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Abstract

This thesis is composed of two parts, one corresponding to classical and the other to quantum
gravitational phenomena. In the classical part, we focus on the behavior of various classical
scalar fields in the presence of black holes. New fundamental results discussed include
the first confirmation of the Belinskii, Khalatnikov, and Lifschitz (BKL) conjecture for an
asymptotically flat spacetime, where we find that the dynamics of a canonical test scalar
field near a black hole singularity are dominated by terms with time derivatives. We also
perform a numerical simulation of the gravitational collapse of a non-canonical scalar field
showing that signals can escape black holes in the k-essence dark energy model and find
numerical confirmation that the accretion of various scalar fields onto a black hole from
generic initial conditions is stationary.

In the second part, we focus on the long distance behavior of perturbative quantum
gravity. New results discussed include a proof of the cancellation of collinear divergences to
all orders in the amplitudes of the theory as well as a characterization of all infrared divergent
diagrams. In particular, we find that the only diagrams that can have soft divergences are
ladder and crossed ladder diagrams, and that the only collinearly divergent diagrams are
those with only three point vertices and no internal jet loops.

Also presented is a construction of a double copy relation between gravity and gauge
theory amplitudes similar to that conjectured by Bern, Carrasco, and Johansson for the
case where there is no hard momentum exchange in the scattering, which we find implies
a squaring relation between the classical shockwave solutions of the two theories as well.
Finally, the first calculation of a gravitational scattering amplitude through the next-to-
leading eikonal order is performed. We find that this correction to the scattering amplitude
exponentiates, and that these power corrections probe smaller impact parameters compared
to the leading eikonal case. This suggests that researching such corrections in a general
setting may yield evidence of black hole formation from the quantum theory.

viii



Chapter 1

Introduction

The birth of modern research into gravitational theory is often attributed to Galileo, who
found in the 17th century that all objects are accelerated equally by gravity regardless of
their mass. Although physicists have continued to actively research gravitational theory to
the present day, it is safe to say that we are far from unravelling all the mysteries of gravity.
This is in contrast to the study of electromagnetism, which today is generally thought to be
more or less completely understood even though in the 17th century it was in a similar stage
of infancy with the invention of the first electrostatic generator by von Guericke.

That is not to say there have not been major advancements in our understanding of
gravity since the days of Galileo. Around 50 years later Newton, in his theory of universal
gravitation, postulated that every point mass in the universe is attracted to every other point
mass through an inverse square law. This theory was not improved upon for over 200 years
until Einstein introduced his theory of general relativity, which provides a relativistically
invariant description of gravitation where gravity results from the curvature of space-time.

Einstein’s theory of general relativity resulted in (among many other things) two major
questions which are still being actively researched today. The first arises when one attempts
to use general relativity to understand the cosmology of the observable universe. This
leads to the Λ-Cold Dark Matter (ΛCDM) model, which is a standard cosmological model
predicting that over 70% of the energy of the observable universe comes from a vacuum
energy associated with empty space. However, the experimental value of this vacuum
energy density is some 120 orders of magnitude smaller than what we would expect if
we believe, as many physicists do, that quantum corrections to general relativity come in
at the Planck scale (a classic review of this problem can be found in [1]). This is known
as the cosmological constant problem, and its resolution remains one of the largest open
questions in gravitational physics today. Further exacerbating this already large issue with
the cosmological constant is the fact that the vacuum energy density must be fine-tuned to
be over a 100 orders of magnitude smaller than the initial matter energy density. However,
in the present era the vacuum energy density is roughly the same order as the matter energy
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density. This is usually referred to as the cosmic coincidence problem.

Another major question that naturally arises when one considers general relativity is the
matter of its quantization. The most obvious approach would be to take the Einstein-Hilbert
action and naively attempt to treat it as a quantum field theory. However, this theory is
nonrenormalizable and will generate an infinite number of unsupressed operators as we
consider energies close to the Planck scale. Due to this nonrenormalizability, formulating
a fully adequate unification of quantum mechanics and general relativity has remained an
unsolved problem for many years.

This thesis is a compilation of selected studies concerning one of these areas of gravita-
tional physics. In the first half of the dissertation we investigate the completely classical
issue of dark energy. Specifically, we research the scalar field models that cosmologists have
introduced to avoid the aforementioned cosmic coincidence problem associated with the
cosmological constant. The classical portion of this thesis addresses the robustness of such
models around black holes.

The particular scalar field model we focus on is k-essence, which avoids fine-tuning
problems by having, instead of a cosmological constant, a dynamical scalar field that has
classical attractor solutions which mimics vacuum energy density in the present era [2].
This model necessitates the existence of a non-canonical scalar field of which not much is
known, including whether or not they can even be dynamically evolved over local scales.
One feature of k-essence which is particularly interesting and worrisome is the fact that it
has been shown to necessarily propagate superluminally if it is to avoid the cosmological
constant problem [3]. However, this superluminality has been shown to not cause any issues
concerning causality [4].

Given these non-standard features of k-essence a stringent test of the robustness of this
theory is needed. As these models are usually studied under the standard cosmological
assumption of the homogeneity and isotropy of the universe, such a test over local scales
becomes even more desirable. Thus, in the classical portion of this thesis we describe
whether or not the dynamical evolution of these fields are possible in extremely localized
situations such as black holes. Due to the possibility of superluminal propagation of these
fields, an additional motivation for studying the behavior of these models is the possibility of
two horizons being created during black hole formation. As the gravitational fields involved
in such an evolution are extremely large, perturbation theory is not useful and we will have
to perform numerical simulations.

In order to illustrate the difficulty of studying the dynamical evolution of these scalar
field models we describe the simplest case of the gravitational collapse of a canonical test
scalar field in chapter 2. Even in this case no analytic solution is possible and numerical
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simulations are necessary. Aside from introducing the type of methods we use in analyzing
these types of systems, we also provide evidence that the equation of motion of the scalar
field around a black hole singularity is dominated by terms with time derivatives.

We move onto the more difficult issue of the gravitational collapse of the k-essence
scalar field in chapter 3. We show for a wide range of parameters, including those that
allow for superluminal motion, that these non-canonical fields can be simulated over local
scales and successfully form black holes, which was the primary motivation for this study.
Although we show these black holes have two horizons during the collapse process, in order
to show that one can maintain two horizons indefinitely, the accretion of these fields onto
black holes must be studied.

This accretion is the subject of chapter 4 where we test whether or not these non-
canonical scalar fields settle down to a stationary solution during this process. We provide
evidence that separate horizons can be maintained indefinitely given cosmological boundary
conditions; this implies that signals can be sent out of black holes using superluminal
k-essence fields. We also show for various non-canonical fields that the end state of this
dynamical accretion process matches the analytic solutions in the literature calculated under
the assumption of stationarity.

The second half of the dissertation is focused on matters related to the quantization of
general relativity. Although string theory is a promising candidate to describe this quanti-
zation at short distances, in this thesis we study long distance physics which can be more
suitably studied using techniques from quantum field theory. This is due to the fact that
using string theory techniques alone to extract useful information concerning scattering
processes dominated by long distance physics is extremely difficult. On the other hand, the
technology behind calculating scattering amplitudes by summing Feynman diagrams is by
now highly developed. Therefore, the particular theory we will work with is perturbative
quantum gravity, which can be arrived at by separating the flat classical portion of the
metric from the quantum contribution and utilizing the background field method (an elegant
description of this can be found in [5]).

It should be noted that while nonrenormalizability is still an issue in perturbative quan-
tum gravity, the new operators generated by the renormalization procedure are suppressed
by powers of the Planck mass. As long as the distance scales involved in the scattering are
much larger than the Planck length we can reliably use this theory. Thus, field theoretic
methods are perfectly suitable for our purposes as there are an ample amount of interesting
phenomena that occur at long distances in quantum gravity.

Perturbative quantum gravity is especially intriguing to study in the kinematic regime
where the momenta of the internal gravitons involved in the studied process are much lower
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than the external momenta. Such processes are said to be in the eikonal regime. This regime
is of interest because studies of ultrahigh-energy gravitational scattering have provided
evidence that for a large range of impact parameters, including those relevant for black
hole formation, string effects are actually subdominant to field theoretic gravitational-loop
contributions [6]. Thus, the majority of the quantum gravity portion of this thesis will be
focused on processes in the eikonal regime.

Another reason that perturbative quantum gravity is interesting to study is the recent
proposal by Bern, Carrasco and Johannson (BCJ) that there is a double copy relation be-
tween gravity and gauge theories [7]. They conjecture that the numerator factors of the
gauge theory amplitude can always be arranged so that they obey the kinematic analogue
of the Jacobi identities satisfied by the corresponding color factors. If this arrangement is
made, then gravity amplitudes can easily be calculated via their gauge counterpart by simply
replacing the gauge theory color factors by their associated numerator. If this conjecture is
true then this would make calculating gravitational amplitudes enormously easier, as well as
imply a deep relationship between the two theories. Because of this recent development,
studying quantum gravity using field theoretic methods is as fascinating as it has ever been.

As infrared divergences are among the most interesting long distance features of a
generic field theory, we start with categorizing all of the collinear and soft divergences in
perturbative quantum gravity in chapter 5. We find that soft divergences only occur for
ladder and crossed ladder type diagrams, and that collinear divergences only occur in jets
with only three point vertices and no internal loops. By using the Ward identity, we provide
the first complete proof of the cancellation of these collinear divergences in gravitational
amplitudes. This cancellation is unique to gravity and is not present in gauge theories such
as quantum chromodynamics (QCD) and massless quantum electrodynamics (QED).

The cancellation of collinear divergences in gravitational amplitudes can have extremely
interesting consequences. One example of the utility of this cancellation is detailed in
chapter 6, where we study the relationship between gravity and gauge theory amplitudes in
the eikonal limit. In this study, motivated by the BCJ conjecture, we prove a double copy
relation at all loop orders between the gravitational amplitude and the part of the gauge
theory amplitude where collinear divergences are known to cancel amongst themselves. In
order to both check the validity of this relation and show how it can be used, we deduce from
our relationship a similar squaring relation between the associated classical shockwaves of
the two theories. This is the first known relation between non-vacuum classical solutions of
gravity and gauge theory, and is only seen in the particular gauge picked out by our method
of calculation.

Finally, in chapter 7 we present the first calculations of the gravitational 2→ 2 scalar
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scattering amplitude at next-to-eikonal order. The main motivation is to investigate whether
or not the factorization between long and short distance physics that occurs at leading eikonal
order persists at the next order in the eikonal expansion. A breakdown of this factorization
and the accompanying breakdown of perturbation theory is thought to be indicative of black
hole formation. Although we find that this factorization persists at next-to-eikonal order, we
do find evidence that these power corrections probe smaller distance scales, suggesting that
further exploration of such corrections may yield direct evidence of black hole formation.

An investigation of classicalization, a proposed method of ultraviolet completing quan-
tum field theories via the production of extended classical objects similar to black holes, is
presented in appendix A. Supportive material pertaining to the main text can be found in
appendices B through G. Additional discussion by the author on the material in this thesis
can be found in the publications [8, 9, 10, 11, 12, 13]. Further research performed by the
author which is not found in this dissertation can be found in [14].
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Chapter 2

Gravitational Collapse of a Test Scalar
Field

2.1 Introduction

In this chapter we will begin our analysis of the classical behavior of gravity with an investi-
gation of gravitational collapse using test scalar fields. This example will serve to illustrate
the difficulty in numerically simulating systems with black holes, as well as provide an
interesting result in and of itself.

Note that this gravitational collapse process results in black holes which contain singu-
larities. The collapse process is not described by an analytical solution of the field equations,
and the gravitational field is so strong that perturbation theory is not helpful either. This
is the main reason that we require numerical simulations. But even when simulations are
used, the full process of gravitational collapse is not usually examined: some examine the
formation of black holes but not singularities [15] while others examine singularities but
not black holes [16, 17] 1. In the case where black holes are examined, the simulation
sometimes ends when the black hole forms [15]. In other cases the simulation goes on, but
the interior of the black hole is excised [19]. In the case where the singularity is examined,
one usually imposes periodic boundary conditions, which means that what is studied is
singularity formation in a closed cosmology.

Apart from serving as an introduction to our analysis of the collapse of a k-essence
scalar field, the main objective of this chapter is to investigate the longstanding conjecture
due to Belinskii, Khalatnikov, and Lifschitz (BKL) as to the general behavior of spacetime
singularities [20]. Essentially the BKL conjecture states that as a generic singularity is
approached in a comoving coordinate system, the field equations will be dominated by terms
containing derivatives with respect to time, and all other terms can be neglected. The BKL

1There has been some recent progress in numerical simulations capable of examining the formation of
both singularities and black holes in [18]
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conjecture has been verified by numerical simulations [16, 17] for the case of singularity
formation in a closed cosmology. Since BKL dynamics are local, it seems likely that the
BKL conjecture is also true in the case of singularity formation inside a black hole (at least
for part of the singularity, see [21] for a conjecture about another part of the singularity).
However, one would like to verify the BKL conjecture by a treatment of the singularities
inside black holes.

In order to do this we will utilize one of the earliest analytic studies of gravitational
collapse, that of Oppenheimer and Snyder [22]. This model was capable of examining both
the singularity and the black hole. In [22] the collapse process is modeled as a spherically
symmetric spacetime containing two parts: the Schwarzschild metric on the outside and a
Friedmann-Robertson-Walker (FRW) spacetime with non-relativistic matter (dust) on the
inside. The Schwarzschild and FRW spacetimes have two different coordinate systems
which must be matched along the boundary. This difficulty can be overcome [23] through
a coordinate transformation which allows the full spacetime to be covered by a single
coordinate system. However, a more serious difficulty is that pressureless dust is not a good
model of how matter behaves in the extreme conditions of singularity formation. Thus, the
properties of dust singularities tell us very little about the properties of generic singularities.

Ideally, one would like to check the BKL conjecture by treating the gravitational collapse
of a more realistic matter model, like a scalar field, using a single coordinate system that
follows the formation of the black hole and the singularity. As a preliminary step in that
direction, we perform numerical simulations of the behavior of a test massive scalar field on
the spacetime of [22] using the coordinates of [23]. The relevant equations and numerical
methods are described in section 2.2, while results are presented and discussed in section
2.3.

2.2 Methods

In order to cover the entire spacetime using a single coordinate system, we will use the fact
that a spherically symmetric spacetime can be put in the form [24, 25]

ds2 = −(1− ψ2)dt2 + 2ψdtdr + r2(dθ2 + sin2θdϕ2) (2.1)

Here, r is the usual area coordinate, while t is a time coordinate chosen so that∇at∇at = −1.
We will now show how to put the Schwarzschild and FRW metrics in this form. The
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Schwarzschild metric in the usual coordinates is

ds2 = −
(

1− 2M

r

)
dt̃2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2θdϕ2) (2.2)

We wish to express t̃ as a function of t and r so that the metric takes the form of (2.1). Some
straightforward but tedious algebra shows that the expression

t̃ = t− 2

[
√

2Mr +M ln

(√
r −
√

2M
√
r +
√

2M

)]
(2.3)

yields a metric of the form of (2.1) with

ψ =

√
2M

r
(2.4)

Let us now move on to the spatially flat dust FRW spacetime, which has the metric

ds2 = −dt̃2 + a2(t̃)(dr̃2 + r̃2[dθ2 + sin2θdϕ2]) (2.5)

with the scale factor a given by
a = Kt̃2/3 (2.6)

where K is a constant. We wish to perform a coordinate transformation that gives this metric
the form of (2.1). Comparing the angular parts of the metric, it is clear that we must have
r = ar̃. It is then straightforward to show that with t̃ = t the metric of (2.5) takes the form
of (2.1) with

ψ = −2r

3t
(2.7)

The collapse takes place at negative times and is complete at t = 0. The boundary
between the interior FRW part of the spacetime and the exterior Schwarzschild part is given
by r = rb(t), for some function rb(t). Since the metric, and therefore ψ must be continuous
across the boundary, we have

rb =
(

9
2
Mt2

)1/3 (2.8)

Thus the spacetime metric is given by (2.1), with ψ given by (2.4) for r ≥ rb and ψ given
by (2.7) for r ≤ rb.

We wish to simulate the Klein-Gordon equation on this spacetime assuming spherical
symmetry for the scalar field. That is, we want a scalar field φ(r, t) that satisfies

∇a∇aφ−m2φ = 0 (2.9)
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For a metric of the form of (2.1) the Klein-Gordon equation for a spherically symmetric
scalar field becomes

∂t∂tφ = 2ψ∂r∂tφ+ (∂tψ)(∂rφ) + (∂rψ)(∂tφ) +
2ψ

r
∂tφ

+ (1− ψ2)
1

r2
∂r(r

2∂rφ)− 2ψ(∂rψ)∂rφ−m2φ (2.10)

For the numerical method used, we need to put this equation in first order form: we introduce
the quantities P and S given by

P ≡ ∂tφ (2.11)

S ≡ ∂rφ (2.12)

From the definitions of P and S it immediately follows that

∂tφ = P (2.13)

∂tS = ∂rP (2.14)

while (2.10) becomes

∂tP = 2ψ∂rP + (∂tψ)S + (∂rψ)P +
2ψ

r
P

+ (1− ψ2)
1

r2
∂r(r

2S)− 2ψ(∂rψ)S −m2φ (2.15)

The equations to be evolved are equations (2.13-2.15). We evolve using finite differ-
ences, where each scalar f(r) is represented by the quantities fi = f((i− 1)∆r). Spatial
derivatives are evaluated using standard centered differences, that is

∂rf →
fi+1 − fi−1

2∆r
(2.16)

However, to maintain accuracy near the origin, the quantity r−2∂r(r
2S) requires special

treatment. We define S+ and S− by S+ = (Si+1 + Si)/2 and S− = (Si + Si−1)/2. Cor-
respondingly we define r+ = ri + (∆r/2) and r− = ri − (∆r/2). Then we use the finite
difference

1

r2
∂r(r

2S)→ 3

r3
+ − r3

−

(
r2

+S+ − r2
−S−

)
(2.17)

The quantity ψ and its derivatives are evaluated analytically using the formulas in (2.4) and
(2.7). Equations (2.13-2.15) are evolved using a three step iterated Crank-Nicholson method
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Figure 2.1 φ vs r at the initial time t0 = −20

[26] with Kreiss-Oliger dissipation [27].

At the origin, (gridpoint i = 1) smoothness requires that S vanish and that φ and P have
vanishing derivative with respect to r. We implement this condition as

φ1 = (4φ2 − φ3)/3 (2.18)

S1 = 0 (2.19)

P1 = (4P2 − P3)/3 (2.20)

At the outer boundary, we impose the condition that φ, S and P all vanish.

2.3 Results and Discussion

In the simulations, let N be the number of gridpoints and rmax be the maximum value of
r. We then have ∆r = rmax/(N − 1). N = 800 was used for the simulations resulting in
figures 2.1-2.3. N = 16000 was used for the simulations resulting in figures 2.4-2.11. We
choose initial data for the scalar field at a time t0 to take the form P = 0 and

φ = −2
r − r0

σ2
exp

(
−(r − r0)2

σ2

)
(2.21)
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Figure 2.2 φ vs r for m = 0 at t = −0.23
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Figure 2.3 φ vs r for m = 1 at t = −0.23
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with S given by the derivative of this expression. Here, r0 and σ are constants. For all the
results displayed, the parameters are t0 = −20, rmax = 80, r0 = 35, σ = 1.5, and M = 5

where M is the mass of the Schwarzschild black hole. This initial configuration of the scalar
field is shown in figure 2.1. We run the simulations to a time near the singularity. Figures
2.2 and 2.3 show the configuration of the scalar field near this final time. Both figures are
for t = −0.23 with m = 0 for figure 2.2 and m = 1 for figure 2.3. The initial scalar field
can be thought of as a linear combination of a left mover and a right mover. The right mover
escapes from the black hole, while the left mover plunges towards it. Some part of the
left mover scatters off of the black hole, while another part is captured and approaches the
singularity.

We are particularly interested in finding the behavior of the scalar field as the singularity
is approached. In our coordinate system, the singularity is approached as t→ 0 but only in
the FRW portion of the spacetime. To examine the scalar field behavior near the singularity,
we plot the scalar field at three different times near t = 0 and deduce a trend from those
plots. The scalar field φ is plotted as a function of r in a small region near r = 0 for the
times −0.02, −0.01 and −0.005 for the m = 0 case in figure 2.4 and for the m = 1 case in
figure 2.5. It is clear that the trend is that as the singularity is approached, the scalar field
gets a larger amplitude and a steeper profile. To see whether this behavior can be understood
quantitatively, we turn to the BKL conjecture: the claim that as a generic singularity is
approached in a comoving coordinate system, the field equations will be dominated by
terms containing derivatives with respect to time, and all other terms can be neglected. To
apply this conjecture, we consider the Klein-Gordon equation (2.9) in the untransformed
FRW metric and coordinates given by (2.5) and (2.6). Keeping only terms containing time
derivatives, we find

t̃−2∂t̃(t̃
2∂t̃φ) = 0. (2.22)

The general solution of this equation is

φ = t̃−1A(r̃) +B(r̃) (2.23)

for some functions A(r̃) and B(r̃). In particular, the BKL conjecture leads us to expect that
as the singularity is approached, t̃φ should approach a function of r̃. Note, that expressed
in terms of the t, r coordinates of our simulation, we have t̃ = t and r̃ = K−1t−2/3r. Thus,
we are led to expect that as the singularity is approached, if we plot tφ vs t−2/3r the plots
should approach some limiting profile as t→ 0. To see whether that expectation is realized,
such plots are given in figure 2.6 for m = 0 and 2.7 for m = 1. These figures are consistent
with tφ approaching a limit as the singularity is approached. However, in order to be more
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Figure 2.4 φ vs r for m = 0 at t = −0.02 (solid), −0.01 (dashed) and −0.005 (dotted)
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Figure 2.5 φ vs r for m = 1 at t = −0.02 (solid), −0.01 (dashed) and −0.005 (dotted)
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Figure 2.6 tφ vs t−2/3r for m = 0 at t = −0.02 (solid), −0.01 (dashed) and −0.005 (dotted)
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Figure 2.7 tφ vs t−2/3r for m = 1 at t = −0.02 (solid), −0.01 (dashed) and −0.005 (dotted)
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Figure 2.8 φ vs r for m = 0 at t = −0.0055 (solid), −0.0030 (dashed) and −0.0017 (dotted)
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Figure 2.9 φ vs r for m = 1 at t = −0.0055 (solid), −0.0030 (dashed) and −0.0017 (dotted)

definite, we need to approach the singularity more closely. The results of simulations
which show the scalar field at times closer to the singularity are shown in figures 2.8-2.11.
Here figure 2.8 shows φ vs r for m = 0 and the times −0.0055, −0.0030, and −0.0017.
Figure 2.9 shows φ vs r at the same times for the m = 1 case. The corresponding rescaled
quantities, that is tφ vs t−2/3r are shown in figure 2.10 for m = 0 and in figure 2.11 for
m = 1.

It is clear from figures 2.10 and 2.11 that tφ approaches a limit as the singularity is ap-
proached. Since this is just what one would expect from the BKL conjecture, our simulations
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Figure 2.10 tφ vs t−2/3r for m = 0 at t = −0.0055 (solid), −0.0030 (dashed) and −0.0017
(dotted)
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Figure 2.11 tφ vs t−2/3r for m = 1 at t = −0.0055 (solid), −0.0030 (dashed) and −0.0017
(dotted)
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lend support to the notion that the BKL conjecture holds, not only in the extensively studied
case of closed cosmologies, but also in the more physically interesting case of asymptotically
flat spacetimes. To explore this issue further, it would be helpful to go beyond the case of
a test scalar field on a background spacetime. In particular, one could treat the collapse
of a self-gravitating scalar field using the method of [18] and see whether the singularity
produced in the collapse satisfies the BKL conjecture.
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Chapter 3

Gravitational Collapse of a k-essence
Scalar Field

3.1 Introduction

Now that we have seen in the previous chapter how to perform numerical simulations of
a test scalar field in a gravitationally collapsing spacetime, let us move on to the more
challenging case of simulating the full gravitational collapse of a k-essence scalar field.
As mentioned in chapter 1, dynamical scalar fields can mimic a cosmological constant
in the present era, avoiding the need for fine tuning of around 120 orders in magnitude.
k-essence [2, 28] is a particularly attractive model as it not only addreses the cosmological
constant problem but also the coincidence problem: why does the accelerated expansion of
the universe coincide with the onset of matter domination?

However, k-essence models necessitate the existence of a scalar field with non-standard
kinetic terms that allows for the field to have negative pressure once the matter-dominated
era begins. As the robustness of these models is not well understood, it is desirable to
simulate the behavior of these scalar fields in extreme environments such as gravitational
collapse. Compared to the previous simulation, the difficulty increases in two avenues since
we will be simulating more complicated non-canonical scalar fields and because the fields
will be undergoing a fully consistent gravitational collapse with back reaction taken into
account.

It has been shown that if k-essence is to solve the coincidence problem, then fluctuations
of the k-essence field must necessarily propagate superluminally at some point [3, 29].
However, it has been argued that this superluminality is physically acceptable since causality
is not violated [4].

This possibility of superluminal propagation is another reason it is interesting to ask how
a k-essence field would act during gravitational collapse. It has been found that the stationary
solution describing k-essence scalar field accretion into a background Schwarzschild black
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hole allows for the existence of two horizons, one corresponding to the fluctuations of the
k-essence scalar field and the other being the normal light horizon [31]. This is interesting
as the existence of two horizons also occurs in other theories that allow superluminal motion
[32, 33], as well as for the case of general irrotational hydrodynamics [34]. It is possible
that the stationary solution allowing for the existence of two horizons may be avoided
kinematically given reasonable initial conditions. It is also possible that once back reactions
of the scalar field on the metric are considered the two horizons may reduce to one. Another
possibility is that gravitational collapse results not in the formation of a black hole but a
naked singularity.

In order to see which of the above mentioned possibilities are realized during the grav-
itational collapse of a k-essence scalar field, one can perform numerical simulations of
this process. Such simulations have often been done before for an ordinary scalar field
[15, 35] and the methods used can be modified and generalized to treat k-essence. In this
particular study, we will numerically simulate the self-consistent gravitational collapse of
spherically symmetric scalar fields described by several different k-essence Lagrangians.
The knowledge of what k-essence models allow for what type of horizons may help restrict
the parameter space of acceptable k-essence models. Numerical simulations may also
indicate whether or not there are any unique experimental signatures associated with the
creation of a black hole from a k-essence scalar field.

The equations and numerical methods used are described in section 3.2 and in appendix
B. Results are presented in section 3.3 and conclusions discussed in section 3.4.

3.2 Methods

The action for self gravitating k-essence is

I =

∫
√
g d4x

(
(4)R

2κ
+ L(X)

)
(3.1)

Here (4)R is the spacetime scalar curvature, κ = 8πG where G is Newton’s gravitational
constant, and X = −1

2
∇aφ∇aφ where φ is the k-essence scalar field. Varying the action

with respect to the metric yields the Einstein field equation

Gab = κTab (3.2)
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where Gab is the Einstein tensor, and the k-essence stress-energy tensor Tab is given by

Tab = LX∇aφ∇bφ+ Lgab (3.3)

Here, we introduce the shorthand LX to mean dL/dX (and later we will also use LXX to
mean d2L/dX2). Varying the action with respect to the k-essence scalar field φ yields the
k-essence equation of motion

g̃ab∇a∇bφ = 0 (3.4)

Here g̃ab is an effective inverse metric associated with the k-essence scalar field and is given
by

g̃ab = LXgab − LXX∇aφ∇bφ (3.5)

We perform numerical simulations of equations (3.2) and (3.4) in the case of spherical
symmetry. For an ordinary scalar field, such simulations are often performed using polar-
radial coordinates [15]. Here the radial coordinate is chosen to be the usual area radius,
while the time coordinate is chosen to be orthogonal to the radial coordinate. However,
polar-radial coordinates only last until the first trapped surface forms. This would not be
suitable for a simulation of k-essence gravitational collapse because k-essence travels faster
than light and thus is not trapped by ordinary trapped surfaces but instead by the trapped
surfaces of the effective metric of (3.5). Thus a k-essence black hole has not yet formed
when the first trapped surface forms and a simulation using polar-radial coordinates stops.
Instead, we use a different method with a set of coordinates that includes a region within
the black hole horizon. This method uses maximal slicing, and a radial coordinate based on
length rather than area, and is described in detail in appendix B.

Another complication of k-essence collapse has to do with the surfaces of constant
time. In an evolution of the Einstein field equations, the surfaces of constant time must be
spacelike. That is, we must have gtt < 0. For an ordinary scalar field, this condition is also
enough to render the evolution of the scalar field well posed. However, k-essence evolves
in an effective metric whose light cones are different from those of the spacetime metric.
In order that the surfaces of constant time are also Cauchy surfaces for the k-essence field,
we must have g̃tt < 0. In the simulations, it is sometimes the case that g̃tt → 0 without any
singularity forming and sometimes even without the formation of any trapped surface. In
this case we are forced to stop the simulation at that point without obtaining a clear answer
as to the outcome of the collapse process. This also suggests the disturbing possibility that
the light cones of the k-essence field could tip so much that no surface could be timelike for
both the metric and the k-essence field. In that case, the theory itself would cease to be well
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Figure 3.1 φ vs r at the initial time t = 0 for A = 0.15

defined.

In any case, our results are obtained by choosing a variety of k-essence Lagrangians L
and a variety of initial data, and then evolving with the maximal slicing method, and noting
the outome of the collapse process.

3.3 Results

We now present the results of the collapse simulations. Much like in the case of the previous
chapter we choose the scalar field to initially have ∂tφ = 0 and the form:

φ = −2A
r − r0

σ2
exp(
−(r − r0)2

σ2
) (3.6)

where A, σ, and r0 are constants. For all results and figures shown we used the values
σ = 1.5, and r0 = 25 (see figure 3.1 for which A = 0.15).
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3.3.1 Sound Horizon Lagrangian

We first consider a k-essence model proposed in [30, 31] with a Lagrangian density given
by:

L(X) = α2

[√
1 +

2X

α2
− 1

]
− Λ (3.7)

We chose Λ = 0 for all of our simulations. In [31] it was found that when there is a steady
flux of scalar field described by this Lagrangian falling into a Schwarszschild black hole,
there exists a stationary solution which can allow scalar field signals to escape from the
light horizon. This is because the k-essence scalar field can propagate at speeds different
from that of the speed of light. Thus there is a sound horizon associated with the scalar
field which can differ from the traditional light horizon. When this sound horizon is located
within the light horizon, signals can escape the black hole.

Before presenting the results, it is helpful to recall how this sort of initial data would
evolve for an ordinary (non k-essence) massless free scalar field, both without and with
gravity. For an ordinary non-gravitating scalar field, initial data of the type given in (3.6)
separates into an outgoing pulse and an ingoing pulse. The ingoing pulse undergoes inter-
ference in a region near r = 0 and becomes an outgoing pulse, so that at sufficiently late
times the scalar field consists of two outgoing pulses. For an ordinary gravitating scalar
field, when the amplitude A is sufficiently small, the self-gravity of the field is weak, and the
behavior is essentially that of a non-gravitating scalar field. However, when A is sufficiently
large, as the ingoing pulse nears the center, it becomes trapped by its own self-gravity and
forms a black hole.

For the model of (3.7) when α2 is large compared to X , the Lagrangian approaches
that of a massless free scalar field. Therefore we would expect that for large enough α we
would get the same sort of behavior as for an ordinary (non k-essence) scalar field. To see
whether this expectation is right, we performed simulations with α = 1.0 and with A = 0.05

and A = 0.15. The result of the simulation with A = 0.05 is shown in figure 3.2. Here
the scalar field φ is graphed as a function of r at time t = 45. In this amount of time the
initially outgoing pulse has progressed to steadily larger r with approximately 1/r falloff
in amplitude, while the initially ingoing pulse has undergone interference near the center
and become an outgoing pulse which has moved away from the center undergoing its own
approximately 1/r falloff in amplitude.

In contrast, figure 3.3 shows the result of the simulation with A = 0.15 (and α = 1.0).
Again the scalar field φ is graphed as a function of r at time t = 45. Once again, the
outgoing pulse has progressed to steadily larger r with a corresponding falloff in amplitude.
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However, now the ingoing pulse has not become outgoing and instead remains trapped near
the center by its own self-gravity. Indeed we would expect the ingoing pulse to not merely
“remain trapped” but rather to undergo complete gravitational collapse and form a singularity
at the center of a black hole. The fact that it has not done so in this simulation is an artifact
(and one of the main features) of the maximal slicing method. In maximal slicing, the lapse
function N becomes small in regions that are strongly gravitating. This slows the evolution
down in those regions and prevents the simulation from reaching the singularity (which
would force the simulation to halt). Indeed such a “collapse of the lapse” is usually taken as
an indication of black hole formation. This phenomenon is illustrated in figure 3.4 where
the lapse for this simulation is plotted.

Nonetheless, we would like a more precise indication of black hole formation. In general
relativity, such an indication is provided by the formation of a marginally outer trapped
surface. Here a two dimensional surface has an outgoing null geodesic normal vector `a and
the surface is marginally outer trapped if ∇a`

a = 0. This condition simplifies considerably
in the case of spherical symmetry, where it becomes equivalent to `a∇aR = 0 where R
is the area radius (i.e. 4πR2 is the area of the spheres of symmetry). That is, we want to
know whether there is an outgoing vector `a such that gab`a`b = 0 and `a∇aR = 0. For the
coordinate system we use (i.e. (B.1)) we find after some straight forward algebra that this
condition becomes:

1

2
RKr

r +R′ = 0 (3.8)

Thus, to check for the presence of a marginally outer trapped surface (and thus the formation
of a black hole) we only need to compute the left hand side of (3.8) and see whether it
vanishes somewhere.

The condition of (3.8) works for the gravitational collapse of an ordinary scalar field.
However, since k-essence can travel faster than light, we want to know not only whether an
object forms that can trap light, but also whether an object forms that can trap k-essence.
Since k-essence satisfies a wave equation using the effective inverse metric g̃ab, it follows
that the direction of propagation of k-essence is a vector that is null with respect to the
effective metric g̃−1

ab which satisfies g̃−1
ab g̃

bc = δca. Straightforward calculation using (3.5)
then shows that

g̃−1
ab =

1

LX
gab + c2

s

LXX
L2
X

∇aφ∇bφ (3.9)

where

cs =

√
LX

LX + 2XLXX
(3.10)

is the speed of propagation of the k-essence waves for this model for the case where the
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Figure 3.2 φ vs r at time t = 45 for A = 0.05 and α = 1.0

k-essence field gradient is timelike. (we will also refer to cs as the sound speed). Thus the
condition for a sound horizon is just that for a light horizon, but with the effective metric
replacing the metric. That is, the existence of an outgoing vector `a satisfying g̃−1

ab `
a`b = 0

and `a∇aR = 0. Some straightforward algebra using (B.1) then shows that this condition is

1

2
RKr

r(LX + c2
sLXXS2)

+R′(
√
LX(LX − 2Xc2

sLXX)− c2
sLXXPS) = 0 (3.11)

In summary: the condition for a light horizon is the vanishing of the left hand side of (3.8)
while for a sound horizon it is the vanishing of the left hand side of (3.11). We will refer to
the left hand side of these equations with the symbol q in figures 3.5, 3.6, 3.7 and 3.8.

In figure 3.5 the left hand sides of (3.8) (light horizon, solid line) and (3.11) (sound hori-
zon, dotted line) are plotted at a time shortly after the sound horizon first forms (t = 38.8).
Note that each curve crosses zero more than once; however it is the outermost crossing for
each curve that is the horizon. Also note that the sound horizon is inside the light horizon,
as we would expect for k-essence that travels faster than light. A similar comparison done at
t = 45 shows that both horizons have merged. In physical terms, the reason for this merger
is that eventually all scalar field either falls into the black hole or escapes from it. Thus at
sufficiently late times there is no scalar field on the horizon, which thus makes the k-essence
effective metric equal to the spacetime metric in that region. Thus, the two horizons very
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Figure 3.3 φ vs r at time t = 45 for A = 0.15 and α = 1.0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100

N

r

Figure 3.4 the lapse function N vs r at time t = 45 for A = 0.15 and α = 1.0
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Figure 3.5 the conditions for light horizon (solid line) and sound horizon (dotted line) at time
t = 38.8 for A = 0.15 and α = 1.0 and L given by (3.7)

quickly coincide early in the collapse process. This would indicate that it is only possible to
send signals from inside the black hole for a very short time window right after a scalar wave
packet falls into the black hole. In contrast, the reason for the persistence of two distinct
horizons in the stationary solution of [31] is that the separation is maintained by a constant
flux of scalar field through the horizon.

Since the Lagrangian of (3.7) essentially coincides with that of a free scalar field for
large α one might expect to find behavior more uniquely characteristic of k-essence by
performing simulations with small α. However, such simulations quickly run into difficulties.
In particular, a simulation withA = 0.15 and α = 0.5 fails shortly after t = 34. At first sight
this is somewhat puzzling, since at times shortly before the simulation fails, the scalar field
shows no signs of the sort of rapid growth that would lead to singular behavior. However,
this mystery was quickly resolved by an examination of (B.20). Note, that this equation
involves division by the quantity LX +LXXP 2 and an examination of the simulation showed
that this quantity was tending towards zero at a particular spatial point just as the simulation
was about to fail. One can understand this phenomenon geometrically as follows: from
(3.5), (B.1) and (B.10) it follows that

g̃tt = − 1

N2
(LX + LXXP 2) (3.12)

So, it is evident that the program crashes when g̃tt = 0. But this is precisely where the

26



-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 4  4.2  4.4  4.6  4.8  5  5.2  5.4  5.6  5.8  6

q

r

Figure 3.6 the conditions for light horizon (solid line) and sound horizon (dotted line) at time
t = 38.5 for A = 0.15 and α = 0.5 and L given by (3.13)

coordinate t fails to be timelike with respect to the k-essence effective metric, and therefore
where the constant t surfaces fail to be Cauchy surfaces for the k-essence field equation.
This sort of condition is familiar from general relativity, where the coordinates must be
chosen so that gtt < 0 in order that the constant t surfaces remain good Cauchy surfaces
for the evolution of the spacetime metric. However, when one is evolving self-gravitating
k-essence it is necessary that the constant t surfaces be timelike with respect to both the
spacetime metric gab and the k-essence effective metric g̃ab.

In order to avoid this problem, one is led to consider Lagrangians other than that of (3.7).
In particular, one could simply change the sign of coefficient of α2 in (3.7) to obtain

L(X) = α2

[
1−

√
1− 2X

α2

]
(3.13)

In figure (3.6) are plotted the results of a simulation using the Lagrangian of (3.13). Here
A = 0.15 and α = 0.5 and the plot is done at a time (t = 38.5) shortly after the formation
of the light horizon. As in figure (3.5) what are plotted are the left hand sides of (3.8) (light
horizon, solid line) and (3.11) (sound horizon, dotted line). As before, the horizons occur at
the outermost point where each curve crosses zero. However, in this case the sound horizon
is outside the light horizon, so there is no possibility of signals escaping from the black
hole. Simulations using the Lagrangian of (3.13) do not seem to have the problem with g̃tt
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vanishing. Nonetheless, these simulations also fail at sufficiently small α. For example,
a simulation with A = 0.15 and α = 0.1 fails at around t = 35. Here the problem is not
g̃tt which remains negative, but rather the vanishing of cs. This is a familiar phenomenon
from simulations of hydrodynamics. When the speed of propagation goes to zero, shock
waves tend to form. One can still simulate such systems, but then special “shock capturing”
numerical methods are needed rather than the simple finite differencing methods we use
here.

We also performed simulations of the Lagrangian given in (3.7) in the absence of gravity.
In this case, we found that for sufficiently small values of α the simulation still eventually
fails due to g̃tt going to zero. This indicates that even the Minkowski time coordinate
eventually ceases to be a valid global time coordinate for the emergent k-essence metric. As
one might expect, no sound horizon was formed in this case.

On the other hand, it is possible to create a sound horizon in the absence of gravity if one
simulates (3.13) with a sufficiently small α. As in the case where we did consider gravity,
these simulations failed due to cs going to zero as opposed to g̃tt going to zero.

3.3.2 Lagrangians Where t is a Valid Global Time Coordinate

Due to the problems encountered using the Lagrangians of (3.7) and (3.13) we are led to
consider Lagrangians with non-standard kinetic terms that do not allow either g̃tt nor cs to
vanish. One such Lagrangian is:

L =
CX

1 + C
+ exp(

X

1 + C
)− 1 (3.14)

where C is a constant. Like the previous Lagrangians considered, this one has the desirable
feature that it reduces to the free scalar field Lagrangian at small values of X . Note that
as long as C is positive, both LX and LXX are positive so g̃tt will not go to zero. Another
requirement is that the k-essence wave equation (3.4) be hyperbolic. The condition for hy-
perbolicity of (3.4) is that LX +2XLXX > 0. (this condition is satisfied for the Lagrangians
of (3.7) and (3.13)). For the Lagrangian of (3.14), LX + 2XLXX has one global minimum
with the value C

1+C
− 2

(1+C)e3/2
. Consequently, as long as we choose C > 0.45, the k-essence

wave equation will be hyperbolic. The results of a simulation using this Lagrangian are
plotted in figure (3.7). Here A = 0.15 and C = 1 and the plot is done at a time (t = 38.5)
shortly after the formation of the light horizon. The plot shows the left hand sides of (3.8)
(light horizon, solid line) and (3.11) (sound horizon, dotted line); and the horizons occur
at the outermost point where each curve crosses zero. Here, the sound horizon is slightly
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Figure 3.7 the conditions for light horizon (solid line) and sound horizon (dotted line) at time
t = 38.5 for A = 0.15 and C = 1.0 and L given by (3.14)

outside the light horizon, so no signal can escape from the black hole.

Another Lagrangian that doesn’t result in either g̃tt or cs vanishing is

L = X + CX2 for X > 0

L = X for X < 0 (3.15)

It is clear that as long as C and X are positive, g̃tt < 0 and LX + 2XLXX > 0. For negative
X the Lagrangian is that of a free field so there are no issues in that regime. The results of a
simulation using this Lagrangian are plotted in figure (3.8). Here A = 0.15 and C = 1 and
the plot is done at a time (t = 38.5) shortly after the formation of the light horizon. The plot
shows the left hand sides of (3.8) (light horizon, solid line) and (3.11) (sound horizon, dotted
line); and the horizons occur at the outermost point where each curve crosses zero. Note that
there is a discontinuity in the dotted line. This is due to the discontinuity at X = 0 of the
quantity LXX . Here, the sound horizon is outside the light horizon, so no signal can escape
from the black hole. Whether or not the sound horizon being outside the light horizon is a
generic feature of k-essence models in which t remains a valid global time coordinate is yet
to be answered.
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Figure 3.8 the conditions for light horizon (solid line) and sound horizon (dotted line) at time
t = 38.5 for A = 0.15 and C = 1.0 and L given by (3.15)

3.3.3 Cosmological Lagrangians

Other models of interest are cosmological k-essence models which serve as dynamical
attractors that cause the field to serve as a cosmological constant at the onset of the matter
dominated era. In general these Lagrangians are of a factorizable form in φ and X , that is
they take the form: L = A(φ)B(X). Two such examples that can be found in the literature
are [2, 28] :

L(φ,X) =
1

φ2
(−2.01 + 2

√
1 +X + 3 · 10−17X3 − 10−24X4) (3.16)

and
L(φ,X) =

1

φ2
(−2.05 + 2

√
1 + f(X)) (3.17)

where

f(X) = X − 10−8X2 + 10−12X3 − 10−16X4

+ 10−20X5 − 10−24X6/26 (3.18)

Note during our simulations with these initial conditions, X does not get much larger than
unity, so we can neglect terms that are higher order in X with small coefficients. Thus, for
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our purposes, both these Lagrangians reduce to approximately:

L(φ,X) =
2

φ2
(−1 +

√
1 +X) (3.19)

The energy density of this field is proportional to 2
φ2

. As we know the universe is approxi-
mately flat, we require that any fluctuation of this field be a perturbation on a large constant
field. Thus, the factor of 2

φ2
in the Lagrangian will amount to a small overall factor. As the

energy density will be negligibly small with large φ, the gravitational effect will be small.
Thus, both (3.16) and (3.17) should reduce to (3.7) in flat space with α = 1 and a small
overall rescaling factor multiplying the Lagrangian. This overall rescaling factor has no
effect in the non-gravitational case. Simulations of (3.7) in flat space with α = 1 result in
no sound horizon but still suffer from having g̃tt go to zero.

3.4 Discussion

Our results show that the gravitational collapse of k-essence scalar fields can lead to black
holes, just as it does for ordinary scalar fields. However, the nature of these black holes is
different. Rather than a single horizon they have two: a light horizon and a sound horizon.
The light horizon is what we ordinarily think of as the black hole horizon. The sound
horizon (the place where the k-essence itself becomes trapped) can either be outside the
light horizon (if the k-essence travels slower than light) or inside the light horizon (if the
k-essence travels faster than light). Thus, k-essence can allow signals to escape from a black
hole. In the cases we study, the black hole is formed by the collapse of a pulse of k-essence.
Eventually all of this pulse either falls into the black hole or escapes from it. Once that has
happened, the two horizons have merged into one, and it is no longer possible for signals
to escape from the black hole. One should be able to maintain the two horizons, and the
possibility of signals escaping from the black hole, by feeding a black hole a steady stream
of k-essence scalar field. This will be the focus of chapter 4.

None of our simulations give any indication of the formation of a naked singularity.
However, in certain cases our simulations fail not because of any singular behavior in the
spacetime itself, but rather because our constant time surfaces fail to be Cauchy surfaces
for the evolution of the k-essence scalar field. Since k-essence was originally proposed
for cosmological models, one might wonder whether cosmological models might also be
vulnerable to this sort of pathology. Here, it is helpful to remember that cosmology treats
a situation that is homogeneous and therefore where all physical quantities depend only
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on time. For k-essence this means in particular that the quantity X is always postive in
cosmology. In our simulations of the k-essence model of (3.7) the constant time surfaces can
fail to be Cauchy surfaces for k-essence only when X is negative. Thus, our gravitational
collapse study brings to light certain properties of k-essence that would not be noticed in
purely cosmological studies. We have also proposed two k-essence Lagrangians for which
this Cauchy surface problem does not occur. It would be interesting to see if a Lagrangian
of this sort could also be used for the usual purpose of k-essence: a natural cosmological
explanation of dark energy.

For those cases where the constant time surfaces fail to be Cauchy surfaces for k-essence,
a natural solution to try would simply be to pick a different time coordinate. However, for
evolution of self-gravitating k-essence the constant time surfaces need to be Cauchy surfaces
for both the gravitational field and the k-essence scalar field. It is not clear whether there
is any time coordinate that will be able to do both jobs. If there is no time coordinate that
can do both jobs, then that particular k-essence Lagrangian would be incompatible with
gravity and would therefore not be a physically sensible theory. However, our study yields
no such assertion of incompatibility because we have used only one time coordinate: that of
maximal slicing. To resolve this issue, it is necessary to try other time coordinates to see
whether they are compatible with both gravity and k-essence. For an example of subsequent
work in different coordinates see [36].
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Chapter 4

Accretion of k-essence Scalar Fields onto
a Black Hole

4.1 Introduction

As we saw in the previous chapter, the gravitational collapse of k-essence fields proceeds
through an intermediate stage of a black hole with two separate horizons, one being the
traditional event horizon that corresponds to the speed of light, and the other being a sonic
horizon which corresponds to the propagation speed of k-essence field perturbations. As
these previous simulations required asymptotic flatness, only k-essence shells with finite
width could be simulated.

Because we know that these k-essence fields can form black holes, an interesting ques-
tion to answer is whether or not these fields eventually settle down and have simple behavior
during accretion onto a Schwarzschild black hole. This is especially pressing because
there have been numerous investigations of the evolution of black holes surrounded by
various non-canonical scalar fields with the assumption that such end behavior occurs
[4, 37, 38, 39, 40, 41, 42].

The simplest set-up for analytical studies of accretion is the steady state or Bondi
accretion [43]. It was shown in [44] that for general k-essence fields exact stationary con-
figurations are possible only for shift symmetric theories 1. Since the Lagrangian has to be
invariant under constant translations in field space, it is a function only of the derivatives
of the scalar field. For such Lagrangians exact stationary solutions have been obtained
[4, 37, 38, 39, 40] and steady state accretion analyzed. Indeed the existence of two separate
horizons, the usual light horizon and a sound horizon which traps k-essence fluctuations,
was to our best knowledge first discussed in [34] for general irrotational hydrodynamics.
While this is very interesting, we would really like to know the outcome of a full dynamical

1For time-like gradients these shift-symmetric theories are equivalent to barotropic perfect fluids (see e.g.
[34, 45, 46]).
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evolution as the scalar field accretes on to the already existing black hole. In this case there
will be a constant influx of scalar fields onto the black hole and it is far from clear that at late
times a stationary or steady state configuration is reached. Because there is a constant influx
of energy, a steady state is only one possibility. Alternatively, the evolution of the scalar
field could result in a singularity, or the end state could be an oscillatory solution rather
than a stationary one (as happens for variable stars). In particular, it was shown in [31]
that for a superluminal Dirac-Born-Infeld (DBI)-type model and sound speeds higher than
2/
√

3 at spatial infinity a steady state solution suffers from catastrophic gradient instabilities
indicating that it is a repeller.

Stability of the steady state accretion is well studied, see e.g. [34] in the case of the
time-like gradients when the shift-symmetric theory is equivalent to hydrodynamics. Since
we are studying the full dynamical evolution of the scalar field, there can be regions where
the gradient of the scalar field is space-like even though we start with a time-like gradient in
our initial conditions. This has no effect on the final state of the scalar field, which we find
is always stationary.

In order to resolve some of these issues, in this chapter we will simulate the accretion
of a test k-essence field. In the case that the end behavior of this k-essence scalar field
during the accretion process is stationary (if the field settles down at all), we will be able
to compare our end result to the stationary analytic solutions found in the literature [4, 39].
This will require us to use cosmological boundary conditions, where at infinite radius we set
the time derivative of the k-essence field to a constant. The two separate horizons can exist
for a long enough time to confirm if signals can escape from the black hole when the sound
horizon is inside the usual black hole horizon.

The chapter is organized as follows: In the next section we discuss the method used
for the simulations and the results are presented in section 4.3. Certain technical details of
the construction of the exact stationary solutions for the models considered are relegated to
appendix C.

4.2 Methods

The action for a k-essence scalar field in a background curved spacetime is

I =

∫
√
g d4xL(X) , (4.1)
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where X = −1
2
gµν∇µφ∇νφ is the standard kinetic term for the scalar field φ and g is the

absolute value of the determinant of the metric gµν . The use of a fixed background means
that we are neglecting the gravitational effects of the scalar field. Varying the action with
respect to φ yields the equation of motion

g̃µν∇µ∇νφ = 0 , (4.2)

with g̃µν being an effective inverse (contravariant) metric associated with the k-essence
acoustic geometry and is given by

g̃µν = LXgµν − LXX∇µφ∇νφ . (4.3)

Here, we introduce the shorthand LX to mean dL/dX and LXX to mean d2L/dX2.

We simulate the evolution of k-essence on a background Schwarzschild spacetime. In
the usual coordinates, the Schwarzschild metric is given by

ds2 = −f(r)dt2 + f−1(r)dr2 + r2(dθ2 + sin2θdϕ2) , (4.4)

where f(r) = 1− (2M/r). However, this coordinate system is not suitable for our simula-
tion, since it becomes singular on the black hole horizon. The usual solution to this difficulty
is to introduce Eddington-Finkelstein coordinates (v, r, θ, ϕ) where v is defined by

v = t+

∫
f−1dr . (4.5)

This coordinate system covers a region that includes the black hole interior; but it also is not
suitable for our purposes since v is a null coordinate, and as with most numerical methods
we require a time-like coordinate. Instead, we use the method of Marsa and Choptuik [47].
Introduce the coordinate T by

T = v − r . (4.6)

Then the Schwarzschild metric takes the form

ds2 = −
(

1− 2M

r

)
dT 2 +

(
1 +

2M

r

)
dr2 +

4M

r
dTdr + r2(dθ2 + sin2θdϕ2) . (4.7)

In order to write the k-essence equation of motion in first order form, we introduce the
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quantites P and S defined by

P = ∂Tφ , (4.8)

S = ∂rφ . (4.9)

(4.8) provides an equation of motion for φ while from (4.9) it follows that

∂TS = ∂rP , (4.10)

which is an equation of motion for S. Finally, some straightforward but tedious algebra
using (4.2) and (4.7) yields the equation of motion for P which takes the form

∂TP =
LXA+ LXXB

C
, (4.11)

where the quantities A, B and C are given by

A =
4M

r
∂rP +

(
1− 2M

r

)
∂rS +

2S + w

r
, (4.12)

B = (S + w)

[
2(P + w)∂rP − (S + w)∂rS −

w2

4M

]
, (4.13)

C =

(
1 +

2M

r

)
LX + (P + w)2LXX , (4.14)

and the quantity w is given by

w =
2M

r
(P − S) . (4.15)

We numerically evolve (4.8), (4.10), and (4.11) as follows: time derivatives are treated us-
ing the iterated Crank-Nicholson method. Spatial derivatives, except those on the boundary,
are evaluated using standard centered differences; that is, for any quantity F we approximate
∂rF at grid point i by

Fi+1 − Fi−1

2dr
, (4.16)

where dr is the spacing between adjacent grid points. At the boundary, spatial derivatives
are evaluated using one-sided differences: that is at grid point 1 we approximate ∂rF by

F2 − F1

dr
, (4.17)
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while at the final gridpoint (point N ) we approximate ∂rF by

FN − FN−1

dr
. (4.18)

Physically appropriate boundary conditions must also be imposed on the k-essence field
at each step of the time evolution. We are treating an overall constant flux of scalar field
along with waves of scalar field that should be outgoing at the outer boundary. Therefore we
impose the condition

P + S = cp , (4.19)

at the outer boundary, where cp is a constant representing the rate of flux of scalar field. At
the inner boundary, we use an excision method appropriate for k-essence. That is, we place
the inner boundary sufficiently far inside the black hole that not only light but also k-essence
modes are trapped and therefore ingoing at that point. Since all modes are ingoing at the
inner boundary, no boundary condition is needed (or even allowed) there, and therefore we
do not impose any boundary condition at the inner boundary.

4.3 Results

Unless stated otherwise, for all results and figures shown we chose the initial data at T = 0

such that φ = 0, S = 0, and P = 0.01. The mass M of the black hole was chosen to be
unity, so the corresponding standard Schwarzschild horizon is located at r = 2 for all shown
simulations.

4.3.1 DBI-Type Action

We will first consider a k-essence scalar field with the DBI-like Lagrangian density:

L(X) = α

[√
1 +

2X

α
− 1

]
. (4.20)

Note that the expression for the speed of sound (for time-like gradients) for this model is

c2
s = 1 +

2X

α
. (4.21)

Thus, for negative α the propagation is subluminal and for positive α the propagation is
superluminal. Moreover, for time-like gradients this field theory reproduces one of the
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Figure 4.1 Profiles of P arrived at via simulation of the accretion of the field described by (4.20).
The solid line corresponds to P at T = 2.97524, the dashed line corresponds to P at T = 14.8762,
and the dotted line corresponds to P at T = 148.771. For this particular plot, we used cp = 0.01,
α = 0.0016, and M = 1.

versions of a rather popular model among cosmologists, the so-called Chaplygin gas with
the equation of state p = −α/ρ, see [48]. This form of the kinetic term with positive α was
proposed for the first time in [49]. The analytical solution for a steady state accretion in
this model was found in [4, 37]. Upon simulating the accretion of this type of k-essence
model into a Schwarzschild black hole, we found that for all positive α where the simulation
ran successfully, the scalar field eventually settled down to a stationary solution. Simulated
profiles for both P and S at various times are shown in figures 4.1 and 4.2.

For sufficiently small values of positive α (for our initial conditions this is approximately
α = 0.001), the simulation did not run successfully. This is because for these values of α, at
some point in the simulation the quantity C given in (4.14) goes to zero. Since this quantity
occurs as the denominator in (4.11), the evolution equation for P becomes singular. To
understand what this means, note that C is proportional to g̃TT = LXgTT −LXX∇Tφ∇Tφ.
Thus, in physical terms, our time coordinate T is no longer a valid global time coordinate in
the emergent k-essence spacetime. This is because when g̃TT = 0, we have:

g̃µν∇µT∇νT = 0 , (4.22)

which indicates∇µT is not time-like in the emergent spacetime. This does not necessarily
mean that there is no scalar function that can serve as a valid global time coordinate, which
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Figure 4.2 Profiles of S arrived at via simulation of the accretion of the field described by (4.20).
The solid line corresponds to S at T = 2.97524, the dashed line corresponds to S at T = 14.8762,
and the dotted line corresponds to S at T = 148.771. For this particular plot, we used cp = 0.01,
α = 0.0016, and M = 1.

would indicate that the emergent spacetime is not stably causal [50].

We also simulated this k-essence model for negative values of α, since in this case we can
ensure that g̃TT 6= 0. Simulated profiles for both P and S for α = −0.0004 at various times
are shown in figures 4.3 and 4.4. In this subluminal case we also find that for all successfully
run simulations the scalar field settles down to a stationary solution. For values of negative
α sufficently close to zero (for our initial conditions this is approximately α = −0.00015),
the simulation did not run successfully due to the speed of sound approaching zero. This is
indicative of a shockwave, which our code was not meant to handle.

For both positive and negative α, it was found that the scalar field would settle down to
a stationary solution for a wide range of initial conditions as long as the same cosmological
boundary condition (P + S = cp) was maintained at infinite radius. An example of such
inital data is:

P =
cp
2

(tanh(r − r0) + 1) , (4.23)

for various choices of cp and r0, with φ = 0 and S = 0.

In order to confirm that the fields did indeed settle down to a stationary solution, we
compared our results to the stationary solution found analytically in [4]. Expressed in our
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Figure 4.3 Profiles of P arrived at via simulation of the accretion of the field described by (4.20).
The solid line corresponds to P at T = 2.97074, the dashed line corresponds to P at T = 14.8537,
and the dotted line corresponds to P at T = 148.536. For this particular plot, we used cp = 0.01,
α = −0.0004, and M = 1.
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Figure 4.4 Profiles of S arrived at via simulation of the accretion of the field described by (4.20).
The solid line corresponds to S at T = 2.97074, the dashed line corresponds to S at T = 14.8537,
and the dotted line corresponds to S at T = 148.536. For this particular plot, we used cp = 0.01,
α = −0.0004, and M = 1.
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Figure 4.5 The solid line is the radial derivative of the stationary solution for φ eventually arrived at
via simulation of the accretion of the field described by (4.20). The dotted line is the radial derivative
of φ for the analytic stationary solution. For this particular plot, we used cp = 0.01, α = 0.0016,
and M = 1. The sound horizon has settled down at r = 1.88. The radial derivative was chosen since
the radial derivative of a stationary solution is time independent.

coordinates, the solution is (for a brief derivation see appendix C):

φ(T, r) = cp

(
T + r +

∫
F (r)dr

)
, (4.24)

where

F (r) ≡ 1

f(r)

(√
c2
∞ + f(r)− 1

f(r) r
4c8∞

16M4 + c2
∞ − 1

− 1

)
, (4.25)

with f(r) = 1− (2M/r), and

c2
∞ ≡ c2

s(r →∞) = 1 +
c2
p

α
. (4.26)

Comparisons between the analytic stationary solution and the ones arrived at via simulation
for both the positive and negative α cases are shown in figures 4.5 and 4.6.

We can define a sonic horizon as being the outermost radius at which null vectors with
respect to the emergent k-essence metric become trapped. The null vectors lµ are defined
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Figure 4.6 The solid line is the radial derivative of the stationary solution for φ eventually arrived at
via simulation of the accretion of the field described by (4.20). The dotted line is the radial derivative
of φ for the analytic stationary solution. For this particular plot, we used cp = 0.01, α = −0.0004,
and M = 1. The sound horizon has settled down at r = 2.67. The radial derivative was chosen since
the radial derivative of a stationary solution is time independent.

by:

g̃−1
µν l

µlν = 0 , (4.27)

where g̃−1
µν is the inverse of g̃µν . We can solve this quadratic equation for lr/lT , taking

the positive root for outgoing null vectors. The sonic horizon is the outermost radius at
which lr/lT = 0. For stationary solutions corresponding to scalar fields with the Lagrangian
density of (4.20), the sonic horizon is located within the Schwarzschild radius for positive α
and located outside the Schwarzschild radius for negative α. To see that this implies that
one can send signals from within a black hole for the superluminal positive α models, we
should plot a set of radial null geodesics with respect to the emergent k-essence metric.
Because for radial null geodesics dr/dT = lr/lT , we can numerically integrate this quantity
to find these geodesics, which are plotted in figure 4.7. As can be seen in figure 4.7, there
exist null geodesics that start inside the Schwazschild radius at T = 0 (when as stated
earlier, P = cp and φ = 0 for all radii) and end up escaping as the field evolves towards
the stationary solution. We want to emphasize that the null k-essence geodesics can escape
a black hole not only in the stationary solution but also during the approach towards the
stationary solution from more general initial conditions.

42



1.8 2.0 2.2 2.4 2.6 2.8 3.0
0

2

4

6

8

10

r

T

Figure 4.7 Outgoing radial null geodesics corresponding to the emergent k-essence metric. For
this simulation, we chose the values cp = 0.01, α = 0.0016, and M = 1. We show five geodesics
that start at r = 1.75, 1.85, 1.95, 2.05 and 2.15. The geodesic starting at 1.75 fails to escape the black
hole; the other four all escape, with two of the escaping geodesics starting within the Schwarzschild
radius at r = 2.

4.3.2 Ghost Condensate Action

Next we consider the ghost condensate models proposed in [51]. These provide a modifica-
tion of gravity in the infrared regime with possible ramifications for the dark matter problem
and inflation. This model is a k-essence like model, where X develops a non-zero vacuum
expectation value. The ghost condensate field is not directly coupled to other fields, so the
only scale in the ghost sector is a, the overall energy scale of the condensate. The simplest
such model is described by [39, 40]:

L(X) =
1

8a4
(X − a4)2 . (4.28)

The sound speed of the scalar field with this Lagrangian is given by:

c2
s =

X − a4

3X − a4
. (4.29)

Thus, by making |a| larger for a fixed value of P (r →∞) = cp (which as stated earlier, we
set at 0.01), we can make the sound speed at infinite radius smaller. We found that for all
simulations with sufficiently large sound speeds, the scalar field eventually settles down to a
stationary solution. The code was not designed to simulate fields with sound speeds close to
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Figure 4.8 Profiles of P arrived at via simulation of the accretion of the field described by (4.28).
The solid line corresponds to P at T = 11.9406, the dashed line corresponds to P at T = 59.7061,
and the dotted line corresponds to P at T = 597.357. For this particular plot, we used cp = 0.01,
a = 0.0638943 (which corresponds to a sound speed at infinite radius having the value c∞ = 1

2 ),
and M = 1.

zero. Simulated profiles for both P and S at various times are shown in figures 4.8 and 4.9.
Note that although our initial conditions have a time-like gradient for the scalar field, during
the course of the dynamical accretion the gradient became space-like at some regions. This
can be seen from figures 4.1, 4.2, 4.8, and 4.9, where for the models given in (4.20) (for
positive α) and (4.28), S is larger than P in some regions of spacetime.

We then compared the stationary solution we found from the simulation to the analyti-
cally derived stationary solution [39]. For this model, deriving the analytic solution involves
solving a cubic equation (for details see appendix C). A comparison of the analytic solution
(evaluated using Mathematica) and the simulated solution at late times is given in figure
4.10.

4.4 Discussion

Upon simulating the accretion of two very different types of non-canonical scalar fields
onto a black hole, we find that both eventually settle down to a stationary solution. This is
reassuring as it suggests that the numerous studies done on the stationary solutions of scalar
field models with non-standard kinetic terms correspond to physically viable scenarios as
opposed to special situations which cannot be reached dynamically from generic initial
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Figure 4.9 Profiles of S arrived at via simulation of the accretion of the field described by (4.28).
The solid line corresponds to S at T = 11.9406, the dashed line corresponds to S at T = 59.7061,
and the dotted line corresponds to S at T = 597.357. For this particular plot, we used cp = 0.01,
a = 0.0638943 (which corresponds to a sound speed at infinite radius having the value c∞ = 1

2 ),
and M = 1.
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Figure 4.10 The solid line is the radial derivative of the stationary solution for φ eventually arrived
at via simulation of the accretion of the field described by (4.28). The dotted line is the radial
derivative of φ for the analytic stationary solution. For this particular plot, we used cp = 0.01,
a = 0.0638943 (which corresponds to a sound speed at infinite radius having the value c∞ = 1

2 ),
and M = 1. The sound horizon has settled down at r = 3.21. The radial derivative was chosen since
the radial derivative of a stationary solution is time independent.
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conditions.
We find that for a k-essence scalar field with a DBI-type action, if the parameters are

chosen such that the field can propagate superluminally, one can send signals from within a
black hole as the field approaches this stationary solution. This was confirmed by numer-
ically integrating outgoing null geodesics with respect to the emergent k-essence metric
during simulations of this accretion process.

Simulations of a typical ghost condensate action revealed that the stationary solution
reached is that derived analytically by Frolov in [39]. He showed that this particular solution
has an extremely high accretion rate, which puts very strong constraints on the ghost conden-
sate model. However, for the case where the sound speed is zero, the solution is ambiguous
(see appendix C for further details). Mukohyama has argued in [40] that the sound speed
should be extremely small on physical grounds, and for corresponding solutions in this
limit the accretion rate is reasonable. As our numerical method is not meant to deal with
extremely small sound speeds, it would be interesting to see this particular issue resolved
with the use of another method.
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Chapter 5

Collinear and Soft Divergences in
Perturbative Quantum Gravity

5.1 Introduction

Now that we have investigated the robustness of a cosmological dark energy model in
the presence of black holes, let us move on to examine the quantum mechanical side of
general relativity. In particular, over the remaining chapters we will research the behavior
of perturbative quantum gravity at energies well below the Planck scale, where the theory
can be unambiguously defined. In this chapter we will start off with an investigation of the
infrared divergences in quantum gravity, as these are among the most interesting low-energy
features of a generic quantum field theory.

Infrared divergences in perturbative quantum gravity were examined long ago in [53],
where the exponentiation of the singular contributions in ladder and the crossed ladder
diagrams was verified by analogy to quantum electrodynamics. In the scattering of massless
particles, or at very high energies, graviton ladder diagrams, like those in QED, also develop
collinear singularities, or “mass divergences”. In contrast to QED, however, collinear sin-
gularities turned out to cancel after the summation of all ladders, when treated in eikonal
approximation. The cancellation of the remaining, non-collinear soft-graviton divergences
between virtual and real ladder emission processes was also pointed out in [53], and
subsequently confirmed in full quantum gravity at the one-loop level in [54].

The infrared behavior of quantum gravity has been revisited recently in [55, 56] in
the context of exploiting analogies between gauge theories to gravity [57]. The study of
perturbative quantum gravity amplitudes and cross sections also complements studies of
nonperturbative quantum gravity at very high energies [58]. In this chapter we analyze
amplitudes for fixed-angle scattering in quantum gravity. We will identify at arbitrary orders
the classes of diagrams that give collinear or soft infrared divergences, and generalize the
cancellation of the former to energetic lines, for which the eikonal approximation does not
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apply in general.

We begin with a study of the collinear sector of quantum gravity, including its coupling
to gauge theory matter, with the aim of complementing the work in [55] and [56], which
concentrated primarily on soft gravitons. We consider amplitudes with all massless exter-
nal lines, all at fixed angles relative to each other, both incoming and outgoing. We will
show that for such “wide-angle” scattering, perturbative amplitudes are free of collinear
singularities altogether to any fixed order, despite their presence on a diagram-by-diagram
basis. This result generalizes the observation of [53] in the eikonal approximation. We
go on to investigate soft graviton singularities, and conclude that they originate only from
ladder exchange between finite-energy lines [55, 56]. To demonstrate these results, we
will use the general infrared analysis developed for gauge theories in [59], [60, 61] and
[62] and elaborated in [63]. To be specific, we consider the harmonic, or de Donder gauge
for the quantization of quantum gravity, with perturbation theory rules, including ghosts
[64, 65, 66, 67, 68] as summarized, for example, in [69, 70] and [71]. Happily, we will not
need the detailed features of the rules, only their covariance and a counting of numbers of
derivatives.

The method of [59] begins with the observation that a necessary condition for infrared
enhancement, whether soft or collinear, is the presence of pinch singularities in subspaces
(pinch surfaces) of virtual loop momentum integrals [72, 73, 74]. Each such pinch surface
is conveniently characterized by a reduced diagram, consisting of the lines that are forced
on-shell at the surface in question.

This analysis is particularly straightforward for wide-angle scattering. At leading power
a single effective vertex in the reduced diagram mediates the hard scattering. Specifically, an
analysis of the pinch surfaces for wide-angle scattering gives for the most general reduced
diagram involving only massless lines (including gravitons) the form shown in Fig. 5.1,
where for purposes of illustration, only four external legs are shown. The letters J and S
denote respectively the jet and soft subdiagrams and H is a hard vertex [59, 60, 61]. At the
pinch surface, all lines in each jet Ji are collinear to each other and to the external line pi to
which they attach, all lines in S carry zero momentum, and all lines in H are off-shell. In the
following sections we study the nature of the various subdiagrams and find that a remarkably
simple structure emerges, as suggested by the eikonal analysis of [53]. The infrared singular
behavior of quantum gravity is simpler than that of massless quantum electrodynamics.

In section 5.2 we introduce a power-counting procedure to identify the types of reduced
diagrams that yield collinear singularities in theories of pure gravity and of gravity coupled
to other matter. The infrared divergences in the pure matter sector have been studied ex-
tensively in the literature so we only focus on the new divergences that arise as a result of
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gravitational interactions. We find that the only types of diagrams that give mass divergences
are those with no internal graviton jet loops, and which contain only three point vertices. We
also show that mass divergences do not arise in diagrams with both standard model particles
and gravitons when only the gravitons attach to an external leg.

Next, in section 5.3 we develop a power-counting procedure to find what types of re-
duced diagrams with virtual gravitons give soft divergences. We find that for the case of
virtual soft graviton corrections to a hard vertex, only diagrams of the ladder type give rise
to soft divergences, as previously observed in [55] and [56]. In addition, we observe that the
representation of divergent soft graviton interactions in terms of Wilson lines, as explicitly
conjectured in [55], follows readily from the cancellation of collinear singularities.

Section 5.4 is devoted to the proof that collinear singularities cancel when all collinear-
divergent diagrams are combined, using a gravitational Ward identity. As an illustration
of how the arguments of section 5.4 work, in appendix D we develop an extension of the
analysis of [53], to show explicitly the cancellation of the graviton collinear singularities for
kinematic regions where the eikonal approximation applies.

5.2 Jet Power Counting

In this section we will build upon a power counting procedure for infrared divergences
developed in [59, 60, 61, 62]. Let us consider a graviton jet attached to a massless on-shell
line with momentum p in an arbitrary diagram as in figure 5.2. The graviton jet reattaches to
the rest of the diagram, labeled “rest” in the figure. For purposes of classification, gravitons
that reattach to the same external leg from which they were emitted are considered as part
of the jet, rather than attached to “rest”. Such external leg corrections do not give rise to
collinear singularities, as we will show later.

Let LJ be the number of loops, NJ the number of lines in jet J, and Nnum the total
power of what we will call “normal variables” in the numerator that arise from the vertices
and propagators of the jet. Normal variables are chosen such that they vanish at the pinch
singular point that causes the infrared divergence. Then, singularities of the integrand appear
through their dependence on normal variables.

The loop momentum integrand corresponding to any Feynman diagram can be made
a homogenous function of the normal variables by keeping only the lowest power in both
the numerator and denominator factors. Counting powers of normal variables then enables
us to determine the finiteness or potential for divergence of the pinch surface in question.
This is measured by the degree of divergence, given by the number of normal variables,
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Figure 5.1 A general reduced diagram at the pinched singular point. J and S denote the jet and soft
subdiagrams and H is a hard vertex. Here each line may represent any number of soft propagators
connecting S to the remainder of the diagram, or the jets Ji to the hard part H.

minus the homogeneity (power in normal variables) of the product of denominators, plus
the homogeneity for the numerators. For examples, see (5.3) and (5.15) below.

In order to identify the normal variables for collinear singularities, let us make a change
of variables in each jet loop integral such that:∫

d4l ∼
∫
dl2⊥dl

+dl− , (5.1)

where l2⊥ includes the two components of the loop momenta l that are transverse to p and l±

is defined as 1√
2
(l0 ±~l · p̂), with p̂ a unit 3-vector in the direction of the jet. This change of

variables actually requires one to evaluate a Jacobian, but we omit this step as this factor will
not contain any singularities. Note that for a collinear line we can rotate to a frame such that
l− and l2⊥/l

+ become small, so we choose these as the normal variables (for convenience,
both with dimensions of mass). With this choice, each jet loop will contribute two normal
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Rest

J

Figure 5.2 A diagram with a graviton jet attached to an external leg. We show the case where there
are two gravitons being emitted from the external line and two gravitons attaching to “rest” but these
can be any numbers. The analysis in section 5.2 shows that the number of gravitons emitted and
attached do not need to be the same.

variables to the total collinear degree of divergence of the diagram. The consistency of this
choice is discussed in [63] and [75]. A similar power counting plays a role in soft-collinear
effective theory [76].

In the de Donder gauge, the graviton propagator is [70]

i

2
[ηαγηβδ + ηβγηαδ − ηαβηγδ] 1

l2 + iε
. (5.2)

Since l2 = 2l+l− − l2⊥, each graviton propagator will be linear in normal variables in the
denominator. Thus, each graviton jet line will contribute −1 to the degree of divergence
from the diagram. In summary, we can write the total collinear degree of divergence of
diagrams of the type shown in figure 5.2 as

γCO = 2LJ −NJ +Nnum . (5.3)

A diagram can have a collinear singularity whenever γCO ≤ 0, and γCO = 0 corresponds to
a logarithmic divergence.

As each jet line connects two vertices, we can also use the relation,

2NJ =
∑
i≥3

iVi +NG , (5.4)

where Vi is the total number of i-point vertices in the diagram, not counting those that attach
to “rest” (see figure 5.2) and NG is the number of gravitons in the jet that attach to “rest”.
Here we treat “rest” as an NG + 1-point vertex in the jet subdiagram, and we do not count
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the external line of the jet in NJ .

We can write the minimum homogeneity of normal variables in the numerator as

Nnum =
1

2
Nmom −min[

1

2
Nmom,

∑
k

k

2
Nk] , (5.5)

where Nmom is the total power of momentum vectors from the vertices in the jet subdiagram
and Nk is the number of vertices with k powers of momentum that are contracted with
non-collinear vectors from “rest”. The factor of 1

2
reflects that the scalar product of the

momenta of any two jet lines is linear in the normal variables of the jet, and hence adds
unity to the overall homogeneity of the numerator. We subtract

∑
k
k
2
Nk from Nnum because

each graviton line attaches to “rest” at a vertex involving some integer, k, of powers of
momenta, collectively denoted p′µ, that are not collinear with pµ. This is why we do not
classify gravitons reattaching to the same leg they were emitted from as part of “rest”, as in
this case p′ = p. The graviton propagator can then contract the momenta in the vertex in
“rest” with momentum vectors from a vertex in the graviton jet. This will result in terms of
order (p · p′)k. These terms are zeroth order in normal variables. That is, at each such vertex,
k/2 factors of momenta that are nearly proportional to pµ can “escape” the jet, forming
“large” invariants that do not vanish at the pinch surface. Thus, we must subtract k/2 from
Nnum for each of the Nk vertices from “rest”. The last term in (5.5) is inserted simply to
ensure that Nnum ≥ 0 in all cases.

For gravity we make the expansion gµν = ηµν + κhµν and take the quantum field to be
hµν . Gravitational vertices correspond to terms in the Lagrangian that are symbolically of
the form κi+j−4∂jhi. Let Vi,j be the number of i-point vertices with j powers of momentum
in the diagram (not including those in “rest”). This allows us to write Nmom as

Nmom =
∑
j

j
∑
i≥3

Vi,j . (5.6)

For the case of pure gravity we can write the Einstein-Hilbert Lagrangian as [77]

LEH =
√
−gR =

1

2
(ĝακĝρσĝ

ρσ
,α + 2ĝακ,α ),κ

+
1

8
ĝακ,ρ ĝ

λβ
,σ (2ĝρσĝλαĝκβ − ĝρσĝακĝλβ − 4ησκη

ρ
λĝαβ) , (5.7)

where a comma denotes an ordinary partial derivative and ĝαβ =
√
ggαβ . When written in

this form, it is easy to see that LEH only has terms with j = 2, so we take all i-point graviton
vertices as having two powers of momentum. Of course from an effective field theory point
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of view [71] there should be higher order terms in R but this will serve only to increase
j in the vertices. Since it is clear from equations (5.3), (5.5), and (5.6) that increasing the
number of derivatives, j will only increase γCO, considering only the linear term in R gives
the most infrared divergent case.

The coupling of matter to gravity is given by κhµνT µν , where T µν is the energy mo-
mentum tensor of the matter field. For bosons, the energy momentum tensor has at least
two derivatives, so this situation is similar to the pure gravity case. For fermions, the
energy momentum tensor is proportional to ψ̄γµ(

−→
∂ ν−

←−
∂ ν)ψ. However, for power counting

purposes, using the Gordon identity we may replace γν by ∂ν/m, where m is the fermion
mass. (For massless fermions, the vanishing normalization of spinors leads to simply ∂ν .)

If we combine the Euler identity (note that for the jet subdiagram we consider “rest” to
be a vertex so the number of vertices in the jet subdiagram is

∑
i Vi + 1),

LJ = NJ −
∑
i≥3

Vi , (5.8)

with equations (5.3), (5.4), (5.5), and (5.6) we get the relation,

γCO =
∑
i≥3

(
i

2
− 2)Vi +

1

2
NG +

1

2

∑
j

j
∑
i≥3

Vi,j −min[
1

2

∑
j

j
∑
i≥3

Vi,j,
∑
k

k

2
Nk] . (5.9)

Let us consider the case where

min[
1

2

∑
j

j
∑
i≥3

Vi,j,
∑
k

k

2
Nk] =

∑
k

k

2
Nk , (5.10)

as this is the more divergent case (since the other option is available solely to prevent Nnum

having an artificially negative contribution to γCO). In this case,

γCO =
∑
i≥3

(
i

2
− 2)Vi +

1

2
NG +

1

2

∑
j

j
∑
i≥3

Vi,j −
∑
k

k

2
Nk . (5.11)

We readily deduce the consequences of this result.

5.2.1 Ladder Diagrams

As a first example, let us consider the simplest case of ladder diagrams (figure 5.3). In
this case, we only have 3-point vertices, which have two powers of momentum, and no
internal jet loops. Thus i = 3, and j = 2. For the case of gravitational couplings k = 2, so
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Rest

Figure 5.3 A typical ladder diagram.

∑
k
k
2
Nk = NG. Applying these conditions we have

γCO = −1

2
V3 + V3,2 −

1

2
NG . (5.12)

For ladder diagrams it is easy to see that V3 = V3,2 = NG, so we have γCO = 0, which
corresponds to logarithmic divergence.

5.2.2 Diagrams with Only Three-Point Vertices

Once again we have i = 3, j = 2. So, V3 = V3,2 and again for gravitational couplings∑
k
k
2
Nk = NG. Therefore we (again) have

γCO =
1

2
(V3 −NG) . (5.13)

Note in the case of diagrams with no internal jet loops as in figure 5.4, we have V3 = NG

and again we have a logarithmic collinear divergence. On the other hand, if we add any
internal jet loops V3 > NG and there is no collinear singularity. Adding a four-point (or
higher) vertex will only increase the collinear degree of divergence and will prevent a mass
divergence. Thus, the only diagrams that give mass divergences are those with no internal
jet loops, and with only three-point vertices. These include the ladder diagrams discussed as
the first example.

5.2.3 External Leg Corrections

As mentioned earlier, graviton lines that reattach to the same leg from which they were
emitted are not considered as lines that attach onto “rest”. This is because in this case the
momenta at the two vertices the graviton line connects are collinear, so we get a numerator
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Rest

Figure 5.4 A diagram with no internal jet loops and only three point vertices.

Rest

Figure 5.5 An example of an external leg correction. These do not result in collinear singularities.

factor that is quadratic in normal variables. Thus, these vertices do not contribute to the
subtraction of Nk from momentum factors in the numerator in equation (5.5). Because of
this, diagrams such as the one in figure 5.5 do not have collinear singularities. For figure 5.5
in particular, using (5.11) we see that γCO = 1. Gauge invariance ensures the cancellation
of the single particle pole (which for power counting purposes corresponds to matching +1

from the normal variables of the numerator with −1 from the on-shell propagator.) We can
see from equation (5.11) that adding further graviton lines cannot decrease the collinear
degree of divergence wherever they are attached. Thus, self energy and other diagrams
with graviton lines that reattach to the same leg from which they were emitted do not have
collinear singularities.

5.2.4 Diagrams with Gravitons Turning into Standard Model Parti-
cles

Let us consider the case where a graviton emitted from one of the external line turns into
standard model particles such as gluons. Such an example is given in figure 5.6. For this
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Rest

Figure 5.6 A graviton jet turning into two gluons.

particular case, (5.3) tells us that

γCO = 2(2)− 4(1) +Nnum = Nnum . (5.14)

If the gluons were gravitons, according to (5.5) and (5.6), we would haveNnum = 1
2
(4)−2 =

0 = γCO and thus a logarithmic collinear singularity. This is because k = 2 for all vertices
of “rest” to which gravitons attach. However, for the case of gluons we would have k = 1 for
all vertices on “rest”. This means that for the case of gluons, Nnum = 1

2
(4)− 1 = 1 = γCO,

so there is no collinear singularity. Note that since γCO ≥ 0 for any diagram involving just
gravitons, adding further graviton lines does not change the situation. Adding a higher point
gluon-graviton vertex such as the one in figure 5.7 does not help, as in this case the the
contribution to γCO from LJ and NJ will already be positive and Nnum is at least zero. For
instance, for the process shown in figure 5.7, 2LJ −NJ = 2. Thus, it is impossible to have
a collinear-divergent diagram with both standard model particles and gravitons where only
the gravitons attach to the on-shell line. Precisely the same reasoning applies to the vector
ghosts of quantum gravity [64, 65, 66], because, although their interactions with gravitons
are not identical to those of photons or gluons, the numbers of derivatives at the vertex is the
same.

In summary, we have found that collinear divergences may be found in diagrams: (1)
with no internal jet loops, (2) with only three-point vertices among gravitons, and (3) that
do not link gravitons to collinear standard model particles. We now turn to soft divergences.
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Rest

Figure 5.7 A graviton jet turning into four gluons.

5.3 Soft Power Counting

So far, we have concentrated on the “jet” subdiagrams of the arbitrary pinch surface repre-
sented in figure 5.1. We now describe the inclusion of interacting soft gravitons [55, 56],
and show how our power counting arguments confirm the conclusion that to fixed order only
ladder-like graphs show soft divergence, factorizable onto products of Wilson lines.

We can carry out power counting for soft divergences simultaneously with collinear
divergences, by considering diagrams of the type shown in figure 5.8, which shows soft
virtual graviton corrections to a hard vertex. All of the graviton lines in S are soft. Each
solid line represents any set of collinear jet lines. In principle, the particles represented
by the solid finite momentum lines can have any spin, as the dominant coupling of soft
gravitons is to momentum flow, and independent of spin [53]. We now define, by analogy to
(5.3) for the degree of collinear divergence, a degree of soft divergence,

γsoft = 4LS − 2NS −NE +Nsn , (5.15)

where LS is the number of loops in S, including loops that link S with the jets, NS is
the number of soft graviton lines, NE is the number of virtual finite momentum lines in
the diagram, and Nsn is the contribution of soft normal variables to the numerator (for
clarification of these quantities, see the example given in figure 5.9). Specifically, we may
take NE to denote the change in the number of finite-momentum lines due to the attachment
of soft gravitons to the jet. For simplicity, therefore, we choose the most singular case, in
which all soft gravitons attach to the jets at vertices with only two finite-momentum lines.

For the soft subdiagram we can choose the normal variables to be all four components
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H

Figure 5.8 Arbitrary diagram with virtual soft graviton corrections to a hard vertex. The finite
momentum lines are drawn with a solid line.

of the loop momenta, so that there is a factor of four times LS in (5.15). With this choice,
all soft graviton denominators are quadratic in normal variables, so there is a factor of minus
two multiplying NS . The denominators of the propagators corresponding to the (nearly
on-shell) virtual finite momentum lines are, by contrast, linear in graviton momenta. Thus,
NE is associated with a factor of minus one. Notice that this requires the scales of normal
variables for soft and collinear momenta to be the same. If, for example, the soft normal
variables are larger than the collinear normal variables, the denominators of finite energy
lines will be independent of the latter, which would eliminate collinear singularities.

The linearity of finite energy lines in soft normal variables, combined with the domi-
nance of jet momenta in the coupling of soft gravitons to finite energy lines is equivalent to
the eikonal approximation. We note that for wide angle scattering there are no additional
pinches that would invalidate the eikonal approximation. We will return to this point below.

Using similar reasoning as with the case of collinear power counting we arrive at the
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H

Figure 5.9 An example of the type of diagram that we discuss in section 5.3. In this diagram
LS = 4, NS = 8, and NE=4.

relations,

2NS =
∑
i≥3

iVi +
∑
m

mN
(m)
hs , (5.16)

NE = Nhs , (5.17)

Nsn =
∑
j

j
∑
i≥3

Vi,j , (5.18)

LS = NS +NE −
∑
i≥3

Vi −Nhs , (5.19)

where again Vi is the number of i-point vertices in S and Vi,j are the number i-point vertices
in S with j powers of momentum. The term N

(m)
hs is the number of vertices at which m soft

lines attach to a finite momentum line, and Nhs =
∑

mN
(m)
hs . Note the vertices that count

towards Nhs do not contribute to the homogeneity of normal variables from the numerator,
Nsn, as their numerator momentum factors are given to leading power by the momenta of
finite momentum lines, independent of soft normal variables. Combining equations (5.15),
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(5.16), (5.17), (5.18), and (5.19), we get

γsoft =
∑
i≥3

(i− 4)Vi +
∑
j

j
∑
i≥3

Vi,j +
∑
m

mN
(m)
hs −Nhs . (5.20)

Using this relation, we see that if there are no soft graviton vertices in S (Vi = 0,
Vi,j = 0) and only vertices with one soft graviton attached to the finite momentum lines
(
∑

mmN
(m)
hs = N

(1)
hs = Nhs) then γsoft = 0, indicating a logarithmic soft divergence. An

example of a diagram that gives a logarithmic divergence is shown in figure 5.10. On the
other hand if there is even one soft vertex in S with j ≥ 2 (as is the case for graviton
vertices), or if there is even one vertex with more than one soft graviton coming off a finite
momentum line (in which case

∑
mmN

(m)
hs > Nhs) then γsoft > 0 and there is no soft

divergence. Thus, in agreement with [55, 56] we have seen that the only diagrams that give
rise to soft graviton divergences are ladder and crossed ladders with only three point vertices
where the ladders attach to finite momentum lines.

The above conclusions apply whether or not the jet subdiagrams consist of single lines or
contain loops. As we shall see in the next section, however, collinear singularities associated
with nontrivial jet subdiagrams cancel, leaving only single finite-energy lines to couple to
the soft gravitons. In this sense, the factorization of soft infrared gravitons conjectured in
[55] is automatic, because as noted above, soft divergences are reproduced by considering
only the linear dependence of finite-energy denominators on soft graviton momenta. In
addition, as we have seen, infrared divergences are associated with the coupling of soft
gravitons to a finite-energy graviton (or matter) line of momentum p through the vertex
κpµpν only. Together, these features of soft graviton infrared divergences are precisely the
perturbation theory rules of the Wilson lines described in [55], and this discussion serves as
a proof of the conjecture there. The importance of the cancellation of collinear singularities
was also noted in [56], and we now turn to a proof of this cancellation independent of the
eikonal approximation for the collinear gravitons.

5.4 Cancellation of Collinear Singularities

In this section we give a general argument for the cancellation of gravitational collinear
singularities using the basic gravitational Ward identity [80] that decouples unphysical
graviton polarizations from physical processes. Our argument is independent of the eikonal
approximation. A combinatoric proof of this cancellation along the lines of [53], in the
special case of the eikonal approximation, is given in appendix D.
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Figure 5.10 An example of a diagram with only three point couplings to hard lines that will lead
to a soft divergence.

We have shown by power counting that collinear singularities require graviton jets that
have no internal loops and only three point vertices. Let us consider the addition of such
a jet to an arbitrary external line with momentum pµ as in figure 5.2, where j gravitons
with momentum lµi and the now off-shell continuation of the original external line with
momentum pµ −

∑
lµi attach to “rest”. We can represent the matrix element corresponding

to such a diagram as [78]

iM =

∫
d4li

(2π)4
J(pµ −

j∑
i=1

lµii , {l
µi
i }){µiνi}

×R(pµ −
j∑
i=1

lµi , {l
µi
i }){µiνi} , (5.21)

where R and J correspond to the “rest” and jet subdiagrams, respectively, and where {µiνi}
represent the 2j spacetime indices corresponding to the j collinear gravitons attached to
“rest”.

Since all the lines attaching to R from J have momenta collinear with the jet momentum
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pµ, we can isolate the leading power behavior near the collinear pinch surface, by making
the replacement lµ → lαv̄

αvµ, where we define the lightlike vectors vµ = δµ+, and v̄µ = δµ−.
Here we are working in the basis of normal variables where momentum vectors now have
the components lµ = (l+, l−, l⊥) and l2 = 2l+l− − l2⊥. After making this replacement and
pulling out the factors of vµ and v̄µ, we can write the function J as

J(pµ −
∑

lµii , {l
µi
i }){µiνi}

→J(pα −
∑

lαii , {l
αi
i }){αiβi}

∏
i

v̄αi v̄βivµivνi . (5.22)

It is easy to see that to leading power in normal variables

J(pα −
∑

lαii , {l
αi
i }){αiβi}v̄αi v̄βivµivνi =

J(pα −
∑

lαii , {l
αi
i }){αiβi}

nαi

n · li
nβi

n · li
li,µili,νi , (5.23)

for any vector nα that is not collinear with lµi by making the substitution lµ → lαv̄
αvµ on

the right hand side of (5.23). Thus, we can write (5.21) as

iM =

∫
d4li

(2π)4
J(pα −

∑
lαii , {l

αi
i }){αiβi}

×
∏
i

nαi

n · li
nβi

n · li
lµilνi

×R(pµ −
∑

lµii , {l
µi
i }){µiνi} . (5.24)

This is known as the “collinear approximation” [78, 79]. We see from (5.24) that in the
collinear approximation the j gravitons that attach to “rest” are longitudinally, or “scalar”,
polarized. This allows us to use the on-shell Ward identity for gravitons [80], which enforces
the decoupling of such unphysical polarizations,

lµj lνjS ...µjνj ... = 0 . (5.25)

where S ...µjνj ... is an arbitrary S-matrix element with the polarization tensors factored out.
For our particular case, we can apply the Ward identity to the subdiagram “rest”, which
includes an external line with momentum pµ −

∑
lµi . In R, the latter may be considered

on-shell with physical or scalar polarization, up to corrections that are higher order in normal
variables. Diagramatically this can be expressed by figure 5.11, which corresponds a single
longitudinally, or scalar, polarized graviton (n = 1) attached to “rest”, which is drawn with
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Rest Rest

Figure 5.11 The Ward identity for the case n = 1

Rest Rest Rest

Rest Rest

Figure 5.12 The Ward identity for the case n = 2. We do not explicitly show the diagrams where
the longitudinal gravitons are interchanged.

a dotted line. The Ward identify (5.25) tells us that the sum of the diagrams shown on the
left hand side of figure 5.11 and the attachment of the longitudinally polarized graviton on
the external line shown on the right hand side is zero. The right hand side of figure 5.11 has
the same collinear degree of divergence as a self energy correction, which we previously
showed does not have a collinear singularity.

The application of the Ward identity to the case of two longitudinally polarized gravitons
(j = 2) attached to “rest” is shown in figure 5.12. Note the first and third diagrams on
the right hand side of figure 5.12 contain a self energy-like correction, so these are not
collinearly divergent. The second and fourth diagrams result in an internal jet loop, and
we know diagrams containing such loops are also not collinear-divergent. So there are no
collinear singularities for this case either. Thus, the use of the Ward identities on (5.24)
allows us to rule out any collinear singularity in the sum of diagrams contributing to it.
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For gauge theories, by contrast, collinear singularities remain in the corresponding set of
diagrams when the Ward identities are applied [78]. The application of this reasoning to
collinear gauge particles results in the factorization, rather than cancellation, of collinear
singularities.

It is clear that adding any number of longitudinally polarized gravitons and applying the
Ward identity in the manner above will always result in either additional self energy-like
corrections or internal jet loops, which as we have seen preclude collinear singularities.
Thus, while diagrams where an external leg emits a graviton jet with no internal loops and
only three point vertices may be divergent on a diagram by diagram basis, when we consider
the attachment of such a jet with the rest of the diagram, the Ward identity insures that
collinear singularities cancel. It is instructive to verify the cancellation for the case where
collinear gravitons are relatively soft, so that we may apply the eikonal approximation. This
is shown in appendix D.

5.5 Discussion

In this chapter we have introduced a power-counting procedure in order to see what types of
reduced diagrams yield collinear and soft divergences in perturbative quantum gravity. For
the fixed-angle elastic scattering amplitudes that we have considered, we find that the only
types of reduced diagrams that give soft divergences are those of the ladder and crossed
ladder type, where the soft gravitons interact only with finite momentum lines and not with
each other [55, 56]. These diagrams give rise to logarithmic soft divergences, which do not
cancel when all diagrams of a given order are summed for an amplitude with fixed external
lines.

For the case of collinear singularities, we see that the only types of diagrams that give
mass divergences are those with no internal jet loops and only three-point vertices. These
include the ladder and crossed ladder diagrams [53]. When all possible diagrams of this
class are summed the Ward identity insures that the collinear singularities cancel. This is
in contrast to the case of massless QCD or other massless gauge theories, where collinear
singularities factorize rather than cancel.

The absence of collinear singularities has its basis in classical physics, where gravita-
tional radiation is more suppressed in the collinear direction than electromagnetic radiation.
Indeed, the leading multipole contributing to electromagnetic radiation is dipole while for
gravitational radiation it is quadrupole. This can be seen conveniently in the rates of the
lowest order modes of radiation in the two theories [81]. For electromagnetic radiation
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sourced by an electric dipole with dipole moment p oscillating with frequency ω, the energy
rate is

d2E

dΩdt
= ω2(

ω2p2

8πc3
) sin2 θ . (5.26)

For gravitational radiation sourced by a mass M with trajectory R(t) = R0 sinωt the energy
rate is

d2E

dΩdt
=
Gω6M4R4

0

4πc3
sin4 θ, (5.27)

which clearly shows the additional suppression in the forward direction. As we will see in
chapter 6, this absence of collinear singularities in gravity can have interesting consequences
for gauge theories as well.

The discussion in this chapter has dealt with wide-angle scattering only. These methods
may be useful as well, however, in studies of higher order corrections for the Regge limit
in quantum gravity [82, 83, 84], and of higher-order cancellations between virtual and real
radiation.
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Chapter 6

Relationship Between Gravity and
Gauge Scattering in the High Energy

Limit

6.1 Introduction

In the previous chapter we saw that infrared divergences in perturbative quantum gravity
have interesting and simple structure. Another facet of this theory that has been an object
of great interest is the relationship between gravity and gauge theory amplitudes [7, 85].
This relationship is thought to endure to all loop orders and would imply a much deeper
relationship between gravity and gauge theories than is apparent at the Lagrangian level. It
is this connection we wish to explore further in this chapter in the context of a simplified
approximation scheme, the eikonal approximation, relevant for high energy large s and
small t scattering. It has been known for some time [86] that there is a relationship between
the amplitudes in the eikonal scheme to the scattering of a quantum particle in a classical
shockwave background. In an attempt to extend the double copy relation beyond the domain
of scattering amplitudes, we also explore the relationship between the relevant shockwave
solutions in gravity and gauge theories. Our results support the double copy conjecture on
both fronts.

High-energy graviton-graviton scattering in the eikonal approximation has attracted
interest because of the potential relevance of the large s small t regime to black hole pro-
duction [6, 86, 87, 88, 89, 90, 91, 92]. Furthermore, this approximation scheme has been
used to investigate gravitational infrared divergences, which have been shown to have an
elegant and simple structure [11, 53, 93]. For the purposes of this chapter, a key result of
these investigations, which holds beyond the eikonal approximation, is that for scattering
amplitudes in perturbative quantum gravity, the collinear divergences completely cancel to
all loop orders. This will be used to identify the class of gauge theory diagrams that partici-
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pate in the double copy relation with the gravity amplitudes in the eikonal approximation.
Within this class of diagrams, the collinear divergences cancel amongst themselves. As we
will discuss later, there are many other gauge theory diagrams with different group structure
that are present in the eikonal approximation. For the double copy conjecture to work, the
collinear divergences must cancel between these separately. This has not been explicitly
verified in this chapter, and would be an interesting subject for future research.

In light of these new developments, as mentioned above, we have investigated whether
or not it is possible to elucidate a double copy relationship between gravity and gauge theory
amplitudes in the eikonal approximation. Some progress along these lines has been made in
[94], where the insertion of infrared gravitons and gluons into a tree level diagram with hard
momentum exchange was investigated. The results of this investigation upheld the double
copy conjecture in the infrared approximation to all loop orders. However, in this chapter
we will be considering high energy scattering at large s and small t where there is no hard
momentum transfer at all. This situation is drastically different for a number of reasons.
First, the large s and |u| limit is such that the number of diagrams contributing at leading
order in 1/s is reduced greatly. Secondly, in this approximation the numerator factors do not
contain any factors of the loop momenta, as these are suppressed compared to the external
momenta. Thus the numerator factors are uniquely fixed in terms of the external momenta
in both the gauge theory and the gravity side. In a certain sense this makes the analysis
easier. On the other hand, the arguments of [7, 85] do not directly apply to such a situation.
Fortunately, the fact that collinear divergences in gravity cancel allows us to identify which
gauge theory diagrams participate in the double copy relation.

Another aspect of the relationship between eikonalized gravity and gauge theory am-
plitudes that we have explored in this chapter concerns classical shockwave solutions
[95, 96, 97]. We detail a new method to directly derive both gravity and gauge shockwaves
using eikonalized field-theoretic methods, and show that due to the direct nature of this
derivation these shockwaves reflect the double copy relation as well. This double copy
relation is only clearly seen in a certain gauge, which seems to be a generic property of such
relations. We would like to emphasize that this is one of the few instances where a double
copy relation has been studied for classical solutions to the two theories in question and that
in order to make this analysis we necessarily had to restrict ourselves to the eikonal regime
where there is no hard momentum transfer.

A pedagogical review of eikonal graviton-graviton scattering is given in section 6.2.1.
Analogous gluon-gluon scattering results and the restrictions necessary to get a double
copy relation are described in section 6.2.2. The resultant eikonal double copy relation is
described in section 6.2.3. In sections 6.3.1 and 6.3.2 we derive respectively the gravity and
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QCD shockwaves before describing their relationship in section 6.3.3. In the final section
we review our results.

6.2 Eikonal Scattering

In this section we present results on high-energy graviton-graviton and gluon-gluon scatter-
ing in the eikonal limit, with incoming momentum (p, q) and outgoing momentum (p′, q′).
As mentioned previously, we will work in the kinematic limit of large s and small t and
keep only the leading contributions. Thus, up to corrections of order 1/s, only the t channel
exchange diagrams contribute. Also in keeping with the eikonal approximation, we will
neglect all the loop momenta in the numerator factors, and replace the denominators of all
propagators by the rule:

(P +K)2 −m2 + iε→ 2P ·K + iε, (6.1)

where, P is an external momentum and K denotes any combination of internal loop mo-
menta. We will begin with a review of graviton-graviton scattering before moving on to the
case of gluon-gluon scattering.

6.2.1 Gravity

Let use start with a review of the gravity case in order to establish our conventions and
because we will be using these results in later sections. We will be working in the de Donder
gauge and the frame where ∆ = p′ − p is such that ∆0 = ∆z = 0, in coordinates where
p is in the positive z-direction and q is in the negative z-direction. This is the center of
momentum frame in the kinematic regime where we can ignore the transferred momentum
compared to the incoming and outgoing momenta.

Tree Level

Let us first work with the simplest case where only a single graviton is exchanged (figure
6.1). In this case, the matrix element corresponding to this diagram is:

M1 = (−iκ
2

)2 i

2

Lµναβ
∆2 + iε

ταβγδση(p)τµνωερλ(q)εγδ(p)ερλ(q)ε
∗
ση(p)ε

∗
ωε(q) (6.2)
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Figure 6.1 A scattering process with a single graviton/gluon exchanged.

where:

Lµναβ = ηµαηνβ + ηµβηνα − ηµνηαβ (6.3)

is the numerator of the de Donder gauge graviton propagator and

τµνωερλ(q) ≈ qµqνLωερλ (6.4)

is the three graviton vertex in the eikonal limit. Thus, we have for the one graviton exchange
amplitude:

M1 = (−iκ
2

)2 is2

∆2 + iε
. (6.5)

One-Loop

Let us now consider the scattering process where two gravitons are exchanged. At this order
there are two diagrams, the box and the crossed box (figures 6.2 and 6.3). In this case, the
matrix element becomes:

M2 = (−iκ
2

)4 1

16
Lγ′δ′σ′η′Lρ′λ′ω′ε′τ

α2β2σ′η′ση(p)τα1β1γδγ′δ′(p)τµ1ν1ρ
′λ′ρλ(q)τµ2ν2ωεω

′ε′(q)

×
∫
d4k1d

4k2

(2π)4
δ(k1 + k2 + ∆)

1

k2
1 + iε

1

k2
2 + iε

1

−2p · k1 + iε

× [
Lα1β1µ1ν1Lα2β2µ2ν2

2q · k1 + iε
+
Lα1β1µ2ν2Lα2β2µ1ν1

2q · k2 + iε
]εγδ(p)ερλ(q)ε

∗
ση(p)ε

∗
ωε(q) (6.6)
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Figure 6.2 The box diagram.

Figure 6.3 The crossed box diagram.

where the sum on the third line is the sum over the two diagrams. It is apparent that even
at the one-loop level there are a huge amount of internal space-time indices. The situation
greatly simplifies when one uses the identities:

τα1β1γδγ′δ′(p)τµ1ν1ρ
′λ′ρλ(q)Lα1β1µ1ν1 =

s2

2
Lγδγ

′δ′L
′λ′ρλ

Lγδγ
′δ′Lγ′δ′σ′η′L

σ′η′ση = 4Lγδση

Lγδσηεγδ(p)ε
∗
ση(p) = 2. (6.7)

That is, each “rung” of the ladder gives a factor s2

2
, each propagator on the two “legs” of the

ladder gives a factor of 4, and there is an overall factor of 4 coming from the contractions of
the polarization tensors. So, with our normalizations, the contraction of all the space-time
indices in a ladder or crossed ladder diagram gives a factor of 1

4
(8s2)n, where n is the

number of gravitons exchanged.

70



Thus we have that:

M2 = (−iκ
2

)4s4

∫
d4k1d

4k2

(2π)4
δ(k1 + k2 + ∆)

1

k2
1 + iε

× 1

k2
2 + iε

1

−2p · k1 + iε
[

1

2q · k1 + iε
+

1

2q · k2 + iε
]. (6.8)

n− 1 Loop

Let us now consider the case where n gravitons are exchanged within the diagram. In this
case after applying the identities in (6.7) we have:

Mn = −(−iκ
2

)2n(−is2)n
∫ ∏n

i d
4ki

(2π)4n−4
δ(

n∑
i

ki + ∆)

×
n∏
i

1

k2
i + iε

n−1∏
i

1

−2p ·Ki + iε

∑
perms

[
n−1∏
i

1

2q ·Ki + iε
] (6.9)

where Ki ≡
∑i

j kj and the sum over permutations in the last line generates all of the distinct
ladder and crossed ladder diagrams at this loop order.

Exponentiation

We will now proceed to show that the expression for the n− 1 loop scattering amplitude
(6.9) implies that the eikonal amplitude exponentiates. We will find it useful to evaluate this
integral in light-cone coordinates. We then have:

Mn = 2s(−iκ
2

)2n(
is

2
)n
∫ ∏n

i dki+dki−d
2ki⊥

(2π)4n−4
δ(

n∑
i

ki+)δ(
n∑
i

ki−)δ(
n∑
i

ki⊥ + ∆⊥)

×
n∏
i

1

k2
i + iε

n−1∏
i

1

Ki− − iε
∑
perms

[
n−1∏
i

1

Ki+ + iε
]. (6.10)

We will find it very useful to use the identity (a proof is outlined in appendix E for complete-
ness):

δ(ω1 + ...+ ωn)
∑

Perms of ωi

1

ω1 + iε
...

1

ω1 + ...+ ωn−1 + iε
= (−2πi)n−1δ(ω1)...δ(ωn)

(6.11)
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over the ki+ coordinates to arrive at:

Mn = 2is(−iκ
2

)2n(−s
2

)n

×
∫ ∏n

i dki−d
2ki⊥

(2π)3n−3
δ(

n∑
i

ki−)δ(
n∑
i

ki⊥ + ∆⊥)
n∏
i

1

k2
i⊥

n−1∏
i

1

Ki− − iε
. (6.12)

We can then symmetrize the integrand in the ki− coordinates and again use (6.11) to arrive
at:

Mn = −2s

n!
(−iκ

2
)2n(

is

2
)n
∫ ∏n

i d
2ki⊥

(2π)2n−2
δ(

n∑
i

ki⊥ + ∆⊥)
n∏
i

1

k2
i⊥
. (6.13)

If we then Fourier transform the amplitude into impact parameter space we arrive at:

Nn =
1

(2π)2

∫
d2∆⊥Mne

−ib⊥·∆⊥

= −2s

n!
[
−iκ2s

8

∫
d2k⊥
(2π)2

1

k2
⊥
eib⊥·k⊥ ]n. (6.14)

So we see that when we sum over all n we have for our full Fourier transformed amplitude:

N = −2s[eiχ − 1] (6.15)

where:

χ = −κ
2s

8

∫
d2k⊥
(2π)2

1

k2
⊥
eib⊥·k⊥ . (6.16)

This reproduces the well known result that the amplitude exponentiates in impact parameter
space.

6.2.2 QCD

In this section we identify the set of gauge theory amplitudes at each loop order that can par-
ticipate in a double copy relation with the gravity amplitudes derived in the previous section
in the eikonal approximation. To be specific, we seek a double copy relation which relates
the gravity amplitudes to two gauge theory amplitudes, both of which are in the eikonal
approximation. As mentioned previously, an important constraint is that on the gauge theory
side, all the collinear divergences have to cancel. This constraint becomes relevant because
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Figure 6.4 The set of two-loop ladder diagrams relevant for the double copy relation in the eikonal
approximation. For the same color factors the collinear divergences between these cancel.

for gauge theories there are more diagrams in the leading eikonal approximation than those
discussed in the previous section for the gravity case.

While it is well known that only ladder and crossed ladder diagrams contribute to the
graviton scattering amplitude at leading eikonal order, this is not the case for nonabelian
gauge theories such as QCD. The eikonal approximation in QCD has been extensively
studied in the context of the Reggeization phenomenon. [98] depicts all the diagrams to the
third loop order and summarizes the result of investigations in this area. For an interesting
attempt to investigate high-energy QCD scattering using less standard methods, see [99],
who model the scattering process as a simplified two dimensional effective field theory.

One of the big differences between QCD and gravity at the one loop order stems from
the fact that the corresponding box and crossed box diagrams (figures 6.2 and 6.3) come
with different color factors. Each of the corresponding Feynman integrals contributes a ln s

term coming from a collinear divergence and for gravity these ln s terms cancel between
the two diagrams. However, this cancellation is prevented in QCD because of the different
color factors for the two diagrams.

For example, at the one loop level the box graph has a color factor of (T aT b)ij(T
aT b)kl,

whereas the the crossed box gives (T aT b)ij(T
bT a)kl. Here, T a are the matrices in

the adjoint representation and (ij) and (kl) denote the color indices of the external
gluons. We may rewrite the color factor of the crossed box as (T aT b)ij(T

bT a)kl =

(T aT b)ij(T
aT b)kl + 3

2
(T a)ij(T

a)kl. Thus the sum of the two diagrams now has a piece
proportional to the same color factor (T aT b)ij(T

aT b)kl and a piece which has the same
color factor as the tree level diagram. The piece proportional to (T aT b)ij(T

aT b)kl is just
like the contribution in gravity for which the ln s terms cancel, and the term proportional to
3
2
(T a)ij(T

a)kl contains a ln s term which together with similar pieces from higher orders
containing higher powers of ln s terms then Reggeizes the one gluon exchange amplitude
[98, 100]. The key point now is that it is only the first type of contribution which is relevant
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Figure 6.5 The seagull diagram.

for the double copy relation. This is because the leading numerator factors in the eikonal
approximation have no dependence on loop momenta, so these logarithms will persist even
once the double copy conjecture is applied. However, as collinear singularities are known to
be absent in gravitational amplitudes, we will need to systematically restrict our attention
to a subset of the QCD amplitudes that has no such logarithms. When the double copy
relation is applied to the full gauge theory the cancellation of those ln s terms which are
responsible for gluon Reggeization proceeds through terms other than those given by the
leading eikonal approximation and the exact mechanism for this is beyond the scope of this
chapter. (The fact that all the collinear divergences do cancel in the gauge theory side once
the exact double copy relations are applied has been explicitly checked at fixed order for
some theories in [101]). As we discuss later in this section, this argument can be easily
extended to higher loop orders and the net result is the following: In order to eliminate the
ln s contributions which arise from collinear divergences, we restrict our attention only to
those diagrams in the scattering amplitude that are same ones as considered for the case of
gravitational eikonal scattering and have the common color structure of an uncrossed ladder
diagram (for instance, the color factors associated with figure 6.2 and the first diagram of
figure 6.4 at orders g4 and g6, respectively). The fact that the ln s dependence in such terms
cancel through sixth-order in the coupling constant was seen in [98, 100]. We show this
cancellation endures to all orders in the following sections.

Before we proceed to a systematic discussion of the class of diagrams of interest to
us for checking the double copy relation in the eikonal approximation, we would like to
comment on the contributions of the seagull and the triangle type diagrams shown in figure
6.5 and figure 6.6 respectively.

Let us begin with diagrams with seagull type interactions (for example figure 6.5). We
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Figure 6.6 The triangle diagram.

will show that these are subleading in the eikonal approximation even for the case of gauge
theories. In order to see this, note that the Feynman integral for this diagram is:

Isea =

∫
dk1+dk2+dk1−dk2−d

2k1⊥d
2k2⊥

(2π)4
δ(k1+ + k2+)δ(k1− + k2−)

× δ2(k1⊥ + k2⊥ + ∆⊥)
1

k1+k2+q−

1

k1− −
k21⊥
k1+

+ iε
k1+

1

k2− −
k22⊥
k2+

+ iε
k2+

1

k1+ + iε
(6.17)

We have assumed there are two vertices attaching onto the bottom leg but switching to the
case where two vertices attach to the upper leg is trivial. Using the delta function over k2−

we have:

Isea = −
∫
dk1+dk2+dk1−d

2k1⊥d
2k2⊥

(2π)4
δ(k1+ + k2+)

× δ2(k1⊥ + k2⊥ + ∆⊥)
1

k1+k2+q−

1

k1− −
k21⊥
k1+

+ iε
k1+

1

k1− +
k22⊥
k2+
− iε

k2+

1

k1+ + iε
(6.18)

Now let us consider the integration over k1−. Due to the delta function δ(k1+ + k2+) we see
that both poles in k1− must lie on the same side of the real axis. Now, it is well known (for a
pedagogical discussion see [63]) that infrared sensitive effects only arise from pinch singular
points. Because of this, it is easy to see that the above does not contain any infrared effects.
Thus a Feynman integral with eikonalized propagators will not have any leading-order
contributions for diagrams with a seagull interaction.

Note that we can extend the above reasoning for the case of diagrams with a three point
interaction at one loop order as in figure 6.6. This is because the only difference between
the Feynman integral of the seagull diagram (figure 6.5) and the triangle diagram (figure
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6.6) are numerator factors of ki+, which do not alter the presented argument.

Keeping these things in mind, in this section we give the expressions for the matrix
elements of diagrams contributing to high-energy gluon-gluon scattering at leading eikonal
order. As discussed earlier, we only retain terms with the color structure corresponding to
uncrossed ladder diagrams and keep only the lowest order coefficient of each color factor.
We explicitly show what we mean by this below.

Tree Level

We will start by stating the tree level result. This is straightforward at leading eikonal order
since any of the polarization vectors contracted with its own momenta gives zero, which
kills all of the factors in the three-gluon vertex at leading eikonal order except for one from
each vertex.:

A1 = i
g2

∆2
gαβgρσ(p+ p′) · (q + q′)facbfadeεα(p)ερ(q)ε

∗
β(p′)ε∗σ(q′)

≈ i
2g2s

∆2
F1 (6.19)

where we have written the color factor as F1 = (T a)ij(T
a)kl.

One-Loop

Let us now move on to the one-loop level. Much like in the graviton scattering case, at
leading eikonal order the kinematic factors in the vertices have a very simple structure.

This is due to the fact that the eikonalized three-gluon vertex gives a factor of 2iT agαβpµ

on the top leg and a factor of 2iT agαβqµ on the bottom leg. This is because all other vertex
factors are proportional to momenta that will contract with either itself or their corresponding
polarization vector. As the factors of gαβ in the vertices contract to give a factor of ε · ε∗ = 1,
we are left with a factor of −2s for each “rung” of the ladder, multiplied by a diagram
dependent color factor. Thus at one-loop we have for the matrix element:

A2 = 4s2g4

∫
d4k1d

4k2

(2π)4
δ(k1 + k2 + ∆)

1

k2
1 + iε

× 1

k2
2 + iε

1

−2p · k1 + iε
[

F2

2q · k1 + iε
+

F ′2
2q · k2 + iε

] (6.20)

where the sum in the second line represents the box and crossed box diagrams and

76



F2 = (T aT b)ij(T
aT b)kl and F ′2 = (T aT b)ij(T

bT a)kl are their respective color factors.
Recall that we can use the group theory relation:

F ′2 = F2 +
3

2
F1 (6.21)

To arrive at:

A2 = 4s2g4F2

∫
d4k1d

4k2

(2π)4
δ(k1 + k2 + ∆)

1

k2
1 + iε

× 1

k2
2 + iε

1

−2p · k1 + iε
[

1

2q · k1 + iε
+

1

2q · k2 + iε
] +O(g4)F1 (6.22)

where we have ignored the term proportional to F1 since it has an uncanceled collinear
divergence. Note that a convenient bookkeeping device is to keep only the term that is lowest
order in the coupling constant for each relevant color factor. In this case, the contribution to
F1 from (6.22) is higher order than the contribution from (6.19).

At the two-loop level we will consider only the set of diagrams in figure 6.4. Our pre-
scription is to then commute the color factors so that in the end we only retain a contribution
with a color factor of the first diagram in figure 6.4.

n− 1 Loop

We now state the expression for the matrix element at the n− 1 loop level. Knowing that we
get a factor of −2s times a color factor for each “rung” of the ladder makes this task very
straightforward. We have:

An = −g2n(−2is)n
∫ ∏n

i d
4ki

(2π)4n−4
δ(

n∑
i

ki + ∆)

×
n∏
i

1

k2
i + iε

n−1∏
i

1

−2p ·Ki + iε

∑
perms

[
n−1∏
i

cperm

2q ·Ki + iε
] (6.23)

where the sum over permutations that generate all the distinct ladder and crossed ladder
diagrams at this order now include the distinct color factor for each of these diagrams, which
we write as cperm. Note that as we did in the 1-loop case, we can commute the terms in each
distinct color factor so that they all are reduced to Fn = (T a1T a2 ....T an)ij(T

a1T a2 ....T an)kl,
the color factor corresponding to the n− 1 loop uncrossed ladder diagram, plus terms that
have color factors corresponding to lower loop diagrams but are ignored due to having higher
power dependence on the coupling constant. These latter terms have collinear divergences

77



and are therefore of no interest to us. Thus we can write:

An = −g2nFn(−2is)n
∫ ∏n

i d
4ki

(2π)4n−4
δ(

n∑
i

ki + ∆)

×
n∏
i

1

k2
i + iε

n−1∏
i

1

−2p ·Ki + iε

∑
perms

[
n−1∏
i

1

2q ·Ki + iε
] +O(g2n)Fi≤n−1 (6.24)

Note that it is clear that the above expression will not have any collinear divergences since
we can proceed as we did in section 6.2.1 and integrate over the + and − components of all
the loop momenta, leaving only transverse components.

6.2.3 Double Copy Relation

We have seen in the last section that by retaining only the lowest order coefficient of color
structures corresponding to uncrossed ladder diagrams, we can eliminate all collinear loga-
rithms in the QCD eikonal scattering amplitude. Now that we have identified the correct
subset of the amplitude to consider, a double copy relation is seen immediately, as:

(−i)n−1

g2n
An = −iF̃nsn

∫ ∏n
i d

4ki
(2π)4n−4

δ(
n∑
i

ki + ∆)
n∏
i

1

k2
i + iε

×
n−1∏
i

1

−2p ·Ki + iε

∑
perms

[
n−1∏
i

1

2q ·Ki + iε
] (6.25)

where we have rescaled Fn → F̃n
(−2)n

as prescribed by [85]. We then see from (6.9) that:

(−i)n

(κ/2)2n
Mn = −s2n

∫ ∏n
i d

4ki
(2π)4n−4

δ(
n∑
i

ki + ∆)
n∏
i

1

k2
i + iε

×
n−1∏
i

1

−2p ·Ki + iε

∑
perms

[
n−1∏
i

1

2q ·Ki + iε
] (6.26)

so we see that if we replace the color factor F̃n with the numerator factor −isn the gravita-
tional result is recovered.
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Rest

Figure 6.7 A high energy graviton/gluon interacting with the rest of the diagram through eikon-
alized graviton/gluon exchange. We show the case with n = 4 gravitons/gluons for purposes of
illustration.

6.3 Connection to Shockwaves

In this section we will explore the possibility of replacing a fast moving particle in interac-
tion with the rest of an arbitrary Feynman diagram by an external potential. In particular,
we will present a field theoretic calculation that directly illustrates the connection between
the eikonal approximation and shockwaves. This is done by comparing the expressions
for the interaction of an arbitrary diagram through eikonalized graviton or gluon exchange
with a relativistic graviton/gluon line (figure 6.7) to that of its interaction with external
tensor/vector field sources (figure 6.8).

6.3.1 Aichelberg-Sexl Metric

We first start with the gravitational case, for which the shockwave is described by the
Aichelberg-Sexl metric. Let us consider an arbitrary diagram R interacting with a relativistic
graviton line by exchanging n eikonalized gravitons. In this case using similar methods to
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Rest

Figure 6.8 Interaction of the rest of the diagram with an external tensor/vector field. We show the
case with n = 4 gravitons/gluons for purposes of illustration.

those used in section 6.2.1 we see that the matrix element corresponding to this process is:

M(A)
n = −i(iκ)n

∫ ∏n
i d

4ki
(2π)4n−4

δ4(
n∑
i

ki + ∆)
n∏
i

qµiqνi

×
n∏
i

1

k2
i + iε

∑
perms

[
n−1∏
i

1

2q ·Ki + iε
]R{µi,νi}({pi}, {ki}) (6.27)

where R{µi,νi}({pi}, {ki}) denotes the expressions for the rest of the diagram. The pi are
the momenta going into and out of rest, ki are the momenta attaching the hard line to rest,
(q, q′) are the incoming and outgoing momenta of the hard line, and we are still defining
∆ = p′−p = q− q′, where p is the net momentum going into R and p′ is the net momentum
going out. We can now simplify our result using (6.11):

M(A)
n = κn2q0

∫ ∏n
i d

4ki
(2π)3n−3

δ3(
n∑
i

ki + ∆)
n∏
i

qµiqνi

×
n∏
i

δ(2q · ki)
k2
i + iε

R{µi,νi}({pi}, {ki}) (6.28)
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Let us now compare this result to the case where this same arbitrary diagram is interacting n
times with an external tensor field:

hµν =

∫
d4k

(2π)4
ei(k·x)Cµν(k) (6.29)

The net result is:

M(B)
n =

∫ ∏n
i d

4ki
(2π)4n−4

δ4(
n∑
i

ki + ∆)

× Cµ1ν1(k1)...Cµnνn(kn)R{µi,νi}({pi}, {ki}), (6.30)

Let us choose:

Cµν(k) = 2κπqµqνδ(2q · k)
1

k2 + iε
(6.31)

Note that:

δ4(p′ − p+ k1 + ...+ kn)δ(2q · k1)...δ(2q · kn)

= δ(p′0 − p0 + k0
1 + ...+ k0

n)δ3(p′ − p + k1 + ...+ kn)δ(2q · k1)...δ(2q · kn)

= δ(p′0 − p0 + vq · (p− p′))δ3(q− q′ + k1 + ...+ kn)δ(2q · k1)...δ(2q · kn)

= 2q0δ(2q · (p− p′))δ3(q− q′ + k1 + ...+ kn)δ(2q · k1)...δ(2q · kn) (6.32)

where vq ≡ q
q0

and we have used the fact that there are delta functions that impose the
condition k0

i = vq · ki and that p− p′ = q′ − q =
∑

ki. Now, δ(p′0−p0 +k0
1 + ...+k0

n) =

2q0δ(2q · (p− p′)) can be pulled out of the k integrations and we get:

M(B)
n = 2πδ(2q · (p− p′))M(A)

n (6.33)

so we see that the effect of the high energy line is the same as that of the external field (6.29)
with Cµν(k) given by (6.31). Note that this field can be written as:

hµν = κqµqν

∫
d4k

(2π)3
ei(k·x)δ(2q · k)

1

k2 + iε

=
κ

2q0

qµqν

∫
d3k

(2π)3
e−ik·(r−vqt)

1

(vq · k)2 − k2
(6.34)
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If we take q in the z direction, we have:

hµν = −κ
2
q0uµuν

∫
d2k⊥dk3

(2π)3
e−ik⊥·r⊥e−ik3(z−vqt) 1

k2
⊥ + k2

3(1− v2
q )

(6.35)

Let us take the limit as vq → 1 (q0 is held fixed), in which case the external field becomes:

hµν = −κ
2
q0uµuνδ(z − t)

∫
d2k⊥
(2π)2

e−ik⊥·r⊥
1

k2
⊥

(6.36)

where u is the 4-velocity corresponding to q. The equation of motion for the de Donder
gauge we are using is:

�(hαβ −
1

2
ηαβh) = −κ

2
Tαβ (6.37)

Note in the limit vq → 1, h = 0. We then have using hαβ from (6.36):

�hαβ = (∂t+z∂t−z − ∂2
r⊥

)hαβ

= −κ
2
q0uαuβδ(z − t)δ(y)δ(x) (6.38)

Thus the energy momentum tensor corresponding to our external field is:

Tαβ = q0uαuβδ(z − t)δ(y)δ(x) (6.39)

Which is precisely the energy momentum tensor of a massless particle, which will give the
Aichelburg-Sexl metric once the Einstein equation is solved for.

We can also directly apply a gauge transformation to (6.36) to show that it is indeed the
Aichelberg-Sexl metric. The key fact to note here is that:

∂x

∫
d2k⊥
(2π)2

e−ik⊥·r⊥
1

k2
⊥

= ∂x
−1

4π
ln(r2

⊥) = − 1

2π

x

x2 + y2
(6.40)

Because of this, when we make the gauge transformation:

h′µν = hµν + ∂µην + ∂νηµ (6.41)

with:

η− =
κ

4
q0Θ(z − t)[

∫
d2k⊥
(2π)2

e−ik⊥·r⊥
1

k2
⊥

+
1

4π
ln(r2

⊥)] (6.42)
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and all other components of ηµ being zero, we have ∂xη = ∂yη = 0. Thus, by choosing
this gauge parameter we ensure that we only change the h−− component with this gauge
transformation, which is the only non-zero component.

After this gauge transformation we arrive at:

κh′µν = 4Gq0uµuνδ(z − t) ln(r2
⊥) (6.43)

which is precisely the standard expression for the Aichelberg-Sexl metric (for example, see
equation 1 of [96]).

The expression for the Riemann tensor corresponding to this metric, which is gauge
invariant at the linearized level, is given in equation 3.12 of [95]. This Riemann tensor is
seen to have terms proportional to δ(y)δ(x), which is just a reflection of the fact that our
solutions have a source as given by (6.39). Note that it is valid for us to consider linearized
gravity as in the eikonal limit the spin of the hard line does not matter, so in principle we
could have used a high-energy scalar instead of a high-energy graviton in this derivation.

6.3.2 Gauge Shockwave

Here we discuss how one can arrive at a gauge shockwave using methods analogous to those
used to arrive at the Aichelberg-Sexl metric.

Let us first consider an arbitrary diagram exchanging n gluons with a high energy gluon
line. Using similar methods to section 6.2.2 we find that the matrix element corresponding
to this process is:

A(A)
n = −i(2g)n

∫ ∏n
i d

4ki
(2π)4n−4

δ4(
n∑
i

ki + ∆)

×
n∏
i

qµi

n∏
i

1

k2
i + iε

∑
perms

[
n−1∏
j

d
{ai}
n

2q ·Kj + iε
]R
{µi}
{ai}({pi}, {ki}) (6.44)

Note that each permutation that generates a new diagram will have a different color factor
d
{ai}
n which will be contracted with the rest of the diagram. However, we can again com-

mute the color matrices so that they all reduce to a common color factor plus a suppressed
term that has a color factor of a lower order diagram and would contain potential collinear
divergences. Again, we ignore terms of this latter type to arrive at:
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A(A)
n = −i(2g)nD{ai}n

∫ ∏n
i d

4ki
(2π)4n−4

δ4(
n∑
i

ki + ∆)

×
n∏
i

qµi

n∏
i

1

k2
i + iε

∑
perms

[
n−1∏
i

1

2q ·Ki + iε
]R
{µi}
{ai}({pi}, {ki}) (6.45)

where D{ai}n is the color factor that corresponds to the diagrams where n gluons are ex-
changed with the rest of the diagram in an uncrossed fashion. Typically it will be of the
form, D{ai}n = (T a1T a2 ....T an)ij . Note that there is a similar chain of the product of the T a

included inside R{µi}{ai}({pi}, {ki}).

Then, after using (6.11) we have:

A(A)
n = (−2ig)n2q0D

{ai}
n

∫ ∏n
i d

4ki
(2π)3n−3

δ3(
n∑
i

ki + ∆)

×
n∏
i

qµi

n∏
i

δ(2q · ki)
k2
i + iε

R
{µi}
{ai}({pi}, {ki}) (6.46)

Let us now compare this expression to that obtained by letting this arbitrary diagram interact
n times with an external vector field:

A(a)
µ =

∫
d4k

(2π)4
ei(k·x)B(a)

µ (k) (6.47)

In this case, we find that the resulting amplitude is:

A(B)
n =

∫ ∏n
i d

4ki
(2π)4n−4

δ4(
n∑
i

ki + ∆)B(a1)
µ1

(k1)...B(an)
µn (kn)R

{µi}
{ai}({pi}, {ki}) (6.48)

Note that if we make the identification:

B(a)
µ (k) = −4igπqµD

(a)
1 δ(2q · k)

1

k2 + iε
(6.49)

we see that:

A(B)
n = (−2ig)n4πq0δ(2q · (p− p′))

∫ ∏n
i d

4ki
(2π)3n−3

δ3(
n∑
i

ki + ∆)

×
n∏
i

D
(ai)
1

n∏
i

qµi

n∏
i

δ(2q · ki)
k2
i + iε

R
{µi}
{ai}({pi}, {ki}) (6.50)

84



Note that as
∏n

i D
(ai)
1 = D

{ai}
n , we have:

A(B)
n = 2πδ(2q · (p− p′))A(A)

n (6.51)

as desired. Going through the exact same procedure as the gravitational case, we then find
that:

A(a)
µ (k) = −iguµD(a)

1 δ(z − t)
∫

d2k⊥
(2π)2

e−ik⊥·r⊥
1

k2
⊥

(6.52)

If we insert this vector field into the Yang-Mills equation:

DµF (a)
µν = j(a)

ν (6.53)

we find that the corresponding current is:

j(a)
µ = −iguµD(a)

1 δ(z − t)δ(x)δ(y) (6.54)

Note this is exactly the source that gives rise to a QED shockwave, with the identification of
igD

(a)
1 being the electromagnetic charge.

As we did for the gravitational case we can also instead show the equivalence using a
gauge transformation:

A′µ = Aµ + ∂µΩ (6.55)

with:

Ω = igD
(a)
1 Θ(t− z)

∫
d2k⊥
(2π)2

e−ik⊥·r⊥
1

k2
⊥

(6.56)

we have:

A0 = Az = 0;

A⊥ = −igD
(a)
1

4π
Θ(t− z)∇ ln(r2

⊥) (6.57)

which is exactly the QED result with the identification of igD(a)
1 being the electromagnetic

charge. So we have seen that deriving a shockwave in the eikonal limit causes it to take an
abelian form, even for the case of nonabelian gauge theories such as QCD.
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We would like to point out here that the field strength corresponding to our gauge
shockwave takes the form:

Fµν = D
(a)
1 F abelian

µν (6.58)

where F abelian
xt = F abelian

zx = ig
2π
δ(z − t) x

x2+y2
, F abelian

yt = F abelian
zy = ig

2π
δ(z − t) y

x2+y2
, and the

other non-zero components can be arrived at by symmetries.

6.3.3 Relationship Between the Two Shockwaves

It is interesting to note that the double copy relation similar to that which we showed in
section 6.2.3 can also be seen in the two shockwaves (6.36) and (6.52). For the full scattering
amplitude we looked at the gravitational quantity (−i)n

(κ/2)2n
Mn. The analogous quantity to

look at for the gravitational shockwave is:

1

κ
hµν = −qµqν

δ(z − t)
2q0

∫
d2k⊥
(2π)2

e−ik⊥·r⊥
1

k2
⊥

(6.59)

since we have accounted for factors corresponding to graviton couplings and numerator
factors of the propagators that reside in “rest”. Note that we have identified δ(z−t)

2q0
as being a

propagator as this piece was derived solely from non-numerator contributions.

On the gauge theory side, the quantity we looked at for the full scattering amplitude was
(−i)n−1

g2n
An. The analogous quantity to look at for the shockwave is:

1

g
Aµ = iqµD̃

(a)
1

δ(z − t)
2q0

∫
d2k⊥
(2π)2

e−ik⊥·r⊥
1

k2
⊥

(6.60)

where we have accounted for a factor of g that corresponds to gluon couplings that reside in
“rest”. We have also rescaled the color factor to D̃(a)

1 = −1
2
D

(a)
1 (instead of scaling by − i√

2
)

since there are two factors of D(a)
1 that need to be accounted for in the n = 1 case that the

single external gauge field corresponds to (one factor in the gauge field and another factor
residing in the attachment onto “rest”). We then easily see that if we make the replacement
D̃

(a)
1 → iqµ in the gauge shockwave we clearly recover the gravitational result.

Another example of a double copy relation between classical solutions has been pointed
out in Exercise IXC1.1 of [102], where it is noted that the gravitational vacuum plane wave
solution is related to a gauge field plane wave by the relations:
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gµν = ηµν +
1

g2
tr(AµAν)

Rµνρσ =
1

g2
tr(FµνFρσ) (6.61)

A major difference between (6.61) and our classical double copy relation is that (6.61)
applies to vacuum solutions, while our relation applies for classical solutions with delta
function type sources seen in (6.39) and (6.54). Indeed, our solutions are similar to those in
[102] apart from the delta function sources. However, these sources are all important in our
analysis of large s small t scattering, and causes the double copy relation between the two
different types of solutions to be very different. For instance, we see that there is no double
copy relation between the gauge shockwave field strength (6.58) and the Riemann tensor
given in equation 3.12 of [95] due to delta function terms in the Riemann tensor.

In concluding this section we would like to point out that this double copy relation is
only obvious when the fields are in the gauges (6.36) and (6.52). For example, when the
fields are in the gauges (6.43) and (6.57) the double copy relation is greatly obscured.

6.4 Discussion

We have shown that there exists a double copy relation between eikonalized gravity and
gauge theory amplitudes, as long as we consider only the lowest order contribution to the
color factors corresponding to completely uncrossed ladder diagrams. This restriction is
necessary as the inclusion of other contributions to the amplitude will result in collinearly di-
vergences which are known to cancel in gravitational amplitudes. This is a feature particular
to the eikonal approximation, as in this limit the numerator factors have no dependence on
the loop momenta which does not allow one to change the integrals found in gauge theories
once the double copy conjecture is applied.

An interesting consequence of this double copy relation between the eikonalized am-
plitudes is that the corresponding shockwave solutions have a double copy relation as
well. While both the gauge and gravity shockwaves had been calculated previously using
completely classical methods, our method directly shows the relationship between eikonal
amplitudes and shockwaves. Furthermore, the double copy relation between the two shock-
waves had not previously been seen. This is because this double copy relation is only
apparent in a particular choice of gauge, which was naturally selected by our method of
calculation.
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One aspect of this analysis we would like to comment on is that we did not need to
consider gravity coupled to a dilaton or an anti-symmetric tensor in order to arrive at a
double copy relation in this kinematic regime at leading eikonal order. Such a coupling is
necessary for a double copy relation in the unrestricted kinematic region as discussed in
[7, 85]. However, it is to be expected that we would not need to consider these couplings as
in the soft regime scalars decouple due to power counting arguments. This reasoning is also
why ghosts do not need to be considered in the soft limit [65]. Arguments for the decoupling
of scalars and anti-symmetric tensors also apply at the tree level, as is well known.
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Chapter 7

High Energy Scattering in Perturbative
Quantum Gravity at Next-to-Leading

Order

7.1 Introduction

In the previous two chapters, we showed through some concrete examples the simplicity that
perturbative quantum gravity possesses in the infrared regime. Because of this simplicity, in
this chapter we will conclude our investigations of quantum gravity by looking for observ-
ables for which long distance effects are particularly important. A fundamentally infrared
dominated physical quantity of note in perturbative quantum gravity is the eikonal phase that
has been calculated for small-angle high-energy scattering processes. An eloquent overview
of the eikonal regime for this type of scattering is given in a set of lectures by Giddings [92].

This type of process has been shown to be largely independent of short distance physics.
Giddings, Gross and Maharana [6] argued that the scattering of strings may be replaced by
graviton contributions alone with short distance physics playing no significant role. Thus
non-local string effects are actually subdominant to higher loop gravitational processes
for a large range of impact parameters. The eikonal approximation provides the leading
contribution which can be shown to exponentiate in the impact parameter space. This
exponentiation can be used to show that large impact parameters dominate the scattering in
this regime.

Although the leading eikonal contribution to gravitational small-angle high-energy scat-
tering processes has garnered much attention, the next-to-eikonal contribution to small-angle
high-energy gravitational scattering has to our knowledge never before been calculated. For
the case of non-abelian gauge theories, there has been interesting progress on this topic
[103, 104]. In [56] the effective vertices at the next-to-eikonal level for gravity are given.
However, they have not been applied to any process and in particular their exponentiation
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has not been explicitly demonstrated, though the subtleties involved are discussed. The
next-to-leading contribution is of particular interest since it is fundamentally quite different
from the eikonal contribution. For instance the spin of the external particles involved is of
no consequence for the latter but is for the former.

The power corrections to the eikonal approximation that we will consider in this chapter
give a leading 1

Eφ
(Eφ is the energy of the incoming fast particle) correction to the high-

energy small-angle scattering. These corrections can provide some insight into whether the
factorization of short and long distance physics will endure at the level of power corrections
to such processes. We expect that the failure of this factorization due to the power corrections
will be a feature of black hole formation since the hard scattering point will be cloaked
by the horizon when a black hole is formed. It will therefore be impossible to separate
initial from final state interactions. The leading eikonal approximation does not by itself
have much to say about black hole formation. Thus one of the primary motivations for this
work is to look for hints of black hole formation in perturbation theory by investigating the
power corrections to the leading eikonal approximation. At the technical level, in a certain
kinematic regime, we have been able to explicitly extend the well known exponentiation
that occurs at leading eikonal order to the next-to-eikonal order also. It has been shown
in [92] that the leading eikonal approximation is justified for studying high energy small
angle scattering since the impact parameter as determined from the saddlepoint of the loop
integrations is larger than the typical gravitational radius 2GE by a factor of s/t. In a
slightly different kinematic regime, to be discussed later, we show that this enhancement
factor is missing for the subleading contributions coming from the corrections to the eikonal
phase.

In section 7.2.1 we will review the calculation for the leading eikonal phase to establish
our conventions. We proceed to calculating the next-to-eikonal phase in section 7.2.2. This
is done by expanding the scalar propagator to next-to-eikonal order as well as allowing
seagull type vertices in the diagram. We find that part of this contribution exponentiates,
and calculate the correction to the saddlepoint at this order.

We conclude with a discussion of our results. Certain technical details are relegated to
appendices F and G.

7.2 Relativistic Scattering

It was first noticed by ‘t Hooft [86] that the scattering of ultrarelativistic particles could be
reliably studied by considering graviton exchanges in perturbative quantum gravity. In the
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rest frame of one of the particles, the gravitational field of the rapidly moving particle is
that of a gravitational shock wave, which can be described by the Aichelburg-Sexl metric
[95]. The particle at rest is a quantum particle whose dynamics can be described by the
solutions of Klein-Gordon equation in the Aichelburg-Sexl background. This was ‘t Hooft’s
approach [86] and the results can also be obtained by summing a class of Feynman diagrams
in the eikonal approximation [58, 105]. In this section we will demonstrate how this latter
approach can be extended to the next-to-eikonal level.

We will investigate the small-angle gravitational scattering of an ultra-relativistic light
scalar particle of energy Eφ off of a very heavy scalar particle. The mass of the heavy
particle, Mσ, is bigger than Eφ and both are much larger than the transferred momentum.
This approximation is only made for the purposes of simplifying the calculations needed to
determine the next-to-eikonal corrections. We first show the exponentiation of the amplitude
in the leading eikonal approximation in the above mentioned kinematic regime. Then we
consider the next-to-leading eikonal corrections where we will look for hints in perturbation
theory of the absorption of the high energy particle by the heavy particle. In order to make
our kinematics explicit, throughout this section, we will be working in the large center of
mass energy and small angle scattering regime, so we will take the incoming and outgoing
momentum p and p′ of the light scalar particle φ to be much larger than the momentum
transferred between the two scalars ∆ = p′ − p. We will take q and q′ to be the incoming
and outgoing momenta of the heavy scalar σ. We will also work in the frame where ∆0 = 0

and in the de Donder gauge.

7.2.1 Eikonal Phase

Let us first consider this process in the eikonal limit to establish our conventions and set up
our departure from previous calculations. In this limit it is well known that only the ladder
and crossed-ladder type diagrams contribute. It will be instructive to consider the cases
where one and two gravitons are being exchanged between the scalars before moving to the
general n-graviton case.
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Figure 7.1 A scattering process with a single graviton exchanged. The heavy scalar is the solid
line and the light scalar is the dotted line.

One Graviton Exchange

Let us first work with the simplest case where only a single graviton is exchanged (figure
7.1). The matrix element corresponding to this diagram is:

iM0
1 = (−iκ

2
)2 i

2

Lµναβ
∆2 + iε

ταβ(p, p′,Mφ)τµν(q, q′,Mσ) (7.1)

where:

Lµναβ = ηµαηνβ + ηµβηνα − ηµνηαβ (7.2)

is the numerator of the de Donder gauge graviton propagator,

τµν(q, q′,Mσ) = qµq′ν + qνq′µ − ηµν((q · q′)−M2
σ) (7.3)

is the scalar-scalar-graviton vertex, and κ2 = 32πG.

We will use the fact that in the large Mσ limit:

Lµναβτ
µν(q, q′,Mσ) = 2M2

σ(2δ0αδ0β − ηαβ) (7.4)

Note that the right hand side of (7.4) is independent of the momentum flowing through the
vertex so we will always be free to use this identity for any vertex on a heavy line.

In the ultra-relativistic limit Mφ = 0 and p0 = |p| ≡ Eφ so:

(2δ0αδ0β − ηαβ)ταβ(p, p′,Mφ) = 4E2
φ (7.5)
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Note we used the fact that in the ∆0 = 0 frame p0 = p′0. This identity is valid whenever the
p0 = p′0 condition holds.

Using (7.4) and (7.5), we have:

iM0
1 = (−iκ

2
)2 i

2
(2M2

σ)(4E2
φ)

1

∆2 + iε
(7.6)

Two Graviton Exchange

Let us now consider the scattering process where two gravitons are exchanged. In this case
the matrix element becomes:

iM0
2 = (−iκ

2
)4(

i

2
)2(i)2(2π)−4(2M2

σ)2

∫
d4k1d

4k2δ
4(k1 + k2 + ∆)

× τα1β1(p, p− k1,Mφ)τα2β2(p− k1, p
′,Mφ)

× 2δ0α1δ0β1 − ηα1β1

k2
1 + iε

2δ0α2δ0β2 − ηα2β2

k2
2 + iε

1

(p− k1)2 + iε

× [
1

(q + k1)2 −M2
σ + iε

+
1

(q + k2)2 −M2
σ + iε

] (7.7)

where we have made use of (7.4). Note that the sum in the last line of (7.7) corresponds to
summing over the ladder (figure 7.2) and crossed ladder (figure 7.3) diagrams. In the large
Mσ limit and the ∆0 = 0 frame, we have:

δ(k0
1 + k0

2 + ∆0)[
1

(q + k1)2 −M2
σ + iε

+
1

(q + k2)2 −M2
σ + iε

]

= (2Mσ)−1δ(k0
1 + k0

2)[
1

k0
1 + iε

+
1

k0
2 + iε

] (7.8)

This can be simplified by use of the identity (see appendix E):

δ(ω1 + ...+ ωn)
∑

Perms of ωi

1

ω1 + iε
...

1

ω1 + ...+ ωn−1 + iε

= (−2πi)n−1δ(ω1)...δ(ωn) (7.9)
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Figure 7.2 A two-graviton ladder diagram. The heavy scalar is the solid line and the light scalar is
the dotted line.

Figure 7.3 A two-graviton crossed ladder diagram. The heavy scalar is the solid line and the light
scalar is the dotted line.

for ωi = k0
i , n = 2. After applying (7.9) we have:

iM0
2 = (−iκ

2
)4(

i

2
)2(i)2(2π)−4Mσ(−2πi)

∫
d4k1d

4k2δ(k
0
1)δ(k0

2)δ3(k1 + k2 + ∆)

× τα1β1(p, p− k1,Mφ)τα2β2(p− k1, p
′,Mφ)

× 2δ0α1δ0β1 − ηα1β1

k2
1 + iε

2δ0α2δ0β2 − ηα2β2

k2
2 + iε

1

(p− k1)2 + iε
(7.10)

Note that the delta functions over k0
1 and k0

2 guarantee that p0 = (p0 − k0
1) = p′0 so we are
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free to use (7.5). After applying this identity we have:

iM0
2 = (−iκ

2
)4(

i

2
)2(i)2(2π)−4Mσ(−2πi)(4E2

φ)2

∫
d4k1d

4k2δ(k
0
1)δ(k0

2)δ3(k1 + k2 + ∆)

× 1

k2
1 + iε

1

k2
2 + iε

1

(p− k1)2 + iε
(7.11)

n-Graviton Exchange

Let us now consider the form of the matrix element when n-gravitons are being exchanged.
In this case, the matrix element is:

iM0
n = (−iκ

2
)2n(

i

2
)n(i)2n−2(2π)4−4n(2M2

σ)n
∫
d4k1...d

4knδ
4(k1 + ...+ kn + ∆)

×
n∏
i=1

[ταiβii (p−Ki−1, p−Ki,Mφ)
2δ0αiδ0βi − ηαiβi

k2
i + iε

]
n−1∏
i=1

1

(p−Ki)2 + iε

×
∑

perms of ki

[
1

(q + k1)2 −M2
σ + iε

...
1

(q + k1 + ...+ kn−1)2 −M2
σ + iε

] (7.12)

where ki are the graviton momenta and Ki ≡
∑i

j kj . The ταiβii (p−Ki−1, p−Ki,Mφ) are
the n scalar-scalar-graviton vertices on the light scalar line. We have made use of (7.4). As
we saw in the two graviton case, the summation over all permutations of the ordering of the
graviton momenta onto the heavy line generates all of the possible diagrams.

Just like in the two graviton case, we can simplify (7.12) by applying (7.9) and (7.5) in
succession. The result is:

iM0
n = (−iκ

2
)2n(

i

2
)n(i)2n−2(2π)4−4n2Mn+1

σ (−2πi)n−1(4E2
φ)n

×
∫
d4k1...d

4knδ(k
0
1)...δ(k0

n)δ3(k1 + ...+ kn + ∆)
n∏
i=1

1

k2
i + iε

n−1∏
i=1

1

(p−Ki)2 + iε

= −2i(2π)3Mσ(−
κ2MσE

2
φ

2(2π)3
)n
∫
d3k1...d

3knδ
3(k1 + ...+ kn + ∆)

×
n∏
i=1

1

k2
i

n−1∏
i=1

1

2p ·Ki −K2
i + iε

(7.13)
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The remaining scalar propagators can be expanded as:

1

2p ·Ki −K2
i + iε

≈ 1

2Eφ
(

1

Kz
i + iε

+
K2

i

2Eφ

1

(Kz
i + iε)2

) (7.14)

where we have taken p to be in the z direction. For the leading eikonal phase we will only
need to keep the first term in the expansion. It will be useful to symmetrize across the n
graviton momenta so that we have:

iM0
n = −4i(2π)3EφMσ

1

n!
(−κ

2MσEφ
4(2π)3

)n
∫
d3k1...d

3knδ
3(k1 + ...+ kn + ∆)

×
n∏
i=1

1

k2
i

∑
perms of kzi

[
1

kz1 + iε
...

1

kz1 + ...+ kzn−1 + iε
] (7.15)

Note that in the frame ∆0 = 0, p0 = p′0 ≡ Eφ = |p|, which we have taken to be in the
z-direction. Thus we have that ∆z = 0. So we can again apply (7.9) this time for the kz
components to get:

iM0
n = 4(2π)2EφMσ

1

n!
(i
κ2MσEφ
4(2π)2

)n
∫
d3k1...d

3kn

× δ(kz1)...δ(kzn)δ2(k⊥1 + ...+ k⊥n + ∆⊥)
n∏
i=1

1

k2
i

(7.16)

Now let us Fourier transform into impact parameter space (b) by operating with
∫

d3∆
(2π)3

eib·∆.
We then have:

iM̃0
n = 4(EφMσ)

1

n!
(i
κ2MσEφ
4(2π)2

)n
∫
d2k⊥1 ...d

2k⊥n

n∏
i=1

[
1

(k⊥i )2
e−ib

⊥·k⊥i ] (7.17)

So after summing over all n we have:

iM̃0 = 2(s−M2
σ)(eiχ0 − 1) (7.18)

where:

χ0 =
κ2MσEφ
4(2π)2

∫
d2k⊥

1

(k⊥)2
e−ib

⊥·k⊥

= 4GMσEφ[
1

d− 4
− log b⊥ + terms independent of b⊥] (7.19)

where we have evaluated the integral in d-dimensions and omitted finite terms independent

96



of b as detailed in appendix G. Note we can find the saddle point by Fourier transforming
back into momentum space. In this case we find that the saddle point is located at:

b⊥ ∼ 4GMσEφ
∆⊥

= 2Rs
Eφ
∆⊥

, (7.20)

where, Rs is the Schwarzschild radius of the heavy particle and ∆⊥
2

= t. Thus in the
ultrarelativistic regime of small momentum transfer, this process is dominated by impact
parameters much larger than the Schwarzschild radius of the target particle.

7.2.2 Next-to-Eikonal Phase

There are many types of corrections that have been studied to the set of diagrams discussed
in the previous section [87, 88, 89, 90, 91, 92]. We will be only considering the following
three types of related corrections of the same order in ∆⊥/Eφ. First, we include those
coming from the next term to the scalar propagator in the eikonal approximation. In other
words, for each scalar in turn, we will keep at most one insertion of the second term in the
propagator expansion of equation (7.14). The other two corrections are shown in (figure
7.4) and (figure 7.5) which are also inserted only once. We call this the next-to-eikonal
approximation. We will show that part of this contribution will also exponentiate in impact
parameter space and we can determine the leading corrections to the eikonal phase (χ0)
of the previous section. This particular set of corrections to ultrarelativistic gravitational
scattering in the eikonal approximation has not been obtained before and as discussed in the
introduction, is of interest in black hole formation in particle collisions.

Let us now calculate the next-to-eikonal term. As stated above, in order to calculate this
phase, we will have to retain the next order term in (7.14) and also consider seagull (figure
7.4) and triangle type (figure 7.5) interactions which were previously ignored. As we shall
discuss, it turns out that only the seagull interaction is necessary. The one graviton exchange
process will not have a correction at this order since there are no scalar propagators. Let us
consider the two graviton exchange.
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Figure 7.4 A diagram with a seagull interaction. The heavy scalar is the solid line and the light
scalar is the dotted line.

Figure 7.5 A diagram with a triangle interaction. The heavy scalar is the solid line and the light
scalar is the dotted line.

Two Graviton Exchange

Let us first consider the contribution that arises when we retain the next order term in (7.14).
In this case we can see from (7.13) that we have:

iM1a
2 = −2i(2π)3Mσ(−

κ2MσE
2
φ

2(2π)3
)2(2Eφ)−2

×
∫
d3k1d

3k2δ
3(k1 + k2 + ∆)

1

k2
1

1

k2
2

k2
1

(kz1 + iε)2
(7.21)
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If we symmetrize across all the graviton momenta we have:

iM1a
2 = −2i(2π)3Mσ(−

κ2MσE
2
φ

2(2π)3
)2(2Eφ)−2 1

2

∫
d3k1d

3k2δ
3(k1 + k2 + ∆)

× 1

k2
1

1

k2
2

[
k2

1

(kz1 + iε)2
+

k2
2

(kz2 + iε)2
] (7.22)

Note that this expression is suppressed by a power ofEφ compared to the eikonal order piece.
Let us now consider the expression that we get when we consider the seagull interaction. In
this case we have:

iM1b
2 = (−iκ

2
)2(iκ2)(

i

2
)2(i)(2π)−4(2M2

σ)2(
1

2
)

×
∫
d4k1d

4k2δ
4(k1 + k2 + ∆)τα1β1α2β2(p, p′)

2δ0α1δ0β1 − ηα1β1

k2
1 + iε

× 2δ0α2δ0β2 − ηα2β2

k2
2 + iε

[
1

(q + k1)2 −M2
σ + iε

+
1

(q + k2)2 −M2
σ + iε

] (7.23)

where we have symmetrized across the graviton momenta and used (7.4). τα1β1α2β2(p, p′) is
the scalar-scalar-graviton-graviton vertex. Note we can now use (7.8) and (7.9) to simplify
this expression so that:

iM1b
2 = (−iκ

2
)2(iκ2)(

i

2
)2(i)(2π)−4(2M2

σ)2(
1

2
)(2Mσ)−1(−2πi)

∫
d4k1d

4k2δ(k
0
1)δ(k0

2)

× δ4(k1 + k2 + ∆)τα1β1α2β2(p, p′)
2δ0α1δ0β1 − ηα1β1

k2
1 + iε

2δ0α2δ0β2 − ηα2β2

k2
2 + iε

(7.24)

We can now use the identity:

(2δ0α1δ0β1 − ηα1β1)(2δ0α2δ0β2 − ηα2β2)τ
α1β1α2β2(p, p′)

= (4p0p′0 − p · p′) ≈ 4E2
φ (7.25)

where we have used that fact that p · p′ is subleading in Eφ compared to p0p′0 in the ultra-
relativistic limit. At this point, we would like to point out that an almost identical analysis
goes through for the case of the triangle diagram, except that instead of (7.25) one has:

(2δ0α1δ0β1 − ηα1β1)(2δ0α2δ0β2 − ηα2β2)Lµνηλτ
µν(p, p′)τα1β1α2β2ηλ(k1, k2)/∆2

= −16(p · p′) + terms not of infrared origin (7.26)

where τα1β1α2β2ηλ(k1, k2) is the three graviton vertex. The terms not explicitly included
above are not infrared sensitive. They include ultraviolet divergences related to the vertex
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renormalization which we assume are taken care of by the counterterms to this order. Further,
as we noted earlier, p · p′ is subleading in Eφ compared to p0p′0. Thus we can safely ignore
the triangle interaction compared to the seagull interaction in the following analysis. In the
small momentum transfer regime this suppression of non-linear effects for the long distance
physics can also be seen from the analysis of chapter 5. First we note that in the small
momentum transfer limit, the graviton line connected to the light line in (figure 7.5) must
carry soft momentum. From the power counting analysis of chapter 5, for this diagram to
give a contribution that is not suppressed, the other two graviton lines to which this soft
line connects must be hard. Thus the loop integral in (figure 7.5) is ultraviolet dominated
and will contribute to vertex renormalization as mentioned earlier. This suppression of
non-linear effects is also seen in the context of classical black hole production in [106].
Once we apply (7.25) we have:

iM1b
2 = (−iκ

2
)2(iκ2)(

i

2
)2(i)(2π)−4(2M2

σ)2(
1

2
)(2Mσ)−1(−2πi)(4E2

φ)

∫
d3k1d

3k2

× δ3(k1 + k2 + ∆)
1

k2
1

1

k2
2

(7.27)

It is now clear that (7.27) has the same power in Eφ as (7.22).

Finally we note that the diagrams which are mirror reflections of those in (figure 7.4)
and (figure 7.5) (i.e., those with the two distinct matter-graviton vertices on the light line)
are suppressed in the limit of a heavy sigma particle. This simplifies the combinatorics of
the next section and was our primary reason for considering this particular kinematic limit.

n-Graviton Exchange

Let us now see what structure arises when we consider the n-graviton case. Let us first start
by considering the propagator expansion piece. From (7.13) and (7.14) we see that:

iM1a
n = −2i(2π)3Mσ(−

κ2MσE
2
φ

2(2π)3
)n(2Eφ)−n

×
∫
d3k1...d

3knδ
3(k1 + ...+ kn + ∆)

n∏
i=1

1

k2
i

n−1∏
i=1

1

Kz
i + iε

n−1∑
i

K2
i

Kz
i + iε

(7.28)

where the sum at the end corresponds to replacing each of the n− 1 scalar propagators with
the second order term from (7.14) one time. Note the expression is not symmetric in the
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graviton momenta so let us symmetrize. In this case we will have:

iM1a
n = −2i

n!
(2π)3Mσ(−

κ2MσE
2
φ

2(2π)3
)n(2Eφ)−n

×
∫
d3k1...d

3knδ
3(k1 + ...+ kn + ∆)

n∏
i=1

1

k2
i

∑
Perms over ki

[
n−1∏
i=1

1

Kz
i + iε

n−1∑
i

K2
i

Kz
i + iε

]

(7.29)

We will reduce this expression to a simplified form once we have arrived at the corresponding
amplitude where a single seagull vertex on the light scalar line is allowed. For now, we
would like to point out that the terms corresponding to the last term in (7.29) will be of two
types: those that have k2

i in the numerator and those that have ki · kj in the numerator.

Let us now move on to consider the next-to-eikonal contribution arising from allowing a
single seagull vertex on the light scalar line. In this case the general matrix element for an
n-graviton exchange process is:

iM1b
n =

(2π)4

E2
φ

(
iκ2M2

σE
2
φ

(2π)4
)n

1

2

∫
d4k1..d

4knδ
4(k1 + ..+ kn + ∆)

×
n∏
i=1

1

k2
i

n−1∏
i=1

1

(p−Ki)2 + iε
(
n−1∑
i=1

(p−Ki)
2)

×
∑

perms of ki

[
1

(q + k1)2 −M2
σ + iε

...
1

(q + k1 + ...+ kn−1)2 −M2
σ + iε

] (7.30)

The products and sum in the third line generate all possible places where the seagull vertex
can be placed on the light scalar line and the permutations in the third line generate all of the
possible diagrams for each placement of this vertex. Note there is an over counting due to
the fact that exchanging the order of the seagull legs does not result in a distinct diagram, so
we divide by 2. If we now apply (7.9) in the ultrarelativistic limit as we did for the eikonal
contribution we arrive at:

iM1b
n = 8iMσ(2π)3(

−κ2MσEφ
4(2π)3

)n
1

2

×
∫
d3k1..d

3knδ
3(k1 + ..+ kn + ∆)

n∏
i=1

1

k2
i

n−1∏
i=1

1

Kz
i + iε

(
n−1∑
i=1

Kz
i ) (7.31)
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After symmetrizing and using a simple manipulation of the last term we have:

iM1b
n = 4iMσ(2π)3(

−κ2MσEφ
4(2π)3

)n
1

n!

∫
d3k1..d

3knδ
3(k1 + ..+ kn + ∆)

×
n∏
i=1

1

k2
i

∑
perms of ki

n−1∏
i=1

1

Kz
i + iε

(
n−1∑
i=1

(Kz
i )2

Kz
i + iε

) (7.32)

Note this is an almost identical expression to (7.29), which allows for the use of an almost
identical process to simplifying this expression. We can simplify (7.29) and (7.32) by Fourier
transforming and going through a tedious exersize in combinatorics, which is described in
detail in appendix F (the relevant expressions are given explicitly in (F.17), (F.19)). After
this process we arrive at the total next-to-eikonal amplitude in impact parameter space:

iM̃1
n = − 2i

(n− 1)!

Mσ

(2π)2
(i
κ2MσEφ
4(2π)2

)n[

∫
d2k⊥

(k⊥)2
e−ib

⊥·k⊥ ]n−1

∫
d3k

k2
e−ik·b

(k⊥)2 − (kz)2

(kz + iε)2

− 2

(n− 2)!

Mσ

(2π)3
(i
κ2MσEφ
4(2π)2

)n[

∫
d2k⊥

(k⊥)2
e−ib

⊥·k⊥ ]n−2

×
∫
d3kα
k2
α

d3kβ
k2
β

e−i(kα+kβ)·b(
1

kzα + iε

1

kzβ + iε

k⊥α · k⊥β − kzαkzβ
kzα + kzβ + iε

) (7.33)

As elaborated in appendix F, this can be reduced to (for details on the evaluation of these
integrals please see appendix G):

iM̃1
n = 2(s−M2

σ)[
(iχ0)n−1

(n− 1)!
χ1 +

(iχ0)n−2

(n− 2)!
iχ2] (7.34)

where:

χ1 =
κ2Mσ

8(2π)4

∫
d3k

k2
e−ik·b

(k⊥)2 − (kz)2

(kz + iε)2

= − κ2Mσ

8(2π)2
[

1

|b|
+ Θ(z)z(2π)δ2(b⊥)]

= −Rs

2π
[

1

|b|
+ Θ(z)z(2π)δ2(b⊥)] (7.35)

and:

102



χ2 = −iκ
4M2

σEφ
32(2π)7

∫
d3kα
k2
α

d3kβ
k2
β

e−i(kα+kβ)·b(
1

kzα + iε

1

kzβ + iε

k⊥α · k⊥β − kzαkzβ
kzα + kzβ + iε

)

=
κ4M2

σEφ
128(2π)3

1

b⊥
[π − 2] +O(

z

b⊥
) (7.36)

where we have ignored a term higher order in z
b⊥

in χ2.

Note that χ1 is suppressed by a power of Eφ compared to χ0 but χ2 is not. This is
resolved by that fact that χ2 is suppressed by a factor of κ2 compared to χ0, so to match
order by order in κ, each term that has a factor χ2 must have one less power of χ0 than each
term with χ1 at that same order in κ. This causes a suppression by a factor of Eφ, which can
readily be seen in (7.34).

It is interesting to see that when we sum over all n iM̃0 + iM̃1 exponentiates in the
following manner:

iM̃0+1 = 2(s−M2
σ)(1 + χ1)[ei(χ0+χ2) − 1] (7.37)

To confirm this exponentiation gives a satisfactory expression for iM̃0+1
n , all one needs to

do is Taylor expand and group the terms order by order in κ2 and throw away any terms that
are suppressed by more than one factor of Eφ at that order in κ.

Let us next discuss the implications of the correction χ1 to the multiplicative factor
derived in (7.37). This contribution clearly decreases the amplitude. However, we expect
unitarity is still maintained because the phase space boundaries also change at this order.

We now can calculate the correction to the saddlepoint (7.20) due to χ2. For this purpose
we transform back to momentum space and define:

Phase = i(χ0 + χ2 − b⊥∆⊥ − z∆z). (7.38)

The condition ∂
∂b⊥

Phase= 0 determines the new saddlepoint. This condition gives:

∆⊥(b⊥)2 + 4GMσEφb
⊥ +G2M2

σEφ(1− 2

π
) = 0 (7.39)

Thus, we have that:

b⊥ ∼ 2RsEφ
∆⊥

− Rs

8
(1− 2

π
) (7.40)

The first term on the right hand side of (7.40) is the leading order saddlepoint for the
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impact parameter and the second term is the correction due to the next to leading eikonal
phase we have just calculated. While the leading order term shows that the impact parameter
differs from the Schwarzschild radius of the heavy particle by a large factor of Eφ/∆⊥,
no such enhancement is present for the correction. Thus as discussed earlier, the leading
order result suggests that the scattering process is dominated by large values of the impact
parameter. However, the power correction to the leading eikonal result shifts it to slightly
smaller values. This is all we can deduce in the context of perturbation theory. However,
our conclusion does support the possibility that power corrections probe smaller values of
the impact parameter and therefore provide more information about the process of black
hole formation than the leading order result.

7.3 Discussion

In this chapter we have calculated the next-to-eikonal contribution to the gravitational scat-
tering amplitude by expanding the propagator to next-to-eikonal order and allowing seagull
type vertices, all of which are power corrections suppressed by a power of 1/Eφ with respect
to the leading eikonal term. We found that this part of this contribution exponentiates. The
next-to-eikonal phase also causes the impact parameter to decrease in magnitude compared
to the purely eikonal case.

Our primary motivation for this study and one which is borne out by the results, is that
the study of power corrections to the leading eikonal result provides useful information
about black hole production in high energy gravitational scattering. Once a black hole is
formed, there should be no factorization of short and long distance physics because there
is no accessible reference hard scattering point to make this separation manifest. This
is because the hard scattering point is shielded by the horizon. The formation process
is in itself a non-perturbative phenomenon. However, we expect that some indication of
the breakdown of factorization will present itself at some order in the higher order power
corrections, providing a signal for this breakdown in perturbation theory. As happens in the
case of gauge theories for similar processes, we expect that once factorization and hence
perturbation theory break down, all power corrections will become equally important. We
did not explicitly find this breakdown of factorization at next-to-eikonal order. Nevertheless,
we did find a tendency for power corrections to probe smaller impact parameters. Thus it
would be interesting to precisely look for these effects in a general setting. Such an approach
for gauge theories was discussed in [107, 108]. The corresponding analysis for perturbative
quantum gravity would be an extremely interesting subject of future research.
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Chapter 8

Conclusion

In this thesis we have presented selected studies concerning both classical and quantum
issues in theoretical gravitational physics. On the classical side of gravity, we focused on the
matter of dark energy, specifically the k-essence model. Although this model necessarily has
non-canonical scalar fields with strange behavior such as superluminality, we found that it is
possible to successfully simulate its behavior around black holes and during gravitational
collapse for a large range of parameters, greatly increasing confidence in the robustness of
the theory and similar non-canonical field theories. However, the question of whether or not
a global time coordinate can always be defined for these theories remains an open question.
We also demonstrated that these non-canonical field theories settle down to a stationary
solution during accretion with cosmological boundary conditions, which is an assumption
that has gone into many previous analytic studies of the subject.

On the quantum side of gravity, we circumvented problems associated with the nonrenor-
malizability of the theory by focusing on investigations of perturbative quantum gravity
at energies smaller than the Planck scale. As among the most interesting long distance
properties of a generic field theory are infrared divergences, we performed an extensive
study of these divergences. In particular, we found that collinear divergences cancel in all
gravitational amplitudes at all orders. We were also able to derive a double copy relation
similar to that of [7] in the case where there is no hard momentum transfer and showed that
this implies a similar relation between the corresponding shockwave solutions of both theo-
ries. Finally, we calculated the next-to-eikonal amplitude for the gravitational scattering of
two scalars, finding that this second order correction tended to decrease the dominant length
scale involved in this process. This gives hope that studying these power corrections in a
more general setting will yield direct evidence of black hole production from the quantum
theory.

The two main issues concerning gravity addressed in this thesis, namely the true nature
of dark energy and quantum gravity, have been lacking an adequate explanation for many
years. Although the progress presented in this dissertation is only a minuscule step towards
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understanding these grandiose issues, the fact that new interesting fundamental features of
gravitational physics can still be found so long after physicists first started researching the
subject gives hope that we will some day fully understand the theory.
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Appendix A

Examining Classicalization Without
Spherical Symmetry

A.1 Introduction

In this appendix we study a novel proposal to the UV-completion of a class of non-
renormalizable theories [109]. In this approach, called classicalization, high-energy
scattering amplitudes are conjectured to be unitarized by the production of extended classical
objects, dubbed classicalons. Although classicalization has no direct connection to gravita-
tional physics, these classicalons play an analogous role to black holes in graviton-graviton
scattering, where the effective gravitational coupling blows up for center-of-mass energies
large than the Planck scale. However, as will be seen in this appendix, unlike in the case of
black holes, classicalons do not serve to unitarize high energy scattering when we examine
the system out of spherical symmetry. Thus this appendix will serve as an example of how
quantum gravity is fundamentally different from other quantum theories.

Although the existence and properties of classicalons have not been studied at all, it has
been somehow suspected that they might form below the length scale called the classicaliza-

tion radius [110, 112]. The classicalization radius is defined as the classical radius down
to which high-energy shells of fields propagate essentially freely, without experiencing a
significant correction from interaction. We can at least consider the condition

(classicalization radius)� (cutoff length) (A.1)

as a necessary condition for the formation of classicalons.

If classicalization really works then we would have to change our view of non-
renormalizable field theories and Wilsonian UV completion, in which a weakly coupled
quantum field theory above the cutoff scale of an effective field theory is reconstructed
by integrating in some new degrees of freedom. In the classicalization approach, a non-
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renormalizable field theory would unitarize itself by its own resources, above the scale that
would otherwise be the UV cutoff of the theory.

Hence it is important to investigate the validity of the classicalization proposal. However,
so far, the studies of the classicalization approach have been rather limited. One of the
limitations is that all considerations in the literature assume perfect spherical symmetry. The
purpose of this appendix is to study the classicalization proposal beyond spherical symmetry.
Unfortunately, we shall see that the above mentioned necessary condition (A.1) does not
hold if spherical symmetry is significantly relaxed. Thus, considerations in this appendix
point towards the conclusion that classicalization does not serve as UV-completion for the
class of non-renormalizable theories.

The rest of the appendix is organized as follows. In section A.2 we shall briefly review
the classicalization proposal. We shall also argue that classicalization does not serve as a
way to UV complete the other classes of the field theories considered in the literature, except
for the Goldstone-type field theory. For this reason, we shall investigate the Goldstone-type
field theory in starting with section A.3. In section A.3 we consider a small non-spherical
deformation and show that the classicalization radius tends to decrease in a region where a
shell made of the field is slightly flattened. In section A.4, in order to describe a sufficiently
large flattened region, we consider the high-energy collision of planar shells and show that
the system never classicalizes before reaching sub-cutoff lengths. This no-go result is further
strengthened by the analysis of a small non-planar deformation in section A.5. In section
A.6 we show that the shape of scattered planar wave is UV sensitive. Section A.7 is devoted
to a summary of the main results of this appendix.

Throughout this appendix we shall adopt the mostly plus sign (−+ ++) for the metric.

A.2 A Brief Review of the Classicalization Proposal

In the literature, the classicalization proposal has been studied for a scalar field without shift
symmetry, a scalar field with shift symmetry (Goldstone-type field), and the graviton in
general relativity. In this appendix we shall investigate the robustness of the classicalization
proposal for the theory of Goldstone bosons. Before going into further detail, let us explain
why we will not consider the other two cases.

The example of the scalar field without shift symmetry has a Lagrangian of the form

L = −1

2
gµν∂µφ∂νφ−

φ

2M∗
gµν∂µφ∂νφ+ · · · . (A.2)
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In [109], the second term on the right hand side was considered as a possible source of clas-
sicalization. However, one can redefine the field φ so that the sum of the first and the second
terms becomes a canonical kinetic term of the new field φc = (2/3)(1 + φ/M∗)

3/2. Thus,
the system is equivalent to a noninteracting canonical scalar field. The field redefinition
does not work for φ < −M∗, but in this regime φ̄c = |φc| has a wrong sign kinetic term and
unitarity is violated. Therefore, the first two terms in this Lagrangian do not serve as a good
example of classicalization.

The graviton in Einstein gravity has been considered as a possible candidate that exhibits
the classicalization phenomenon [112, 113]. However, it is well known that in general rela-
tivity, one can form a black hole with arbitrarily small mass [15]. Moreover, there are known
counterexamples to the cosmic censorship conjecture in general relativity [116, 117, 118].
Therefore, in general relativity one can in principle probe arbitrarily short distances unless
new physics above the cutoff scale somehow prevents one from doing so. 1 Therefore,
classicalization is unlikely to work in general setups in general relativity.

In this appendix we shall consider the Goldstone-type field, i.e. a scalar field with shift
symmetry, since this is the only remaining situation that has been studied in the literature so
far.

Classicalization of the Goldstone-type field was investigated in the Euclidean path
integral formulation in [114]. However, the background solution is singular and the cor-
responding Euclidean action is infinite. Therefore, it seems rather difficult to extract any
physically meaningful insights from the result of [114]. For this reason, in this analysis we
will not adopt the path integral formulation.

The Goldstone-type field that has been studied in the context of classicalization has a
Lagrangian of the form

L = −1

2
gµν∂µφ∂νφ+

L4
∗

4
[gµν∂µφ∂νφ]2 . (A.3)

Following references [110, 112], we investigate the classical dynamics of a spherical shell
made of this scalar field in a Minkowski spacetime. Namely, we assume that the backre-
action of the scalar field on the background geometry is negligible and we seek a solution
φ(t, r) to the equation of motion

�4φ = L4
∗∂

µ
[
(∂φ)2∂µφ

]
(A.4)

1Note that since fine tuning is necessary to create a classical state that will result in such an arbitrarily
small black hole, one can make the argument that some quantum fluctuations will prevent such a state from
being prepared. However, as we discuss in the conclusions, the argument that we will make in this analysis
regarding the model of Goldstone bosons is not dependent on any fine-tuning and is robust.
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in a Minkowski spacetime

ds2 = −dt2 + dr2 + r2(dθ2 + sin2(θ)dθ̄2). (A.5)

Our neglect of the backreaction effects is justified in the decoupling limit MplL∗ � 1.

What we are interested in is the classical radius r∗ down to which high-energy spherical
shells propagate essentially freely, without experiencing a significant correction from the
interaction term. This radius is dubbed the classicalization radius. In order to determine r∗
for this system, references [110, 112] solved the equation of motion iteratively by expanding
φ as

φ = φ0 + φ1 + · · · , (A.6)

and assuming that φ0 satisfies the equation of motion with L∗ = 0. We shall soon see what
the expansion parameter is.

Under the assumed spherical symmetry, a general solution to the zeroth order equation
�4φ0 = 0 is

φ0 =
1

r
[F0(t+ r)− F0(t− r)] , (A.7)

where we have imposed the regularity of φ0 at r = 0. In order for this solution to represent
a shell with thickness a, the form of the function F0(t) is set to

F0(t) = Af(t/a), (A.8)

where f(τ) is a function whose amplitude and derivatives are of O(1) in the vicinity of
the shell configuration, so that the total energy and the occupation number of the configu-
ration are ∼ A2/a and ∼ A2, respectively. According to [110, 112], we are interested in
configurations with a small occupation number. Thus we suppose that

A = O(1). (A.9)

We are interested in the behavior of the system before the thin shell peaked at t+ r ∼ 0

reaches the center. Hence we can safely drop −F0(t− r). We thus have

φ0 =
A

r
f(τ+), τ+ =

t+ r

a
. (A.10)

Since φ0 is small at large r but becomes large at small r, the nonlinear interaction is neg-
ligible at large r but becomes significant at small r. The classicalization radius r∗ for this
system is thus defined as a radius at which the amplitude of φ1 catches up with that of φ0.
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One can easily guess r∗ from (A.10). Since

gµν∂µφ∂νφ = − A
2

ar3
[f ′(τ+)f(τ+) +O(a/r)] , (A.11)

the second term in the Lagrangian (A.3) becomes as important as the first term when

L4
∗

ar3
∼ 1. (A.12)

Thus, it is expected that the classicalization radius r∗ is

r∗ ∼ (L4
∗/a)1/3. (A.13)

To confirm this expectation, let us seek the first order solution φ1, which is the retarded
solution to

�4φ1 = L4
∗∂

µ
[
(∂φ0)2∂µφ0

]
. (A.14)

Since the right hand side is calculated as

s̄0(τ+, r) =
A3L4

∗
2a2r5

{[
f ′′(τ+)(f(τ+))2 +4(f ′(τ+))2f(τ+)

]
+O(a/r)

}
, (A.15)

we obtain

φ1 =
a

2r

∫ ∞
r

dr′r′
∫ τ+

−∞
dτ1s̄0(τ1, r

′)

= −A
3L4
∗

12ar4

∫ τ+

−∞
dτ1

{[
f ′′(τ1)(f(τ1))2 +4(f ′(τ1))2f(τ1)

]
+O(a/r)

}
. (A.16)

Since the integral is of O(1) in the vicinity of the shell, the amplitude of φ1 catches up with
that of φ0 at r ∼ r∗, where r∗ is given by (A.13).

A.3 Non-Spherical Deformation

In this section we consider a non-spherical deformation of the shell and see that if a part of
the shell is flatter (or more curved), r∗ is slightly reduced (or increased) in that part.
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A.3.1 Zeroth Order Solution

For the zeroth order part, we adopt the ansatz

φ0 = φ00(t, r) + φ02(t, r)P2(cos θ). (A.17)

Then the zeroth order equation leads to the solution

φ00 =
1

r
[F0(t+ r) +G0(t− r)] ,

φ02 = r

(
∂r

1

r

)2

[F2(t+ r) +G2(t− r)] . (A.18)

Imposing regularity at r = 0 leads to the condition F0(t) +G0(t) = F2(t) +G2(t) = 0 for
∀t. Thus, the zeroth order solution is

φ0 =
1

r
[F0(t+ r)− F0(t− r)]

+ r

(
∂r

1

r

)2

[F2(t+ r)− F2(t− r)]P2(cos θ). (A.19)

Let us suppose that

F0(t) = Af(t/a), F2(t) = Aar2

∫ t/a

−∞
dτ1f(τ1), (A.20)

where r2 is a constant. For r � a, this solution is reduced to

φ0 '
A

r

{
[f(τ+)− f(τ−)] + [f ′(τ+)− f ′(τ−)]

r2

a
P2(cos θ)

}
=

A

r
[f(τ̃+)− f(τ̃−)] +O(r2

2/a
2), (A.21)

where
τ± ≡

t± r
a

, τ̃± = τ± +
r2

a
P2(cos θ). (A.22)

If f(τ) represents a wave packet peaked at τ = 0 then f(τ̃±) is peaked at r '
∓[t+ r2P (cos θ)].

The non-spherical deformation φ02 includes O(a/r) and O(a2/r2) corrections. The
O(a/r) correction to (A.21) slightly changes the height of the peak. Indeed, by including
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the O(a/r) correction, (A.21) is modified as

φ0 =
A

r

{
f(τ̃+)

[
1− 3r2

r
P2(cos θ)

]
− f(τ̃+)

[
1 +

3r2

r
P2(cos θ)

]
+O(a2/r2) +O(r2

2/a
2)
}
, (A.23)

Although we shall not write it explicitly here, the O(a2/r2) correction represents the tail
induced by the motion of the deformed shell.

A.3.2 Retarded Solution to Inhomogeneous Equation

It is easy to show that

φ1(t+, t−) =
ψ10

r
+ r

(
∂r

1

r

)2

ψ12P2(cos θ) (A.24)

with

ψ1n = −1

4

∫ t+

−∞
dt′+

∫ t−

−∞
dt′−fn(t′+, t

′
−) (n = 0, 2) (A.25)

satisfies the inhomogeneous equation

�4φ1 =
f0(t+, t−)

r
+ r

(
∂r

1

r

)2

f2(t+, t−)P2(cos θ) (A.26)

and the retarded boundary condition. Note t± ≡ t± r.
There is freedom to add B2(t)r3 + C2(t)r to f2(t+, t−) but B2(t) and C2(t) can be

fixed by demanding that f2(t+, t−) remains finite at r → ∞ for ∀t. Thus, when the
inhomogeneous equation is of the form

�4φ1 = s0(t, r) + s2(t, r)P2(cos θ), (A.27)

we have

f0(t+, t−) = rs0(t, r),

f2(t+, t−) = r

∫ ∞
r

dr1r1

∫ ∞
r1

dr2
s2(t, r2)

r2

, (A.28)

where t and r on the right hand side should be understood as (t+ + t−)/2 and (t+ − t−)/2

respectively.
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A.3.3 First Order Solution up to O(r2/a) with O(a/r) Correction

We are interested in the behavior of the system before the thin shell peaked at t + r ∼ 0

reaches the center. Hence, we can safely drop −F0(t− r) and −F2(t− r) in (A.19). We
thus have

φ0 =
A

r

{
f(τ+)

[
1− 3r2

r
P2(cos θ)

]
+f ′(τ+)

r2

a
P2(cos θ) +O(a2/r2)

}
=

A

r

{
f(τ̃+)

[
1− 3r2

r
P2(cos θ)

]
+O(a2/r2) +O(r2

2/a
2)
}
, (A.29)

where τ+ and τ̃+ are defined in (A.22). Consequently, up to O(r2/a) the equation for φ1 is
of the form (A.27) with

s̄0 =
A3L4

∗
2a2r5

{[
f ′′(τ+)(f(τ+))2 + 4(f ′(τ+))2f(τ+)

]
−3l

r
f ′(τ+)(f(τ+))2 +O(a2/r2)

}
,

s̄2 =
r2

a

{
∂s̄0

∂τ+

− 15A3L4
∗

2ar6

[
f ′′(τ+)(f(τ+))2 + 4(f ′(τ+))2f(τ+)

]
+
A3L4

∗
a2r5

×O(a2/r2)

}
. (A.30)

where s̄n ≡ sn(t = aτ+ − r, r) (n = 0, 2) is sn written as a function of (τ+, r). Note that in
the coordinates (τ+, r, θ, θ̄), the Minkowski metric (A.5) is written as

ds2 = −a2dτ 2
+ + 2adτ+dr + r2(dθ2 + sin2 θdθ̄2), (A.31)

and
gµν∂µ∂ν =

1

a
∂+∂r +

1

4
∂2
r +

1

r2
∂2
θ +

1

r2 sin2 θ
∂2
θ̄ . (A.32)

From s̄2, f2 is obtained by solving

s̄2 = r

[(
∂

∂r
+

1

a

∂

∂τ+

)
1

r

]2

f̄2

=
1

a2r

[
∂2

∂τ 2
+

− 3a

r

∂

∂τ+

+O(a2/r2)

]
f̄2. (A.33)

Here and in the following, f̄n ≡ fn(t+ = aτ+, t− = aτ+ − 2r) (n = 0, 2) is fn written as a
function of (τ+, r). Thus, we obtain

f̄2(τ+, r) = a2r

[∫ τ+

−∞
dτ1

∫ τ1

−∞
dτ2s̄2(τ2, r) +

3a

r

∫ τ+

−∞
dτ1

∫ τ1

−∞
dτ2

∫ τ2

−∞
dτ3s̄2(τ3, r)

+O(a2/r2)
]
. (A.34)
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We of course have
f̄0(τ+, r) = rs̄0(r, τ+). (A.35)

Now by changing the integration variables from (t′+, t′−) to (τ ′+ = t′+/a,r′ = (t′+−t′−)/2),
the formula (A.25) is written as

ψ̄1n(τ+, r) = −a
2

∫ ∞
r

dr′
∫ τ+

−∞
dτ ′+f̄n(τ ′+, r

′) (n = 0, 2), (A.36)

where ψ̄1n ≡ ψ1n(t+ = aτ+, t− = aτ+ − 2r) is ψ1n written as a function of (τ+, r).
Concretely,

ψ̄10(τ+, r) = −a
2

∫ ∞
r

dr′r′
∫ τ+

−∞
dτ1s̄0(τ1, r

′),

ψ̄12(τ+, r) = −a
3

2

∫ ∞
r

dr′r′

×
[∫ τ+

−∞
dτ1

∫ τ1

−∞
dτ2

∫ τ2

−∞
dτ3s̄2(τ3, r

′)

+
3a

r′

∫ τ+

−∞
dτ1

∫ τ1

−∞
dτ2

∫ τ2

−∞
dτ3

×
∫ τ3

−∞
dτ4s̄2(τ4, r

′) +O(a2/r′
2
)

]
. (A.37)

Therefore, up to O(r2/a), the formula (A.24) gives

φ1 ' φ̄10(τ+, r) + φ̄12(τ+, r)P2(cos θ), (A.38)

where

φ̄10 = − a

2r

∫ ∞
r

dr′r′
∫ τ+

−∞
dτ1s̄0(τ1, r

′),

φ̄12 = − a

2r

[∫ ∞
r

dr′r′
∫ τ+

−∞
dτ1s̄2(τ1, r

′) − 3a

r

∫ ∞
r

dr′
∫ ∞
r′

dr′′
∫ τ+

−∞
dτ1

∫ τ1

−∞
dτ2s̄2(τ2, r

′)

+O(a2/r2)
]
. (A.39)

Here, we have integrated by parts in order to obtain the expression for φ̄12. Finally, by using
the explicit expressions (A.30), it is shown that

φ̄10 = −A
3L4
∗

12ar4

{
g(τ+)− 3a

4r
(f(τ+))3 +O(a2/r2)

}
,

φ̄12 = −A
3L4
∗

12ar4

r2

a

{
g′(τ+)− 9a

4r
f ′(τ+)(f(τ+))2 −12a

r
g(τ+)

}
, (A.40)
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where
g(τ+) ≡

∫ τ+

−∞
dτ1

[
f ′′(τ1)(f(τ1))2 + 4(f ′(τ1))2f(τ1)

]
. (A.41)

In summary,

φ1 = −A
3L4
∗

12ar4

{
g(τ̃+)

[
1− 12r2

r
P2(cos θ)

]
− 3a

4r
(f(τ̃+))3

+O(a2/r2) +O(r2
2/a

2)
}
. (A.42)

Hence, we obtain

φ1

φ0

= −A
2L4
∗

12ar3

{
g(τ̃+)

f(τ̃+)

[
1− 9r2

r
P2(cos θ)

]
− 3a

4r
(f(τ̃+))2

+O(a2/r2) +O(r2
2/a

2)
}
. (A.43)

As noted earlier, the classicalization radius r∗ is the value of r at which the amplitude of
φ1 catches up with that of φ0. Thus, this result clearly shows that r∗ is slightly reduced (or
increased) if r2P2(cos θ) is positive (or negative), i.e. if the shell is flatter (or more curved)
in some region. This is exactly what we have expected.

In the next section, in order to describe a sufficiently large flattened region, we consider
a planarly symmetric case.

A.4 Planarly Symmetric Case

In 4-dimensional flat spacetime

ds2
4 = −dt2 + dx2 + dy2 + dz2, (A.44)

we consider a planarly symmetric ansatz φ = φ(t, x). By integrating out the two spatial
dimensions parallel to the plane of symmetry, y and z, we obtain a scalar field ϕ =

√
A2φ

in 2-dimension, where A2 is the area of the plane.

In a two dimensional flat spacetime

ds2
2 = −dt2 + dx2 = −dt+dt−, t± ≡ t± x, (A.45)

the retarded solution to
�2ϕ1 = f(t+, t−) (A.46)
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is given by

ϕ1 = −1

4

∫ t+

−∞
dt′+

∫ t−

−∞
dt′−f(t′+, t

′
−). (A.47)

The equation of motion

�4φ = L4
∗∂

µ
[
(∂φ)2∂µφ

]
(A.48)

in 4-dimensions is reduced to

�2ϕ =
L4
∗
A2

∂µ
[
(∂ϕ)2∂µϕ

]
(A.49)

in 2-dimensions. Let us solve this equation iteratively by expanding ϕ as

ϕ = ϕ0 + ϕ1 + · · · , (A.50)

and assuming that ϕ0 satisfies the equation of motion with L∗ = 0, i.e., �2ϕ = 0. Thus,

ϕ0 = ϕ+(t+) + ϕ−(t−). (A.51)

We shall soon see what the expansion parameter is.

The first order equation is

�2ϕ1 =
8L4
∗
A2

[
ϕ′′+(t+)(ϕ′−(t−))2 + ϕ−(t−)′′(ϕ′+(t+))2

]
. (A.52)

Thus the retarded solution is

ϕ1 = −2L4
∗
A2

∫ t+

−∞
dt′+

∫ t−

−∞
dt′−

[
ϕ′′+(t′+)(ϕ′−(t′−))2 +ϕ−(t′−)′′(ϕ′+(t′+))2

]
. (A.53)

Let us suppose that
ϕ+(t) = ϕ−(t) = A f(t/a). (A.54)

Roughly speaking, the total energy and the occupation number of the configuration are
∼ A2/a and ∼ A2. Then we obtain

ϕ1

A
= −2L4

∗A
2

A2 a2

∫ t+/a

−∞
dτ1

∫ t−/a

−∞
dτ2

[
f ′′(τ1)(f ′(τ2))2 +f ′′(τ2)(f ′(τ1))2

]
. (A.55)
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We now see that the expansion parameter is

ε ≡ 2L4
∗A

2

A2 a2
. (A.56)

The iterative solution is a good approximation if ε� 1.
As an example, let us consider a Gaussian wave packet

f(τ) = e−τ
2

. (A.57)

Figures A.1 and A.2 show ϕ0/A and ϕ1/(−Aε), respectively, as functions of τ± ≡ t±/a.
This clearly shows that ϕ1 stays small compared to ϕ0 as far as ε� 1 and that the interaction
length is ∼ a. In this case the system never classicalizes. For ε ∼ 1, the amplitude of ϕ1

becomes as large as that of ϕ0 but the interaction length is still ∼ a. Thus, for high-energy
scattering with a� L∗, there is no sign of classicalization before reaching the sub-cutoff
length.

!2

0

2

Τp

!2

0

2

Τm

0

1

2

Figure A.1 The plot of ϕ0/A as a function of τ± ≡ t±/a for f(τ) = e−τ
2
.
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Figure A.2 The plot of ϕ1/(−Aε) as a function of τ± ≡ t±/a for f(τ) = e−τ
2
.

A.5 Deviation from Perfect Planar Symmetry

In this section we will consider deviations from the perfect planar symmetry discussed above.
Our purpose in doing so is to see if the fluctuations will introduce a classicalization radius.
Since classicalization was shown for spherical symmetry, our expectation is to observe a
tendency away from the results of the strictly planar symmetric case.

We want to probe in a 4-dimensional spacetime, the behavior of the field:

φ(t, x, y, z) = φ0(t, x, y, z) + φ1(t, x, y, z) + ... , (A.58)

where φ0 satisfies �4φ0 = 0. In terms of the rescaled fields ϕ of the previous section, let us
make the ansatz:

φ0(t, x, y, z) =
1√
A2

ϕ00(t, x) +
1√
A2

ϕ01(t, x)Re(ei(kyy+kzz)). (A.59)
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In this case, in order for �4φ0 = 0 to be satisfied, we must have:

�2ϕ00 = 0

(�2 −m2)ϕ01 = 0, (A.60)

where m2 = k2
y + k2

z . Let us expand ϕ01 in orders of m2a2 so that:

ϕ01 = ϕ
(0)
01 + ϕ

(1)
01 + ... . (A.61)

Matching powers of m2a2 we see that if ϕ(0)
01 satisfies �2ϕ

(0)
01 = 0, then the equation that is

to be satisfied by ϕ(1)
01 is:

a2�2ϕ
(1)
01 = m2a2ϕ

(0)
01 . (A.62)

Anticipating that the leading modification, as in section A.3, due to the deformation will be
a shift in the peak position of the wavepacket, we will make the ansatz up to terms of order
r/a:

ϕ00 = Af(τ+) + Af(τ−)

ϕ
(0)
01 = −Ar1

a
[f ′(τ+) + f ′(τ−)], (A.63)

where τ± ≡ t±
a
≡ t±x

a
.

We begin our analysis to determine if there is a change in the classicalization radius, r∗
by calculating the deformed φ1 to order r1/a. Then we have for φ0 in this approximation:

φ0(τ+, τ−, y, z) ≈ A√
A2

[f(τ̄+) + f(τ̄−)]

≡ A√
A2

f(τ̄+, τ̄−), (A.64)

where τ̄± = t±−r1 cos (k⊥·x⊥)
a

. Note that f(τ̄+) is a wave peaked at x = −t+ r1 cos (k⊥ · x⊥)

and f(τ̄−) is a wave peaked at x = t− r1 cos (k⊥ · x⊥). A cartoon of φ0 at a time slice t < 0

is shown in figure A.3. We are interested in the region where the two plane waves are bent
away from each other, which corresponds to a deformation that brings us from the perfect
planar case closer to that of the spherical case. For our ansatz, this corresponds to the region
where r1 cos (k⊥ · x⊥) is positive. We expect that r∗ will tend to increase in this region as
we increase r1.
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y

x
Figure A.3 A sketch showing the peak of φ0 in the x-y plane for some time t < 0.

We now need to find φ1 using the equation of motion:

�4φ = L4
∗∂

µ(∂µφ(∂νφ)2), (A.65)

for which the first order correction is:

�4φ1 = L4
∗∂

µ(∂µφ0(∂νφ0)2). (A.66)

One such contribution to this order, φ10, is obtained by substituting 1√
A2
ϕ00 for φ0 above.:

�4φ10 =
8L4
∗A

3

a4A3/2
2

b(τ+, τ−), (A.67)

where we have defined b(τ+, τ−) = f ′′(τ+)f ′(τ−)2 +f ′′(τ−)f ′(τ+)2 for later convenience. It
is not hard to show that the solution to the above differential equations in the limitm2a2 → 0
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is:

φ10 = − 2L4
∗A

3

a2A3/2
2

[g(τ+, τ−) +O(m2a2)], (A.68)

where the function g(τ+, τ−) is given by:

g(τ+, τ−) =

∫ τ+

−∞
dτ ′+

∫ τ−

−∞
dτ ′−b(τ

′
+, τ

′
−). (A.69)

This solution is just the one presented in the previous section. In the following, just as
in the case for φ0, we will find the contribution to φ1 up to order r1

a
. We will denote this

contribution φ(0)
11 .

φ
(0)
11 can be found by considering the right hand side of (A.66) with linear contributions

from 1√
A2
ϕ

(0)
01 cos (k⊥ · x⊥) and quadratic contributions from 1√

A2
ϕ00. In this case:

�4φ
(0)
11 = −8L4

∗A
3r1

a5A3/2
2

cos (k⊥ · x⊥)[∂τ+b(τ+, τ−) + ∂τ−b(τ+, τ−)]. (A.70)

The solution to the above differential equation in the limit m2a2 → 0 is easily obtained:

φ
(0)
11 =

2L4
∗A

3r1

a3A3/2
2

cos (k⊥ · x⊥)[∂τ+g(τ+, τ−) + ∂τ−g(τ+, τ−) +O(m2a2)]. (A.71)

Adding up both contributions, we get that:

φ1 = − 2L4
∗A

3

a2A3/2
2

g(τ̄+, τ̄−). (A.72)

From this we get:

φ1

φ0

= −2L4
∗A

2

a2A2

[
g(τ̄+, τ̄−)

f(τ̄+, τ̄−)
+O(

r2
1

a2
) +O(m2a2)]. (A.73)

Thus, we conclude that we need to consider the O(m2a2 r1
a

) corrections in order to see
effects on r∗.

The only order (m2a2 r1
a

) correction to φ0 will be to ϕ01 since our expression for ϕ00

satisfies its free field equation of motion exactly. In order for (A.62) to be satisfied, we must
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have:

ϕ
(1)
01 =

Ar1m
2a

4
[(τ− − τ0)

∫ τ+

τ0

dτ ′+f
′(τ ′+) + (τ+ − τ0)

∫ τ−

τ0

dτ ′−f
′(τ ′−)]

=
Ar1m

2a

4
[(τ− − τ0)(f(τ+)− f(τ0)) + (τ+ − τ0)(f(τ−)− f(τ0))]

≡ Ar1m
2a

4
w(τ+, τ−), (A.74)

where τ0 is an IR cutoff introduced to ensure that the massive wave modes do not spread out
too far before coming together. We have also defined the function w for later convenience.
Our expression for φ0 is now:

φ0 =
A√
A2

[f(τ̄+, τ̄−)− r1m
2a

4
cos (k⊥ · x⊥)w(τ+, τ−) +O(

r2
1

a2
) +O(m4a4)]. (A.75)

We now need to consider the order m2a2( r1
a

) corrections to φ1. There are actually only
three such contributions. One will come from the fact that our solution for φ11 (A.71) to
the differential equation (A.70) neglected terms of order m2a2( r1

a
) (we will denote this

contribution φ(1b)
11 ). Another contribution will be found by considering the right hand side of

(A.66) to linear order in ϕ(1)
01 (we will denote this contribution φ(1a)

11 ). The last contribution
will come from that fact we now need to consider a term of order m2a2( r1

a
) that comes

from the linear contribution of ϕ(0)
01 in the right hand side of (A.66) (we will denote this

contribution φ(1c)
11 ). All other corrections are of order r21

a2
or m4a4. In order to get φ(1b)

11 all we
have to do is note that if we make the ansatz:

φ
(0)
11 =

2L4
∗A

3r1

a3A3/2
2

cos (k⊥ · x⊥)

∫ τ+

−∞
dτ ′+

∫ τ−

−∞
dτ ′−hb(τ

′
+, τ

′
−)− L4

∗A
3r1m

2

2aA3/2
2

cos (k⊥ · x⊥)

×
∫ τ+

τ0

dτ ′+

∫ τ ′+

−∞
dτ ′′+

∫ τ−

τ0

dτ ′−

∫ τ ′−

−∞
dτ ′′−hb(τ

′′
+, τ

′′
−) +O(

r2
1

a2
) +O(m4a4), (A.76)

where

hb(τ+, τ−) = ∂τ+b(τ+, τ−) + ∂τ−b(τ+, τ−), (A.77)

then (A.70) is satisfied to order m2a2( r1
a

). Thus:

φ
(1b)
11 = −L

4
∗A

3r1m
2

2aA3/2
2

cos (k⊥ · x⊥)

∫ τ+

τ0

dτ ′+

∫ τ ′+

−∞
dτ ′′+

∫ τ−

τ0

dτ ′−

∫ τ ′−

−∞
dτ ′′−hb(τ

′′
+, τ

′′
−).

(A.78)
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In order to find φ(1a)
11 we need to solve (A.66) with linear order contributions from ϕ

(1)
01 on

the right hand side. In this case, the equation becomes:

�4φ
(1a)
11 =

2L4
∗A

3r1m
2

a3A3/2
2

cos (k⊥ · x⊥)[(τ+ − τ0)f ′(τ+)2f ′′(τ−) + (τ− − τ0)f ′(τ−)2f ′′(τ+)

+ 2f ′(τ−)f ′′(τ+)((τ+ − τ0)f ′(τ−) + f(τ+)− f(τ0))

+ 2f ′(τ+)f ′′(τ−)((τ− − τ0)f ′(τ+) + f(τ−)− f(τ0))]

≡ 2L4
∗A

3r1m
2

a3A3/2
2

cos (k⊥ · x⊥)ha(τ+, τ−). (A.79)

The solution up to the order we seek is:

φ
(1a)
11 = −L

4
∗A

3r1m
2

2aA3/2
2

cos (k⊥ · x⊥)

∫ τ+

τ0

dτ ′+

∫ τ−

τ0

dτ ′−ha(τ
′
+, τ

′
−). (A.80)

The final correction of this order comes from the order m2a2( r1
a

) term that arises from linear
contributions from ϕ

(0)
01 on the right hand side of (A.66):

�4φ
(1c)
11 =

2L4
∗A

3r1m
2

a3A3/2
2

cos (k⊥ · x⊥)[2(f ′(τ+) + f ′(τ−))]f ′(τ+)f ′(τ−)

≡ 2L4
∗A

3r1m
2

a3A3/2
2

cos (k⊥ · x⊥)hc(τ+, τ−). (A.81)

So we have that the order m2a2( r1
a

) correction to φ1 is:

φ
(1)
11 = φ

(1a)
11 + φ

(1b)
11 + φ

(1c)
11

= −L
4
∗A

3r1m
2

2aA3/2
2

cos (k⊥ · x⊥)

[

∫ τ+

τ0

dτ ′+

∫ τ ′+

−∞
dτ ′′+

∫ τ−

τ0

dτ ′−

∫ τ ′−

−∞
dτ ′′−hb(τ

′′
+, τ

′′
−)

+

∫ τ+

τ0

dτ ′+

∫ τ−

τ0

dτ ′−(ha(τ
′
+, τ

′
−) + hc(τ

′
+, τ

′
−))]

≡ −L
4
∗A

3r1m
2

2aA3/2
2

cos (k⊥ · x⊥)q(τ+, τ−). (A.82)
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So, after adding in this contribution, we have:

φ1 = − 2L4
∗A

3

a2A3/2
2

g(τ̄+, τ̄−)[1 +
m2r1a

4
cos (k⊥ · x⊥)

q(τ+, τ−)

g(τ̄+, τ̄−)
+O(

r2
1

a2
) +O(m4a4)].

(A.83)

We thus get that:

φ1

φ0

= −2L4
∗A

2

a2A2

g(τ̄+, τ̄−)

f(τ̄+, τ̄−)
[1 +

m2r1a

4
cos (k⊥ · x⊥)(−w(τ+, τ−)

f(τ̄+, τ̄−)
+
q(τ+, τ−)

g(τ̄+, τ̄−)
)

+O(
r2

1

a2
) +O(m4a4)]. (A.84)

What we are interested in is the sign of the quantity: (−w(τ+,τ−)
f(τ̄+,τ̄−)

+ q(τ+,τ−)
g(τ̄+,τ̄−)

). It is clear
that f(τ̄+, τ̄−) is always positive for f(t) = e−t

2 . Writing g(τ̄+, τ̄−) explicitly for this ansatz
for f(t), we have:

g(τ̄+, τ̄−) =
1

2
e2(τ̄2++τ̄−)2 [4eτ̄

2
− τ̄−τ̄+ + 4eτ̄

2
+ τ̄−τ̄+

+
√

2πe2τ̄2−+τ̄2+ τ̄+(−2 + erfc(
√

2τ̄−)

+
√

2πe2τ̄2++τ̄2− τ̄−(−2 + erfc(
√

2τ̄+)]. (A.85)

It can be seen that g(τ̄+, τ̄−) > 0 for τ̄+, τ̄− < 0, which is the region we are interested in.
Since:

− w(τ+, τ−)

f(τ̄+, τ̄−)
+
q(τ+, τ−)

g(τ̄+, τ̄−)

=
1

f(τ̄+, τ̄−)g(τ̄+, τ̄−)
[−w(τ+, τ−)g(τ+, τ−) + q(τ+, τ−)f(τ+, τ−) +O(

r1

a
)]. (A.86)

We are interested in the sign of the quantity:

σ(τ+, τ−) = −w(τ+, τ−)g(τ+, τ−) + q(τ+, τ−)f(τ+, τ−). (A.87)

Let us plot σ(τ+ = v, 0) in order to find the sign. We see in figure A.4 that σ(τ+ = v, 0)

remains positive until v � −1. As we saw previously, the interaction length for the perfect
planar case is of order a (which corresponds to the region where v ∼ −1), so we see that
increasing r1 tends to increase r∗ in the region where r1 cos (k⊥ · x⊥) is positive. This is
what we expected.
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Figure A.4 σ(τ+ = v, 0) as a function of v. τ0 = −10 was chosen, but any τ0 much smaller than
the τ−, τ+ where the interaction takes place defines an appropriate boundary condition.

A.6 UV Sensitivity

We have so far explored a model with the Lagrangian:

L = X + L4
∗X

2, (A.88)

where X = −1
2
∂µφ∂µφ is the standard kinetic term. Let us generalize this so as to include

the possibility of a higher order non-linear term:

L = X + L4n−4
∗ Xn. (A.89)

For the planarly symmetric case, we have for the first order EOM:

�2ϕ1 = −nL4n−4
∗ ∂µ

[
ϕ0∂µ(Xn−1

0 )
]
, (A.90)

where X0 = − 1
2A2

∂µϕ0∂µϕ0. If we choose:

ϕ0 = Af(τ+) + Af(τ−). (A.91)
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Then:

X0 =
2A2

A2l2
f ′(τ+)f ′(τ−). (A.92)

In this case, (A.90) simplifies to:

�2ϕ1 =n(n− 1)2nA2n−1A−n+1
2 L4n−4

∗ l−2n

[f ′(τ+)nf ′(τ−)n−2f ′′(τ−) + f ′(τ−)nf ′(τ+)n−2f ′′(τ+)]. (A.93)

The retarded solution to the above equation is:

ϕ1 = −Aε
∫ τ+

−∞
dτ ′+

∫ τ−

−∞
dτ ′−[f ′(τ ′+)nf ′(τ ′−)n−2f ′′(τ ′−) + f ′(τ ′−)nf ′(τ ′+)n−2f ′′(τ ′+)].

(A.94)

where

ε = n(n− 1)2n−2A2n−2A−n+1
2 L4n−4

∗ l2−2n. (A.95)

It can be seen by comparing figure A.2 (ϕ1/(−Aε) for the n = 2 case) to figure A.5
(ϕ1/(−Aε) for the n = 3 case) that the overall profile of φ1 for odd and even values of n
can be quite different. It should also be noted that we find relatively modest dependence of
the profiles of two even (or two odd) φ1 on n.

In order to compare the behavior of ϕ1 for various values of n, let us plot the quantity:

ξ(v) =
ϕ1(τ+ = v, τ− = 0)

Maxv[ϕ1(τ+ = v, τ− = 0)]
. (A.96)

The function ξ(v) is the normalized peak amplitude of the right moving plane wave f(τ−).
We normalize by Maxv[ϕ1(τ+ = v, τ− = 0)], the maximum value of ϕ1(τ+ = v, τ− = 0) in
the region −∞ < v ≤ 0, so that the peak value of ξ(v) is 1 regardless of what n we choose.
Note that since we set τ− = 0, v = 2t

a
= 2x

a
. Thus, the right moving plane wave evolves

from v = −∞ to v = 0, where it will meet the left moving plane wave.

We see in figure A.6 that ξ(v) reaches its peak value at the value of v =
√

2
2

for all plots
shown. Thus, the interaction length is ∼ a regardless of what value we choose for n. It is
also apparent that as we increase n, there is a tendency for ξ(v) to become more sharply
peaked, so φ1 will become significant at somewhat smaller values of x as we increase n.
Hence we can conclude that increasing n will not cause classicalization to occur for planarly
symmetric waves. Moreover, the shape of the scattered wave is UV sensitive.
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Figure A.5 The plot of ϕ1/(−Aε) as a function of τ± ≡ t±/a for f(τ) = e−τ
2
, n = 3.

A.7 Discussion

The following quotations by the creators of the classicalization proposal summarize the
basic idea behind the theory: “A universal physical meaning of r∗-radius can be defined
as of a shortest distance down to which, in a given scattering process, particles propagate
freely, without experiencing a significant interaction.” [110]

“The condition for classicalization is the growth of r∗ with energy, in such a way, that
above some critical energy it exceeds all the relevant quantum length scales in the system.
When this is the case, system classicalizes.” [111]

“The analogy between r∗ and the gravitational Schwarzschild radius is clear. We can
define a classical Schwarzschild radius for an arbitrary quantum particle, but a particle
for which the Schwarzschild radius is deep within its Compton wavelength cannot be re-
garded as a classical state. Similarly, the classical r∗-radius can be defined for an arbitrary
wave-packet, but only ones with r∗ � L∗ classicalize.” [110]

We have seen in our analysis that the classicalization radius r∗ tends to decrease in a
region where a shell made of the field is flattened and that in the planar limit, the system
never classicalizes before reaching sub-cutoff lengths. Thus, although we can define an r∗
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Figure A.6 The plot of ξ(v) for n = 2 (solid line), n = 3 (dashed line), n = 4 (dot-dashed line),
n = 5 (dotted line).

for arbitrary initial configurations of the wave packet, we have shown that the condition
r∗ � L∗ is not satisfied in general. The fact that r∗ does not generally exceed all the
relevant quantum length scales in the system (i.e. L∗) points towards the conclusion that
classicalization, as described by the quotations above, does not serve as UV-completion for
the class of non-renormalizable field theories. This claim is further bolstered by the fact that
shape of the scattered wave is UV sensitive.

Lastly, we would like to make a comment that our result is not dependent on any fine-
tuning, which makes it clear that quantum fluctuations will not change our no-go result.
The following physical argument should make it clear that our result is rather robust in
this regard. The Goldstone-type field considered in the literature of classicalization has the
action of the form

Iφ =

∫
dx4
√
−gP (X), X ≡ −gµν∂µφ∂νφ. (A.97)

The corresponding stress-energy tensor is

Tµν = 2P ′(X)∂µφ∂νφ+ P (X)gµν , (A.98)

satisfying the conservation equation∇µTµν = 0. In particular, the pressure along directions
perpendicular to the gradient ∂µφ is P (X). 2 Thus, for a shell made of the scalar field, the

2This is true regardless of X being time-like or space-like. From (A.98) it is clear that for the time-like
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pressure tangent to the shell is P (X). For a spherically symmetric shell, the resultant force
due to the tangential pressure will be a repulsive radial force. Thus, as the spherical shell
shrinks and the amplitude of X in the vicinity of the shell increases, the tangential pressure
and the resultant radial force become large. At some point, the radial force becomes strong
enough to significantly deviate the evolution of the shell from that of the linear theory. This
is the reason why the classicalization radius can be significantly greater than the cutoff
length of the theory under perfect spherical symmetry. On the other hand, when spherical
symmetry is significantly relaxed, the resultant force due to the tangential pressure will not
generate a significant repulsive force. Indeed, in a sufficiently large flattened region, the
configuration is well approximated by a planar shell and there is no net radial force. Thus,
the system never classicalizes in this case. All of these arguments are explicitly verified in
the preceding sections of this appendix. Note that we do not need to fine-tune the initial
conditions in order to invalidate the classicalization: the net radial force is small as long as
the deviation from spherical symmetry is large enough. Since we do not need to fine-tune
the initial conditions, our no-go result is rather robust.

case, the energy is 2XP ′(X)− P (X) and the pressure P (X) is isotropic. For the space-like case the energy
is −P (X) and the pressure is anisotropic. The pressure in the direction of the gradient is 2XP ′(X) + P (X),
but the pressure perpendicular to the gradient is still P (X). Thus for both cases the pressure is still P (X) in
directions perpendicular to the gradient.
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Appendix B

Maximal Slicing

Here we present the details of the maximal slicing method. The metric is chosen to take the
form

ds2 = −N2dt2 + (dr + βrdt)2 +R2(dθ2 + sin2θdϕ2) (B.1)

which is the form for a spherically symmetric metric where the radial coordinate r is length
in the radial direction in a constant time slice. Note that the usual area radius R is not one of
the coordinates and is instead a function of the coordinates t and r. Thus the spatial metric
γab has components

γrr = 1

γθθ = R2

γϕϕ = R2sin2θ (B.2)

The extrinsic curvature, Kab is defined by

Kab = −γac∇cnb (B.3)

where na is the unit normal to the surfaces of constant time t. However, due to spherical
symmetry and maximal slicing, there is only one independent component of the extrinsic
curvature. Specifically we have

Kθ
θ = Kϕ

ϕ = −1
2
Kr

r (B.4)

Equation (B.3) is equivalent to

∂tγij = −2NKij +Diβj +Djβi (B.5)
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where Di is the covariant derivative of the spatial metric γij . The rr component of equation
(B.5) yields

∂rβ
r = NKr

r (B.6)

whose solution is
βr =

∫ r

0

NKr
r dr (B.7)

The θθ component of (B.5) yields

∂tR = βr∂rR +
N

2
RKr

r (B.8)

We now use the momentum constraint of the Einstein field equation to determine the
extrinsic curvature. For maximal slicing (K = 0) this constraint is

DaK
ab = −κγbcndTcd (B.9)

Define the quantities P and S by

P = na∇aφ, S = ∂rφ (B.10)

Then the quantity X is given by

X = 1
2
(P 2 − S2) (B.11)

while (B.9) becomes
R−3∂r(R

3Kr
r) = −κLXPS (B.12)

The solution of (B.12) is

Kr
r = −κR−3

∫ r

0

R3LXPS dr (B.13)

Note that there is also a Hamiltonian constraint associated with the Einstein field equation.
In the case of maximal slicing, this constraint is

(3)R−KabK
ab = 2κTabn

anb (B.14)

133



where (3)R is the spatial scalar curvature. This equation yields

∂r∂rR =
1− (∂rR)2

2R
− 1

4
R
[

3
2
(Kr

r)
2 + 2κ(LXP 2 − L)

]
(B.15)

We now determine the lapse N . It follows from the maximal slicing condition that

DaD
aN = N

[
KabK

ab +
κ

2
Tab(n

anb + γab)
]

(B.16)

which yields

∂r∂rN +
2

R
(∂rR)(∂rN)

= N
[

3
2
(Kr

r)
2 + κ

(
1
2
LX(P 2 + S2) + L

)]
(B.17)

We now consider the evolution of the k-essence scalar field. From the definitions of P
and S it follows that

∂tφ = NP + βrS (B.18)

∂tS = N(∂rP +Kr
rS) + P∂rN + βr∂rS (B.19)

The k-essence equation of motion, equation (4.2) becomes after some straightforward but
tedious algebra

∂tP = βr∂rP + S∂rN

+
NLXX

LX + P 2LXX
(
Kr

rPS
2 + 2PS∂rP − S2∂rS

)
+

NLX
LX + P 2LXX

R−2∂r(R
2S) (B.20)

The initial data are chosen as follows: P and φ are chosen freely, with S set equal to ∂rφ.
Then X is determined using (B.11) and then used to find L and LX Then (B.13) is integrated
to find Kr

r. Then (B.15) is integrated for R using the fact that at the origin R = 0 and
∂rR = 1. Then at each time step, the evolution proceeds as follows: first X is determined
using (B.11) and then used to find L,LX and LXX . Then (B.13) is integrated to find Kr

r.
And then (B.17) is solved for the lapse N (using a tridiagonal method and the fact that
∂rN = 0 at the origin and N → 1 at infinity). Then (B.7) is integrated to find the shift βr.
Finally, the quantities R, φ, S and P are evolved to the next time step using (B.8), (B.18),
(B.19) and (B.20) respectively. The evolution is done using the iterated Crank-Nicholson
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method, and all spatial derivatives are found using standard centered differences.
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Appendix C

Analytic Stationary Solution

Here we present some details concerning the derivation of the stationary solution used in
figures 4.5, 4.6, and 4.10 that were found by Babichev et. al. [4] and Frolov [39]. We
generalize their solutions to our formalism and present further details relevant to the results
presented earlier in chapter 4. In this appendix we use standard Schwarzschild coordinates
(ds2 = −f(r)dt2 + f−1(r)dr2 + r2dΩ2). These coordinates are related those that we use in
the main text by equations (4.5) and (4.6).

For a Lagrangian L(X) that is purely a function of the kinetic variable X, the equation
of motion can be written as:

∇µ(LX∇µφ) = 0 , (C.1)

We use the stationary ansatz1:

φ = cp

(
t+ r ∗+

∫
F (r)dr

)
, (C.2)

where r∗ =
∫
f−1(r)dr. Note that under this ansatz, in the Schwarzschild metric we have:

∇µφ = cp(∇µt+ f−1W∇µr) , (C.3)

where we have defined: W ≡ 1 + fF .
We also see that:

∇µφ = cp(−f−1δµt +Wδµr ) . (C.4)

So with this ansatz (applying the general formula for divergence) we find that the equation

1In [44] we have shown that this form of the solution directly follows from the requirement of stationarity,
c.f. with the so-called delayed field approximation from [52]
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of motion becomes:

1

r2
∂r(r

2LXcpW ) = 0 . (C.5)

This gives us the following equation for W:

c1 = r2LXW , (C.6)

where c1 is a constant. Note from∇µφ and ∇µφ we have that:

X =
1

2
c2
pf
−1(1−W 2) . (C.7)

For the Lagrangian given in (4.20), we have that
LX = (1 + 2X

α
)−1/2, so our equation for W becomes:

W 2 =
f + c2

∞ − 1
r4f
c21

+ c2
∞ − 1

. (C.8)

In order to ensure that the solution is non-singular on and outside the sound horizon, we
choose c1 = 4M2

c4∞
[4]. This uniquely defines W and thus F , giving us the closed form for

our stationary solution which is plotted in figures (4.5) and (4.6).

For the ghost condensate Lagrangian given in (4.28), LX = 1
4
(X
a4
− 1), so the equation

for W is:

r2(
c2
p

2a4
(1−W 2)− f)W − 4c1f = 0 . (C.9)

Before we go further, consider the horizon at r = 2M . Because f [2M ] = 0, we know that
the equation for W [2M ] becomes:

(1−W [2M ]2)W [2M ] = 0 . (C.10)

Thus both W [2M ] = ±1 and W [2M ] = 0 are possible solutions. Note that since
W = 1 + fF , if W [2M ] = 1, then F [2M ] is nonsingular. If W [2M ] = 0 or W [2M ] = −1,
F [2M ] is singular and nonphysical.

Upon solving the full cubic equation using Mathematica (as can be expected, these cubic
roots are neither brief nor illuminating and are omitted), we chose the solution for W that
has W [2M ] = 1. Normally, as was in the previous case, we would choose the value of c1

that makes W [r →∞] = 0, as this prevents φ ∼ r at large radii. However, we find that in
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the limit r →∞, W is independent of c1. Furthermore, the cubic root that corresponds to
W [2M ] = 1 goes to a non-zero constant as r →∞. However, there is another cubic root
which has W [r →∞] = 0. We can stitch these two separate roots together provided there
exists some radius at which the roots become degenerate and coincide with each other.

This occurs for critical values ofW and r where the full differential of the cubic equation
(C.9) vanishes. These are the values for W and r where both coefficients vanish in the
equation:

dC(W, r)

dW
dW +

dC(W, r)

dr
dr = 0 , (C.11)

where C(W, r) = 0 gives the cubic equation defined in (C.9). The constant c1 can then be
chosen so that these critical values of W and r are solutions to the cubic equation. We can
then stitch together the two solutions (one with proper limiting behavior at the horizon and
the other with proper limiting behavior at infinite radius) at this critical radius. The resulting
solution is well behaved, and is plotted in figure (4.10).

One exceptional case where this procedure is ambiguous is when we have c∞ = 0 or
equivalently, c2

p = 2a4. In this case as r →∞, all three cubic roots have W [2M ] = 0. Thus,
there is no longer an obvious condition on c1.
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Appendix D

Cancellation of Collinear Singularities in
the Eikonal Approximation

In this appendix, we review how the cancellation of collinear singularities is realized in
the eikonal approximation, as discussed by Weinberg in [53]. We present this argument
for completeness, and also because it confirms the use of the Ward identity illustrated by
figures 5.11 and 5.12. In particular, we emphasize that although we derive the factorization
(and hence cancellation) of collinear gravitons from the hard scattering by using the Ward
identity of (5.25), at no point does the hard scattering, whether in the eikonal approximation
or not, include all the diagrams of an S-matrix element (see figure 5.12).

We start by rewriting equation (5.24), using the left-hand side of equation (5.23),

iM =

∫
d4li

(2π)4
Jm(pαm −

∑
lαii , {l

αi
i }){αiβi}

×
j∏
i=1

v̄αim v̄
βi
mvmµivmνi

×R(eik)(pµm −
∑

lµii , {l
µi
i }, {pn}){µiνi} ,

(D.1)

where we now consider explicitly all of the E external legs in the full diagram. The indices
i refer to gluons li attaching Jm to R, i = 1 . . . j. The external leg connected to the jet we
consider has momentum pm (the nearly on-shell portion of this line is not included in R)
and the remaining E − 1 non-collinear external legs have momentum pn, n 6= m (these
non-collinear legs are included explicitly in R).

In this discussion, we follow reference [53] by taking for the functionR, representing the
remainder of the diagram, a product of eikonal lines, linked at a point-like vertex H({pn}),
and treat all connections of collinear gravitons to R in the eikonal approximation, summing
over all diagrams.

Let us denote by P ({Nn}) any unordered partition of the j external gravition lines
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of Jm into a set of bins with Nn gravitons attached to line pn. At fixed momenta li, each
ordering corresponds to a distinct diagram, and we must still sum over all orderings of
graviton connections to each line pn, n 6= m. In these terms we write the contraction of the
function R with vectors v in (D.1) as

R(eik)(pµm −
∑

lµii , {l
µi
i }, {pn}){µiνi}

∏
i

vmµivmνi =∑
P ({Nn})

Enum({Nn}) Eden({Nn})H({pn}, ({Nn})) .

(D.2)

In this expression, the eikonal numerator factors are given by

Enum({Nn}) =
E−1∏
n 6=m

((pn · vm)2)Nn , (D.3)

since each graviton attached to a non-collinear external line contributes a numerator factor
of (pn · vm)2.

Similarly, Eden summarizes all eikonal denominators, including the sum over orderings
of graviton lines (labeled with the index i) from the jet Jm to each of the other incoming
massless lines, pn for a given choice of P ({Nn}). That is, for each partition P , we sum
over all permutations π(Nn) of the connections of these lines to each of the pn. To the sum
of these connections we may apply for each external line pn the well-known identity for
eikonal denominators, giving

Eden({Nn}) =
∏
n6=m

∑
π(Nn)

Nn∏
a=1

(
a∑
i=1

pn · q(n)
πNn (i)

)−1

=
∏
n6=m

Nn∏
i=1

(pn · q(n)
i )−1 , (D.4)

where q(n)
i denotes the momentum of the ith graviton attached to the nth non-collinear

external line. The subscript πNn denotes that it is the momenta q(n)
i that we are permuting

over. This identity shows that the momentum dependence associated with denominators
factors into simple products for each external graviton of R(eik).

Before combining equations (D.3) and (D.4) for the eikonal numerator and denominator
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factors, respectively we define

q
(n)
i = αivm , (D.5)

which holds in the leading collinear region. Each momentum q
(n)
i and hence each αi, is

independent of to which pn the collinear graviton attaches. In these terms, we have

Eden({Nn}) =
∏
all i

∏
n 6=m

1

αi
(pn · vm)−Nn , (D.6)

so that the energy-dependence of the collinear gravitons is collected into a universal factor
that is independent of the partition P . Substituting the numerator and denominator forms
(D.3) and (D.6) into (D.2) for R(eik), we find

R(eik)(pµm −
∑

lµi , {l
µ
i }, {pn}){µiνi}

∏
i

vmµivmνi =

H({pn}, ({Nn}))

(∏
all i

1

αi

)

×
∑

P ({Nn})

(
E−1∏
n6=m

(pn · vm)Nn

)
. (D.7)

In this form we see explicitly that the factor R(eik) depends only on the numbers Nn of each
unordered assignment of the collinear gluons li to the external lines pn. For fixed {Nn}, the
result is the same for every choice of unordered partition P ({Nn}).

We may make this independence explicit by replacing the sum over unordered assign-
ments by a sum over all Nn that add up to j, multiplying each term in the sum by the
appropriate combinatoric weight. We thus have the sum

R(eik) ∝
∑

{Nn/
∑
Nn=j}

j!

N1!N2! . . . Nm! . . . NE!

×

(
E∏

n6=m

(pn · vm)Nn

)
, (D.8)

where Nm! indicates that this factor is omitted in the product. If we use the multinomial
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theorem, this directly simplifies to

R(eik) ∝

(∑
n6=m

(pn · vm)

)j

= (−pm · vm )j

= 0 , (D.9)

where in the second line we have used momentum conservation, and in the third the assumed
masslessness of pm, which implies pm · vm = 0.
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Appendix E

A Proof of an Identity Used in the Text

In this appendix, for completeness, we present a proof of the identity (6.11) used in the main
text. This identity is a very useful one for applications of the eikonal approximation [98].

δ(ω1 + ...+ ωn)
∑

Perms of ωi

1

ω1 + iε
...

1

ω1 + ...+ ωn−1 + iε

= (−2πi)n−1δ(ω1)...δ(ωn) (E.1)

We will use the representations:

δ(ω1 + ω2 + ...+ ωn) =
1

2π

∫
dtn

n∏
j=1

e−iωjtn

1

ω + iε
= −i

∫
dτθ(τ)ei(ω+iε)τ (E.2)

To rewrite the left hand side of (E.1) as:

δ(ω1 + ...+ ωn)
∑

Perms of ωi

1

ω1 + iε
...

1

ω1 + ...+ ωn−1 + iε

= (−i)n−1 1

2π

∑
Perms over i

∫
dtn[

n−1∏
j=1

dτjθ(τj) exp(i

j∑
k=1

(ωik + iε)τj)][
n∏
j=1

e−iωjtn ] (E.3)
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Now let us make the coordinate transformation τi = ti+1 − ti. The Jacobian of this
transformation is 1, so we find:

δ(ω1 + ...+ ωn)
∑

Perms of ωi

1

ω1 + iε
...

1

ω1 + ...+ ωn−1 + iε

= (−i)n−1 1

2π

∑
Perms of ωi

∫
dtn...dt1θ(tn − tn−1)...θ(t2 − t1)

× eiωi1 (τ1+τ2+...+τn−1−tn)eiωi2 (τ2+τ3+...+τn−1−tn)...eiωin−1
(τn−1−tn)eiωin (−tn)

= (−i)n−1 1

2π

∑
Perms of ωi

∫
dtn...dt1θ(tn − tn−1)...θ(t2 − t1) exp(−i

n∑
j=1

ωij tj)

= (−i)n−1 1

2π

∫
dtn...dt1 exp(−i

n∑
j=1

ωij tj)

= (−2πi)n−1δ(ω1)...δ(ωn) (E.4)

So we see that (E.1) does indeed hold true.
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Appendix F

Next-to-Eikonal Coefficients

In this appendix we describe in detail how to calculate the coefficients for all the terms in the
next-to-eikonal contribution to the relativistic small angle gravitational scattering amplitude,
which are integral to the calculations in chapter 7. We will separate these terms into two
classes: those that go as km

2 and (kz)2, and those that go as kα · kβ and kzαk
z
β .

F.1 km
2 and (kz)2 coefficients

Let us first start off with the contribution to the next-to-eikonal amplitude from the km
2 and

k2
z coefficients. Note that if we can simplify the terms that go as k2

m in the numerator of
(7.29) by making the manipulation:

∑
Perms over ki

[
n−1∏
i=1

1

Kz
i + iε

n−1∑
i=1

K2
i

Kz
i + iε

]

⇒
∑

Perms over ki

[
n−1∑
m=1

−k2
m

∂

∂kzm

n−1∏
i=1

1

Kz
i + iε

]

=
∑

Perms over ki

[
n∑

m=1

−k2
m

∂

∂kzm

n−1∏
i=1

1

Kz
i + iε

]

=
n∑

m=1

−k2
m

∂

∂kzm
[
∑

Perms over ki

n−1∏
i=1

1

Kz
i + iε

] (F.1)

where we have only retained terms that go as k2
m in the second line. In the third line we

have used the fact that the derivative of the momentum not included in the n− 1 momenta
in the product will give zero. In the last line we exchanged the ordering of the sums since
we have written the first sum in a symmetric way. Similar reasoning applies for the case of
extracting the (kz)2 contributions from (7.32).
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Thus we see that the sum of the contributions of the km
2 and (kz)2 terms from (7.29)

and (7.32) is:

iM1
n, k2i

= −2i

n!
(2π)3Mσ(−

κ2MσE
2
φ

2(2π)3
)n(2Eφ)−n

∫
d3k1...d

3knδ
3(k1 + ...+ kn + ∆)

×
n∏
i=1

1

k2
i

n∑
m=1

−[(k⊥m)2 − (kzm)2]
∂

∂kzm

∑
Perms over ki

n−1∏
i=1

1

Kz
i + iε

(F.2)

Let us now Fourier transform by applying
∫

d3∆
(2π)3

eib·∆:

iM1
n, k2i

= −2i

n!
Mσ(−κ

2MσEφ
4(2π)3

)n
∫
d3k1...d

3kne
−i(k1+...+kn)·b

×
n∏
i=1

1

k2
i

n∑
m=1

−[(k⊥m)2 − (kzm)2]
∂

∂kzm

∑
Perms over ki

n−1∏
i=1

1

Kz
i + iε

(F.3)

We can choose m = n − 1 since the expression is symmetric in the momenta. Thus, we
have:

iM1
n, k2i

=
2i

(n− 1)!
Mσ(−κ

2MσEφ
4(2π)3

)n
∫
d3k1...d

3kne
−i(k1+...+kn)·b

×
n∏
i=1

1

k2
i

[(k⊥n−1)2 − (kzn−1)2]
∂

∂kzn−1

∑
Perms with kn−1

n−1∏
i=1

1

Kz
i + iε

(F.4)

Note now the permutations only include the permutations with kn−1 since the ones without
kn−1 vanish due to the derivative. We can now choose the missing momentum in these
permutations to always be kn since the expression is symmetric in all the momenta besides
kn−1, and kn−1 is never missing from the permutations. Thus we have:

iM1
n, k2i

=
2i

(n− 2)!
Mσ(−κ

2MσEφ
4(2π)3

)n
∫
d3k1...d

3kne
−i(k1+...+kn)·b

×
n∏
i=1

1

k2
i

[(k⊥n−1)2 − (kzn−1)2]
∂

∂kzn−1

∑
Perms without kn

n−1∏
i=1

1

Kz
i + iε

(F.5)

We can now use the eikonal identity:

∑
perms

n∏
i=1

1

Ki + iε
=

n∏
i

1

ki + iε
(F.6)
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over the permutations in (F.5) since we now have permutations such that the same momentum
is always missing. Thus we have:

iM1
n, k2i

= − 2i

(n− 2)!
Mσ(−κ

2MσEφ
4(2π)3

)n
∫
d3k1...d

3kne
−i(k1+...+kn)·b

×
n∏
i=1

1

k2
i

[(k⊥n−1)2 − (kzn−1)2]
n−2∏
i=1

1

kzi + iε

1

(kzn−1 + iε)2
(F.7)

F.2 kα · kβ and kzαkzβ coefficients

Let us now move on to the kα · kβ and kzαk
z
β coefficients. Note that we can simplify the

terms that go as kα · kβ in (7.29) by making the manipulation:

∑
Perms over ki

[
n−1∏
i=1

1

Kz
i + iε

n−1∑
i=1

K2
i

Kz
i + iε

]

⇒
∑

possible α, β

∑
missing momentum

n−1∏
i 6=α, β

1

kzi + iε
(

1

kzα + iε

1

kzβ + iε

2kα · kβ
kzα + kzβ + iε

)

= n(n− 1)
∑

missing momentum

n−1∏
i 6=α, β

1

kzi + iε
(

1

kzα + iε

1

kzβ + iε

kα · kβ
kzα + kzβ + iε

)

= n(n− 1)
∑

Perms over ki(i 6=α,β)

n−1∏
i 6=α, β

1

Kz
i + iε

(
1

kzα + iε

1

kzβ + iε

kα · kβ
kzα + kzβ + iε

) (F.8)

In the second line we have only retained terms that go as kα · kβ in the numerator. The
validity of the transformation in the second line can easily be seen by working through the
n = 3 and n = 4 cases, which we omit here for brevity. In the third line we have used the
fact that each choice of α, β will give the same contribution due to the fact that the rest of
(7.29) is symmetric in the graviton momenta, giving a factor of n(n−1)

2
. In the fourth line we

have used the eikonal identity (F.6). We arrive at a nearly identical expression for the kzαk
z
β

terms by making the same manipulation in (7.32).

Thus we see that the total contribution of the kα · kβ and kzαk
z
β terms from (7.29) and
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(7.32) is:

iM1
nkα·kβ = − 2i

(n− 2)!
(2π)3Mσ(−κ

2MσEφ
4(2π)3

)n

×
∫
d3k1...d

3knδ
3(k1 + ...+ kn + ∆)

n∏
i=1

1

k2
i

×
∑

Perms over ki(i 6=α,β)

n−1∏
i 6=α, β

1

Kz
i + iε

(
1

kzα + iε

1

kzβ + iε

k⊥α · k⊥β − kzαkzβ
kzα + kzβ + iε

) (F.9)

Fourier transforming at this stage, we have:

iM1
nkα·kβ = − 2i

(n− 2)!
Mσ(−κ

2MσEφ
4(2π)3

)n
∫
d3k1...d

3kne
−i(k1+...+kn)·b

n∏
i=1

1

k2
i

×
∑

Perms over ki(i 6=n,n−1)

n−3∏
i

1

Kz
i + iε

(
1

kzn + iε

1

kzn−1 + iε

k⊥n · k⊥n−1 − kznkzn−1

kzn + kzn−1 + iε
)

(F.10)

where we have chosen α, β = n, n− 1. Using the same argument as in the previous subsec-
tion, we can symmetrize such that kn−2 is the missing momentum. In this case we can use
the eikonal identity (F.6) so that:

iM1
nkα·kβ = − 2i

(n− 3)!
Mσ(−κ

2MσEφ
4(2π)3

)n
∫
d3k1...d

3kne
−i(k1+...+kn)·b

×
n∏
i=1

1

k2
i

n−3∏
i

1

kzi + iε
(

1

kzn + iε

1

kzn−1 + iε

k⊥n · k⊥n−1 − kznkzn−1

kzn + kzn−1 + iε
) (F.11)

F.3 Simplifying Identity

Note that the expressions corresponding to both the coefficients have the similar factor:

∫
d3k1...d

3kme
−i(k1+...+km)·b

m∏
i=1

1

k2
i

m−1∏
i=1

1

kzi + iε
(F.12)

where m = n − 1 for (F.7) and m = n − 2 for (F.11). Let us see if we can change this
expression to something more useful.
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We can first use the eikonal identity to write:

∫
d3k1...d

3kme
−i(k1+...+km)·b

m∏
i=1

1

k2
i

m−1∏
i=1

1

kzi + iε

=

∫
d3k1...d

3kme
−i(k1+...+km)·b

m∏
i=1

1

k2
i

∑
Perms without km

n−1∏
i=1

1

Kz
i + iε

(F.13)

We can now use the argument we made in the previous section in reverse to symmetrize the
permutations such that they are over all the momenta:

∫
d3k1...d

3kme
−i(k1+...+km)·b

m∏
i=1

1

k2
i

m−1∏
i=1

1

kzi + iε

=
1

m

∫
d3k1...d

3kme
−i(k1+...+km)·b

m∏
i=1

1

k2
i

∑
Perms

n−1∏
i=1

1

Kz
i + iε

(F.14)

Let us write the exponential in a familiar way:

∫
d3k1...d

3kme
−i(k1+...+km)·b

m∏
i=1

1

k2
i

m−1∏
i=1

1

kzi + iε

=
1

m

∫
d3k1...d

3kmd
3∆δ3(k1 + ...+ km + ∆)eib·∆

m∏
i=1

1

k2
i

∑
Perms

n−1∏
i=1

1

Kz
i + iε

(F.15)

Now let us note that this is simply the integral we had for the leading eikonal case. In the
exact same way, we can work in the frame where ∆z = 0 and apply the identity (7.9), which
reduces the problem to two spatial dimensions. Going through this procedure, we have:

∫
d3k1...d

3kme
−i(k1+...+km)·b

m∏
i=1

1

k2
i

m−1∏
i=1

1

kzi + iε

=
1

m
(−2πi)m−1[

∫
d2k⊥

(k⊥)2
e−ib

⊥·k⊥ ]m (F.16)

As we will show in the next section, applying (F.16) casts the next-to-eikonal amplitude in a
form that makes it much easier to see exponentiation at this order.
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F.4 Results

Here we present the final results that are used in the main text. If we apply the identity (F.16)
to (F.7) we have:

iM1
n, k2i

=
2i

(n− 1)!

Mσ

(2π)2
(i
κ2MσEφ
4(2π)2

)n[

∫
d2k⊥

(k⊥)2
e−ib

⊥·k⊥ ]n−1

∫
d3k

k2
e−ik·b

(k⊥)2 − (kz)2

(kz + iε)2

=
2

(n− 1)!
(s−M2

σ)(iχ0)n−1χ1 (F.17)

where:

χ1 = − κ2Mσ

8(2π)4

∫
d3k

k2
e−ik·b

(k⊥)2 − (kz)2

(kz + iε)2
(F.18)

If we apply the identity (F.16) to (F.11) we have:

iM1
nkα·kβ = − 2

(n− 2)!

Mσ

(2π)3
(i
κ2MσEφ
4(2π)2

)n[

∫
d2k⊥

(k⊥)2
e−ib

⊥·k⊥ ]n−2

×
∫
d3kα
k2
α

d3kβ
k2
β

e−i(kα+kβ)·b(
1

kzα + iε

1

kzβ + iε

k⊥α · k⊥β − kzαkzβ
kzα + kzβ + iε

)

=
2

(n− 2)!
(s−M2

σ)(iχ0)n−2(iχ2) (F.19)

where:

χ2 = i
κ4M2

σEφ
32(2π)7

∫
d3kα
k2
α

d3kβ
k2
β

e−i(kα+kβ)·b(
1

kzα + iε

1

kzβ + iε

k⊥α · k⊥β − kzαkzβ
kzα + kzβ + iε

) (F.20)
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Appendix G

Useful Integrals

In this appendix we evaluate the integrals used in the main text.

G.1 I0 Integral

Here we evaluate the integral that is needed in (7.19):

I0 =

∫
d2k⊥

(k⊥)2
e−ib

⊥·k⊥ =

∫
dk⊥dθe

−ik⊥b cos θkd−5
⊥ (G.1)

where in the last line we make the number of dimensions d general. In terms of Bessel
functions we can write this as:

I0 = 2π

∫
dk⊥k

d−5
⊥ J0(k⊥b)

= 2πb4−d
∫
dyyd−5J0(y) (G.2)

Note that since: ∫ ∞
0

dyymJ0(y) = 2m
Γ[(1 +m)/2]

Γ[(1−m)/2]
(G.3)

for −1 < m < 1
2
, we have:

I0 = 2πb4−d2d−5 Γ[(n− 4)/2]

Γ[(6− n)/2]
(G.4)

If we expand: Γ[(n− 4)/2] about n = 4, we get:

I0 = 2πb4−d2d−5 1

Γ[(6− d)/2]
[

2

d− 4
+ γ + ...] (G.5)
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Taylor expanding the non pole part and only keeping the finite part dependent on b, we get:

I0 ≈ 2π[
1

d− 4
− log b] (G.6)

G.2 I1 Integral

Now let us work on evaluating the integral:

I1 =

∫
d3k

k2
e−ik·b

(k⊥)2 − (kz)2

(kz + iε)2
(G.7)

We will have to consider two cases, z ≥ 0, and z ≤ 0, since the sign of z will determine
how we can close the contour. Note that for the z = 0 case, we can close in either direction.
Let us first consider the z ≤ 0 case. In this case we have:

Iz≤0
1 = −Θ(−z)2π

∫
d2k⊥

k⊥
e−ik

⊥·b⊥ek
⊥z (G.8)

where we have integrated over the only pole in the upper half plane (kz = ik⊥). If we
integrate over the rest of the components, we arrive at:

Iz≤0
1 = −Θ(−z)2π

∫
dk⊥dθe−ik

⊥b⊥ cos θek
⊥z

= −Θ(−z)(2π)2

∫
dk⊥J0(k⊥b⊥)ek

⊥z

= −Θ(−z)(2π)2 1

|b|
(G.9)

Let us now work with the z ≥ 0 case. In this case we have two poles in the lower half plane
(kz = −ik⊥, kz = −iε) so we have:

Iz≥0
1 = −Θ(z)2π[

∫
d2k⊥

k⊥
e−ik

⊥·b⊥e−k
⊥z + z

∫
d2k⊥e−ik

⊥·b⊥ ] (G.10)

The integral on the first line (corresponding to the pole kz = −ik⊥) can be evaluated in
an identical method as we did for the z ≤ 0 case, and the integral on the second line
(corresponding to the pole kz = −iε) simply gives a delta function so we have:

Iz≥0
1 = −Θ(z)2π[(2π)

1

|b|
+ z(2π)2δ2(b⊥)] (G.11)
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Thus we have that:

I1 = Iz≤0
1 + Iz≥0

1

= −(2π)2[
1

|b|
+ Θ(z)z(2π)δ2(b⊥)] (G.12)

G.3 I2 Integral

Here we evaluate the integrals needed in the evaluation of χ2.

I2 =

∫
d3kα
k2
α

d3kβ
k2
β

e−i(kα+kβ)·b(
1

kzα + iε

1

kzβ + iε

k⊥α · k⊥β − kzαkzβ
kzα + kzβ + iε

) (G.13)

Note that the poles in (G.13) are not pinched (except in the small k⊥α/β region where the
integral is explicitly IR finite via power counting) and do not result in infrared singularities.
Thus the pole structure serves an important role in the above integral, which we will take
advantage of later in this calculation. We can simplify this expression using the identity:∫

d2k⊥

k2
e−ib

⊥·k⊥ = 2πK0

(
b⊥|kz|

)
(G.14)

for the case where kz is real. We then see that for i = x, y we have:∫
d2k⊥

ki

k2
e−ib

⊥·k⊥ = 2πi
∂

∂bi
K0

(
b⊥|kz|

)
= 2πi

bi

b⊥
∂

∂b⊥
K0

(
b⊥|kz|

)
= 2πi

bi

b⊥
|kz|K ′0

(
b⊥|kz|

)
(G.15)

Thus we have that:

I2 = −(2π)2

∫
dkzαdk

z
βe
−iz(kzα+kzβ) 1

kzα + kzβ + iε

× [K ′0
(
b⊥|kzα|

)
K ′0
(
b⊥|kzβ|

)
σ(kzαk

z
β) +K0

(
b⊥|kαz |

)
K0

(
b⊥|kβz |

)
] (G.16)
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where σ(±x) = ±1 for x > 0 arises from canceling the poles in kz with absolute values.
We can rescale the integral so that we have:

I2 = −(2π)2

b⊥

∫
dyzαdy

z
βe
−i(yzα+yzβ)z/b⊥ 1

yzα + yzβ + iε

× [K ′0 (|yzα|)K ′0
(
|yzβ|
)
σ(yzαy

z
β) +K0 (|yαz |)K0

(
|yβz |
)
] (G.17)

Let us now try evaluating this integral by using the parameterization:

1

yzα + yzβ + iε
= −i

∫ ∞
0

daei(y
z
α+yzβ+iε)a (G.18)

And considering only the zeroth order term in z
b⊥

, as this ratio should be small. In this case,
we have:

I2 =
i(2π)2

b⊥

∫
dadyzαdy

z
βe

i(yzα+yzβ+iε)a

× [K ′0 (|yzα|)K ′0
(
|yzβ|
)
σ(yzαy

z
β) +K0 (|yαz |)K0

(
|yβz |
)
] (G.19)

Let us break this integral up into two pieces, one with the primed terms and one with the
unprimed terms. In this case for the primed portion we have:

I2A =
i(2π)2

b⊥

∫
dadyzαdy

z
βe

i(yzα+yzβ+iε)aK ′0 (|yzα|)K ′0
(
|yzβ|
)
σ(yzαy

z
β)

=
i(2π)2

b⊥

∫
dadyzαdy

z
βe

iyzαaK ′0 (|yzα|)σ(yzα)eiy
z
βaK ′0

(
|yzβ|
)
σ(yzβ) (G.20)

Note that: ∫ ∞
−∞

dyeiyaK ′0 (|y|)σ(y)

=

∫ ∞
0

dyeiyaK ′0 (|y|)−
∫ 0

−∞
dyeiyaK ′0 (|y|)

=2i

∫ ∞
δ

dy sin (ya)K ′0 (y) +

∫ δ

−δ
dyK ′0(y) (G.21)

where we have split off an infinitesmal region (−δ, δ) in the integral. This is, as discussed
earlier, to take into account the pole structure of (G.13) to guarantee there are no infrared
divergences. We will preserve the pole structure by using the fact that in the small y region,

154



K ′0(y) ≈ − 1
y
→ − 1

y+iε
. Thus we have using the principal value prescription that:∫ ∞
−∞

dyeiyaK ′0 (|y|)σ(y) = iπ(1− a√
a2 + 1

) (G.22)

So we have that:

I2A = −i(2π)4

4b⊥

∫
da(1− a√

a2 + 1
)2

=
i(2π)4

4b⊥
(
π

2
− 2) (G.23)

Note that the above integral would have been infrared divergent if not for the additional term
in (G.21) included to account for the pole structure.

For the unprimed portion, we have that:

I2B =
i(2π)2

b⊥

∫
dadyzαdy

z
βe

i(yzα+yzβ+iε)aK0 (|yαz |)K0

(
|yβz |
)

=
i(2π)2

b⊥

∫
da[

∫
dyeiyaK0 (|y|)]2

=
i(2π)4

4b⊥

∫
da

1

a2 + 1

=
i(2π)4

4b⊥
(
π

2
) (G.24)

So, we have that:

I2 =
i(2π)4

4b⊥
(π − 2) (G.25)
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