useful and reproducible metric in both animals

and humans, and that MAC did not increase with

stimulus intensity beyond a certain point (supramaxi-

mal stimulation) [4]. Given these important character-

istics and the ease of measurement of end-tidal

anaesthetic agents, MAC remains the standard index

for comparison of volatile anaesthetic potency.

Although volatile anaesthetics bind to protein tar-

gets [8], the Meyer-Overton relationship, that volatile

anaesthetic potency varies directly with lipid solubility

[9, 10], holds true for commonly used inhaled anaes-

thetic agents [11, 12]. Therefore, MAC can be esti-

mated from the following equation [13]:

MAC � k � 1:82 atmospheres

where k = olive oil/gas partition coefficient. Expressed

more simply, the product of MAC and lipid solubility

is a constant; as lipid solubility decreases, MAC

increases (Fig. 1). Thus, if a new volatile anaesthetic

was introduced with a MAC of 9%, we could conclude

that it was less potent (given its higher MAC) and less

soluble than desflurane (which has a MAC of 6%).

Minimum alveolar concentration for various

inhaled anaesthetics and factors that influence MAC

have been identified [14]. Equipotent administration of

different agents (i.e. expressed as MAC equivalents)

has enabled comparison of pharmacological effects on

physiological variables to be described, such as respira-

tory rate and blood pressure. In this review, we sum-

marise the current literature regarding MAC, examine

factors that modulate MAC, discuss advantages and

disadvantages of its use as a metric, and highlight key

clinical studies that attest to its utility.

Definition of MAC
Minimum alveolar concentration is defined as the

minimum alveolar concentration at sea level of inhaled

anaesthetic required to prevent apparently purposeful

movement in 50% of patients in response to surgical

incision [4, 14]. Synonyms for MAC include ‘EC50 for

immobility’, ‘MAC-movement’, ‘minimum alveolar

partial pressure (for 50% immobility)’ and ‘median

alveolar concentration (for immobility)’. In typical

human studies to determine MAC, anaesthesia is

induced (in a volunteer) with the inhaled agent of

interest and maintained at a preselected end-tidal

anaesthetic concentration (ETAC) for 15 min to allow

equilibration of alveolar and arterial partial pressures.

A standard noxious stimulus is then applied and the

volunteer is observed for an apparently purposeful
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Figure 1 Relationship between MAC (log scale) and
olive oil to gas partition coefficient (k; log scale) [91].
The figure illustrates that for commonly used inhaled
anaesthetic agents, the product of MAC and k is a
constant. In general, decreased solubility is associated
with decreased potency, increased MAC and faster
onset of action.
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response, such as head or limb movement [4, 15].

These steady-state concentrations may be increased or

decreased based on the observed response. Plotting the

proportion/percentage of patients not moving (depen-

dent variable) against anaesthetic concentrations (inde-

pendent variable) creates a dose-response curve [4,

15]. MAC is a single point on this curve, correspond-

ing to the concentration of anaesthetic at which 50%

of patients do not move in response to the stimulus

(Fig. 2). The standard deviation (SD) of MAC is gen-

erally ~10%, indicating that 1.2 MAC (i.e. MAC + 2

SD) should produce immobility to stimulation in

~95% of patients [16]. The steepness of this curve

reflects that there is relatively little variability in the

concentration of inhaled anaesthetic agent required to

prevent movement to a noxious stimulus between sub-

jects. This relatively narrow range of volatile anaes-

thetic concentrations highlights the clinical utility of

these drugs. Compared with potent volatile anaesthetic

agents, there is wider interpatient percentage variability

in the concentration of propofol required to prevent

movement in response to a noxious stimulus [17].

Therefore, notwithstanding other information, practi-

tioners can better predict the concentration at which

the majority of patients are very unlikely to move in

response to noxious stimulus during volatile-based

anaesthesia compared with propofol-based intravenous

anaesthesia [16]. However, the steepness of the slope

for volatile agents also means that a large proportion

of patients could start moving in response to noxious

stimulation with relatively small decrements in anaes-

thetic concentration just below MAC (Fig. 2). This can

occur rapidly and cause adverse consequences with

more insoluble volatile anaesthetics such as desflurane

if, for example, the vaporiser is turned off and the

practitioner forgets to restart anaesthetic delivery, or if

the vaporiser becomes empty unnoticed or if the prac-

titioner intentionally turns off the vaporiser before

reversing neuromuscular blockade.

MAC derivatives
A similar approach to the one described to ascertain

MAC has been used to determine the potency of

inhaled anaesthetics for other desirable clinical end-

points of general anaesthesia, such as unconsciousness

(usually inferred from the surrogate of unresponsive-

ness) or amnesia.

In an effort to develop a standard expression for

the anaesthetic concentration at which consciousness

might be regained, Stoelting et al. introduced the con-

cept of ‘MAC-awake’. An appropriate voluntary

response (e.g. eye-opening) to verbal command was

considered a positive response that indicated the pres-

ence of consciousness; MAC-awake was then defined

as the anaesthetic concentration needed to suppress a

voluntary response to verbal command in 50% of

patients [18]. It was determined by averaging anaes-

thetic concentrations in research participants that just

permitted and that just prevented a positive response

during recovery from general anaesthesia. While the

ratio of MAC-awake to MAC varies considerably

across different volatile agents, it is comparable for the

commonly used volatile anaesthetics isoflurane, sevo-

flurane and desflurane (Table 1). Clinically, the ratio

describes emergence from anaesthesia; a ratio closer to
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Figure 2 Relationship between anaesthetic concentra-
tion and the percent of people not moving in response
to a surgical stimulus [4]. This figure illustrates the rel-
atively narrow interperson variability in the anaesthetic
concentration required to suppress movement. Factors
that shift the curve to the left (i.e. decrease MAC) and
to the right (i.e. increase MAC) are shown in the
arrows [14]. Population effective concentrations are
shown for 5% (EC5), 50% (EC50) and 95% (EC95) of
the population [16]. The EC50 is synonymous with
MAC. SD, standard deviation.
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1 signifies patients will recover responsiveness sooner,

i.e. at relatively higher anaesthetic concentrations or

MAC equivalents (e.g. ~ 0.5 MAC for halothane vs

~ 0.3 MAC for desflurane). Yet, despite its use as a

surrogate, ‘unresponsiveness’ does not always indicate

‘unconsciousness’. Furthermore, MAC-awake studies

have been conducted with volunteers who were not

exposed to noxious stimuli. Therefore, anaesthetic con-

centrations at MAC-awake during surgical stimulation

do not necessarily imply that 50% of patients are

unconscious; they may only be unresponsive in the

absence of noxious stimulation.

Amnesia is also a clinically important effect of

general anaesthetics. Memory can be divided into

explicit (conscious) and implicit (unconscious) recall,

with explicit recall being further subdivided into epi-

sodic (memory of events) and semantic (memory of

facts about the world). The primary goal of anaesthe-

tists regarding memory is to suppress explicit episodic

memory of surgical or procedural events, which is the

form of peri-operative memory that has been associ-

ated with post-traumatic stress disorder [19]. Although

less-well studied, the anaesthetic concentration

required to suppress recollection of a noxious stimulus

in 50% of patients (MAC-amnesia), is theoretically

important both to the patients and the practitioners.

Studies have demonstrated that the alveolar concentra-

tion of volatile anaesthetics at which amnesia is

achieved is lower than MAC; however, there is proba-

bly more interpatient variability for MAC-amnesia [20,

21]. Human and animal studies suggest that the con-

centration required to prevent explicit recall varies sub-

stantially among volatile anaesthetic agents. A rodent

study demonstrated that the amnesic potency differed

significantly for five inhalational anaesthetics, ranging

from 0.06 MAC to 0.3 MAC [21]. Amnesic potency

followed the Meyer-Overton relationship; nitrous oxide

was the most potent amnesic agent relative to its MAC

and halothane was the least potent amnesic agent rela-

tive to its MAC [21]. Interestingly, this result was not

replicated by a human study in which nitrous oxide

was found to be far less potent at suppressing memory

than isoflurane [22]. Anaesthetics are therapeutically

useful because at sub-hypnotic doses, both volatile and

intravenous agents often prevent consolidation of epi-

sodic memories [21, 23]. Even if patients are occasion-

ally aware and have untoward experiences during

surgery, it is possible that they will not remember

these experiences at anaesthetic concentrations exceed-

ing MAC-amnesia. Whether or not it is ethically

acceptable for patients to experience intra-operative

distress, without explicitly remembering the experience

postoperatively, is a subject of heated debate [24–26].

Importantly, the concentration required to prevent

recall of painful stimulation may be considerably

higher than that required for the verbal stimulus often

used in studies investigating amnesic potency [22, 27].

Another derivative of MAC is the minimum alveo-

lar concentration of volatile anaesthetic that blocks

autonomic responses to surgical incision in 50% of

patients (MAC-BAR) [28]. The autonomic responses

commonly used to define MAC-BAR are changes in

pupil dilation, heart rate and blood pressure. Autonomic

blockade can be accomplished to varying extents; MAC-

BAR is therefore an estimate at best. Various other

MAC measures, such as MAC for tracheal stimulation

or reflex pupillary dilatation, have also been explored

[29, 30], but have the same limitations as MAC-BAR in

relation to precision of the outcome measure.

We return to the discussion of MAC-awake to

illustrate an important point regarding the neurobiol-

ogy of anaesthetic induction and emergence. It is often

assumed that the measure of MAC-awake reflects the

MAC at which one both loses and regains conscious-

ness. However, this assumption is not necessarily

valid. MAC-awake is the alveolar concentration of vol-

atile anaesthetic at which 50% of patients remain

unresponsive to verbal commands when anaesthetic

concentration the decreased (the emergence pathway).

MAC-unawake would then be the alveolar concentra-

tion of volatile anaesthetic at which 50% of patients

Table 1 Minimum alveolar concentration (MAC) and
MAC-awake values for commonly used inhaled anaes-
thetic agents for 40-year-old humans.

Agents MAC* MAC-awake*
MAC-awake/
MAC

Halothane 0.76 0.41 0.55
Isoflurane 1.15 0.49 0.38
Sevoflurane 2 0.62 0.34
Desflurane 6 2.5 0.34
Nitrous oxide 105 68 0.64

*values expressed as percentage at 1 atmosphere.
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remain responsive to verbal commands when anaes-

thetic concentration is increased (the induction path-

way). Anecdotal experience with patients, theoretical

models and compelling murine and fruitfly data sug-

gest that these processes might not be mirror images;

there is an observed hysteresis between the induction

and emergence pathways [31] (Fig. 3). The concentra-

tion of anaesthetic required to achieve unresponsive-

ness or immobility at induction is often much higher

(e.g. two to three times) than the concentration of

anaesthetic at which the mice or fruitflies start to

respond or move at emergence [31]. The path-depen-

dent dose-response curves also illustrate greater vari-

ability in responsiveness to anaesthetic concentration

for emergence than for induction. Thus, anaesthetic

concentration predicts loss of responsiveness much

more reliably than recovery of responsiveness.

Although conceived independently, the concept of

‘neural inertia’ bears relevance to the interpretation of

MAC. Neural inertia has been defined as an intrinsic

resistance to state transitions such as the induction of

or emergence from general anaesthesia. It is now clear

that the neurobiological substrates of these two pro-

cesses are distinct and, as mentioned previously, that

the hysteresis between ‘going under’ and ‘coming out

of’ anaesthesia is not simply a matter of pharmaco-

kinetics. Thus, the anaesthetic concentration at which

consciousness is lost in humans (MAC-unawake) is

likely to be higher than the anaesthetic concentration

at which they will regain consciousness (MAC-awake).

From a practical standpoint, a gap between MAC-

unawake and MAC-awake in anaesthetised patients

could provide a safety cushion. When anaesthetic con-

centration falls slightly below the concentration at

which induction occurred, the majority of patients

might remain unaware and unresponsive. On the other

hand, patients who had collapse of the hysteresis

referred to previously (i.e. MAC-awake and MAC-

unawake converge) or those who are resistant to the

amnesic actions of anaesthetic agents could be at

increased risk for intra-operative awareness with post-

operative explicit recall. It is also possible that intense

noxious stimulation could shift the MAC-awake and

MAC-amnesia curves such that wakefulness and mem-

ory consolidation could occur at higher than expected

concentrations of volatile anaesthetic agents. This em-

phasises the theoretical importance of trying to mini-

mise noxious stimuli during general anaesthesia with

appropriate supplementary analgesic strategies (e.g.

regional anaesthetic techniques, multimodal

analgesics).

Neurobiology of MAC
Motivated by the concept of MAC, investigators prob-

ing inhaled anaesthetic mechanisms sought to deter-

mine how these agents might produce immobility [32].

The lack of an obvious association between cortical

electrical activity (e.g. measured by electroencephalog-

raphy-based monitoring) and immobility to noxious

stimuli suggested that inhaled anaesthetics might

suppress movement by action at sites other than the

cortex alone [33]. Studies suggested that immobility, as

measured by MAC, is mediated by the action of

inhaled anaesthetics on the spinal cord [34–37]. Sev-

eral in-vivo studies in goats demonstrated that, when
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Friedman et al. [31], shows that there is a hysteresis
between the induction and emergence pathways in
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preferentially delivered to the brain, the partial pres-

sure of anaesthetic agent required to suppress move-

ment was greater than when delivered to the whole

body. Separating perfusion of the spinal cord and

brain, and delivering anaesthetic agent preferentially to

the brain, increased MAC for isoflurane from 1.2% to

2.9% [34]. An analogous study demonstrated a similar

increase in MAC for halothane from 0.9% to 3.4%

[35]. This increase in MAC with preferential delivery

of volatile anaesthetic agent to the brain suggested an

alternative primary site of action for volatile anaes-

thetic-induced immobility. Complementary studies in

rats introduced lesions in the central nervous system

(CNS) to sever connections between the spinal cord

and the brain, such as precollicular decerebration and

spinal cord transection at the thoracic level; neither of

these lesions altered MAC [36, 37]. The lack of move-

ment in these rats was produced by inhaled anaesthetic

concentrations similar to controls, suggesting that the

primary site of action is the spinal cord [36, 37]. Evi-

dence suggests that anaesthetics suppress both sensory

processing of noxious stimuli and motor-neuron reflex

responses to prevent movement [38, 39]. Both animal

and human studies have found that volatile anaesthet-

ics depress spinal motor-neuron excitability, which is a

possible mechanism by which they suppress movement

in the setting of noxious stimuli [40, 41].

While the spinal cord largely mediates anaesthetic-

mediated immobility, the actions of these agents in

subcortical and cortical brain regions mediate amnesia

and hypnosis. A study of healthy volunteers receiving

sub-MAC concentrations of isoflurane found suppres-

sion of learning and memory at concentrations lower

than those suppressing responsiveness and movement

[23]. Studies of animals and humans have identified

regions of the brain, such as the amygdala, hippocam-

pus and cortex, that contribute to the formation of

explicit episodic memory and may be targets for the

amnesic effects of inhaled anaesthetics [42, 43].

Inhaled anaesthetics produce hypnosis by suppressing

both arousal and subjective experience. Actions on

subcortical structures, which modulate sleep-wake

cycles, probably mediate effects on arousal. The actions

of inhaled anaesthetics on thalamocortical and

corticocortical networks are thought to inhibit subjec-

tive experience.

Factors that affect MAC
Many factors alter MAC, thereby increasing or

decreasing the anaesthetic concentration required to

prevent movement (Fig. 2). When a factor is present

that increases MAC in an individual, volatile anaes-

thetics have decreased potency for that person. Thus,

in the presence of these factors, patients will require a

higher concentration of the volatile agent. Conversely,

for factors that decrease MAC, the volatile anaesthetic

agents have increased potency. In the presence of these

factors, patients require a lower concentration of the

volatile agent. It is important to qualify that factors

that alter MAC might not similarly impact other MAC

measures, such as MAC-awake, MAC-unawake, MAC-

amnesia and MAC-BAR.

Physiological factors
Many physiological factors have been associated with

alterations in MAC. For example, the concentration of

anaesthetic agent required to suppress movement var-

ies inversely with the age of an individual. Human

studies have determined that MAC peaks at 6 months

of age [44], after which it progressively decreases [45,

46]. A comprehensive meta-analysis determined the

relationship between MAC and age could be described

with reasonable accuracy by the following equation:

MACage = MAC40 9 10�0.00269(age � 40)

where MACage is the MAC at a given age and MAC40

is the MAC value at age 40 [46, 47]. Using this equa-

tion, charts outlining equipotent concentrations of vol-

atile anaesthetics adjusted for age and concurrent

nitrous oxide use have been developed to guide clinical

practice (Fig. 4) [47]. Variations in body temperature

have also been associated with differences in anaes-

thetic requirements. Studies in various animal models

have demonstrated a positive linear relationship

between temperature and anaesthetic requirement [48–

50]. A murine model demonstrated that, for body tem-

peratures of 32–37 °C, a decrease by 1 °C resulted in

a 5% decrease in MAC for isoflurane [50]. The effect

of temperature on MAC is hypothesised to be attributable

to effects of temperature changes on cerebral oxygen con-

sumption [51]. Elevations or reductions in serum sodium

coinciding with changes in sodium concentration and

osmolality in cerebrospinal fluid may alter anaesthetic
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requirements. Hypernatraemia is associated with an

increase in MAC, while hyponatraemia is associated

with a decrease in MAC [52]. Several other physiologi-

cal derangements, such as anaemia, hypercarbia and

hypoxia, have also been shown to decrease MAC [53,

54]. The potency of inhaled anaesthetics is greater in

women during pregnancy and in the early postpartum

period, resulting in a decrease in MAC [55].

Preliminary studies have provided evidence for

other factors that may affect MAC, notably genetic

background [56, 57]. Small studies in mice and humans

have suggested that mutations in the melanocortin-1

receptor (MCR-1) gene are associated with increased

requirements for volatile anaesthetic agents, or

increased MAC [58, 59]. Obesity has also been explored

as a modifier of MAC, but a recent animal study mod-

elling human metabolic syndrome demonstrated no dif-

ference in MAC compared with non-obese controls

[60]. Consistent with other investigations, this study

also supported genetic background, but not biological

sex, as an important determinant of MAC.

Pharmacological factors
Drugs administered in the peri-operative setting often

increase the potency of inhalational anaesthetic agents.

For example, sedative-hypnotic agents, such as benzo-

diazepines and barbiturates, decrease MAC [61–64].

Midazolam premedication results in dose-dependent

reductions in MAC [65]. Similar to benzodiazepines,

other commonly used intravenous drugs that potentiate

or activate GABAA, including propofol, also decrease

MAC [66]. Evidence suggests that non-GABAergic

drugs such as ketamine and a2-adrenergic agonists

decrease MAC [67, 68]. Numerous studies have demon-

strated reductions in MAC with the use of opioid anal-

gesics [69]. Again, it is important to emphasise that

these drugs might all alter MAC, but not similarly affect

other MAC derivatives. For example, through their

nociceptive actions, potent opioid analgesics might help

to prevent movement in response to surgical stimula-

tion, but might not as profoundly decrease the concen-

tration of volatile anaesthetic required to achieve

amnesia.

In addition to peri-operative anaesthetic and anal-

gesic agents, acute or chronic use of various medica-

tions and substances of abuse also alter inhalational

anaesthetic requirements. For example, drugs that

increase catecholamine release in the CNS, such as

cocaine, increase MAC during acute intoxication [70].

Canine studies demonstrated a dose-dependent

increase of MAC for halothane following acute cocaine

administration [71]. In contrast, chronic cocaine expo-

sure is associated with a decrease in MAC for isoflura-

ne [72]. Similar results have been demonstrated with

acute and chronic amfetamine exposure; MAC

increased in a dose-dependent manner with acute use

and decreased with chronic use [73, 74]. Conversely,

the results of several studies suggest that chronic etha-

nol use increases MAC, while acute ethanol adminis-

tration decreases MAC [75–77].

Pathological factors
In general, patients presenting with a depressed level

of consciousness due to trauma or cerebrovascular

insult have decreased anaesthetic requirements. Patho-

logical changes associated with dementia or other

neuro-degenerative changes may also affect anaesthetic

Figure 4 Age-adjusted iso-minimum alveolar concen-
tration (iso-MAC) lines for desflurane. This is modi-
fied from a figure by Nickalls and Mapelson [47],
which shows the effect of increasing age on the con-
centration (percentage at sea level) of desflurane
required to achieve escalating MAC equivalents from
0.6 MAC to 1.6 MAC. Similar charts for all commonly
used inhaled agents have been produced by Nickalls
and Mapelson [47].

518 Anaesthesia © 2013 The Association of Anaesthetists of Great Britain and Ireland

Anaesthesia 2013, 68, 512–522 Aranake et al. | Relevance and clinical utility of MAC



requirements. A murine model of Alzheimer’s disease

demonstrated that the neuropathology associated with

Alzheimer’s disease confers a resistance to the

hypnotic actions of inhaled anaesthetics [78, 79].

Advantages and limitations of MAC and
MAC derivatives
Several studies before the introduction of MAC

suggested that alveolar partial pressures would mirror

brain partial pressures after a sufficient period of time.

By combining the pharmacokinetics of inhaled anaes-

thetics with an important categorical response – move-

ment – Eger et al. created a novel index of anaesthetic

potency. As a dosing metric of anaesthesia, MAC has

several advantages. Early studies demonstrated a small

inter-individual variance in MAC. That is, for a given

stimulus, the anaesthetic concentration required to pre-

vent movement is similar from person to person. End-

tidal concentrations are easy to measure in clinical

practice and administered anaesthetic concentration rel-

ative to MAC can be tracked in real time. The caveat is

that there are equilibration delays for all volatile anaes-

thetics (especially the more soluble vapours like halo-

thane and isoflurane) between end-tidal levels and

effect-site concentration. In contrast to previously pro-

posed metrics of anaesthetic depth, MAC applies simi-

larly to all inhaled anaesthetics and thus allows for

ready comparison of potency. The ability to quantify

MAC for various volatile anaesthetics allowed practitio-

ners to compare and contrast side-effects with specific

anaesthetics at MAC equivalent multiples (e.g. ½ MAC,

MAC and 2 MAC). Equipotent concentrations of each

agent influence organ systems including cardio-

vascular, respiratory and neuromuscular to differing

degrees. The quantitative comparisons of these side-

effects (e.g. effects on airway reactivity, blood pressure

and heart rate) help to inform the choice of inhaled

anaesthetic in clinical practice. Furthermore, the concept

of MAC has aided investigation of factors that alter

anaesthetic requirements and helped guide investigation

into the mechanisms of action of inhaled anaesthetics.

Minimum alveolar concentration is a useful con-

struct that has advanced clinical care and scientific

investigation. However, it does have limitations. For

example, MAC is not a reliable indicator of hypnosis

or unconsciousness. The comparable metric for con-

sciousness, MAC-awake, is also unreliable due to the

behavioural component of the response. Anaesthetic

concentrations that suppress goal-directed motor

response to verbal stimuli do not necessarily produce

unconsciousness, highlighting the distinction between

responsiveness and consciousness. A recent review of

studies using the isolated forearm technique (IFT), a

method which spares one hand from the effects of

neuromuscular blockers, reported that a median of

37% of patients demonstrated goal-directed responsive-

ness to verbal stimulation during general anaesthesia

[26]. Of interest, spontaneous movement of the spared

hand was rare (if not absent) in these patients, includ-

ing those who reported pain. It is not known why a

behavioural response was elicited by a verbal stimulus

but not by the experience of noxious stimulus. These

and other data that dissociate responsiveness and con-

sciousness [26, 80] suggest that MAC – a measure of

responsiveness – may not necessarily be informative

regarding the state of consciousness. However, because

loss of motor responsiveness occurs at a higher dose

than loss of ‘consciousness’, MAC is a very good prag-

matic end-point as it gives the anaesthetist reasonable

confidence that the patient is likely to be unconscious.

One of the most notable limitations of MAC is

that it is not directly applicable to the administration

of total intravenous anaesthesia. Furthermore, modern

peri-operative management incorporates various types

of drugs, complicating the interpretation of MAC. The

use of neuromuscular blockade to produce paralysis

renders the concentration of inhaled anaesthetic

required to suppress movement uninformative. While

these drugs tend to decrease MAC they may not affect

MAC-awake or MAC-amnesia in a parallel manner.

Given that multimodal or balanced anaesthetic tech-

niques (e.g. potent inhaled agent plus neuromuscular

blocking drug plus opioid analgesic plus intravenous

hypnotic agent) are commonly used, the utility of

MAC as a ‘pure’ measure of anaesthetic effect is mark-

edly curtailed.

MAC and clinical outcomes
Concentrations of inhaled anaesthetics, measured in

MAC equivalents, have been used to study several

clinical outcomes in surgical patients, such as intra-

operative awareness with explicit recall (AWR) and
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postoperative mortality. The former is a rare but

feared complication of (inadequate) general anaesthesia

associated with devastating psychological sequelae [81,

82]. Efforts to prevent AWR events have focused on

attaining adequate depth of anaesthesia by adjustment

of anaesthetic dosing in response to MAC or electro-

encephalographic measures. Several large randomised

controlled trials compared protocols based on MAC

and bispectral index (BIS) values in the prevention of

AWR. In studies of patients at high risk for AWR,

both protocols reduced the incidence of AWR from

incidence rates previously reported in high-risk

patients [83, 84]. The Michigan Awareness Control

Study, a randomised comparative effectiveness trial

conducted in more than 21 000 patients, was not able

to detect a difference between MAC- and BIS-guided

protocols [85]. Thus, across a wide spectrum of risk

levels, MAC-based protocols may be useful in prevent-

ing AWR.

In a retrospective review of intra-operative data,

the combination of concurrent low end-tidal levels

(< 0.7 MAC) and low blood pressure (mean arterial

pressure < 75 mmHg) and low bispectral index values

(BIS < 40) was associated with an approximately four-

fold increase in postoperative mortality [86]. It is not

clear from this study whether the association with mor-

tality of concurrent low end-tidal values, low BIS and

low blood pressures (termed ‘triple low’ by the investi-

gators) is causal or epiphenomenal [87]. Currently,

there is no evidence to suggest that, within a clinically

relevant range, volatile anaesthetic agents promote

adverse outcomes [88]. Further studies are needed to

clarify whether, based on concentration or patient vul-

nerability, volatile anaesthetics have the potential to

increase serious morbidity or mortality unrelated to

their cardiorespiratory side-effects. For example, there

are studies that suggest that exposure to higher anaes-

thetic concentrations might increase the likelihood of

postoperative delirium and cognitive decline [89, 90].

Conclusion
Despite its limitations, It remains the most commonly

used measure of anaesthetic potency for inhaled drugs.

It has withstood the test of time and prevails as the

routine metric of anaesthetic depth almost 50 years

since its description. Volatile-based general anaesthesia

is the most common technique in both highly resour-

ced and under-resourced care environments. Measure-

ment of volatile anaesthetic concentration in real time

is reliable, inexpensive and available around the world.

Given its relatively narrow interpatient variability,

MAC is a pragmatic surrogate for a meaningful anaes-

thetic end-point – absence of patient movement in

response to surgical stimulation. Future candidate

measures of anaesthetic depth will have to prove their

superiority to MAC.
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