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CHAPTER I

Introduction

This thesis focuses on finding finiteness structural properties of local cohomology

modules over a ring and their use in the study of singularity. This work contains

results obtained in [NB12c, NB12b, NB12a, NB13, NBW12a, NBW12b, NBP13,

HNBW13]. Of these, [HNBW13] is in collaboration with Daniel J. Henández and

Emily E. Witt, [NBP13] with Juan F. Pérez, and finally [NBW12a, NBW12b] with

Emily E. Witt. In addition, these projects have been under the supervision and ad-

vice of Mel Hochster. All results stated formally in this introduction appear in a

paper of the author unless otherwise indicated.

I.1 Algebra and geometry

It is well know that the equation for a conic section takes the following quadratic

form:

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0.

One can classify the geometry of the section in terms of the constants in the equation.

For instance, if B2 − 4AC = 0 it is a parabola. Following this example further, we

can ask about the geometry of the set of points in a euclidean space Rn defined as the

zeros of several polynomial equations f1, . . . , f`. We denote that set by V(f1, . . . , f`),

and called it an algebraic variety. Using the defining equations of V(f1, . . . , f`), we can

make sense of the concepts of dimension, irreducibility, and smoothness. The math-

ematical area that studies this interaction is Algebraic Geometry, and its algebraic

side is dominated by Commutative Algebra.

Keeping in mind the close relationship between algebra and geometry, we consider

f(x), a polynomial in n variables and with real coefficients. We say the hypersurface

given by the points that satisfy f(x) = 0 is smooth at x = a if at least one partial
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derivative ∂f
∂xi

(a) is not zero. Otherwise, we say that f has a singularity at x = a.

f smooth at (0, 0) f singular at (0, 0)

Not every singular point has the same type of singularity; for instance, the figures

below show three different singular curves. Measuring singularity of a curve, surface

or any variety at a point has been an object of study in geometry.

y2 − x3 − x2 = 0 y2 − x3 = 0 y2 − x9 = 0

Now instead of the real numbers, we consider the integers modulo p, a prime

number. Then every integer is equivalent to its remainder while applying the division

algorithm. For instance, if p = 5, then 5 ≡ 0, 6 ≡ 1 and 12 ≡ 2. When we take a

polynomial with coefficients over the integers modulo p, we can use the Frobenius

map, r 7→ rp, to classify singularities. Two important types of singularities are the

F -regular and the F -pure singularities. The F -regular singularities behave similarly

to a smooth point from the perspective of tight closure theory (see Chapter II.6 and

[HH90, HH94a]). Similarly, the F -purity of singularities simplifies computations for

cohomology groups and implies vanishing properties of these groups (see Chapter

II.5). These properties are very important and much-studied in algebraic geometry

and commutative algebra [BMS08, BMS09, Har68, HL90, Fed87, Ogu73, PS73]. The

relations among these properties are the following:{
Any

point

}
⊃

{
F − pure

singularity

}
⊃

{
F − Regular

singularity

}
⊃

{
Smooth

point

}
.

The study of algebraic invariants that measure a singularity has an important

role in the study of its geometric properties. In particular, this work focuses on those

invariants that measure the difference between the types of singularities previously

described.
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I.2 Local cohomology

In order to study singularities, we first introduce the main algebraic object in-

vestigated in this thesis: local cohomology (see Chapter II.3). These modules were

first introduced by Grothendieck in the 60’s (see [Har67]). If M is an R-module and

I ⊂ R is an ideal, we denote the i-th local cohomology of M with support in I by

H i
I(M). These modules capture several algebraic and geometric properties of a ring,

R, an ideal, I, and an R-module, M, for instance, Cohen-Macaulayness of R, depth

of I, and dimension of M.

In a basic course in complex analysis one studies the difficulty of extending a

holomorphic function to a region where it is undefined. For instance, a removable

singularity is that in which it is possible to define the function at that point. A pole

of order m is a singularity that could be “controlled” with a polynomial of order m.

Therefore, the higher the order of the pole, the harder to extend the function. One of

the many strong connections between local cohomology of modules and cohomology

of sheaves is that the elements of H1
I (M) give the obstruction to extending sections

of M supported off V(I) to all Spec(R). Here, as before, V(I) denotes the closed set

defined by the vanishing of elements in I.

The local cohomology modules are usually not finitely generated; however, they

satisfy finiteness properties over regular local rings containing a field and over un-

ramified regular local rings [HS93, Lyu93, Lyu00b, NB12b]: The set of associated

primes of H i
I(R) is finite (see Chapter II.1), the Bass numbers of H i

I(R) are finite (see

Chapter II.2), and inj. dimH i
I(R) ≤ dimS SuppH i

I(R) (see Chapter II.2).

Lyubeznik approached these problems using modules over a ring of differential

operators (see Chapter II.4 and [Lyu93]). Given two commutative rings A and R such

that A ⊂ R, the ring of A-linear differential operators of R, D(R,A), is defined as the

subring of HomA(R,R) obtained inductively as follows. The differential operators of

order zero are morphisms induced by multiplication by elements in R (HomR(R,R) =

R). An element θ ∈ HomA(R,R) is a differential operator of order less than or equal

to k + 1 if θ · r − r · θ is a differential operator of order less than or equal to k for

every r ∈ R. In particular, if R = C[x1, . . . , xn], then

D(R,C) = R〈 ∂
∂x1

, . . . ,
∂

∂xn
〉.

If M is a D(R,A)-module, then Mf has the structure of a D(R,A)-module such

that, for every f ∈ R, the natural morphism M → Mf is a morphism of D(R,A)-

3



modules. As a consequence, H i1
I1
· · ·H i`

I`
(R) is also a D(R,A)-module [Lyu93].

The only cases of regular rings for which these important structural properties have

not been shown are the regular local rings of ramified mixed characteristic p > 0. A

proof or a counter-example for the remaining case would give us a better understand-

ing of rings of mixed characteristic. Thus, the main conjecture that motivates this

research is:

Conjecture I.2.1. Let (R,m,K) be a regular local ring of ramified mixed charac-

teristic p > 0. Then

(a) the set of associated primes of H i
I(R) is finite;

(b) the Bass numbers of H i
I(R) are finite;

(c) inj. dimH i
I(R) ≤ dimS SuppH i

I(R).

for every ideal I and every i ∈ N.

One of the main results of this thesis is the finiteness of the set formed by certain

associated primes of local cohomology over any regular ring of mixed characteristic:

Theorem I.2.2 (see Theorem III.3.5 and [NB13]). Let (R,m,K) be a regular commu-

tative Noetherian local ring of mixed characteristic p > 0. Then the set of associated

primes of H i
I(R) that do not contain p is finite for every i ∈ N and every ideal I ⊂ R.

The main tool developed to prove the previous theorem is an extension to a greater

generality of results about rings of differential operators (cf. [Bjö79, Bjö72, MNM91]):

Theorem I.2.3 (see Theorem III.2.13 and [NB13]). Let R be a regular commutative

Noetherian ring with unity that contains a field, F , of characteristic 0 satisfying the

following conditions:

(1) R is equidimensional of dimension n;

(2) every residual field with respect to a maximal ideal is an algebraic extension of

F ;

(3) DerF (R) is a finitely generated projective R-module of rank n such that for every

maximal ideal m ⊂ R, Rm ⊗R DerF (R) = DerF (Rm).

Then the ring of F -linear differential operators D(R,F ) is a ring of differentiable type

of weak global dimension equal to dim(R). Moreover, the Bernstein class of D(R,F )

is closed under localization at one element.

4



Using D-modules over a polynomial or power series ring with coefficients over a

ring of small dimension, we extend some of Lyubeznik’s results to these rings:

Theorem I.2.4 (see Theorem IV.2.6 and [NB12b]). Let A be a zero dimensional

commutative Noetherian ring. Let R be either A[x1, . . . , xn] or A[[x1, . . . , xn]]. Then

(i) the set associated primes of H i
I(R) is finite, and

(ii) the Bass numbers of H i
I(R) are finite

for every ideal I and every i ∈ N.

Theorem I.2.5 (see Theorem IV.2.10 and [NB12b]). Let A be a one-dimensional

ring, and let R be either A[x1, . . . , xn] or A[[x1, . . . , xn]]. Let π ∈ A denote an element

such that dim(A/πA) = 0. Then, the set of associated primes over R of H i
I(R) that

contain π is finite for every ideal I and every i ∈ N. Moreover, if A is Cohen-

Macaulay and π is a nonzero divisor then the Bass numbers of H i
I(R), with respect

to a prime ideal P that contains π, are finite.

The previous two theorems recover results of Lyubeznik [Lyu00b] for regular local

rings of unramified mixed characteristic, but his proofs use a different approach. The

motivation behind these theorems is to find techniques to prove Conjecture I.2.1 for

V [[x, y, z1, . . . , zn]]

(π − xy)V [[x, y, z1, . . . , zn]]
,

where (V, πV,K) is a complete DVR of mixed characteristic. This is, to the best

of our knowledge, the simplest example of a regular local ring of ramified mixed

characteristic in which the claims of Conjecture I.2.1 are unknown. Motivated by

this example and previous results [HS93, Lyu93, NB12b, Rob12], Hochster raised the

following related question:

Question I.2.6 (see Question V.0.4). Let (A,m,K) be a local ring and R be a flat

extension with regular closed fiber. Is

AssRH
0
mRH

i
I(R) = V(mR) ∩H i

I(R)

finite for every ideal I ⊂ R and i ∈ N?

We answer this question affirmatively for some cases:

5



Theorem I.2.7 (see Theorem V.4.3 and [NB12a]). Let (A,m,K) → (R, η, L) be a

flat extension of local rings with regular closed fiber such that A contains a field. Let

I ⊂ R be an ideal such that dim(A/I ∩ A) ≤ 1. Suppose that the morphism induced

in the completions Â → R̂ maps a coefficient field of A into a coefficient field of R.

Then

AssRH
0
mRH

i
I(R)

is finite for every i ∈ N. Moreover, if R is either A[x1, . . . , xn] or A[[x1, . . . , xn]], then

AssRH
j
mRH

i
I(R) is finite for every ideal I ⊂ R such that mR ⊂

√
I and every j ∈ N.

When A is not a zero-dimensional ring the local cohomology modules are not

necessarily of finite length or finitely generated as D-modules. To avoid this difficulty,

we introduce Σ-finite D-modules, which are D-modules that behave similarly to D-

modules of finite length.

Definition I.2.8 (see Definition V.1.2 and [NB12a]). Let M be a D-module sup-

ported at mR and M be the set of all D(R,A)-submodules of M that have finite

length. For N ∈M, let C(N) denote the composition series of N as D(R, S)-module.

We say that M is Σ-finite if:

(i)
⋃
N∈MN = M,

(ii)
⋃
N∈M C(N) is finite, and

(iii) for every N ∈M and L ∈ C(N), L ∈ C(R/mR,A/mA).

This work also includes results on the finiteness of local cohomology over direct

summands of regular rings. An example of this is given when S is a polynomial ring

over a field and R is the invariant ring of an action of a linearly reductive group over

S [DK02]. Another example is when R ⊂ K[x1, . . . , xn] is an integrally closed ring

that is finitely generated as a K-algebra by monomials. This is because such a ring is

a direct summand of a possibly different polynomial ring (cf. [Hoc72, Proposition 1

and Lemma 1]). Another case in which an inclusion splits is when R→ S is a module

finite extension of rings containing a field of characteristic zero such that S has finite

projective dimension as an R-module. Moreover, such a splitting exists when Koh’s

conjecture holds (cf. [Koh83, Vél95, VF00]). The results in this direction are:

Theorem I.2.9 (see Theorem VI.1.5 and [NB12c]). Let R→ S be a homomorphism

of Noetherian rings that splits. If AssS H
i
IS(S) is finite, then AssRH

i
I(R) is finite for

every ideal I ⊂ R.
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Theorem I.2.10 (see Theorem VI.2.4 and [NB12c]). Let R→ S be a homomorphism

of Noetherian rings that splits such that S is finitely generated as R-module. Suppose

that S is a Cohen-Macaulay ring such that the Bass numbers of H i
IS(S) are finite for

every ideal I ⊂ R. Then the Bass numbers of H i
I(R) are finite.

Corollary I.2.11 (see Corollary VI.1.7 and [NB12c]). There exists a Gorenstein F -

regular UFD, R, that is not a pure subring of any regular ring. In particular, R is

not direct summand of any regular ring.

We point out that the property about injective dimension does not hold for direct

summands of regular rings, even in the finite extension case. A counterexample is

R = K[x3, x2y, xy2, y3] ⊂ S = K[x, y], where S is the polynomial ring in two variables

with coefficients in a field K. The splitting of the inclusion is the map θ : S → R

defined in the monomials by θ(xαyβ) = xαyβ if α+β ∈ 3Z and as zero otherwise. We

have that the dimension of Supp(H2
(x3,x2y,xy2,y3)(R)) is zero, but it is not an injective

module, because R is not a Gorenstein ring, since R/(x3, y3)R has a two dimensional

socle.

I.3 Applications to measure of singularity

The finiteness structural properties of local cohomology over regular rings have

been applied to define algebro-geometric invariants [ÀM04, Lyu93, NBW12a, NBW12b,

NBWZ13, Zha11a] or to find properties for certain kind of rings [Kaw02, Mar01,

NB12c, Zha07]. Using the result obtained for local cohomology modules, we expand

these applications to study singularity of local rings.

I.3.1 F -Jacobian ideals

Suppose that S = K[x1, . . . , xn] is a polynomial ring over a perfect field K, and

f ∈ S. The Jacobian ideal is defined by Jac(f) = (f, ∂f
∂x1
, . . . , ∂f

∂xn
). This ideal plays a

fundamental role in the study of singularity in zero and positive characteristic. In this

case, Jac(f) = R if and only if R/fR is a regular ring. Another important property,

given by the Leibniz rule, is that Jac(fg) ⊂ f Jac(g) + g Jac(f) for f, g ∈ S. The

equality in the previous containment holds only in specific cases [Fab13, Proposition

8] and it is used to study transversality of singular varieties [Fab13, FA12].

Let R be an F -finite regular local ring. We define the F -Jacobian ideal, JF (f),

to be the pull back of the intersection of (R/fR) ⊂ H1
f (R) with the sum of the

simple F -submodules in the local cohomology module H1
f (R). The F -Jacobian ideal

7



behaves similarly to the Jacobian ideal of a polynomial. Like the Jacobian ideal, they

determine singularity:

• if R/fR is F -regular, then JF (f) = R (see Corollary VII.2.11);

• if R/fR is F -pure, then R/fR is F -regular if and only if JF (f) = R (see

Corollary VII.2.13).

• If f has an isolated singularity and R/fR is F -pure, then JF (f) = R if R/fR

is F -regular, and JF (f) = m otherwise (see Proposition VII.3.1).

In particular, we have that the submodules of the local cohomology module H1
f (R)

give information about the singularity of R/fR or V(f). In addition, the F -Jacobian

ideal also satisfies a Leibniz rule: JF (fg) = fJF (g) + gJF (f) for relatively prime

elements f, g ∈ R (Proposition VII.1.14). The Leibniz rule in characteristic zero is

important in the study of transversality of singular varieties and free divisors over the

complex numbers [Fab13, FA12].

The F -Jacobian ideals behave well with pe-th powers JF (fp
e
) = JF (f)[pe] (Propo-

sition VII.1.19). This is a technical property that was essential in several proofs. This

contrasts with how the Jacobian ideal changes with pe-th powers: Jac(fp
e
) = fp

e
R.

Furthermore, we define the F -Jacobian ideal for a regular F -finite UFD such that

Rf/R has finite length as D-module (Section VII.1) and for an algebra essentially of

finite type over an F -finite local ring (Chapter VII.2).

I.3.2 Generalized Lyubeznik numbers

Lyubeznik introduced a set of invariants, now called Lyubeznik numbers, to study

rings of equal characteristic [Lyu93]. Suppose that (R,m,K) is a local ring admitting

a surjection from an n-dimensional local regular local ring (S, η,K) containing a field.

If I is the kernel of this surjection, the Lyubeznik numbers of R, depending on two

nonnegative integers i and j, are defined as λi,j(R) := dimK ExtiS
(
K,Hn−j

I (S)
)
.

Remarkably, these numbers only depend on the ring R and on i and j, not on S, nor

even on the choice of surjection from S [Lyu93, Theorem 4.1]. Moreover, if R is any

local ring containing a field, letting λi,j(R) := λi,j(R̂) extends the original definition,

making the Lyubeznik numbers well defined for every such ring (see [NBWZ13] for a

survey on this subject).

For R containing a field, the Lyubeznik numbers of R provide essential information

about the ring, and have extensive connections with geometry and topology, including

8



étale cohomology and the connected components of certain punctured spectra (see,

for example, [BB05, GLS98, Kaw00, Wal01, Zha07]).

The generalized Lyubeznik numbers were introduced by the author and Witt

[NBW12a] with the aim to extend the the study of rings via local cohomology. To

prove that these generalized Lyubeznik numbers are well defined, we formalize and

develop the theory of a functor that Lyubeznik utilized to show that his original

invariants are well defined [Lyu93]. In particular, the definition of these new invariants

relies heavily on the fact that this functor gives a category equivalence with a certain

category of D-modules, which somehow mirrors Kashiwara’s equivalence [Cou95].

Theorem I.3.1 (see Theorem VIII.0.10 and [NBW12a]). Let R be a Noetherian ring,

and let S = R[[x]]. Let C denote the category of R-modules and D the category of

D(S,R)-modules that are supported on V(xS), the Zariski closed subset of Spec(S)

given by xS. Then the functor

G : C → D

M 7→M ⊗R Sx/S

is an equivalence of categories, with inverse functor G̃ : D → C given by G̃(N) =

AnnN(xS).

Moreover, if R = K[[y1, . . . , yn]], K a field, then S = K[[y1, . . . , yn, x]], and G is

an equivalence of categories between the category of D(R,K)-modules and the category

of D(S,K)-modules supported on V(xS).

The definition of the generalized Lyubeznik numbers depends on the fact that

certain local cohomology modules have finite length as D(S,K)-modules, where K is

a field and S = K[[x1, . . . , xn]] for some n [Lyu00a, Corollary 6]. These new invariants

depend on the local ring R containing a field, a coefficient field K ′ ⊆ R̂, a collection

of ideals I1, . . . , Is of R, as well as j1, . . . , js ∈ N. The definition is as follows:

Definition I.3.2 (see Definition IX.1.4 and [NBW12a]). Let (R,m,K) be a local ring

containing a field, and R̂ its completion at m. Let K ′ be a coefficient field of R̂. Then

R̂ admits a surjection π : S � R̂, where S = K[[x1, . . . , xn]] for some n ∈ N, and

π(K) = K ′. For 1 ≤ i ≤ s, fix ji ∈ N and ideals Ii ⊆ R, and let Ji = π−1(IiR̂) ⊆ S.

The generalized Lyubeznik number of R with respect to K ′, I1, . . . , Is and j1, . . . , js,

λjs,...,j1Is,...,I1
(R;K ′) := lengthD(S,K′) H

is
Js
· · ·H i2

J2
Hn−i1
J1

(S),

9



is finite and depends only on R, K ′, I1, . . . , Is and j1, . . . , js, but neither on S nor on

π.

Although the generalized Lyubeznik numbers a priori depend on the choice of

a coefficient field of R̂, there are some cases where only one such field exists. For

example, this happens when K is a perfect field of characteristic p > 0. Whether it

is possible to avoid the dependence of

lengthD(S,K) H
js
Js
· · ·Hj2

J2
Hn−j1
J1

(S) = lengthD(S,L)H
js
Js
· · ·Hj2

J2
Hn−j1
J1

(S)

on the choice of coefficient field of S is, to the best our knowledge, an open question.

These invariants include the original Lyubeznik numbers. As a consequence of

this new approach, our work also gives a different proof that the original Lyubeznik

numbers are well defined.

Proposition I.3.3 (see Proposition IX.1.8 and [NBW12a]). If (R,m,K) is a local

ring containing a field, then

λi,j(R) = λi,jm,0(R;K ′)

for any coefficient field K ′ of R̂.

Generalized Lyubeznik numbers behave similarly to the original Lyubeznik num-

bers. In particular, we have the following properties:

Proposition I.3.4 (see Proposition IX.1.10 and [NBW12a]). Given ideals I1 ⊆ . . . ⊆
Is of a local ring (R,m,K) containing a field, ij ∈ N for 1 ≤ j ≤ s, and a coefficient

field K ′ of R̂, we have that

(i) λis,...,i1Is,...,I1
(R;K ′) = 0 for i1 > dim(R/I1),

(ii) λis,...,i1Is,...,I1
(R;K ′) = 0 for ij > dim(R/Ij−1) and 2 ≤ j ≤ `,

(iii) λi2,i1I2,I1
(R;K ′) = 0 for i2 > i1,

(iv) λi1I1(R;K ′) 6= 0 for i1 = dim(R/I1), and

(v) λi2,i1I2,I1
(R;K ′) 6= 0 if i2 = dim(R/I1)− dim(R/I2) and i1 = dim(R/I1).

We also introduce a new invariant, the Lyubeznik characteristic, which is inspired

by the the definition of the Euler characteristic using the Betti numbers [Eis05].
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Definition I.3.5 (see Definition IX.1.16 and [NBW12a]). Let (R,m,K) be a local

ring containing a field such that dim(R) = d. We define the Lyubeznik characteristic

of R by

χλ(R) =
d∑
i=0

(−1)iλi0(R).

In addition, results of Blickle [Bli04a] enable characterizations of F -regularity and

F -rationality in terms of certain generalized Lyubeznik numbers.

Proposition I.3.6 (see Proposition X.1.2 and [NBW12a]). Let (R,m,K) be a com-

plete local domain of characteristic p > 0 and of dimension d, such that K is F -finite.

The following hold:

(i) If λd0(R) = 1, then 0∗
Hd
m(R)

is F -nilpotent.

(ii) If R is F -injective and λd0(R) = 1, then R is F -rational.

In addition, if K is perfect:

(iii) λd0(R) = 1 if and only if 0∗
Hd
m(R)

is F -nilpotent.

(iv) If R is F -rational, then λd0(R) = 1.

(v) If R is F -injective, then λd0(R) = 1 if and only if R is F -rational.

Moreover, if R is one-dimensional:

(vi) If λd0(R) = 1, then R is unibranch.

(vii) If K is perfect, then λd0(R) = 1 if and only if R is unibranch.

The previous theorem motivates the idea of generalized Lyubeznik numbers to

study singularity in positive characteristic. In order to make statements about this

idea we recall some results for test ideals (see Chapter II.6). We assume that (S,m,K)

is a complete regular local ring of characteristic p > 0. We fix a radical ideal I ⊂ S

and define R = S/I. We set n = dim(S), d = dim(R) and c = n − d. The test

ideal of R, τ(R), plays a crucial role in tight closure theory. For instance, this ideal

determines whether R is strongly F -regular.

If (R,m,K) is an F -finite regular local ring and I ⊂ R is an ideal such that R/I

is F -pure, there exists an strictly ascending chain of ideals

I = τ0 ⊂ τ1 ⊂ . . . ⊂ τ` = R

11



such that (τ
[p]
i : τi)) ⊂ (τ

[p]
i+1 : τi+1) and τi+1 is the pullback of the test ideal of R/τi

[Vas98] (see Chapter II.6).

We first confirm that the Lyubeznik numbers measure singularity for hypersurfaces

[NBP13]:

Theorem I.3.7 ([NBP13]). Let (R,m,K) be an F -finite complete regular local ring,

and f ∈ R such that R/fR is reduced. If R/fR is F -pure and

0 ⊂ fR = τ0 ⊂ τ1 ⊂ . . . ⊂ τ` = R

is the flag of ideals defined above, then

` ≤ λ
dim(R/fR)
0 (R/fR;K ′).

for every K ′ coefficient field of R.

When R = K[[x1, . . . , xn]] the previous theorem implies that, when R/fR is F -

pure, ` is a lower bound the generalized Lyubeznik numbers, λdim(K′;R/fR)(R/fR).

The previous theorem says that λdim(R/fR)(R/fR) is measuring how far is an F -pure

hypersurface from being F -regular.

Developing some techniques in [NBP13], we extend the previous theorem to Goren-

stein rings:

Theorem I.3.8 (see Theorem X.2.9 and [HNBW13]). Suppose that R is Gorenstein

and F -pure. Let

I = τ0 ⊂ τ1 ⊂ . . . ⊂ τ` = R

be the flag of test ideals defined by Vassilev. Then, ` ≤ λd0(R;K ′) for every coefficient

field K ′.

Smith [Smi97] proved that an F -pure Cohen-Macaulay ring R is F–rational if and

only if Hd
m(R) is a simple left R〈F 〉 module (see Chapter II.9). We have that, for

Cohen-Macaulay rings, lengthR〈F 〉H
d
m(R) gives a measure of how far R is from being

F–rational. Using results of Lyubeznik on F -modules [Lyu97], of Blickle on intersec-

tion homology [Bli04b] and of Ma on R〈F 〉-modules [Ma12], we prove that the highest

generalized Lyubeznik number λd0(R;K ′) is an upper bound for lengthR〈F 〉H
d
m(R).

This results holds for all F -finite rings even if they are not Cohen-Macaulay.

Theorem I.3.9 (see Theorem X.3.1 and [HNBW13]). Suppose that R is an F -pure

ring. Then

lengthR〈F 〉H
d
m(R) ≤ λd0(R;K ′)

12



for every coefficient field K ′.

Furthermore, the study of the generalized Lyubeznik numbers of a Stanley-Reisner

ring, R, give connections with the simplicial complex that gives rise to R. In addition,

we find a connection with categories related to simplicial complexes (Chapter IX.3).

Theorem I.3.10 (see Theorem IX.3.10 and [NBW12a]). Let K be a field, S =

K[x1, . . . , xn], and Ŝ = K[[x1, . . . , xn]]. Let I1, . . . , Is ⊆ S be ideals generated by

square-free monomials. Then

λi1,...,isI1,...,Is
(Ŝ) = lengthD(Ŝ,K) H

is
Is
· · ·H i2

I2
H i1
I1

(Ŝ)

= lengthStrH
is
Is
· · ·H i2

I2
H i1
I1

(ωS)

=
∑

α∈{0,1}n
dimk

[
H is
Is
· · ·H i2

I2
H i1
I1

(ωS)
]
−α

Moreover, if char(K) = 0, then

λi1,...,isI1,...,Is
(Ŝ) = e(H is

Is
· · ·H i2

I2
H i1
I1

(S)),

where e(−) denotes D(S,K)-module multiplicity.

It is well know that there is a bijective correspondence between simplicial com-

plexes and square-free monomial ideals [MS05]. Using this bijection, we relate the

Lyubeznik characteristic of a Stanley-Reisner ring with its simplicial complex associ-

ated to it.

Theorem I.3.11 (see Theorem IX.4.10 and [NBW12a]). Take a simplicial complex

∆ on the vertex set [n]. Let R be the Stanley-Reisner ring of ∆, and let m be its

maximal homogeneous ideal. Then

χλ(Rm) =
n∑

i=−1

(−2)i+1|Fi(∆)|.

The previous theorem says, in particular, that the Lyubeznik characteristic does

not depend on the chosen field. This contrasts how the original and the general-

ized Lyubeznik numbers behave with respect to the characteristic of the fields (see

Example IX.4.9 and [ÀMV])
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I.3.3 Lyubeznik numbers in mixed characteristic

We define a new family of invariants associated to any local ring whose residue field

has prime characteristic. These numbers are again defined using local cohomology

modules over a regular ring. The introduction of these invariants has the objective of

studying all rings of mixed characteristic through regular rings of unramified mixed

characteristic, whose local cohomology have finiteness properties.

If S is a regular local ring of unramified mixed characteristic, the Bass numbers

of local cohomology modules of the form H i
I(S) are finite (see Theorem IV.3.1 and

[Lyu00b, NB12b]). Using the theory of p-bases, and explicit constructions used in the

Cohen Structure Theorems, we prove that the Lyubeznik numbers in mixed charac-

teristic are well-defined:

Definition I.3.12 (see Definition XI.1.7 and [NBW12b]). Let (R,m,K) be a local

ring such that char(K) = p > 0, and let R̂ denote its completion. By the Cohen

Structure Theorems, R̂ admits a surjection π : S � R̂, where S is an n-dimensional

unramified regular local ring of mixed characteristic. Let I = Ker(π) and take i, j ∈
N. Then the Lyubeznik number of R in mixed characteristic with respect to i and j is

defined as

λ̃i,j(R) := dimK ExtiS(K,Hn−j
I (S)).

This number is finite and depends only on R, i, and j, but not on S, nor on π.

We have again that these new invariants behave similar to the original.

Proposition I.3.13 (see Proposition XI.1.11 and [NBW12b]). Let (R,m,K) be a

local ring such that char(K) = p > 0 and d = dim(R). Then

(i) λ̃i,j(R) = 0 if j > d or i > j + 1, and

(ii) λ̃d,d(R) 6= 0.

Since the structure of the local cohomology over regular rings of mixed charac-

teristic is not as nice as in equal characteristic, we need to overcome some technical

difficulties by studying further the injective dimension. In particular, we find van-

ishing theorems for these local cohomology modules; therefore, for the Lyubeznik

numbers in mixed characteristic.

Theorem I.3.14 (see Theorem XI.2.10 and [NBW12b]). Let (S,m,K) be either a

regular local ring of unramified mixed characteristic, or a regular local ring containing
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a field. Let n = dim(S), and let I be an ideal of S such that dim(S/I) = d. Then

inj. dim(Hn−d
I (S)) = d.

In particular, if d = dimR, λ̃d,d(R) 6= 0, and λ̃i,j(R) = 0 if either i > d or j > d,

so the “highest” Lyubeznik number exists.

When R is a ring of equal characteristic p > 0, we have two notions of Lyubeznik

numbers: the original defined by Lyubeznik [Lyu93] and the new one introduced in

[NBW12b]. We give some conditions for which these two definitions agree.

Proposition I.3.15 (see Corollary XI.3.4 and [NBW12b]). Let (R,m,K) be a local

ring of characteristic p > 0 such that either dim(R) ≤ 2 or R is Cohen-Macaulay.

Then

λ̃i,j(R) = λi,j(R).

In addition, we present an example, inspired by an the triangularization of the

projective real plane, in which these invariants disagree.

Theorem I.3.16 (see Theorem XI.4.12 and [NBW12b]). There exists a regular local

ring (S,m,K) of unramified mixed characteristic p > 0, and an ideal I ⊆ S, such

that S/pS is a regular ring, p ∈ I and

λ̃i,j(S/I) = dimK ExtjS(K,H i
I(S)) 6= dimK ExtjS/pS(K,H i−1

IS/pS(S/pS)) = λi,j(S/I).
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CHAPTER II

Background

In this chapter we introduce the concepts and tools that we need to prove the re-

sults obtained in this work. We refer to [AM69, Eis95, Mat80] for details about asso-

ciated primes, to [Bas63] for injective modules and Bass numbers, to [BS98, ILL+07]

for local cohomology, to [Bjö79, Bjö72, Cou95, Lyu93, MNM91] for D-modules in

characteristic zero, to [Lyu97, Lyu00a, Smi95a, Yek92] for D-modules in positive

characteristic, to [Fed87, Smi95a] for F -split, F -pure and F -injective rings, to [HH90,

HH94a, HH94b] for tight closure to [BMS08, BMS09, HY03] for generalized test ideals.

to [Lyu97] for F -modules to [Bli03] for R〈F 〉-modules.

II.1 Associated primes

A prime ideal P ⊂ R is an associated prime of an R-module, M, if one of the

following equivalent conditions holds

• There is an injection R/ ↪→M ;

• there exists an element u ∈M such that P = AnnR u.

the set of associated primes of M is denoted by AssR(M). Every zerodivisor of M

belong to an associated primes. In other words, the union of the associated primes

form the set of the zerodivisors for M. A prime ideal P ⊂ R is in the support of

M if MP 6= 0, and we take SuppR(M) = {P ∈ Spec(R) | MP 6= 0}. If M is a

finitely generated module, we have that SuppR(M) is Zariski closed subset of Spec(R);

moreover, SuppR(M) = V(AnnR(M)). The minimal elements of SuppR(M) are the

same as the minimal elements of AssR(M).

If W ⊂ R is a multiplicative system, we have that

AssW−1RW
−1M = {PW−1R | P ∈ AssRM and R ∩W = ∅}
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If S is a flat R-algebra, we have that AssS(M ⊗R S) =
⋃
P∈AssRM

AssS(S/PS). In

particular, if S is a faithfully flat algebra, we have that

AssS(M ⊗R S) is finite⇔ AssR(M) is finite.

This property allows to pass to the completion of R to study associated primes, when

R is a local ring.

II.2 Injective modules and Bass numbers

An R-module E is injective if the functor HomR(−, E) is exact (it is always left

exact). The category of R-modules have enough injectives, this is, for every R-module

there exist an injective R-module E and an injection M ↪→ E.

An essential extension of M is an R-module with an injection M ↪→ N such that

every nonzero submodule of N non-trivially intersects the image of M. By Zorn’s

Lemma every R-module have a maximal essential extension. We have that a an R-

module is injective if and only if it has no proper essential extension. If M ⊂ E,

where E is injective, we have that the maximal essential extension of M in E is an

injective R-module. Moreover, it is a maximal essential extension of M in an absolute

sense: it is not a properly contained in any module that is an essential extension of

M. It is called the injective hull of M and denoted by ER(M). Every injective module

is a direct sum of injective hulls of the form ER(R/P ), where P is a prime ideal.

Given a module M over a ring S, we build a complex E• as follows, We take E0 =

ER(M) and N1 = Coker(M ↪→ E0). Then, we take E1 = ER(N1). By countinuing this

process, we obtain a minimal injective resolution, E•, of M. The number of copies of

ER(k)S(S/P ) in Ei is the i-th Bass number of M with respect to P , denoted µi(P,M)

and as well equal to dimSP /PSP ExtiS(SP/PSP ,MP ). If R is a Gorenstein ring, we have

that ExtiS(SP/PSP ,MP ) = 1 if ht(P ) = i and zero otherwise.

If (R,m,K) is a complete local ring, the injective hull of the residue field, ER(K),

plays an important role in the study of R-module. For instance, the Matlis duality,
∨ = HomR(−, ER(K), is defined using this injective module. Moreover, we have that

M = (M∨)∨.

The functor HomR(M,ER(K)) is called the Matlis dual of M and HomR(−, ER(K))

gives an anti-equivalence between the category of Noetherian R-modules and the

category of Artinian R-modules.
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II.3 Local cohomology

Let R be a ring, I ⊂ R an ideal, and M an R-module. If I is generated by

f1, . . . , f` ∈ R, the Čech complex, Č(f ;M), is defined as

0→M → ⊕jMfj → . . .→Mf1···f` → 0,

Here, Či(f ;S) =
⊕

j1<...<ji

Sfj1 ···fji , and each morphism Či(f ;M) → Či+1(f ;M) is a

localization map with an appropriate sign. For instance, if ` = 2, the complex is

0→M →Mf1 ⊕Mf2 →Mf1f2 → 0,

where M → Mf1 ⊕Mf2 sends v 7→ (v
1
, v

1
) and Mf1 ⊕Mf2 → Mf1f2 sends

(
v
fα1
, w
fβ2

)
7→

v
fα1
− w

fβ2
.

We define the i-th local cohomology of M with support in I as the i-th cohomology

of the complex Č•(f ;S)⊗S M ; i.e.,

H i
I(M) := H i(Č•(f ;M) =

Ker
(
Či(f ;M)→ Či+1(f ;M)

)
Im
(
Či−1(f ;M)→ Či(f ;M)

)
There are several ways to define local cohomology. In fact, the definition we chose

is not the most natural, although it will be advantageous for us due to the interactions

between the cited complex Č•(f ;S) and D-modules (see Chapter II.4). The local

cohomology module H i
I(M) can also be defined as the direct limit, lim

−→
t

ExtiS(S/I t,M),

or as the i-th right derived functor of ΓI(M) = {v ∈M | Ijv = 0 for some j ∈ N}.
Let K(f1, . . . , fs;M) denote the Koszul complex associated to the sequence f =

f1, . . . , f`. In Figure II.3 there is a direct limit involving K(f ti ;M), whose limit is

Č(fi;M).

M→ M → M → M → M → . . .
↓ fi ↓ f 2

i ↓ f 3
i ↓ f 4

i ↓
M

fi→ M
fi→ M

fi→ M
fi→ M

fi→ . . .

Figure II.3.0.1: Direct limit of Koszul complexes

Let f t denote the sequence f t1, . . . , f
t
s. Since

K(f ;M) = K(f1;M)⊗R . . .⊗R K(f`;M),
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we have that

Č(f ;M) = Č(f1;M)⊗S . . .⊗S Č(fs;M)

= lim
→t
K(f t1;M)⊗S . . .⊗S lim

→
K(f ts;M)

= lim
→t
K(f t1;M)⊗S . . .⊗S K(f ts;M).

Hence, H i
I(M) = lim

−→
t

H i(K(f ;M)).

The modules H i
I(M) are usually not finitely generated, even when M is. For

instance, if (S,m, K) is an n-dimensional regular local ring, then Hd
m(S) ∼= ES(K),

the injective hull of K over R, which is not finitely generated unless S is a field.

We define the cohomological dimension of I by

cdRI = Max{i | H i
I(R) 6= 0}.

By the definition of local cohomology using the Čech complex, we have that cdRI is

smaller or equal that the number of minimal set of generator of I; moreover, smaller

or equal that the number of the minimal set of generator for any ideal whose radical

is
√
I.

Local cohomology characterizes some properties of the ring. For instance, if

(R,m,K) is a local ring of dimension d, we have that R is Cohen-Macaulay if and

only if

H i
m(R) = 0 ⇐⇒ i 6= d.

In addition, R is Gorenstein if and only if it is Cohen-Macaulay and Hd
m(R) = EK(R).

There are strong connections between local cohomology and sheaf cohomology:

Let M be a finitely generated graded R-module, and let M̃ be the sheaf on Pn

associated to M . Then there are a functorial isomorphisms (see [Eis95, A4.1])

H t
m(M) ∼=

⊕
`∈Z

H t−1(Pn, M̃(`)) when t ≥ 2,

and an exact sequence (functorial in M) of degree-preserving maps

0→ H0
m(M)→M →

⊕
`∈Z

H0(Pn, M̃(`))→ H1
m(M)→ 0.

Among the structural properties obtained for local cohomology is that the set of
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associated primes ofH i
I(R) is finite for certain regular rings. Huneke and Sharp proved

this for characteristic p > 0 [HS93]. Lyubeznik showed this finiteness property for

regular local rings of equal characteristic zero and finitely generated regular algebras

over a field of characteristic zero [Lyu93]. We point out that this property does not

necessarily hold for ring that are not regular [Kat02, SS04]. Huneke and Sharp [HS93]

proved that if S is a regular ring of characteristic p > 0 and I is an ideal of S, then the

Bass numbers of the local cohomology modules of the form Hj
I (S), j ∈ N, are finite,

raising the analogous question in the characteristic zero case. Utilizing D-module

theory, Lyubeznik proved the same statement for regular local rings of characteristic

zero containing a field [Lyu93]. In these cases we also have that inj. dim(H i
I(S)) ≤

dim Supp(H i
I(S)) [HS93, Lyu93].

For regular rings of unramified characteristic we also have that the associated

primes and the Bass numbers of local cohomology are finite (see Chapter IV and

[Lyu00b, NB12b]). In this case the inequality about injective dimension is weaker:

inj. dim(H i
I(S)) ≤ dim Supp(H i

I(S)) + 1 [Zho98].

Many of these properties holds for a family of functors introduced by Lyubeznik

[Lyu93]. If Z ⊂ Spec(R) is a closed subset and M is an R-module, we denote by

H i
Z(M) the i-th local cohomology module of M with support in Z. This can be

calculated via the Čech complex as follows:

(II.3.0.1) 0→M → ⊕iMfi → . . .→ ⊕iMf1···f̂1···f` →Mf1···f` → 0

where Z = V(f1, . . . , f`) = {P ∈ Spec(R) : (f1, . . . , f`) ⊂ P}
For two closed subsets of Spec(R), Z1 ⊂ Z2, there is a long exact sequence of

functors. In particular, H i
Z(M) = H i

I(M).

(II.3.0.2) . . .→ H i
Z1
→ H i

Z2
→ H i

Z1/Z2
→ . . .

Definition II.3.1. We say that T is a Lyubeznik functor if has the form T = T1 ◦
· · · ◦ Tt, where every functor Tj is either HZ1 , H

i
Z1\Z2

, or the kernel, image or cokernel

of some arrow in the previous long exact sequence for closed subsets Z1, Z2 of Spec(R)

such that Z2 ⊂ Z1.
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II.4 D-modules

Given rings A ⊆ S, we define the ring of A-linear differential operators of S,

D(S,A), as the subring of HomA(S, S) defined inductively as follows: the differential

operators of order zero are induced by multiplication by elements in S. An element

θ ∈ HomA(S, S) is a differential operator of order less than or equal to k + 1 if, for

every r ∈ S, [θ, r] := θ · r − r · θ is a differential operator of order less than or equal

to k. From the definition, if B is a subring A, then D(S,A) ⊆ D(S,B).

If M is a D(S,A)-module, then Mf has the structure of a D(S,A)-module such

that, for every f ∈ S, the natural morphism M → Mf is a morphism of D(S,A)-

modules. As a result, since S is a D(S,A)-module, for all ideals I1, . . . , Is ⊆ S, and all

i1, . . . is ∈ N, H i`
I`
· · ·H i2

I2
H i1
I1

(S) is also a D(S,A)-module [Lyu93, Example 2.1(iv)].

If S = A[[x1, . . . , xn]], then D(S,A) = S
〈

1
t!

∂t

∂xit
| t ∈ N, 1 ≤ i ≤ n

〉
⊆ HomA(S, S)

[Gro67, Theorem 16.12.1]. Moreover, if A = K is a field, then Sf has finite length in

the category of D(S,K)-modules for every f ∈ S. Consequently, every module of the

form H is
Is
· · ·H i2

I2
H i1
I1

(S) also has finite length in this category [Lyu00a, Corollary 6].

Remark II.4.1. Let (R,m,K) be a local ring. Let S denote either R[x1, . . . , xn] or

R[[x1, . . . , xn]], then

D(S,R) = R

[
1

t!

∂t

∂xti
| t ∈ N, 1 ≤ i ≤ n

]
⊂ HomR(S, S)

[Gro67, Theorem 16.12.1]. Then, there is a natural surjection

ρ : D(S,R)→ D(S/IS,R/IR)

for every ideal I ⊂ R. Moreover,

(i) If M is a D(S,R)-module, then IM is a D(S,R)-submodule and the structure of

M/IM as a D(S,R)-module is given by ρ, i.e., δ ·v = ρ(δ) ·v for all δ ∈ D(S,R)

and v ∈M/IM .

(ii) If R contains the rational numbers D(S,R) is a Noetherian ring. Let Γi = {δ ∈
D(S,R) | ord(δ) ≤ i}. We have that grΓD = S[y1, . . . , yn], which is Noetherian

and then so D is.

We recall a subcategory of D(S,R)-modules introduced by Lyubeznik [Lyu00a].

We denote by C(S,R) the smallest subcategory of D(S,R)-modules that contains Sf
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for all f ∈ S and that is closed under subobjects, extensions and quotients. In partic-

ular, the kernel, image and cokernel of a morphism of D(S,R)-modules that belongs

to C(S,R) are also objects in C(S,R). We note that if M is an object in C(S,R),

then H i1
I1
· · ·H i`

I`
(M) is also an object in this subcategory; in particular, H i1

I1
· · ·H i`

I`
(S)

belongs to C(S,R) [Lyu00a, Lemma 5].

A D(S,R)-module, M , is simple if its only D(S,R)-submodules are 0 and M . We

say that a D(S,R)-module, M , has finite length if there is a strictly ascending chain

of D(S,R)-modules, 0 ⊂ M0 ⊂ M1 ⊂ . . . ⊂ Mh = M, called a composition series,

such that Mi+1/Mi is a nonzero simple D(S,R)-module for every i = 0, . . . , h. In this

case, h is independent of the filtration and it is called the length of M . Moreover, the

composition factors, Mi+1/Mi, are the same, up to permutation and isomorphism, for

every filtration.

Notation II.4.2. If M is a D(S,R)-module of finite length, we denote the set of its

composition factors by C(M).

Remark II.4.3. (i) If M is a nonzero simple D(S,R)-module, then M has only

one associated prime. This is because H0
P (M) is a D(S,R)-submodule of M for

every prime ideal P ⊂ S. As a consequence, if M is a D(S,R)-module of finite

length, then AssSM ⊂
⋃
N∈C(M) AssS N, which is finite.

(ii) If 0 → M ′ → M → M ′′ → 0 is a short exact sequence of D(S,R)-modules of

finite length, then C(M) = C(M ′)
⋃
C(M ′′).

Hypothesis II.4.4. Throughout the rest of Section II.4, we will assume that S is

either or K[x1, . . . , xn] or K[[x1, . . . , xn]], where K is a field of characteristic 0. Let

D = D(S,K).

We recall some relevant definitions and properties of D-modules, and refer the

reader to [Bjö79, Bjö72, Cou95, MNM91] for details. Under Hypothesis II.4.4, we

know that D = S
〈

∂
∂x1
, . . . , ∂

∂xn

〉
⊆ HomK(S, S), and there is an ascending filtration

Γi := {δ ∈ D | ord(δ) ≥ i} =
⊕

α1+...+αn≤i

R · ∂
α

∂xαi
.

Moreover, grΓ(D) ∼= S[y1, . . . , yn], a polynomial ring over S. A filtration Ω = {Ωj}
of S-modules on a D-module M is a good filtration if Ωj ⊆ Ωj+1,

⋃
j∈N

Ωj = M ,
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ΓiΩj ⊆ Ωi+j, and grΩ(M) =
⊕
j∈N

Ωj+1/Ωi is a finitely generated grΓ (D(S,K))-module.

If Γ is a good filtration, neither dimgrΓ(D) grΩ(M) nor Rad(AnngrΓ(D) grΩ(M))

depend on the choice of good filtration. For the sake of clarity, we will omit the

filtration when referring to the associated graded ring or module.

A finitely generatedD-moduleM is holonomic if eitherM = 0 or dimgr(D) gr(M) =

n. The holonomic D-modules form a full abelian subcategory of the category of D-

modules, and every holonomic D-module has finite length as a D-module. Moreover,

if M is holonomic, then Mf is also holonomic for every f ∈ S. As a consequence,

since S is holonomic, every module of the form H i`
I`
· · ·H i2

I2
H i1
I1

(S) is also.

Definition II.4.5 (Characteristic variety, characteristic cycle, characteristic cycle

multiplicity). Given a holonomic D-module, the characteristic variety of M is

C(M) = V
(
Rad

(
Anngr(D(S,K)) gr(M)

))
⊆ Spec gr(D),

and its characteristic cycle is CC(M) =
∑
miVi, where the sum is taken over all the

irreducible components Vi of C(M), and mi is the corresponding multiplicity. We

define the (characteristic cycle) multiplicity of M by e(M) =
∑
mi.

Remark II.4.6. If 0 → M ′ → M → M ′′ → 0 is an exact sequence of holonomic

D-modules, then CC(M) = CC(M ′) +CC(M ′′); as a consequence, e(M) = e(M ′) +

e(M ′′). In addition, CC(M) = 0 if and only if M = 0, so that e(M) = 0 if and only

if M = 0 as well.

Now let S = K[x1, . . . , xn], and take f ∈ S. Let N [s] be the free Sf [s]-module

generated by a symbol f s. We give N [s] a left Df [s]-module structure as follows:
∂
∂xi
· g
f`

f s =
(

1
f`

∂g
∂xi
− s g

f
∂f
∂xi

)
f−s. There exist a polynomial 0 6= b(s) ∈ Q[s] and an

operator δ(s) ∈ D[s] that satisfy

(II.4.6.1) δ(s)f · (1⊗ f s) = b(s)(1⊗ f s)

in N [s] [Cou95, Chapter 10].

Given ` ∈ Z, we define the specialization map φ` : N [s] → Rf by φ`(vs
i ⊗ f s) =

`ivf `. Thus, φ`(δ(s)v) = δ(`)φ`(v). Then, by applying this morphism to the result,

we have

δ(`)f `+1 = b(`)f `.

The set of all polynomials h(s) ∈ Q[s] that satisfy Equation II.4.6.1 forms an

ideal of Q[s]. We call the minimal monic polynomial satisfying it the Bernstein-Sato
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polynomial of f , and denote it bf (s).

If R is a reduced F -finite ring of characteristic p > 0, we have that DR =⋃
e∈N HomRp

e (R,R) [Yek92]. We denote HomRp
e (R,R) by D

(e)
R . Moreover, if R is

an F -finite domain, then R is an strongly F -regular ring if and only if R is F -split

and a simple DR-module [Smi95a, Theorem 2.2].

If R is an F -finite reduced ring, W ⊂ R a multiplicative system and M a simple

DR-module, then W−1M is either zero or a simple DW−1R-module. As a consequence,

for every DR-module of finite length, N,

lengthDW−1R
W−1N ≤ lengthDR N.

II.5 F -pure, F -split and F -injective rings

Throughout this section, R is a ring of characteristic p > 0 and F : R → R

denotes the Frobenius morphism, r 7→ rp. If R is reduced, we define R1/q as the ring

of formal qth-roots of S. A ring R is F -finite if R1/p is a finitely generated R-module.

We say that R is F -pure if for every R-module M , the morphism induced by the

inclusion of R ↪→ R1/p, M⊗RR→M⊗RR1/p, is injective. If M is an R-module, then

F acts naturally on it. If (R,m,K) is local, we say that a ring is F -injective if the

induced Frobenius map F : H i
m(R) → H i

m(R) is injective for every i ∈ N. F -purity

implies F -injectivity, and in a Gorenstein ring, these properties are equivalent [Fed87,

Lemma 3.3].

II.6 Tight closure

If R is a reduced F -finite ring, then D(R,Z) =
⋃
e∈N HomRpe (R,R). Moreover, if

K is a perfect field and R = K[[x1, . . . , xn]], then D(R,Z) = D(R,K).

If I is an ideal of R, the tight closure I∗ of I is the ideal of R consisting of all those

elements z ∈ R for which there exists some c ∈ R, c not in any minimal prime of R,

such that czq ∈ I [q] for all q = pe � 0, where I [q] denotes the ideal of R generated by

qth powers of elements in I.

We say that R is weakly F -regular if I = I∗ for every ideal I of R. If every

localization of R is weakly F -regular, then R is F -regular. In general, tight closure

does not commute with localization, and it is unknown whether the localization of a

weakly F -regular ring must again be weakly F -regular; this explains the use of the

adjective “weakly.” If R is a local ring, we say that the ring is F -rational1 if for every
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parameter ideal I, I = I∗.

A ring R is strongly F -regular if for all c ∈ R not in any minimal prime, there exists

some q = pe such that the R-module map R→ R1/q sending 1 7→ c1/q splits. Strong F -

regularity is preserved under localization. In a Gorenstein ring, F -rationality, strong

F -regularity, and weak F -regularity are equivalent.

We define the test ideal of R by

τ(R) =
⋂
I⊂R

(I : I∗).

If R is a Gorenstein ring, we have that

τ(R) =
⋂

I parameter ideal

(I : I∗).

[HH90, Theorem 8.23] [Mat80, Theorem 18.1].

Remark II.6.1. Let R be a reduced ring essentially of finite type over an excellent

local ring of prime characteristic. Let τ(R) denote the test ideal of R. We know that

for every multiplicative system W ⊂ R, W−1τ(R) = τ(W−1R) [Smi94, Proposition

3.3] [LS01, Theorem 2.3]. It is worth pointing out that, in this case, τ(R) contains a

nonzerodivisor [HH94a, Theorem 6.1].

II.7 Generalized test ideals

Test ideals were generalized by Hara and Yoshida [HY03] in the context of pairs

(R, Ic), where I is an ideal in R and c is a real parameter. Blickle, Mustaţă, and

Smith [BMS08] gave an elementary description of these ideals in the case of a regular

F -finite ring R. We give the definition introduced by them,

Given an ideal I in R we denote by I [1/pe] the smallest ideal J such that I ⊆ J [pe]

[BMS08, Definition 2.2]. The existence of a smallest such ideal is a consequence of

the flatness of the Frobenius map in the regular case.

We recall some properties that we will use often

(IJ)1/pe ⊂ I [1/pe] · J [1/pe]

and (
I [pe]

)1/ps

= I [pe/ps] ⊂
(
I [ps]

)1/pe
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[BMS08, Proposition 2.4]. In addition,
(

(f)[1/pe]
)[pe]

= D(e)f [ÀMBL05, Proposition

3.1], where D(e) = HomRpe (R,R).

Given a non-negative number c and a nonzero ideal I, we define the generalized

test ideal with exponent c by

τ(Ic) =
⋃
e>0

(Idcp
ee)[1/pe],

where dce stands for the smallest integer ≥ c.

The ideals in the union above form an increasing chain of ideals; therefore, as

R is Noetherian, they stabilize. Hence for e large enough, τ(Ic) = (Idcp
ee)[1/pe]. In

particular, τ(f
s
pe ) = (f s)[1/pe] [BMS09, Lemma 2.1].

An important property of test ideals is given by Skoda’s Theorem [BMS08, The-

orem 2.25]: if I is generated by s elements and c ≤ s, then τ(Ic) = I · τ(Ic−1).

For every nonzero ideal I and every non-negative number c, there exists ε > 0

such that τ(Ic) = τ(Ic
′
) for every c < c′ < c+ ε [BMS08, Corollary 2.16].

A positive real number c is an F-jumping number for I, if τ(Ic) 6= τ(Ic−ε) for all

ε > 0

All F -jumping numbers of an ideal I are rational and they form a discrete set,

that is, there are no accumulation points of this set [BMS08, Theorem 3.1].

Let α be a positive number. Since the set of F -jumping numbers of f is discrete

and it is form by rational numbers, there is a positive rational number β < α such

that τ(fβ) = τ(fγ) for every γ ∈ (β, α). We denote τ(fβ) by τ(fα−ε).

II.8 F -modules

In this section, we recall some definitions and properties of the Frobenius functor

introduced by Peskine and Szpiro [PS73]. We assume that R is regular. This allows

us to use the theory of F -modules introduced by Lyubeznik [Lyu97].

Every morphism of rings ϕ : R → S defines a functor from R-modules to S-

modules, where ϕ∗M = S ⊗R M. If S = R and ϕ is the Frobenius morphism, FRM

denote ϕ∗M. If R is a regular ring, FR is an exact functor. We denote the e-th iterated

Frobenius functor by F e
R.

Example II.8.1. If M is the cokernel of a matrix (ri,j), then FR(M) is the cokernel

of (rpi,j). In particular, if I ⊂ R is an ideal, then F (R/I) = R/I [p].
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We say that an R-module, M, is an F -Module if there exists an isomorphism of

R-modules ν :M→ FM.

If M is an R-module and β : M → FM is a morphism of R-modules, we consider

M = lim
→

(M
β→ FM

Fβ→ F 2M
F 2β→ . . .).

Then, M is an F e-module and M β→M is the structure isomorphism. In this case,

we say thatM is generated by β : M → F e
RM . If M is a finitely generated R-module,

we say thatM is an F -finite F -module. If β is an injective map, then M injects into

M. In this case, we say that β is a root morphism and that M is a root for M.

Example II.8.2. (i) Since FR = R, we have that R is an F -module, where the

structure morphism ν : R→ R is the identity.

(ii) For every element f ∈ R, we take α = r
p−1

and take the F -module structure on

Rf that is generated by

R
fp−1

→ R
fp(p−1)

→ R
fp

2(p−1)

→ . . . .

We say that φ : M → N is a morphism of F -modules if the following diagram

commutes:

M φ //

νM
��

N
νN
��

FRM
FRφ // FRN

The F -modules form an Abelian category, and the F -finite F -modules form a

full Abelian subcategory. Moreover, if M is F -finite then Mf is also an F -finite

F -module for every f ∈ R. In adition, if R is a local ring, every F finite F -module

has finite length as F e-module and has a minimal root [Bli04a, Lyu97].

Example II.8.3. The localization map R → Rf is a morphism of FR-modules for

every f ∈ R.

Example II.8.4. The quotient of localization map R→ Rf is an FR-finite FR-module

for every f ∈ R. Rf/R is generated by R/fR
fp−1

→ FR(R/fR) = R/f pR.

We recall that every F e-submodule M ⊂ Rf/R is a D-module [Lyu97, Examples

5.2]. We have that Rf/R has finite length as F -module because Rf/R has finite

length as D-module. Let R be an F -finite regular ring. If Rf/R has finite length as
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DR-module, then Rf/R has finite length as FR-module for every f ∈ R. Therefore,

if Rf/R has finite length as DR-module, then Rf/R has finitely many F -submodules

[Hoc07].

II.9 R[F ]-modules

R〈F 〉 is defined as the associative R-algebra with one generator F, with the rela-

tions F ea = aqF e for every r ∈ R.
Having an R〈F 〉-module is equivalent to a morphism of R-modules

ν : F (M)→M.

By adjointness, ν ∈ Hom(FM,M) corresponds to a map Fν Hom(M,F∗M) where

Fν(m) = ν(1⊗m).

If R is regular, every F -module is an R〈F 〉-module and it is often called a unit

R〈F 〉-module.

An element u ∈ M of an R[F ]-module (M, ν) is called F -nilpotent if F `(u) = 0

for some ` ∈ N; M is called F -nilpotent if F `(M) = 0.

Definition II.9.1. [EH08] M is anti-nilpotent if for every R〈F 〉-submodule, N ⊂M,

F acts injectively on M/N.

Lemma II.9.2 ([Ma12]). An R〈F 〉-module is anti-nilpotent if and only if every R〈F 〉-
submodule is F–Full.

Definition II.9.3 ([Bli04a, Lyu97]). We define a functor D from the category of

cofinite S〈F 〉-modules to the category of FS-modules as

D(M) := lim
to

(
M∗ β∗→ F eM∗ F eβ∗→ . . .

)
Theorem II.9.4 ([Lyu97]). D satisfies the following properties for R〈F 〉-modules

that are Artinian as R-modules:

• D(M) = 0 if and only if M is F -nilpotent

• For every F e-submodule N ′ ⊂ D(M), there exist a S〈F 〉-module N such that

D(N) = N ′.

• if N and M are cofinite, D(N) ∼=F−mod D(M) if and only if Nred
∼=S〈F 〉 Mred
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Theorem II.9.5 ([Ma12]). If R is an F -pure ring, then H i
m(R) is anti-nilpotent for

every i ∈ N.

Since R = S/I, we have that every R〈F 〉-module has a natural structure of S〈F 〉-
module. In particular, Hd

m(R) is an S〈F 〉-module.

Proposition II.9.6 ([Bli04a]). D(Hd
m(R)) = Hc

I (S).
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CHAPTER III

Rings of differentiable type and rings of mixed

characteristic

In this chapter we develop the theory of ring of differentiable over regular rings

of characteristic zero. In particular, we do not assume that the base ring is local,

complete or have global variables. Instead, we assume that the module differential

over the ring is a projective module (see Hypothesis III.1.3). Then, we prove that

the localization of any regular local ring, R, of mixed characteristic p > 0 at the

characteristic satisfies this hypothesis. We emulate Lyubeznik proof for regular local

rings to conclude that the associated primes of the local cohomology modules over

R[1/p] is finite.

The results presented in this section appear in [NB13].

III.1 Rings of differentiable type

We start by recalling a couple of theorems from Matsumura’s book [Mat80]:

Theorem III.1.1 (Theorem 98 [Mat80]). Let (A,m,K) be a Noetherian local domain

containing the rational numbers. Suppose that A contains a field, F, such that K is

an algebraic extension of F. Then,

rank(DerF (A)) ≤ dimA.

Theorem III.1.2 (Theorem 99 in [Mat80]). Let (R,m, F ) be a regular local com-

mutative Noetherian ring with unity of dimension n containing a field F0. Suppose

that F is an algebraic separable extension of F0. Let R̂ denote the completion of R

with respect to m. Let x1, . . . , xn be a regular system of parameters of R. Then,

R̂ = F [[x1, . . . , xn]] is the power series ring with coefficients in F , and DerF R̂ is a
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free R̂-module with basis ∂/∂x1, . . . , ∂/∂xn. Moreover, the following conditions are

equivalent:

• ∂/∂xi (i = 1, . . . , n) maps R into R, i.e. ∂/∂xi ∈ DerF0(R);

• there exist derivation D1, . . . , Dn ∈ DerF0(R) and elements a1, . . . , an ∈ R such

that Diaj = 1 if i = j and 0 otherwise;

• there exist derivations D1, . . . , Dn ∈ DerF0(R) and elements a1 . . . , an ∈ R such

that det(Diaj) 6∈ m;

• DerF0(R) is a free module of rank n (with basis D1, . . . , Dn);

• rank(DerF0(R)) = n.

Hypothesis III.1.3. From now on, we will consider a commutative Noetherian reg-

ular ring R with unity that contains a field, F , of characteristic zero satisfying:

(1) R is equidimensional of dimension n;

(2) every residual field with respect to a maximal ideal is an algebraic extension of

F ;

(3) DerF (R) is a finitely generated projective R-module of rank n such that Rm ⊗R
DerF (R) = DerF (Rm).

Remark III.1.4. In property (3), we require that Rm ⊗R DerF (R) = DerF (Rm)

because we are not assuming that the module of Kahler differential, ΩF/R, is a

finitely generated R-module. In addition, property (3) and Theorem III.1.1 say that

DerF (Rm) has the maximum rank possible.

This hypothesis is inspired by the properties (i), (ii) and (iii) (1.1.2) in [MNM91].

There, R is a commutative Noetherian regular ring that contains a field, F , of char-

acteristic zero satisfying (1), (2), but instead of (3) in Hypothesis III.1.3, there exist

F -linear derivations ∂1, . . . , ∂n ∈ DerF0(R) and a1 . . . , an ∈ R such that ∂iaj = 1 if

i = j and 0 otherwise. In our hypothesis, part (3) includes more rings; for instance,

Remark III.1.8 gives an example of a ring that satisfies Hypothesis III.1.3 but not

(1.1.2) in [MNM91]. However, when R is a local ring the properties are the same by

Theorem III.1.2.
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Remark III.1.5. Every regular finitely generated algebra over the complex numbers,

R, satisfies Hypothesis III.1.3. This is because, by Theorem 8.8 [Har77], DerC(R) =

HomR(ΩR/C, R) and ΩR/C is a projective module such that rank(ΩRm/C) = dim(R)

for every maximal ideal m ⊂ R.

Proposition III.1.6. Let R be a commutative Noetherian regular ring that contains

a field, F , of characteristic zero satisfying (1), (2), and such that there exist F -linear

derivations ∂1, . . . , ∂n ∈ DerF0(R) and a1 . . . , an ∈ R such that ∂iaj = 1 if i = j and

0 otherwise. Then, R satisfies Hypothesis III.1.3.

Proof. Theorem III.1.2 implies that DerF0(R) = R∂1⊕. . .⊕R∂n and that DerF0(Rm) =

Rm∂1 ⊕ . . . ⊕ Rm∂n for every maximal ideal m ⊂ R, which concludes the proof of

property (3) in Hypothesis III.1.3.

A proof of Proposition III.1.6, along with several consequences, is contained in

Remark 2.2.5 in [MNM91].

Theorem III.1.7. Let S be a commutative Noetherian regular domain that contains

a field, F , of characteristic zero satisfying Hypothesis III.1.3. If there is an element

f ∈ S such that R = S/fS is a regular ring, then R satisfies Hypothesis III.1.3.

Proof. We have that property (1) holds because dimS−1 = dimSη−1 = dimRm for

every maximal ideal m = ηR ⊂ R, where η ⊂ S is a maximal ideal of S containing

fS. In addition, property (2) holds because every residual field of R is a residual field

of S.

We only need to prove property (3). Let n = dim(S). For every maximal ideal

η ⊂ S containing fS, we may pick a regular system of parameters, y1, . . . , yn for Sη

such that y1 = f . Then, by Theorem III.1.2, there exist δi ∈ DerF (Sη) such that

δi(yj) = 1 if i = j and zero otherwise; moreover, DerF (Sη) is a free Sη-module of rank

n generated by δ1, . . . δn.

Let ϕf : DerF (S) → R be the morphism defined by ∂ → [∂(f)], where [∂(f)]

represents the class of ∂(f) inR. Then, Sη⊗SKer(ϕf ) is isomorphic to {δ ∈ DerF (Sη) :

δ(f) ∈ f · Sη} = Sηfδ1 ⊕ Sηδ2 ⊕ . . .⊕ Sηδn
Noticing that f · DerF (S) ⊂ Kerϕf , we define N = Kerϕf/(f · DerF (S)) and

point out that it is a finitely generated R-module. Let m = ηR. Then, Rm ⊗R N =

Rmδ2 ⊕ . . .⊕Rmδn = DerF (Rm), where the last equality uses Theorem III.1.2.

We have a morphism ψ : N → DerF (R) defined by taking ψ[∂](r) = [∂(r)],

which is well defined by the definition of N . For every maximal ideal m ⊂ R,

there is a natural morphism im : Rm ⊗R DerF (R) → DerF (Rm). We notice that
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(im ◦ 1Rm ⊗ ψ) is an isomorphism between Rm ⊗R N and DerF (Rm) for all maximal

m ⊂ R. Therefore, Nm
∼= Rm⊗DerF (R) ∼= DerF (Rm) for all maximal m ⊂ R. Hence,

ψ is an isomorphism.

Remark III.1.8. It is worth pointing out that there are examples were R satisfies

Hypothesis III.1.3 but DerF (R) is not free. Let S = R[x, y, z] be the polynomial ring

in three variables and coefficients over R. Let f = x2 + y2 + z2− 1. Then, R = S/fS,

the coordinate ring associated to the sphere, satisfies Hypothesis III.1.3 but DerR(R)

is not free. Let φ : R3 → R be the morphism given by (a, b, c) → (ax, by, cz).

Thus, DerR(R) = Ker(φ) by the proof of Theorem III.1.7. Therefore, DerR(R) is the

projective module corresponding to the tangent bundle of the sphere, and so it is not

free. This example also shows that the conclusion of Theorem III.1.7 does not hold

for properties (i), (ii) and (iii) (1.1.2) in [MNM91]. In that sense, Hypothesis III.1.3

behaves better under regular subvarieties.

Main Example III.1.9. Let (V, πV,K) be a DVR of mixed characteristic p > 0,

and let F denote its fraction field. Let S = V [[x1, . . . , xn+1]] ⊗V F be the tensor

product of the power series ring with coefficients in V and F . Let R = S/(f)S be

a regular ring where f = π − h for an element h in the square of maximal ideal of

V [[x1, . . . , xn+1]]. Then, R satisfies Hypothesis III.1.3.

Proof. Since S is as in Proposition III.1.6 ( cf. pages 5880 − 5881 in [Lyu00b]) and

π−h ∈ S is a regular element, we have that R satisfies Hypothesis III.1.3 by Theorem

III.1.7.

Definition III.1.10. We say that an associative ring A is filtered if there exists an

ascending filtration

Σ0 ⊂ Σ1 ⊂ Σ2 . . .

of additive subgroups such that 1 ∈ Σ0,
⋃

Σi = A and ΣiΣj ⊂ Σi+j for every i, j ∈ N.
We denote by grΣ(A) the associated graded ring

Σ0 ⊕ Σ1/Σ0 ⊕ Σ2/Σ1 ⊕ . . . .

Let F be a field of characteristic 0 and R a commutative Noetherian ring with

unity containing F . We denote by D(R,F ) the ring of F -linear differential operators

of R. This is a subring of HomF (R,R) defined inductively as follows. The differential

operators of order zero are the morphisms induced by multiplying by elements in R.

An element θ ∈ HomF (R,R) is a differential operator of order less than or equal to
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j + 1 if [θ, r] := θ · r − r · θ is a differential operator of order less than or equal to j.

We have an induced filtration Γ = (Γj) on D(R,F ) given by Γj = {θ ∈ D(R,F ) |
ord(θ) ≤ j}. As a consequence of the definition, we have that ΓjΓi ⊂ Γj+i and that

grΓ(D(R,F )) = ⊕∞j=0Γj/Γj−1 is a commutative ring.

An example is given by a commutative Noetherian regular ring R with unity

that contains a field, F , of characteristic 0, as in Proposition III.1.6. In this case,

D(R,F ) = R[∂1, . . . , ∂n] ⊂ HomF (R,R); moreover, grΓ(D(R,F )) = R[y1, . . . , yn] and

w. gl. dim(D(R,F )) = dim(R) (cf. Main Theorem in [Bjö72], (1.1.3) and Theorem

1.1.4 in [MNM91], and Theorem 2.17 in [NM09]). We would like to have similar

properties for D(R,F ) and grΓ(D(R,F )) when R satisfies Hypothesis III.1.3.

We will denote by D the subalgebra of HomF (R,R) generated by R and DerF (R),

where R = HomR(R,R) ⊂ HomF (R,R). We define an ascending filtration Γ′j of R-

modules in D inductively as follows. Γ′0 = R. Given Γ′j, we take Γ′j+1 as the Abelian

additive group generated by {Γ′j,DerF (R) ·Γ′j}. Since Γ′j is generated by multiplying

derivations, we have that for every δ ∈ Γ′i and f ∈ R, [δ, f ] = fδ − δf ∈ Γ′j−1.

Therefore, Γ′j is an R-submodule of D with respect to the structures induced by

multiplication by the left or by the right. Additionally, D ⊂ D(R,F ) and Γ′j ⊂ Γj

because DerF (R) ⊂ Γ1.

We have that for every s ∈ R, Adjs : D(R,A) → D(R,A), defined by Adjs(δ) =

sδ − δs, is nilpotent. Let m ⊂ R be a maximal ideal and S = R \m be the induced

multiplicative system. Then, S is a multiplicative set satisfying the Ore condition on

the left and on the right in D(R,A) and, as a consequence, in D. Hence, S−1D(R,F )

and S−1D exist as filtered rings.

Proposition III.1.11. With the same notation as above, D(R,F ) = D as filtered

rings.

Proof. Let m ⊂ R be a maximal ideal and S = R \ m be the induced multiplica-

tive system. We have that S−1Γj = S−1Γ′j by condition (3) in Hypothesis III.1.3.

Therefore, S−1D = Rm[ΩRm,F ] = D(Rm, F ) = S−1D(R,F ) as filtered rings.

For simplicity, we will denote D(R,F ) by D and (R \ m)−1D(R,F ) by Dm for

a maximal ideal m ⊂ R. We note that the inclusion D → Dm induces an inclusion

grΓ(D)→ grΓm(Dm) of rings, and grΓm(Dm) = Rm ⊗R grΓ(D). If M is a left or right

finitely generated D-module with a good filtration Π, then Dm ⊗D M or M ⊗D Dm,

respectively, has a filtration given by Rm⊗RΠ and grΠm(Dm⊗DM) = Rm⊗RgrΠ(M).

We have that Dm is a left and right flat module over D, and Dm⊗DDm
∼= Rm⊗R

D ∼= D⊗R Rm
∼= Dm. If M is a left or right finitely generated D-module, there exist
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a canonical isomorphism ExtiDm(Mm, Dm) ∼= S−1 ExtiD(M,D) ∼= Rm ⊗R ExtiD(M,D)

for every i ∈ N.

We have, by Theorem III.1.2, that for every maximal ideal m ⊂ R there ex-

ist elements x1, . . . , xd ∈ Rm and F -linear derivations ∂1, . . . , ∂d ∈ DerF (Rm) such

that ∂i(xj) = 1 if i = j and zero otherwise. Therefore, w. gl. dim(Dm) = n and

grΓm(Dm) = R[y1, . . . , yn] is the polynomial ring with n variables and coefficients in

Rm [Bjö72].

We recall the definition of a ring of differentiable type (cf. (1.1) in [MNM91]).

Definition III.1.12. A filtered ring A is a ring of differentiable type if its associated

graded ring is commutative Noetherian regular with unity and pure graded dimension.

Theorem III.1.13. (D,Γ) is a ring of differentiable type such that grΓ(D) is a regular

ring of pure graded dimension 2n.

Proof. Let grΓ(D) be the associated graded ring. We will prove the proposition by

parts.

grΓ(D) is commutative: This follows from the definition of the filtration Γ on D =

D(R,F ).

grΓ(D) is Noetherian: Let ∂1, . . . , ∂m be a set of generators for DerF (R). Let φ :

R[z1, . . . , zm]→ grΓ(D) be the morphism of commutative R-algebras defined by zi →
[∂i]. We have, by the definition of Γ′ = Γ, that φ is surjectve. Hence grΓ(D) is

Noetherian.

grΓ(D) is regular: Let Q ⊂ grΓ(D) be a prime ideal and m ⊂ R be a maximal ideal

that contains Q∩R. Then grΓ(D)Q = (grΓ(D)m)Q which is regular because grΓ(D)m

is a polynomial ring over Rm.

grΓ(D) has pure graded dimension 2n: Let η be a maximal homogeneous ideal of

grΓ(D). We claim that m = η ∩ R is a maximal ideal of R. If not, there exist a

maximal ideal m′ ⊂ R strictly containing m. Then, m′ + η would be a proper ideal

of grΓ(D) that strictly contains η. Hence, grΓ(D)η is the localization of grΓ(D)m at a

maximal homogeneous ideal, then, dim(grΓ(D)η) = 2n because grΓ(Dm) is a ring of

pure graded dimension 2n.

Remark III.1.14. Narváez-Macarro [NM09] showed that if S is a ring containing

a field, F , of characteristic 0 and DerF (S) is a projective S-modules of finite rank,

then gr(D(S, F )) ∼= Sym(DerF (S)). Hence, we have that gr(D) ∼= Sym(DerF (R)) by

Hypothesis III.1.3.

Corollary III.1.15. D is left and right Noetherian.
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Proof. This follows from Proposition 6.1 in [Bjö79].

Proposition III.1.16. w. gl. dim(D) = dim(R)

Proof. Since D is left and right Noetherian, w. gl. dim(D) = l.pd(D) = r.pd(D) by

Theorem 8.27 in [Rot09]. The value to this dimension is equal to the maximum

integer j such that ExtjD(M,R) 6= 0 for some finitely generated D-module M because

D is of differentiable type. As Rm ⊗R ExtjD(M,D) = ExtnDm(Mm, Dm) = 0 for every

maximal ideal m ⊂ R and integer j > n, we have that ExtjD(M,D) = 0 for every

D-module M and for j > n. Hence, w. gl. dim(D) ≤ n. Likewise,

Rm ⊗R ExtnD(R,D) = ExtnDm(Rm, Dm) 6= 0

for any m ⊂ R, so, ExtnD(R,D) 6= 0. Hence w. gl. dim(D) ≥ n.

III.2 The theory of the Bernstein-Sato polynomial and the

Bernstein class of D

Throughout this section we are adapting the results of Mebkhout and Narváez-

Macarro to R and D [MNM91]. In particular, we show that the existence of the

Bernstein-Sato polynomial and that the Bernstein class of D is closed under localiza-

tion at one element.

Definition III.2.1. Let A be a ring of differentiable type. Let M 6= 0 be a finitely

generated left or right A-module. We define

gradeA(M) = inf{j : ExtjA(M,A) 6= 0}.

Proposition III.2.2. Let A be a ring of differentiable type. Let M 6= 0 be a finitely

generated left or right A-module. Then,

dim(M) + gradeA(M) = dim(grΓ(A)).

In particular, dim(M) ≥ dim(gr(A))− w. gl. dim(A). Moreover, we have that

codimA(ExtiA(M,A)) ≥ i

for all i ≥ 0 such that codimA(ExtiA(M,A)) 6= 0.
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Proof. This is a generalized form of Theorem 7.1 of section 2 in [Bjö79] given by

Gabber [Gab13]. The proposition is stated in this form in Mebkhout and Narváez-

Macarro’s article as Theorem 1.2.2 [MNM91].

Definition III.2.3. Let A be a ring of differentiable type. Let M be a finitely

generated left or right A-module. We say that M is in the left or right Bernstein

class if it has minimal dimension, i.e. dim(M) = dim(gr(A))− w. gl. dim(A).

This class is closed under submodules, quotients and extensions. Let d denote

w. gl. dim(A). The functor that sends M to ExtdA(M,A) is an exact contravariant func-

tor that interchanges the left Bernstein class and the right Bernstein class. Moreover,

M = ExtdA(ExtdA(M,A), A) naturally if M is in either the left or the right Bernstein

class, so that we have an anti-equivalence of categories. In consequence, the modules

in the Bernstein class have finite length as A-modules because it is a left and right

Noetherian ring (cf. Proposition 1.2.7[MNM91]).

Proposition III.2.4 (Prop. 1.2.7 in [MNM91]). Let A be a ring of differentiable

type and let f be an element in A0. Let M be an Af -module finitely generated, such

that ExtiAf (M,Af ) = 0 if i 6= w. gl. dim(A). Then, there exists a submodule M ′ ⊂M

over A such that M ′ is finitely generated with minimal dimension and M ′
f = M .

Through the rest of this section, F (s) denotes the fraction field of the polynomial

ring F [s] over the field F, and D(s) denotes the ring F (s) ⊗F D with the filtration

given by F (s)⊗F Γi. By R(s), we mean the F (s)-algebra F (s)⊗F R. Similarly, D[s]

denotes F [s]⊗F D and R[s] denotes F [s]⊗F R.

Proposition III.2.5. R(s) is an F (s)-algebra equidimensional of dimension dim(R).

Proof. This is an immediate consequence of Theorem 2.1.1 in [MNM91].

Proposition III.2.6. D(s) is a ring of differentiable type with the filtration F (s)⊗FΓ

such that grF (s)⊗FΓ(D(s)) is a ring of pure graded dimension 2 dim(R).

Proof. Since D is a ring of differentiable type,

grF (s)⊗FΓ(D(s)) = F (s)⊗F [s] F [s]⊗F grΓ(D) = F (s)⊗F [s] ⊗FgrΓ(D)[s]

is commutative, Noetherian and regular. For the sake of simplicity, we will omit the

filtration. We claim that gr(D(s)) has pure graded dimension 2 dim(R) = 2n. Let

η ⊂ gr(D(s)) be a maximal homogeneous ideal and P = η ∩ R. Let m ⊂ R be a
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maximal ideal containing P . We have that the ideal ηm, induced by η, is a maximal

homogeneous ideal of

(R \m)−1gr(D(s)) = F (s)⊗F gr(Dm) = (F (s)⊗F Rm)[y1, . . . , yn],

the polynomial ring with coefficients on F (s)⊗F Rm and variables y1, . . . , yn. Then,

ht(η) = ht(ηm) = 2n because F (s) ⊗F Rm is equidimensional of dimension n by

Theorem 2.1.4 in [MNM91].

Remark III.2.7. Theorem 3.4 in [NM91] gives an alternative proof for rings that

satisfies the hypotheses of Proposition III.1.6.

Let M be a left D(s)-module in the Bernstein class of D(s). Let N be a D-module

in the Bernstein class of D such that F (s)⊗FN = M . For every ` ∈ F , the D-module

M` := N/(s− `)N is the Bernstein class of D.

Proposition III.2.8. With the same notation as above, we have that

dimD(s)(M) ≥ dimD(N`),

for all but finitely many ` ∈ F .

Proof. This is analogous to the proof of Theorem 2.2.1 in [MNM91].

Proposition III.2.9. w. gl. dim(D(s)) = dim(R) = n.

Proof. This is analogous to the proof of Theorem 2.2.3 in [MNM91].

Let N [s] be the free Rf [s]-module generated by a symbol f s and let N(s) =

F (s)⊗F N [s]. We give to N [s] (resp. N(s)) a structure of a left Df [s]-module (resp.

Df (s)-module) as follows,

∂gf s = (∂g + sg∂(f)f−1)f s

for every ∂ ∈ DerF (R) and every g ∈ Rf [s] (resp. g ∈ Rf (s) ). If M is a left

D-module, we define Mf [s]f
s := Mf [s] ⊗Rf [s] N [s] = M ⊗R N [s] and Mf (s)f

s :=

N(s) ⊗Rf [s] Mf (s) = M ⊗R N(s). This is a left Df [s]-module (Df (s)-module), and

clearly, Mf [s]f
s (Mf (s)f

s) is a finitely generated Df [s]-module (Df (s)-module) if M

is.
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Proposition III.2.10. Let M be a left D-module in the Bernstein class and let u ∈
M . Then, there exists a nonzero polynomial b(s) ∈ F [s] and an operator P (s) ∈ D[s]

that satisfies the equation

b(s)(u⊗ f s) = P (s)f(u⊗ f s)

in M [s]f s.

Proof. This is analogous to 3.1.1 in [MNM91].

Corollary III.2.11. If M is a left D-module in the Bernstein class, the Mf is a

finitely generated D-module.

Proof. For ` ∈ Z, we define a morphism of specialization φ` : Mf [s]f
s → Mf by

φ`(us
i ⊗ f s) = `if `u, such that φ`(P (s)v) = P (`)φ`(v). Then, by applying this

morphism to the result of Proposition III.2.10, we have

b(`)f `u = P (`)f `u

and the conclusion follows.

Corollary III.2.12. Let M be a left D-module in the Bernstein class. Then, Mf is

also in the Bernstein class for all f ∈ R.

Proof. Since Mf is a finitely generated D-module by Corollary III.2.11, it suffices to

show that dimgr(D)(gr(Mf )) = n. Since Rm ⊗R M is in the Bernstein class of Dm,

we have that Mf is in the Bernstein class of Dm for every maximal ideal m ⊂ R

by Theorem 2.2.3 in [MNM91]. Thus, dimgr(Dm)(gr((Mm)f )) = n and, therefore

dimgr(D)(gr(Mf )) = n.

Theorem III.2.13. Let R be a regular commutative Noetherian ring with unity that

contains a field, F , of characteristic 0 satisfying the following conditions:

(1) R is equidimensional of dimension n;

(2) every residual field with respect to a maximal ideal is an algebraic extension of

F ;

(3) DerF (R) is a finitely generated projective R-module of rank n such that for every

maximal ideal m ⊂ R, Rm ⊗R DerF (R) = DerF (Rm).
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Then, the ring of F -linear differential operators D(R,F ) is a ring of differentiable

type of weak global dimension equal to dim(R). Moreover, the Bernstein class of

D(R,F ) is closed under localization at one element.

Proof. This is a consequence of Theorem III.1.13, Proposition III.1.16 and Corollary

III.2.12.

The previous theorem generalizes some of the results of Mebkhout and Narváez-

Macarro about certain rings of differentiable type [MNM91]. There, R is a commuta-

tive Noetherian regular ring that contains a field, F , of characteristic zero satisfying

(1), (2), but instead of (3) in Hypothesis III.1.3, there exist F -linear derivations

∂1, . . . , ∂n ∈ DerF0(R) and a1 . . . , an ∈ R such that ∂iaj = 1 if i = j and 0 otherwise.

III.3 Local cohomology

Lemma III.3.1. Let M be a left D-module in the Bernstein class. Then, T (M) has

a natural structure of D-module such that it belongs to the Bernstein class for every

functor T as in Definition XI.4.2.

Proof. Mf has the structure of D-module given by

∂ ·m/f ` = (f `δ ·m− δ(f `)m)/f 2`

for every δ ∈ DerF (R). Then, T (M) is a D-module by Examples 2.1 in [Lyu93].

Since M is in the Bernstein class, Mf is in the Bernstein class and M → Mf is a

morphism of D-modules by Corollary III.2.12. Since the Bernstein class is closed

under extension, submodules and quotients, every element in the complexes (II.3.0.1)

and (II.3.0.2) as well as the kernels, images and homology groups are in the same

class, and the result follows.

Lemma III.3.2. Let M be a left D-module in the Bernstein class. Then, AssR(M)

is finite.

Proof. Suppose M 6= 0. Let M1 = M and P1 be a maximal element in the set of the

associated primes of M1. Then, N1 = H0
P1

(M1) a nonzero D-submodule of M1, and

it has only one associated prime. Given Nj and Mj, set Mj+1 = Mj/Nj. If Mj+1 6= 0,

let Pj+1 be a maximal element in the set of the associated primes of Mj+1. Then

Nj+1 = H0
Pj

(Mj+1) has only one associated prime. If Mj+1 = 0, set Nj+1 = 0. Since

M1 = M has finite length as a D(R,A)-module, there exist ` ∈ N such that Mj = 0

for j ≥ `, and then Ass(M) ⊂ {P1, . . . , P`}.
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Theorem III.3.3. Let R be a ring that satisfies Hypothesis III.1.3 and let M be a

D-module in its left Bernstein class. Then, AssR(T (M)) is finite for every functor

T (−) as in Definition XI.4.2. In particular, this holds for H i
I(R) for every i ∈ N and

ideal I ⊂ R.

Proof. This follows immediately form Lemmas III.3.1 and III.3.2.

Corollary III.3.4. Let (R,m,K) be a regular local ring of mixed characteristic p > 0.

Then, the set of associated primes of T (R) that does not contain p is finite for every

functor T as in Definition XI.4.2.

Proof. Let R̂ be the completion of R with respect to the maximal ideal. Then, the set

of associated primes of T (R) that does not contain p is finite if the set of associated

primes of T (R̂) = R̂ ⊗R T (R) that does not contain p is finite. We can assume

without loss of generality that R is complete. Thus, R = V [[x1, . . . , xn+1]] or

R = V [[x1, . . . , xn+1]]/(p− h)V [[x1, . . . , xn+1]],

where (V, pV,K) is a DVR of unramified mixed characteristic p > 0 and h is an

element in the square of maximal ideal of V [[x1, . . . , xn+1]], by the Cohen Structure

Theorems. Let F be the fraction field of V . It suffices to show that

AssR(F ⊗V T (R)) = AssR(T (F ⊗V R)

is finite, which follows from our main example and Theorem III.3.3.

Theorem III.3.5. Let (R,m,K) be a regular commutative Noetherian local ring of

mixed characteristic p > 0. Then the set of associated primes of H i
I(R) that do not

contain p is finite for every i ∈ N and every ideal I ⊂ R.

Proof. This is an immediate consequence of Corollary III.3.4.
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CHAPTER IV

Polynomial rings and power series rings over a

ring of small dimension

Throughout this chapter, A, and R denote commutative Noetherian rings with

unity such that R is either a polynomial ring, A[x1, . . . , xn], or a power series ring,

A[[x1, . . . , xn]]. The main aim in this chapter is to prove that the set of associated

primes and the Bass number of H i
I(R) are finite for every ideal I ⊂ R. In particular,

these rings include regular local complete rings of unramified mixed characteristic,

which gives a different proof for the properties in that case [Lyu00b]. In addition, we

study the injective dimension of these modules and extend previous results of Zhou

[Zho98].

The results presented in this section appear in [NB12b].

IV.1 Associated primes

Lemma IV.1.1. Let A and R be Noetherian rings such that A ⊂ R. Let M be a

D(R,A)-module of finite length. Then, AssRM is finite.

Proof. Suppose M 6= 0. Let M1 = M and P1 be a maximal element in the set of the

associated primes of M1. Then, N1 = H0
P1

(M1) is a nonzero D(R,A)-submodule of

M1, and it has only one associated prime. Given Nj and Mj, set Mj+1 = Mj/Nj. If

Mj+1 6= 0, let Pj+1 be a maximal element in the set of the associated primes of Mj+1.

Then Nj+1 = H0
Pj

(Mj+1) has only one associated prime. If Mj+1 = 0, set Nj+1 = 0

and Pj+1 = 0. Since M1 = M has finite length as a D(R,A)-module, there exist

` ∈ N such that Mj = 0 for j ≥ ` and then Ass(M) ⊂ {P1, . . . , P`}.

Lemma IV.1.2. Let A be a zero-dimensional Noetherian ring. Let R be either

A[x1, . . . , xn] or A[[x1, . . . , xn]]. Then, Rf has finite length as a D(R,A)-module for

every f ∈ R.
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Proof. Since A has finite length as a A-module, there is a finite filtration of ideals 0 =

N0 ⊂ N1 ⊂ . . . ⊂ N` = A such that Nj+1/Nj is isomorphic to a field. Then, we have

an induced filtration of D(R,A)-modules, 0 = N0Rf ⊂ N1Rf ⊂ . . . ⊂ N`Rf = Rf . It

suffices to prove that Nj+1Rf/NjRf has finite length for j = 1, . . . , `. We note that

Nj+1Rf/NjRf is zero or isomorphic to (R/m)f for some maximal ideal m ⊂ A. Since

Nj+1Rf/NjRf has finite length as a D(R/mR,A/mA)-module, it has finite length as

a D(R,A)-module, which concludes the proof.

Proposition IV.1.3. Let A be a zero-dimensional commutative Noetherian ring. Let

R be either A[x1, . . . , xn] or A[[x1, . . . , xn]]. Then, AssRM is finite for every object

in M ∈ C(R,A); in particular, this holds for T (R) for every functor T .

Proof. By Lemma IV.1.2, Rf has finite length in the category of D(R,A)-modules

for every f ∈ R. If M is an object of C(R,A), then M has finite length as a D(R,A)-

module, because length is additive.

Lemma IV.1.4. Let A be a one-dimensional ring, π ∈ A be an element such that

dim(A/πA) = 0, and R be either A[x1, . . . , xn] or A[[x1, . . . , xn]]. Then, Rf/πRf has

finite length as a D(R,A)-module for every f ∈ R.

Proof. The length of Rf/πRf as a D(R,A)-module or as a D(R/πR,A/πA)-module

is the same. Since A/πA has dimension zero and R/πR is either (A/πA)[x1, . . . , xn]

or (A/πA)[[x1, . . . , xn]], the result follows from Lemma IV.1.1 and Lemma IV.1.2.

Lemma IV.1.5. Let A be a one-dimensional ring, π ∈ A be an element such that

dim(A/πA) = 0, and R be either A[x1, . . . , xn] or A[[x1, . . . , xn]]. Let A and R denote

A/πA and R/πA respectively. Let M be a D(R,A)-module, such that AnnM(π) and

M ⊗R R are objects in C(R,A). Then, AnnT (M)(π) and T (M) ⊗R R are objects in

C(R,A) for every functor T .

Proof. We recall that T has the form T = T1 ◦ · · · ◦ Tt, where every functor Tj is

either H i
Z1
, H i

Z1\Z2
, or the kernel, image or cokernel of some arrow in the long exact

sequence

(IV.1.5.1) . . .
αi→ H i

Z1
(M)

βi→ H i
Z2

(M)
γi→ H i

Z1/Z2
(M)→ . . .

for closed subsets Z1, Z2 of Spec(R) such that Z2 ⊂ Z1.

It suffices to prove the claim for t = 1 by an inductive argument. Suppose that

T = HZ(−) where Z = Z1\Z2 for closed subsets Z1, Z2 ⊂ Spec(R) such that Z2 ⊂ Z1.
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We note that H i
Z(−) = H i

Z1
(−), if we choose Z2 = ∅. The exact sequences

0→ AnnM(π)→M
·π→ πM → 0,

and

0→ πM →M →M ⊗R R→ 0,

induce two long exact sequences,

. . .→ H i
Z(AnnM(π))

φi→ H i
Z(M)

ϕi→ H i
Z(πM)→ . . .

and

. . .→ H i
Z(πM)

φ′i→ H i
Z(M)

ϕ′i→ H i
Z(M ⊗R R)→ . . . .

Since the composition of φ′i ◦ ϕi is the multiplication by π on H i
Z(M), we obtain the

exact sequences

0→ Ker(ϕi)→ AnnHi
Z(M)(π)

ϕi→ Ker(φ′i),

and

Coker(ϕi)
φ′i→ H i

Z(M)⊗R R→ Coker(φ′i)→ 0.

Then, AnnHi
Z(M)(π) and H i

Z(πM) ⊗R R are objects in C(R,A), because Ker(ϕi),

Ker(φ′i),Coker(ϕi) and Coker(φ′i) belong to C(R,A) and this category is closed under

sub-objects, extensions and quotients.

If T is a kernel, image or cokernel of a morphism in the long exact sequence

(IV.1.5.1), there exists an injection, T (M)→ H i1
Zj1

(M), and a surjection H i2
Zj2

(M)→
T (M) for some i1, i2 ≥ 0 and j1, j2 ∈ {1, 2}. Then,

0→ AnnT (M)(π)→ Ann
H
i1
Zj1

(M)
(π)

and

H i2
Zj2

(M)⊗R R→ T (M)⊗R R→ 0

are exact. Therefore, AnnT (M)(π) and T (M)⊗R R belong to C(R,A).

Proposition IV.1.6. Let A be a one-dimensional ring, π ∈ A be an element such

that dim(A/πA) = 0, and R be either A[x1, . . . , xn] or A[[x1, . . . , xn]]. Then, the set

of associated primes over R of T (R) that contain π is finite for every functor T .

Proof. The set of associated primes of T (R) that contain π is equal to AssR AnnT (R)(π).

Since AnnT (π) is aD(R,A)-module of finite length by Lemma IV.1.5, AssR AnnT (R)(π)
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is finite by Lemma IV.1.1.

Corollary IV.1.7. Let A be a one-dimensional local ring, and let R = A[x1, . . . , xn].

Then, AssR T (R) is finite.

Proof. Let π be a parameter for A. Then, the set of associated primes over R of

T (R) that contain π is finite by Corollary IV.1.6. Since Rπ = Aπ[x1, . . . , xn] and

dim(Aπ) = 0, the set of associated primes over R of T (R) that does not contain π,

which is in correspondence with AssRπ T (Rπ), is finite by Corollary IV.1.3.

Corollary IV.1.8. Let (A,m,K) be a one-dimensional local domain, and let R =

A[[x1, . . . , xn]]. Then, AssR T (R) is finite.

Proof. Let π be a parameter for A. Then, the set of associated primes over R of T (R)

that contain π is finite by Corollary IV.1.6. It remains to show that the set of the

associated primes not containing π is finite.

We will proceed by cases. If A is a ring of characteristic p > 0. We have that Rπ is

a regular ring by Theorem 5.1.2 in [Gro67] because Rπ is the fiber at the zero prime

ideal of A. Then, AssRπ T (Rπ) is finite by Corollary 2.14 in [Lyu97].

If A is not a ring of characteristic p > 0. We have again that Rπ is a regular ring by

Theorem 5.1.2 in [Gro67]. Let F = Aπ be the fraction field of A and S = F⊗AR = Rπ.

Then, F is a field of characteristic 0 and S is an F -algebra. We claim that S and F

satisfy the properties:

(i) S is equidimensional of dimension n;

(ii) every residual field with respect to a maximal ideal is an algebraic extension of

F ;

(iii) there exist F -linear derivations ∂1, . . . , ∂n ∈ DerF (S) and elements z1 . . . , zn ∈ R
such that ∂iaj = 1 if i = j and 0 otherwise.

We will proceed following the ideas of Lyubeznik in [Lyu00b]. Let η ⊂ S be a

maximal ideal and let Q = η ∩R. Then Q is a prime ideal of R not containing f and

it is maximal among the ideals of R not containing π. By induction on n, it suffices

to show that if P is a nonzero prime ideal of R not containing π, then there exist

elements y1, . . . , yn ∈ R such that R = A[[y1, . . . , yn]] and R/P is a finitely generated

Rn−1/P ∩ Rn−1-module, where Rn−1 = A[[y1, . . . , yn−1]]. Then, the finiteness implies

that P ∩ Rn−1 = htP − 1, the prime ideal P is maximal among all ideals of R not

containing π if and only if P ∩ Rn is maximal among all ideals of Rn not containing
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π. In addition, S/PS = (R/P ) ⊗A F is an algebraic extension of F if and only if

F ⊗A Rn−1/P ∩Rn−1 is an algebraic extension of F .

Let P be the image of P in R = R/mR = k[[x1, . . . , xn]]. There exist new variables

y1, . . . , yn such that R/P is finite over Rn−1/P ∩Rn−1, where Rn−1 = K[[y1, . . . yn−1]].

Let r1, . . . , rs ∈ R/P be a set of generators over Rn−1/P∩Rn−1. Lifting these variables

to R, we get that R = A[[y1, . . . , yn]]. For every f ∈ R/P there exist a finite number

of elements g1,1, . . . , g1,s, v1,j ∈ Rn−1 and h1,j ∈ m with

f = g1,1r1 + . . .+ g1,ssrs +
∑
j

h1,jv1,j.

We can apply the same idea to vi,j inductively to obtain a finite number of elements

gt,1, . . . , gt,s, vt,j ∈ Rn−1 and ht,j ∈ mt such that

f =

(
t∑

k=1

∑
i

hk−1,igk,1

)
r1 + . . .+

(
t∑

k=1

∑
i

hk−1,igk,s

)
rs +

∑
j

ht,jvt,j.

Since R/P is m-adically separated and complete, we can take

G` =
∞∑
k=1

∑
i

hk−1,igk,`.

Then f = G1r1 + . . . Gsrs. This proves that r1, . . . , rs is a finite system of generators

of R/P as an Rn−1/PRn−1-module and concludes the proof of the claim that R⊗A F
and F satisfy properties (i) and (ii). In addition, we have that zi = xi and ∂i = ∂

∂xi

satisfies (iii). Then, we have that AssRπ T (Rπ) is finite by using the results of D-

modules in [MNM91] as it was done in [Lyu93]. It is proven explicitly in Theorem

III.3.5.

IV.2 Bass numbers

IV.2.1 Facts about Bass numbers

Lemma IV.2.1. Let (R,m,K) be a Noetherian Cohen-Macaulay ring and π ∈ R be

a nonzero divisor. Let M be an R-module annihilated by π. Then, dimK Ext`R(K,M)

is finite for all j ∈ N if and only if dimK Ext`R/πR(K,M) is finite for all ` ∈ N.

Proof. Let gi ∈ R, such that π, g1, . . . , gn form a system of parameters. Let J denote

(π, g1, . . . , gn)R. Using the Koszul complex to compute the free resolution of R/J as
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an R-module and as an R/πR-module, we obtain that

length(Ext`R(R/J,M)) = length(Ext`R/πR(R/J,M))

+ length(Ext`−1
R/πR(R/J,M)).

The result follows from Lemma VI.2.1, because R/J has finite length.

Lemma IV.2.2. Let R be a Cohen-Macaulay local ring, M be an R-module and π ∈ R
be a nonzero divisor. Let R denote R/πR. Suppose that dimK Extj

R
(K,AnnM(π)) and

dimK Extj
R

(K,M ⊗RR) are finite for all j ∈ N. Then, dimK ExtjR(K,M) is finite for

all j ∈ R.

Proof. dimK ExtjR(K,AnnM(π)) and dimK ExtjR(K,M ⊗R R) are finite for all j ∈ N
by Lemma IV.2.1. From the short exact sequences

0→ AnnM(π)→M
π→ πM → 0

and

0→ πM →M →M ⊗R R→ 0,

we get two long exact sequences induced by Ext:

. . .→ Ext`R(K,AnnM(π))
α`→ Ext`R(K,M)

β`→ Ext`R(K, πM)→ . . . ,

and

. . .→ Ext`R(K, πM)
γ`→ Ext`R(K,M)

θ`→ Ext`R(K,M ⊗R R)→ . . . .

Since =(θ`) injects into Ext`R(K,M⊗RR), we have that dimK =(θ`) is finite. Likewise,

dimK Coker(β`) is finite, because it injects into Ext`+1
R (K,AnnM(π)). We note that

Ext`R(K, πM) = Ker(β`)⊕ Coker(β`).

Since

γ` ◦ β` = Ext`R(K,M)
π→ Ext`R(K,M)

is the zero morphism for ` ∈ N, we have that =(γ`) = γ`(Coker(β`)). Therefore,

γ(Coker(β`)) → Ext`R(K,M) → =(θ`) → 0 is exact, and then dimK(Ext`R(K,M)) is

finite.
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IV.2.2 Finiteness properties of Bass numbers of local cohomology mod-

ules

Definition IV.2.3. Let A be a zero dimensional Noetherian ring. Let R be either

A[x1, . . . , xn] or A[[x1, . . . , xn]]. Let M be an D(R,A)-module. We say that M is

C-filtered if there exists a filtration

0 = M0 ⊂M1 ⊂ . . . ⊂M` = M

of D(R,A)-modules, such that Mi+1/Mi is either zero or

(1) Mi+1/Mi is annihilated by a maximal ideal mi ⊂ R,

(2) Mi+1/Mi is an object in C(R/miR,A/mi), and

(3) Mi+1/Mi is a simple D(R,A)-module.

Lemma IV.2.4. Let A be a zero dimensional Noetherian ring. Let R be either

A[x1, . . . , xn] or A[[x1, . . . , xn]]. Let M be an object in C(R,A). Then, M is C-

filtered.

Proof. We first prove the claim for Rf for every f ∈ R. Since A has finite length as

an A-module, there is a finite filtration of ideals,

0 = N0 ⊂ N1 ⊂ . . . ⊂M` = A,

such that Mi+1/Mi is isomorphic to a field, Ki = A/mi, where mi is a maximal ideal

of A. Then, we have an induced filtration of D(R,A)-modules,

0 = N0Rf ⊂ N1Rf ⊂ . . . ⊂ N`Rf = Rf .

Thus, Ni+1Rf/NiRf = Rf/miRf , which is an object in C(R/miR,A/mi). Then,

there exist a filtration,

Ni = Mi,1 ⊂ . . . ⊂Mi,ji = Ni+1,

of objects in C(R/miR,A/mi), such that Mi,t+1/Mi,t is a simple D(R/miR,A/mi)-

module. Therefore,

0 = M0,1 ⊂ . . . ⊂M0,j1 ⊂M1,1 ⊂ . . . ⊂M`,j` = Rf
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is a filtration that makes Rf a C-filtered module. By the definition of C(R,A), it

suffices to show that if 0→M ′ α→M
β→M ′′ → 0 is a short exact sequence of objects

in C(R,A), then M is C-filtered if and only if M ′ and M ′′ are C-filtered. If M is

C-filtered with a filtration Mi, we define a filtration M ′
i in M ′ by M ′

i = α−1(Mi).

Similarly, we define a filtration M ′′
i in M ′′ by M ′′

i = β(Mi). Then, we have a short

exact sequence of short exact sequences:

0 0 0
↓ ↓ ↓

0→M ′
i
α→M ′

i+1

β→M ′
i+1/M

′
i → 0

↓ ↓ ↓
0→ Mi

α→Mi+1
β→ Mi+1/Mi → 0

↓ ↓ ↓
0

α→M ′′
i

β→M ′′
i+1→M ′′

i+1/M
′′
i → 0

↓ ↓ ↓
0 0 0

Since Mi+1/Mi is either zero or a simple D(R,A)-module, M ′
i+1/M

′
i is either

Mi+1/Mi or zero. Likewise, M ′′
i+1/M

′′
i is either Mi+1/Mi or zero. Thus, M ′

i and

M ′′
i satisfy parts (1), (2) and (3) in Definition IV.2.3.

If M ′ and M ′′ are C-filtered modules with filtrations M ′
0 ⊂ . . . ⊂ M ′

`′ and M ′′
0 ⊂

. . . ⊂ M ′′
`′′ , we define a filtration on M by Mi = α(M ′

i) for i = 0, . . . `′ and Mi =

β−1(M ′
i−`′) for i = `′ + 1, . . . , `′ + `′′. Since Mi+1/Mi = M ′

i+1/M
′
i for i = 0, . . . `′ and

Mi+1/Mi = M ′′
i+1−`′/M

′′
i−`′ for i = `′ + 1, . . . `′ + `′′, Mi satisfies parts (1), (2) and (3)

in Definition IV.2.3. Hence, every object in C(R,A) is a C-filtered module.

Proposition IV.2.5. Let A be a zero-dimensional Noetherian ring. Let R be either

A[x1, . . . , xn] or A[[x1, . . . , xn]]. Let M be an object in C(R,A). Then, all the Bass

numbers of M are finite. In particular, this holds for T (R) for every Lyubeznik

functor T .

Proof. We fix a prime ideal P ⊂ R and denote RP/PRP by KP . Since M is a

C-filtered module by Lemma IV.2.4, we have a filtration 0 = M0 ⊂ . . . ⊂ M` =

M such that Mi+1/Mi is annihilated by a maximal ideal mi ⊂ R, is an object in

C(R/miR,A/mi), and is a simple D(R,A)-module. From the short exact sequences

0→Mj →Mj+1 →Mj+1/Mj → 0, we get long exact sequences

. . .→ ExtjRP (KP , (Mi)P )→ ExtjRP (KP , (Mi+1)P )
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→ ExtjRP (KP , (Mi+1/Mi)P )→ Extj+1
RP

(KP , (Mi)P )→ . . . .

Then, it suffices to show the claim for Mi+1/Mi for i = 0, . . . , `. We fix an i and

denote Mi+1/Mi by N . Let m ⊂ A be the maximal ideal such that mN = 0. If

mR 6⊂ P , then N ⊗ RP = 0. We may assume that mR ⊂ P . Let R = R/mR. We

note that R is a regular ring containing A/m, a field. Let g1, . . . , gd be a system of

parameters for RP and let f1, . . . , fd be the class of g1, . . . , gd in RP . Since A is a

zero dimensional ring, we have that f1, . . . , fd is a system of parameters for RP . Let

I = (g1, . . . , gd)RP . Using the Koszul complex K, we obtain that,

ExtiRP (RP/I,NP ) = H i(HomRP (K(g), NP ))

= H i(HomRP
(K(f), NP )) = Exti

RP
(RP/IRP , NP ),

because RP and RP are Cohen-Macaulay rings of the same dimension. Using Lemma

VI.2.1 several times, we obtain that

lengthRP Exti
RP

(KP , NP ) <∞⇔ lengthRP Exti
RP

(RP/IRP , NP ) <∞

⇔ lengthRP H
i HomRP

(K(f), NP ) <∞

⇔ lengthRP H
i HomRP (K(g), NP ) <∞

⇔ lengthRP ExtiRP (RP/I,NP ) <∞

⇔ lengthRP ExtiRP (KP , NP ) <∞

Since lengthRP Exti
RP

(KP , NP ) <∞ by Corollary 8 in [Lyu11], we have that

lengthRP ExtiRP (KP , NP ) <∞

Hence, all the Bass numbers of M are finite.

Theorem IV.2.6. Let A be a zero dimensional commutative Noetherian ring. Let R

be either A[x1, . . . , xn] or A[[x1, . . . , xn]]. Then,

• AssR T (R) is finite for every functor T , and

• the Bass numbers of T (R) are finite.

In particular, these properties hold for H i
I(R) for every ideal I ⊂ R and every integer

i ∈ N.

50



Proof. This is a consequence of Proposition IV.1.3 and Proposition IV.2.5.

Proposition IV.2.7. Let A be a Noetherian Cohen-Macaulay ring such that dim(A) =

1, and let π ∈ A be a nonzero divisor. Let R be either A[x1, . . . , xn] or A[[x1, . . . , xn]].

Then all the Bass numbers of T (R), as an R-module, with respect to a prime ideal P

containing π, are finite.

Proof. Let R and A denote R/πR and A/πA, respectively. We have that AnnT (R)(π)

and T (R)⊗ R are objects in C(R,A) by Lemma IV.1.5. Then, their Bass numbers,

as R-modules, with respect to P are finite by Proposition IV.2.5. Since RP and RP

are Cohen-Macaulay rings, we have that the Bass numbers of T (R) with respect to

P are finite by Lemma IV.2.1 for every functor T .

We claim that we cannot generalize Proposition IV.2.7 for Cohen-Macaulay rings

of dimension higher than 3. Let A = K[[s, t, u, w]]/(us+vt), where K is field. This is

the ring given by Hartshorne’s example [Har68]. Let I = (s, t)A. Hartshorne showed

that dimK HomA(K,H2
I (A)) is not finite.

Let R be either A[x1, . . . , xn] or A[[x1, . . . , xn]]. Let P = mR be the prime ideal

generated by m. Then,

Ext0
R(R/P,H2

I (R)) = HomR(R/P,H2
I (R))

= HomA(K,H2
I (A))⊗A R = ⊕R/mR,

where the direct sum in the last equality is infinite. Therefore,

dimRP /mRP Ext0
RP

(RP/PRP , H
2
I (RP ))

is not finite.

Corollary IV.2.8. Let A be a one-dimensional local Cohen-Macaulay ring, and let

R = A[x1, . . . , xn]. Then, all the Bass numbers of T (R), as an R-module, are finite.

Proof. Let π be a parameter for A. Then, the Bass numbers of T (R) with respect to a

prime ideal containing π, are finite by Proposition IV.2.7. Since Rπ = Aπ[x1, . . . , xn]

and dim(Aπ) = 0, the Bass numbers of T (R) with respect to a prime ideal that does

not contain π, are finite by Proposition IV.2.5.

Corollary IV.2.9. Let A be a one-dimensional local domain, and R = A[[x1, . . . , xn]].

Then, all the Bass numbers of T (R), as an R-module, are finite.
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Proof. Let π be a parameter for A. Then, the Bass numbers of T (R) with respect to

a prime ideal P containing π, are finite by Proposition IV.2.7.

On the other hand, the Bass numbers of T (R) with respect to prime ideals not

containing π, are in correspondence with the Bass numbers of Rπ. We have that Rπ

is a regular ring that contains a field, Aπ, by Theorem 5.1.2 in [Gro67] because Rπ is

the fiber at the zero prime ideal of A. Then the result follows from Theorem 2.1 in

[HS93] and Theorem 3.4 in [Lyu93].

Theorem IV.2.10. Let A be a one-dimensioal ring, and let R be either A[x1, . . . , xn]

or A[[x1, . . . , xn]]. Let π ∈ A denote an element such that dim(A/πA) = 0. Then, the

set of associated primes over R of T (R) that contain π is finite for every functor T .

Moreover, if A is Cohen-Macaulay and π is a nonzero divisor, then the Bass numbers

of T (R), with respect to a prime ideal P that contains π, are finite. In particular,

these properties hold for H i
I(R) for every ideal I ⊂ R and every integer i ∈ N.

Proof. This is a consequence of Proposition IV.1.6 and Proposition IV.2.7.

IV.3 Local cohomology of unramified regular rings

As consequence of the results in Section 3 and 4, we are able to give a different

proof for some parts of Theorem 1 in [Lyu00b].

Theorem IV.3.1. Let (R,m,K) be an unramified regular local ring and p = Char(K).

Then:

(i) the Bass numbers of T (R) are finite, and

(ii) the set of associated primes of T (R) that contain p is finite

for every Lyubeznik functor T .

Proof. The finiteness of associated primes of T (R) that contain p is not affected by

completion with respect to the maximal ideal. Since completion of R respect to m is

a power series ring over a complete DVR of mixed characteristic, the result follows

from Proposition IV.1.6.

In order to prove the finiteness of the Bass numbers, We need to show that

dimRP /PRP ExtjRP (RP/PRP , T (RP )) is finite for every prime ideal P ⊂ R. There

are two cases: p ∈ P or not. If p 6∈ P then RP has equal characteristic 0 and the

result follows from Theorem 3.4 in [Lyu93]. If p ∈ P , RP is an unramified reg-

ular local ring and its completion of RP respect to the maximal ideal is a power
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series ring over a complete DVR of mixed characteristic. Since the dimension of

Ext`RP (RP/PRP , T (RP )) as RP/PRP -vector space is not affected by completion, the

result follows from Corollary IV.2.7.

IV.4 Injective Dimension

In this section, we recover and generalize some results of Zhou about injective

dimension [Zho98].

Lemma IV.4.1. Let (A,m,K) be a regular local ring and let R be either A[[x1, . . . , xn]]

or A[x1, . . . , xn]. Let P ⊂ R be a prime ideal containing mR and let KP denote

the field RP/PRP . Let M be a D(R,A)-module. Then, Ext`R(KP ,MP ) = 0 for

` > dim(A) + dim(SuppR(M)).

Proof. The proof will be by induction on the d = dim(A). If d = 0, then A = K is a

field and the proof follows from the first Theorem in [Lyu00c]. We assume that the

claim is true for d − 1. Let y1, . . . , yd denote a minimal set of generator for m. Let

A = A/ydA, R = R/ydR = A[[x1, . . . , xn]] and P = PR. Let y1, . . . , yd−1 be the class

of y1, . . . , yd−1 in R. We note that P ⊂ R is a prime ideal and it contains mR. Let

f1, . . . fs ∈ P be such that y1, . . . , yd−1, f1, . . . fs form a minimal set of generator for

the maximal ideal PRP . From the Koszul complex associated to y1, . . . , yd−1, f1, . . . fs

in RP , we have that for every RP -module, N ,

dimKP Ext`RP (KP , N) = dimKP Ext`
RP

(KP , N) + dimKP Ext`−1

RP
(KP , N).

In this case, we have that AnnM(yd) and M/ydM are D(R,A))-modules. By the

induction hypothesis,

Ext`
RP

(KP ,AnnMP
(yd)) = 0 and Ext`

RP
(K,MP/ydMP ) = 0

for ` > d+ dim(SuppR(M))− 1 = dim(A) + dim(SuppR(M)). Then,

Ext`RP (KP ,AnnMP
(yd)) = 0 and Ext`RP (K,MP/ydMP ) = 0

for ` > d+ dim(SuppR(M)).

From the short exact sequences

0→ AnnMP
(yd)→MP

yd→ ydMP → 0
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and

0→ ydMP →MP →MP ⊗R R→ 0,

we get two long exact sequences induced by Ext:

. . .→ Ext`RP (KP ,AnnMP
(yd))→ Ext`RP (KP ,MP )

ρ`→ Ext`RP (KP , ydMP )→ . . .

and

. . .→ Ext`RP (KP , ydMP )
θ`→ Ext`RP (KP ,MP )

%`→ Ext`RP (KP ,MP ⊗R R)→ . . .

In this case, ρ` is an isomorphism and θ` is surjective for ` > d+ dim(SuppR(M)).

Then, θ` ◦ ρ is surjective for ` > d+ dim(SuppR(M)). Since

θ` ◦ ρ` = ExtjRP (KP ,MP )
yd→ ExtjRP (KP ,MP )

is the zero morphism, ExtjRP (KP , KP ) = 0 for ` > d+ dim(SuppRM).

Proposition IV.4.2. Let A be a Noetherian ring and let R = A[x1, . . . , xn]. Let

P ⊂ R be a prime ideal and let KP denote the field RP/PRP . Let M be a D(R,A)-

module. Then, Ext`R(KP ,MP ) = 0 for ` > dim(A) + dim(SuppRM).

Proof. Let Q = P ∩ A. Then, PRQ is a prime ideal in RQ that contains QRQ.

Since, RQ = AQ[x1, . . . , xn] and MQ is a D(RQ, AQ)-module and (MQ)P = MP , we

have that Ext`RP (KP ,MP ) = 0 is zero for ` > dim(A) + dim(SuppR(MP )) by Lemma

IV.4.1. Hence, Ext`RP (KP ,MP ) = 0 is zero for ` > dim(A)+dim(SuppR(M)), because

dim(SuppR(M)) ≥ dim(SuppR(MQ)).

Theorem IV.4.3. Let (A,m,K) be a regular local Noetherian ring and let R be either

A[x1, . . . , xn] or A[[x1, . . . , xn]]. Let M be a D(R,A)-module supported only at mR.

Then,

inj. dim(M) ≤ dim(A) + dim(SuppM).

In particular,

inj. dim(Hj
η(T (S))) ≤ dim(A),

where η = (m,x1, . . . , xn)S and T is a Lyubeznik functor. In addition, if R =

A[x1, . . . , xn], then

inj. dim(M) ≤ dim(A) + dim(SuppM).
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for every D(R,A)-module, M .

Proof. This is a consequence of Proposition IV.4.2 and Proposition IV.4.2
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CHAPTER V

Flat extensions with regular fibers

This chapter studies the following related question raised by Hochster:

Question V.0.4. Let (R,m,K) be a local ring and S be a flat extension with regular

closed fiber. Is

AssS H
0
mS(H i

I(S)) = V(mS) ∩H i
I(S)

finite for every ideal I ⊂ S and i ∈ N?

Question V.0.5. Let (R,m,K) be a local ring and S denote either R[x1, . . . , xn] or

R[[x1, . . . , xn]]. Is

AssS H
0
mS(H i

I(S)) = V(mS) ∩H i
I(S)

finite for every ideal I ⊂ S and i ∈ N?

It is clear that Question V.0.5 is a particular case of Question V.0.4. In Proposition

V.4.2, we show that under minor additional hypothesis these questions are equivalent.

Question V.0.5 has a positive answer when R is a ring of dimension 0 or 1 of any

characteristic (see Theorem IV.2.6, IV.2.10, and [Lyu00b]). In her thesis [Rob12],

Robbins answered Question V.0.5 positively for certain algebras of dimension smaller

than or equal to 3 in characteristic 0. Namely:

Theorem V.0.6 ([Rob12]). Let R be a domain finitely generated as an algebra over

a field, K, of characteristic 0 and S = R[x1, . . . , xn] or R[[x1, . . . , xn]]. Suppose that

R has a resolution of singularities, Y0, which is the blowup of R along an ideal of

depth at least two. If either

• Y0 has an affine open cover by only U1 and U2 where H1(Y0, OY0) has finite

length over R,
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• Y0 has an open cover by only U1, U2, and U3 where H1(Y0, OY0) and H2(Y0, OY0)

have finite length over R, or

• dim(R) = 2 or dim(R) = 3 and R has an isolated singularity,

then AssRH
i
I(R) is finite for any i and any ideal I ⊂ S.

In addition, several of her results can be obtained in characteristic p > 0, by

working in the category C(S,R) (see the discussion after Remark II.4.1).

A positive answer for Question V.0.4 would help to that the associated primes of

local cohomology modules, H i
I(R), over certain regular local rings of mixed charac-

teristic, R. For example,

V [[x, y, z1, . . . , zn]]

(π − xy)V [[x, y, z1, . . . , zn]]
=

(
V [[x, y]]

(π − xy)V [[x, y]]

)
[[z1, . . . , zn]],

where (V, πV,K) is a complete DVR of mixed characteristic. This is, to the best

of our knowledge, the simplest example of a regular local ring of ramified mixed

characteristic that the finiteness of AssRH
i
I(R) is unknown.

The results presented in this section appear in [NB12a].

V.1 Σ-finite D-modules

Notation V.1.1. Thorough this section (R,m,K) denotes a local ring and S denotes

either R[x1, . . . , xn] or R[[x1, . . . , xn]]. In addition, D denotes D(S,R).

Definition V.1.2. Let M be a D-module supported at mS and M be the set of all

D-submodules of M that have finite length. We say that M is Σ-finite if:

(i)
⋃
N∈MN = M,

(ii)
⋃
N∈M C(N) is finite, and

(iii) For every N ∈M and L ∈ C(N), L ∈ C(S/mS,R/mR).

We denote the set of composition factors of M ,
⋃
N∈M C(N), by C(M).

Remark V.1.3. We have that

AssSM ⊂
⋃

N∈C(M)

AssSM

for every Σ-finite D-module, M . In particular, AssSM is finite.
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Lemma V.1.4. Let M be a Σ-finite D-module and N be a D-submodule of M . Then,

N has finite length as D-module if and only if N is a finitely generated as D-module.

Proof. Suppose that N is finitely generated. Let v1, . . . , v` be a set the generators

of N. Since
⋃
N∈MN = M , there exists a finite length module Ni that contains vi.

Then, N ⊂ N1 + . . .+N` and it has finite length. It is clear that if N has finite length

then it is finitely generated.

Proposition V.1.5. Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence

of D-modules. If M is Σ-finite, then M ′ and M ′′ are Σ-finite. Moreover, C(M) =

C(M ′) ∪ C(M ′).

Proof. We first assume that M is Σ-finite. We have that

M ′ =
⋃
N∈M

N ∩M ′ =
⋃

N ′∈M

N ′,

an so M is Σ-finite by Remark II.4.3. Let ρ denote the morphism M →M ′′ and N ′′ ∈
M′′ and ` = lengthDN

′′. There are v1, . . . , v` ∈ N ′′ such that N ′′ = D ·v1 + . . .+D ·v`.
Let wj be a preimage of vj and N be the D-module generated by w1, . . . , w`. We have

thatN → N ′′ is a surjection, and thatN has finite length by Lemma V.1.4. Therefore,

M ′′ =
⋃
N∈M ρ(N) =

⋃
N ′′∈M′′ N

′′ and the result follows by Remark II.4.3.

Proposition V.1.6. Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of

D-modules. Suppose that R contains the rational numbers. Then, M is Σ-finite if

and only if M ′ and M ′′ are Σ-finite. Moreover, C(M) = C(M ′) ∪ C(M ′).

Proof. We first assume that M ′ and M ′′ are Σ-finite. Let v ∈ M. We have a short

exact sequence

0→M ′ ∩D · v → D · v → D · v → 0.

M ′ ∩ D · v is finitely generated because D is Notherian by Remark II.4.1. Then,

M ′∩D ·v has finite length by Lemma V.1.4, and so D ·v has finite length. Therefore,

M =
⋃
N∈MN.

Let N ∈M. Then, N∩M ′ ∈M′ and ρ(N) ∈M′′. We have a short exact sequence

0→ N ∩M ′ → N → ρ(N)→ 0

of finite length D-modules, and then result follows by Remark II.4.3.

The other direction follows from Proposition V.1.5

58



Proposition V.1.7. Let M be a Σ-finite D-module. Then, Mf is Σ-finite for every

f ∈ S.

Proof. Let N ⊂ Mf be a module of finite length. We have that N is a finitely

generated D-module. Then there exists a finitely generated D-submodule N ′ of M

such that N ⊂ N ′f . We have that N ′f has finite length and C(N ′f ) =
⋃
V ∈C(N) C(Vf )

because Vf is in C(S/mS,R/m) [Lyu11]. Then,

Mf =
⋃

N⊂Mf

N ⊂
⋃
N⊂M

Nf = Mf

and the result follows.

Lemma V.1.8. Let M and M ′ be Σ-finite D-modules. Then, M⊕M ′ is also Σ-finite.

Proof. It is clear that M ⊕M ′ is supported on mS. For every (v, v′) ∈M ⊕M ′, there

exist N and N ′, D-modules of finite length. such that v ∈ N and v′ ∈ N ′. Then,

N ⊕N ′ ⊂M ⊕M ′ has finite length and (v, v′) ∈ N ⊕N ′. Therefore,⋃
N⊂M,N ′⊂M′

N ⊕N ′ = M ⊕M ′,

and the M ⊕M ′ is union of its D-modules of finite length. The rest follows from

Remark II.4.3.

Corollary V.1.9. Let M be a Σ-finite D-module. Then, H i
I(M) is Σ-finite for every

ideal I ⊂ S and i ∈ N.

Proof. Let f1, . . . , f` be generators for I. We have that Č(f ;M) is Σ-finite by Lemma

V.1.8. Then H i
I(M) is also Σ-finite by Proposition V.1.5.

Proposition V.1.10. Let Mt be an inductive direct system of Σ-finite D-modules.

If
⋃
t C(Mt) is finite, then lim

→t
Mt is Σ-finite and C(M) ⊂

⋃
t C(Mt).

Proof. Let M = lim
→t

Mt and ϕt : Mt → M the morphism induced by the limit. We

have that φt(Mt) is a Σ-finite D-module by Proposition V.1.5. We may replace Mt

by φt(Mt) by Remark II.4.3, and assume that M =
⋃
Mt and Mt ⊂Mt+1. If N ⊂M

has finite length as D-module, then it is finitely generated and there exists a t such

that N ⊂Mt. Therefore, M =
⋃
tMt =

⋃
t

⋃
N∈Mt

N and the result follows.
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V.2 Associated Primes

Notation V.2.1. Throughout this section (R,m,K) denotes a local ring and S

denotes either R[x1, . . . , xn] or R[[x1, . . . , xn]]. In addition, D denotes D(S,R).

Lemma V.2.2. Let J ⊂ S be an ideal and M be an R-module of finite length. Then,

H i
J(M ⊗R S) is a D(S,R)-module of finite length. Moreover, C(H i

JS(M ⊗R S)) ⊂⋃
j C(H

j
JS(S/mS)).

Proof. Our proof will be by induction on h = lengthR(M). If h = 1, we have that

H i
JS(R/m⊗R S) = H i

JS(S/mS), which has finite length as a D(S,R)-module [Lyu11,

Theorem 2, Corollary 3] and by Remark II.4.1. Clearly,

C(H i
JS(M ⊗K A)) = C(H i

JS(R/m⊗K A)) =
⋃
j

C(Hj
JS(S/mS))

in this case. Suppose that the statement is true for h and lengthR(M) = h + 1.

We have a short exact sequence of R-modules, 0 → K → M → M ′ → 0, where

h = lengthR(M ′). Since S is flat over R, we have that

0→ K ⊗R S →M ⊗R S →M ′ ⊗R S → 0

is also exact. Then, we have a long exact sequence

. . .→ H i
J(K ⊗R S)→ H i

J(M ⊗R S)→ H i
J(M ′ ⊗R S)→ . . .

Then H i
J(M ⊗R S) has finite length by the induction hypothesis and Remark II.4.3.

In addition,

C(H i
J(M ⊗R S)) ⊂ C(H i

J(M ′ ⊗R S))
⋃
C(H i

J(K ⊗R S))

⊂
⋃
j

C(Hj
J(S/mS)).

and the result follows by the induction hypothesis and Remark II.4.3.

Proposition V.2.3. Let I ⊂ S be an ideal containing mS. Then H i
I(S) is Σ-finite

for every i ∈ N.

Proof. Let f1, . . . , fd be a system of parameters for R and g1, . . . , g` be a set of gen-

erators for I. Let f t denote the sequence f t1, . . . , f
t
` . Let Ti = {T p,qt } be the dou-

ble complex of D(S,R)-modules given by the tensor product K(f ;R) ⊗R Č(g;S).
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The direct limit K(f t;R) introduced in Figure II.3, induces a direct limit of dou-

ble complexes Tot(Tt) → Tot(Tt+1). Since lim
→t
K(f t;R) = Č(f ;R), we have that

lim
→t

Tot(Tt) = Č(f, g;S). Let Ep,q
r,t be the spectral sequence associated to Tt. We have

that

Ep,q
2,t = Hp

I (Hq(K(f t;S))⇒ Ep,q
∞,t = Hp+qTot(Tt).

We notice that Hq(K(f t;S)) = Hq(K(f t;R)) ⊗R S, because S is R-flat. Since

Hq(K(f t;R)) has finite length as an R-module, we have that Ep,q
2,t is a D(S,R)-module

of finite length for all p, q ∈ N and that C(Ep,q
2,t ) =

⋃
j C(H i

JS(S/mS)) by Lemma V.2.2.

Moreover, Ep,q
r,t is a D(S,R)-module of finite length, and

C(Ep,q
r,t ) ⊂

⋃
p,q

C(Ep,q
2,t ) =

⋃
j

C(Hj
I (S/mS))

for r > 2. Then, C(H i(Tot(Tt))) ⊂
⋃
j C(H i

I(S/mS)) for every j, t ∈ N by Remark

II.4.3; in particular,
⋃
t C(H iTot(Tt)) is finite and every element there belongs to

C(S/mS,R/mR). Therefore, Ep,q
r,t is a Σ-finite D(S,R)-module. Moreover,

H i
I(S) = H i(Č(f, g;S)) = H i(lim

→t
Tot(Tt)) = lim

→t
H i(Tot(Tt))

because the direct limit is exact. Hence, H i
I(S) is Σ-finite by Proposition V.1.10.

Corollary V.2.4. Let I ⊂ S be an ideal containing mS and J1, . . . , J` ⊂ S be any

ideals. Then Hj1
J1
· · ·Hj`

J`
H i
I(S) is Σ-finite.

Proof. This is a consequence of Proposition V.2.3 and Corollary V.1.9.

Theorem V.2.5. Let (R,m,K) be any local ring. Let S denote either R[x1, . . . , xn]

or R[[x1, . . . , xn]]. Then, AssS H
0
mSH

i
I(S) is finite for every ideal I ⊂ S such that

dimR/I ∩R ≤ 1 and every i ∈ N. Moreover, if mS ⊂
√
I,

AssS H
j1
J1
· · ·Hj`

J`
H i
I(S)

is finite for all ideals J1, . . . , J` ⊂ S and integers j1, . . . , j` ∈ N.

Proof. This is a consequence of Remark V.1.3 and Corollary V.2.4.

Proposition V.2.6. Let (R,m,K) be any local ring. Let S denote either R[x1, . . . , xn]

or R[[x1, . . . , xn]]. Let I ⊂ S be an ideal, such that dimR/I ∩R ≤ 1. Then,

AssS H
0
mH

i
I(S)
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is finite for every i ∈ N.

Proof. Since dimR/(I ∩ R) ≤ 1, there exists f ∈ R such that mS ⊂
√
I + fS. We

have the exact sequence

. . .→ H i
(I,f)S(S)

αi→ H i
I(S)

βi→ H i
I(Sf )→ . . . .

Then,

AssS H
i
I(S) ∩ V(mS) ⊂ (AssS Im(αi) ∩ V(mS))

⋃
(AssS Im(βi) ∩ V(mS))

Since H i
(I,f)S(S) is a Σ-finite D(S,R)-module by Proposition V.2.3, we have that

Im(α1) is also Σ-finite by Proposition V.1.5, and so AssS Im(αi) is finite. Since

Im(βi) ⊂ H i
I(Sf ), AssS Im(βi) ∩ V(mS) = ∅. Therefore,

AssS H
i
I(S) ∩ V(mS) = AssS H

0
mSH

i
I(S)

is finite.

Proposition V.2.7. Suppose that R is a ring of characteristic 0 and that dimR/(I∩
R) ≤ 1. Then Hj

mSH
i
I(S) is Σ-finite for every i, j ∈ N.

Proof. Since dimR/(I ∩ R) ≤ 1, there exists g ∈ R, such that mS ⊂
√

(I, g)S. We

have the long exact sequence

. . .→ H i
(I,g)S(S)→ H i

I(S)→ H i
I(Sg)→ . . . .

Let Mi = Ker(H i
(I,g)S(S) → H i

I(S)), Ni = Im(H i
(I,g)S(S) → H i

I(S)) and Wi =

Im(H i
I(S)→ H i

I(Sg)). We have the following short exact sequences:

0→Mi → H i
(I,g)S(S)→ Ni → 0,

0→ Ni → H i
I(S)→ Wi → 0

and

0→ Wi → H i
I(Sg)→Mi+1 → 0.

Since mS ⊂
√

(I, g)S, H i
(I,g)S(S) is Σ-finite by Proposition V.2.3. Then, Mi and Ni

is Σ-finite for every i ∈ N by Proposition V.1.5. By the long exact sequences

. . .→ Hj
mS(Mi)→ Hj

mSH
i
(I,g)S(S)→ Hj

mS(Ni)→ . . . ,
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. . .→ Hj
mS(Ni)→ Hj

mSH
i
I(S)→ Hj

mS(Wi))→ . . .

and

. . .→ Hj
mS(Wi)→ Hj

mSH
i
I(Sg)→ Hj

mS(Mi+1)→ . . . ,

Hj
mS(Mi), H

j
mSH

i
(I,g)S(S) and Hj

mS(Mi) are Σ-finite for every i, j ∈ N. Hj
mS(Wi) =

Hj
mS(Mi+1) because Hj

mSH
i
I(Sg) = 0. Then, Hj

mS(Wi) is Σ-finite, and so Hj
mSH

i
I(S)

is Σ-finite by V.1.6.

V.3 More examples of Σ-finite D-modules

In the previous section we gave a positive answer for specific cases for Question

V.0.5. Our method consisted in proving that Hj
mSH

i
I(S) is Σ-finite and then applying

Remark V.1.3. This motivates the following question:

Question V.3.1. Is Hj
mSH

i
I(S) Σ-finite for every ideal I ⊂ S and i, j ∈ N?

In this section, we provide positive examples for Question V.3.1.

Proposition V.3.2. Let (R,m,K) be any local ring. Let S denote either R[x1, . . . , xn]

or R[[x1, . . . , xn]]. Let I ⊂ S be an ideal such that depthS I = cdSI. Then,

H i
mSH

depthS I
I (S)

is Σ-finite for every i ∈ N.

Proof. We have that the spectral sequence

Ep,q
2 = Hp

mSH
q
I (S) =⇒ Ep,q

∞ = Hp+q
(I,m)S(S)

converges at the second spot, because depthS I = cdSI. Hence,

Hp
mSH

q
I (S) = Hp+q

(I,m)S(S)

and the result follows by Proposition V.2.3.

Proposition V.3.3. Let (R,m,K) be any local ring. Let S denote either R[x1, . . . , xn]

or R[[x1, . . . , xn]]. Let I ⊂ S be an ideal such that ExtiS(S/mS,Hj
I (S)) is a D-module

in C(R, S) for every i ∈ N. Then, H i
mSH

j
I (S) is a Σ-finite D(S,R)-module for every

i, j ∈ N.
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Proof. We claim that ExtiS(N⊗RS,Hj
I (S)) is a D(S/mS,K)-module in C(S/mS,K)

for every i ∈ N and every finite length R-module N . Moreover,

C(ExtiS(N ⊗R S,Hj
I (S))) ⊂

⋃
i

C(ExtiS(K ⊗R S,Hj
I (S))).

The proof of our claim is analogous to Lemma V.2.2.

The direct system Exti(S/m`S,Hj
I (S))→ Exti(S/m`+1S,Hj

I (S)) satisfies the hy-

potheses of Proposition V.1.10. Hence,

H i
mSH

j
I (S) = lim

→`
Exti(S/m`S,Hj

I (S))

is a Σ-finite D(S,R)-module.

Remark V.3.4. The condition that ExtiS(S/mS,Hj
I (S)) be a D(S/mS,K)-module

in C(S/mS,K) for every i ∈ N is not necessary.

Let R = K[[s, t, u, w]]/(us + vt), where K is a field. This is the ring given by

Hartshorne’s example [Har68]. He showed that dimK HomA(K,H2
I (A)) is not finite

for I = (s, t)A. Let S be either R[x1, . . . , xn] or R[[x1, . . . , xn]]. Therefore,

Ext0
S(S/mS,H2

I (S)) = HomS(S/mS,H2
I (S))

= HomR(K,H2
I (R))⊗R S = ⊕S/mS,

where the direct sum is infinite. Then, Ext0
S(S/mS,H2

I (S)) does not belong to

C(S,R).

On the other hand, H0
mH

2
I (S) is a direct limit of finite direct sums of S/mS. This

direct limit satisfies the hypotheses of Proposition V.1.10. Therefore, H0
mH

2
I (S) is a

Σ-finite D(S,R)-module.

Proposition V.3.5. Let (R,m,K) be any local ring and let S denote R[x1, . . . , xn].

Let I ⊂ S be an ideal. Then, H i
mSH

0
I (S) is Σ-finite for every i ∈ N. In addition, if

cdSI ≤ 1, then H i
mSH

j
I (S) is Σ-finite for every i, j ∈ N.

Proof. We claim that there exists an ideal J ⊂ R such that H0
I (S) = JS. We have

that H0
I (S) is a D(S,R)-module. For every f =

∑
α cαx

α ∈ H0
I (S) and ∂ ∈ D(S,R),

∂f ∈ H0
I (S). Therefore, cα ∈ H0

I (S). and H0
I (S) = JS, where

J = {cα |
∑
α

cαx
α ∈ H0

I (S)}.
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We have that

ExtiS(S/mS,H0
I (S)) = ExtiS(R/mR⊗R S, J ⊗R S)

= ExtiR(K, J)⊗S S

= ⊕µS/mS, where µ = dimK ExtiR(K, J),

and it is a D(S,R)-module in C(S,R) for every i ∈ N. The first claim follows from

Proposition V.3.3.

We have that H1
I (S) = H1

I(S/J)(S/J) [BS98, Corollary 2.1.7]. In addition, S/JS =

(R/J)[x1, . . . , xn] and

depthI(S/JS) = cdI(S/JS)(S/JS) = 1.

The second claim follows from Proposition V.3.2.

V.4 Reduction to power series rings

Discussion V.4.1. Suppose that (R,m,K) and (S, η, L) are complete local rings and

that ϕ : R→ S is a flat extension of local rings with regular closed fiber. Assume that

ϕ maps a coefficient field of R to a coefficient field of S. We pick such coefficient fields,

and then ϕ(K) ⊂ L. Thus, R = K[[x1, . . . , xn]]/I for some ideal I ⊂ K[[x1, . . . , xn]].

Let A = L⊗̂KR = L[[x1, . . . , xn]]/IL[[x1, . . . , xn]]. We note that A is a flat local

extension of R, such that mA is the maximal ideal of A. Let θ : A → S be the

morphism induced by ϕ and our choice of coefficient fields.

We claim that S is a flat A-algebra. Let F∗ be a free resolution of R/mR. Then,

A⊗R F∗ is a free resolution for A/mA. We have that

TorA1 (S,A/mA) = H1(S ⊗A A⊗R F∗)

= H1(S ⊗R F∗) = TorR1 (S,R/mR) = 0

because S is a flat extension. Since mA is the maximal ideal of A, we have that S is

a flat A-algebra by the local criterion of flatness [Eis95, Theorem 6.8].

Let d = dim(S/mS) and z1, . . . , zd ∈ S be preimages of a regular system of

parameters for S/mS. Let φ : A[[y1, . . . , yd]]→ S be the morphism given by sending

A to S via θ and yi to zi. Since

(mA+ (z1, . . . , zd)A)S = η

65



and the morphism induced by φ in the quotient fields of A and S is an isomorphism.

Hence, ϕ is an isomorphism.

Proposition V.4.2. Questions V.0.4 and V.0.5 are equivalent when we restrict them

to a local extensions, such that the induced morphism in the completions maps a

coefficient field of the domain to a coefficient field of the target.

Proof. Let ϕ : (R,m,K) → (S, η, L) be a flat extension of local rings with regular

closed fiber. Suppose that ϕ̂ : R̂→ Ŝ, the induced morphism in the completions, maps

a coefficient field of the R̂ to a coefficient field of Ŝ. We have that AssRH
0
mRH

i
I(S) is

finite if and only if AssRH
0
mR̂
H i
I(Ŝ) is finite. Let A be as in the previous discussion

and d = dim(S/mS). The result follows, because Ŝ = A[[y1, . . . , yd]] and mS =

(mA)S.

Theorem V.4.3. Let (R,m,K) → (S, η, L) be a flat extension of local rings with

regular closed fiber such that R contains a field. Let I ⊂ S be an ideal such that

dimR/I ∩ R ≤ 1. Suppose that the morphism induced in the completions R̂ → Ŝ

maps a coefficient field of R into a coefficient field of S. Then,

AssS H
0
mH

i
I(S)

is finite for every i ∈ N.

Proof. By Discussion V.4.1, we may assume that R is complete and S is a power

series ring over R. The rest is a consequence of Proposition V.2.6.

Remark V.4.4. In the previous proposition, the hypothesis that ϕ̂ maps a coefficient

field of R̂ to a coefficient field of Ŝ is satisfied when L is a separable extension of K

[Mat89, Theorem 28.3].

In the previous theorem, the hypothesis that ϕ̂ maps a coefficient field of R̂ to a

coefficient field of Ŝ is not very restrictive. For instance, it is satisfied when L is a

separable extension of K [Mat89, Theorem 28.3]. In particular, this holds when K is

a field of characteristic 0 or a perfect field of characteristic p > 0.
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CHAPTER VI

Direct summands

Our aim in this chapter is to prove the finiteness of associated primes and Bass

numbers of local cohomology for direct summands. We need to make some ob-

servations. Let R → S be a homomorphism of Noetherian rings. For an ideal

I ⊂ R, we have two functors associated with it, H i
I(−) : R-mod → R-mod and

H i
IS(−) : S-mod→ S-mod, which are naturally isomorphic when we restrict them to

S-modules. Moreover, for two ideals of R, I2 ⊂ I1, the natural morphism H i
I1

(−)→
H i
I2

(−) is the same as the natural morphism H i
I1S

(−) → H i
I2S

(−) when we restrict

the functors to S-modules. Thus, their kernel, cokernel and image are naturally iso-

morphic as S-modules. Hence, every Lyubeznik functor T for R is a functor of the

same type for S when we restrict it to S-modules.

As per the previous discussion, for an S-module, M , we will make no distinction

in the notation or meaning of T (M) whether it is induced by ideals of R or their

extensions to S and, therefore, by the corresponding closed subsets of their respective

spectra.

We wanto to point examples of direct sumands of regular rings. If S is a polynomial

ring over a field and R is the invariant ring of an action of a linearly reductive group

over S. It also holds when R ⊂ K[x1, . . . , xn] is an integrally closed ring that is

finitely generated as a K-algebra by monomials. This is because such a ring is a direct

summand of a possibly different polynomial ring (cf. Proposition 1 and Lemma 1 in

[Hoc72]).

We would like to mention another case in which an inclusion splits. This is when

R → S is a module finite extension of rings containing a field of characteristic zero

such that S has finite projective dimension as an R-module. Moreover, such a splitting

exists when Koh’s conjecture holds (cf. [Koh83, Vél95, VF00]). Therefore, if Koh’s

conjecture applies to R → S and T (S) has finite associated primes or finite Bass

numbers, so does T (R).
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We point out that the property inj. dimH i
I(R) ≤ dimS SuppH i

I(R). does not hold

for direct summands of regular rings, even in the finite extension case. A counterex-

ample is R = K[x3, x2y, xy2, y3] ⊂ S = K[x, y], where S is the polynomial ring in

two variables with coefficients in a field K. The splitting of the inclusion is the map

θ : S → R defined in the monomials by θ(xαyβ) = xαyβ if α + β ∈ 3Z and as zero

otherwise. We have that the dimension of Supp(H2
(x3,x2y,xy2,y3)(R)) is zero, but it is

not an injective module, because R is not a Gorenstein ring, since R/(x3, y3)R has a

two dimensional socle.

The results presented in this section appear in [NB12c].

VI.1 Associated Primes

Lemma VI.1.1. Let R→ S be an injective homomorphism of Noetherian rings, and

let M be an S-module. Then, AssRM ⊂ {Q ∩R : Q ∈ AssSM}.

Proof. Let P ∈ AssRM and u ∈ M be such that AnnR u = P . We have that

(AnnS u) ∩ R = P . Let Q1, . . . , Qt denote the minimal primes of AnnS u. We obtain

that

P =
√
P =

√
AnnS u ∩R = (∩jQj) ∩R = ∩j(Qj ∩R),

so, there exists a Qj such that P = Qj ∩R. Since Qj is a minimal prime for AnnS u,

we have that Qj ∈ AssSM and the result follows.

Definition VI.1.2. We say that a homomorphism of Noetherian rings R → S is

pure if M = M ⊗RR→M ⊗R S is injective for every R-module M. We also say that

R is a pure subring of S.

Proposition VI.1.3 (Cor. 6.6 in [HR74]). Suppose that R→ S is a pure homeomor-

phism of Noetherian rings and that G is a complex of R-modules. Then, the induced

map j : H i(G)→ H i(G ⊗R S) is injective.

Proposition VI.1.4. Let R → S be a pure homomorphism of Noetherian rings.

Suppose that AssS H
i
IS(S) is finite for some ideal I ⊂ R and i ≥ 0. Then, AssS H

i
I(R)

is finite.

Proof. Since H i
I(R) → H i

IS(S) is injective by Proposition VI.1.3, AssRH
i
I(R) ⊂

AssRH
i
IS(S) and the result follows by Lemma VI.1.1.

Theorem VI.1.5. Let R → S be a homomorphism of Noetherian rings that splits.

Suppose that AssS T (S) is finite for a functor T induced by extensions of ideals of R.
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Then, AssR T (R) is finite. In particular, AssRH
i
I(R) is finite for every ideal I ⊂ R,

if AssS H
i
IS(S) is finite.

Proof. The splitting between R and S makes T (R) into a direct summand of T (S); in

particular, T (R) ⊂ T (S). Therefore, AssR T (R) ⊂ AssR T (S) and the result follows

by Lemma VI.1.1.

If R is a ring containing a field of characteristic p > 0, Theorem VI.1.5 gives a

method for showing that R is not a direct summand of a regular ring. We used this

method to prove that there exists a Gorenstein strongly F -regular UFD of character-

istic p > 0 that is not a direct summand of any regular ring.

Theorem VI.1.6 (Thm. 5.4 in [SS04]). Let K be a field, and consider the hypersur-

face

R =
K[r, s, t, u, v, w, x, y, z]

(su2x2 + sv2y2 + tuxvy + rw2z2)
.

Then, R is a unique factorization domain for which the local cohomology module

H3
(x,y,z)(R) has infinitely many associated prime ideals. This is preserved if R is

replaced by the localization at its homogeneous maximal ideal. The hypersurface R

has rational singularities if K has characteristic zero, and it is F -regular if K has

positive characteristic.

Corollary VI.1.7. Let R be as in the previous theorem taking K of positive charac-

teristic. Then, R is a Gorenstein F -regular UFD that is not a pure subring of any

regular ring. In particular, R is not direct summand of any regular ring.

Proof. Since H3
(x,y,z)(R) has infinitely many associated prime ideals, it cannot be

a direct summand or pure subring of a regular ring by Theorem VI.1.5, Proposition

VI.1.3 and finiteness properties of regular rings of positive characteristic (cf. [Lyu97]).

Theorem VI.1.8 (Thm. 1 in [Zha11b]). Assume that S = K[x1, . . . , xn] is a poly-

nomial ring in n variables over a field K of characteristic p > 0. Suppose that I =

(f1, . . . , fs) is an ideal of S such that
∑

i deg fi < n. Then dimS/Q ≥ n−
∑

i deg fi

for all Q ∈ AssS H
i
I(S).

Corollary VI.1.9. Let S = K[x1, . . . , xn] be a polynomial ring in n variables over a

field K of characteristic p > 0. Let R → S be a homomorphism of Noetherian rings

that splits. Suppose that I = (f1, . . . , fs) is an ideal of R such that
∑

i deg(fi) <

dimR. If S is a finitely generated R-module, then dimR/P ≥ dimR−
∑

i deg fi for

all P ∈ AssRH
i
I(R).
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Proof. Since H i
I(−) commutes with direct sum of R-modules, we have that a splitting

of R ↪→ S over R induces an splitting of H i
I(R) ↪→ H i

I(S) over R. Then, by Lemma

VI.1.1, for any P ∈ AssRH
i
I(R) ⊂ AssRH

i
I(S) there exists Q ∈ AssRH

i
I(S) such that

P = Q∩R and then dimR/P = dimS/Q > n−
∑

i deg fi, and the result follows.

VI.2 Bass Numbers

Lemma VI.2.1. Let (R,m,K) be a local ring and M be an R-module. Then, the

following are equivalent:

a) dimK(ExtjR(K,M)) is finite for all j ≥ 0;

b) length(ExtjR(N,M)) is finite for every finite length module N for all j ≥ 0;

c) there exists one module N of finite length such that length(ExtjR(N,M)) is finite

for all j ≥ 0.

Proof. a) ⇒ b): Our proof will be by induction on h = length(N). If h = 1,

then N = K, and the proof follows from our assumption. We will assume that the

statement is true for h and prove it when length(N) = h + 1. In this case, there is

a short exact sequence 0 → K → N → N ′ → 0, where N ′ has length h. From the

induced long exact sequence

. . .→ Extj−1
R (N ′,M)→ ExtjR(K,M)→ ExtjR(N,M)→ . . . ,

we see that length(ExtiR(N,M)) is finite for all i ≥ 0.

b) ⇒ c): Clear.

c) ⇒ a): We will prove the contrapositive. Let j be the minimum non-negative

integer such that dimK(ExtjR(K,M)) is infinite. We claim that length(ExtiR(N,M)) <

∞ for i < j and length(ExtjR(N,M)) = ∞ for any module N of finite length. Our

proof will be by induction on h = length(N). If h = 1, then N = K and it follows

from our choice of j. We will assume that this is true for h and prove it when

length(N) = h + 1. We have a short exact sequence 0 → K → N → N ′ → 0, where

N ′ has length h. From the induced long exact sequence

. . .→ Extj−1
R (N ′,M)→ ExtjR(K,M)→ ExtjR(N,M)→ . . . ,
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we have that length(ExtiR(N,M)) <∞ for i < j and that the map

ExtjR(K,M)/ Im(Extj−1
R (N ′,M))→ ExtjR(N,M)

is injective. Therefore, length(ExtjR(N,M)) =∞.

Lemma VI.2.2. Let R→ S be a pure homomorphism of Noetherian rings. Assume

that S is a Cohen-Macaulay ring. If S is finitely generated as an R-module, then R

is a Cohen-Macaulay ring.

Proof. Let P ⊂ R be a prime ideal. Let x = x1, . . . , xd denote a system of parameters

of RP , where d = dim(RP ). It suffices to show that Hi(K(x;RP )) = 0 for i 6= 0, where

K is the Koszul complex with respect to x. We notice that the natural inclusion

RP → SP is a pure homeomorphism of rings. This induces an injective morphism of

R-modules Hi(K(x;RP )) → Hi(K(x;SP )) by Proposition VI.1.3. Thus, it is enough

to show that Hi(K(x;SP )) = 0 for i 6= 0. Since SP is a module finite extension of

RP , we have that every maximal ideal Q ⊂ SP contracts to PRP and x is a system

of parameters for SQ. Then, Hi(K(x;SQ)) = 0 for i 6= 0 and every maximal ideal

Q ⊂ SP . Hence, Hi(K(x;SP )) = 0 for i 6= 0 and the result follows.

Proposition VI.2.3. Let R→ S be a homomorphism of Noetherian rings that splits.

Assume that S is a Cohen-Macaulay ring and S is finitely generated as an R-module.

Let N be an R-module and M be an S-module. Let N → M be a morphism of R-

modules that splits. If all the Bass numbers of M , as an S-module, are finite, then

all the Bass numbers of N , as an R-module, are finite.

Proof. Since N ↪→M splits, we have that ExtiRP (RP/PRP , NP ) is a direct summand

of ExtiRP (RP/PRP ,MP ), so, we may assume that N = M .

Let P be a fixed prime ideal of R and let KP denote RP/PRP . Since we want to

show that dimKP (ExtiRP (KP ,MP )) is finite, we may assume without loss of generality

that R is local and P is its maximal ideal. Let x = x1, . . . , xn be a system of

parameters for R. Since R is Cohen-Macaulay by Lemma VI.2.2, we have that the

Koszul complex, KR(x), is a free resolution for R/I, where I = (x1, . . . , xn). We also

have that for every maximal ideal Q ⊂ S lying over P , x is a system of parameters of

SQ because dimR = dimSQ and SQ/ISQ is a zero dimensional ring. From the Cohen-

Macaulayness of S and the previous fact, we have that the Koszul complex KS(x)

is a free resolution for S/IS. Therefore, ExtiR(R/I,M) = H i(HomR(KR(x),M)) =

71



H i(HomS(KS(x),M)) = ExtiS(S/IS,M). Since

ExtiS(S/IS,M) = ⊕Q ExtiSQ(SQ/ISQ,MQ)

has finite length as an S-module by Lemma VI.2.1, we have that ExtiR(R/I,M) has

finite length as an R-module because S is finitely generated. Then, we have that

dimKP (ExtiR(KP ,M)) is finite by Lemma VI.2.1.

Theorem VI.2.4. Let R → S be a homomorphism of Noetherian rings that splits.

Suppose that S is a Cohen-Macaulay ring such that all the Bass numbers of T (S), as

an S-module, are finite for a functor T induced by extension of ideals of R. If S is

a finitely generated R-module, then all the Bass numbers of T (R), as an R-module,

are finite. In particular, for every ideal I ⊂ R the Bass numbers of H i
I(R) are finite,

if the Bass numbers of H i
IS(S) are finite.

Proof. The splitting between R and S induces a splitting between T (R) ↪→ T (S).

The rest follows from Proposition VI.2.3.
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CHAPTER VII

F -Jacobian ideals for hypersurfaces

Suppose that f ∈ K[x1, . . . , xn] is a polynomial over a perfect field K. We know

that the Jacobian ideal Jac(f) = (f, ∂1f
∂x1
, . . . , ∂nf

∂xn
) determines whether the hypersur-

face V(f) = {v ∈ Kn | f(v) = 0} is smooth or not. Moreover, Jac(f) defines the

singular locus of V(f).

The aim of this chapter is to introduce the F -Jacobian ideal, JF (f), of an element

in a regular ringR. This is an ideal that measures singularity in positive characteristic.

Under suitable hypothesis, it defines the locus in which R/fR is not F -regular. JF (f)

is connected with the sum of all simple F -submodules of the first local cohomology of

R supported at f, H1
f (R). In this chapter we define the F -Jacobian ideal and deduce

some of its properties.

The results presented in this chapter are part of joint work with Pérez [NBP13].

VII.1 Definition for unique factorization domains

Notation VII.1.1. Throughout this section R denotes an F -finite regular UFD of

characteristic p > 0 such that Rf/R has finite length as D(R,Z)-module for every

f ∈ R.

This hypothesis is satisfied for every F -finite regular local ring and for every F -

finite polynomial ring [Lyu97, Theorem 5.6].

Lemma VII.1.2. Let S be a UFD and f ∈ S be an irreducible element. Then,

N ∩M 6= 0 for any S-submodules M,N ⊂ Sf/S.

Proof. Let a/fβ ∈M \{0} and b/fγ ∈ N \{0}, where β, γ ≥ 1. Since S is a UFD and

f is irreducible, we may assume that gcd(a, f) = gcd(b, f) = 1. Then, gcd(ab, f) = 1,

and so ab/f 6= 0 in Sf/S. We have that ab/f = bfβ−1(a/fβ) = afγ−1(b/fγ). Then,

ab/f ∈ N ∩M and it is not zero.
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Lemma VII.1.3. Let S be a regular ring of characteristic p > 0, f ∈ S an element

and π : S → S/fS be the quotient morphism. Let

I : {I ⊂ S | I is an ideal, f ∈ I, (I [p] : fp−1) = I}

and

N = {N ⊂ Sf/S|N is an F -submodule}.

Then, the correspondence given by sending N to IN = π−1(N ∩ R/fR) is bijective,

with tinverse defined by sending the ideal I ∈ I to the F -module NI generated by

I/fS
fp−1

→ F (I/fS) = I [p]/fpS.

Proof. Since φ : R/fR
fp−1

→ R/f pR is a root for Rf/R, its F -submodules are in

correspondence with ideals J ⊂ R/fR such that φ−1(F (J)) = J [Lyu97, Corollary

2.6]. We have the following generating morphisms,

0 0 0
↓ ↓ ↓

I/fR
fp−1

→ F (IR/fR)
fp

2−p
→ F 2(IR/fR)

fp
3−p2

→ . . .
↓ ↓ ↓

R/fR
fp−1

→ R/f pR
fp

2−p
→ R/f p

2
R

fp
3−p2

→ . . .
↓ ↓ ↓

R/I
fp−1

→ R/I [p] fp
2−p
→ R/I [p2] fp

3−p2

→ . . .
↓ ↓ ↓
0 0 0

Since J is a quotient I/fR of an ideal, F (J) = I [p]/fpR. Then,

I/fR = φ−1(I [p]/fp)

= {h ∈ R/fR | fp−1h ∈ I [p]/fp}

= {h ∈ R | fp−1h ∈ I [p]}/fR

= (I [p] : fp−1)/f

and the result follows.

Lemma VII.1.4. Let f ∈ R be an irreducible element. Then, there is a unique

simple F -module in Rf/R.

74



Proof. Since Rf/R is an F -module of finite length, there exists a simple F -submodule

M ⊂ Rf/R. Let N be an F -submodule of Rf/R. Since M∩N 6= 0 by Lemma VII.1.2

and M is a simple F -module, M = M ∩ N . Hence, M is the only nonzero simple

F -submodule of Rf/R.

Proposition VII.1.5. Let g ∈ R be an irreducible element and f = gn for some

integer n ≥ 1. Then, there exists a unique ideal I ⊂ R such that:

(i) f ∈ I,

(ii) I 6= fR,

(iii) (I [p] : fp−1) = I, and

(iv) I is contained in any other ideal satisfying (i),(ii) and (iii).

Proof. We note that Rf/R = Rg/R. Let I be the ideal corresponding, under the

bijection in Lemma IX.4.7, to the minimal simple F -submodule in given in Lemma

VII.1.4. Then, it is clear from Lemma IX.4.7 that I satisfies (i)-(iv).

Definition VII.1.6. Let g ∈ R be an irreducible element and f = gn for some integer

n ≥ 1. We denote the minimal simple submodule of Rf/R by minFR(f), and we called

it the minimal F -module of f . Let σ : R/fR → Rf/R be the morphism defined by

σ([a]) = a/f which is well defined because R is a domain. Since image of σ is R 1
f
, we

will abuse notation and consider R/fR ⊂ Rf/R. We denote (φσ)−1(minF (f) ∩ R 1
f
)

by JF (f), and we call it the F -Jacobian ideal of f . If f is a unit, we take minF (f) = 0

and JF (f) = R.

Notation VII.1.7. If it is clear in which ring we are working, we write JF (f) instead

of JFR(f) and minF (f) instead of minFR(f).

Proposition VII.1.8. Let f ∈ R be an irreducible element. Then minF (f) is the

only simple D-submodule of Rf/R.

Proof. We claim that Rf/R has only one simple DR-module. Since Rf/R has finite

length as D-module, there is a simple D-submodule, M . It suffices to show that for

any other DR-submodule, N ⊂ M . We have that M ∩ N 6= 0 by Lemma VII.1.2,

and so M = M ∩ N ⊂ N because M is a simple DR-module. Since minFR(f) is an

DR-module [Lyu97, Examples 5.1 and 5.2], we have that M ⊂ minF (f).
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It suffices to prove that M is an F -submodule of Rf/R. Since R/fR is a domain,

we have that the localization morphism, R/fR → Rm/fRm, is injective. Then,

SuppR(R/fR) = SuppR(J) for every nonzero ideal J ⊂ R/fR. Then,

SuppR(R/fR) = SuppR(R/fR ∩N) ⊂ SuppR(N) ⊂ SuppR(Rf/R) = SuppR(R/f)

for every R-submodule of Rf/R by Lemma VII.1.2. Let m denote a maximal ideal

such that f ∈ m. Thus, Mm 6= 0, and then, Mm is the only simple DRm-module of

(Rf )m/Rm. Since Rm is a regular local F -finite ring, we have that minFRm (f) is a

finite direct sum of simple DRm-modules [Lyu97, Theorem 5.6]. Therefore, Mm =

minFRm (f) by Lemma VII.1.2.

Let π : R → R/fR denote the quotient morphism, and I = π−1(R/fR ∩M).

We note that I 6= fR because R/f ∩ M 6= 0 by Lemma VII.1.2. We claim that

(I
[p]
m : f) = Im for every maximal ideal. If f ∈ m,

Im/f = (Rm/fRm) ∩Mm = (Rm/fRm) ∩minFRm (f) = JFRm (f)/f ;

otherwise, Im = Rm = JFRm (f) because f is a unit in Rm Then, (I [p] : fp−1) = I and

so I corresponds to an FR-submodule of Rf/R, NI by Lemma IX.4.7. Moreover,

NI = lim
→

(I/fR
fp−1

→ I [p]/fpR
fp

2−p
→ . . .).

Since localization commutes with direct limit, we have that for every maximal ideal

such that f ∈ m,

Mm = minFRm (f) = lim
→

(Im/fRm
fp−1

→ I [p]
m /f

pRm
fp

2−p
→ . . .) = NIm = NI ⊗R Rm.

Therefore, M = NI because SuppR(M) = SuppR(R/f), and it is an F -submodule of

Rf/R. Hence, M = minFR(f).

Remark VII.1.9. If f ∈ R is an irreducible element, then:

(i) min(f) = min(fn) for every n ∈ N because Rfn/R = Rf/R,

(ii) JF (f) is the minimal of the family of ideals I containing properly fR such that

(I : fp−1) = I by Proposition VII.1.5.

(iii) JF (f) is not the usual Jacobian ideal of f . If S = F3[x, y, z, w] and f = xy+zw,

we have that the Jacobian of f is m = (x, y, z, w)S. However, m 6= (m[p] : f 2).
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(iv) JF (f) = R if and only if Rf/R is a simple F -module by the proof of Proposition

VII.1.5 and Lemma IX.4.7.

(v) JF (f) = R if and only if Rf/R is simple DR-module by Proposition VII.1.8.

Proposition VII.1.10. Let fi, . . . f` ∈ R be irreducible relatively prime elements and

f = f1 · · · f`. Then minF (fi) is an F -submodule of Rf/R. Moreover, all the simple

F -submodules of Rf/R are minF (f1), . . . ,minF (f`).

Proof. The morphism Rfi/R → Rf/R, induced by the localization map Rf1 → Rf ,

is a morphism of F -finite F -modules given by the diagram:

0

��

0

��

0

��

R/fiR
fp−1
i //

fp1 ...f̂
p
i ···f

p
`

��

R/f pi R
fp

2−p
i //

fp
2

1 ...f̂p
2

i ···f
p2

`
��

R/f p
2

i R

fp
3

1 ...f̂p
3

i ···f
p3

`��

// . . .

R/fR
fp−1

// R/f pR
fp

2−p
// R/f p

2
R // . . .

Then minF (fi) is a simple F -submodule of Rf/R. Let N be an F -submodule of Rf/R,

and a/fβ1

1 · · · f
β`
` ∈ N \{0}. Since fi is irreducible, we may assume that gcd(a, fi) = 1

and βi 6= 0 for some i = 1 . . . , `. Thus, a/fi ∈ N ∩ Rfi/R and a/fi 6= 0. Then,

minF (fi) ⊂ N ∩ Rfi/R ⊂ N. In particular, if N is a simple F -submodule, then

N = minF (fi).

Remark VII.1.11. As a consequence of Lemma VII.1.10, we have that

minF (f1)⊕ . . .⊕minF (f`) ∈ Rf/R

because Rg ∩Rh = R for all elements g, h ∈ R such that gcd(g, h) = 1.

Definition VII.1.12. Let fi, . . . f` ∈ R be irreducible relatively prime elements,

f = fβ1

1 · · · f
β`
` , and π : R → R/fR be the quotient morphism. We define minF (f)

by

minF (f1)⊕ . . .⊕minF (f`),

and we called it the minimal F -module of f . Let σ : R/fR → Rf/R be the mor-

phism defined by σ([a]) = a/f which is well defined because R is a domain. Since

image of σ is R 1
f
, we will abuse notation and consider R/fR ⊂ Rf/R. We denote

(φσ)−1(minF (f) ∩R 1
f
) by JF (f), and we call it the F -Jacobian ideal of f .
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Remark VII.1.13. In the local case, minF (f) is the intersection homology D-

modules L(R/f,R) previously defined by Blickle [Bli04a, Theorem 4.5].

Proposition VII.1.14. Let f, g ∈ R be relatively prime elements. Then,

JF (fg) = fJF (g) + gJF (f).

Moreover, fJF (g) ∩ gJF (f) = fgR

Proof. We consider Rf/R and Rg/R as F -submodules ofRfg/R, where the inclusion is

given by the localization maps, ιf : Rf → Rfg and ιg : Rg → Rfg. Let π : R→ R/fgR

and ρ : R → R/fR be the quotient morphisms. The limit of the morphism induced

by the diagram

0

��

0

��

0

��

R/fR
fp−1

//

g

��

R/f pR
fp

2−p
//

gp
2

��

R/f p
2
R

gp
3

��

fp
3−p2

// . . .

R/fgR
(fg)p−1

// R/f pgpR
(fg)p

2−p
// R/(fg)p

2
R

(fg)p
3−p2

// . . .

is ιf . Moreover, under this correspondence

0

��

0

��

0

��

JF (f)/fR
fp−1

//

g

��

JF (f)[p2]/fpR
fp

2−p
//

gp
2

��

JF (f)[p2]/fp
2
R

gp
3

��

// . . .

gJF (f)/fgR
(fg)p−1

// gpJF (f)[p]/fpgpR
(fg)p

2−p
// gp

2
JF (f)[p2]/(fg)p

2
R // . . .

induces the isomorphism of F -modules, ιf : minF (f)→ ιf (minF (f)). We have that

g(JF (f)) = π−1(minF (f) ∩R/fgR) ⊂ π−1(minF (f) ∩R/fgR) = JF (fg).

In addition,

(gpJF (f)[p] : (fg)p−1) = gJF (f),

and it defines minF (f) as a F -submodule of Rfg/R. Likewise,

fJF (g) ⊂ JF (fg), (fpJF (g)[p] : (fg)p−1) = fJF (g),
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and it defines minF (g) as a F -submodule of Rfg/R. Then,

fJF (g) + gJF (f) ⊂ JF (fg).

Since minF (f) ∩minF (g) = 0, we have that fJF (g) ∩ gJF (g) = fgR.

We claim that

(fpJF (g)[p] + gpJF (f)[p] : fp−1gp−1) = fJF (g) + gJF (f).

To prove the first containment, take

h ∈ (fpJF (g)[p] + gpJF (f)[p] : fp−1gp−1).

Then fp−1gp−1h = fpv + gpw for some v ∈ (JF (g))[p] and w ∈ JF (g)[p]. Since f

and g are relatively prime, fp−1 divides w and gp−1 divides v. Thus, there exist

a, b ∈ R such that v = gp−1a and w = gp−1b. Then, a ∈ (JF (g)[p] : gp−1) = JF (g) and

b ∈ (JF (f)[p] : fp−1) = JF (f). Since,

fp−1gp−1h = fpv + gpw = fpgp−1a+ gpgp−1b,

h = fa+ gb ∈ fJF (g) + gJF (f).

For the other containment, it is straightforward to check that

fJF (g) + gJF (f) ⊂ (fpJF (g)[p] + gpJF (f)[p] : fp−1gp−1).

Since NfJF (g)+gJF (f), the F -module generated by fJF (g) + gJF (f), contains minF (f)

and minF (g),

minF (f)⊕minF (g) ⊂ NfJF (g)+gJF (f).

Therefore, JF (h) ⊂ fJF (g) + gJF (f) and the result follows.

Proposition VII.1.15. Let β, γ ∈ N be such that β < γ. Then,

fγ−βJF (fβ) ⊂ JF (fγ) ⊂ JF (fβ).

Proof. Let σ` : R/f ` → Rf/R be the injection defined by sending [a] → a/f `. We
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note that the image of σ` is R 1
f`

We have that the following commutative diagram,

R/fβR

fγ−β

��

σβ

$$
Rf/R

R/fγR

σγ

::

Then, R 1
fβ
∩minF (f) ⊂ R 1

fγ
∩minF (f), and this corresponds to

fγ−βJF (fβ)/fγR ⊂ JF (fγ)/fγR.

Hence, fγ−βJF (fβ) ⊂ JF (fγ) because fγ belongs to both ideals.

The morphism R 1
fγ
∩minF (fβ)

fγ−β→ R 1
fβ
∩minF (f) is well defined and it is equiv-

alent to the morphism JF (fγ)/fγR → JF (fβ)/fβ given by the quotient morphism

R/fγR→ R/fβR. Then, JF (fγ) + fβR ⊂ JF (fβ) and the result follows.

Remark VII.1.16. There are examples in which the containment in Proposition

VII.1.15 is strict. Let R = Fp[x] and f = x. In this case, Rf/R is a simple F -module.

Then, JF (xβ) = R for every β ∈ N and fγ−βJF (fβ) ⊂ JF (fγ) for every γ > β.

Corollary VII.1.17. Let f, g ∈ R be such that f divides g. Then, JF (g) ⊂ JF (f).

Proof. This follows from Propositions VII.1.15 and VII.1.14.

Proposition VII.1.18. Let f ∈ R and W ⊂ R be a multiplicative system. Then,

JFW−1R
(f) = W−1JFR(f).

Proof. By Proposition VII.1.14, it suffices to prove the claim for f = gn, where g is an

irreducible element. We note that g is either a unit or a irreducible element in W−1R.

We have that minFW−1R
(f) = minFW−1R

(g) is either zero or a simple F -module by

Lemma VII.1.8. Then, minFW−1R
(f) = W−1 minFR(f), and so

JFW−1R
(f)/fW−1R = W−1R/fW−1R ∩minFW−1R

(f)

= W−1(R/fR ∩minFR(f))

= W−1JFR(f)/fW−1R,

and the result follows because f belongs to both ideals.
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Proposition VII.1.19. Let f ∈ R. Then, JF
R1/pe

(f) = JFR(f)R1/pe. Moreover,

JFR(fp
e
) = JFR(f)[pe].

Proof. By Proposition VII.1.14, we may assume that f = gn where g is a irreducible.

Let q denote pe and h denote the length of Rf/R in the category of F -modules. Let

G : R1/q → R be the isomorphism defined by r → rq. Under the isomorphism G,

R
1/q
f /R1/q corresponds to Rfq/R. Then, the length of R

1/q
f /R1/q in the category of

FR1/q -modules is h. Let 0 = M0 ⊂ . . . ⊂ Mh = Rf/R be a chain of FR-submodules

of Rf/R such that Mi+1/Mi is a simple FR-module. Let fR = J0 ⊂ . . . ⊂ Jh = R

be the corresponding chain of ideals under the bijection given in Lemma IX.4.7.

Since f = gn and g is irreducible, M1 = minFR(f) and J1 = JFR(f). We note that

(Jpi R
1/q : fp−1) = JiR

1/q and JiR
1/q 6= Ji+1R

1/q because R1/q is a faithfully flat

R-algebra.

Then, we have a strictly ascending chain of ideals

fR1/q = J0R
1/q ⊂ . . . ⊂ JhR

1/p = R1/q

that corresponds to a strictly ascending chain of FR1/q -submodules of R
1/q
f /R1/q.

Since f = (g1/q)qn, g1/q is irreducible and the length of R
1/q
f /R1/q is h, we have

that

JFR(f)R1/q = J1R
1/p = JF

R1/q
(f).

After applying the isomorphism G to the previous equality, we have that

JFR(f)[q] = G(JFR(f)R1/q) = G(JF
R1/q

(f)) = JFR(f q)

Proposition VII.1.20. Let R → S be flat morphism of UFDs and let f ∈ R. If S

is as in Notation VII.1.1, then JFS(f) ⊂ JFR(f)S.

Proof. We may assume that f = gβ where g is an irreducible element in R by Propo-

sition VII.1.14. Since S is flat, (JFR(f)[p]S : fp−1) = JFR(f)S. Let M denote the

FS-submodule of Sf/S given by JFR(f)S under the correspondence in Lemma IX.4.7.

If f is a unit in S, then JF (f)S = S and the result is immediate. We may assume

that f is not a unit in S. Since JF (f) 6= fR, we can pick a ∈ JF (f) \ fR. Then,

a = bgγ for some 0 ≤ γ < β and b ∈ R such that gcd(b, g) = 1. Then, R/g
b→ R/g

is injective, and so S/gS
b→ S/gS is also injective. Thus, gcd(b, g) = 1 in S. Hence,

b/g is not zero in Sg/S. Moreover, b/g = gβ−γ−1a/f ∈ M and it is not zero. Let
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g1, . . . , g` ∈ S irreducible relatively prime elements such that g = gβ1

1 · · · g
β`
1 . We

have that b/gi = hb/g ∈ Sgi/S ∩ M \ {0}, where h = gβ1

1 · · · g
βi−1
i · · · gβ`1 . Then,

minFS(gi) ⊂M and so minFS(f) ⊂M. Therefore, JFS(f) ⊂ JFR(f)S.

Proposition VII.1.21. Suppose that R is a local ring. Let f ∈ R. Then

JF
R̂

(f) = JFR(f)R̂,

where R̂ denotes the completion of R with respect to the maximal ideal.

Proof. We have that minF
R̂

(f) = minFR(f)⊗R R̂ [Bli04a, Theorem 4.6]. Then,

JF
R̂

=
(
R̂/fR̂

)
∩minF

R̂
(f) = ((R/fR) ∩minFR(f))⊗R R̂ = JFR(f)R̂

Lemma VII.1.22. Let R = K[x1, . . . , xn], where K is a perfect field. Let K → L be

an algebraic field extension of K, S = L[x1 . . . , xn], and R → S the map induced by

the extension. Then, JFS(f) = JFR(f)S.

Proof. We can assume that f = gβ where g is an irreducible element in R by VII.1.14.

It suffices to show that JFR(R)S ⊂ JFS(S) by Proposition VII.1.20.

There is an inclusion φ : Rf/R → Sf/S, which is induced by R → S. We take

M = (minFS(f)) ∩ Rf/R. We claim that M is a DR-module of Rf/R. Since K is

perfect,

DR =
⋃
e∈N

HomSpe (S, S) = D(R,K) = R[
1

t!

∂t

∂xti
].

We note that DR ⊂ DS, and that for every m ∈ Rf/R, φ( ∂t

∂xti
m) = ∂t

∂xti
φ(m). As a

consequence, ∂t

∂xti
m ∈M for every m ∈M. Therefore, M is a DR-module.

Let I = M ∩R/fR. We note that

I = minFS(f) ∩R/fR = (JFS(f)/fS) ∩R/fR

and that S/fS is an integral extension of R/fR because L is an algebraic extension

of K. Let r ∈ JFS(f)/fS not zero, and aj ∈ R/fR such that a0 6= 0

rn + an−1r
n−1 + . . .+ a1r + a0 = 0

in S/fS. Then,

r(an−1r
n−1 + . . .+ a1) = −a0,
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and so a0 ∈ I = (JFS(f)/fS) ∩ R/fR, and then M 6= 0. Therefore, minFR(f) ⊂ M

and so JF (f)/f ⊂ I. Let π : R→ R/fR be the quotient morphism. Then,

JFR(f) ⊂ π−1(I) = JFS(f) ∩R,

and

JFR(f)S ⊂ (JFS(f) ∩R)S ⊂ JFS(f).

Lemma VII.1.23. Let R = K[x1, . . . , xn], where K is an F -finite field. Let L =

K1/p, S = L[x1 . . . , xn], and R→ S the map induced by the extension K → L. Then

JFS(f) = JFR(f)S.

Proof. We have that R ⊂ S ⊂ R1/p. Then, by Proposition VII.1.20,

JF
R1/p

(f) ⊂ JFS(f)R1/p ⊂ (JFR(f)S)R1/p = JFR(f)R1/p.

Since JF
R1/p

(f) = JFR(f)R1/p by Proposition VII.1.19,

0 = JFS(f)R1/p/(JFR(f)S)R1/p = (JFS(f)/JFR(f)S)⊗S R1/p.

Therefore, JFS(f) = JFR(f)S because R1/p is a faithfully flat S-algebra.

Lemma VII.1.24. Let R = K[x1, . . . , xn], where K is an F -finite field. Let L be the

perfect closure of K, S = L[x1 . . . , xn], and R→ S the map induced by the extension

K → L. Then JFS(f) = JFR(f)S.

Proof. We may assume that f = gn for an irreducible g ∈ R by Proposition VII.1.14.

Let Se = K1/pe [x1, . . . , xn]. Let h1, . . . , h` denote a set of generators for JFS(f). In

this case, (JFS(f)[p] : fp−1) = JFS(f). Then there exist ci,j ∈ S such that

fp−1hj =
∑

ci,jh
p
j .

Since S =
⋃
e S

e, there exist an N such that ci,j, hj ∈ SN . Let I ⊂ RN be the ideal

generated by h1, . . . , h`. We note that IS = JFS(f); moreover, JFS(f) ∩ SN = I

because Se → S splits for every e ∈ N.

We claim that (I [p] : fp−1) = I. We have that fp−1h` ∈ I [p] by our choice of

N and so I ⊂ (I [p] : fp−1). If g ∈ (I [p] : fp−1), then fp−1g ∈ I [p] ⊂ JFS(f)[p] and

g ∈ JFS(f) ∩ SN = I.
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As in the proof of Lemma VII.1.22, (JFS(f)/fS) ∩ (SN/fSN) 6= 0 and then

JFS(f) ∩ SN = I 6= fS. Therefore, JF
SN

(f) ⊂ I by Proposition VII.1.5. Hence,

JF
SN

(f)S ⊂ IS = JFS(f) ⊂ JF
SN

(f)S,

and the result follows because

JFR(f)S = (JFR(f)SN)S = JF
SN

(f)S.

Theorem VII.1.25. Let R = K[x1, . . . , xn], where K is an F -finite field. Let L be

an algebraic extension of K, S = L[x1 . . . , xn], and R → S the map induced by the

extension K → L. Then JFS(f) = JFR(f)S.

Proof. It suffices to show JFR(f)S ⊂ JFS(f) by Proposition VII.1.20. Let K∗ and

L∗ denote the perfect closure of K and L respectively. Let R∗ = K∗[x1, . . . , xn] and

S∗ = L∗[x1, . . . , xn].

Then,

(JFR(f)S)S∗JFR(f)S∗ = (JFR(f)R∗)S∗ = JFR∗ (f)S∗ = JFS∗ (f) = JFS(f)S∗

by Lemma VII.1.22 and VII.1.24. Therefore,

(JFR(f)S/JFS(f))⊗S S∗ = (JFR(f)S)S∗/(JFS(f))S∗ = 0.

Hence JFR(f)S/JFS(f) = 0 because S∗ is a faithfully flat S-algebra.

Example VII.1.26. Let R = F3[x, y], and f = x2 + y2 and m = (x, y). We have

that (m[p] : fp−1) = m. Then, JFR(f) ⊂ m. Let F3[i] the extension of F3 by
√
−1,

S = L[x, y] and φ : R → S be the inclusion given by the field extension. Then,

JFS(f) = (x, y)S by Proposition VII.1.14 because x2 + y2 = (x+ iy)(x− iy). Since φ

is a flat extension, JFS(f) ⊂ JFR(f)S. Then, m = R ∩ JFS(f) ⊂ R ∩ JFR(f)S. Hence,

JF (f) = m.

Proposition VII.1.27. Let f ∈ R be an irreducible element. Then,

JF (f) =
⋂

gcd(a,f)=1

(⋃
e∈N

(((
fp

e−1a
)[1/pe]

, f
)[pe]

: fp
e−1

))
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Proof. We have that minF (f) is the intersection of all nonzero D-submodules of Rf/R

by Proposition VII.1.8. In particular, minF (f) is the intersection of all nonzero cyclic

D-modules generated by elements a/f ∈ Rf/R. Hence,

JF (f)/f =
⋂

gcd(a,f)=1

((D · a/f) ∩R/f)

=
⋂

gcd(a,f)=1

(⋃
e∈N

(
D(e) · a/f ∩R/f

))

We have that b ∈ JF (f) if b/f ∈
⋂

gcd(a,f)=1

⋃
e∈N
(
D(e) · a/f

)
, so, for every a ∈ R

such that gcd(a, f) = 1, there exists an e ∈ N such that b/f ∈ D(e) · a/f. Thus, there

exists φ ∈ HomRpe (R,R) such that

φ(a/f) = 1/fp
e

φ(fp
e−1a) = b/f + r

Therefore, after multiplying by fp
e
, we have that

b ∈
⋂

gcd(a,f)=1

(⋃
e∈N

(((
fp

e−1a
)[1/pe]

, f
)[pe]

: fp
e−1

))

because
(
(fp

e−1a)[1/pe]
)[pe]

= D(e)
(
fp

e−1a
)
.

On the other hand, if

b ∈
⋂

gcd(a,f)=1

⋃
e∈N

(((
fp

e−1a
)[1/pe]

, f
)[pe]

: fp
e−1

)
,

then for every a ∈ R such that gcd(a, f) = 1, there exists an e ∈ N and φ ∈
HomRpe (R,R) such that

fp
e−1b = φ(fp

e−1a) + fp
e

r

because
((
fp

e−1a), f
)[1/pe]

)[pe]

= D(e)(fp
e−1a). Therefore, after dividing by fp

e
, we

have that b/f ∈
⋂

gcd(a,f)=1

⋃
e∈N
(
D(e) · a/f

)
, and then b ∈ JF (f).

Theorem VII.1.28. Let f ∈ R be such that R/fR is a F -pure ring. If JF (f) = R,

then R/fR is strongly F -regular.

Proof. We may assume that (R,m,K) is local because being reduced, F -pure, and F -

regular are local properties for R/fR. Then, f is irreducible by Proposition VII.1.14.

85



Since JF (f) = R, for every a such that gcd(a, f) = 1 there exits an e ∈ N such that

R =

(((
fp

e−1a
)[1/pe]

, f
)[pe]

: fp
e−1

)
by Lemma VII.1.27. Then,

fp
e−1 ∈

((
fp

e−1a
)[1/pe]

, f
)[pe]

.

Since fp
e−1 6∈ m[pe] for every e ∈ N by Fedder’s Criterion , R =

(
fp

e−1a
)[1/pe]

;

otherwise, (
(
fp

e−1a
)[1/pe]

, f) ⊂ m. Then, there exist a morphism φ : R→ Rpe of Rpe-

modules such that φ(fp
e−1a) = 1. Let ϕ : R/fR→ R/fR be the morphism defined by

ϕ([x]) = [φ(fp
e−1x)]. We note that ϕ is a well defined morphism of (R/fR)p-modules

such that ϕ([a]) = 1. Then, R/fR is a simple D(R/fR)-module. Hence, R/fR is

strongly F -regular [Smi95a, Theorem 2.2].

Remark VII.1.29. • The result of the previous theorem is a consequence of a

result of Blickle [Bli04a, Corollary 4.10], as R/fR is a Gorenstein ring. However,

our proof is different from the one given there.

• JFR(f) = R does not imply that R/fR is F -pure. Let K = Frac(F2[u]) be the

fraction field of the polynomial ring F2[u], R = K[[x, y]], and f = x2+uy2. Then,

f is an irreducible element such that R/fR is not pure because f ∈ (x, y)[2]R.

Let L = K1/2, S = L[[x, y]] and R→ S be the inclusion given by the extension

K ⊂ L. Thus, f = (x − u1/2y)2 in S, and then JFS(S) = S ⊂ JFR(f)S. Then,

R = JFS(S) ∩ R = JFR(f)S ∩ R = JFR(f) because R → S splits. Hence,

JFR(f) = R and R/fR is not F -pure.

VII.2 Definition for rings essentially of finite type over an

F–finite local ring.

Notation VII.2.1. Throughout this section R denotes a ring essentially of finite type

over an F–finite local ring. Let f ∈ R, π : R→ R/fR be the quotient morphism. If

R/fR is reduced τf denotes π−1(τ(R/fR)), the pullback of the test ideal of R/fR.

Under the hypotheses on R in Notation VII.2.1, there is an F -module and D-

module of Rf/R called the intersection homology L(R,R/fR) [Bli01, Bli04a]. We

have that for every maximal ideal m ⊂ R, (R \m)−1L(R,R/fR) = minFRm (f).

Definition VII.2.2. Recall tht R/fR ⊂ Rf/R be the inclusion morphism 1 7→ 1
f
.

We define the F -Jacobian, Jf (f) as the pullback to R of (R/fR) ∩ L(R,R/fR).
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Lemma VII.2.3. Suppose that R/fR is reduced. Let Ij(f) = (τ
[pj−1]
f : fp

j−1−1).

Then Ij(f) ⊂ Ij+1(f) and

Ij+1(f) = (Ij(f)[p] : fp−1).

Proof. Since, in this case, the test ideal of R/fR commutes with localization, we may

assume that R is a local ring. We have that τf/fR is the minimal root for minF (f)

[Bli04a, Theorem 4.6]. Then, fp−1I1(f) = fp−1τf ⊂ τ
[pe]
f = I1(f)[pe]. Thus, I1 ⊂ I2

and fp−1I2 ⊂ I [p]
1 . Moreover, I2/fR is also a root for minF (f) because I2(f)/I1(f)

is the kernel of the map

R/I1(f)
fp−1

→ R/I1(f)[p].

Inductively, we obtain that Ij ⊂ Ij+1, f rIj+1 ⊂ Ij and that Ij/fR is a root for

minF (f) for every j ∈ N and the result follows.

Proposition VII.2.4. Suppose that R/fR is reduced. Then, JF (f) = ∪jIjR(f).

Proof. We have that τf
1
f

is the minimal root for L(R,R/fR). Moreover, any ideal

Ij(f)
fp−1

→ Ij(f)[p] also generates L(R,R/fR) as F -module. Moreover, ∪jIjR(f) =

L(R,R/fR) ∩R/fR = JF (f).

Remark VII.2.5. In general, we do not have τf = JF (f). Let R = K[x], where K

is any perfect field of characteristic p > 0. Let f = x2. Then, τf = xR 6= R = JF (f).

In addition, Example VII.3.3, shows another situation where τf 6= JF (f).

Remark VII.2.6. If R is an F -finite local ring, then

JF (f)
fp−1

→ JF (f)[p]

is a generating morphism for minF (f)) because in this case minF (f)) = L(R,R/fR).

Corollary VII.2.7. Let S be a ring that is as in Notation VII.1.1 and as in Notation

VII.2.1. Let f ∈ S. Let J denote the F -Jacobian ideal of f as in Definition VII.1.12

and let J ′ the F -Jacobian ideal of f as in Definition VII.2.2. Then, J = J ′.

Proof. We have that in both contexts the F -Jacobian ideal commutes with localiza-

tion. We may assume that R is a regular local F -finite ring. As J2 = (J
[p]
2 : fp−1)

and J2/fR
fp−1

→ J
[p]
2 /fpR is a root for minF (f) by Lemma VII.2.6, we have that

J1 = J2.
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Remark VII.2.8. As for every maximal ideal m ⊂ R, Rm is as in Notation VII.1.1,

we have that

• fnJF (f) ⊂ JF (fn),

• JF (fp
e
) = JF (f)[pe], and

• if gcd(f, g) = 1, JF (f) = fJF (g) + gJF (f).

because those properties can be checked locally.

Proposition VII.2.9. Suppose that (R,m,K) is local. Let (S, η, L) denote a regular

F -finite ring. Let R→ S be a flat local morphism such that the closed fiber S/mS is

regular L/K is separable. Then, JFS(f) = JFR(f)S.

Proof. It suffices to proof that minFR(f)S = minFS(f). We can assume without loss

of generlization tat R/fR is reduced. We have that JF
R̂

(f) = JFR(f)R̂ and JF
Ŝ
(f) =

JFS(f)Ŝ. In addition, the induced morphism in the completion R̂ → Ŝ is still a flat

local morphism. Since JFS(f) ⊂ JFR(f)S and JF
Ŝ
(f) ⊂ JF

R̂
(f)Ŝ by Proposition

VII.1.20, JF
R̂

(f)Ŝ/JF
Ŝ
(f) = (JFR(f)S/JFS(f)) ⊗S Ŝ. Therefore, we can assume that

R and S are complete.

We note that R/fR → S/fS is again a flat local morphism such that the closed

fiber S/mS is regular L/K is separable by flat base change. Then S/fS is reduced

and τ(R/fR)S = τ(S/fS) [HH94a, Theorem 7.2], and so IjFS(f) = IjFR(f)S. Hence,

JFS(f) = JFR(f)S by Proposition VII.2.4.

Corollary VII.2.10. Suppose that R is a Zh-graded ring. Let f ∈ R be a homoge-

neous element. Then, JF (f) is a homogeneous ideal.

Proof. It suffices to proof that min(f) is a Zh-graded submodule of Rf/R. We can

assume that R/fR is reduced. We have that τ(R/fR) is a homogeneous ideal ideal

[HH94b, Theorem 4.2]. This means that IjR(f) is a homogeneous ideal for every j.

Therefore, JF (f) is homogeneous and that minF (f) Zn-graded submodule of Rf/R.

Corollary VII.2.11. Let S be a ring that is as in Notation VII.1.1 or as in Notation

VII.2.1. Let f ∈ S be such that R/fR is reduced. Then, V(JF (f)) ⊂ SingF (S/fS).

Moreover, if S/fS is an F -pure ring, then V(JF (f)) = SingF (S/fS).

Proof. For every prime ideal P ∈ V(JF (f)), JFSP (f) 6= SP . Since SP is as in Notation

VII.2.1, we have that τ(SP/fSP ) ⊂ JFSP (f) ⊂ PSP . Then, SP is not F -regular and

then P ∈ SingF (S/fS).
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Now, we suppose that S/fS is F -pure. For every prime ideal P ∈ SingF (S/fS),

SP/pSP is not F -regular. Then, JFRP (f) 6= RP by Theorem VII.1.28. Then, P ∈
V(JF (f)).

Lemma VII.2.12. Let S be a ring that is as in Notation VII.1.1 and as in Notation

VII.2.1. Let f ∈ S be an element and Q ⊂ S be a prime ideal. If SQ/fSQ is F -pure,

then SQ/JFSQ (f) is F -pure.

Proof. We may replace S by SQ. Since S/fS is F -pure, we have that fp−1 6∈ Q[p]

by Fedder’s Criterion. We have that fp−1 ∈ (JF (f)[p] : JF (f)), and so (JF (f)[p] :

JF (f)) 6⊂ Q[p]. Therefore, S/JF (f) is F -pure.

Corollary VII.2.13. Let f ∈ R. If R/fR is an F -pure ring, then JF (f) = τf .

Proof. We have that
√
JF (f) =

√
π−1(R/fR) by Corollary VII.2.11 because

SingF (R/fR) = V(τ(R/fR))

in this case. Since R/JF (f) is F -pure by Lemma VII.2.12, JF (f) is a radical ideal. In

addition, τ(R/fR) is a radical ideal [FW89, Proposition 2.5]. Hence, JF (f) = τf .

VII.3 Examples

Proposition VII.3.1. Let f ∈ R be an element with an isolated singularity at the

maximal ideal m. If Rm/fRm is F -pure, then

JF (f) =

R if R/fR is F − regular

m otherwise

Proof. Since R/fR has an isolated singularity at m, we have that JF (f)RP = RP for

every prime ideal different from m. Then, m ⊂
√
JF (f).

If Rm/fRm is F -regular, then R/fR is F -regular, and so JF (R) = R by Theorem

VII.1.28.

If Rm/fRm is not F -regular, then JF (R) 6= R by Theorem VII.1.28. Then, m =√
JF (f). Since Rm/fRm is F -pure, we have that Rm/JF (f)Rm is F -pure by Lemma

VII.2.12. Then, Rm/JF (f)Rm is a reduced ring. Hence, JF (f) = m.

Example VII.3.2. Let K is an F -finite field. Let E be an elliptic curve over K.

We choose a closed immersion of E in P2
K and set R = K[x, y, z], the completed
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homogeneous co-ordinate ring of P2
K . We take f ∈ R as the cubic form defining E.

We know that f has an isolated singularity at m = (x, y, z)R. If the elliptic curve

is ordinary, then R/fR is F -pure [Har77, Proposition 4.21] [Bha12, Theorem 2.1]).

We know that R/fR is never an F -regular ring [HH94b, Discussion 7.3b(b), Theorem

7.12]. Then, JF (f) = m by Proposition VII.3.1.

Example VII.3.3. Let R = K[x, y, z], where is an F -finite field of characteristic

p > 3. Let f = x3 + y3 + z3 ∈ R, and π : R → R/fR be the quotient morphism and

m = (x, y, z)R. We have that τf = m [Smi95b, Example 6.3]. Then, m ⊂ JF (f) by

Proposition VII.2.4.

We have that R/fR is F -pure if and only if p ≡ 1 mod 3. We have that (m[p] :

fp−1) = m if p ≡ 1 mod 3, and (m[p] : fp−1) = R if p ≡ 1 mod 2. Hence,

JF (f) =

R p ≡ 2 mod 3

m p ≡ 1 mod 3.

Example VII.3.4. Let R = K[x1, . . . , xn], where K is an F–finite field of character-

istic p > 0. Let f = a1x
d1
1 + . . .+ anx

dn
n , be such that a 6 = 0. We have that R/fR has

an isolated singularity at the maximal ideal m = (x1, . . . , xn).

If 1
d1

+ . . .+ 1
dn

= 1 and (p− 1)/d1 is an integer for every i, then R/fR is F -pure

for p� 0 [Her12, Theorem 3.1] and not F -regular [Gla96, Theorem 3.1] because fp−1

is congruent to c(x1 · · ·xn)p
e−1 module m[pe] for a nonzero element c ∈ K. Hence,

JF (f) = R for p� 0 by Proposition VII.3.1.

Remark VII.3.5. Let R = K[x1, . . . , xn] be a polynomial ring and f ∈ R be such

that R/fR is reduced. We can obtain JF (f) from τ(R/fR) by Proposition VII.2.4.

In the case where n > 3, f = xd1 + . . . xdn and d is not divided by the characteristic

of K, there is an algorithm to compute the test ideal of R/fR [McD03]. Therefore,

there is an algorithm to compute JF (f).

Example VII.3.6. Let R = K[x1, . . . , xn], where K is a field of characteristic p > 0.

Let f = xd1 + . . .+ xdn. This examples are based in computations done by McDermott

[McD03, Example 11, 12 and 13].

If p = 2, n = 5 and d = 5,

τf = (x2
ixj)1≤i,j≤5.

Then, (x2
1, x

2
2, x

2
3, x

2
4, x

2
5, x1x2x3x4x5)R = (τ

[2]
f : f) and R = (τ

[4]
f : f 3). Hence, JF (f) =

R.
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If p = 3, n = 4 and d = 7,

τf = (x2
ix

2
j)1≤i,j≤4.

Then R = (τ
[3]
f : f 2) and JF (f) = R.

If p = 7, n = 5 and d = 4,

τf = (x1, . . . , x5)R.

Then R = (τ
[7]
f : f 6) and JF (f) = R.
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CHAPTER VIII

A key functor

In this chapter, we study a functor utilized by Lyubeznik to prove that his original

invariants are well defined (cf. [Lyu93, Lemma 4.3]). In order to define the gener-

alized Lyubeznik numbers in Chapter IX, significant development of the theory of

this functor is necessary. The fact that this functor gives, in fact, an equivalence

with a certain category of D-modules is essential to the results here, as we will see in

Theorem VIII.0.10. This theorem somehow mirrors Kashiwara’s equivalence [Cou95]

equivalence for any local ring.

The results presented in this chapter are part of joint work with Witt [NBW12a].

Definition VIII.0.7 (Key functor G). Let R be a Noetherian ring, and let S =

R[[x]]. Let G : R -mod→ S -mod be the functor given by G(−) = (−)⊗R Sx/S.

We note that the functor G is reminiscent of the “direct image” functor utilized by

Àlvarez Montaner, by differs due to the base ring in the tensor product [ÀM04].

Remark VIII.0.8. For every element in u ∈ G(M) there exist `, α1, . . . , α` ∈ N,

m1, . . . ,m` ∈ M , uniquely determined, such that u = m` ⊗ x−α` + . . . + m1 ⊗ x−α1

and m` 6= 0 because

(VIII.0.8.1) G(M) = M ⊗R Sx/S = M ⊗R

(⊕
α∈N

Rx−α

)
=
⊕
α∈N

(
M ⊗Rx−α

)
.

Moreover, G is an exact functor and commutes with local cohomology.

Remark VIII.0.9. In fact, G is a functor from the category R-modules to the cate-

gory of D(S,R)-modules: Let M be a D(S,R)-module. Since D(S,R) = S〈 1
t!
∂t

∂xt
| t ∈

N〉 ⊆ HomK(S, S), it is enough to give an action of each 1
t!
∂t

∂xt
on G(M). If m⊗x−α ∈
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G(M), we define(
1

t!

∂t

∂xt

)
· (m⊗ x−α) =

(
α + t− 1

t

)
·
(
(−1)tm⊗ x−α−t

)
.

In particular, taking α =1 and t = β, we see that, for every β ∈ N,

(VIII.0.9.1) m⊗ x−β =
(−1)β−1

(β − 1)!

∂β−1

∂xβ−1
(m⊗ x−1).

Similarly, for every morphism of R-modules ϕ, G(ϕ) = ϕ⊗R Sx/S is a morphism

of D(S,R)-modules.

Moreover, G is an equivalence of certain categories:

Theorem VIII.0.10. Let R be a Noetherian ring, and let S = R[[x]]. Let C denote

the category of R-modules and D denote the category of D(S,R)-modules that are

supported on V(xS), the Zariski closed subset of Spec(S) given by xS. Then G :

C → D as in Definition VIII.0.7 is an equivalence of categories with inverse functor

G̃ : D → C given by G̃(M) = AnnM(xS).

Proof. It is clear that for every R-module M , G̃(G(M)) is naturally isomorphic to M .

It suffices to prove that for every D(S,R)-module N with support on V(xS), G(G̃(N))

is naturally isomorphic to N . Let M = G̃(N) = AnnN(xS), and let φ : G(M)→ N be

the morphism of R-modules defined on simple tensors by m⊗ x−α 7→ (−1)α−1

(α−1)!
∂α−1

∂xα−1m.

We will prove, in steps, that φ is an isomorphism of D(S,R)-modules.

First, we will show that φ is a morphism of D(S,R)-modules. Since D(S,R) =

S〈 1
t!
∂t

∂xt
| t ∈ N〉, it is enough to show that φ commutes with multiplication by x and

by any 1
t!
∂t

∂xt
.

We first prove commutativity with 1
t!
∂t

∂xt
. For any t ∈ N,

φ

(
1

t!

∂t

∂xt
(m⊗ x−α)

)
= φ

((
α + t− 1

t

)(
(−1)tm⊗ x−α−t

))
=

(
α + t− 1

t

)
(−1)α−1

(α + t− 1)!

∂α+t−1

∂xα+t−1
m

=
1

t!

(−1)α−1

(α− 1)!

∂α+t−1

∂xα+t−1
m

=
1

t!

∂t

∂xt

(
(−1)α−1

(α− 1)!

∂α−1

∂xα−1
m

)
=

1

t!

∂t

∂xt
φ(m⊗ x−α),
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which is sufficient.

We now prove that the morphism commutes with x. Note that

x
1

t!

∂t

∂xt
− 1

t!

∂t

∂xt
x = − 1

(t− 1)!

∂t−1

∂xt−1

as differential operators for every t ∈ N. We conclude that

φ(x(m⊗ x−α)) = φ(m⊗ x−α+1)

= φ

(
m⊗ (−1)α−2

(α− 2)!

∂α−2

∂xα−2
x−1

)
=

(−1)α−2

(α− 2)!

∂α−2

∂xα−2
φ(m⊗ x−1)(VIII.0.10.1)

= x
(−1)α−1

(α− 1)!

∂α−1

∂xα−1
φ(m⊗ x−1)− (−1)α−1

(α− 1)!

∂α−1

∂xα−1
xφ(m⊗ x−1)

= x
(−1)α−1

(α− 1)!

∂α−1

∂xα−1
φ(m⊗ x−1)

= xφ(m⊗ (−1)α−1

(α− 1)!

∂α−1

∂xα−1
x−1)(VIII.0.10.2)

= xφ(m⊗ x−α),

where (VIII.0.10.1) and (VIII.0.10.2) are due to the commutativity of 1
t!
∂t

∂xt
.

It remains to prove that φ is bijective; we proceed by contradiction. Suppose that

there exists u = m` ⊗ x−α` + . . . + m1 ⊗ x−α1 ∈ Ker(φ) such that m` 6= 0. Then

φ(m`⊗x−1) = φ(x`−1u) = x`−1φ(u) = 0. Thus, m` = 0 because φ|M⊗Rx−1 is bijective,

and we get a contradiction.

We now see that φ(AnnG(M)(x
jS)) = AnnN(xjS) for every j ≥ 1 by induc-

tion, which will imply that φ is surjective (since N is supported on V(xS)). Since

φ(AnnG(M)(x
jS)) ⊆ AnnN(xjS) for all j, we seek the opposite inclusion. For j = 1,

take n ∈ M = AnnN(xS); then n ⊗ x−1 ∈ G(M), so φ(n ⊗ x−1) = n. Now take

any j ≥ 1 and assume the statement holds for j − 1. For any u ∈ AnnN(xjS),

xu ∈ AnnN(xj−1S), so xu = φ(v) for some v = mj−1 ⊗ x−j+1 + . . . + m1 ⊗ x−1 ∈
G(M) by the inductive hypothesis. Let w = mj−1x

−j + . . . + m1 ⊗ x−2. Thus,

xφ(w) = φ(xw) = φ(v) = xu. This means that x(φ(w)− u) = 0, and so φ(w)− u ∈
AnnN(xS) = φ(AnnG(M)(xS)) and φ(m′ ⊗ x−1) = φ(w)− u for some m′ ∈M by the

base case. Therefore, u = φ(w −m⊗ x−1) ∈ φ(AnnG(M)(x
jS)).

Proposition VIII.0.11. Let R be a Noetherian ring, and let S = R[[x]]. Then M

is a finitely generated R-module if and only if G(M) is a finitely generated D(S,R)-
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module.

Proof. Given m1, . . . ,ms ∈M , generators for M as R-module,

m1 ⊗ x−1, . . . ,ms ⊗ x−1

generate G(M) as a D(S,R)-module: by (VIII.0.9), for β ∈ N,

mi ⊗ x−β =
(−1)β−1

(β − 1)!

∂β−1

∂xβ−1
(mi ⊗ x−1),

and the set {mi ⊗ x−β | 1 ≤ i ≤ s, β ∈ N} generates G(M) as an R-module.

If u1, . . . , us ∈ G(M) is a set generators for G(M) as a D(S,R)-module, then each

ui can be written as ui = mi,1 ⊗ x−1 +mi,2 ⊗ x−2 + . . .+mi,`i ⊗ x−`i for some `i ∈ N
and mi,j ∈ M . Then {mi,j ⊗ x−j | 1 ≤ i ≤ s, 1 ≤ j ≤ `i} is also a set of generators

for G(M) as a D(S,R)-module. Since mi,j ⊗ x−j = (−1)j−1

(j−1)!
∂j−1

∂xj−1 (mi,j ⊗ x−1), the

decomposition in (VIII.0.8.1) implies that the mi,j must generate M .

Corollary VIII.0.12. Let R be a Noetherian ring, M an R-module, and S = R[[x]].

Then lengthR(M) = lengthD(S,R) G(M).

Proof. If M is a simple nonzero R-module, then G(M) is a simple D(S,R)-module

since the D(S,R)-submodules of G(M) correspond precisely to R-submodules of M

by Theorem VIII.0.10. Now say that lengthR(M) = h < ∞, so that we have a

filtration of R-modules 0 = M0 (M1 ( . . . (Mh = M such that each Mj+1/Mj is a

simple R-module. Then 0 = G(M0) ⊆ G(M1) ⊆ . . . ⊆ G(Mh) = G(M) is a filtration

of D(S,R)-modules such that G(Mj+1)/G(Mj) ∼= G(Mj+1/Mj) is a simple D(S,R)-

module for every j by our initial argument. Therefore, lengthD(S,R)(G(M)) = h.

Similarly, if lengthR(M) =∞, then lengthD(S,R)(G(M)) =∞.

Remark VIII.0.13. In the following work, we often make use of the following ob-

servation: for R a ring and S = R[[x]], if P is a prime ideal of R, then (P, x)S is a

prime ideal of S since S/(P, x)S = R/P is a domain.

Proposition VIII.0.14. Let R be a Noetherian ring, M an R-module, and S =

R[[x]]. Then AssS G(M) = {(P, x)S | P ∈ AssRM}.

Proof. LetQ ∈ AssS G(M), so thatQ = AnnS u for some u ∈ G(M). AsH0
xS (G(M)) =

G(M), x ∈ Q. Thus, u ∈ AnnG(M) xS ∼= M (the isomorphism is due to Theo-

rem VIII.0.10). Moreover, we have the natural epimorphism R � S/Q with kernel

P = AnnR u ∈ AssRM . Thus, Q = (P, x)S.
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Take Q = (P, x)S, where P = AnnR u ∈ AssRM , u ∈ M . Therefore Q =

AnnS(u⊗ x−1). Hence, Q ∈ AssS G(M).

Lemma VIII.0.15. Let R be a Noetherian ring, M an R-module, and S = R[[x]].

Then for every ideal I ⊆ R and all j ∈ N, G
(
Hj
I (M)

)
= Hj+1

(I,x)S(M ⊗R S).

Proof. Since S and Sx are flat R-algebras and Sx/S is a free R-module, we know that

Hj
I (M)⊗RS = Hj

IS(M⊗RS), Hj
I (M)⊗RSx = Hj

IS(M⊗RSx) and Hj
I (M)⊗RSx/S =

Hj
IS(M ⊗R Sx/S). Moreover, the sequence

(VIII.0.15.1) 0→ Hj
IS(M ⊗R S)→ Hj

IS(M ⊗R Sx)→ Hj
IS(M ⊗R Sx/S)→ 0

is exact, so G(Hj
I (M)) = Hj

IS(M ⊗R Sx)/Hj
IS(M ⊗R S).

On the other hand, we have a long exact sequence

· · · → Hj
(I,x)S(M ⊗R S)→ Hj

IS(M ⊗R S)→ Hj
IS(M ⊗R Sx)→ · · · .

Since Hj
IS(M ⊗R S)→ Hj

IS(M ⊗R Sx) is injective by (VIII.0.15.1), the long sequence

splits into short exact sequences

0→ Hj
IS(M ⊗R S)→ Hj

IS(M ⊗R Sx)→ Hj+1
(I,x)S(M ⊗R S)→ 0.

Hence, G
(
Hj
I (M)

)
= Hj+1

(I,x)S(M ⊗R S).

Proposition VIII.0.16. Let (R,m,K) be a Noetherian local ring, M an R-module,

and S = R[[x]]. Fix I1, . . . , Is ideals of R and j1, . . . js ∈ N. Then

G
(
Hjs
Is
· · ·Hj2

I2
Hj1
I1

(M))
)
∼= Hjs

(Is,x)S · · ·H
j2
(I2,x)SH

j1+1
(I1,x)S(M ⊗R S).

Proof. We proceed by induction on s. If s = 1, the statement follows from Lemma

VIII.0.15. Suppose it holds for some s ≥ 1. Let N` = Hj`
I`
. . . Hj2

I2
Hj1
I1

(M) for 1 ≤ ` ≤
s+ 1, so we need to prove that G(Ns+1) ∼= H

js+1

(Is+1,x)S(G(Ns)). Now,

G(Ns+1) = H
js+1

Is+1
(Ns)⊗R Sx/S ∼= H

js+1

Is+1S
(Ns ⊗R Sx/S) = H

js+1

Is+1S
(G(Ns)).

Consider the long exact sequence of functors

(VIII.0.16.1) . . .→ H
js+1

Is+1S
(−)→ H

js+1

(Is+1,x)S(−)→ H
js+1

Is+1S
(−⊗S Sx)→ . . . .

Since G(Ns) is supported on V(xS), H i
Is+1S

(G(Ns) ⊗S Sx) = 0 for all i ∈ N, and
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G(Ns) ⊗S Sx = 0. Moreover, H
js+1

Is+1S
(G(Ns)) ∼= H

js+1

(Is+1,x)S(G(Ns)). Hence, G(Ns+1) ∼=
H
js+1

(Is+1,x)S(G(Ns)).

AsG is an equivalence of categories, G(HomR(M,N)) = HomD(S,R)(G(N), G(M)).

Thus, M is an injective R-module if and only if G(M) is an injective object in D,

the category of D(S,R)-modules supported at V(xS). We now characterize precisely

when G(M) is injective as an S-module:

Proposition VIII.0.17. Let S = R[[x]], where R is a Gorenstein ring. Given a

prime ideal P of R, let ER(R/P ) denote the injective hull of R/P over R. Then

G(ER(R/P )) = ES(S/(P, x)S). Moreover, M is an injective R-module if and only if

G(M) is an injective S-module.

Proof. Let d = dim(RP ). Since R is a Gorenstein ring, Sx/S a flat R-module, and

G(Hd
P (R)) ∼= Hd+1

(P,x)S(S) by Lemma VIII.0.15, we have that

G(ER(R/P )) ∼= G(Hd
PRP

(RP )) ∼= G(Hd
P (R)⊗R RP ) ∼= G(Hd

P (R))⊗R RP ∼= Hd+1
(P,x)S(SP ).

As SP/(P, x)SP ∼= RP/PRP , (P, x)SP is a maximal ideal of the Gorenstein ring SP ,

so

Hd+1
(P,x)S(SP ) = ESP (SP/(P, x)SP ) = ES (S/(P, x)S) .

Therefore, G (ER(R/P )) = ES (S/(P, x)S). Moreover, G sends injective R-modules

to injective S-modules because every injective R-module is a direct sum of injective

hulls of prime ideals.

It remains to prove that if G(M) is an injective S-module, then M is an injective

R-module. This follows because M = AnnG(M)(xS) by Theorem VIII.0.10: any

injection of R-modules ι : N ↪→ N ′ is also an injection of S-modules, where x acts by

zero. Then any S-module map f : N → G(M) is an R-module map and must have

image in AnnG(M)(xS) = M , so the induced map g : N →M is a map of R-modules

such that f = g ◦ ι.

Proposition VIII.0.18. Let R be a Gorenstein ring, and let S = R[[x]]. Since

R = S/xS, every R module has an structure of S-module via extension of scalars.

For R-modules M,N and i, j ∈ N,

ExtiS(M,G(N)) = ExtiR(M,N).

Proof. Let E∗ = E0 → E1 → . . . → Ei → . . . be an injective R-resolution of N .

Then G(E∗) is an injective S-resolution for G(N) by Proposition XI.2.9. We notice
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that HomS(M,−) = HomS(M,HomS(R,−)) as functors. Then

HomS(M,G(E∗)) = HomS(M,HomS(R,G(E∗)) = HomS(M,E∗) = HomR(M,E∗),

and the result follows.

Corollary VIII.0.19. Let (R,m,K) be a Gorenstein local ring, and let S denote

R[[x1, . . . , xn]]. For every ideal I of R and all i, j ∈ N,

dimK ExtiS(K,Hj+n
(I,x1,...,xn)S(S)) = dimK ExtiR(K,Hj

I (R)).

Proof. Using Lemma XI.1.1, apply induction on n.
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CHAPTER IX

Generalized Lyubeznik numbers

The aim of this chapter is to define and study a family of invariants of a local ring

containing a field. This family includes the Lyubeznik numbers, but captures finer

information. These new invariants are defined in terms of lengths of certain local

cohomology modules in a category of D-modules.

To prove that these generalized Lyubeznik numbers are well defined, we formalize

and develop the theory of a functor that Lyubeznik utilized to show that his original

invariants are well defined [Lyu93]. In particular, the definition of these new invariants

relies heavily on the fact that this functor gives a category equivalence with a certain

category of D-modules. As a consequence of this new approach, our work also gives

a different proof that the original Lyubeznik numbers are well defined.

Some properties analogous to those of the original invariants hold for the general-

ized Lyubeznik numbers; however, results on curves and on hypersurfaces show that,

unlike the original invariants, the generalized Lyubeznik numbers can differentiate

one-dimensional rings, and complete intersection rings.

We compute the generalized Lyubeznik numbers associated to monomial ideals

as certain lengths in a category of straight modules, and in characteristic zero, with

characteristic cycle multiplicities as well. The study of the generalized Lyubeznik

numbers associated to certain determinantal ideals provides further examples of these

new invariants, some striking.

The results presented in this chapter are part of joint work with Witt [NBW12a].

IX.1 Definitions and first properties

Theorem IX.1.1. Let K be a field, let R = K[[x1, . . . , xn]], and let S = R[[xn+1]].

Let C denote the category of D(R,K)-modules, and let D denote the category of

D(S,K)-modules that are supported on V(xS). Then
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(i) G : C → D given by G(M) = M ⊗R Sxn+1/S is an equivalence of categories with

inverse G̃ : D → C, where G̃(N) = AnnN(xS),

(ii) M is a finitely generated D(R,K)-module if and only if G(M) is a finitely

generated D(S,K)-module, and

(iii) lengthD(R,K) M = lengthD(S,K) G(M).

Proof. The proofs of the statements are analogous to the those of Theorem VIII.0.10,

Proposition VIII.0.11, and Corollary VIII.0.12, respectively.

Remark IX.1.2. For a local ring (R,m,K), we say that a field K ′ is a coefficient

field of R if K ′ contained in R, and the composition K ′ ↪→ R � R/m = K is an

isomorphism of fields. Every complete local ring containing a field has a coefficients

field by the Cohen Structure Theorems [Coh46].

Theorem IX.1.3. Let (R,m,K) be a local ring containing a field, and R̂ its comple-

tion at m. Let K ′ be a coefficient field of R̂. Then R̂ admits a surjection π : S � R̂,

where S = K[[x1, . . . , xn]] for some n ∈ N, and π(K) = K ′. For 1 ≤ i ≤ s, fix ji ∈ N
and ideals Ii ⊆ R, and let Ji = π−1(IiR̂) ⊆ S. Then

lengthD(S,K) H
js
Js
· · ·Hj2

J2
Hn−j1
J1

(S)

is finite and depends only on R, K ′, I1, . . . , Is and j1, . . . , js, but neither on S nor on

π.

Proof. We may assume without loss of generality that R is complete. We know that

lengthD(S,K) H
js
Js
. . . Hj2

J2
Hn−j1
J1

(S) is finite by [Lyu00a, Corollary 6]. Let π′ : S ′ → R

be another surjection, where S ′ = K[[y1, . . . , yn′ ]]. Let J ′1, . . . , J
′
s be the corresponding

preimages of I1, . . . , Is in S ′.

Let S ′′ = K[[z1, . . . , zn+n′ ]]. Let π′′ : S ′′ → R be the surjection defined by π′′(K) =

K ′, π′′(zj) = π(xj) for 0 ≤ j ≤ n and π′′(zj) = π′(yj−n) for n + 1 ≤ j ≤ n + n′. Let

J ′′1 , . . . , J
′′
s be the corresponding preimages of I1, . . . , Is in S ′′ under π′′. Let α : S → S ′′

be the map defined by α(xj) = zj. We note that π′′α = π. There exist f1, . . . , fn′ ∈ S
such that π′′(zn+j) = π(fj) for j ≤ n′. Then zn+j − α(fj) ∈ Ker(π′′). We note that

β : S ′′ → S defined by sending zj → xj for j ≤ n and zn+j → fj for j ≤ n′ is an

splitting of α. Then J ′′i = (α(Ji), zn+1 − α(f1), . . . , zn′+n − α(fn′))S
′′. Since

z1, . . . , zn, zn+1 − α(f1), . . . , zn′+n − α(fn′)
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form a regular system of parameters, we obtain that

lengthD(S′′,K) H
js
J ′′s
. . . Hj2

J ′′2
Hn′+n−j1
J ′′1

(S ′′) = lengthD(S,K) H
js
Js
. . . Hj2

J2
Hn−j1
J1

(S)

by Proposition VIII.0.16 and Theorem IX.1.1. Similarly,

lengthD(S′′,K) H
js
J ′′s
. . . Hj2

J ′′2
Hn′+n−j1
J ′1

(S ′′) = lengthD(S′,K) H
js
J ′s
. . . Hj2

J ′2
Hn′−j1
J ′1

(S ′),

and the result follows.

Definition IX.1.4 (Generalized Lyubeznik numbers). Let (R,m,K) be a local ring

containing a field, and R̂ its completion at m. Let K ′ be a coefficient field of R̂. Then

R̂ admits a surjection π : S � R̂, where S = K[[x1, . . . , xn]] for some n ∈ N, and

π(K) = K ′. For 1 ≤ i ≤ s, fix ji ∈ N and ideals Ii ⊆ R, and let Ji = π−1(IiR̂) ⊆
S. Then the generalized Lyubeznik number of R with respect to K ′, I1, . . . , Is and

j1, . . . , js,

λjs,...,j1Is,...,I1
(R;K ′) := lengthD(S,K) H

js
Js
· · ·Hj2

J2
Hn−i1
J1

(S),

is finite and depends only on R, K ′, I1, . . . , Is and j1, . . . , js, but neither on S nor on

π (by Theorem IX.1.3).

If R̂ contains only one coefficient field, or if the election of coefficient field is clear

in the context, we simply use λis,...,i1Is,...,I1
(R) to denote this invariant.

Remark IX.1.5. In Definition IX.1.4 (and Theorem IX.1.3), we rely on a choice of

coefficient field K ′ ⊆ R̂. In some cases there is only one of such field; for instance, if

K is a perfect field of characteristic p > 0.

In general, to decide whether it is possible to avoid the generalized Lyubeznik

numbers’ dependence on the choice of coefficient field of R̂, we would need to answer

the following question asked by Lyubeznik.

Question IX.1.6 (Lyubeznik). Let S be a complete regular local ring of equal char-

acteristic. For 1 ≤ i ≤ s, fix ji ∈ N and ideals Ji ⊆ S. Given any two coefficient

fields of S, K and L, is

lengthD(S,K) H
js
Js
· · ·Hj2

J2
Hn−j1
J1

(S) = lengthD(S,L) H
js
Js
· · ·Hj2

J2
Hn−j1
J1

(S)?

The answer is currently unknown even when s = 1.

Remark IX.1.7. In Definition IX.1.4, we may assume that I1 ⊆ . . . ⊆ Is, because
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if an R-module M is such that H0
I (M) = M for some ideal I of R, then H i

J(M) =

H i
I+J(M) for every ideal J of S. In addition, λis,...,i1Is,...,I1

(R,K ′) = λis,...,i1Is,...,I2,0
(R/I1, K

′).

Proposition IX.1.8. If (R,m,K) is a local ring containing a field, then λi,j(R) =

λi,jm,0(R;K ′) for any coefficient field K ′ of R̂.

Proof. Since completion is flat and the Bass numbers are not affected by completion,

we may assume that R is complete. Take S = K[[x1, . . . , xn]] such that there exist a

surjective ring map π : S � R such that π(K) = K ′. Set I = Ker(π), the preimage

of the zero ideal in R. We notice that the maximal ideal, η, of S is the preimage of

the maximal ideal, m, of R. By [Lyu93, Lemma 1.4],

λi,j(R) = dimK ExtiS(K,Hn−j
I (S)) = dimK HomS(K,H i

ηH
n−j
I (S)).

Since H i
ηH

n−j
I (S) is isomorphic to a finite direct sum of copies of ES(K) by [Lyu93,

Corollary 3.6], and ES(K) is a simple D(S,K)-module (cf. [Lyu00c]), we obtain that

dimK HomS(K,H i
ηH

n−j
I (S)) = lengthD(S,K) H

i
ηH

n−j
I (S) = λi,jm,0(R;K ′),

and we are done.

Remark IX.1.9. In characteristic zero, Àlvarez Montaner introduced a family of

invariants using the multiplicities of the characteristic cycle of local cohomology mod-

ules [ÀM04]. Like ours, this family includes the original Lyubeznik numbers; however,

this definition does not include rings of prime characteristic.

Proposition IX.1.10. Given ideals I1 ⊆ . . . ⊆ Is of a local ring (R,m,K) containing

a field, ij ∈ N for 1 ≤ j ≤ s, and a coefficient field K ′ of R̂, we have that

(i) λis,...,i1Is,...,I1
(R;K ′) = 0 for i1 > dim(R/I1),

(ii) λis,...,i1Is,...,I1
(R;K ′) = 0 for ij > dim(R/Ij−1) and 2 ≤ j ≤ `,

(iii) λi2,i1I2,I1
(R;K ′) = 0 for i2 > i1,

(iv) λi1I1(R;K ′) 6= 0 for i1 = dim(R/I1), and

(v) λi2,i1I2,I1
(R;K ′) 6= 0 if i2 = dim(R/I1)− dim(R/I2) and i1 = dim(R/I1).

Proof. We may assume that R is complete, so that it admits a surjective ring map

π : S � R, where S = K[[x1, . . . , xn]] for some n and π(K) = K ′.

Let Jj = π−1(Ij) for 1 ≤ j ≤ s.
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As S is Cohen-Macaulay, depthJ1
(S) = codim(S/J1) = n − dim(S/J1) = n −

dim(R/I1). We have that (i) and (iv) hold because H i1
J1

(S) = 0 if i < depthJ1
(S) and

H
depthI(S)
J1

(S) 6= 0.

To see (ii), note that

inj. dimH
ij−1

Jj−1
. . . H i2

J2
Hn−i1
J1

(S) ≤ dim(SuppH
ij−1

Jj−1
. . . H i2

J2
Hn−i1
J1

(S))

≤ dim(S/Jj−1) = dim(R/Ij−1)

by [Lyu00a]. Similarly, (iii) follows because

inj. dimHn−i1
J1

(S) ≤ dim(SuppHn−i1
J1

(S)) ≤ i1.

To prove (v), choose a minimal prime P of J2. Now, Rad(J1SP ) = PSP in SP .

Then Hp
PSP

H
dim(SP )−q
J1SP

(SP ) 6= 0 when p = q = dim(SP/J1SP ) by [Lyu93, Property

4.4(iii)]. Noting that

dim(SP ) = dim(S)− dim(S/P ) = dim(S)− dim(S/J1) = n− dim(R/I1), and

dim(SP/J1SP ) = dim(S/J1)− dim(S/J2) = dim(R/I1)− dim(R/I2),

we see that H i2
J2
H i1
J1

(S)⊗S SP 6= 0 if i2 = dim(R/I1)−dim(R/I2) and i1 = dim(R/I1).

Lemma IX.1.11. Given an extension of fields K ⊆ L, let R = K[[x1, . . . , xn]] and

S = L[[x1, . . . , xn]]. Via R ↪→ S, the map induced by the field extension, if M is a

simple D(R,K)-module, then M ⊗R S is a simple D(S, L)-module.

Proof. We have that S = R⊗KL because the field extension is finite. Then M⊗RS =

M⊗KL and the action of ∂ ∈ D(S, L) is given by ∂(v⊗a) = ∂(v)⊗a. Let e1, . . . , eh be a

basis for L as K-vector space. If v ∈M⊗KL is not zero, then v = w1⊗e1+. . .+wh⊗eh
for some wi ∈ M, where at least one wj is not zero. We assume that w1 6= 0, an

there exist operators δj ∈ D(R,K) such that wj = δjw1 because M is simple. Let

δ = δ1 + . . . δh and u = e1 . . . eh. Then v = δ(w1 ⊗ a) = aδ(w1 ⊗ 1). Since v 6= 0,

δ(w1) 6= 0 and there exist ∂ ∈ D(S, L) such that ∂δw1 = w1. Then u−1∂v = w1 ⊗ 1.

Therefore for every v ∈M⊗KL not zero, v ∈ D(S, L) ·w1⊗1 and w1⊗1 ∈ D(S, L) ·v.
Hence, M ⊗K L is a simple D(S, L)-module.

Proposition IX.1.12. Let K ⊆ L be a finite field extension, R = K[[x1, . . . , xn]],
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and S = L[[x1, . . . , xn]]. Then for all ideals I1, . . . , Is of R and all i1, . . . , is ∈ N,

λis,...,i1Is,...,I1
(R) = λis,...,i1IsS,...,I1S

(S).

Proof. We have that S = R⊗K L because the field extension is finite. Let

0 = M1 ( . . . (M` = H is
Is
· · ·H i2

I2
Hn−i1
I1

(S)

be a filtration of D(R,K)-modules such that Mi+1/Mi is a simple D(R,K)-module.

Since S is a faithfully flat R-algebra, Mi+1/Mi ⊗K L ∼= (Mi+1 ⊗K L)/(Mi ⊗K L) is a

simple D(S, L)-module. Thus, λis,...,i1Is,...,I1
(R) = ` = λis,...,i1IsS,...,I1S

(S).

Proposition IX.1.13. Let I1, . . . , I` be ideals of S = K[[x1, . . . , xn]], where K is a

field of characteristic zero. Then λi`,...,i1I`,...,I1
(S) ≤ e

(
H i`
I`
· · ·H i2

I2
Hn−i1
I1

(S)
)
.

Proof. Since H i`
I`
· · ·H i2

I2
Hn−i1
I1

(S) is a holonomic D(S,K)-module, the claim follows

from Remark II.4.6.

For R a one-dimensional or complete intersection ring, λi,j(R) = 1 if i = j =

dimR, and vanishes otherwise. However, Propositions IX.1.14 and IX.1.15 will show

that the generalized Lyubeznik numbers capture finer information that can distinguish

these cases.

Proposition IX.1.14. Let (R,m,K) be a complete local ring containing a field such

that dim(R) = 1. Fix a coefficient field K ′ of R and let P1, . . . P` be all the minimal

primes of R. Then

λ1
0(R;K ′) = λ1

0(R/P1;K ′) + . . .+ λ1
0(R/P`;K

′) + `− 1.

Proof. We proceed by induction on `. Suppose ` = 1, and take a surjection π : S =

K[[x1, . . . , xn]] � R ∼= S/I where I = Ker(π) and π(K ′) = K. If P is the minimal

prime of R, then π−1(P ) = Rad(I) is the only minimal prime of I. Then

λ1
0(R) = lengthD(S,K) H

n−1
I (S) = lengthD(S,K) H

n−1
π−1(P )(S) = λ1

0(R/P ).

Now suppose that the formula holds for `−1. Take a surjection π : S � R ∼= S/I,

where S = K[[x1, . . . , xn]] and π(K ′) = K. Let η denote the maximal ideal of S. Let

Qi = π−1(Pi), so that Rad(I) = Q1 ∩ . . . ∩Q`. Let J = Q1 ∩ · · · ∩Q`−1.
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Since Rad(J + Q`) = η, the Mayer-Vietoris sequence in local cohomology with

respect to J and Q` gives the following exact sequence:

0→ Hn−1
J (S)⊕Hn−1

Q`
(S)→ Hn−1

I (S)→ Hn
η (S)→ 0.

where Hn
I+J(S) ∼= ES(K), a simple D(S,K)-module (cf. [Lyu00c]). Then λ1

0(R;K ′)

equals

lengthD(S,K)H
n−1
I (S) = lengthD(S,K)H

n−1
J (S) + lengthD(S,K)H

n−1
Q`

(S) + 1

= λ1
0(S/J ;K ′) + λ1

0(S/Q`;K
′) + 1, and inductively,

=
(
λ1

0(S/Q1;K ′) + . . .+ λ1
0(S/Q`;K

′) + `− 2
)

+ λ1
0(S/Q`;K

′) + 1

= λ1
0(R/P1;K ′) + . . .+ λ1

0(R/P`;K
′) + `− 1, as R/Pi ∼= S/Qi.

Proposition IX.1.15. Let S = K[[x1, . . . , xn]], where K is a field. Let f1, . . . , f` ∈ S
be irreducible, and f = fα1

1 · · · f
α`
` , where each αi ∈ N. Then

λn−1
0 (S/f) ≥ λn−1

0 (S/f1) + . . .+ λn−1
0 (S/f`) + `− 1.

Proof. Since H i
I(S) = H i√

I
(S) for every ideal I ⊆ S, we may assume that α1 = . . . =

α` = 1. Our proof will be by induction on `. If ` = 1, it is clear. We suppose that

the formula holds for `− 1 and we will prove it for `. Let g = f1 · · · f`−1. Since fα`` , g

form a regular sequence, we obtain the exact sequence

0→ H1
gS(S)⊕H1

f`S
(S)→ H1

fS(S)→ H2
(g,f`)S

(S)→ 0

by the Mayer-Vietoris sequence. Since H2
(g,f`)S

(S) 6= 0, we have that

lengthD(S,K) H
2
(g,f`)S

(S) ≥ 1. Moreover,

λn−1
0 (S/fS) = lengthD(S,K) H

1
fS(S)

≥ lengthD(S,K) H
1
gS(S) + lengthD(S,K) H

1
f`S

(S) + 1

= λn−1
0 (S/gS) + λn−1

0 (S/f`) + 1, and inductively,

≥ λn−1
0 (S/f1) + . . .+ λn−1

0 (S/f`−1S) + `− 2 + λn−1
0 (S/f`S) + 1

= λn−1
0 (S/f1S) + . . .+ λn−1

0 (S/f`S) + `− 1.
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Definition IX.1.16 (Lyubeznik characteristic). Let (R,m,K) be a local ring con-

taining a field such that dim(R) = d.

Fix a coefficient field K ′ of R̂. The Lyubeznik characteristic of R (with respect to

K ′) is defined as

χλ(R;K ′) :=
d∑
i=0

(−1)iλi0(R;K ′).

If the choice of the coefficient field is clear, we write χλ(R).

Proposition IX.1.17. Let I and J be ideals of a local ring (R,m,K) containing a

field. For any coefficient field K ′ of R̂,

χλ(R/I;K ′) + χλ(R/J ;K ′) = χλ(R/(I + J);K ′) + χλ(R/I ∩ J ;K ′).

Proof. This an immediate consequence of the Mayer-Vietoris associated sequence for

local cohomology with respect to I and J .

Proposition IX.1.18. If I = (f1, . . . , f`) an ideal of S = K[[x1, . . . , xn]], where K

is a field, then

χλ(S/I) = (−1)n
∑̀
j=0

∑
1≤i1<...<ij≤`

(−1)jλn−1
0

(
S/(fi1 · . . . · fij)

)
.

In particular, if f1, . . . , f` form a regular sequence or if char(k) = p > 0 and S/I

is a Cohen-Macaulay ring of dimension d, then λn−`0 (S/(f1, . . . , f`)S), or λd0 (S/I),

respectively, equals
∑̀
j=0

∑
1≤i1<...<ij≤`

(−1)n−d+jλn−1
0

(
S/(fi1 · . . . · fij)

)
.

Proof. For brevity, let D = D(S,K). By the additivity of lengthD(−) on short exact

sequences and the Čech-like complex definition of local cohomology,

∑̀
j=0

(−1)j lengthDH
j
I (S) =

∑̀
j=0

(−1)j
∑

1≤i1<...<ij≤`

lengthD Sfi1 ·...·fij .

Moreover, the short exact sequence 0→ S → Sg → H1
(fi1 ·...·fij )(S)→ 0 indicates that

lengthD Sfi1 ·...·fij = lengthDH
1
(fi1 ·...·fij ) + 1. The first statement then follows from a

straightforward calculation from the definition of Lyubeznik characteristic using these

two observations.

The statement for a regular sequence is an immediate consequence, and the final

statement follows since the only nonvanishing local cohomology module is Hn−d
I (S)

by [PS73, Proposition 4.1], since S/I is Cohen-Macaulay.
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IX.2 Generalized Lyubeznik numbers of ideals generated by

maximal minors

Lemma IX.2.1. Suppose that K is a field of characteristic zero, R = K[x1, . . . , xn],

and S = K[[x1, . . . , xn]]. Let f ∈ R be homogeneous. Let DR and DS denote D(S,K)

and D(S,K), respectively. If for some N ∈ N, DS
1
fN

= Sf , then DR
1
fN

= Rf .

Proof. For every r ∈ N, there exists δ =
∑
α

gα
∂α

∂xα
∈ DS = S

〈
∂
∂x1
, . . . , ∂

∂xn

〉
such that

δ 1
fN

= 1
fr
. In addition, there exist µ ∈ N and homogeneous hα ∈ R such that µ > r

and ∂α

∂xα
1
fN

= hα
fµ
, so δ 1

fN
=
∑

α gα
hα
fµ

= 1
fr
.

We have that
∑
α

gαhα = fµ−r, and there exist homogeneous gα,t ∈ R of degree t

such that gα =
∞∑
t=0

gα,t. If tα = (µ− r) deg(f)− deg(hα), then

fµ−r =
∑
α

gαhα =
∑
α

∞∑
t=0

gα,thα =
∑
α

gα,tαhα

because f and hα are homogeneous polynomials.

Let δ̃ =
∑
α

gα,tα
∂α

∂xα
∈ DR. Then

δ̃
1

fN
=
∑
α

gα,tα
∂α

∂xα
1

fN
=
∑
α

gα,tα
hα
fµ

=

∑
α gα,tαhα
fµ

=
fµ−r

fµ
=

1

f r
.

Hence, 1
fr
∈ DR

1
fN

, and the result follows.

Remark IX.2.2. The conclusion of Lemma IX.2.1 is not necessarily true if f is not

a homogeneous polynomial. Let m denote the homogeneous maximal ideal of R. If

f ∈ R is any polynomial such that Rm/fRm is a regular local ring, then even if

D(R,K) 1
fN
6= Rf , we have that D(S,K) 1

f
= Sf .

Remark IX.2.3. Let bf (s) denote the Bernstein-Sato polynomial of f ∈ R over R

(cf. Section II.4). If N = max{j ∈ N | bf (−j) = 0}, then D(R,K) 1
fN−1 6= Rf [Wal05,

Lemma 1.3]. Therefore, if f ∈ R is homogeneous, lengthD(S,K) H
1
(f)(S) ≥ 2 by Lemma

IX.2.1.

Example IX.2.4. Let R = K[X] be the polynomial ring over a field K in the entries

of an r × r matrix X of indeterminates, and let m denote its homogeneous maximal

ideal. Let ∆ denote the principal ideal of R generated by the determinant of X. If K

has characteristic zero, the Bernstein-Sato polynomial of the determinant of X over
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R is bdet(X)(s) = (s+ 1)(s+ 2) · · · (s+ r), so by Remark IX.2.3, λr
2−1

0 (Rm/∆Rm) ≥ 2.

In contrast, by Remark X.1.4, if K is instead a perfect field of characteristic p > 0,

then λr
2−1

0 (Rm/∆Rm) = 1. In particular, even when a specific Lyubeznik number is

nonzero in both characteristic zero and characteristic p > 0, their values may differ.

Example IX.2.5. Now let R be the polynomial ring over a field K of characteristic

zero in the entries of X = [xij], an r × s matrix of indeterminates, where r < s.

Let m denote its homogeneous maximal ideal, and let It be the ideal generated

by the t × t minors of X, and let I = Ir be the ideal generated by the maximal

minors of X. By [Wit12, Theorem 1.1], H
r(s−r)+1
I (R) ∼= ER(K), 0 6= H it

I (R) ↪→
H it
I (R)It+1

∼= ER(R/It+1) for it = (r − t)(s − r) + 1, 0 ≤ t < r, and all other

H i
I(R) = 0. Thus, λr

2−1
0 (Rm/IRm) = λ0,r2−1

m,0 (Rm/IRm) (= λ0,r2−1(Rm/IRm)) = 1,

and λ0,i
m,0(Rm/IRm) = 0 for every i 6= r2 − 1.

Let it = (r − t)(s− r) + 1, t > 0, and suppose that λ1,rs−it
m,0 (Rm/IRm) = 0. Let C

be the cokernel of the injection H it
I (R) ↪→ ER(R/It+1), so the short exact sequence

0 → H it
I (R) → ER(R/It+1) → C → 0 gives rise to the long exact sequence in local

cohomology:

0→ H0
mH

it
I (R)→ H0

m (ER(R/It+1))→ H0
m (C)→ H0

mH
it
I (R)→ H1

m (ER(R/It+1))→ . . .

Since the It+1 is the only associated prime of ER(R/It+1) and of H it
I (R),

H0
mH

it
I (R) = H0

m (ER(R/It+1)) = H1
m (ER(R/It+1)) = 0,

so H0
m (C) ∼= H1

mH
it
I (R) = 0.

If for some indeterminate xαβ, the localization map H i
I(R) → H i

I(R)xαβ has a

nonzero element u in the kernel, then xNαβ ·u = 0 for some N . But then, by symmetry,

xNαβ ·u = 0 for all indeterminates xαβ, forcing every element of H it
I (R) to be killed by a

power of m, a contradiction. Similarly, the map H it
I (R)x11 → H i

I(R)x11·x12 is injective,

and by induction, the composition of these localizations, H i
I(R) → H i

I(R)x11x12·...·xrs

will also be injective. In particular,

H i
I(R)xαβ ↪→ H i

I(R)x11·x12·...·xrs , and
⋂
α,β

H i
I(R)xαβ ↪→ H i

I(R)x11·x12·...·xrs .

Let M denote
⋂
α,β

H i
I(R)xαβ . Since xαβ /∈ It+1 and H i

I(R)It+1
∼= ER(R/It+1), M

injects into ER(R/It+1), and M/H i
I(R) injects into ER(R/It+1)/H i

I(R) = C. Since

every element of M/H i
I(R) is killed by a power of m, M/H i

I(R) = H0
m (M/H i

I(R)) ↪→
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Figure IX.2.6.1: Ep,q
2 = Hp

mH
q
I (R).

q
...

...
...

...
...

...
...

2s − 2 0 0 0 · · · 0 0 0 0 · · ·
2s − 3 ER(K)

d0,2s−3
s−1

&&

0

d1,2s−3
s−1

&&

0

d2,2s−3
s−1

&&

· · · 0 0 0 0 · · ·
2s − 4 0 0 0 0 0 0 0 · · ·

...
...

...
...

...
...

s 0 0 0 0 0 0 0 · · ·
s − 1 E0,s−1

2 E1,s−1
2 E2,s−1

2 · · ·Es−1,s−1
2 Es,s−1

2 Es+1,s−1
2 0 · · ·

s − 2 0 0 0 · · · 0 0 0 0 · · ·
...

...
...

...
...

...
...

...

0 1 2 · · · s − 1 s s + 1 s + 2 p

H0
m (C)) = 0. Thus, M = H i

I(R).

Theorem IX.2.6. Continuing with the notation above, if r = 2 and s > 2, then

λ0,3
m,0(Rm/IRm) = λs−1,s+1

m,0 (Rm/IRm) = λs+1,s+1
m,0 (Rm/IRm) = 1,

and all other λi,jm,0(Rm/IRm) = 0. In particular, each λ1,i
m,0(Rm/IRm) = 0.

Proof. By [Wit12, Theorem 1.1], the only two nonzero local cohomology modules

H i
I (R) are H2s−3

I (R) ∼= ER(K) and Hs−1
I (R) ↪→ ER(R/I). Replace R by its localiza-

tion at m, and consider the spectral sequence Ep,q
2 = Hp

mH
q
I (R)

p
=⇒ Hp+q

m (R) = Ep,q
∞

[Har77]. Now, H0
mH

2s−3
I (R) ∼= ER(K) and Hp

mH
2s−3
I (R) = 0 for p > 0. In particular,

λ0,3
0,m(R/I) = 1. Also note that dimR/I = s+ 1, since if a 2× s matrix has vanishing

2×2 minors, the second row is a multiple of the first row. Since AssRH
s−1
I (R) = {I},

Hp
mH

s−1
I (R) = 0 for p > s+ 1. These observations are indicated in Figure IX.2.6.1.

As H2s
m (R) ∼= ER(K) is the only nonzero local cohomology module of R with

support in m. The only possibly nonzero Ep,q
2 = Hp

mH
q
I (R) such that p + q = 2s is

Hs+1
m Hs−1

I (R), and so, since the spectral sequence maps to and from Hs+1
m Hs−1

I (R)

must all be zero (since the terms from which they come or go are zero), we must

have that Hs+1
m Hs−1

I (R) ∼= Es+1,s−1
∞ = ER(K), so that, as dimR − (s − 1) = s + 1,

λs+1,s+1
m,0 (R/IR) = 1. Moreover, every other Ep,q

∞ must vanish.

Since E0,2s−3
s−1

∼= ER(K), we see that the sole differential that is (possibly) nonzero

is d0,2s−3
s−1 : E0,2s−3

s−1
∼= ER(K) → Es−1,s−1

s−1 . After taking cohomology with respect
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to the dp,qs−1 we must get zero at both the (s − 1, s − 1) and (0, 2s − 3) spots, so

d0,2s−3
s−1 must be an isomorphism, and Hs−1

m Hs−1
I (R) = Es−1,s−1

s−1
∼= ER(K), so that, as

dimR− (s− 1) = s+ 1, λs−1,s+1
m,0 (R/IR) = 1. Since all other maps are the zero map,

and after taking cohomology with respect to dp,qs−1 we must also get zero, all remaining

local cohomology modules of the form Hp
IH

q
m (R) must vanish (i.e., all except p = 0,

q = 3, and p = s − 1, q = s − 1 and p = s + 1, q = s − 1), so that in these cases,

λp,qm,0(R/I) = 0.

IX.3 Generalized Lyubeznik numbers of monomial ideals

In this section we characterize the generalized Lyubeznik numbers associated to

monomial ideals. To do so, we make use of the categories of square-free and straight

modules introduced by Yanagawa [Yan00, Yan01]; we begin with some definitions and

notation he first introduced.

Notation IX.3.1. Let S = K[x1, . . . , xn], K a field, and consider the natural Nn-

grading on S. For α = (α1, . . . , αn) ∈ Zn, we define Supp(α) = {i | αi > 0} ⊆ [n] =

{1, . . . , n}. For a monomial xα = xα1
1 · · · xαnn , Supp(xα) := Supp(α). We say that

xα is square-free if, for every i ∈ [n], αi either vanishes or equals one. Let ei denote

the vector (0, . . . , 0, 1, 0 . . . , 0) ∈ Nn, where “1” is in the ith entry. If F ⊆ [n], let PF

denote the prime ideal generated by {xi | i 6∈ F}. If F ⊆ [n], we will often use F

instead of
∑
i∈F

ei; for instance, xF denotes
∏
i∈F

xi.

Given a Zn-graded S-module M , and β ∈ Z, M(β) denotes the Nn-graded S-

module that has underlying S-module M , but with a shift in the grading: M(β)α =

Mα+β. Let ωS = S(−1, . . . ,−1) denote the canonical module of S, and let *Mon

denote the category of Zn-graded S-modules.

Definition IX.3.2 (Square-free monomial module). An Nn-graded S-module M =⊕
β∈Nn

Mβ is square-free if it is finitely generated, and the multiplication map Mα
·xi→

Mα+ei is bijective for all α ∈ N, and all i ∈ Supp(α). The category of square-free

S-modules is denoted Sq, a subcategory of *Mon.

If I is a square-free monomial ideal, then both I and S/I are square-free modules.

Moreover, if 0 → M ′ → M → M ′′ → 0 is a short exact sequence in *Mon, then

M is a square-free module if and only if both M ′ and M ′′ are square-free modules.

In addition, if M is a square-free module, then ExtiS(M,ωS) is a square-free module

for every i ∈ N [Yan00]. Additionally, for any subset G ⊆ F ⊆ [n], S/PF (−G) is a

square-free module (where the grading of PF (−G) satisfies [PF (−G)]` = [PF ]`−G).
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Remark IX.3.3. An Nn-graded square-free S-module M is a simple square-free mod-

ule if it has no proper square-free non-trivial submodules. In fact, such a square-free

module is simple if and only if it is isomorphic to S/PF (−F ) for some F ⊆ [n] [Yan00].

Proposition IX.3.4 ([Yan00, Proposition 2.5]). An Nn-graded S-module M is square-

free if and only if there exists a filtration of Nn-graded submodules 0 = M0 ( M1 (
. . . ( Mt = M such that, for each i (0 ≤ i ≤ t − 1), M i = Mi/Mi+1

∼= S/PFi(−Fi)
for some Fi ⊆ [n] (and so is, in particular, a simple square-free module).

As a consequence of Proposition IX.3.4, every square-free module M has finite

length in Sq. We now recall the following definition [Yan01].

Definition IX.3.5 (Straight module). A Zn-graded S-module M =
⊕
β∈Zn

Mβ is

straight if dim(Mβ) <∞ for all β ∈ Zn, and the multiplication map Mα
·xi→ Mα+ei is

bijective for all α ∈ Zn and all i ∈ Supp(α). The category of straight S-modules is

denoted Str, a subcategory of *Mon.

Remark IX.3.6. If M =
⊕
β∈Zn

Mβ is a straight module, then M denotes the Nn-

graded (square-free) submodule
⊕
β∈Nn

Mβ. On the other hand, if M is a square-free

module, we can define the straight hull of M , M̃ , as follows: For α ∈ Nn, let M̃α

be a vector space isomorphic to MSupp(α), and let φα : M̃α → MSupp(α) denote such

an isomorphism. Let β = α + ei for some i ∈ [n]. If Supp(α) = Supp(β), we

define M̃α
·xi→ M̃β by the composition M̃α

φα→ MSupp(α)

φ−1
β→ M̃β; otherwise, we define

M̃α
·xi→ M̃β by the composition M̃α

φα→ MSupp(α)
xi→ MSupp(β)

φ−1
β→ M̃β. Then M̃ is

straight, and its Nn-graded part is isomorphic to M .

Proposition IX.3.7 ([Yan01, Proposition 2.7]). Continuing with the notation above,

the functor Str→ Sq defined by M →M is an equivalence of categories with inverse

functor N → Ñ .

Remark IX.3.8. Let L[F ] denote the straight hull of PF (−F ). By Proposition

IX.3.7 (noting Remark IX.3.3), L[F ] is a simple straight module. We have that

L[F ]α = k if Supp(α) = F , and is zero otherwise [Yan01]. Thus, L[F ] ∼= H`
PF

(ωS),

where ` = n− |F |.

Remark IX.3.9. Any straight module M may be given the structure of a D(S,K)-

module. It suffices to define an action of 1
t!

∂t

∂xit
, for every 1 ≤ i ≤ n and t ≥ 1: Take

v ∈ Mα, where α = (α1, . . . , αn). If 1 ≤ αi ≤ t, we define 1
t!

∂t

∂xit
v = 0. Otherwise,
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there exist w ∈Mα−tei such that xtiw = v, and we define 1
t!

∂t

∂xit
v =

(
αi
t

)
w if αi > 0 and

1
t!

∂t

∂xit
v = (−1)−αi+1

(−αi
t

)
w if αi < 0. This observation extends in [Yan01, Remark

2.12] to any field. We note that giving this D(S,K)-structure gives an exact faithful

functor from Str to the category of D(S,K)-modules.

Theorem IX.3.10. Let K be a field, S = K[x1, . . . , xn], and Ŝ = K[[x1, . . . , xn]].

Let I1, . . . , Is ⊆ S be ideals generated by square-free monomials. Then

λis,...,i1Is,...,I1
(Ŝ) = lengthStrH

is
Is
· · ·H i2

I2
Hn−i1
I1

(ωS) =
∑

α∈{0,1}n
dimk

[
H is
Is
· · ·H i2

I2
Hn−i1
I1

(ωS)
]
−α .

Moreover, if char(K) = 0, then λi1,...,isI1,...,Is
(Ŝ) = e(H is

Is
· · ·H i2

I2
Hn−i1
I1

(S)), where e(−)

denotes D(S,K)-module multiplicity (see Definition II.4.5).

Proof. Let M = H is
Is
· · ·H i2

I2
Hn−i1
I1

(S), so that λi1,...,isI1,...,Is
(Ŝ) = lengthD(Ŝ,K) M . By apply-

ing [Yan01, Corollary 3.3] iteratively, we see that H is
Is
· · ·H i2

I2
Hn−i1
I1

(ωS) is an straight

module. By Propositions IX.3.4 and IX.3.7, there is a strict ascending filtration of Nn-

graded submodules 0 = M0 (M1 ( . . . (Mt = M such that each quotient Mi/Mi+1

is isomorphic to ˜PFi(−Fi) ∼= H
n−|Fi|
PFi

(ωS), and is also a filtration of D(S,K)-modules

by Remark IX.3.9. Moreover,

0 = M0 ⊗S Ŝ (M1 ⊗S Ŝ ( . . . (Mt ⊗S Ŝ = M ⊗S Ŝ

is a filtration of D(Ŝ,K)-modules such that(
M̃i ⊗S Ŝ

)
/
(
M̃i−1 ⊗S Ŝ

)
∼= ˜PFi(−Fi)⊗S Ŝ ∼= H

n−|Fi|
PFi

(Ŝ).

Since H
n−|Fi|
PFi

(Ŝ) is a simple D(Ŝ,K)-module for every F ⊆ [n], lengthD(Ŝ,K) M⊗S Ŝ =

t as well.

If K has characteristic zero, due to the filtration above and noting Remark II.4.6,

CC(M) =
t∑
i=1

CC
(
M̃i/M̃i−1

)
=

t∑
i=1

CC
(
H
n−|Fi|
PFi

(S)
)
,

where CC(−) denotes the characteristic cycle (see Definition II.4.5). By [ÀM00,

Corollary 3.3 and Remark 3.4], each CC
(
H
n−|Fi|
PFi

)
= T ∗{xi=0|xi∈PFi}

Spec(S). As a

result, each e
(
H
n−|F |
PF

)
= 1 and so e(M) = t. Then λi1,...,isI1,...,Is

(Ŝ) = lengthSqM =

lengthStrM = e(M).
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Remark IX.3.11. The Lyubeznik numbers with respect to monomial ideals may

depend on the field, as shown in [ÀMV, Example 4.6].

Remark IX.3.12. For K a field of characteristic zero, let S = K[x1, . . . , xn], and take

I ⊆ S an ideal generated by monomials. Let Ŝ = K[[x1, . . . , xn]]. Combining work of

Álvarez Montaner in [ÀM00, Theorem 3.8 and Algorithm 1] with Theorem IX.3.10

provides an algorithm to compute λi0(Ŝ/IŜ) in terms of P1, . . . , PN , the minimal

primes of I. A consequence of this algorithm is the following inequality:

λj0(Ŝ/IŜ) ≤
∑

1≤i1<...<i`<N

δji1,...,i` ,

where δji1,...,i` = 1 if ht(Pi1 + . . .+ Pi`) = j + `− 1, and equals zero otherwise.

Remark IX.3.13. By Corollary IX.3.12, there is a straightforward algorithm to

compute the λi0(Ŝ/IŜ) using the minimal primes of I.

Lemma IX.3.14. Let S = K[[x1, . . . , xn]], K a field. For a monomial f with

| Supp(f)| = j, lengthD(S,K) Sf = 2j.

Proof. By IX.3.10, lengthD(S,K) H
1
(xi1 ·...·xij ) (S) = 2j − 1. Since local cohomology is

independent of radical, H1
f (S) = H1

(xi1 ·...·xij ) (S) = 2j − 1. Due to the exact sequence

0→ S → Sf → H1
f (S)→ 0 and the fact that S is a simple D(S,K)-module, we have

that lengthD(S,K) Sf = lengthD(S,K) S + lengthD(S,K)H
1
f (S) = 2j.

Proposition IX.3.15. Let K be a field, and let S = K[[x1, . . . , xn]], and let I be an

ideal of S generated by square-free monomials f1, . . . , f` ∈ S. Then

χλ (S/I) = (−1)n
∑̀
j=0

∑
1≤i1<...<ij≤`

(−1)j2deg lcm(fi1 ,...,fij ).

Moreover, if S/I is also Cohen-Macaulay, the above equation equals (−1)dλd0(S/I).

If, further, f1, . . . , f` form a regular sequence, this equals (−1)n−1
∏̀
i=1

(2deg fi − 1)`.

Proof. Since | Supp(fi1 · . . . · fij)| = deg lcm(fi1 , . . . , fij), the first statement follows

from Lemma IX.3.14 and Proposition IX.1.18.

If S/I is Cohen-Macaulay, then by [ÀM00, Proposition 3.1] (which is stated in

characteristic zero, although the argument is characteristic independent), Hj
I (S) = 0

for all j 6= ht I = n − d, and the statement follows. If the fi also form a regular
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sequence, lcm(fi1 · . . . · fij) = fi1 · . . . · fij and deg(fi1 · . . . · fij) =
j∑
r=1

deg fir , and

∑̀
j=0

∑
1≤i1<...<ij≤`

(−1)j2

(
j∑
r=1

deg fir

)
=
∏̀
i=1

(1− 2deg fi)` = −
∏̀
i=1

(2deg fi − 1)`.

IX.4 Lyubeznik characteristic of Stanley-Reisner rings

Definition IX.4.1 (Simplicial complex, faces/simplices, dimension of a face, i-face,

facet). A simplicial complex ∆ on the vertex set [n] = {1, . . . , n} is a collection of

subsets, called faces or simplices, that are closed under taking subsets. A face σ ∈ ∆

of cardinality |σ| = i + 1 is said to have dimension i, and is called an i-face of ∆.

The dimension of ∆, dim(∆), is the maximum of the dimensions of its faces (or −∞
if ∆ = ∅). We denote the set of faces of dimension i of ∆ by Fi(∆). A face is a facet

if it is not contained in any other face.

Remark IX.4.2. If ∆1 and ∆2 are simplicial complexes on the vertex set [n], then

∆1 ∩∆2 and ∆1 ∪∆2 are also simplicial complexes.

Definition IX.4.3 (Simple simplicial complex). We say that a simplicial complex ∆

on the vertex set [n] is simple if it is equal to P(σ), the power set of a subset σ of [n].

Remark IX.4.4. If σ1, . . . , σ` are the maximal facets of ∆, then ∆ = P(σ1) ∪ . . . ∪
P(σ`). In particular, a simplicial complex is determined by its facets.

Notation IX.4.5. If ∆ is a simplicial complex on the vertex set [n] and σ ∈ ∆, then

xσ denotes
∏
i∈σ

xi ∈ K[x1, . . . , xn].

Definition IX.4.6 (Stanley-Reisner ideal of a simplicial complex). The Stanley-

Reisner ideal of the simplicial complex ∆ is the square-free monomial ideal I∆ = (xσ |
σ 6∈ ∆) of K[x1, . . . , xn]. The Stanley-Reisner ring of ∆ is K[x1, . . . , xn]/I∆.

Theorem IX.4.7 ([MS05, Theorem 1.7]). The correspondence ∆ 7→ I∆ defines a

bijection from simplicial complexes on the vertex set [n] to square-free monomial ideals

of K[x1, . . . , xn]. Furthermore, I∆ =
⋂
σ∈∆

(x[n]\σ).

Proposition IX.4.8. Under the correspondence in Theorem IX.4.7, I∆1∩∆2 = I∆1 +

I∆2 and I∆1∪∆2 = I∆1 ∩ I∆2 for all simplicial complexes ∆1 and ∆2.

Proof. For the first statement, we see that

xσ ∈ I∆1∩∆2 ⇔ σ 6∈ ∆1 ∩∆2 ⇔ σ 6∈ ∆1 or σ 6∈ ∆2
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⇔ xσ ∈ I∆1 or xσ ∈ I∆1 ⇔ xσ ∈ I∆1 + I∆2 .

The proof of the second statement is analogous.

Example IX.4.9. Let S = K[x1, . . . , x6] and let I denote the monomial ideal of S

generated by

x1x2x3, x1x2x4, x1x3x5, x1x4x6, x1x5x6, x2x3x6, x2x4x5, x2x5x6, x3x4x5, x3x4x6.

The simplicial complex associated to I corresponds to a minimal triangulation of P2
R,

and the projective algebraic set that I defines in P5
K has been called Reisner’s variety

since he introduced it in [Rei76, Remark 3].

If K = Q, then λ4
0(R) = 31 and all other λ∗0(R) vanish

If K = Z/2Z, then λ4
0(R) = 32, λ3

0(R) = 1, and all other λ∗0(R) = 0.

We notice that in the previos example we have χλ(R) = 31 in both cases.

Theorem IX.4.10. Take a simplicial complex ∆ on the vertex set [n]. Let R be the

Stanley-Reisner ring of ∆, and let m be its maximal homogeneous ideal. Then

χλ(Rm) =
n∑

i=−1

(−2)i+1|Fi(∆)|.

Proof. Let S = K[x1, . . . , xn], and let η be its maximal homogeneous ideal. We

proceed by induction on d := dim(∆). If d = 0, then ∆ = {∅}. Then I∆ = η, and

R = K, so that χλ(Rm) = 1 = (−2)0 =
n∑

i=−1

(−2)i+1|Fi(∆)|.

Assume that the formula holds for all simplicial complexes of dimension less

or equal to d. Take a simplicial complex ∆ of dimension d + 1. Consider all

its facets, σ1, . . . , σ`. We now proceed by induction on `. If ` = 1, suppose that

∆1 = P(σ1), where σ1 = {i1, . . . , ij} and dim(σ1) = j. Then I∆1 = (xi | i 6∈ σ1)S,

R ∼= K[x1, . . . , xn−j], and

χλ(Rm) = lengthD(Ŝη ,K) H
j
I∆1

(Ŝη) = (−1)j = (1− 2)j

=

j∑
k=0

1j−k(−2)k
(
j

k

)
=

j−1∑
k=−1

(−2)k+1

(
j

k + 1

)
=

j−1∑
k=−1

(−2)k+1|Fk(∆)|.

Assume that the formula is true for simplicial complexes of dimension d+1 with `

facets, and take a simplicial complex ∆ of dimension d+1 with `+1 facets, σ1, . . . , σ`.

Let ∆i = P(σi) and ∆′ = ∆1 ∪ . . . ∪∆`. Then ∆ = ∆′ ∪∆`+1. We may assume, by
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renumbering, that dim(∆`) = dim(∆). Then dim(∆′ ∩∆`) < dim(∆`) by our choice

of ∆` and as we chose the decomposition given by the maximal facets. Therefore

χλ (Rm) equals

χλ ((S/I∆′∪∆`
)η) = χλ ((S/I∆′ ∩ I∆`

)η) by IX.4.8

= χλ ((S/I∆′)η) + χλ((S/I∆`
)η)− χλ ((S/(I∆′ + I∆`

))η) by IX.1.17

= χλ ((S/I∆′)η) + χλ((S/I∆)`)η)− χλ ((S/(I∆′∩∆`
))η) by. IX.4.8

=

n∑
i=−1

(−2)i+1|Fi(∆′)|+
n∑

i=−1

(−2)i+1|Fi(∆`)| −
n∑

i=−1

(−2)i+1|Fi(∆′ ∩∆`)|

=
n∑

i=−1

(−2)i+1(|Fi(∆′)|+ |Fi(∆`)| − |Fi(∆′ ∩∆`)|)

=

n∑
i=−1

(−2)i+1|Fi(∆′ ∪∆`)| =
n∑

i=−1

(−2)i+1|Fi(∆)|.

The above computation is related to work in [ÀMGLZA03].

Example IX.4.11. Let K be a field, S = K[x1, x2, x3, x4, x5] be a polynomial ring

over K, and m = (x1, x2, x3, x4, x5) its maximal homogeneous ideal. Consider the

ideal I = (x1x3, x1x4, x2x3, x2x4, x2x5) of S. Note that R := S/I is the Stanley-

Reisner ring of the simplicial complex is such that

|F−1(∆′ ∪∆`)| = 1, |F0(∆′ ∪∆`)| = 5, |F1(∆′ ∪∆`)| = 5, and |F2(∆′ ∪∆`)| = 1,

Using Theorem IX.4.10, we get that χλ(Rm) = 1 · 1 + (−2) · 5 + 4 · 5 + (−8) · 1 = 3.

Remark IX.4.12. In characteristic zero, Àlvarez Montaner has given formulas for

|Fk(∆)| in terms of the characteristic cycle multiplicities of H1
I∆

(K[x1, . . . , xn]) (cf.

[ÀM00, Proposition 6.2])

Remark IX.4.13. Theorem IX.4.10 shows that the Lyubeznik characteristic of a

Stanley-Reisner ring does not depend on its characteristic, although its Lyubeznik

numbers do have such a dependence (cf. [ÀMV, Example 4.6]).
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CHAPTER X

Lyubeznik numbers measure singularity

Results of Blickle [Bli04a] enable straightforward characterizations of F -regularity

and F -rationality in terms of certain generalized Lyubeznik numbers.

If S is an F -finite regular local ring and R = S/I is F -pure, Vassilev [Vas98]

showed that there is a strictly ascending chain of ideals

I = τ0 ⊂ τ1 ⊂ . . . ⊂ τ` = R

such that (τ
[p]
i : τi) ⊂ (τ

[p]
i+1 : τi+1) and τi+1 is the pullback of the test ideal of S/τi.

Suppose that R = S/fS is an F -pure hypersurface and that

0 ⊂ fS = τ0 ⊂ τ1 ⊂ . . . ⊂ τ` = R

is the flag of ideals previously introduced. The author and Pérez [NBP13] showed

that ` ≤ λ
dim(R)
0 (R;K ′) for every coefficient field K ′ of R.

Suppose that S is local, that R = S/fS is F -pure, and that K is perfect. In

this case, λ
dim(R)
0 (R) = 1 if and only if R is F -regular [Bli04a, NBW12a]. This fact

and the previous theorem say that the Lyubeznik number, λ
dim(R)
0 (R;K ′), measures

how far R is from being F -regular. The main aim of this chapter is to generalize

this property to all Gorestein F -pure rings (Theorem X.2.9). Moreover, we also give

support that the generalized Lyubeznik numbers measure singularity for any F -pure

rings by using R〈F 〉-modules (cf. Theorem X.3.1).

The results presented in this chapter are part of joint work with Hernández and

Witt [HNBW13].
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X.1 Relations with F -rationality and F -regularity

We recall Blickle’s results [Bli04a, Theorem 4.9, Corollaries 4.10 and 4.16].

Theorem X.1.1 (Blickle). Let (S,m,K) be a regular local F -finite ring of charac-

teristic p > 0. Let I be an ideal such that R = S/I is a domain of dimension d

and codimension c. Then Hc
I (S) is a simple D(S,Z)-module if and only if 0∗

Hd
m(R)

is

F -nilpotent. As consequences,

(1) If R is F -rational, then Hc
I (S) is a simple D(S,Z)-module. If R is F -injective,

then R is F -rational if and only if Hc
I (S) is a simple D(S,Z)-module.

(2) If d = 1, then Hc
I (S) is a simple D(S,Z)-module if and only if R is unibranch.

These results indicate that the generalized Lyubeznik numbers detect F -regularity

and F -rationality, as we see in the following proposition.

Proposition X.1.2. Let (R,m,K) be a complete local domain of characteristic p > 0

and of dimension d, such that K is F -finite. For any coefficient field K ′ of R, the

following hold.

(i) If λd0(R;K ′) = 1, then 0∗
Hd
m(R)

is F -nilpotent.

(ii) If R is F -injective and λd0(R;K ′) = 1, then R is F -rational.

In addition, if K is perfect, then:

(iii) λd0(R) = 1 if and only if 0∗
Hd
m(R)

is F -nilpotent.

(iv) If R is F -rational, then λd0(R) = 1.

(v) If R is F -injective, then λd0(R) = 1 if and only if R is F -rational.

Moreover, if R is one-dimensional, we have that:

(vi) If λd0(R;K ′) = 1, then R is unibranch.

(vii) If K is perfect, then λd0(R) = 1 if and only if R is unibranch.

Proof. Take any surjective ring map π : S � R, where S = K[[x1, . . . , xn]] and

π(K) = K ′, and let I = Ker(π). Since D(S,Z) ⊆ D(S,K), lengthD(S,K) H
n−d
I (S) =

λd0(R;K ′) = 1 implies that Hn−d
I (S) is a simple D(S,Z)-module. Then (i) and (ii)

are consequences of the main statement and part (1) of Theorem X.1.1, respectively.
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If K is perfect, D(S,Z) = D(S,K) by [Yek92], so 1 = λd0(R) precisely when

Hn−d
I (S) is a simple D(S,Z)-module. Then (iii), (iv), and (v) are consequences of the

main statement and part (1) of Theorem X.1.1. Similarly, (vi) and (vii) follow from

Theorem X.1.1 (3).

Corollary X.1.3. Let (R,m,K) be a complete local Gorenstein domain of charac-

teristic p > 0, of dimension d, and such that K is F -finite. The following hold:

(i) If R is F -pure and λd0(R) = 1, then R is F -regular.

(ii) If R is F -pure and K is perfect, then R is F -regular if and only if λd0(R) = 1.

Proof. For a Gorenstein ring, F -rationality and F -regularity are equivalent [HH94a];

additionally, F -injectivity and F -purity are equivalent [Fed87, Lemma 3.3]. The

result follows.

Remark X.1.4. Let R = K[X] be the polynomial ring over a perfect field K of

characteristic p > 0 in the entries of an r × r matrix X of indeterminates. Let m

denote its homogeneous maximal ideal, and let ∆ denote the principal ideal of R

generated by the determinant of X. Then R/∆ is F -rational [GS95, Theorem 9], so

by Proposition X.1.2 (iv), λd0(Rm/∆Rm) = 1.

Remark X.1.5. In general, the Lyubeznik number λd0(R) is bounded by below by the

number of minimal primes of R that have dimension d. Let (R,m,K) be a complete

local ring of dimension d. Take any surjective ring map π : S � R, where S =

K[[x1, . . . , xn]] for some n. Let I denote the kernel of the surjection. Let P1, . . . , P`

be the minimal primes of I. By iteratively using the Mayer-Vietoris sequence, we find

that Hd
P1

(S)⊕ . . .⊕Hd
P`

(S) ⊆ Hd
I (S). Therefore, λd0(R) ≥ `.

As a consequence, R is a domain if it is equimensional and λd0(R) = 1. Thus,

several results of Proposition X.1.2 can be obtained by assuming only that R is

equidimensional.

Remark X.1.6. Let I be an ideal of an F -finite regular local ring S, and suppose

that the quotient ring S/IS is F -pure. Let τ1 denote the pullback of the test ideal

of S/I to S, and inductively let τi denote the pullback of the test ideal of the ring

S/τi−1 to S. As demonstrated by Vassilev, the corresponding chain of ideals is of the

form

(X.1.6.1) I ( τ1 ( τ1 ( . . . ( τ` = S
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for some ` ≥ 1, and each quotient S/τi is F -pure [Vas98]. Let K ′ ⊂ Ŝ/IS be

any coefficient field. The following result, which connects this filtration with the

generalized Lyubeznik numbers, is due to the first author and Pérez [NBP13]: If

I = (f) is principal and ` is the length of the chain determined by the τi as in

(X.1.6.1), then if d = dim(S/fS), λd0(S/fS;K ′) ≥ `.

By definition of the test ideals, we see that ` = 1 if and only if the quotient S/fS is

F -regular, and so the inequality above shows that the generalized Lyubeznik number

λd0(S/fS;K ′) must be large whenever S/fS is “far” from being F -regular. This

bound also shows that the hypersurface S/fS must be F -regular if λd0(S/fS;K ′) = 1;

Corollary X.1.3 provides a partial converse to this statement.

X.2 Lyubeznik numbers and test ideals

Discussion X.2.1. In this section we assume that R is a Gorenstein ring. We have

that A := S/I [p] is also a Gorenstein ring. We also have a short exact sequence of S

and A-modules

0→ I/I [p] → A→ R→ 0

where the map A → R is the quotient morphism. We have an induced map in the

local cohomology, Hd
m(A) → Hd

m(R). If we consider these modules over S and use

local duality, we obtain a map:

ExtcS(R, S)→ ExtcS(A, S)

On the other hand, if we consider the local cohomology modules over A and use local

duality for A, we obtain a map:

HomA(R,A)→ HomA(A,A).

Since EA(K) = AnnES(K) I
[p], we have that both maps are the same. We have that

R ∼= HomA(R,A) = ExtcS(R, S) and that A ∼= HomA(A,A) = ExtcS(A, S) because

both rings are Gorenstein. We fix an identification among the modules. We have that

the map

R = ExtcS(R, S)→ ExtcS(A, S) = A

is defined by multiplication by an element f ∈ S. In fact, this element depends on

the election of the identifications made before.

Definition X.2.2. We say that an element f ∈ S, as described in Discussion X.2.1 is
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a hypersurface reduction of I. We denote by HR(I) all the hypersurface reductions

of I.

Remark X.2.3. Let f ∈ HR(I) and g ∈ S. Then g ∈ HR(I) if and only if there

exists a unit u ∈ R such that f = up−1g mod I [p].

Example X.2.4. If I is generated by a regular sequence, g1, . . . , g`, then

gp−1
1 · · · gp−1

` ∈ HR(I).

Example X.2.5. Suppose that I ⊂ K[[x1, . . . , xn]] is generated by square free mono-

mials, xα1 , . . . , xα1 , where αi = (αi,1, . . . , αi,n) ∈ {0, 1}n and xα1 = x
αi,1
1 · · ·xαi,nn . Then

x
(p−1)Max{αi,1}
1 · · ·x(p−1)Max{αi,n}

n ∈ HR(I).

Proposition X.2.6. Every hypersurface reduction of I, f ∈ HR(I) satisfies the

following properties:

(a) R
f→ A is injective;

(b) I = (I [p] : f);

(c) f 2 ∈ I, and f ∈ I if p 6= 2;

(d) fpt(f) ≤ 1
p−1

.

Proof. (a) We have that R
f→ A is equivalent to HomA(R,A) → HomA(A,A),

which is injective.

(b) We have that fI ⊂ I [p] because that map R
f→ A is well defined. Since it is

injective, we have that (I [p] : f) ⊂ I. Combining these two, we obtain that

I = (I [p] : f).

(c) By the previous claim, we have that ISf = (I [p]Sf : fSf ) = I [p]Sf . This is

possible if and only if ISf = Sf . Therefore f ∈
√
I. Let u ∈ N be the minimum

integer such that fu ∈ I. Then, fu+1 ∈ I [p]. Suppose that u 6= 1. Since S is

regular, we have that fp(u−1) 6∈ I [p]. Thus, p(u− 1) ≤ u so

p ≤ u

u− 1
= 1 +

1

u− 1
,

which is possible only when p = 2 and u = 2.
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(d) Since f 2 ∈ I, we have that f 2 · f 1+p+...pe−1 ∈ I [pe] for every e ∈ N. Then,

fpt(f) ≤ 3 + p+ . . .+ pe−1

pe

By taking limits when e→∞, we obtain fpt(f) ≤ 1
p−1

.

Lemma X.2.7. Let f ∈ HR(I) and λ = 1
p−1

. Then, R is F -pure if and only if

fpt(f) = λ. In particular, the locus in which R is not F -pure is V(τ(fλ−ε) + I).

Proof. We note that R
f→ A is given by the map HomA(R,A) → HomA(A,A). The

image of this map is the kernel of the induced map HomA(A,A)→ HomA(I/I [p], A),

which is given by all the elements a ∈ A such that aI ⊂ I [p]. Therefore, fS + Ip =

(I [p] : I). We have that

fpt(f) = λ⇔ f 6∈ m[p] by Lemma X.2.6

⇔ fS + I [p] 6⊂ m[p]

⇔ (I [p] : I) 6⊂ m[p]

⇔ R is F -pure by Fedder’s Criterion.

Let Q ⊂ S be prime ideal containing I. We notice that (I [p] : I)SQ = (f + I [p])SQ,

and so, f ∈ HR(ISQ). Therefore,

RQ not F − pure⇔ f ∈ Q[p]SQ ⇔ τ
(
(fSQ)λ−ε

)
6= SQ ⇔ τ(fλ−ε) ⊂ Q.

Remark X.2.8. Since ExtcS(R, S) → ExtcS(A, S) is a root morphism for the local

cohomology Hc
I (S) and this is equivalent to R

f→ A, every F -submodule of Hc
I (S) is

given by an ideal I ⊂ J ⊂ S such that fJ ⊂ J [p]. Two ideals J1 ⊂ J2 generate the same

F -submodule of Hc
I (S) if and only if there is an e ∈ N such that f 1+p+...pe−1

J2 ⊂ J
[pe]
1 .

Theorem X.2.9. Suppose that R is Gorenstein and F -pure. Let

I = τ0 ⊂ τ1 ⊂ . . . ⊂ τ` = R

be the flag of test ideals defined by Vassilev. Then, ` ≤ λd0(R;K ′) for every coefficient

field K ′.
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Proof. Let I = τ0 ⊂ . . . τ` = R denote Vassilev’s flag of test ideals. Since

f ∈ (I [p] : I) = (τ
[p]
0 : τ0) ⊂ (τ

[p]
1 : τ1) ⊂ . . . ⊂ (τ

[p]
` : τ`),

we have that fτi ⊂ τ
[p]
i . It suffices to prove that τi+1 generates a different F -submodule

of Hc
I (S) than τi.

Suppose not; then there exists an e such that f 1+p+···+pe−1
τi+1 ⊂ τ

[pe]
i . Since R/τj

is F -pure for every j, we have that both τi and τi+1 are radical ideals. Therefore, we

can choose a minimal prime Q of τi such that (τi+1)Q = SQ. Hence,

f 1+p+···+pe−1

(τi+1)Q =⊂ (τi)
[pe]
Q ⊂ (QSQ)[pe].

Then the F -pure threshold of f is strictly smaller than 1/(p−1) and τ(f 1/(p−1)−εSQ) 6=
SQ, which is a contradiction because τ(f

1
p−1
−ε) = S by Lemma X.2.6 and this ideal

commutes with localization.

X.3 Lyubeznik Numbers and R〈F 〉-modules

Since R = S/I, we have that every R〈F 〉-module has a natural structure of S〈F 〉-
module. In particular, Hd

m(R) is an S〈F 〉-module. Smith [Smi97] proved that an F -

pure Cohen-Macaulay ring R is F–rational if and only if Hd
m(R) is a simple left R〈F 〉

module. We have that for Cohen-Macaulay rings, lengthR〈F 〉H
d
m(R) gives a measure

of how far R is from being F–rational. Using results of Lyubeznik on F -modules

[Lyu97], of Blickle on intersection homology [Bli04a] and of Ma on R〈F 〉-modules

[Ma12], we prove that the highest generalized Lyubeznik number λd0(R) is an upper

bound for lengthR〈F 〉H
d
m(R). This results holds for all F -finite rings even if they are

not Cohen-Macaulay.

Theorem X.3.1. Suppose that R is an F -pure ring. Then

lengthR〈F 〉H
d
m(R) ≤ λd0(R;K ′)

for every coefficient field.

Proof. We have that

lengthR〈F 〉H
d
m(R) = length

F−modD(Hd
m(R)).

by Lemma II.9.2, Theorem II.9.4, and II.9.5. Therefore, by Proposition II.9.6,
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lengthS〈F 〉H
d
m(R) = length

F−modD(Hd
m(R))

= length
F−modD(Hc

I (S)) ≤ lengthD(S,K′) H
c
I (S) = λd0(R;K ′).
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CHAPTER XI

Lyubeznik numbers in mixed characteristic

Our aim in this chapter is to define a new family of invariants associated to any

local ring whose residue field has prime characteristic. In particular, these new invari-

ants are defined for local rings of mixed characteristic. These invariants are defined

somewhat analogously to the Lyubeznik numbers. Moreover, we study properties

of these Lyubeznik numbers in mixed characteristic and investigate when they agree

with the (original) Lyubeznik numbers.

If S is a regular local ring of unramified mixed characteristic the Bass numbers

of local cohomology modules H i
I(S) are finite (see Theorem IV.3.1 and [Lyu00b,

NB12b]). Using the theory of p-bases, and explicit constructions used in the Cohen

Structure Theorems, we prove that the Lyneznik numbers in mixed characteristic are

well defined (see Theorem XI.1.6 and Definition XI.1.7)

Motivated by analogous properties of the Lyubeznik numbers in equal charac-

teristic, we study properties of these invariants (cf. [Lyu93, Properties 4.4]). Some

similar vanishing properties hold, as well as analogous computations for complete

intersection rings (see Propositions XI.1.11 and XI.1.12). Moreover, the “highest”

Lyubeznik number in mixed characteristic of a local ring for which these invariants

are defined is a well-defined notion: if d = dim(R), then λ̃i,j(R) = 0 if either i > d or

j > d (see Theorem XI.2.10 and Definition XI.2.11).

When R is a local ring of equal characteristic p > 0, both the Lyubeznik numbers

and the Lyubeznik numbers in mixed characteristic of R are defined. We find that

these invariants agree when R is Cohen-Macaulay, or if dim(R) ≤ 2 (see Corollary

XI.3.4). However, we give a specific example for which λ̃i,j(R) 6= λi,j(R) for some

i, j ∈ N, employing the work of Singh and Walther on Bockstein homomorphisms of

local cohomology and a computation of Àlvarez Montaner and Vahidi [SW11, ÀMV]

(see Remark XI.4.11 and Theorem XI.4.12).

The results presented in this chapter are part of joint work with Witt [NBW12b].
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XI.1 Definition and properties

Lemma XI.1.1. Let S = R[[x]], where (R,m,K) is a Gorenstein local ring. Then

for every ideal I of R, and all i, j ∈ N,

dimK ExtiS(K,Hj+1
(I,x)S(S)) = dimK ExtiR(K,Hj

I (R)).

Proof. For G the functor defined in Chapter VIII, G(Hj
I (R)) = Hj+1

(I,x)(S) by Lemma

VIII.0.15. Since R is Gorenstein, Proposition XI.1.1 indicates that ExtiS(M,G(N)) =

ExtiR(M,N) for all R-modules M and N . Therefore,

ExtiS(K,Hj+1
(I,x)S(S)) = ExtiR(K,Hj

I (R)).

Corollary XI.1.2. Let (R,m,K) be a Gorenstein local ring, and S = R[[x1, . . . , xn]].

For every ideal I of R and all i, j ∈ N,

dimK ExtiS(K,Hj+n
(I,x1,...,xn)S(S)) = dimK ExtiR(K,Hj

I (R)).

Proof. Using Lemma XI.1.1, apply induction on n.

Definition XI.1.3 (p-independent, p-base). Let K be a field of characteristic p > 0.

A finite set of elements T1, . . . , T` ∈ K−KP is called p-independent if [Kp[T1, . . . , T`] :

Kp] = pn. An inifinite set of elements in K−Kp is p-independent if every finite subset

is. A maximal p-independent subset of Kp −K is called a p-base for K.

Remark XI.1.4. We recall some results related to the Cohen Structure Theorems

that will be useful in proving that our new invariants are well defined. See [Coh46]

for details.

For any field K of characteristic p > 0, there exists a complete Noetherian DVR

(V, γV,K) with residue class field K. In fact, if (V, γV,K) and (W, γ′W,K ′) are

complete Noetherian DVRs of mixed characteristic p > 0 such that K ∼= K ′, then

V ∼= W as well. Given an isomorphism ϕ : K → K ′, take a p-base Λ ⊆ K for K, and

let Λ′ ⊆ K ′ be the corresponding p-base for K ′ under ϕ. If T ⊆ V is a lifting of Λ

to V , and T ′ ⊆ W is a lifting of Λ′ to W , then the natural bijection T → T ′ extends

uniquely to an isomorphism V → W .

Suppose that (R,m,K) is a complete local ring of mixed characteristic p > 0.

Then R contains a coefficient ring as a subring V ′ ⊆ R, i.e., V ′ = V or V ′ = V/γ`V
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for some ` > 0, where (V, γV,K) is a complete Noetherian DVR, and the induced

map on residue fields V/γV � R/m is an isomorphism. In fact, the Cohen Structure

Theorems indicate that given a coefficient ring V ′ ⊆ R, there exists a surjection

ρ : V [[x1, . . . , xn]] � R such that ρ(V ) = V ′ (and we can take n to be the embedding

dimension of R/pR). A key point in the proof of this fact is that for every lifting

T ⊆ R of a p-base Λ ⊆ K of K to R, there is a unique coefficient ring V ′ ⊆ R of R

that contains T .

If (R,m,K) is a complete local ring of equal characteristic p > 0, then R is

a homomorphic image of some K[[x1, . . . , xn]] by the Cohen Structure Theorems.

Thus, if (V, γV,K) is a complete Noetherian DVR, the composition V [[x1, . . . , xn]] �

K[[x1, . . . , xn]] � R is surjective. Thus, any complete local ring (R,m,K) such that

char(K) = p > 0 is the homomorphic image of V [[x1, . . . , xn]], where V is a uniquely-

determined (up to isomorphism) mixed characteristic complete Noetherian discrete

valuation domain.

Lemma XI.1.5. Let (R,m,K) be a complete local ring of mixed characteristic p >

0, and let V ′,W ′ ⊆ R be coefficient rings of R. Let (V, νV,K) and (W, γW,K) be

complete Noetherian DVRs. Let n = dimK(m/m2). Then there exist surjective ring

maps

ρ1 : S1 := V [[x1, . . . , xn]] � R and ρ2 : S2 := W [[y1, . . . , yn]] � R

such that ρ1(V ) = V ′ and ρ2(W ) = W ′. Moreover, there is an isomorphism φ : S1 →
S2 such that ρ1 = ρ2 ◦ φ.

Proof. Let Λ and ∆ be a p-bases for K that are taken in the choice of V ′ and W ′.

There exist a map ρ1 : V � V ′ given by choosing preimages tλ ∈ V of λ ∈ Λ under

the composition V � V ′ � K. Similarly, we have a map ρ2 : W � W ′ given by

sδ ∈ W, where δ ∈ ∆.

Pick elements u1, . . . , un ∈ m such that the ui form a basis for m/m2, and extend

ρ1 to a map S1 → R by ρ1(xi) = ui. Similarly, extend ρ2 to a map S2 → R by

ρ1(yi) = ui.

By construction, ρ1 and ρ2 are surjective. Let σλ ∈ S2 be elements such that

ρ2(σλ) = ρ1(tλ) for every λ ∈ Λ. Then there exists a unique coefficient ring Ṽ ⊆ S2

such that σλ ∈ Ṽ for every λ ∈ Λ (see Remark XI.1.4); moreover,

tλ 7→ σλ defines an isomorphism φ : V → Ṽ . Now, extend this map to φ : S1 → S2

by φ(xi) = yi. The induced map K ∼= S1/(ν, x1, . . . , xn) → S2/φ(ν, x1, . . . , xn)S2 is

well defined, char (S2/φ(ν, x1, . . . , xn)S2) = p, and γ must be in the image of φ. Thus,
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φ is surjective. As S1 and S2 have the same dimension, φ is, in fact, an isomorphism.

Since ρ2 ◦ φ(xj) = ρ1(yj) = uj and ρ2 ◦ φ(tλ) = ρ2(σλ) = ρ1(tλ) by construction,

ρ1 = ρ2 ◦ φ.

Theorem XI.1.6. Let (R,m,K) be a local ring such that char(K) = p > 0, admitting

a surjection π : S � R, where S is an n-dimensional unramified regular local ring of

mixed characteristic. Let I = Ker(π), and take i, j ∈ N. Then

dimK ExtiS(K,Hn−j
I (S))

is finite and depends only on R, i, and j, but not on S, nor on π.

Proof. Each dimK ExtiS(K,Hn−j
I (S)) is finite (cf. Theorem IV.3.1 [Lyu00b, NB12b]),

so it remains to prove that these numbers are well defined. As the Bass numbers with

respect to the maximal ideal are not affected by completion, we may assume that the

rings are complete.

Fix a coefficient ring W of R, and take (V, νV,K) a complete Noetherian DVR

such that W = V or W = V/ν`V for some ` > 0. First, we take surjective ring maps

π : T � R and π′ : T ′ � R, where T = V [[x1, . . . , xn−1]], T ′ = V [[y1, . . . , yn′−1]],

π(V ) = W , and π|V (r) = π′|V (r) for every r ∈ V . Let m′ denote the maximal ideal

of T ′.

Let T ′′ = V [[x1, . . . , xn−1, y1, . . . , yn′−1]], and let π′′ : T ′′ � R be the surjective

ring map defined by π′′|V (r) = π|V (r) = π′|V (r) for every r ∈ V , π′′(xj) = π(xj), and

π′′(yj) = π′(yj). Let I ′′ = ker(π′′), and let α : T ↪→ T ′′ denote the injection, so that

π′′ ◦ α = π. As π is surjective, there exist f1, . . . , fn′−1 ∈ T such that π′′(yj) = π(fj)

for j ≤ n′− 1. Then yj − fj ∈ Ker(π′′). Note that β : T ′′ � T , defined by β(xj) = xj,

β(yj) = fj, and β|V = idV , is a splitting of α. Then

I ′′ = Im(α)⊕ ker(β) = (I, y1 − f1, . . . , yn′−1 − fn′−1)T ′′.

Since

ν, x1, . . . , xn−1, y1 − f1, . . . , yn′−1 − fn′−1

form a regular system of parameters for T ′′, Corollary XI.1.2 indicates that

ν, z1, . . . , zn−1, zn − α(f1), . . . , zn′+n−2 − α(fn′−1)
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form a regular system of parameters for T ′′, Corollary XI.1.2 indicates that

dimK ExtiT ′′(K,H
n+n′−j
I′′ (T ′′)) = dimK ExtiT (K,Hn−j

I (T )).

By an analogous argument,

dimK ExtiT ′′(K,H
n+n′−j
I′′ (T ′′)) = dimK ExtiT ′(K,H

n′−j
I′ (T ′)),

so

(XI.1.6.1) dimK ExtiT (K,Hn−j
I (T )) = dimK ExtiT ′(K,H

n′−j
I′ (T ′)).

Now we proceed to the general case. Take π : S := V [[x1, . . . , xn−1]] � R and

π′ : S ′ := W [[y1, . . . , yn′−1]] � R, where V and W are complete Noetherian DVRs

with residue field K, and π|V is a surjection of V onto V ′ and π|W is a surjection of

W onto W ′, where V ′ and W ′ are coefficient rings of R.

Let N = dimK(m/m2)+1. Let S1 = V [[x1, . . . , xN ]] and S2 = W [[y1, . . . , yN ]], and

let ρ1 : S1 � R, and ρ2 : S2 � R, and φ : S1 → S2 be the maps ensured by Lemma

XI.1.5; i.e., ρ1(V ) = V ′ and ρ2(W ) = W ′, and φ : S1

∼=→ S2; moreover, ρ1 = ρ2 ◦ φ.
By (XI.1.6.1), we have that

dimK ExtiS2
(K,HN−j

I (S1)) = dimK ExtiS(K,Hn−j
I (S)) and

dimK ExtiS2
(K,HN−j

φ(I) (S2)) = dimK ExtiS′(K,H
n′−j
I′ (S ′)).

In addition, the isomorphism φ allows us to deduce that

dimK ExtiS(K,HN−j
I (S1)) = dimK ExtiS2

(K,HN−j
φ(I) (S2)),

which concludes the proof.

Definition XI.1.7 (Lyubeznik numbers in mixed characteristic). Let (R,m,K) be

a local ring such that char(K) = p > 0. By the Cohen Structure Theorems, the

completion R̂ admits a surjection π : S � R̂, where S is an unramified regular local

ring of mixed characteristic. Let I = Ker(π), n = dim(S), and i, j ∈ N. Then the

Lyubeznik number in mixed characteristic of R with respect to i and j is defined as

λ̃i,j(R) := dimK ExtiS(K,Hn−j
I (S)).
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Note that by Theorem XI.1.6, the λ̃i,j(R) are well defined and depend only on R, i,

and j.

Remark XI.1.8. In Definition XI.1.7, we need to take the completion of R for

the Cohen Structure Theorems to ensure the existence of a surjection from an un-

ramified regular local ring S of mixed characteristic, π : S � R̂. If such a map

exists without taking the completion, then λ̃i,j(R) = dimK Exti
Ŝ
(K,Hn−j

IŜ
(Ŝ)) =

dimK ExtiS(K,Hn−j
I (S)), where I = Ker(π).

Remark XI.1.9. Fix (R,m,K), a local ring of equal characteristic p > 0. There

exists a surjection from an n-dimensional unramified regular local ring of mixed char-

acteristic, π : S � R̂; the induced map π′ : S/pS � R̂ is also surjective. If I = Ker(π)

and I ′ = Ker(π′), I is the preimage of I ′ under the canonical surjection S � S/pS. In

this case, both the Lyubeznik numbers, λi,j(R) = dimK ExtiS/pS(K,Hn−j−1
I′ (S/pS)),

and the Lyubeznik numbers in mixed characteristic,

λ̃i,j(R) = dimK ExtiS(K,Hn−j
I (S)),

are defined.

Remark XI.1.9 naturally incites the following question:

Question XI.1.10. Is λ̃i,j(R) = λi,j(R) whenever both are defined, i.e., for every

local ring (R,m,K) of any equal characteristic p > 0 and all i, j ∈ N?

In Corollary XI.3.4, we prove an affirmative answer to Question XI.1.10 when R

is Cohen-Macaulay, or dim(R) ≤ 2. However, Remark XI.4.11 and Theorem XI.4.12

give an example of a Stanley-Reisner ring over F2 for which the answer is negative.

The Lyubeznik numbers in mixed characteristic satisfy similar vanishing proper-

ties to those of the original Lyubeznik numbers.

Proposition XI.1.11. For (R,m,K) a local ring such that char(K) = p > 0 and

d = dim(R),

(i) λ̃i,j(R) = 0 if j > d or i > j + 1, and

(ii) λ̃d,d(R) 6= 0.

Proof. The completion of R, R̂, admits a surjection π : S � R̂, where (S, η,K)

is an unramified regular local ring of mixed characteristic and of dimension n. Let

I = Ker(π).
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For (i), the first statement holds since Hn−j
I (S) = 0 for j > dim(S/I) = dimR =

d, and the second since inj. dimS H
n−j
I (S) ≤ dimS H

n−j
I (S) + 1 ≤ j + 1 [Zho98].

To prove (ii), first note that by an analogous argument to the proof of [Lyu93,

Property 4.4(iii)], Hd
ηH

n−d
I (S) 6= 0. We will prove that λ̃d,d(R) 6= 0 by contradicting

this fact. Suppose that λ̃d,d(R) = ExtdS(K,Hn−d
I (S)) = 0.

We claim that ExtdS(M,Hn−d
I (S)) = 0 for every finite-length S-module M . We

will prove this by induction on h = lengthS(M). If h = 1, then M = K, and the

statement holds by assumption. Suppose that the statement is true for all N with

lengthS N < h + 1, and take M with lengthSM = h + 1. Then there exists a short

exact sequence 0→ K → M → M ′ → 0, where M ′ is an S-module of length h. The

long exact sequence in Ext gives:

· · · → ExtdS(M ′, Hn−d
I (S))→ ExtdS(M,Hn−d

I (S))→ ExtdS(K,Hn−d
I (S))→ · · · .

Now, ExtdS(K,Hn−d
I (S)) = ExtdS(M ′, Hn−d

I (S)) = 0 by the inductive hypothesis, so

that ExtdS(M,Hn−d+1
I (S)) = 0, and the claim follows.

This claim implies that ExtdS(S/η`, Hn−d
I (S)) = 0 for all ` ≥ 1. ThenHd

ηH
n−d
I (S) =

lim
−→
`

ExtdS(S/η`, Hn−d
I (S)) = 0, the sought contradiction.

Proposition XI.1.12. Let (V, pV,K) be an complete DVR of unramified mixed char-

acteristic p > 0, and let S = V [[x1, . . . , xn]]. Let f1, . . . , f` ∈ S be a regular sequence.

Then

λ̃i,j (S/(f1, . . . , f`)) =

1 i = j = n+ 1− `

0 otherwise

Proof. Our proof will be by induction on `. If ` = 1, since ExtiS(K,Sf ) = 0 for i ≥ 0,

the short exact sequence 0 → S → Sf1 → H1
f1S

(S) → 0 indicates ExtiS(K,S) ∼=
Exti+1

S (K,H1
f1S

(S)).

Suppose that the formula holds for `−1 and we will prove it for `. From the exact

sequence

0→ Hn−`−1
(f1,...,f`−1)S(S)→ Hn−`−1

(f1,...,f`−1)S(Sf`)→ Hn−`
(f1,...,f`)S

(S)→ 0,

we obtain that ExtiS(K,Hn−`
(f1,...,f`)S

(S)) = Exti+1
S (K,Hn−`−1

(f1,...,f`−1)S(S)) for every i ≥ 0

because ExtiS(K,Hn−`
(f1,...,f`)S

(Sf`+1
)) = 0.
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XI.2 Existence of the highest Lyubeznik Number in Mixed

Characteristic

Lemma XI.2.1. Let (V, pV,K) be a complete DVR of unramified mixed characteristic

p > 0, and let S = V [[x1 . . . , xn]]. Then EndD(S,V ) (ES(K)) = V.

Proof. Let φ ∈ EndD(S,V ) (ES(K)) ⊆ EndS (ES(K)) = S; φ must correspond to

multiplication by some r ∈ S. Thus, ∂(rw) = r∂(w) for every w ∈ ES(K) and

∂ ∈ D(S, V ). We will prove that r ∈ V by contradiction. If r 6∈ V , we may assume

there exists α = (α1, . . . , αn) ∈ Nn\{(0, . . . , 0)} such that r = a+bxα+
∑

β∈N,β≥lexα

cβx
β,

where a, b, cβ ∈ V and b 6= 0. Then for every j ∈ N,

r
(−1)α1−1

α1!

∂α1

∂xα1
1

· · · (−1)αn−1

αn!

∂αn

∂xαnn

1

pjx1 · · ·xn
=

r

pjxα1+1
1 · · ·xαn+1

n

=
a

pjxα1+1
1 · · ·xαn+1

n

+
b

pjx1 · · ·xn

On the other hand, for every j ∈ N,

(−1)α1−1

α1!

∂α1

∂xα1
1

· · · (−1)αn−1

αn!

∂αn

∂xαnn

r

pjx1 · · ·xn

=
(−1)α1−1

α1!

∂α1

∂xα1
1

· · · (−1)αn−1

αn!

∂αn

∂xαnn

a

pjx1 · · ·xn
=

a

pjxα1+1
1 · · · xαn+1

n

Then a

pjx
α1+1
1 ···xαnn

+ b
pjx1···xn = a

pjx
α1+1
1 ···xαnn

, so b ∈ pjV for every j ∈ N. This means

that b = 0, a contradiction. Thus, r ∈ V . Since every map given by multiplication

by an element in V is already a map of D(S, V )-modules, we are done.

Proposition XI.2.2. Let (V, pV,K) be a complete DVR of unramified mixed char-

acteristic p > 0, and let S = V [[x1 . . . , xn]]. Let N ( ES(K) be a proper D(S, V )-

submodule. Then N = AnnES(K) p
`S for some ` ∈ N.

Proof. Let v ∈ N be such that v ∈ AnnES(K) p
`S but v 6∈ AnnES(K) p

`−1S. We claim

that D(S, V )·v = AnnES(K) p
`S by induction on `. If ` = 1, AnnES(K) pS = ES/pS(K),

a simple D(S,K)-module, and the claim holds. Now, we suppose the claim true for

` − 1. Since AnnES(K) p
`S/AnnES(K) p

`−1S = ES/pS(K), there exists an operator

∂ ∈ D(S, V ) such that ∂v = 1/p`x1 · · ·xn + w for an element w ∈ AnnES(K) p
`−1S.

Then p∂v ∈ AnnES(K) p
`−1S \ AnnES(K) p

`−2S. Thus, there exists an operator δ such

that pδ∂v = w by the induction hypothesis, so 1/p`x1 · · · xn = (∂− pδ∂)v. Therefore,

AnnES(K) p
` = D(S, V ) ·1/p`x1 · · ·xn ⊆ D(S, V ) · v ⊆ AnnES(K) p

`, proving our claim.
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Since N 6= ES(K), ` = inf{j ∈ N | 1/pjx1 · · ·xn ∈ N} is a natural number.

Hence, N = D(S, V ) · 1/p`x1 · · ·xn = AnnES(K) p
`S.

Lemma XI.2.3. Let (V, pV,K) be a complete DVR of unramified mixed characteristic

p > 0, and let S = V [[x1 . . . , xn]]. Let M ⊆
h⊕
i=1

ES(K) be a D(S, V )-submodule. Then

M
·p→M is surjective if and only if M is an injective S-module.

Proof. Suppose that M is an injective S-module. Since ES(K)
·p→ ES(K) is surjective

and M =
⊕̀

ES(K), M
·p→M is also surjective.

Now assume that M
·p→ M is surjective. We will show that M is injective by

contradiction. Suppose that M 6= ES(M). As M is a D(S, V )-module supported

only at the maximal ideal, inj. dim(M) ≤ 1 (see Theorem IV.4.3 and [NB12b, Zho98]).

Let 0 → M → E1
φ→ E2 → 0 be a minimal injective resolution of M ; in particular,

E2 6= 0. Let µi = ExtiS(K,M). Now, µ1 is finite and less than or equal to h.

Let (−)∗ = HomS(−, ES(K)) be the Matlis duality functor. From the short exact

sequence 0 → E∗2
φ∗→ Sµ1 → M∗ → 0, we obtain that E∗2 is a free module of finite

rank less than or equal to µ1, so, E2 =
µ2⊕
i=2

ES(K). By Lemma XI.2.1, φ is given by

a µ1 × µ2-matrix with entries in V . Thus, φ∗ : Sµ2 → Sµ1 can be represented as a

matrix by the transpose of a matrix that represents φ. We may consider φ∗ as a map

of free V -modules, φ∗ : V µ2 → V µ1 . By the structure theorem for finitely-generated

modules over a principal ideal domain, there are isomorphisms ϕ1 : V µ1 → V µ1 and

ϕ2 : V µ2 → V µ2 , such that ϕ1φ
∗ϕ2 is a matrix whose entries are zero off the diagonal.

That is, we have the following commutative diagram.

V µ2
φ∗ // V µ1

ϕ1

��
V µ2

ϕ1φ∗ϕ2 //

ϕ2

OO

V µ1

Let a1, . . . aµ1 ∈ V be the elements on the diagonal of ϕ1φ
∗ϕ2, and let v : V → N

be the valuation. Since ES(M) = E1 → E2 is surjective, none of a1, . . . , aµ1 is zero.

Since E2 6= 0 and the injective resolution 0 → M → E1
φ→ E2 → 0 is minimal,

none of a1, . . . , aµ1 are units in V . Then a1, . . . , aµ1 ∈ pV \ {0}. We extend ϕi as a

isomorphism of S-modules, ϕi : Sµi → Sµi . Then ϕ∗i : Ei → Ei is an isomorphism of
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D(S, V )-modules. We obtain the following commutative diagram.

0 //M // E1
φ // E2

//

ϕ∗2
��

0

0 // Ker(ϕ∗2φϕ
∗
1) //

ϕ∗1

OO

E1

ϕ∗2φϕ
∗
1 //

ϕ∗1

OO

E2
// 0

Therefore, M ∼= Ker(ϕ∗2φϕ
∗
1) =

µ1−µ2⊕
i=1

ES(K) +
µ2⊕
i=1

AnnES(K) p
v(ai)S, a contradiction as

µ1−µ2⊕
i=1

ES(K) +

µ2⊕
i=1

AnnES(K) p
v(ai)S

·p→
µ1−µ2⊕
i=1

ES(K) +

µ2⊕
i=1

AnnES(K) p
v(ai)S

is not surjective.

Lemma XI.2.4. Let (V, pV,K) be a complete DVR of unramified mixed characteristic

p > 0, and let S = V [[x1 . . . , xn]]. Let m denote the maximal ideal of S, and let I ⊆ S

be an ideal such that dim(S/I) = 1. Then H0
mH

n
I (S) = 0 and H1

mH
n
I (S) ∼= ER(K).

Proof. Let f ∈ m be an element not in any minimal prime of I, so
√
I + fS = m. We

have the short exact sequence 0 → Hn
I (S) → Hn

I (Sf ) → Hn+1
I+fS(S) ∼= ES(K) → 0.

Since f ∈ m and Hn
I (Sf ) ∼= Hn

I (S)f , H
0
mH

n
I (Sf ) = 0, which implies that H0

mH
n
I (S) =

0. Moreover, H1
mH

n
I (S) = ES(K).

Lemma XI.2.5. Let (V, pV,K) be a complete DVR of unramified mixed characteristic

p > 0, and let S = V [[x1 . . . , xn]]. Let I ⊆ S be an ideal of pure dimension 2. Then

Hn
I (S) is an injective S-module supported only at the maximal ideal.

Proof. Let R denote S/pS. The short exact sequence 0 → S
·p→ S → R → 0

induces the long exact sequence · · · → Hn
I (S)

·p→ Hn
I (S) → Hn

I (R) → 0, where

Hn
I (R) = 0 by the Hartshorne-Lichtenbaum Vanishing Theorem, as

√
I + pS 6= m.

Thus, Hn
I (S)

·p→ Hn
I (S) is surjective. Now, Hn

ISP
(SP ) = 0 for every prime ideal P

not containing I. If I ⊆ P and P 6= m, then dim(S/P ) = 1 and Hn
IRP

(RP ) = 0

by the Hartshorne-Lichtenbaum Vanishing Theorem because I has pure dimension

2 and
√
ISP 6= PSP . Therefore, Hn

I (R) is a D(S, V )-module supported only at the

maximal ideal. Since dimK Ext0
S(K,Hn

I (S)) is finite, Hn
I (S) is injective by Lemma

XI.2.3.

Lemma XI.2.6. Let (V, pV,K) be a complete DVR of unramified mixed characteristic

p > 0, and let S = V [[x1 . . . , xn]]. Let m denote the maximal ideal of S, and let I ⊆ S
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be an ideal of pure dimension two. Then H0
mH

n−1
I (S) = H1

mH
n−1
I (S) = 0. Moreover,

Hn
I (S) ∼= ES(K)

⊕
α for some α ∈ N, and H2

mH
n−1
I (S) ∼= ES(K)

⊕
α+1. In particular,

H2
mH

n−1
I (S) is an injective S-module.

Proof. Let f ∈ m be an element not in any minimal prime of I. Then
√
I + fS 6= m.

Applying the Hartshorne-Lichtenbaum Vanishing Theorem, since Hn
I (S) is supported

at m by Lemma XI.2.5, we obtain the exact sequence

0→ Hn−1
I (S)→ Hn−1

I (Sf )→ Hn
I+fS(S)→ Hn

I (S)→ 0.

Splitting the sequence into two short exact sequences, we obtain

0→ Hn−1
I (S)→ Hn−1

I (Sf )→M → 0, and 0→M → Hn
I+fS(S)→ Hn

I (S)→ 0.

These induce the following long exact sequences:

0→ H0
m(Hn−1

I (S))→ H0
m(Hn−1

I (Sf ))→ H0
m(M)

→ H1
m(Hn−1

I (S))→ H1
m(Hn−1

I (Sf ))→ H1
m(M)

→ H2
m(Hn−1

I (S))→ H2
m(Hn−1

I (Sf ))→ H2
m(M)→ 0,

and

0→ H0
m(M)→ H0

m(Hn
I+fS(S))→ H0

m(Hn
I (S))

→ H1
m(M)→ H1

m(Hn
I+fS(S))→ H1

m(Hn
I (S))

→ H2
m(M)→ H2

m(Hn
I+fS(S))→ H2

m(Hn
I (S))→ 0.

Since all Hj
mH

n−1
I (Sf ) = 0, we know that H0

mH
n−1
I (S) = H2

m(M) = 0. Since

dim(S/(I + fS)) = 1, H0
mH

n
I+fS(S) = H2

mH
n
I+fS(S) = 0 by Lemma XI.2.4, which

implies both that H0
m(M) = H1

mH
n−1
I (S) = 0 and that H1

m (M) ∼= H2
mH

n−1
I (S). In

addition, H1
mH

n
I (S) = H2

mH
n
I (S) = 0 by Lemma XI.2.5. Thus, we have a short exact

sequence

0→ H0
mH

n
I (S)→ H2

mH
n−1
I (S)→ H1

mH
n
I+fS(S)→ 0.

By Lemma XI.2.5, Hn
I (S) is an injective S-module supported only at m, and its

Bass numbers are finite by Theorem IV.3.1 and [Lyu00b, NB12b], so H0
mH

n
I (S) =

Hn
I (S) ∼= ER(K)

⊕
α for some α ∈ N. Moreover, by Lemma XI.2.4, H1

mH
n
I+fS(S) ∼=

ES(K).

Thus, we have the short exact sequence 0 → ES(K)
⊕
α → H2

mH
n−1
I (S) →

ES(K)→ 0, which splits, so that H2
mH

n−1
I (S) ∼= ES(K)

⊕
α+1.
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Corollary XI.2.7. Let (V, pV,K) be a complete DVR of unramified mixed charac-

teristic p > 0, and let S = V [[x1 . . . , xn]]. Let I be an ideal of S of pure dimension

two. Then Hj
QH

i
I(SQ) is injective for every prime ideal Q of S.

Proof. This follows from Lemmas XI.2.4 and XI.2.6.

Lemma XI.2.8. Let (V, pV,K) be a complete DVR of unramified mixed characteristic

p > 0, and let S = V [[x1 . . . , xn]]. Let I be an ideal of S such that dim(S/I) = 2,

and let m denote its maximal ideal. Then H0
mH

n−1
I (S) = H1

mH
n−1
I (S) = 0 and

H2
mH

n−1
I (S) is an injective S-module.

Proof. Take J1 and J2, ideals of pure dimensions 1 and 2, respectively, such that I =

J1 ∩ J2. By the Mayer-Vietoris sequence of local cohomology, Hn−1
I (S) = Hn−1

J2
(S).

Thus, for all j, Hj
mH

n−1
I (S) = Hj

mH
n−1
J2

(S), and the result follows by Lemma XI.2.6.

Proposition XI.2.9. Let (V, pV,K) be a complete DVR of unramified mixed charac-

teristic p > 0, S = V [[x1 . . . , xn]], and m the maximal ideal of S. For an ideal I ⊆ S

with dim(S/I) = d, Hd
mH

n−d+1
I (S) is an injective S-module and Hj

mH
n−d+1
I (S) = 0

for j > d.

Proof. We proceed by induction on d. If d = 0, 1, or 2, we have the result by Lem-

mas XI.2.4 and XI.2.8. Suppose that d ≥ 3 and the statement holds for d − 1. If

AssS H
n−d
I (S) 6= {m}, we pick an element r ∈ m that is neither in any minimal prime

of I, nor of Hn−d
I (S), which is possible because AssS H

n−d
I (S) is finite (see Theorem

IV.3.1 and [Lyu00b, NB12b]). On the other hand, AssS H
n−d
I (S) = {m}, we pick

an element r ∈ m not in any minimal prime of I. We have that Hd
m(Hn−d+1

I (S) =

Hd−1
m Hn−d+2

I+rS (S) and Hj
mH

n−d+1
I (S) = Hj−1

m Hn−d+2
I+rS (S) = 0 for j > d as in the proof

of [Zha07, Proposition 2.1] because the conclusions of in [Zha07, Lemmas 2.3 and 2.4]

hold in our case. Hence, the result follows by the induction hypothesis.

Theorem XI.2.10. Let (S,m,K) be either a regular local ring of unramified mixed

characteristic, or a regular local ring containing a field. Let n = dim(S), and let I be

an ideal of S such that dim(S/I) = d. Then inj. dimHn−d
I (S) = d.

Proof. We need to prove that Extj(RQ/QRQ, H
i
IRQ

(RQ)) = 0 for every prime ideal

Q of R, all i ∈ N, and all j > d. We may assume that Q is m because if Q ( m,

then dimRQ/IRQ < d and inj. dimRQ
H i
IRQ

(RQ) ≤ dimRQ H
i
IRQ

(RQ) ≤ d by [Zho98,

Theorem 5.1].
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We proceed by induction on n. If n = 0, S is a field and the result follows. Assume

that the statement holds for all such S of dimension less than n.

Since the theorem is already true for regular local rings that contain a field (cf.

[HS93, Lyu93, Lyu00c]), we will focus on the case where S is an unramified regular

local ring of unramified mixed characteristic.

Let E∗ = (E1 → E2 → . . .) be a minimal injective resolution for Hn−d+1
I (S). By

[Zho98, Theorem 5.1], Ej = 0 for j > d + 1. For every prime ideal Q ⊆ S, SQ is

either an unramified regular local ring of mixed characteristic or a regular local ring

containing a field. Moreover, dim(SQ/ISQ) ≤ d − 1 for every prime ideal Q ( m.

Thus, (Ed)Q = (Ed+1)Q = 0 by the inductive hypothesis. Hence, Ed and Ed+1 are

supported only at m.

Let M = Im(Ed−1 → Ed) = Ker(Ed → Ed+1). It suffices prove that M is an

injective S-module. The modules Hj
mH

n−d
I (S) can be computed from the complex

H0
m(E∗) = (H0

m(E1)→ H0
m(E2)→ H0

m(E3)→ . . .). Let

Bj = Im
(
H0
m(Ej−1)→ H0

m(Ej)
)

and Zj = Ker
(
H0
m(Ej)→ H0

m(Ej+1)
)
.

Note that Zd = M since Ed and Ed+1 are supported only at m. Since inj. dimZj ≤ 1

and inj. dimHj
mH

n−d
I (S) ≤ 1 by the proof of [Zho98, Theorem 5.1] or by Theorem

IV.4.3, as in the proof of [Zho98, Theorem 5.1], we obtain that Bj is injective from

the following short exact sequences:

0→ Zj → H0
m(Ej)→ Bj → 0, and 0→ Bj−1 → Zj → Hj

m(Hn−d
I (S))→ 0.

Since Hd
mH

n−d
I (S) injective by Proposition XI.2.9, we know that Zd = M is injective

due to the short exact sequence 0 → Bd−1 → Zd → Hj
mH

n−d
I (S) → 0. Therefore,

Ed+1 = 0, so inj. dimHn−d
I (S) = d.

Definition XI.2.11 (Highest Lyubeznik number in mixed characteristic). For a lo-

cal ring of dimension d, (R,m,K), such that char(K) = p > 0, the highest Lyubeznik

number of R in mixed characteristic is λ̃d,d(R).

Note that the nomenclature “highest” is justified by Theorem XI.2.10. Moreover, we

may also justify the following definition:

Definition XI.2.12 (Lyubeznik table in mixed characteristic). For (R,m,K) a local

ring such that char(K) = p > 0 and d = dim(R), the Lyubeznik table of R in mixed

characteristic is the (d + 1) × (d + 1) matrix Λ̃(R), where Λ̃(R)i,j = λ̃i,j(R) for

0 ≤ i, j ≤ d.
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Remark XI.2.13. Recall that for a local ring R of dimension d containing a field,

the Lyubeznik table of R is defined as the (d + 1) × (d + 1) matrix Λ̃(R) such that

Λ̃(R)i,j = λi,j(R) for 0 ≤ i, j ≤ R. This matrix contains all nonzero Lyubeznik

numbers, and is also upper triangular, since λi,j(R) = 0 if either i > j or j > d

[Lyu93, Properties 4.4i, 4.4ii].

On the other hand, Proposition XI.1.11 and Theorem XI.2.10 imply that the

Lyubeznik table in mixed characteristic contain all nonzero Lyubeznik numbers in

mixed characteristic. However, Proposition XI.1.11 only implies that the Lyubeznik

table in mixed characteristic is nonzero below the subdiagonal.

XI.3 Examples where the Lyubeznik numbers in equal char-

acteristic and the Lyubeznik numbers in mixed charac-

teristic are equal

Lemma XI.3.1. Let (V, pV,K) be a complete DVR of unramified mixed characteristic

p > 0, and let S = V [[x1 . . . , xn]]. Let M be an S-module such that dimK ExtiS(K,M)

is finite for all i ∈ N. Suppose that M
·p→M is surjective. Then for all i ∈ N,

dimK ExtiS(K,M) = dimK ExtiS/pS(K,AnnM pS).

Proof. Let R = S/pS and N = AnnM(pS). The short exact sequence 0 → N →
M

·p→M → 0 induces the long exact sequence

0→ Ext0
S(K,N)→ Ext0

S(K,M)
·p→ Ext0

S(K,M)→ Ext1
S(K,N)→ · · · .

Since multiplication by p is zero on ExtiS(K,M), we have short exact sequences

0→ Exti−1
S (K,M)→ ExtiS(K,N)→ ExtiS(K,M)→ 0.

for all i ∈ N, so that dimK ExtiS(K,N) = dimK Exti−1
S (K,M)+dimK ExtiS(K,M). We

can compute ExtiS(K,N) using the Koszul complex, K, with respect to the sequence

p, x1, . . . , xn in S. On the other hand, we can compute ExtiR(K,N) using the Koszul

complex, K, with respect to the sequence x1, . . . , xn, in R. Now, K(N) is the direct

sum of K(N) and an indexing shift of the same complex by one. This means that

dimK ExtiS(K,N) = dimK Exti−1
R (K,N) + dimK ExtiR(K,N), so

dimK Exti−1
S (K,M) + dimK ExtiS(K,M) = dimK Exti−1

R (K,N) + dimK ExtiR(K,N).
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Since dimK Ext−1
S (K,M) = dimK Ext−1

R (K,N) = 0, we have that dimK Ext0
S(K,M) =

dimK Ext0
R(K,N) as well. Inductively, dimK ExtiS(K,M) = dimK ExtiR(K,N) for all

i ≥ 0.

Corollary XI.3.2. Let (V, pV,K) be a complete DVR of unramified mixed charac-

teristic p > 0, and let S = V [[x1 . . . , xn]]. Let I be an ideal of S such that S/I is a

Cohen-Macaulay ring of characteristic p. Then for all i, j ∈ N,

dimK ExtiS/pS(K,Hn−j
IS/pS(S/pS)) = dimK ExtiS(K,Hn+1−j

I (S)).

Proof. Let R = S/pS. The short exact sequence 0 → S
·p→ S → R → 0 induces

the short exact sequence 0 → Hn−d
I (R) → Hn−d+1

I (S)
·p→ Hn−d+1

I (S) → 0 since

Hn−d+1
I (R) = 0 by [PS73, Proposition 4.1]. Since Hn−d

I (S) = 0 H i
I(S)

·p→ H i
I(S) is

injective for i 6= n − d + 1, and Hn−d
I (S) = 0. The result then follows from Lemma

XI.3.1.

Proposition XI.3.3. Let (V, pV,K) be a complete DVR of unramified mixed char-

acteristic p > 0, and let S = V [[x1 . . . , xn]]. Let I be an ideal of S containing p, such

that dim(S/I) ≤ 2. Then

dimK ExtdS/pS(K,Hn−d
IS/pS(S/pS)) = dimK ExtdS(K,Hn+1−d

I (S)).

Proof. Let R = S/pS. Consider the following cases.

If dim(S/I) = 0, Hn+1
I (S) = ES(K) and Hn

I (S) = ER(K). In this case, we have

that dimK ExtdS/pS(K,Hn−d
IS/pS(S/pS)) = dimK ExtdS(K,Hn+1−d

I (S)) = 1.

If dim(S/I) = 1, the short exact sequence 0 → S
·p→ S → R → 0 induces a

long exact sequence 0 → Hn−1
I (R) → Hn

I (S)
·p→ Hn

I (S) → 0 by the Hartshorne-

Lichtenbaum vanishing theorem. The proposition then follows from Lemma XI.3.1.

Suppose that dim(S/I) = 2. First assume that I has pure dimension 2. Let α

be the number of connected components of Spec(Â) \ {m}, where A = R̂/I
sh

is the

strict Henselization of R/I. In fact, α = dimK Ext2
R(K,Hn−2

I (S/pS)) (cf. [Wal01,

Proposition 2.2]).

We prove the statement by induction on α. If α = 1, the short exact sequence

0→ S
·p→ S → R→ 0

induces the short exact sequence

0→ Hn−2
I (R)→ Hn−1

I (S)
·p→ Hn−1

I (S)→ 0,
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since Hn−1
I (R) = 0 by [HL90, Theorem 2.9]. The proposition then follows from

Lemma XI.3.1. If α > 1, we pick ideals J1, . . . , Jα such that I = J1 ∩ . . . ∩ Jα, and

each Jk defines a connected component of Spec(Â)\{m}. Let J denote J1∩ . . .∩Jα−1.

Using the Mayer-Vietoris sequence, we obtain an isomorphism Hn−1
J (S)⊕Hn−1

Jα
(S) ∼=

Hn−1
I (S) because

√
J + Jα = m. Then

dimK Ext2
S(K,Hn−1

I (S)) = dimK Ext2
S(K,Hn−1

J (S)) + dimK Ext2
S(K,Hn−1

Jα
(S)) = α.

By Lemma XI.2.6, [Lyu93, Lemma 1.4] and [Wal01, Proposition 2.2], the other num-

bers are determined by α.

For the general case such that dim(S/I) = 2, let P1, . . . , Pr be the minimal primes

of dimension one of I, and let Q1, . . . , Qs be the minimal primes of dimension two of

I. Let J1 = P1 ∩ . . .∩Pr and J2 = Q1 ∩ . . .∩Qs. We claim that ExtjS(K,Hn−1
I (S)) =

ExtjS(K,Hn−1
J2

(S)). Let f1, . . . , f` ∈ J2\I such that I+(f1, . . . , f`)S = J2. We proceed

by induction on `; first assume that ` = 1. Since Hn−1
I (S) = Hn−1

J2
(S), Hn−1

I (Sf1) = 0.

The long exact sequence

0→ Hn−1
I+f1S

(S)→ Hn−1
I (S)→ Hn−1

I (Sf1)→ Hn
I+f1S

(S)→ Hn
I (S)→ Hn

I (Sf1)→ 0,

then indicates both that Hn−1
I+f1S

(S) ∼= Hn−1
I (S), and that 0→ Hn

I+f1S
(S)→ Hn

I (S)→
Hn
I (Sf ) → 0 is exact. Hence, ExtjS(K,Hn−1

I (S)) = ExtjS(K,Hn−1
I+f1S

(S)). Moreover,

I + f1S ⊆ J2 is an ideal of dimension 2, whose minimal primes of dimension 2 are

P1, . . . , Pr. If we assume that the claim is true for `, the proof for ` + 1 is analogous

to the previous part.

Corollary XI.3.4. Let (R,m,K) be a local ring of characteristic p > 0. If R is a

Cohen-Macaulay ring or if dimR ≤ 2, then for i, j ∈ N, λ̃i,j(R) = λi,j(R).

Proof. Since dimension, Cohen-Macaulayness, and both Lyubeznik numbers are pre-

served after completion, we can assume that R is complete. Then the result follows

from Corollary XI.3.2 and Proposition XI.3.3.
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XI.4 An example for which the equal-characteristic and the

Lyubeznik numbers in mixed characteristic differ

Remark XI.4.1. A certain minimal triangulation of the real projective plane P2
R

defines the Stanley-Reisner ideal of K[x1, . . . , x6] generated by the ten monomials

x1x2x3, x1x2x4, x1x3x5, x1x4x6, x1x5x6, x2x3x6, x2x4x5, x2x5x6, x3x4x5, x3x4x6.

The projective variety defined by this ideal is called Reisner’s variety [Rei76, Remark

3].

Throughout this section, we will often refer to the following ring and ideal.

Notation XI.4.2. Let R = Z(2)[x1, . . . , x6]. Moreover, let I denote the ideal of R

generated by 2 and the ten monomial generators from Remark XI.4.1.

Remark XI.4.3. It is easily checked that for I ⊆ R as in Notation XI.4.2, depthI(R) =

4. With p = 2, this means that the short exact sequence 0→ R→ Rp → Rp/R→ 0

induces the long exact sequence

(XI.4.3.1) 0→ H3
I (Rp/R)→ H4

I (R)→ H4
I (Rp)→ H4

I (Rp/R)→ · · · .

Since p = 2 ∈ I, H i
I(Rp) = 0 for all i ∈ N, so H i

I(Rp/R) ∼= H i+1
I (R).

Remark XI.4.4. Given a polynomial ring A over Z, an ideal a of A, and a prime

p ∈ Z, the short exact sequence 0 → A/pA
·p→ A/p2A → A/pA → 0 induces

the Bockstein homomorphisms ∂j : Hj
a(A/pA)→Hj+1

a (A/pA) for each j ∈ N, the

connecting homomorphisms in the long exact sequence for local cohomology. For

a ⊆ Z[x1, . . . , x6] generated by the ten monomials given in Remark XI.4.1, Singh and

Walter showed that the Bockstein homomorphism ∂3 is nonzero if and only if p = 2

[SW11, Example 5.10].

Proposition XI.4.5. For I ⊆ R from Notation XI.4.2 and p = 2, the map

H3
I (Rp/R)

·p→ H3
I (Rp/R)

is not surjective.

Proof. Since depthI(R) = 4 and H i
I(Rp/R) ∼= H i+1

I (R), H i
I(Rp/R) = 0 for i ≤ 3 by

the long exact sequence in local cohomology (see Remark XI.4.3). For every ` ∈ N,
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the exact sequence 0→ R/p`R→ Rp/R
·p`→ Rp/R→ 0 induces a long exact sequence

(XI.4.5.1) 0→ H3
I (R/p`R)→ H3

I (Rp/R)
·p`→ H3

I (Rp/R)→ H4
I (R/p`R)→ · · · .

In particular, H3
I (R/p`R) ∼= AnnH3

I (Rp/R)(p
`R).

As the direct limit functor is exact, the limit of the direct system of short exact

sequences

0 // R/pR

=
��

·p // R/p2R

·p
��

// R/pR

·p
��

// 0

0 // R/pR

=
��

·p2
// R/p3R

·p
��

// R/p2R

·p
��

// 0

0 // R/pR

��

·p3
// R/p4R

��

// R/p3R

��

// 0

...
...

...

is the short exact sequence 0→ R/pR→ Rp/R
·p→ Rp/R→ 0.Moreover, Hj

I (Rp/R) =

lim
−→
`

Hj
I (R/p

`R). We obtain the following isomorphism of sequences.

0 // H3
I (R/pR)

∼=
��

·p // H3
I (R/p2R)

∼=��

π // H3
I (R/pR)

∼=
��

∂3 // · · ·

0 // AnnH3
I (Rp/R) pR // AnnH3

I (Rp/R) p
2R

·p // AnnH3
I (Rp/R) pR // · · ·

By Remark XI.4.4, ∂3 is nonzero, so that π is not surjective, so the map

AnnH3
I (Rp/R) p

2R
·p→ AnnH3

I (Rp/R) pR

is not either, and multiplication by p on H3
I (Rp/R) is not either.

Remark XI.4.6. Let A = F2[y1, . . . , y5], and let J = (y1y2, y2y3, y3y4, y4y5, y5y1).

Then J = (y2, y3, y5) ∩ (y1, y3, y4) ∩ (y1, y2, y4) ∩ (y1, y3, y5) ∩ (y2, y4, y5), and A/J is

a graded Cohen-Macaulay ring of dimension 2, where the classes of y1 + y2 + y3 and

y1 + y4 + y5 form a homogeneous system of parameters. Then H i
J(A) 6= 0 if and only

if i = 3 [PS73, Proposition 4.1]. (See [ÀMGLZA03, Proposition 3.1] for an analog in

characteristic zero.)
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Lemma XI.4.7. For I ⊆ R from Notation XI.4.2, H4
I (R/2R) is supported only at

the maximal ideal (2, x1, . . . , x6).

Proof. Let R = R/2R ∼= F2[x1, . . . , x6]. As IR is a square-free monomial ideal, by

[Yan00, Proposition 2.5] and [Yan01, Proposition 2.7], every prime in AssRH
4
I (R) is

of the form (2, xi1 , . . . , xij)R for some {i1, . . . ij} ⊆ {1, . . . , 6}. Thus, it suffices to

show that each H4
I (R)xi = 0.

First consider H4
I (R)x6 ; the other cases are analogous. For A := F2[x1, . . . , x5]

and J := (x1x2, x2x3, x3x4, x4x5, x5x1) ⊆ A, H4
J(A) = 0 by Remark XI.4.6. Since

A[x6]x6 = Rx6 is a flat extension, H4
J(R)x6 = H4

J(A) ⊗A Rx6 = 0. As JRx6 = IRx6 ,

H4
I (R)x6 = H4

J(R)x6 = 0.

Corollary XI.4.8. Take I ⊆ R from Notation XI.4.2, and let S = R̂m, where m is

the maximal ideal (2, x1, . . . , x6) of R. Then for p = 2,

Coker
(
H3
I (Sp/S)

·p→ H3
I (Sp/S)

)
∼= H4

I (S/pS) ∼= ES/pS(F2).

Proof. Note that S = Ẑ(2)[[x1, . . . , x6]], Ẑ(2) the 2-adic integers, and that S/pS ∼=
F2[[x1, . . . , x6]]. By Lemma XI.4.7, H4

I (S/pS) is supported only at m, so H4
I (S/pS) =

H0
mH

4
I (S/pS), and thus is injective by [Lyu93, Corollary 3.6]; as its Bass numbers are

finite [HS93], H4
I (S/pS) ∼= ES/pS(F2)⊕α for some α ∈ N. By the calculation in [ÀMV,

Example 4.8] (see Remark XI.4.11), dimF2 HomF2(F2, H
4
I (S)) = λ0,2(S/pS) = 1, so

that α = 1 and H4
I (S/pS) ∼= ES/2S(F2).

Now, for p = 2, Coker
(
H3
I (Sp/S)

·p→ H3
I (Sp/S)

)
injects intoH4

I (S/pS) = ES/pS(F2)

by the long exact sequence (induced by 0→ S/pS → Sp/S
·p→ Sp/S → 0)

0→ H3
I (S/pS)→ H3

I (Sp/S)
·p→ H3

I (Sp/S)→ H4
I (S/pS)→ . . . .

Thefore, this cokernel is a D(S/pS,F2)-submodule of ES/pS(F2), itself is a simple

D(S/pS,F2)-module. Since it is nonzero by Proposition XI.4.5, we are done.

Corollary XI.4.9. There exists a regular local ring S of unramified mixed charac-

teristic p = 2, and an ideal I of S containing p, so that the map

H4
I (S)

·p→ H4
I (S)

is not surjective.

Proof. Again, take I ⊆ R from Notation XI.4.2, and let S = R̂m, where m =
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(2, x1, . . . , x6)R. Then by Corollary XI.4.8, Coker
(
H4
I (S)

·p→ H4
I (S)

)
∼= ES/pS(F2) 6=

0.

Proposition XI.4.10. Take I ⊆ R from Notation XI.4.2, and let S = R̂m, where

m = (2, x1, . . . , x6). Then λ̃i,j(S/IS) = 1 if i = j = 3, and vanishes otherwise.

Proof. For brevity, let I denote IS, and let p = 2. In [Lyu84, Theorem 1, Example

1], it is shown that H5
I (S/pS) = 0 (relying on the fact that char(S/pS) = 2). By

Corollary XI.4.8 and Remark XI.4.3, the short exact sequence 0
·p→ S → S → S/pS →

0 then gives rise to the long exact sequence

. . .→ H4
I (S)

·p→ H4
I (S)→ H4

I (S/pS)
0→ H5

I (S)
·p→ H5

I (S)→ 0→ H6
I (S)

·p→ . . . .

Thus, multiplication by p on H5
I (S) and H5

I (S) are injective maps, which implies that

H5
I (S) = H6

I (S) = 0 since p ∈ I. Moreover, H i
I(S) = 0 for i ≥ 6 as well, so by again

noting Corollary XI.4.8, H i
I(S) 6= 0 if and only if i = 4.

This means that the spectral sequence Ep,q
2 = Hp

mH
q
I (S) =⇒

p
Hp+q
m (S) = Ep,q

∞

converges at the second stage. Thus, H3
mH

4
I (S) ∼= H7

m(S) ∼= ES(F2), and all other

Hp
mH

q
I (S) vanish. Since all Hp

mH
q
I (S) are injective S-modules, [Lyu93, Lemma 1.4]

indicates that the Bass number dimF2 ExtpS(F2, H
q
I (S)) = dimF2 HomF2(F2, H

p
mH

q
I (S))

for all p, q ∈ N. Since dim(R) = 7, we have that

λ̃i,j(R) = dimK HomS(F2, H
i
mH

7−j
I (S)) = 1

if i = j = 3, and vanishes otherwise.

Remark XI.4.11. Using work of Àlvarez Montaner and Vahidi, and of Singh and

Walther, we finally may conclude that that the Lyubeznik numbers in mixed charac-

teristic do not always agree the original Lyubeznik numbers. Take I ⊆ R as defined

in Notation XI.4.2. Let S1 = F2[[x1, . . . , x6]], and S2 = Ẑ(2)[[x1, . . . , x6]].

Λ(S1/IS1) =


0 0 1 0

0 0 0 0

0 0 0 1

0 0 0 1

 Λ̃(S2/IS2) =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


This indicates that if A is the completion of the Stanley Reisner ring of the ideal in

Remark XI.4.1 with K = F2, then λ0,2(A) = λ2,3(A) = 1, while λ̃0,2(A) = λ̃2,3(A) = 0.

In particular, this gives a negative answer to Question XI.1.10.
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We note that the computation in Remark XI.4.11 is related to work in [ÀMGLZA03].

Theorem XI.4.12. There exists a regular local ring (S,m,K) of unramified mixed

characteristic p = 2, and an ideal I of S, such that for some i, j ∈ N,

dimK ExtjS(K,H i
I(S)) 6= dimK ExtjS/pS(K,H i−1

IS/pS(S/pS)).

Proof. Take I ⊆ R from Notation XI.4.2, and let S = R̂m, where m = (2, x1, . . . , x6).

Then dimK Ext0
R(K,H5

I (S)) = 0 6= 1 = dimK Ext0
S/pS(K,H4

IS/pS(S/pS)) by Proposi-

tion XI.4.10.
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[ÀMBL05] Josep Àlvarez Montaner, Manuel Blickle, and Gennady Lyubeznik.
Generators of D-modules in positive characteristic. Math. Res. Lett.,
12(4):459–473, 2005.
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Sci. Publ. Math., (32):361, 1967.

[GS95] Donna Glassbrenner and Karen E. Smith. Singularities of certain lad-
der determinantal varieties. J. Pure Appl. Algebra, 101(1):59–75, 1995.

[Har67] Robin Hartshorne. Local cohomology - A seminar given by A.
Grothendieck, Harvard University, Fall 1961. Springer-Verlag, Berlin,
1967.

[Har68] Robin Hartshorne. Cohomological dimension of algebraic varieties.
Ann. of Math. (2), 88:403–450, 1968.

[Har77] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York,
1977. Graduate Texts in Mathematics, No. 52.

[Her12] Daniel J. Hernández. F–invariants of diagonal hypersurfaces. Preprint,
2012.

[HH90] Melvin Hochster and Craig Huneke. Tight closure, invariant theory,
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[NB13] Luis Núñez-Betancourt. On certain rings of differentiable type and
finiteness properties of local cohomology. J. Algebra, 379:1–10, 2013.
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[NBW12a] Luis Núñez-Betancourt and Emily E. Witt. Generalized Lyubeznik
numbers. Preprint, 2012.
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