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This dissertation in a nutshell: This dissertation draws a connection between two
mathematical problems: adaptive control and data assimilation. The problem of adaptive
control seeks to find controller C would make the output ŷ of plant P follow the reference
input y. Similarly, the problem of data assimilation seeks to find states x̂ and drivers d to
drive error e = y − ŷ to zero. Chapters 2-4 describe the former problem, whereas chapters

5 and 6 describe the latter.
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ABSTRACT

This dissertation draws a connection between the problem of adaptive com-

mand following and data assimilation with driver estimation. For these two

different problems, two different approaches are adapted - retrospective cost

adaptive control (RCAC) and ensemble adjustment Kalman filter (EAKF).

Both methods are first applied to linear minimum phase examples to demon-

strate the modeling requirements and operating principles. Next, RCAC ro-

bustness to the accuracy of nonminimum phase (NMP) zero is investigated

for plants of varying order and relative degree and is then improved through

a convex constraint on the controller poles. It is demonstrated that the con-

vex constraint significantly improves the transient and steady state command

following and disturbance rejection performance. RCAC is then shown to suc-

cessfully solve the command following problem for a nonlinear system (planar

multilink arm) in a particular range of command amplitudes.

This nonlinear example serves as a nice introduction to the data assimila-

tion problem for a particular space weather model, which can be thought of as a

generalization of the command following problem. The command in this case

comes from real satellite data and the goal is to make a space weather model

track the conditions observed by the satellites. The particular model used in

this project is the global ionosphere-thermosphere model (GITM). GITM’s

states (densities, temperatures and velocities for multiple species over a three-

dimensional grid) and inputs (solar flux index F10.7) are estimated using the

xiii



EAKF. The assimilation technique is first demonstrated on the simulated data

and is then applied to real satellite data. Successful assimilation of neutral den-

sity measurements from the CHAMP satellite as well as total electron content

measurements from the GPS satellites is demonstrated.
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CHAPTER 1

Introduction

We all seek to achieve something. Pilots seek to maintain the heading and altitude of their

planes, weathermen seek to improve the predictive capabilities of their models, and car

drivers aim to keep their cars in the proper lane. Operators of these systems seek to find

a control command, which when applied to the plant (the system to be controlled) would

achieve the desired trajectory. Knowledge of the plant is beneficial for trajectory planning

because it allows the operator to anticipate the reaction of the plant to any given command.

For example, a car driver might anticipate certain amount of side-slip through an icy turn

and pre-compensate for it by cutting to the inside of the curve. In a way, these anticipatory

precautions are a form of model inversion, that is designing the input signal in such a way

as to cancel the effects of the plant. This concept is better represented graphically as the

feedback architecture shown in Figure 1.1.

+

-

ŷy d

u

- +

eŷ
C

P

Figure 1.1: Feedback architecture for the command following problem. The goal is to find
controller C, which would make plant output ŷ track the desired trajectory y. Describing
the transfer function from y to ŷ in the frequency domain demonstrates that this goal is
achieved when C = 1 − P−1.
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The ideal controller for this architecture can be derived by recalling the goal of this

experiment (drive ŷ to y), that is ŷ = y. Then it can be noted that ŷ is the result of applying

d to the plant P, which in frequency domain can be denoted by ŷ = Pd, where P is a

transfer function from d to ŷ either in discrete or continuous time. For simplicity of this

introduction, we consider only single input single output (SISO) plants and controllers.

Accordingly, d = y−u, and u = Cŷ, which together with the plant equation yields ŷ = P
1+PC y.

To satisfy the original goal of ŷ = y it is necessary that P
1+PC = 1, that is C = 1 − P−1. In

this case, the “ideal controller” transfer function must equal to one minus the inverse of the

plant transfer function.

However, this kind of direct inversion is often impractical, as it requires perfect knowl-

edge of the plant, might result in non-causal controllers (controllers that require knowledge

of future commands or use exact derivatives), or unstable controllers (controllers producing

unbounded output u when input y is bounded).

Early work on model inversion was performed by Brockett and Mesarovic [1], who

described necessary and sufficient conditions for the existence of the inverse system for

SISO linear and nonlinear time-invariant systems and introduced the concept of functional

reproducibility (ability to produce particular outputs, similar to target path controllability

[2]). This work inspired Silverman [3], Dorato [4], and Sain and Massey [5] to simplify

these necessary and sufficient conditions and design more efficient algorithms for finding

the inverse system. In particular, Silverman extended the results of Brockett and Mesarovic

to time-varying linear systems with multiple intputs and multiple outputs (MIMO). On

the other hand, Sain and Massey extended the findings of [1] to discrete time systems

and introduced the concept of k-integral inverse, where k refers to the minimum number

of integrations in the plant that no controller can remove without using exact derivatives.

This work was continued by Willsky [6], who produced stronger versions of the necessary

and sufficient conditions; Orner, Emre and Huseyin [7, 8], who demonstrated how transfer

function coefficients can be used to check existence of a left k-integral inverse without
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converting the model to state space; Hirschorn [9], who generalized the findings to the

nonlinear systems; and Isidori and Byrnes [10], who showed how nonlinear systems can be

controlled by using input-output feedback linearization.

The approaches mentioned above have the restricting assumption of a minimum phase

plant, that is plant has no zeros in the open right half plane for linear systems and stable zero

dynamics for nonlinear systems (for the definition of zero dynamics, see [11]). This limita-

tion is crucial for many control applications and several solutions to this problem have been

proposed. Devasia, Chen, and Paden [12] demonstrated a stable but non-causal inversion-

based approach. This approach outperformed the Byrnes-Isidori regulator in terms of tran-

sient response when preview was available, but resulted in similar performance otherwise.

Huang [13] solved the tracking problem for a class of nonlinear systems by decompos-

ing the zero dynamics into stable and unstable parts. Similarly, Doyle, Allgower, and

Morari [14] described a method that decomposes the nonlinear plant into minimum and

nonminimum phase (NMP) parts, the latter one of which is approximated by a minimum

phase system. This minimum phase approximation is then used in the controller design,

which is then applied to the original nonlinear system. The main difference between this

approach and that of [10] is the use of control derivatives (u̇, ü, etc.) to transform the state

variables into a canonical form. The new expression for the states is then modified in a

fashion similar to the reflection of unstable zeros for linear plants [15] to approximate the

NMP part of the plant by a minimum-phase system. The provided examples demonstrate

that the algorithm achieves near ideal tracking regardless of the command amplitude given

that the required derivatives can be obtained.

However, one aspect that [12] and [14] did not take into consideration was the effect of

disturbances on the inversion process. This issue is addressed by George, Verhaegen, and

Scherpen in [16], where the Kalman filter is used to estimate the unknown input needed

to track the desired output. This work is an extension of earlier results by Hou and Pat-

ton [17], who combined the unknown input decoupling approach of Hou and Muller [18]
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with the innovative approach to deriving optimal filters by Kailath [19], and Anderson and

Moore [20]. Another limiting factor of the previous approaches is the need to know the

plant exactly. To address this issue, adaptive control and adaptive disturbance rejection (or

noise cancellation) methods have been developed. The references for initial developments

in active noise control are given by Burgess in [21], which also demonstrates a novel finite

impulse response (FIR) adaptive noise controller. In particular, Burgess took the least-

mean-squares (LMS) based adaptive echo/noise canceler used in signal processing (Sondhi

and Presti [22] and Widrow et al. [23]) and applied it in a control context. This approach

was further improved by relaxing the FIR-restriction on the controller, thereby allowing

for infinite impulse response (IIR) controllers, as shown by Eriksson [24]. The IIR ap-

proach is demonstrated to improve disturbance rejection performance since it is capable of

removing the poles introduced by feedback. As a continuation of the overall shift to the

IIR approaches, an ARMARKOV/Toeplitz adaptive approach is proposed by Venugopal

and Bernstein for disturbance rejection in [25] and for command following in [26]. The

major differences of this approach from the approaches mentioned above include needing

only secondary path numerator model of the plant, not requiring knowledge of the distur-

bance spectrum, and updating the controller based on the past error instead of the predicted

future error. In particular, [27] and [28] show that the ARMARKOV controller attenuates

disturbance almost twice as well as the filtered-u IIR LMS (FURLMS, [29]) algorithm

(attenuations of 89.5 dB and 56.3 dB, respectively).

The ARMARKOV approach was further developed by Hoagg, Santillo, and Bernstein

in [30,31], where plant Markov parameters were used instead of the numerator coefficients

in controller design and introducing a retrospective correction filter (RCF). RCF pre-filters

the measurements based on the difference between the actual past control inputs and re-

computed past control inputs assuming the current controller was used in the past. This

concept is implicit in the original formulation of [25], but its effects are more extensively

investigated in [31]. This study demonstrates that the modified retrospective approach is
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effective for disturbance rejection and command following problems for unstable, MIMO,

and/or NMP plants. One improvement of this algorithm is described in Chapter 2, where a

convex constraint is imposed on the poles of the controller to prevent them from attempting

to cancel the NMP zeros. This constraint in addition to meeting the goal of restraining

the poles inside the unit disk has the beneficial side effects of decreasing the transients ex-

perienced during adaptation and improving robustness to the knowledge of the NMP zero

locations.

The next step in the evolution of retrospective cost adaptive controllers (RCAC) was the

cumulative modification proposed by Hoagg and Bernstein in [32]. One of the innovations

in this version is the recursive least squares update law, which improved the transient per-

formance of the algorithm. The minimal information required by this algorithm is the first

nonzero Markov parameter and the NMP zeros of the control-performance transfer func-

tion. Chapter 3 of this dissertation describes the degree of preciseness of the NMP zero

locations required for the stability of RCAC. The performance of this version of RCAC for

nonlinear command following is investigated in Chapter 4, where a model of a planar mul-

tilink arm is derived. The linearized transfer functions between noncolocated torque inputs

and link angular positions are shown to be nonminimum phase. This example successfully

demonstrated that RCAC can be applied to nonlinear command following and disturbance

rejection problems when command and disturbance amplitudes are within certain bounds.

This application inspired another nonlinear command following (or, more broadly, data

assimilation with driver estimation) application. Data assimilation with driver estimation

can be thought of as a generalization of command following, since in addition to finding a

control input required to drive the output of the system to the desired trajectory it computes

such system states, which would bring system output even closer to the desired trajectory

than control input alone ever could. Accordingly, data assimilation and driver estimation

are complementary in achieving output tracking. To provide an analogy for this symbiotic

relationship we revisit the car driver example, where the goal is to keep the car in the middle
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of the lane. In this example, the car operator has a noisy (perhaps due to degraded vision)

measurement of the car’s position relative to the center of the lane and can influence this

position via the steering wheel. On one hand, driver estimation (or command following)

would consist of determining how to turn the steering wheel to get the car closer to the cen-

ter of the lane in the future. On the other hand, data assimilation can be thought of operator

having the power to reset car’s position at any instance (for example, every minute), but

keep the steering wheel in the same position throughout the whole experiment. Therefore,

the only way the operator can influence the car’s position during pure data assimilation

(without driver estimation) is through, figuratively speaking, picking it up and placing it

a desired distance away from the middle of the lane. At this point a somewhat unrelated

question of ’Would the car operator put the car right in the middle of the lane the first time

he had an opportunity?’ comes up. The answer to this question depends on the car. If the

car is old or has incorrect wheel alignment, it might drift to the left or to the right even

with zero steering input. With such a car, operator is better off placing the car slightly off

center to pre-compensate for this drifting effect (thereby inverting the system). This men-

tal experiment is meant to provide an intuitive feel for the relationship between the data

assimilation and driver estimation, namely that they complement each other by giving the

operator both powers - to reset car’s position as well as the steering input at every step.

In the aforementioned project inspired by the nonlinear linkage experiment, the system

to be driven was a model of the upper atmosphere - the global ionosphere-thermosphere

model (GITM, [33]). The goal of this project was to find inputs and states of GITM that

would result in simulated GITM outputs tracking real satellite data. The motivation for this

project came from the solar storms of October 2003 (Halloween Storms). A solar storm

is an event of extreme solar activity resulting in elevated amount of energetic particles and

electromagnetic waves affecting Earth. While the October 2003 storms did not leave 55

million people without power as was the case during the Northeast Blackout two months

earlier, they demonstrated how little is known about the solar wind effects on the upper
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atmosphere. In particular, the Halloween Storms damaged some instruments on NASA’s

Advanced Composition Explorer (ACE) satellite, temporarily disabled NASA-ESA Solar

and Heliospheric Observatory (SOHO), and caused a power outage in Sweden [34–36].

As a result, the NASA Solar Dynamics Observatory (SDO) was launched in 2010 and

is capable of providing solar-flare warnings four days before solar wind particles reach

Earth. Nonetheless, even with such an advance warning, the capability to predict how

a particular flare will affect Earth’s thermosphere, ionosphere, and magnetosphere is not

mature enough [37]. This fact is particularly apparent in the realm of orbit determination

and conjunction analysis, where thermospheric drag can play a vital role [38]. Uncertainty

in drag comes from inaccuracies in thermospheric models, which can be improved through

data assimilation, that is, comparing model output to real data and adjusting model states

and inputs to compensate for observed discrepancies.

One approach to data assimilation is ensemble Kalman filtering, which is a technique

that uses multiple instances of the nonlinear model with different initial conditions to esti-

mate the state of the system. The motivation for creating ensemble filters arose from several

practical issues with the extended Kalman filter (EKF, [39]) and the unscented Kalman filter

(UKF, [40]). One of the issues with the EKF is that it requires model linearization at every

step, which might not be possible if the model does not have a simple analytic description

(if it is a complex computational fluid dynamics simulation, for example). UKF, on the

other hand, does not require linearization, but does require propagation of 2n sigma-points,

where n is length of the state vector of the nonlinear system. Atmospheric models can have

tens of millions of state variables, so UKF would have to propagate tens of millions of

model copies, which is impractical with current computers.

To address these issues, the ensemble Kalman filter (EnKF) was proposed as described

in [41, 42]. This filter saw many applications ranging from cardiac computer tomogra-

phy [43] to fishery stock collapse problem [44] to assimilating data from the atmosphere

on Mars [45]. In this dissertation, a filter similar to EnKF (ensemble adjustment Kalman
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filter, EAKF, [46]) is used. EAKF (as well as many other filters) is implemented in the

data assimilation research testbed (DART, [47]) written and maintained by the staff of the

national center for atmospheric research (NCAR). A large part of the effort described in

this dissertation went into interfacing DART and GITM and some software aspects of this

interface are dispersed throughout this text. The minor difference between the EnKF and

the EAKF is the fact that EAKF does not perturb the measurements to prevent the ensem-

ble spread from going to zero (filter divergence). Filter divergence is said to occur when

all ensemble members converge to the same trajectory and ignore the incoming measure-

ments. EAKF solves this problem by artificially increasing the ensemble spread, thereby

introducing a “healthy” level of disagreement between the ensemble members, which can

be related to covariance resetting.

A novel approach to this problem is described in Chapter 5. The new approach con-

sists of choosing different inflation values for different estimates. For example, the external

driver estimates require more inflation than internal state variables, since the drivers are not

updated by the model and therefore are more uncertain. In particular, we show that setting

the driver variance to a constant value was beneficial as it made sure that the driver variance

would not increase without bound, which can be the case when the covariance matrix is

scaled up at every step. The differential inflation technique improves the filter convergence

speed as well as the steady state performance, when compared to the equilateral inflation.

Chapter 5 describes the assimilation of the Challenging Minisatellite Payload (CHAMP)

neutral density measurements into GITM to estimate the solar activity index F10.7, whereas

Chapter 6 demonstrates assimilation of a more global measurement - total electron con-

tent. Both of these chapters demonstrate an improvement in model-data agreement through

driver estimation.

In summary, the main contributions of this dissertation can be presented in the following

list.

• Description of the Retrospective Cost Adaptive Control (RCAC) stability margins
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for plants with uncertain nonminimum-phase zeros.

• Introduction of a convex constraint on the controller pole locations to improve

RCAC transient and steady-state performance.

• Modeling of a nonlinear system and description of the achievable amplitude and

frequency control ranges.

• Modification of the Data Assimilation Research Testbed (DART) to interface it with

the Global Ionosphere-Thermosphere Model (GITM).

• Development of a novel inflation technique for the Ensemble Adjustment Kalman

Filter (EAKF) as applied to GITM for purposes of data assimilation and driver esti-

mation.

• Introduction of an ability to assimilate Total Electron Content (TEC) measurements

into the DART-GITM interface.
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CHAPTER 2

Retrospective Cost Adaptive Control for

Nonminimum-Phase Systems with Uncertain

Nonminimum-Phase Zeros Using Convex

Optimization

The goal of this Chapter is to describe how the robustness of RCAC to uncertainty in the lo-

cations of the nonminimum-phase zeros can be increased. Specifically, a convex constraint

is imposed on the poles of the controller in order to prevent the adaptive controller from

attempting to cancel the nonminimum-phase zeros. Numerical results show that, when

constrained convex optimization is used at each step, the transient response is improved

and the adaptive controller has increased robustness to uncertainty in the locations of the

nonminimum-phase zeros. The results of this Chapter are published in collaboration with

D’Amato, Hoagg, and Bernstein in [48] and are further investigated in Chapter 3.

2.1 Introduction

Nonminimum-phase zeros are a major impediment to achievable performance in feedback

control. While all fields of science and technology that work with dynamical systems are

familiar with poles, the field of control is unique in recognizing the role of zeros in sys-
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tems with inputs and outputs. The multiple ways in which zeros impact the operation of

control systems are discussed in [49]. In the classical case of root locus analysis, the attrac-

tion of poles to zeros limits the magnitude of the feedback gain. The same phenomenon

occurs in LQG control for SISO and MIMO systems, where, in the high-authority limit,

the controller obtained from the Riccati equations drives some of the closed-loop poles

to the open-left-half-plane reflections of the open-loop nonminimum-phase (NMP) zeros.

Nonminimum-phase zeros thus limit the achievable bandwidth and control authority. In

addition, real nonminimum-phase zeros are responsible for initial undershoot and direc-

tion reversals in the step response. These issues are well understood for continuous-time

systems; for sampled-data systems, analogous phenomena occur.

Nonminimum-phase zeros are especially challenging in adaptive control since an adap-

tive controller may attempt to cancel a nonminimum-phase zero. Such pole-zero cancella-

tion is impossible, and thus, in fixed-gain control, the use of a nonminimum-phase zero to

cancel an unstable pole is well known to be ineffective. In adaptive control, the reverse sit-

uation occurs, namely, an adaptive controller may attempt to cancel a nonminimum-phase

zero that limits its performance; however, the nonminimum-phase zero cannot be removed.

The detrimental affect of this attempt to cancel a nonminimum-phase zero is the fact that

the controller may seek to apply unbounded control effort, thereby destabilizing the closed-

loop system.

In the present chapter we focus on retrospective cost adaptive control (RCAC) [50,51].

RCAC uses a retrospective cost functional defined in terms of a surrogate performance

variable, which is based on measured data over a past window of operation. In effect,

the retrospective cost functional “looks backward” over the window of data in order to

determine a controller modification that would have improved the past performance. This

retrospective cost functional is optimized at each step in order to update the controller. The

algorithm thus seeks the controller that achieves the best performance in terms of a prior

window of operation as determined by the retrospective cost. The approach of “looking
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backward” rather than forward (as in the case, for example, of model predictive control)

allows RCAC to control the system under minimal modeling information.

As shown in [50, 52], RCAC has the ability to adaptively control nonminimum-phase

systems if the locations of the nonminimum-phase zeros are known. Modeling information

that captures the locations of the nonminimum-phase zeros (either SISO or MIMO) is in-

cluded in the matrix B̄zu, as described in the next section. The matrix B̄zu can be defined

in terms of the Markov parameters of the transfer function from the control input to the

performance variable. The Markov parameters are coefficients of the Laurent expansion of

the transfer function expressed in terms of powers of 1/z. The Laurent expansion provides

a convergent series for the transfer function outside of the spectral radius of the plant; con-

sequently, this series automatically captures all nonminimum-phase zeros outside of the

spectral radius. Alternatively, if the nonminimum-phase zeros are known, then their values

can be used directly in B̄zu in place of a finite number of Markov parameters. Consequently,

identification of nonminimum-phase zeros is of interest in practice [53].

The above discussion leads to the following question: How does RCAC exploit knowl-

edge of the nonminimum-phase zeros in order to avoid any attempt to cancel them? This

question is addressed in [52], where it is shown that the nonminimum-phase zeros ap-

pear in the numerator of a filter that processes the data in the regressor used in the con-

troller update. This filter removes spectral content corresponding to the locations of the

nonminimum-phase zeros, thus avoiding the possibility of having the adaptive controller

attempt to cancel a nonminimum-phase zero.

Since RCAC requires knowledge of the nonminimum-phase zeros of the plant, it is

of interest to determine the required accuracy of this information. Numerical examples

in [50, 54] suggest a negative result, namely, that there may exist plants for which the ro-

bustness to uncertainty in the locations of the nonminimum-phase zeros may be arbitrarily

small. This lack of robustness is manifested by the increasingly larger transients that arise

as the nonminimum-phase-zero locations become increasingly uncertain. This negative re-
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sult is consistent with [55, 56], namely, that adaptive control must confront plants that are

inherently difficult to control. RCAC shows that this difficulty is inherent in the modeling

information relating specifically to the nonminimum-phase zeros (if any are present).

In the present chapter our goal is to develop a technique that increases the robustness of

RCAC to uncertainty in the locations of the nonminimum-phase zeros. To do this, we con-

sider an extension of RCAC, where the minimization of the retrospective cost is performed

subject to a constraint on the allowable locations of the controller poles. A convex con-

straint on eigenvalue locations is given in [57] and is used in [58] for model identification

with guaranteed stability. However, this approach cannot be used with RCAC since RCAC

updates the coefficients of the denominator of the controller transfer function, rather than

the entries of an unstructured dynamics matrix. We thus use this polynomial to construct

a companion matrix. Since a bound on the spectral radius of the companion matrix does

not provide a convex constraint on the coefficients of the polynomial, we bound the spec-

tral radius with a matrix norm, which defines a convex constraint. Although bounding the

spectral radius with a matrix norm introduces conservatism, this conservatism has minimal

effect since the magnitude of the bound on the matrix norm can be adjusted as a design

parameter.

2.2 Problem Formulation

Consider the multi-input, multi-output discrete-time system

x(k + 1) = Ax(k) + Bu(k) + D1w(k), (2.1)

y(k) = Cx(k) + Du(k) + D2w(k), (2.2)

z(k) = E1x(k) + E2u(k) + E0w(k), (2.3)
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where x(k) ∈ Rn, y(k) ∈ Rly , z(k) ∈ Rlz , u(k) ∈ Rlu , w(k) ∈ Rlw , and k ≥ 0. Our goal is to

develop an adaptive controller that generates a control signal u that minimizes the perfor-

mance variable z in the presence of the exogenous signal w. We assume that measurements

of the output y and the performance variable z are available for feedback; however, we

assume that a direct measurement of the exogenous signal w is not available.

Note that w can represent either a command signal to be followed, an external distur-

bance to be rejected, or both. For example, if D1 = 0, E2 = 0, and E0 6= 0, then the objective

is to have the output E1x follow the command signal −E0w. On the other hand, if D1 6= 0,

E2 = 0, and E0 = 0, then the objective is to reject the disturbance w from the performance

measurement E1x. The combined command following and disturbance rejection problem

is addressed when D1 and E0 are block matrices. Lastly, if D1 and E0 are empty matrices,

then the objective is output stabilization, that is, convergence of z to zero.

The performance variable z can include the feedthrough term E2u. This term allows us

to design an adaptive controller where the performance variable z to be minimized can in-

clude a weighting on control authority. For example, if E1 = [ ÊT
1 0 ]T, E2 = [ 0 ÊT

2
]T,

and E0 = [ ÊT
0 0 ]T, then the performance z consists of the components z1

4
= Ê1x + Ê0w

and z2
4
= Ê2u. In this case, the goal is to minimize a weighted combination of z1 and z2,

where z1 is the weighted state performance and z2 is the weighted control authority.

We represent (2.1) and (2.3) as the time-series model from u and w to z given by

z(k)=
n∑

i=1

−αiz(k − i)+
n∑

i=d

βiu(k − i)+
n∑

i=0

γiw(k − i), (2.4)

where α1, . . . , αn ∈ R, βd, . . . , βn ∈ Rlz×lu , γ0, . . . , γn ∈ Rlz×lw , and the relative degree d is the

smallest non-negative integer i such that the ith Markov parameter, either H0
4
= E2 if i = 0

or Hi
4
= E1Ai−1B if i > 0, is nonzero. Note that βd = Hd.
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2.3 Review of RCAC

In this section we give a brief overview of the RCAC. Full details are given in [31]. RCAC

depends on several parameters that are selected a priori. Specifically, nc is the controller

order, p is the data window size, and µ is the number of Markov parameters. The adaptive

update law is based on a quadratic cost function, which involves a time-varying weighting

parameter ζ(k) > 0, referred to as the learning rate since it affects the convergence speed

of the adaptive control algorithm.

We use a strictly proper time-series controller of order nc such that the control u(k) is

given by

u(k) =

nc∑
i=1

Mi(k)u(k − i) +

nc∑
i=1

Ni(k)y(k − i), (2.5)

where Mi ∈ Rlu×lu , i = 1, . . . , nc, and Ni ∈ Rlu×ly , i = 1, . . . , nc, are given by an adaptive

update law. The control can be expressed as

u(k) = θ(k)φ(k), (2.6)

θ(k) 4=
[

N1(k) · · · Nnc(k) M1(k) · · · Mnc(k)
]

(2.7)

is the controller parameter block matrix, and the regressor vector φ(k) is given by

φ(k) 4=



y(k − 1)
...

y(k − nc)

u(k − 1)
...

u(k − nc)



∈ Rnc(lu+ly). (2.8)
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For positive integers p and µ, we define the extended performance vector Z(k), and the

extended control vector U(k) by

Z(k) 4=


z(k − 1)

...

z(k − pc)

 , U(k) 4=


u(k − 1)

...

u(k − pc)

 , (2.9)

where pc
4
= n + µ + p − 1.

From (2.6), it follows that the extended control vector U(k) can be written as

U(k) 4=
pc∑

i=1

Liθ(k − i)φ(k − i), (2.10)

where

Li
4
=


0(i−1)lu×lu

Ilu

0(pc−i)lu×lu

 ∈ R
pclu×lu . (2.11)

We define the surrogate performance vector Ẑ(θ̂(k), k) by

Ẑ(θ̂(k), k) 4= Z(k) − B̄zu

(
U(k) − Û(k)

)
, (2.12)

where

Û(k) 4=
pc∑

i=1

Liθ̂(k)φ(k − i), (2.13)

and θ̂(k) ∈ Rlu×[nc(lu+ly)] is the surrogate controller parameter block matrix. The block-
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Toeplitz surrogate control matrix B̄zu is given by

B̄zu
4
=



0lz×lu · · · 0lz×lu Hd · · ·

... . . . . . . . . . . . .

... . . . . . . . . . . . .

0lz×lu · · · 0lz×lu 0lz×lu · · ·

· · · Hµ 0lz×lu · · · 0lz×lu

. . . . . . . . . . . . ...

. . . . . . . . . . . . ...

· · · 0lz×lu Hd · · · Hµ


, (2.14)

where the relative degree d is the smallest positive integer i such that the ith Markov pa-

rameter Hi
4
= C0Ai−1

0 B0 is nonzero. The leading zeros in the first row of B̄zu account for the

nonzero relative degree d. The algorithm places no constraints on either the value of d or

the rank of Hd or B̄zu.

We now consider the cost function

J(θ̂, k) 4= ẐT(θ̂, k)Ẑ(θ̂, k) + ζ(k)tr
[
(θ̂−θ)T(θ̂−θ)

]
, (2.15)

where the positive scalar ζ(k) is the learning rate. Substituting (2.12) into (2.15), the cost

function can be written as the quadratic form

J(θ̂, k) =
(
vec θ̂

)T
A(k)vec θ̂ + bTvec θ̂ + c(k), (2.16)
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where

D(k) 4=
pc∑

i=1

φT(k − i) ⊗ (B̄zuLi),

f (k) 4= Z(k) − B̄zuU(k),

A(k) 4= DT(k)D(k) + ζ(k)Inclu(lu+ly),

b(k) 4= 2DT(k) f (k) − 2ζ(k)vec θ(k),

c(k) 4= f (k)T f (k) + ζ(k)tr
[
θT(k)θ(k)

]
. (2.17)

Since A(k) is positive definite, J(θ̂, k) has the strict global minimizer

θ̂(k) = −
1
2

vec−1(A(k)−1b(k)). (2.18)

The controller gain update law is θ(k + 1) = θ̂(k).

2.4 Constrained Convex Optimization

In this section we extend RCAC by using constrained convex optimization instead of (2.18)

to update θ(k) ∈ R1×2nc . For simplicity, we consider only SISO systems. The denominator

coefficients of the controller can be constructed from the last nc entries of θ(k) as

den(θ(k)) 4= [1 − M1 − M2 · · · − Mnc]. (2.19)

The roots of the monic polynomial whose coefficients are given by den(θ(k)) are the pole

locations of the adaptive controller at step k.

In order to prevent the poles of the adaptive controller from approaching the nonminimum-

phase-zero locations, we constrain the poles to lie inside a disk centered at the origin of the

complex plane. Accordingly, we modify the problem of minimizing (2.16) by imposing an

18



additional constraint on the companion-form matrix

K 4
=



M1 M2 . . . Mnc−1 Mnc

1 0 . . . 0 0

0 1 . . . 0 0
...

... . . . ...
...

0 0 . . . 1 0


. (2.20)

We constrain the poles to a disk by bounding the spectral radius of K by a matrix norm,

which is a convex function and thus defines a convex region in terms of the denominator

coefficients den(θ(k)). Various matrix norms can be used to bound the spectral radius. For

example, every equi-induced norm provides an upper bound, see Corollary 9.4.5 of [59].

One such norm is the maximum singular value of K. Accordingly, the constraint we use is

given by

σmax(K) ≤ γ, γ > 1. (2.21)

To investigate the conservatism of this bound when applied to matrices of form (2.20),

we generate 105 10th-order monic polynomials whose last ten coefficients are taken from

a standard normal distribution. For each polynomial we compute the spectral radius ρ(K)

and the maximum singular value σmax(K). Each dot in Figure 2.1 corresponds to a poly-

nomial. Figure 2.1 suggests that the constraint (2.21) is conservative. For the rest of the

chapter we consider only the maximum singular value to bound the spectral radius. The

use of alternative bounds, which include maximum absolute value norm, row-norm, and

Frobenius-norm, is left for future work.

Further investigation shows that if the focus of the conservatism study is restricted

to second order polynomials with roots within unit circle, then the conservatism of the

bound is more clearly shown in Figure 2.2. Figure 2.2(b) shows the ratio of the maximum
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Figure 2.1: Spectral radius ρ(K) is plotted versus maximum singular value σmax(K) for 105

10th order random monic polynomials. The plot shows that the constraint (2.21) is conser-
vative, since a polynomial of high enough order can be found with companion maximum
singular value arbitrarily far to the right of the y = x line. This fact is further demonstrated
in Figure 2.3.

singular value of a companion matrix to the corresponding polynomial root magnitude and

demonstrates that in the worst case scenario this ratio might reach 2.414. Furthermore,

Fact 5.11.30 of [59] allows for exact computation of the maximum singular value of a

companion matrix directly from the polynomial coefficients as given by

σmax =

√√√√√√
1
2

1 +

nc∑
i=1

M2
i +

√√√1 +

nc∑
i=1

M2
i

2

− 4M2
nc

. (2.22)

By computing (2.22) for all polynomials with roots shown in Figure 2.2(a) it was found

that the maximum singular value among all these polynomials is achieved with roots of

[-1,-1] or [1,1], both resulting in a value of
√

1
2 (6 +

√
32) ≈ 2.414. We conjecture that the

nth order polynomials with all roots at the plus or minus 1 locations will have the largest
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Figure 2.2: Roots of the selected second order polynomials are shown in (a) and the
singular values of the corresponding (correspondence is demonstrated by color) companion
matrix (K) are shown versus the polynomial roots in (b). Note that the axes in (b) are
swapped as compared to Figure 2.1. (b) demonstrates that in the worst case scenario, the
singular value of a companion matrix K is 2.414 times greater than the absolute value of
the root of the polynomial (1.0).

maximum singular value out of all the polynomials of order n. Once the roots of nth order

polynomial are constrained to be at +1, (2.22) can be simplified by noting that in this case

b 4
= 1 +

∑nc
i=1 M2

i =
(2n)!
(n!)2 and realizing that (b

2 +
√

b2−4
2 ) is a complete square, as given by

σwc
max =

√
(2n)! − 2(n!)2

4(n!)2 +

√
(2n)! + 2(n!)2

4(n!)2 , (2.23)

where wc superscript denotes our conjecture that the polynomials with unity roots result in

the worst case scenario, that is the largest singular values of the corresponding companion

matrix. (2.23) is further demonstrated in Figure 2.3 as a function of polynomial order and

is shown to be bounded from above by 2n. Figure 2.3 demonstrates that the norm constraint

is more conservative for higher order polynomials than for the lower order polynomials.
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2.5 Numerical Examples

We now demonstrate the performance of convex-constrained-RCAC (CC-RCAC) with con-

strained convex optimization on command following problems. The package CVX [60, 61]

is used to minimize (2.16) subject to the constraint (2.21). For all examples in this section,

the control objective is to have the plant output y(k) follow a sinusoid with amplitude 1 and

frequency π
10

rad
samp

= 18 deg

samp
, except where noted otherwise. The adaptive controller (2.6) is

implemented in feedback with nc = 10, µ = 1, p = 1, ζ ≡ 1, and θ(0) = 0. Also, we assume

that the relative degree d and the first nonzero Markov parameter Hd are known.

The closed-loop is simulated for 1000 steps. Initial conditions are generated at the

beginning of each simulation from a Gaussian distribution with mean 0 and variance 0.3.

The transient and the steady-state performances are the two performance metrics used to

compare RCAC with CC-RCAC. By transient performance we mean the maximum of the

absolute value of the performance variable z(k), and by steady-state performance we mean

the maximum of the absolute value of the performance variable over the last 100 steps of
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the simulation.

2.5.1 Third-Order Plant with a Known NMP Zero

We apply RCAC to a third-order plant with transfer function given by

G3(z) 4=
z − 1.4

z3 − 1.7z2 + 1.2z − 0.35
. (2.24)

RCAC requires knowledge of relative degree, the first nonzero Markov parameter, and the

NMP zero. For this example the exact values of these parameters are assumed to be known,

and therefore d = 2, Hd = 1, and B̄zu = [ 0 0 1 −1.4 ]. For RCAC Figure 2.4 shows the

performance z(k), control input u(k), and controller coefficients θ(k). After the controller

is turned on at k = 100, the performance variable z(k) approaches zero in about 200 steps,

and the controller coefficients converge in about 400 steps. Figure 2.5 shows the evolution

of the controller poles, which settle in about 400 steps.

Under the same assumptions we apply CC-RCAC with γ = 1.1. For CC-RCAC Fig-

ure 2.6 shows the performance z(k), control input u(k), and controller coefficients θ(k).

After the controller is turned on, the performance variable z(k) approaches zero and the

controller coefficients converge in about 200 steps. Figure 2.7 shows the evolution of the

controller poles, which settle in about 200 steps. For this example Figures 2.4-2.7 show

that, compared to RCAC, CC-RCAC provides improved performance in terms of decreas-

ing the transient magnitude by about 70 percent and decreasing the settling time by about

50 percent.

2.5.2 Third-Order Plant with an Uncertain NMP Zero

We now compare the performance of RCAC with CC-RCAC on the plant (2.24), but with a

NMP zero whose location is varied from 1.1 to 4.1. In addition, we also test the robustness

of both algorithms to uncertainty in the estimate of the NMP zero. Therefore, the estimate
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Figure 2.4: RCAC performance, control, and controller coefficients are shown as a function
of time for the transfer function (2.24).

of the NMP zero is varied from 1.1 to 4.1 regardless of the location of the actual NMP zero.

The true values for d and Hd are provided to the algorithm.

Figure 2.8 shows the transient and steady-state performances for various locations of

the nonminimum-phase zero and its estimates using RCAC. Note that in some cases (par-

ticularly small values of the estimate of the NMP zero locations and large actual NMP zero

locations) the closed-loop becomes unstable as signified by white in these plots. Addi-

tionally, the color map for these plots is saturated so that dark red corresponds to transient

performance greater than 100. Also note that, the diagonal in both plots corresponds to
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Figure 2.5: Evolution of the RCAC controller poles is shown as a function of time in terms
of color. Later pole locations are colored with warmer colors and the final locations are
marked with a red square. After the controller is turned on, the poles settle in about 400
steps.

the nominal case, i.e., the zero estimate location is at the actual zero location. Figure 2.8

indicates that RCAC is more robust to overestimating the NMP zero location than under-

estimating it and that when the NMP zero is further out on the real axis, RCAC has greater

stability margins than when the NMP zero is closer to the unit circle.

Next, Figure 2.9 shows the CC-RCAC transient and steady-state performance and indi-

cates that, like RCAC, CC-RCAC is more robust to overestimating the NMP zero location

than underestimating it. Also, CC-RCAC has wider stability margins when compared to

RCAC since the white area in Figure 2.9 is reduced by about 70 percent as compared to

Figure 2.8.
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Figure 2.6: CC-RCAC performance, control, and controller coefficients are shown as a
function of time for the transfer function (2.24).

2.5.3 Effect of Varying γ

We now examine the performance of CC-RCAC for various values of γ, more precisely,

from 1.1 to 2.1. The third-order plant (2.24) with the NMP zero location varied from 1.1

to 4.1, is used. The exact location of the NMP zero is provided to the algorithm. Figure

2.10 shows the transient and steady-state performances for various values of γ and known

NMP zero locations. The strip above each plot shows the RCAC performance for various

NMP zero locations. Figure 2.10 suggests that the best performance for each location of the

NMP zero is achieved at the lowest boundary of these plots, namely, γ = 1.1. γ = 1.1 was
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Figure 2.7: Evolution of the CC-RCAC controller poles is shown as a function of time in
terms of color. After the controller is turned on, the poles settle in about 200 steps.

found to work satisfactorily in all cases tested. Additionally, plants with NMP zeros closer

to the unit circle have smaller transients and smaller steady-state errors. Lastly, it can be

seen that CC-RCAC produces improved transient and steady-state performances compared

to RCAC.

2.5.4 Fourth-Order Plants with Uncertain NMP Zeros

In this section we compare RCAC and CC-RCAC performance on 20 fourth-order plants

with uncertain NMP zeros. The plants used for this example have poles generated from uni-

form random distribution, first nonzero Markov parameter equaling 1, and the nonminimum-

phase zero location of 2. The command following problem for these plants is simulated in

feedback with RCAC, while the estimate of the NMP zero is varied from 1.4 to 2.6. Fig-

ure 2.11 shows the resulting transient and steady-state performance. Next, the same set of

plants is simulated in feedback with CC-RCAC with γ = 1.1. Figure 2.12 shows the result-
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Figure 2.8: For the third-order plant (2.24) with a nonminimum-phase zero whose position
is given by the horizontal axis, RCAC uses the estimate of the nonminimum-phase zero
whose location is given by the vertical axis. The color in (a) shows the logarithm of the
transient performance, whereas (b) shows the logarithm of the steady-state performance.

ing transient and steady-state performance. Figures 2.11 and 2.12 suggest that both RCAC

and CC-RCAC have problems adapting to plants 7, 9, 11 and 19, since the steady-state

performance for both versions of the algorithm is relatively high, as compared to the rest

of the plants. Additionally, both versions of the algorithm are more robust to overestimat-

ing the location of the nonminimum-phase zero than to underestimating it. However, these

Figures also suggest that, on average, CC-RCAC produces smaller transient responses, as

compared to RCAC. Lastly, CC-RCAC has greater stability margin, as shown by the fact

that there are fewer white regions in Figure 2.12 than in Figure 2.11.

2.6 Conclusion

Retrospective cost adaptive control (RCAC) is applicable to command following and distur-

bance rejection problems under minimal modeling assumptions, namely, knowledge of the

relative degree, first nonzero Markov parameter, and nonminimum-phase zeros. In RCAC,

the controller is updated by optimizing a surrogate performance variable that is used to de-

fine a retrospective cost. The retrospective cost uses knowledge of the nonminimum-phase
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Figure 2.9: For the third-order plant with a nonminimum-phase zero whose position is
given by the horizontal axis, CC-RCAC with γ = 1.1 uses the estimate of the nonminimum-
phase zero whose location is given by the vertical axis.

zeros to prevent unstable pole-zero cancellation. The goal of this chapter is to increase the

robustness of RCAC to uncertainty in the nonminimum-phase zero locations. To do this, we

extend RCAC to include a convex constraint on the locations of the controller poles. Con-

vex optimization is then used to optimize the retrospective cost subject to this constraint.

The resulting convex-constrained retrospective cost adaptive controller (CC-RCAC) was

found to have improved transient and steady-state performance as well as improved robust-

ness to uncertainty in the locations of the nonminimum-phase zeros.
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Figure 2.11: For 20 random fourth-order plants with a nonminimum-phase zero at 2, RCAC
uses an estimate of the nonminimum-phase zero whose location is given by the horizontal
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Figure 2.12: For 20 random fourth-order plants, CC-RCAC with γ = 1.1 uses an estimate
of the nonminimum-phase zero whose location is given by the horizontal axis.
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CHAPTER 3

A Computational Study of the Performance and

Robustness Properties of Retrospective Cost

Adaptive Control

This Chapter presents a computational study of a discrete-time adaptive control algorithm

that is effective for multi-input, multi-output systems that are either minimum phase or

nonminimum phase. The adaptive control algorithm requires limited model information,

specifically, the first nonzero Markov parameter and the nonminimum-phase transmission

zeros of the transfer function from the control signal to the performance measurement. Fur-

thermore, the adaptive control algorithm is effective for stabilization, command following,

and disturbance rejection. For command following and disturbance rejection, the algorithm

does not require knowledge of the command or disturbance spectrum. The algorithm’s per-

formance and robustness in the presence of errors in the required modeling information

is explored. The results of this Chapter are published in collaboration with Hoagg and

Bernstein in [54].

3.1 Introduction

The existence of nonminimum-phase zeros is a major challenge in direct adaptive control.

In fact, many direct adaptive control methodologies rely on the assumption that the plant
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is minimum phase [62–66]. Furthermore, for command following and disturbance rejec-

tion, many adaptive control methodologies rely on the assumptions that the command and

disturbance spectra are known or that the disturbances are measured [67, 68]. Sensitivity

to process noise and sensor noise is an additional challenge in adaptive control, which may

be dealt with using robust adaptive control laws [64, 69]. In the present chapter, we review

a discrete-time adaptive controller that addresses these challenges. Furthermore, we com-

putationally explore the algorithm’s performance and robustness in the presence of errors

in the required model information.

Discrete-time versions of many continuous-time algorithms are available in the litera-

ture [63, 65, 70–72]. In addition, there are adaptive control algorithms that are unique to

discrete-time [65,73–75]. In Ref. [65,73], discrete-time adaptive control laws are presented

for stabilization and command following of minimum-phase systems based on the assump-

tion that the command signals are known a priori and that an ideal tracking controller exists.

An extension is given in Ref. [74], which addresses the combined stabilization, command

following, and disturbance rejection problem. Note that the results of Ref. [65, 73, 74] are

restricted to minimum-phase systems. For nonminimum-phase systems, Ref. [75] shows

that periodic control may be used; however, this adaptive control scheme requires periods

of open-loop operation.

Discrete-time adaptive controllers using a retrospective cost are known to be effective

for stabilization, command following, and disturbance rejection for systems that are either

minimum phase or nonminimum phase provided that knowledge of the nonminimum-phase

zeros is available [32,76,77]. Furthermore, these retrospective cost adaptive controllers are

effective for command following and disturbance rejection where the spectrum of the com-

mands and disturbances is unknown and the disturbance is unmeasured. Proof of stability

and convergence in the minimum-phase case is given in Ref. [74], while extensions to the

nonminimum-phase case are described in Ref. [32,77]. Retrospective cost adaptive control

uses a retrospective performance measurement, in which the performance measurement is
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modified based on the difference between the actual past control inputs and the recomputed

past control inputs, assuming that the current controller had been used in the past.

The adaptive laws of Ref. [76, 77] are derived by minimizing an instantaneous retro-

spective cost, which is a function of the retrospective performance at the current time step,

whereas the adaptive laws of Ref. [32] are derived by minimizing a cumulative retrospective

cost function, which is a function of the retrospective performance at the current time step

and all previous time steps. Retrospective cost adaptive controllers have been demonstrated

on various experiments and applications, including the Air Force’s deployable optical tele-

scope testbed in Ref. [78], the NASA generic transport model in Ref. [79], and flow control

problems in Ref. [80].

The goal of the present chapter is to examine the robustness (e.g., stability margins)

and performance (e.g., transient behavior and steady state behavior) of the cumulative ret-

rospective cost adaptive controller presented in Ref. [32]. In particular, we computationally

explore the algorithm’s behavior in the presence of inaccuracies in the required model in-

formation. In Section 3.4, we explore computationally the controller’s sensitivity to the

accuracy of the required model information, specifically, the first nonzero Markov param-

eter and nonminimum-phase zeros from the control to the performance. Sampled data

systems are examined in detail in Section 3.5.

3.2 Problem Formulation

Consider the multi-input, multi-output discrete-time system

x(k + 1) = Ax(k) + Bu(k) + D1w(k), (3.1)

y(k) = Cx(k) + Du(k) + D2w(k), (3.2)

z(k) = E1x(k) + E2u(k) + E0w(k), (3.3)
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where x(k) ∈ Rn, y(k) ∈ Rly , z(k) ∈ Rlz , u(k) ∈ Rlu , w(k) ∈ Rlw , and k ≥ 0. Our goal

is to develop an adaptive controller that generates a control signal u that minimizes the

performance z in the presence of the exogenous signal w. We assume that measurements

of the output y and the performance z are available for feedback; however, we assume that

a direct measurement of the exogenous signal w is not available.

Note that w can represent either a command signal to be followed, an external distur-

bance to be rejected, or both. For example, if D1 = 0, E2 = 0, and E0 6= 0, then the objective

is to have the output E1x follow the command signal −E0w. On the other hand, if D1 6= 0,

E2 = 0, and E0 = 0, then the objective is to reject the disturbance w from the performance

measurement E1x. The combined command following and disturbance rejection problem

is addressed when D1 and E0 are block matrices. Lastly, if D1 and E0 are empty matrices,

then the objective is output stabilization, that is, convergence of z to zero.

The performance variable z can include the feedthrough term E2u. This term allows

us to design an adaptive controller where the performance z to be minimized can include

a weighting on control authority. For example, if E1 = [ ÊT
1 0 ]T, E2 = [ 0 ÊT

2
]T, and

E0 = [ ÊT
0 0 ]T, then the performance z consists of the components z1

4
= Ê1x + Ê0w and

z2
4
= Ê2u. In this case, the goal is to minimize a weighted combination of z1 and z2, where

z1 is the weighted state performance and z2 is the weighted control authority.

We represent (3.1) and (3.3) as the time-series model from u and w to z given by

z(k) =

n∑
i=1

−αiz(k − i) +

n∑
i=d

βiu(k − i) +

n∑
i=0

γiw(k − i), (3.4)

where α1, . . . , αn ∈ R, βd, . . . , βn ∈ Rlz×lu , γ0, . . . , γn ∈ Rlz×lw , and the relative degree d is the

smallest non-negative integer i such that the ith Markov parameter, either H0
4
= E2 if i = 0

or Hi
4
= E1Ai−1B if i > 0, is nonzero. Note that βd = Hd.
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3.3 Review of the Cumulative Retrospective Cost Adap-

tive Controller

In this section, we present an adaptive control algorithm for the general control problem

represented by (3.1)-(3.3). We use a strictly proper time-series controller of order nc, such

that the control u(k) is given by

u(k) =

nc∑
i=1

Mi(k)u(k − i) +

nc∑
i=1

Ni(k)y(k − i), (3.5)

where, for all i = 1, . . . , nc, Mi : N → Rlu×lu and Ni : N → Rlu×ly are determined by the

adaptive control law presented below. The control (3.5) can be expressed as

u(k) = θ(k)φ(k), (3.6)

where

θ(k) 4=
[

N1(k) · · · Nnc(k) M1(k) · · · Mnc(k)
]
,

and

φ(k) 4=



y(k − 1)
...

y(k − nc)

u(k − 1)
...

u(k − nc)



∈ Rnc(lu+ly). (3.7)
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Next, we define the retrospective performance

ẑ(θ̂, k) 4= z(k) +

ν∑
i=d

β̄i

[
θ̂ − θ(k − i)

]
φ(k − i), (3.8)

where ν ≥ d, θ̂ ∈ Rlu×(nc(ly+lu)) is an optimization variable used to derive the adaptive law, and

β̄d, . . . , β̄ν ∈ Rlz×lu . The parameters ν and β̄d, . . . , β̄ν must capture the information included

in the first nonzero Markov parameter and the nonminimum-phase zeros from u to z [32]. In

this chapter, we let β̄d, . . . , β̄ν be the coefficients of the portion of the numerator polynomial

matrix β(z) 4= zn−dβd + zn−d−1βd+1 + · · · + zβn−1 + βn that includes the nonminimum-phase

transmission zeros. More specifically, let β(z) have the polynomial matrix factorization

β(z) = βU(z)βS(z), where βU(z) is an lz × lu polynomial matrix of degree nU ≥ 0 whose

leading matrix coefficient is βd, βS(z) is a monic lu×lu polynomial matrix of degree n−nU−d,

and each Smith zero of β(z) counting multiplicity that lies on or outside the unit circle is a

Smith zero of βU(z). Next, we can write βU(z) = βU,0znU + βU,1znU−1 + · · · + βU,nU−1z + βU,nU ,

where βU,0
4
= βd. In this case, we let ν = nU + d and for i = d, . . . , nU + d, β̄i = βU,i−d. For

other choices of the parameters ν and β̄d, . . . , β̄ν, see Ref. [32].

Note that if the transfer function from u to z is minimum phase, that is, the invariant

zeros of (A, B, E1, E0) are contained inside of the unit circle, then ν = d and β̄d = Hd.

The minimum-phase case with z = y is considered in Ref. [74] using a gradient-based

adaptive law rather than the RLS-based adaptive law considered in this chapter. Under the

minimum-phase assumption, Ref. [74] proves asymptotic convergence of z to zero

Next, defining Θ̂
4
= vec θ̂ ∈ Rnclu(ly+lu) and Θ(k) 4= vec θ(k) ∈ Rnclu(ly+lu), it follows that

ẑ(Θ̂, k) = z(k) +

ν∑
i=d

ΦT
i (k)

[
Θ̂ − Θ(k − i)

]
= z(k) −

ν∑
i=d

ΦT
i (k)Θ(k − i) + ΨT(k)Θ̂, (3.9)

where, for i = d, . . . , ν,

Φi(k) 4= φ(k − i) ⊗ β̄T
i ∈ R(nclu(ly+lu))×lz ,
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where ⊗ represents the Kronecker product, and

Ψ(k) 4=
ν∑

i=d

Φi(k).

Now, define the cumulative retrospective cost function

J(Θ̂, k) 4=
k∑

i=0

λk−iẑT(Θ̂, i)Rẑ(Θ̂, i) +
[
Θ̂ − Θ(0)

]T
Q

[
Θ̂ − Θ(0)

]
, (3.10)

where λ ∈ (0, 1], and R ∈ Rlz×lz and Q ∈ R(nclu(ly+lu))×(nclu(ly+lu)) are positive definite. Note that

λ serves as a forgetting factor, which allows more recent data to be weighted more heavily

than earlier data.

The cumulative retrospective cost function (3.10) is minimized by a recursive least-

squares (RLS) algorithm with a forgetting factor [63, 65, 66]. Therefore, J(Θ̂, k) is mini-

mized by the adaptive law

Θ(k + 1) = Θ(k) − P(k)Ψ(k)
[
λR−1 + ΨT(k)P(k)Ψ(k)

]−1
zR(k), (3.11)

P(k + 1) =
1
λ

P(k) −
1
λ

P(k)Ψ(k)
[
λR−1 + ΨT(k)P(k)Ψ(k)

]−1
ΨT(k)P(k), (3.12)

where P(0) = Q−1, Θ(0) ∈ Rnclu(ly+lu), and the retrospective performance measurement

zR(k) 4= ẑ(Θ(k), k). Note that zR(k) is computable from (3.9) using measured signals z, y, u,

θ, and the matrix coefficients β̄d, . . . , β̄ν. The cumulative retrospective cost adaptive control

law is thus given by (3.11), (3.12), and

u(k) = θ(k)φ(k) = vec −1(Θ(k))φ(k). (3.13)

The key feature of the adaptive control algorithm is the use of the retrospective perfor-

mance (3.9), which modifies the performance variable z(k) based on the difference between

the actual past control inputs u(k − d), . . . , u(k − ν) and the recomputed past control inputs
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û(Θ̂, k−d) 4= vec −1(Θ̂)φ(k−d), . . . , û(Θ̂, k−ν) 4= vec −1(Θ̂)φ(k−ν), assuming that the current

controller Θ̂ had been used in the past. Note that the cumulative retrospective cost adaptive

controller (3.11)-(3.13) requires the matrix coefficients β̄d, . . . , β̄ν, which are estimates of

the first nonzero Markov parameters and the nonminimum-phase zeros.

3.4 Sensitivity to the Accuracy of the Required Model In-

formation

In this section, we investigate the sensitivity of the cumulative retrospective cost adaptive

controller (3.11)-(3.13) to the accuracy of the estimates of the first nonzero Markov param-

eter and the nonminimum-phase zeros (i.e., the parameters β̄d, . . . , β̄ν). We systematically

test the adaptive controller’s performance with a range of stable minimum-phase as well as

nonminimum-phase plants.

3.4.1 Sensitivity to the Accuracy of the Nonminimum-Phase Zero Es-

timate

For all examples in this section, we consider the command following problem, where the

control objective is to have the plant output follow a sinusoid of frequency π/6 radians

per sample with amplitude 10. The adaptive controller (3.11)-(3.13) is implemented in

feedback with λ = 1, R = 1, nc = 2n − d + 4, P(0) = I2nc , and θ(0) = 0. Also, we assume

that the relative degree d and the first nonzero Markov parameter are known exactly, that

is, we let ν = d + 1 and β̄d = Hd. The plants have the initial condition of 1 for every state.

3.4.1.1 Sensitivity with one nonminimum-phase zero

First, numerical tests are performed on 40 third order stable nonminimum-phase plants to

explore the algorithm’s robustness to the location of the nonminimum-phase zero estimate.
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The single-input, single-output plants used for this experiment have poles at 0.5, 0.6 and

0.7, relative degree 2, first nonzero Markov parameter equaling 1, and the nonminimum-

phase zero location is varied from 1.1 to 8.1. For each particular plant the adaptive algo-

rithm requires estimates of the nonminimum-phase (NMP) zero, relative degree and first

nonzero Markov parameter. Accordingly, the exact values of the relative degree and first

nonzero Markov parameter are provided to the algorithm, while the estimate of the NMP

zero is varied from 1.1 to 8.1. Next, the adaptive algorithm is connected in feedback and

the closed loop is simulated. Figure 3.1 shows the logarithm of the transient and steady

state performances for various locations of the nonminimum-phase zero and its estimates.

More precisely, by transient performance we mean the maximum of the absolute value of

the performance variable z(k), and by steady state performance we mean the maximum of

the absolute value of the performance variable in the last hundred steps of the simulation.

Note that the diagonal in both plots corresponds to the nominal case, i.e. zero estimate lo-

cation is at the actual zero location. Also, when the estimate is much greater than the actual

location (upper left corner) or much lower (lower right corner), the closed loop becomes

unstable and this is signified by white color in these plots. Additionally, the color map for

these plots is saturated in that dark red color not only corresponds, for example, to transient

performance of 102, but also all transients greater than 102. Lastly, Figure 3.1 suggests

that the adaptive controller is more robust to overestimating the NMP zero location than

underestimating it and that the plants with NMP zeros that are further out on the real axis

have greater stability margins than those that have NMP zero closer to the unit circle.

Next, numerical tests are conducted on a more heterogeneous set of plants with varying

orders, relative degrees, pole locations and first nonzero Markov parameters. Specifically,

a set of 50 stable, single-input, single-output plants with one nonminimum-phase zero lo-

cated at 2 are randomly generated. For each of the 50 plants, the system order n is generated

from the uniform discrete integer distribution on the interval [2, 10], the relative degree d is

generated from the uniform discrete integer distribution on the interval [1, n − 1], the first
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Figure 3.1: For 40 third order plants with a nonminimum-phase zero whose position
is given by the x-axis, the adaptive controller (3.11)-(3.13) uses an estimate of the
nonminimum-phase zero that varies from 1.1 to 8.1. The color in (a) shows logarithm
of the transient performance, whereas in (b) the logarithm of the steady state performance
is shown. For these 40 plants, the stability of the closed-loop system is less sensitive to
overestimating the location of the nonminimum-phase zero than it is to underestimating it.
In addition, the plants with NMP zeros further out on the real axis have greater stability
margins than those with NMP zeros closer to 1.

nonzero Markov parameter Hd is generated from the uniform distribution on the interval

[−5, 5], the plant poles are generated in a pseudo-random manner and constrained to lie

within the unit circle, and the plant zeros (other than the nonminimum-phase zero located

at 2) are generated in a pseudo-random manner and constrained to lie within the unit circle.

For each of the 50 randomly generated plants, the adaptive controller requires esti-

mates of the relative degree, the first nonzero Markov parameter, and the location of the

nonminimum-phase zero. Next, for each of the 50 plants, we let the estimate of the

nonminimum-phase zero (which is located at 2) vary from 1.4 to 3.8 and simulate the

closed-loop system. Figure 3.2 is a histogram showing the percent of the 50 plants that

have unstable closed-loop responses (i.e., the closed-loop performance is unbounded) as

the estimate of the nonminimum-phase zero varies from 1.4 to 3.8. Note that all 50 plants

result in stable closed-loop responses when the estimate of the nonminimum-phase zero is

set at the actual value 2. Furthermore, Figure 3.2 indicates that the stability of the closed-

loop system is less sensitive to overestimating the location of the nonminimum-phase zero
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than it is to underestimating the location of the nonminimum-phase zero.
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Figure 3.2: For 50 randomly generated plants, all of which have a nonminimum-phase zero
at 2, the adaptive controller (3.11)-(3.13) uses an estimate of the nonminimum-phase zero
that varies from 1.4 to 3.8. This histogram shows the percent of the 50 plants that have
unstable closed-loop responses for different estimates of the nonminimum-phase zero. For
these 50 random plants, the stability of the closed-loop system is less sensitive to over-
estimating the location of the nonminimum-phase zero than it is to underestimating the
location of the nonminimum-phase zero.

Next, we explore the impact of system order and relative degree on the algorithm’s

robustness to the accuracy of the nonminimum-phase zero estimate. We consider ten cases.

Specifically we consider the cases where system order n = 2, .., 6 and relative degree d =

1, .., n− 1. For each case, we generate 50 random stable plants with fixed order and relative

degree, and having a nonminimum-phase zero at 2. The plants are simulated with the

adaptive controller in feedback, while letting the estimate of the nonminimum-phase zero

vary from 1.4 to 2.6. The resulting stability histograms are shown in Figure 3.3. The

algorithm tends to have better robustness for plants with lower order and higher relative

degree. Accordingly, the most robust cases are situated on the diagonal of Figure 3.3.

Next, we explore, in more detail, the stability margins for second order systems. The
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Figure 3.3: For 50 randomly generated plants with fixed order and relative degree (per
subplot), all of which have a nonminimum-phase zero at 2, the adaptive controller (3.11)-
(3.13) uses an estimate of the nonminimum-phase zero that varies from 1.4 to 2.6. These
histograms show the percent of the 50 plants that have unstable closed-loop responses for
different estimates of the nonminimum-phase zero. The robustness to the estimate of the
nonminimum-phase zero decreases in rows from right to left (with increasing order), and
in columns from top to bottom (with decreasing relative degree).

same 50 randomly generated n = 2, d = 1 plants from the previous experiment are sim-

ulated while the estimate of the nonminimum-phase zero is varied from 1.4 to 10. The

stability histogram is shown in Figure 3.4, demonstrating that none of the 50 plants have

upward stability margin in excess of 10 (which corresponds to 5 times the true value of

the nonminimum-phase zero location). Note that similar finite stability margins can be

observed for other values of n and d.

Now, we explore the effect of the plant pole locations on the algorithm’s robustness to

the accuracy of the nonminimum-phase zero estimate. A set of 61 second order plants with

nonminimum-phase zero at 2, first Markov parameter equaling 1, and double real poles at
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Figure 3.4: For 50 randomly generated plants, all of which have a nonminimum-phase zero
at 2, the adaptive controller uses an estimate of the nonminimum-phase zero that varies
from 1.4 to 10. For all 50 plants, there are finite bounds on the required accuracy of the
nonminimum-phase zero.

equal increments (1/30) between -1 and 1 were generated. These plants are simulated with

the adaptive controller in feedback, while the estimate of the nonminimum-phase zero is

varied from 1 to 12. The logarithm of the transient performance and logarithm of the steady

state performance for each plant is plotted against the double-pole location, as shown in

Figure 3.5. This figure indicates that plants with positive double poles are generally more

robust than the ones with negative poles. However, there are plants with poles at -0.8 that

have high upward stability margin, but the transient and residual error is much larger as

compared to the nominal case. The plant with a double pole at -1 has the worst robustness

to the accuracy of the nonminimum-phase zero estimate.

While the previous example looked at second order plants with double poles on the

real axis, the following example extends these results to the case where a plant has two

complex conjugate poles. A set of 2601 plants is generated, where each plant has two

poles at re± jθ, where r is varied from 0 to 1 with 51 increments and θ is varied from 0
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(b) Plant double−pole locations
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Figure 3.5: For 61 second order plants with double poles at locations indicated by the
x-axis, all of which have a nonminimum-phase zero at 2, the adaptive controller uses an
estimate of the nonminimum-phase zero that varies from 1 to 12 (y-axis). The color map
represents the logarithm of transient performance and logarithm of steady state perfor-
mance in subfigures (a) and (b), respectively. The adaptive controller (3.11)-(3.13) is more
robust for plants with positive double-poles.

to π with 51 increments. These plants have a nonminimum zero at 2 and first Markov

parameter equaling 1. Figures 3.7 and 3.6 show the upward and downward stability margins

respectively. The color-coding corresponds to the estimate of the nonminimum-phase zero,

where the closed-loop system becomes unstable. The plants with poles that have negative

real parts are less robust than plants with poles that have positive real parts.

3.4.1.2 Sensitivity with two nonminimum-phase zeros

In this section, we explore the sensitivity of the adaptive controller (3.11)-(3.13) to the lo-

cation of nonminimum-phase zero estimates for plants with two nonminimum-phase zeros.

First, 50 stable plants with nonminimum-phase zeros at 2 and 3 are randomly generated

with orders 3 through 10 and relative degrees 2 through n − 2. Furthermore, these plants

are simulated in feedback with adaptive controller (3.11)-(3.13), while the nonminimum-

phase zero estimates are varied from 1 through 4. Figure 3.8 shows the percent of the 50

plants that have unstable closed-loop responses as the estimates of the nonminimum-phase

zeros vary. Figure 3.8 shows that the slope on the downward margin is steeper than the

45



−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Pole location along the real axis

P
o
le

 l
o
c
a
ti
o
n
 a

lo
n
g
 t
h
e
 i
m

a
g
in

a
ry

 a
x
is

Stable with NMP zero estimate between 1.60 and 2.0
Stable with NMP zero estimate between 1.65 and 2.0
Stable with NMP zero estimate between 1.70 and 2.0
Stable with NMP zero estimate between 1.80 and 2.0

Figure 3.6: Downward stability margin. For 2601 second order plants with a nonminimum-
phase zero at 2, the adaptive controller (3.11)-(3.13) uses an estimate of the nonminimum-
phase zero that varies from 1.6 to 3.6. The colored regions represent plant-pole areas where
the closed loop response was unstable at the estimate of the nonminimum-phase zero shown
in the legend. Due to the nature of the complex variables this plot is symmetric, but only
the top half is shown. The plants with poles whose real part is close to −1 are less robust
to the underestimation of the nonminimum phase zero than the rest of the plants with poles
inside the unit circle.

slope on the upward margin, suggesting that the performance of the algorithm with two

nonminimum-phase zeros is similar to the single nonminimum-phase zero case. Figure

3.9 demonstrates that the algorithm is more robust to overestimating the location of the

nonminimum-phase zero, than to underestimating it even in the two nonminimum-phase

zeros case.

In the next example we look at the sensitivity of the algorithm to locations of com-

plex conjugate nonminimum-phase zero estimates. For each of the 100 stable plants with

nonminimum-phase zeros at 2 ± 1 j, orders 3 through 10, relative degrees 2 through n − 2,

the adaptive controller (3.11)-(3.13) is connected in feedback. These plants are simulated

while the nonminimum-phase zero estimates are varied from 1 through 4 ± 3 j. Resulting

stability plot is shown in Figure 3.10. The color in this image corresponds to the percent of
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Figure 3.7: Upward stability margin. For 2601 second order plants with a nonminimum-
phase zero at 2, the adaptive controller (3.11)-(3.13) uses an estimate of the nonminimum-
phase zero that varies from 1.6 to 3.6. The colored regions represent plant-pole areas
where the closed loop response was unstable at the estimate of the nonminimum-phase zero
shown in the legend. Due to the nature of the complex variables this plot is symmetric, but
only the top half is shown. The plants which are least robust to the overestimation of the
nonminimum phase zero are the ones with poles close to ±1.

plants that have unstable closed loop performance. Next, the same 100 plants are simulated

while the estimates of the nonminimum-phase zeros are varied in phase (but the magnitude

is fixed) as shown in Figure 3.11 (d). Similar plots were generated for magnitude, real,

and imaginary parts of the nonminimum-phase zero estimates and are shown in Figure

3.11 (a)-(c). From these plots, we conclude that the algorithm is more robust to underesti-

mating phase than overestimating it, but is more robust to overestimating magnitude than

underestimating it.
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Figure 3.8: For 50 randomly generated plants, all of which have a nonminimum-phase
zeros at 2 and 3, the adaptive controller (3.11)-(3.13) uses estimates of the nonminimum-
phase zeros which vary from 1 to 4 each. The steep slope on the downward margin and
shallower slope on the upward margin suggest that the performance of the algorithm in
2-nonminimum-phase-zeros case is similar to the single nonminimum-phase zero case, but
this conjecture is further investigated in the following plots.

3.4.2 Sensitivity to the Accuracy of the Estimate of the First Nonzero

Markov Parameter

In this experiment, we explore the sensitivity of the adaptive controller (3.11)-(3.13) to the

estimate of the first nonzero Markov parameter. Accordingly, 100 stable plants of orders

2 through 6, relative degrees 1 through n − 1, with zeros uniformly distributed on interval

[02] and with first nonzero Markov parameter equalling 1, were generated. Furthermore,

these plants are simulated in feedback with adaptive controller (3.11)-(3.13), while the first

nonzero Markov parameter estimates are varied from 0.1 to 10 and the exact locations of the

nonminimum-phase zeros are supplied to the algorithm. Figure 3.12 shows the percent of

plants with unstable closed loop response as the estimates vary. This histogram might look

symmetric, but since it is plotted against a logarithmic scale it is indeed not symmetric when
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Figure 3.9: For 50 randomly generated plants, all of which have a nonminimum-phase
zeros at 2 and 3, the adaptive controller (3.11)-(3.13) uses an estimate of the second
nonminimum-phase zero that varies from 1 to 4. The estimate of the first nonminimum-
phase zero is fixed at 3. Just like in the single nonminimum-phase zero case, the algorithm
is more robust to overestimating the location of the nonminimum-phase zero, than to un-
derestimating it.

viewed on the linear scale. Actually, the slope on the downward margin is steeper than the

slope of the upward margin, suggesting that the algorithm is more robust to overestimating

the first nonzero Markov parameter, than to underestimating it for both the minimum-phase

and nonminimum-phase plants.

3.5 Sampled Data Systems

In this section, we investigate the sensitivity of the cumulative retrospective cost adaptive

controller (3.11)-(3.13) to the increase in sampling rate beyond what will be defined next

as minimum sampling frequency. We define minimum sampling frequency Fmin in rad/sec

as twice the magnitude of the pole furthest out from the origin. We test the adaptive con-

troller’s performance on a set of continuous nonminimum-phase stable plants discretized
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Figure 3.10: For 100 randomly generated plants, all of which have a nonminimum-phase
zeros at 2 ± 1 j, the adaptive controller (3.11)-(3.13) uses an estimate of the nonminimum-
phase zero that varies from 1 to 4 ± 3 j. The color corresponds to the percent of plants that
have unstable closed loop performance.

at rates in interval [Fmin 10Fmin]. We vary the sampling rate to see if sampling at higher

rates implies better performance. First, 100 random stable continuous plants with poles and

minimum-phase zeros having magnitude less than 1, nonminimum-phase zero at 1 and first

nonzero Markov Parameter equalling 2 are generated. Next, these plants are discretized

using zero order hold and are simulated in feedback with the adaptive controller. Figure

3.13 shows logarithm of transient and steady state performances as a function of the plant

and sampling frequency. The plants are sorted in the descending order of the transient

performance in the nominal case. Figure 3.13 suggests that for certain plants as the sam-

pling frequency is increased, the transient performance improves, whereas the steady state

performance degrades.
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(b) Imaginary part estimate
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Figure 3.11: For 100 randomly generated plants, all of which have a nonminimum-phase
zeros at 2 ± 1 j, the adaptive controller (3.11)-(3.13) uses an estimate of the real part of
the nonminimum-phase zero in (a), imaginary part in (b), magnitude in (c) and phase in
(d). The algorithm seems to be equally robustness to changes in estimates of the real and
imaginary parts as well as magnitude. Additionally, in this particular setup, the algorithm
is more robust to underestimating phase than overestimating it.

3.6 Conclusion

In this chapter, we have presented a direct adaptive control algorithm for stabilization,

command following, and disturbance rejection. The algorithm requires limited information

about the open-loop system. More specifically, it requires knowledge of the first nonzero

Markov parameter and the nonminimum-phase zeros from the control to the performance

measurement. The adaptive law minimizes a cumulative retrospective cost function using

a recursive least-squares algorithm. The algorithm has been shown to be effective through

simulation.

We found out that the algorithm is more robust to overestimating the location of the

nonminimum-phase zero in the case of plants with single NMP zero. Also, the order and

relative degree of the plant do have an effect on the closed loop stability - the algorithm has
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Figure 3.12: For 100 randomly generated stable plants, the adaptive controller (3.11)-
(3.13) uses the scaled value of the first nonzero Markov parameter (given by the x-axis)
and exact values for the nonminimum-phase zeros. The color scale in (a) corresponds to
logarithm of the transient performance and in (b) it corresponds to logarithm of steady state
performance. The lesser slope of the histogram on the right than on the left suggest that the
algorithm is more sensitive to underestimating the first nonzero Markov parameter than to
overestimating it.

greater stability margins for plants with low order and high relative degree. We also found

that for plants with two real nonminimum-phase zeros, the algorithm is more robust to

overestimating the location of either zero independently, but not overestimating both zeros

at the same time. Additionally, for plants with two complex nonminimum-phase zeros, the

algorithm was most forgiving for underestimating phase of the zero locations as opposed

to overestimating it.

Next, the algorithm has been shown to have a certain amount of robustness to uncer-

tainty in the first nonzero Markov parameter. It is more robust to overestimating the first

nonzero Markov parameter, than underestimating it.

Lastly, we investigated the effect of increasing the sampling frequency for sampled data

systems on the algorithm’s performance. It was found that the algorithm performs well if
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Figure 3.13: For 100 randomly generated plants, the adaptive controller (3.11)-(3.13) uses
the exact value of the first nonzero Markov parameter and nonminimum-phase zeros. The
color scale in (a) corresponds to logarithm of the transient performance and in (b) it cor-
responds to logarithm of steady state performance, as established in Section 3.4. The al-
gorithm performs best at the sampling period corresponding to the minimum sampling
frequency, as defined in section 3.5.

the used sampling frequency isn’t greater than five times the minimum sampling frequency,

as defined in section 3.5.
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CHAPTER 4

Retrospective Adaptive Control of a Planar

Multilink Arm with Nonminimum-Phase Zeros

This chapter addresses the problem of adaptive command following and disturbance rejec-

tion for a nonlinear planar multilink mechanism interconnected by torsional springs and

dashpots. It considers a nonlinear multilink mechanism where a control torque is applied

to the hub of the multilink mechanism, and the objective is to control the angular position

of the tip, which is separated from the hub by N links. Accordingly, the nonlinear equations

of motion for the N link mechanism are derived. Then, these equations of motion are lin-

earized and it is demonstrated to have nonminimum-phase zeros when the control torque

and angular position sensor are not colocated. A retrospective cost adaptive controller

is used to control this mechanism, which is effective for nonminimum-phase systems if

an estimate of the nonminimum-phase zeros is available. Both command following and

disturbance rejection problems are considered, where the spectrum of the commands and

disturbance are unknown. The results of this chapter are published in collaboration with

Hoagg and Bernstein in [81] and are extended in [82].

4.1 Introduction

Nonminimum-phase zeros present a fundamental impediment to the achievable perfor-

mance of a closed-loop system, limiting the bandwidth and, in the case of positive ze-
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ros, causing initial undershoot or direction reversals under step inputs [83, p. 289], [84,

85]. Nonminimum-phase zeros are also challenging for adaptive control methods, which

typically assume that the plant is minimum phase [86]. For discrete-time systems with

nonminimum-phase zeros, the adaptive control method in [32,87] requires that the nonminimum-

phase zero locations be known.

In view of these challenges, it is of interest to determine physical properties that give

rise to nonminimum-phase zeros. It is known that the transfer function of a flexible struc-

ture with co-located force actuation and velocity sensing is positive real and thus mini-

mum phase [88]. This property suggests that noncolocation is the underlying cause of

nonminimum-phase zeros. It was shown in [89], however, that, for a string of translating

masses interconnected by springs and dashpots, the noncolocated transfer functions be-

tween every pair of masses are minimum phase. Therefore, noncolocation per se is not the

source of nonminimum phase zeros.

A vehicle with rear-wheel steering, or, equivalently, a car driving in reverse, exhibits

initial undershoot in the sense that the driver initially moves in the direction that is opposite

to the ultimate direction of motion. This example, as well as the examples in [90, 91],

suggest that nonminimum phase zeros may arise from a combination of noncolocation and

rotational motion.

In place of the translating masses considered in [89], we thus consider a planar multilink

mechanism with rotating masses interconnected by torsional stiffnesses and dashpots. This

mechanism can be viewed as a lumped approximation of a flexible rotating arm, whose

dynamics and control are widely studied for applications such as space structures and hard

drives [92, 93].

The multilink mechanism is nonlinear, and thus the derivation of its equations of mo-

tion is more complicated than the case of translating masses considered in [89], whose

dynamics are linear. Analysis of the zeros of the rotating masses must therefore be based

on a linearized model. A related analysis is given in [90].
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For the linearized model of the rotating masses we show that the damping and stiffness

matrices have the same form as in the case of translating masses. However, the key differ-

ence between the translational and rotational cases is the inertia matrix, which is diagonal

for the translating masses but nondiagonal for the rotating masses. With this distinction in

mind, the first objective of this chapter is to revisit the analysis of [89] and show how the

off-diagonal entries of the inertia matrix for the rotating masses give rise to nonminimum-

phase zeros.

Next, we consider adaptive control of the planar multilink mechanism using the ap-

proach of [32]. Since this method requires knowledge of the nonminimum-phase zeros, we

assume that this information is available, either by analytical modeling or system identi-

fication [53]. We then apply the retrospective adaptive control algorithm of [32] on both

the linearized and nonlinear system and assess the resulting performance for problems of

command following and disturbance rejection.

4.2 Nonlinear Equations of Motion

In this section, we derive the nonlinear equations of motion for an N-link planar arm system

by using Lagrange’s equations. First, we define the parameters of the system. Let p1 be the

point where the first link is connected to the horizontal plane, and, for n = 2, ...,N, let pn

be the point where the nth link is connected to the (n − 1)th link. Next, for n = 1, ...,N, let

qn be the center of mass of the nth link. Furthermore, for n = 1, ...,N, let mn be the mass of

the nth link, let ln be the length of the nth link, let cn be the damping at the joint pn, let kn

be the stiffness of the joint pn, and let In
4
= 1

12mnl2
n be the moment of inertia of the nth link

about qn.

Next, we define the inertial frame FA with orthogonal unit vectors (ı̂A, ̂A, k̂A), where ı̂A

and ̂A lie in the plane of motion of the N-link planar arm, and k̂A is orthogonal to the plane

of motion. For simplicity, we assume that the origin of FA is located at p1. In addition, for
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n = 1, ...,N, let FBn be a frame attached to the nth link. More specifically, FBn is a body-

fixed frame which rotates as the nth link rotates. For n = 1, . . . ,N, let FBn have orthogonal

unit vectors (ı̂Bn , ̂Bn , k̂Bn), where ı̂Bn is in the direction from p1 to q1, ̂Bn is orthogonal to

ı̂Bn and in the plane of motion, and k̂Bn is orthogonal to the plane of motion. Note that,

for all n = 1, . . . ,N, k̂Bn = k̂A. Finally, for n = 1, . . . ,N, let θn be the angle from ı̂A to

ı̂Bn . The N-link planar arm is shown in Figure 4.1. To construct the Lagrangian for the N-

-
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•
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θN•pN

•qN

Figure 4.1: N-link planar arm system. All motion is in the horizontal plane.

link system, we derive expressions for kinetic and potential energies, and thus we require

the translational and rotational velocities of each linkage. For n = 1, . . . ,N, the rotational

velocity of FBn with respect to FA resolved in FA is given by ωn
4
=

⇀
ωBn/A

∣∣∣∣
A

=

[
0 0 θ̇n

]T
.

Furthermore, for n = 1, . . . ,N, the orientation matrix of FBn with respect to FA is given by

OBn/A =


cos(θn) sin(θn) 0

− sin(θn) cos(θn) 0

0 0 1

 . (4.1)

Next, for n = 1, . . . ,N, let
⇀
r qn/p1 be the position vector from p1 to qn. For n = 1, . . . ,N,
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the velocity of qn relative to p1 with respect to FA is given by

⇀

Vqn/p1/A
4
=

A•
⇀
r qn/p1=

A•
⇀
r qn/pn +

n−1∑
i=1

A•
⇀
r pi+1/pi , (4.2)

where
A•
⇀
r denotes the derivative of

⇀
r taken in the frame FA. Next, we apply the transport

theorem to each term in (4.2), which yields

⇀

Vqn/p1/A =

Bn•
⇀
r qn/pn +

⇀
ωBn/A ×

⇀
r qn/pn


+

n−1∑
i=1

Bi•
⇀
r pi+1/pi +

⇀
ωBi/A ×

⇀
r pi+1/pi

 .

Note that, for n = 1, . . . ,N,
⇀
r qn/pn is fixed relative to FBn , and thus

Bn•
⇀
r qn/pn= 0. Fur-

thermore, note that for i = 1, . . . ,N − 1
⇀
r pi+1/pi is fixed relative to Bi, and thus

Bi•
⇀
r pi+1/pi= 0.

Therefore,

⇀

Vqn/p1/A =
⇀
ωBn/A ×

⇀
r qn/pn +

n−1∑
i=1

⇀
ωBi/A ×

⇀
r pi+1/pi .

For n = 1, . . . ,N, resolving
⇀

Vqn/p1/A in frame FA yields

⇀

Vqn/p1/A

∣∣∣∣
A

=
⇀
ωBn/A

∣∣∣∣×
A

⇀
r qn/pn

∣∣∣∣
A

+

n−1∑
i=1

⇀
ωBi/A

∣∣∣∣×
A

⇀
r pi+1/pi

∣∣∣∣
A
, (4.3)
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where, for n = 1, . . . ,N,

⇀
ωBn/A

∣∣∣∣×
A

=


0 −θ̇n 0

θ̇n 0 0

0 0 0

 , (4.4)

⇀
r qn/pn

∣∣∣∣
A

= OBn/A

[
ln
2 0 0

]T
, (4.5)

and, for n = 1, . . . ,N − 1,

⇀
r pn+1/pn

∣∣∣∣
A

= OBn/A

[
ln 0 0

]T
. (4.6)

Furthermore, for n = 1, . . . ,N, define Vn
4
=

∣∣∣∣∣∣∣∣∣∣⇀Vqn/p1/A

∣∣∣∣
A

∣∣∣∣∣∣∣∣∣∣. For demonstration, it follows

from (4.3)-(4.6) that

⇀

Vq1/p1/A

∣∣∣∣
A

=


0 −θ̇1 0

θ̇1 0 0

0 0 0

OB1/A


l1
2

0

0


=


−1

2 l1 sin(θ1)θ̇1

1
2 l1 cos(θ1)θ̇1

0

 ,

and thus V1 = 1
2 l1θ̇1. Following this same procedure for n ≥ 2, yields, for n = 1, . . . ,N,

Vn =

1
4 l2

nθ̇
2
n +

n−1∑
i=1

(
l2
i θ̇

2
i + lnliθ̇nθ̇i cos(θi − θn)

)
+2

n−1∑
i6= j

lil jθ̇iθ̇ j cos(θi − θ j)


1/2

. (4.7)
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For n = 1, . . . ,N, the kinetic energy of the nth link is

Tn
4
= 1

2mnV2
n + 1

2 In‖ωn‖
2

= mn
2

1
3 l2

nθ̇
2
n +

n−1∑
i=1

(
l2
i θ̇

2
i + lnliθ̇nθ̇i cos(θi − θn)

)
+2

n−1∑
i 6= j

lil jθ̇iθ̇ j cos(θi − θ j)

 , (4.8)

and the total kinetic energy is defined by T 4
=

∑N
n=1 Tn. Next, for n = 1, . . . ,N, the potential

energy of the nth link is

Un
4
=


1
2k1θ

2
1, n = 1,

1
2kn(θn−1 − θn)2, n > 1,

(4.9)

and the total potential energy is defined by U 4
=

∑N
n=1 Un.

Thus, the Lagrangian for the N-link system is L 4
= T − U. Next, for n = 1, . . . ,N, let

Fcn be the dissipative torque resulting from the damping at joint pn, that is,

Fcn

4
=


1
2c1θ̇

2
1, n = 1,

1
2cn(θ̇n−1 − θ̇n)2, n > 1.

(4.10)

Furthermore, for n = 1, . . . ,N, let un be an external torque applied at pn. Therefore, for

n = 1, . . . ,N the nonlinear equations of motion are given by

d
dt
∂L
∂θ̇n
−
∂L
∂θn

+
∂Fcn

∂θ̇n
= un. (4.11)

Now, we specialize to the case where N = 2. In this case, the Lagrangian is

L = 1
2m1( 1

3 l2
1θ̇

2
1) − 1

2k1θ
2
1 −

1
2k2(θ1 − θ2)2

+ 1
2m2( 1

3 l2
2θ̇

2
2 + l2

1θ̇
2
1 + l1l2θ̇1θ̇2 cos(θ1 − θ2)), (4.12)
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and it follows from (4.11) and (4.12) that the equations of motion are given by

u1 = ( 1
3m1l2

1 + m2l2
1)θ̈1 + 1

2m2l1l2 sin(θ1 − θ2)θ̇2
2

+ 1
2m2l1l2 cos(θ1 − θ2)θ̈2 + (k1 + k2)θ1 − k2θ2

+ (c1 + c2)θ̇1 − c2θ̇2, (4.13)

u2 = ( 1
3m2l2

2)θ̈2 −
1
2m2l1l2 sin(θ1 − θ2)θ̇2

1

+ 1
2m2l1l2 cos(θ1 − θ2)θ̈1 − k2θ1 + k2θ2

− c2θ̇1 + c2θ̇2. (4.14)

4.3 Linearized Equations of Motion

In this section, we derive linearized equations of motion for N-link system. First, we

linearize the equations of motion for the two-link case. Then, we linearize the equations of

motion for the three-link case. Finally, we generalize the linear equations of motion to the

N-link case.

First, define

Θ
4
=

[
θ1 . . . θN

]T
, Υ

4
=

[
u1 . . . uN

]T
.

We linearize about the (Θ, Θ̇) ≡ 0 equilibrium. Note that if, for all n = 1, ...,N, kn > 0,

then (Θ, Θ̇) ≡ 0 is the only unforced equilibrium of the N-link system . Let δΘ be the linear

approximation of Θ around the equilibrium (Θ, Θ̇) ≡ 0. To obtain the linearization, we use

the small angle approximations sin(θ1 − θ2) ≈ δθ1 − δθ2, cos(θ1 − θ2) ≈ 1.

Linearizing the two-link system, with nonlinear equations of motion (4.13) and (4.14),

about (Θ, Θ̇) ≡ 0 yields

MδΘ̈ + CdδΘ̇ + KδΘ = Υ, (4.15)
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where

M 4
=

 (m1
3 + m2)l2

1
m2
2 l2l1

m2
2 l1l2

m2
3 l2

2

 ,
Cd

4
=

 c1 + c2 −c2

−c2 c2

 ,K 4
=

 k1 + k2 −k2

−k2 k2

 .
Similarly, linearizing the three-link system about (Θ, Θ̇) ≡ 0 yields (4.15), where

M 4
=


(m1

3 + m2 + m3)l2
1 (m2

2 + m3)l2l1
m3
2 l1l3

(m2
2 + m3)l1l2 (m2

3 + m3)l2
2

m3
2 l2l3

m3
2 l1l3

m3
2 l2l3

m3
3 l2

3

 ,

Cd
4
=


c1 + c2 −c2 0

−c2 c2 + c3 −c3

0 −c3 c3

 ,

K 4
=


k1 + k2 −k2 0

−k2 k2 + k3 −k3

0 −k3 k3

 .

Finally, extending this technique, we obtain the linearization for the N-link system,
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which is given by (4.15), where

M 4
=


γ1,1 . . . γ1,N

... . . . ...

γN,1 . . . γN,N

 ,

Cd
4
=



c1 + c2 −c2 0 . . . 0

−c2 c2 + c3 −c3 . . . 0

0 −c3 c3 + c4 . . . 0
...

...
... . . . ...

0 0 0 . . . cN


,

K 4
=



k1 + k2 −k2 0 . . . 0

−k2 k2 + c3 −k3 . . . 0

0 −k3 k3 + k4 . . . 0
...

...
... . . . ...

0 0 0 . . . kN


,

where, for g = 1, ...,N,

γg,g
4
=

mg

3
+

N∑
i=g+1

mi

 l2
g, (4.16)

for g = 1, ...,N and h = g + 1, ...,N,

γg,h
4
=

mh

2
+

N∑
i=h+1

mi

 lglh, (4.17)

and, for g, h = 1, ...,N, γh,g = γg,h.
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4.4 Nonminimum-Phase Zero for the N-Link System

In this section, we prove that, for the two-link system, the linear transfer function from u1

to δθ2 has one nonminimum phase zero. In fact, this transfer function has one positive zero.

For the N-link system, we numerically demonstrate that the linear transfer function from

u1 to δθN (i.e., from the hub to the tip of the multilink mechanism) has N −1 nonminimum-

phase zeros.

For the N-link system, the linearized equations of motion (4.15) can be written as

 δΘ̇δΘ̈
 = A

 δΘδΘ̇
 + BΥ, (4.18)

where

A 4
=

 0N×N IN

−M−1K −M−1Cd

 , B 4
=

 0N×N

M−1

 .
Next, for n = 2, . . . ,N, the transfer function from u1 to δθn is given by

Gn(s) 4=
δθn(s)
u1(s)

= Cn(sIN − A)−1B1, (4.19)

where

Cn
4
=

[
01×n−1 1 01×2N−n

]
, B1

4
= B

 1

01×N−1

 .
For the two-link case (i.e., N = 2), the transfer function from u1 to δθ2 can be expressed

as

G2(s) =
δθ2(s)
u1(s)

=
a2s2 + a1s + a0

b4s4 + b3s3 + b2s2 + b1s + b0
,
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where the coefficients a0, . . . , a2, b0, . . . , b4 depend on the physical parameters of the sys-

tem. More specifically, the numerator coefficients of G2(s) are given by a2 = −18l1l2m2, a1 =

36c2, a0 = 36k2. Since the zeros of G2(s) are the roots of the quadratic polynomial

a2s2 + a1s + a0, we can solve for these roots expressed in the physical parameters of

the system. More specifically, the quadratic polynomial a2s2 + a1s + a0 has the roots

zc,1 =
c2+
√

c2
2+2k2l1l2m2

l1l2m2
and zc,2 =

c2−
√

c2
2+2k2l1l2m2

l1l2m2
. Since the physical parameters l1, l2,m2, c2,

and k2 are positive, it follows that zc,1 is positive and zc,2 is negative. Thus, we conclude

that G2(s) has one nonminimum-phase zero.

For the N-link case, where N > 2, we conduct a numerical study to investigate the prop-

erties of the zeros of the transfer function from u1 to δθN . In particular, we let N = 3, . . . , 10,

and for each value of N, we randomly generate 10,000 multilink systems. For each of the

multilink systems, the masses m1, . . . ,mN , the stiffnesses k1, . . . , kN , the damping coeffi-

cients c1, . . . , cN , and the lengths l1, . . . , lN are sampled from a uniformly generated random

variable on the interval (0, 100]. Next, we compute the linearized transfer function GN(s)

from u1 to δθN . For N = 3, . . . , 10, all 10,000 randomly generated multilink systems have

N − 1 nonminimum-phase zeros in the transfer function GN(s). In fact, all of the randomly

generated multilink systems have N − 1 positive zeros in the transfer function GN(s). Fu-

ture work will include a proof of the conjecture that, for an N-link system, the linearized

transfer function GN(s) from the control torque at the hub to the angular position of the N th

link has N − 1 positive zeros.

Next, we discretize G2(s) using a zero-order hold on the inputs. For this example, we

consider the system parameters given by m1 = 2 kg, m2 = 1 kg, l1 = 3 m, l2 = 2 m,

k1 = 7 N−m
rad , k2 = 5 N−m

rad , c1 = 10 kg−m2

rad , and c2 = 1 kg−m2

rad .

Discretizing G2(s) using a zero-order hold on the inputs results in a discrete-time trans-

fer function, which also has one nonminimum-phase zero. The location of this nonminimum-

phase zero depends on the sampling time used for the discretization. The discrete-time

nonminimum-phase zero of G2(z) with the system parameters above and sampled at a rate

65



of 20Hz is located at approximately 1.08. Furthermore, note that the discrete-time system

has one zero, which results from discretization effects. In this case, the sampled-data zero

is located at −0.94.

4.5 Numerical Examples

In this section, we use the retrospective cost adaptive controller (3.11)-(3.13) to control the

linearized and nonlinear two-link system. In particular, we consider both the command fol-

lowing and disturbance rejection problems for the linearized and nonlinear two-link system.

We assume that u1 is the only available control input. We consider the two-link system with

parameters shown in Section 4.4. The adaptive controller (3.11)-(3.13) is implemented in

feedback at 20Hz with λ = 0.99, R = 1, nc = 8, P(0) = 1016I16, and θc(0) = 0. These val-

ues were found experimentally to yield the best performance for all cases with command

amplitude of no more than 0.4 rad. Additionally, for each example, the system is allowed

to run open-loop for 7.5 seconds and then the adaptive controller is turned on.

First, numerical simulations are performed using the linearized and nonlinear two-link

system to asses the adaptive control’s performance on a command following problem. The

control objective is for θ2 to track a 0.8Hz sinusoid with a magnitude of 0.3rad. We assume

that the relative degree d and the first nonzero Markov parameter are known, that is, we let

ν = d + 1 and β̄d = Hd. In this example, d = 1 and Hd = −0.00032. In addition, we assume

that the location of the nonminimum-phase zero is known, but no other information about

the system is assumed to be known. Figure 4.2 shows that the adaptive controller drives

performance variable z to zero.

Next, we implement the adaptive controller in feedback with the nonlinear plant, using

the estimate of the nonminimum-phase zero obtained from the linearized two-link system.

Figure 4.3 shows that the adaptive controller drives the performance variable z toward zero,

and the performance is comparable to the linear case shown in Figure 4.2. We simulated the
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Figure 4.2: Command following for the linearized two-link system: The adaptive control
(3.11)-(3.13) uses knowledge of the nonminimum-phase zero to track a sinusoid with un-
known frequency and amplitude. The adaptive control is turned on after 7.5 seconds and
drives the performance to zero.

nonlinear two-link system with physical parameters given in Section 4.4 and the adaptive

controller in feedback for various command amplitudes, and we found that the adaptive

controller is able to drive z toward zero for all command amplitudes less than 0.4 rad (or

23 degrees). Command amplitudes greater than 0.4 rad resulted in unacceptable controller

performance.

Next, we consider the disturbance rejection problem, where the control objective is to

drive θ2 to zero, while a 1.6Hz sinusoidal disturbance is applied at both p1 and p2. The

magnitudes of the disturbances at p1 and p2 are 0.2 rad and 0.4 rad, respectively. We

assume that the relative degree d, the first nonzero Markov parameter, and the location

of the nonminimum-phase zero are known, but no other information about the system is

assumed to be known. Figure 4.4 shows that the adaptive controller is able to reject the

disturbance from θ2, and thus drives z to zero.
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Figure 4.3: Command following for the nonlinear two-link system: The adaptive control
(3.11)-(3.13) uses knowledge of the linearized nonminimum-phase zero to track a sinusoid
with unknown frequency and amplitude. The adaptive control is turned on after 7.5 sec-
onds and drives the performance to zero. The performance with the nonlinear system is
comparable to the linear case shown in Figure 4.2.

Next, we implement the adaptive controller in feedback with nonlinear plant, using

the estimate of the nonminimum-phase zero obtained from the linearized two-link system.

Figure 4.5 shows that the adaptive controller drives z toward zero, and the performance is

comparable to the linear case shown in Figure 4.4.

4.6 Conclusion

In this chapter, we investigated a nonlinear planar multilink mechanism that is intercon-

nected by torsional springs and dashpots. More specifically, we considered a nonlinear

multilink mechanism where a control torque is applied to the hub of the multilink mech-

anism, and the objective is to control the angular position of the tip, which is separated

from the hub by N links. We derived the nonlinear equations of motion, linearized these
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Figure 4.4: Disturbance rejection for the linearized two-link system: The adaptive control
(3.11)-(3.13) uses knowledge of the nonminimum-phase zero to reject an unknown sinu-
soidal disturbance acting on both joints of the two-link mechanism. The adaptive control
is turned on after 7.5 seconds and drives the performance to zero.

equations of motion, and conjectured that the linear transfer function from the hub to the

tip of the multilink mechanism has N − 1 nonminimum-phase zeros. Finally, we imple-

mented a retrospective cost adaptive controller [32] to control the multilink mechanism.

We demonstrated both command following and disturbance rejection where commands

and disturbances had unknown spectra. One possible application of the findings of this

chapter is disturbance rejection as applied to the flexible ABB robotic arm [94, 95].
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Figure 4.5: Disturbance rejection for the nonlinear two-link system: The adaptive control
(3.11)-(3.13) uses knowledge of the nonminimum-phase zero to reject an unknown sinu-
soidal disturbance acting on both joints of the two-link mechanism. The adaptive control is
turned on after 7.5 seconds and drives the performance to zero. The performance with the
nonlinear system is comparable to the linear case shown in Figure 4.4.
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CHAPTER 5

Assimilating Neutral Density Measurements into

the Global Ionosphere-Thermosphere Model

using the Ensemble Adjustment Kalman Fileter

This chapter considers another nonlinear system (a space weather model) in the context

of command following (or, more broadly, state estimation or data assimilation with driver

estimation problem). In particular, in situ density measurements from a particular satellite

(CHAMP) are used as a desired trajectory to be tracked by GITM’s thermospheric density

output. To accomplish this goal, both GITM states and inputs are estimated thereby giving

the method more flexibility than estimating just the states or just the inputs. The results

of this chapter are in preparation to be published in collaboration with Ridley, Bernstein,

Collins, Hoar, and Anderson in [96].

5.1 Introduction

Solar radiation is the largest source of energy in the thermosphere, which can significantly

affect the neutral mass density, ρ, which in turn influences the drag experienced by objects

in low-Earth orbit. Uncertainty in drag translates to uncertainty in position that may even

result in a loss of spacecraft [97]. One way of decreasing drag uncertainty is by obtaining

more precise estimates of the neutral density from thermospheric models. An immediate
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and cost effective way of improving accuracy of these models is data assimilation.

For example, assimilation of azimuth, elevation, range and range-rate measurements

from the calibration satellites into the high-accuracy satellite drag model (HASDM) re-

sulted in about 25% bias reduction as compared to the case with no data assimilation (no-

DA) [97].

Using an alternative data source, [37] showed that assimilating Challenging Minisatel-

lite Payload (CHAMP, [98]) and Gravity Recovery and Climate Experiment (GRACE, [99])

mass density measurements resulted in about 50% bias reduction for the Coupled Thermo-

sphere Ionosphere Plasmasphere Electrodynamics (CTIPe, [100]) model, as compared to

the no-DA case. A modified Kalman filter was used to perform data assimilation with

a prior error covariance matrix constructed using empirical orthogonal functions with a

maximum-likelihood update method.

CTIP [101] was also used by [102], which interpreted the results of radio tomographic

imaging performed on the U.S. Navy Ionospheric Measuring System and compared these

results with GPS total electron content (TEC) measurements. The authors concluded that,

while the small-scale details within the data were beyond the capabilities of the model, the

general features captured by the model aid the interpretation of the tomography results.

Similarly, Utah State University’s Global Assimilation of Ionospheric Measurements

(USU GAIM, [103, 104]) framework also demonstrated how initial model bias can be re-

moved using an approximate Kalman filter. The Kalman filter was used to assimilate the

slant total electron content (TEC) measurements and ionosonde density profiles into the

ionosphere plasmasphere model (IPM) to estimate one of the model drivers, namely, the

equatorial vertical plasma drift. A reduced state Kalman filter was implemented through

numerical linearization of reduced-state IPM at each time step. The authors concluded that,

while this linearization might require thousands of model runs, each model run is parallel

and computationally efficient.

Likewise, the performance of a low-resolution version of the Jet Propulsion Labora-
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tory/University of Southern California Global Assimilation Ionospheric Model (JPL/USC

GAIM) is described by [105]. The GPS slant TEC measurements from 200 ground GPS

sites were used to estimate the single-ion 3D density state using a band-limited Kalman

filter approximation. The results of the assimilation were validated against the withheld

ground measurements, and the vertical TEC measurements from the JASON satellite [106].

The study concluded that, when apparent bias in the JASON measurements was removed,

the GAIM performance was improved from 7 total electron content units (TECU) to about

5.3 TECU.

An application of data assimilation for the Global Ionosphere-Thermosphere Model

(GITM) is described by [107,108]. In particular, [107] uses the localized unscented Kalman

filter (LUKF) to assimilate electron number density, ion temperature, and ion velocity into

the one-dimensional (1D) GITM, described in detail in [33]. That study concluded that

using a small localization region (about 11 altitude cells out of 50) in LUKF is comparable

to the nominal unscented Kalman filter (UKF) performance without the added computa-

tional cost. On the other hand, [108] demonstrates how the GITM data assimilation setup

can be extended to include three-dimensional (3D) GITM using the ensemble Kalman filter

(EnKF, [41]). More precisely, 7 ensemble members were used in the EnKF to assimilate

the simulated electron number density, ion temperature, neutral density, and (separately)

TEC at six fixed locations.

The present work extends the preliminary findings of [108] by increasing the ensemble

size and adding driver estimation. Driver estimation is sought to improve bias removal

in the GITM neutral mass density estimates as compared to the CHAMP measurements.

Following the example of [37], the GRACE measurements are used to validate the results,

though in this case the GRACE neutral density measurements are not scaled and are used at

the altitude of measurements (about 498 km). The CHAMP measurements are assimilated

into GITM via the ensemble adjustment Kalman filter (EAKF, [46]). EAKF was chosen

over the EnKF as it does not perturb measurements but otherwise provides similar per-
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formance. The EAKF, implemented in the Data Assimilation Research Testbed (DART),

which is written and maintained by National Center for Atmospheric Research [47], is used

in this study. DART includes the EnKF and EAKF, as well as several other filters and has

been used in numerical weather prediction [109,110], aerosol modeling systems [111], and

upper atmosphere modeling [112].

This chapter is organized as follows. Section 5.2.1 introduces GITM and demonstrates

the need for data assimilation by highlighting the mismatch between ρ produced by GITM

and ρ measured by CHAMP when bias is added to GITM. EAKF is introduced indepen-

dently of GITM in sections 5.2.2-5.2.4 to separate general data assimilation concepts from

model-dependent concepts. Section 5.2.5 addresses localization. The results of performing

data assimilation with GITM are shown in section 5.3.

5.2 Methodology

5.2.1 Global Ionosphere-Thermosphere Model

GITM is a global model of the upper atmosphere, whose state variables include neutral

and ion densities, temperatures, and velocities, as well as electron density and temperature.

One notable feature of GITM is that it produces nonhydrostatic solutions [113] by solving

a vertical momentum equation for each neutral species. The species momenta are then

coupled using friction terms such that in the lower thermosphere the major species (for

example, N2) tend to force the minor species (for example, NO, O) to be nonhydrostatic.

The relaxation of the hydrostatic assumption is useful for modeling the auroral region due

to the presence of strong heating effects.

One of the main differences between the upper atmosphere and troposphere is the effect

of drivers. The time evolution of the troposphere is determined mainly by its initial con-

ditions. In the upper atmosphere, however, the highly time-dependent drivers play a more

important role, thereby making the upper atmosphere a contractive system [114, 115]. For
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example, the relationship between neutral temperature and solar radio flux at the wave-

length of 10.7 cm (F10.7) can be shown to have a positive correlation. This implies that, as

F10.7 increases, the neutral temperature will increase in the atmosphere region closest to the

sun. Various studies [116] have shown that, when the solar flux increases dramatically (as

in a solar flare), the density on the day side responds rapidly; in contrast, the rest of the at-

mosphere responds with a time delay as the perturbation wave propagates to the night side.

It can also be shown that, as temperature increases, the volume of the atmosphere increases

and pushes the upper atmosphere higher in altitude. Accordingly, a satellite orbiting at a

fixed altitude would observe an increase in ρ on the day side. The direct relationship be-

tween ρ and F10.7 is exploited in section 5.3.1, where the density at about 400 km above the

subsolar point is assimilated to estimate F10.7.

While models can provide insight into the dynamics of the upper atmosphere, it is often

necessary to validate and calibrate the model dynamics using measurements. The CHAMP

Figure 5.1: (a) shows the neutral density at about 400 km altitude at 02:32UT 12/1/2002
as well as CHAMP and GRACE orbital trajectories. CHAMP (red) and GRACE (yel-
low) orbits for the chosen time period do not pass near the subsolar point. The GITM
gridpoint closest to Ann Arbor, MI (green) is referred to in subsequent figures. (b) demon-
strates the model-data mismatch between no-DA GITM output (blue) and CHAMP mea-
surement (red). GITM without data assimilation underestimates neutral density compared
to CHAMP measurements.

satellite, which orbited from 2000 to 2010, provided measurements of the upper atmo-

spheric state. One measurement was of the acceleration experienced by the satellite, which

can be used to infer drag. Since drag is proportional to the mass density of the thermo-
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sphere, mass density can be estimated from CHAMP measurements [117, 118]. Neutral

density readings from CHAMP are separated in time by approximately 47 sec on average.

The CHAMP trajectory (87.3◦ inclination with an average altitude of about 400 km dur-

ing the simulated days) is shown in Figure 5.1(a). Figure 5.1(b) shows that no-DA GITM

(F10.7 = 142 SFU) underestimates ρ by about 2× 10−12 kg m−3 compared to CHAMP mea-

surements between 01 UT and 04 UT. One reason for this mismatch is that the high-latitude

drivers (electric potential and aurora) are intentionally held steady during this time period

to cause GITM temperatures to drop, thereby forcing a bias in GITM neutral density. It

is shown in [119] that variations in high-latitude drivers can cause heating. Therefore,

by purposefully holding the drivers steady, the atmosphere cools off, and the neutral den-

sity at CHAMP altitudes decreases. The following sections establish how model bias can

be removed by estimating drivers, whereas section 5.3 applies this technique and demon-

strates how GITM estimate of neutral density at CHAMP locations can be brought closer

to CHAMP measurements by estimating F10.7.

5.2.2 EAKF: Data Assimilation without Driver Estimation

This section demonstrates data assimilation on a linear system without the knowledge of

the time-varying driver. In the next subsection the same example is revisited with driver

estimation. Consider the linear system

sk = 0.5sk−1 + uk−1, uk = 1.0 + sin(0.4k), (5.1)

yk = sk + vk, vk ∼ N(0, 0.3), (5.2)

where k is the time step, sk is the true state of the system, uk is the unknown time-varying

driver, yk is the state measurement corrupted by noise vk sampled from a zero-mean normal

distribution with known variance Rk = 0.3. The goal of this experiment is to estimate the

state sk based on the noisy measurements yk without knowledge of the driver uk. For the
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ith ensemble member, ŝ+
k,i denotes the posterior state estimate just after the measurement

yk is assimilated, whereas ŝ−k,i denotes the prior state estimate just before assimilating yk.

The prior state estimate is calculated from the posterior estimate at the previous step by

propagating the dynamics, as given by

ŝ−k,i = 0.5ŝ+
k−1,i + ûk−1,i, (5.3)

where, for each ensemble member, ûk−1,i is a constant value selected randomly from a

normal distribution (driver estimation is explored in section 5.2.3). EAKF assumes that ŝ−k,i

and yk are normal random variables whose statistics can be described by their means and

variances. The prior state variance can thus be approximated by the sample variance

σ2[ŝ−k ] =
∑N

i=1
(ŝ−k,i − µ[ŝ−k ])2/(N − 1), (5.4)

where µ[ŝ−k ] is the prior ensemble sample mean. EAKF generates the posterior ensemble es-

timate by applying Bayes theorem. Accordingly, the posterior probability density function

(PDF) is equal to the normalized product of the prior and the measurement likelihood [46].

Since the product of two normal random variables is also a normal random variable, the

posterior state estimate PDF is also normal, and its mean and variance are given by

µ[ŝ+
k ] = σ2[ŝ+

k ]
[
µ[ŝ−k ]
σ2[ŝ−k ]

+
yk

Rk

]
(5.5)

=
Rk

σ2[ŝ−k ] + Rk
µ[ŝ−k ] +

σ2[ŝ−k ]
σ2[ŝ−k ] + Rk

yk, (5.6)

σ2[ŝ+
k ] =

[
1

σ2[ŝ−k ]
+

1
Rk

]−1

. (5.7)
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The final step of EAKF scales and shifts the prior ensemble to match the new mean and

variance, as given by

ŝ+
k,i =

√
σ2[ŝ+

k ]
σ2[ŝ−k ]

(ŝ−k,i − µ[ŝ−k ]) + µ[ŝ+
k ]. (5.8)

To demonstrate the overall performance of (5.1)-(5.8), 20 ensemble members are ini-

tialized from a zero-mean normal initial distribution with variance of 0.4 for both the state

and driver estimates. The initial variance is chosen to be greater than the noise variance

(Rk) so as to initially weight the measurements yk more heavily. More precisely, σ2 > Rk

implies that the measurement weight σ2/(σ2 + Rk) is greater than the prior mean weight

Rk/(σ2 + Rk) in (5.6). Equations (5.1)-(5.8) are propagated forward in time for 50 steps,

while the measurements yk are assimilated at every step.

Figure 5.2 shows the resulting state and driver estimates as a function of time. Along

with plotting the true state (sk), Figure 5.2(a) shows the measurement (yk), the initial en-

semble distribution for the posterior state estimate (ŝ+), and the mean and spread of the

ensemble (µ[ŝ] and σ[ŝ]). The line depicting the ensemble mean (blue) consists of prior

and posterior estimate, thereby resulting in a discernible discontinuity at every step. Fig-

ure 5.2(a) demonstrates that, although the posterior mean approaches the true state sk, the

prior mean deviates away from sk due to an incorrect driver value used by the ensemble

members.

The performance can be better quantified in terms of estimation errors. The prior state

root mean square percentage error (RMSPE) is defined as

RMSPE− = 100 ×

√
µ[(µ[ŝ−k ] − sk)2]√

µ[s2
k]

, (5.9)

and the posterior RMSPE is defined by replacing the minus superscripts by plus super-

scripts. Calculating RMSPE for the estimates shown in Figure 5.2(a) results in prior and
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posterior state RMSPE values of 50.92% and 26.41%, respectively. To decrease the influ-

ence of a particular noise realization, this experiment was repeated using different noise

realizations 1,000 times, and the averaged state RMSPE was found to be 62.40%. The next

section shows how this value can be reduced by estimating the driver.
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Figure 5.2: Time evolution of the EAKF state estimate for the system (5.1), (5.2) without
driver estimation. (a) shows the true state (black dashed), the state measurement (red), the
state estimate initial distribution (green), and the state estimate mean (dark blue) and spread
(light blue, standard deviation). (b) shows the true driver, driver estimate distribution,
mean, and variance in the same colors as (a). The posterior ensemble mean converges to
the true state, whereas the prior mean deviates during the model propagation step due to
the incorrect driver estimate.

5.2.3 EAKF: Data Assimilation with Driver Estimation

This section demonstrates the effect of introducing driver estimation into the data assimi-

lation framework. To perform driver estimation, the augmented state vector is defined as

xk = [ sk; uk ]. Since state augmentation makes the problem of estimating xk multivariate,

the EAKF equations take on a matrix form, as derived in [46].

The matrix formulation of EAKF can be described in joint state-measurement space

[46, 120], where the joint state vector is defined as zk = [ xk; yk ] = [ sk; uk; yk ] Then,
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(5.3)-(5.8) for the ith ensemble member become

ẑ−k,i = [ 0.5ŝ+
k−1,i + û+

k−1,i; û+
k−1,i; ŝ+

k,i ], (5.10)

P−k =
∑N

i=1
(ẑ−k,i − µ[ẑ−k ])(ẑ−k,i − µ[ẑ−k ])T/(N − 1), (5.11)

Ak = (FT
k )−1GT

k (UT
k )−1BT

k (GT
k )−1FT

k , (5.12)

P+
k = [(P−k )−1 + HT R−1

k H]−1 = AkP−k AT
k , (5.13)

µ[ẑ+
k ] = P+

k [(P−k )−1µ[ẑ−k ] + HT R−1
k yk], (5.14)

ẑ+
k,i = AT

k (ẑ−k,i − µ[ẑ−k ]) + µ[ẑ+
k ], (5.15)

where ŷk ∈ Rm, ẑk ∈ Rn+m, Fk is obtained from the singular value decomposition (SVD)

P−k = FkDkFT
k , Gk is a square root of Dk, Uk is obtained from the SVD GT

k FT
k HT R−1HFkGk =

UkJkUT
k , Bk is a square root of (I + Jk)−1, and H = [ 0m×n Im×m ].

Note that (5.10) assumes no model uncertainty, that is, it assumes no mismatch between

the model used to generate the truth data (truth model) and the model used to propagate

ensemble members (ensemble model). Additionally, the ensemble model assumes no dy-

namics for the driver, that is, the prior driver at the current step û−k,i is equal to the posterior

driver at the previous step û+
k−1,i.

To demonstrate driver estimation, (5.10)-(5.15) are applied to the linear system (5.1)

and (5.2). As in the previous section, the ensemble model is initialized from 20 different

initial conditions for both ŝ+
1,i and û+

1,i, which are taken from a zero-mean normal distribution

with variance 0.4. Figure 5.3 shows that both the state and the driver estimates converge to

constant values and the ensemble spread converges to zero. The ensemble spread converges

to zero due to the fact that the ensemble model assumes no dynamics for the driver. The

resulting average RMSPE value of 55.45% is an improvement from the values achieved in

the previous section by about 7%. Ensemble spread converging to zero and ensemble mean

converging to a fixed value are referred to as filter divergence.

To remedy filter divergence, the prior ensemble variance can be inflated as given by
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Figure 5.3: Time evolution of EAKF state and driver estimates for the system (5.1), (5.2)
using driver estimation, but without ensemble inflation. Due to ensemble model assuming
no dynamics for the driver, ensemble spread (light blue) approaches zero. Accordingly, the
mean estimates converge to fixed values and do not track the true state and driver.

ẑ−k,i =
√
λ(ẑ−k,i − µ[ẑ−k ]) + µ[ẑ−k ], where λ > 1 [121]. This directly increases both the ensemble

spread at every step and makes state and driver estimates more uncertain, thereby allowing

them to be updated by a greater increment. Figure 5.4 demonstrates that λ = 2.0 decreases

the state RMSPE by about 17% to 38.63%. The driver estimate has approximately the same

period and amplitude as the actual driver, but is phase shifted.
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Figure 5.4: Time evolution of EAKF state and driver estimates for the system (5.1), (5.2)
when driver estimation and ensemble inflation are used. Using variance inflation of λ = 2.0
results in an average decrease of 17% in the state tracking error.
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5.2.4 EAKF: Data Assimilation with Driver Estimation, Ensemble In-

flation and Model Uncertainty

We now consider the case where the ensemble model (5.10) is different from the truth

model (5.1), (5.2). For example, consider the ensemble model

ẑ−k,i = [ 0.1ŝ+
k−1,i + û+

k−1,i û+
k−1,i ŝ+

k,i ]T, (5.16)

where the only difference between this ensemble model and the truth model (5.1) is in

the state dynamics coefficient, which is 0.1 for the ensemble model and 0.5 for the truth

model. Since the truth model and the ensemble model are different, the driver estimate has

to correct not only for the uncertainty in the measurement yk, but also the model uncertainty

[122]. As a result û+
k−1,i might not converge to the true driver value, but instead to a value

that can drive the state of the ensemble model to the true state. Ensemble inflation has more

influence in the uncertain model case as compared to the accurate model case since the

driver has to compensate for model uncertainty in addition to the measurement uncertainty.

Accordingly, using λ = 2.0 for the ensemble model (5.16) to assimilate measurements from

the truth model (5.1), (5.2), results in the performance shown in Figure 5.5. The value of

λ is chosen as a compromise between ensemble spread and state tracking. Increasing λ

increases the ensemble spread, which in turn allows for large instantaneous change in the

estimates. On one hand, a large spread is undesirable since it implies large uncertainty in

the estimates, whereas, on the other hand, a small spread slows down the updating of the

estimates, and may result in filter divergence.

In this case, the state RMSPE is degraded by 1% (with a new value of 39.59%) when

compared to the accurate model case. The driver estimate had to deviate farther from true

value than in the previous section, but was able to compensate for model uncertainty as

shown by relatively small degradation in state RMSPE when compared to values in the

previous section.
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Figure 5.5: Time evolution of EAKF state and driver estimates for the system (5.1), (5.2)
using the ensemble model (5.16) where driver estimation and ensemble inflation are used.
With ensemble inflated using λ = 2.0, the driver estimate compensates for model uncer-
tainty and allows minor degradation in state estimate (1%) as compared to the perfect model
case.

5.2.5 EAKF: Localization

The previous section considered only a single state and a single driver. Within GITM there

are 72 × 36 × 50 grid points with 35 state variables at each grid point (densities, tempera-

tures, and velocities for multiple species), all of which are estimated. Using the equations

derived in the previous section for problems of this size is not only prohibitively expensive

computationally, but also can produce physically meaningless solutions arising from cor-

relations between distant states and measurements. If these correlations are retained, the

state estimates could be driven in the wrong direction. Accordingly, the influence of the

measurements on the state variables at the current step is spatially confined. This region is

defined as a smooth function of the distance between the measurement and the state vari-

able. This localization function takes values between 0 and 1, and multiplies the correlation

between the measurement and the state variable [123]. A value of 1 corresponds to direct

connection between the measurement and the state, whereas a value of 0 corresponds to

no connection. The values between 0 and 1 vary smoothly as a function of distance. The

piecewise continuous function (4.10) in [124] is used with a half width of 0.6 radians in the
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horizontal direction and 100 km in altitude for all experiments in this chapter. The resulting

localization region is shown in Figure 5.6 for a measurement above Ann Arbor, MI, where

the intensity of red indicates the value of the localization function.

Figure 5.6: The localization region for the measurement located above Ann Arbor, MI.
Markers are placed at GITM cell center locations. The dark red markers correspond to
measurements having a direct effect on the state variable, whereas transparent markers
correspond to measurements that have no effect on the state variable. The state variables
affected by the measurement above Ann Arbor lie in a projection of a small circle region
centered in Ann Arbor.

In this chapter, localization is used for all GITM variables except the driver estimate

F̂10.7, which is affected by all measurements. This implies that, for example, the measure-

ments on the night side of the Earth have full impact on the driver.

Although data assimilation can be performed at every step in simple models, this ap-

proach becomes impractical in the DART-GITM interface due to the cost of stopping and

restarting GITM. Accordingly, even though GITM uses 2 s time step and CHAMP data is

available about every 47 s, the assimilation window (time between assimilation steps, taw)

was chosen to be 30 min, which is a compromise between runtime and performance.

One current feature of DART-GITM interface is that it does not interpolate measure-

ments in time. In other words, all the measurements from current time minus half the

assimilation window to current time plus half the assimilation window are used without

modification as if they occurred at the current time.
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5.3 Results

All of the data assimilation experiments performed on GITM were run for a period of two

days (Dec 1-2 2002). For the simulated measurement experiments the measurement er-

ror variance Rk was set to a constant value of 2.6 × 10−13 kg m−3, which was the average

CHAMP measurement error for the simulated dates. For the real CHAMP measurement

experiment, Rk was set to the measurement error values provided in the CHAMP data files.

In this section, the driver estimate was inflated to have a constant variance; the state esti-

mate covariance was not inflated. More precisely, the entry corresponding to the variance

of F̂10.7 in the prior covariance matrix (5.11) was set to the fixed value σ2
i = 49 SFU2 just

before computing (5.11). Keeping the driver variance constant was found to ouperform

state inflation since the driver estimate variance in the state inflation case would take multi-

ple days to grow to the desired level. On the other hand, driver-only inflation reaches these

levels immediately and keeps the variance of the driver estimate constant.

While the EAKF assumes that the state estimates are normally distributed, tempera-

tures, densities and F10.7 cannot take on negative values and hence cannot be normal. Ac-

cordingly, when estimates of these state variables become negative, their values are set at

half the value at the previous step. Therefore, the initial F̂10.7 ensemble distribution was

chosen to be normal with mean of 130 SFU and variance of 25 SFU2. This distribution

created spread in the initial conditions for other variables since all ensemble members were

pre-spun for two days (11/29-12/01) prior to the start of the data assimilation. The mean

was chosen to be below the true value to avoid inadvertently compensating for GITM-

CHAMP ρ mismatch. More precisely, since the true F10.7 was about 142 SFU during Dec

1-2 2002 and GITM underestimated ρ at CHAMP locations, choosing an initial mean F̂10.7

to be about 220 SFU would fix the bias. Instead, the mean of 130 SFU was chosen to pro-

vide for a more challenging setup. The variance of the initial F̂10.7 distribution was chosen

as to create the initial variance in ρ to be greater than Rk in the beginning of the assimilation

to give the measurements more weight (see section 5.2.2 for related discussion).
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Figure 5.7: Variance of the sample variance as a function of the number of ensemble
members when σ = 1. As the number of ensembles members increases, the accuracy of
variance estimate increases.

Finally, the number of ensemble members was fixed at 20 for this study due to the initial

limit on computational resources. More precisely, 5◦ GITM runs on 32 processors, which

for 20 instances entails 640 processors. To facilitate the simulations, NASA’s Pleiades

supercomputer was used. One way to gauge the accuracy of the estimate of the ensemble

variance is by considering the distribution of sample variance, which can be shown to be

scaled chi-squared distribution with mean σ2 and variance 2σ4

n−1 if n samples come from

a normal distribution with variance σ2 [125, 126]. Figure 5.7 demonstrates variance of

the sample variance as a function of the number of the ensemble members and shows

that, with 20 ensemble members the variance of the ensemble variance reaches 0.1053

when the true variance is 1. It also demonstrates that increasing the number of ensemble

members improves the accuracy of the variance estimate in hyperbolic fashion since a

tenfold increase in number of ensemble members reduces variance of ensemble variance

by a factor of ten.
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5.3.1 Simulated data above the subsolar point

As a first example, a simulated measurement of the density ρsp at about 400 km above the

subsolar point is obtained from a GITM truth simulation. Since it is impractical to measure

ρsp in practice, this example illustrates EAKF in the case where the measurement is directly

linked to the quantity to be estimated. We thus record ρsp at 1-min intervals from the truth

model for use in the EAKF as measurements. Truth GITM is simulated for 2 days (Dec 1-2

2002) with the true F10.7 (mean value of 142 SFU). With data assimilation performed every

30 min, Figure 5.8 shows results from the truth model and ensemble estimates at two loca-

tions, namely, the subsolar point (measurement location) and the GITM grid point closest

to Ann Arbor, MI (diagnostics location). Figure 5.8(b) demonstrates that state estimates

(blue) at the subsolar point converge to the true state (red). The measurement uncertainty

used in this experiment is the average value of CHAMP measurement error data (standard

deviation) for the Dec 1-3 2002 and is shown in light red. The solid black line shows the

estimated density at the subsolar point without data assimilation with F10.7 = 130 SFU

(the mean of the initial F̂10.7 distribution). The assimilated mean deviates from this passive

trajectory and converges to approximately the true state within 3 hours.

Figure 5.8(b) shows that even at a location different from the measurement location (the

GITM grid point closest to Ann Arbor, MI), the mean state estimate (blue, ρ̂aa) converged

to the true state (dashed black, ρaa). At this location the convergence is slower since Ann

Arbor only entered the subsolar point localization region between 12 and 24UT each day.

Figures 5.9(a) and 5.9(b) show mass density estimates at CHAMP and GRACE lo-

cations (ρ̂ch and ρ̂gr, respectively). The inset in (a) demonstrates that by about 09UT

12/1/2002 CHAMP ensemble mean µ[ρ̂ch] converged to the true value ρch. Similarly, (a)

leads us to conclude that convergence took place along the GRACE trajectory as well. The
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absolute percentage error (APE) values are computed for the (a) and (b), as

APE−k = 100 ×
|µ[ρ̂−ch,k,i] − ρch,k|

|ρch,k|
, (5.17)

and are shown in (c) and (d). These plots demonstrate that the subsolar point measurement

not only removed the bias at the subsolar point, but also at CHAMP and GRACE locations.

More precisely, the RMSPE− at CHAMP locations over the second day decreased from

36% to 3% when compared to the bias in the nominal case (the truth model with F10.7 = 142

SFU and no-DA GITM using F10.7 = 130 SFU). Similarly, the RMSPE− at the GRACE

location decreased from 43% to 4%. Finally, Figure 5.10 shows that the F10.7 estimate

converged to the true value by the end of the simulated period.

Figure 5.8: Time evolution of the simulated (red) and estimated (blue) mass density above
the subsolar point (measurement location) in (a) and at the 400 km gridpoint closest to
Ann Arbor, MI in (b). Estimated mass density above the subsolar point converged to the
true value within 3 hours, whereas density at the Ann Arbor gridpoint needed 12 hours to
converge.

5.3.2 Simulated CHAMP data

As a more physically realistic case, we now use measurements at the CHAMP locations.

Figure 5.1 shows that the CHAMP orbit does not pass through the subsolar point, and

hence this case is more challenging than the previous example. Figure 5.11 demonstrates
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Figure 5.9: (a) shows the time evolution of mass density at CHAMP locations demon-
strates that ρ converged to the true value within 9 hours when measurements were taken at
the subsolar point. (b) shows mass density estimate at GRACE locations and demonstrates
the same rate of convergence. (c) and (d) reinterpret (a) and (b) by plotting the orbit av-
erages of the errors between simulated and estimated data. This figure demonstrates that
estimated mass density converged to true mass density at locations other than the measure-
ment location (subsolar point).

that even in this seemingly harder case, EAKF was able to decrease the prior RMSPE

from 36% to 2% along CHAMP trajectory and from 43% to 4% along GRACE trajectory

compared to the no-DA case. The values of F̂10.7 shown in Figure 5.12 demonstrate that the

filter initially overestimated the true value, but then converged close to the true value within

15 hours. Indeed, the convergence was significantly faster than in the previous example.

5.3.3 Real CHAMP data

We now consider mass density data and uncertainty measured by CHAMP. Because the true

state was unknown, data from GRACE was used as the validation metric. Since GITM with
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Figure 5.10: Time evolution of F10.7 for the truth simulation (dashed black), nominal
no-DA simulation (solid black), and the ensemble mean (dark blue). The ensemble mean
oscillated around the true value and converged to the true value by the end of the simulation.

proper high-latitude driving has a relatively low bias compared to CHAMP data, GITM

simulations were conducted with constant high-latitude driving, to intentionally introduce

potential bias. Figure 5.13 shows that the bias at the CHAMP locations with data assimi-

lation and driver estimation is reduced from 73% to 7%. At the GRACE satellite location,

however, the bias was only marginally reduced. Even though the GRACE RMSPE is re-

duced from 76% to 52%, the large remaining bias suggests that either more than one driver

needs to be estimated in order to remove bias at multiple locations or that more data needs

to be assimilated to remove the bias over the whole thermosphere. Figure 5.14 shows the

F10.7 values used to achieve the aforementioned performances and demonstrates that the

driver had to take on higher values (about 220 SFU instead of nominal 142 SFU) to com-

pensate for the model bias.

5.4 Conclusions

This study described the preliminary implementation of the DART-GITM interface. In

particular, it demonstrated how both simulated and real CHAMP ρ measurements can be

assimilated into GITM. In addition to estimating GITM states such as densities, temper-

atures, and velocities, this interface estimated one of GITM drivers, namely, F10.7. This
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Figure 5.11: Orbit averaged mass density absolute percentage errors at (a) CHAMP and
(b) GRACE locations. Simulated CHAMP data were used as measurements in the EAKF,
whereas the simulated GRACE values were only used for validation. Density estimate
at CHAMP locations dropped immediately to about 3%, whereas the estimate at GRACE
locations decreased only after about 9 hours due to altitude difference between these satel-
lites. The bias in densities at both locations was decreased and the final error level was
lower at the measurement location (CHAMP) than at the validation location (GRACE).

driver was not estimated for the purposes of knowing F10.7 more precisely, but instead for

the purposes of driving GITM’s estimate of ρ closer to CHAMP measurements. Accord-

ingly, it was found that in the simulated CHAMP measurements case, the good estimate

of F10.7 was able to drive GITM to the point of decreasing the bias in the simulated mass

densities at the CHAMP locations from 36% to 2% and from 43% to 4% at the validation lo-

cations (GRACE orbit). This technique produced greater decrease when real CHAMP data

were used as measurements in EAKF and GRACE data were used for validation. More

precisely, assimilating real CHAMP data and estimating F10.7 decreased the mass density

bias from 58% to 7% for CHAMP locations and from 77% to 52% for GRACE locations

when compared to not performing data assimilation. The relatively large final GRACE bias

(52% compared to CHAMP’s 7%) can be explained by the way these data were derived.

In particular, [37] mentions that CHAMP and GRACE data were found to be inconsistent

when compared to the CTIPe outputs and attributes this disparity to the “uncertainty of the

drag coefficient assumptions employed in the retrieval as well as the different orbital alti-

tudes.” The authors then scaled the GRACE densities by an arbitrary number to remove the
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Figure 5.12: Time evolution of F10.7 for the true, nominal and ensemble simulations. The
ensemble mean estimate initially overestimates the true value, but then converges within
15 hours.

apparent inconsistency. This solution might have reduced the observed GRACE RMSPE

in this study, but is left for future work.

These preliminary results can be further improved by tuning parameters and relaxing

of some assumptions. In particular, the interface parameters that require tuning include the

number of ensemble members, the data assimilation temporal window, and observational

error variance R. The possible interface improvements mentioned above include using log-

normal distributions instead of normal distributions for densities and temperatures, defining

a localization region for the driver, and implementing temporal localization of the measure-

ments. Also, investigating full state inflation in conjunction with constant driver inflation

is subject for future work.

Future work will include estimating more drivers, such as the auroral power and cross

polar cup potential, and assimilating more measurements, such as the total electron content

measurements made by GPS, which will help to extend this study from a thermosphere into

the ionosphere.

Lastly, since this study considered only the geomagnetically calm period, it would be

interesting to see whether the current setup is capable of producing equally good estimates

during a geomagnetic storm.

The main goal in this demonstration was to explore whether it is possible to remove
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Figure 5.13: Orbit averaged mass density measurements at CHAMP and GRACE are
shown in (a) and (b) respectively, and absolute percentage errors are shown in (c) and
(d) respectively. Real CHAMP data were used as measurements in the EAKF, whereas
GRACE data were used only for validation. The bias in density at CHAMP locations was
decreased over the second day from 57% to 7%, whereas the bias at GRACE location was
only decreased by a smaller amount (from 70% to 52%, see text for relevant discussion).

the bias in a model using data assimilation along with driver estimation. The last example

demonstrates that at the location where data is ingested, the bias is almost completely

removed (due mostly to the data assimilation), while, at other locations, the bias is reduced.

This shows that the technique works but might be dependent on choosing the correct driver

to estimate.
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Figure 5.14: Time evolution of F10.7 for the true, nominal and ensemble simulations. F10.7

estimate took on higher values than what was measured by NOAA, in order to drive GITM
closer to the CHAMP data.
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CHAPTER 6

Assimilating Total Electron Content

Measurements into GITM using EAKF

This chapter extends the findings of Chapter 5 by considering measurements coming from

multiple satellites. In particular, the total electron content (TEC) measured by the global

positioning system (GPS) satellites is assimilated into GITM. Two major differences be-

tween this chapter and Chapter 5 are: GPS measurements provide a much more global

coverage than the CHAMP measurements and GPS measurements are related to the state

of the ionosphere, whereas the CHAMP measurements are related to the state of the ther-

mosphere. The first distinction dictates the technical details of choosing the EAKF lo-

calization parameters, whereas the second one has more general implications of choosing

whether or not to estimate GITM drivers and if so, what drivers to estimate. The second

distinction is very similar to the distinction made in the previous chapter between thermo-

sphere and troposphere - the former one is strongly driven and is weakly dependant on the

initial conditions, whereas the second one is weakly driven and is strongly dependent on

the local structure of the initial conditions (akin to turbulence). Accordingly, this chapter

investigates whether it is necessary to adjust GITM drivers in addition to GITM ionospheric

states or whether it is enough to update GITM ionospheric states only.
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6.1 Introduction

Knowing the structure of the ionosphere is crucial to multiple applications. Perhaps the

most familiar one to most people would be GPS turn-by-turn navigation used in modern

cars. This technology relies heavily on measuring the time it took for the signal to travel

from the satellite to the receiver. This time is then used to calculate the distance between

the satellite and the receiver. If only a simplistic model of ’time times speed’ is used for

computing distance, the resulting position uncertainty will be unacceptable for navigation

purposes since the signal gets delayed by the ionosphere [127]. A variety of ionospheric

models can be used to account for this delay. Empirical models can provide satisfactory

estimates of the ionosphere during geomagnetically calm times, but provide unacceptable

results during solar storms [128]. Therefore, this chapter uses a physics-based ionosphere

model (GITM, [33]) and demonstrates how GITM can be used to estimate GPS ionospheric

delays. More precisely, this chapter demonstrates how data assimilation can be used to im-

prove GITM’s electron density specification as to improve GITM’s forecasting ability in

terms of predicting ionospheric conditions. To accomplish this goal, the vertical total elec-

tron content (VTEC) measurements are assimilated by the ensemble adjustment Kalman

filter (EAKF), which is a part of the Data Assimilation Research Testbed (DART, [47]).

This chapter first describes some traits of VTEC measurements in section 6.2.1 and

describes the filter-model setup in Section 6.2.2. Then, the results of assimilating simu-

lated VTEC data are described in Section 6.3.1. Section 6.3.2 also describes assimilating

simulated data, but adds an extra degree of freedom by estimating a GITM driver (solar

index F10.7). Similarly, sections 6.3.3 and 6.3.4 describe the state-only and state-and-driver

estimation experiments by using real VTEC data.
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6.2 Methodology

6.2.1 Total Electron Content Measurements

The total electron content measurements are calculated from the frequency signals broad-

casted by GPS (see, for example, [129, 130] and references given within). The slant total

electron content (STEC) measurements represent an integral of electron density along the

path from a ground receiver to a visible GPS satellite. Since the units of electron density

are number of electrons per meter cubed (#e m−3), the units of STEC are #e m−2, which is

scaled down by defining 1 TECU = 1016 #e m−2. The vertical total electron content (VTEC)

measurements are calculated by projecting STEC measurements to the local-vertical axis

via a simple cosine rule [129]. The daily VTEC data sets are available from the Madrigal

open source database project [131] and have 5 minute latency. Most VTEC values lie in

the [0 20] TECU range, although there are values above that range with extreme outliers of

300 TECU. The number of active ground stations varies on a per-day basis, but during the

dates of this study (December 1 2002), about 200 stations were operational. The number of

visible satellites changes much more rapidly and is different for each station, but is about

6 on average. Combining these figures and assuming each satellite provides data about

every minute results in 6000 VTEC data points every 5 minutes. This amount of data is

about 1000 times larger than what was available in the previous chapter (about 6.3 points

every 5 minutes). To highlight the amount of available data, Figure 6.1 shows a snapshot

of the geographical distribution of these measurements and highlights the fact that more

measurements are available above land than above ocean.

With this distribution in mind, we first construct a simple test case using simulated data

to prove the assimilation technique. Accordingly, sections 6.3.1 and 6.3.2 use simulated

VTEC data recorded from a GITM “truth” simulation with F10.7=148.0 SFU. The locations

for retrieving data from the truth simulation were selected to be somewhat representative

of the real data distribution and have simple shapes to make data-rich areas distinct from
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Figure 6.1: VTEC snapshot at 00:30 UT on Dec. 1 2002. VTEC data cover the whole
globe, but are more sparse above oceans than above land.

areas with no data. Accordingly, longitude-latitude rectangles over Europe (40◦ − 60◦N,

0◦ − 40◦E) and North America (30◦ − 50◦N, 80◦ − 120◦W) with 2◦ increments in both

dimensions were selected and are shown in Figure 6.2. Since the underlying resolution

of the truth simulation was only 20◦ longitude by 10◦ latitude as is discussed in the next

section, the truth data were interpolated via cubic splines to the 2◦ resolution.
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Figure 6.2: VTEC cropped simulated data at 00:30 UT on Dec. 1 2002. The cropping
region locations were chosen to form rectangular patches over Europe and North America.
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6.2.2 DART-GITM Interface Experimental Setup

The DART-GITM interface is extensively described in Chapter 5. This section describes

some minor tuning and source-code changes made for this particular problem. GITM

source code was not modified, whereas DART had to be augmented with a forward oper-

ator module, which describes how to compute VTEC from electron density. In a nutshell,

the forward operator interpolates the three-dimensional global electron density field in lon-

gitude and latitude resulting in a vertical column of e-density values. This column is then

integrated with respect to altitude using the trapezoidal rule and the result is multiplied by

10−16 to convert it to TEC units.

Coarse resolution was used for both truth and ensemble simulations (20◦ in longitude

and 10◦ in latitude) as proving the technique was more important to this chapter than quan-

tifying the behavior of small-scale features of the ionosphere. Using coarse resolution

allowed for decreased simulation time, as simulating 20 ensemble members with the as-

similation window of 30 min required only 9 wall-clock hours on 20 processors to simulate

24 virtual-hours, as opposed to the same amount of time on 640 processors to produce the

high-resolution results of the previous chapter. The EAKF horizontal localization halfwidth

was set at 0.6 radians as to ensure that state variables in regions with sparse data-coverage

(oceans) would be affected by the assimilation. The vertical localization halfwidth was set

to 100 km, but does not have any effect on assimilation since VTEC has no vertical coordi-

nate. The whole-state (as opposed to a single state variable or single driver) inflation value

λ introduced in Section 5.2.3 was set to 1.01 for all examples in this chapter as to prevent

filter divergence. In addition to that, the F10.7 inflation value σ2
i = 1 SFU2 was used in sec-

tions 6.3.2 and 6.3.4. The date chosen for this study (December 1 2002) was selected since

the level of solar activity (about 150 SFU) was favorable for driver estimation, by which

it is meant that it was not close to the GITM minimum allowable value (about 70 SFU).

Lastly, the simulated VTEC measurements were assigned uncertainty (standard deviation)

equalling 5% of the simulated measurement in sections 6.3.1 and 6.3.2, whereas the real
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VTEC uncertainty was used with real measurements in sections 6.3.3 and 6.3.4.

6.3 Results

6.3.1 Assimilating simulated data above North America and Europe

without estimating F10.7

As a first example, simulated data above North America and Europe is assimilated to es-

timate GITM states without estimating GITM drivers. Figure 6.3 highlights the fact that

the F10.7 was not estimated and the initial F10.7 distribution was chosen to be normal with

mean of 130 SFU (which is about 18SFU below the value used in the truth simulation) and

standard deviation of 5 SFU. Before proceeding to demonstrate the VTEC results, we turn
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Figure 6.3: Initial distribution and time evolution of F10.7 estimates. The F10.7 estimates
were initialized as N (130 SFU, 5 SFU) and were kept constant for the entire simulation.

our attention to the variable from which VTEC is calculated, namely electron density. Elec-

tron density is three-dimensional and varies over time, so to simplify the plotting, values at

one gridpoint are selected. In particular, electron density at the (40.0◦N, 80.0◦W, 411 km)

GITM gridpoint is shown in Figure 6.4. This figure also demonstrates that the ensemble

mean and spread increase starting 12UT (07LT) and reach their maximum around 19UT

(14LT). Figure 6.4 also shows that the ensemble mean (solid blue) captures the overall
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Figure 6.4: Time evolution of electron density at the (40.0◦N, 80.0◦W, 411 km) gridpoint.
Discontinuities in the blue line at each step are a result of plotting prior and posterior
density estimate at each step. The slope of blue line between assimilation steps is indicative
of GITM influence on the estimates during the model-propagation periods.. Ensemble
mean and spread increase after 12UT (07LT) and reach their maximum values around 19UT
(14UT).

shape of the true electron density time profile (dashed black), but possibly not the magni-

tude.

Next, VTEC for both true and ensemble simulations is computed. Then, the absolute

error (|VT ECGIT M −VT ECEAKF |) is computed. The interpolated version of the VTEC error

is shown in Figure 6.5. This figure demonstrates that the error is smallest in the data-rich
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Figure 6.5: VTEC error snapshot at 22:30 UT on Dec. 1 2002. The error is smallest where
data is available (note the darker area above the United States).

areas, as represented by the darker area above the United States, and is largest in areas with
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poor data coverage, particularly the Pacific Ocean and Central Africa. However, Figure 6.5

is only a snapshot and does not provide a complete picture of the error evolution over time.

To compensate for this issue, Figure 6.6 shows the error averaged over the whole globe as

a function of time and demonstrates that in this simple case average error does not increase

above 2 TECU.
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Figure 6.6: Time evolution of VTEC error average over the whole globe. Average error
does not surpass 2 TECU.

6.3.2 Assimilating simulated data above North America and Europe

with estimating F10.7

This section introduces driver estimation in the simulated data case. Figure 6.7(a) shows the

estimated F10.7 and demonstrates that the driver estimate did not converge to the true value

in the time allotted. However, when driver estimation is combined with data assimilation,

the overall error levels do not surpass 4 TECU, as shown in (d). Figure 6.7(c) shows a

VTEC snapshot similar to that of Figure 6.5, but the distinction between data-rich and

data-poor areas is less distinct in this case, which is partially caused by introducing driver

estimation.
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6.3.3 Assimilating real GPS data without estimating F10.7

This section introduces assimilation of real GPS data, but does not employ driver estima-

tion. Figure 6.8 shows the F10.7 estimate in (a), electron density gridpoint estimate in (b),

VTEC error snapshot in (c), and VTEC error time evolution in (d). In particular, the error

shown in (c) differs from the definitions in the previous sections and is defined as the ab-

solute difference between the GPS data linearly interpolated to GITM gridpoints and the

EAKF estimate (|VT ECGPS − VT ECEAKF |). This error is shown in Figure 6.8(c), which

follows the trend set by the previous sections of having lowest VTEC error in the data-rich

areas (North America and Europe) and highest in data-poor areas (South Pacific Ocean).

Multiple upward spikes in Figure 6.8(b) imply that EAKF attempted to magnify GITM’s

electron density values, but during the model-propagation step these values slid back down

due to, possibly, insufficient forcing. Overall, the VTEC error stayed at the level of about

8 TECU, which is 4 times as high as the simulated data case without driver estimation.

6.3.4 Assimilating real GPS data with estimating F10.7

This section completes this study by adding driver estimation to the real-data-estimation

case. Figure 6.9(a) demonstrates that in this case, driver estimate varied substantially more

than in the simulated data case of Section 6.3.2 to compensate for larger spread of the

data. Accordingly, the data assimilation part of EAKF did not have to adjust GITM state

as much, which can be seen by a reduced number of upward spikes in Figure 6.9(b) as

compared to Figure 6.8(b). This cooperation of data assimilation and driver estimation

resulted in improved error distribution shown in (c), as shown by lower error values over

South Pacific Ocean. Additionally, introducing driver estimation provided for a lower and

flatter average error dynamics, as shown in Figure 6.8(d).
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6.4 Conclusions

This chapter extended the findings of Chapter 5 into the ionosphere by assimilating GPS

VTEC measurements. In output tracking (or command following) terms, this chapter de-

scribed how GITM output can be made to track a desired trajectory (real satellite data) or,

equivalently, how GITM can be inverted to back out driver values from the measurements.

This task was shown to be achievable either through pure data assimilation, where model

drivers are kept constant, or through data assimilation augmented with driver estimation.

While the simulated driver estimation case had worse average error than the case with-

out driver estimation, this might change with different initial ensemble distributions. More

precisely, while completing this study, the authors found that initializing F10.7 at 130 SFU

with 5 SFU standard deviation did not result in sufficient ensemble spread. Therefore, two

possible solutions could be approached in future work: choosing a larger standard devia-

tion for the initial F10.7 distribution or choosing a different driver that has stronger effect on

the electron density. In the real data case, however, driver estimation improved the overall

assimilation performance by decreasing average VTEC error. A particular benefit of intro-

ducing driver estimation comes from decreased estimation error in sparse data regions.

Future directions for this project include investigating the effect of increasing the initial

driver distribution standard deviation, selecting different (and possibly multiple) drivers,

varying various filter tuning parameters, increasing model resolution, assimilating slant

total electron data, and repeating these experiments during geomagnetic storms.
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Figure 6.7: Assimilating simulated data with driver estimation. (a) shows the time evo-
lution of F10.7 estimate, (b) shows the time evolution of electron density at the (40.0◦N,
80.0◦W, 411 km) gridpoint, (c) shows the VTEC error snapshot at 22:30 UT on Dec. 1
2002, and (d) shows time evolution of average VTEC error. The F10.7 estimate did not
converge to the true value, but overall error levels were still comparable to the results of
Section 6.3.2.
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Figure 6.8: Assimilating real data without driver estimation. For plot-type descriptions
see Figure 6.7. (c) confirms the rich/poor data region trend by showing low error values
above the US and Europe and high values above South Pacific. Without driver estimation,
error leveled out at about 8 TECU.
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Figure 6.9: Assimilating real data with driver estimation. For plot-type descriptions see
Figure 6.7. Adding driver estimation had an overall stabilizing effect to the data assimila-
tion process, as can be seen in fewer upward spikes in (b), smaller errors over South Pacific
Ocean in (c), and lower and flatter average error response in (d) when compared to not
using driver estimation.
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CHAPTER 7

Conclusions

This chapter describes the main contributions of this dissertation, but does so in a slightly

nontraditional, retrospective way. In particular, instead of starting at the beginning of the

dissertation and going forward, this chapter starts at the end and goes backward. The

benefit of this direction reversal is twofold: it allows the earliest results to be reinterpreted

from the standpoint of the latest results and it does the opposite of the introduction, thereby

allowing to go back from specific to general topics (which is perhaps reminiscent of Crab

Canon from [132]).

Accordingly, we start with Chapter 6, which demonstrated the assimilation process for

a very special type of measurements (GPS total electron content) to improve ionospheric

estimation accuracy of a space weather model (GITM). It showed that real data is best

assimilated with driver estimation enabled, as drivers affect even the regions of the model

where data is sparse. This insight can be carried over to the simulated data case, which

at first seemed to suggest that F10.7 estimation might not be useful, but now just seems

like it requires greater initial ensemble spread. More general future research directions

include assimilating slant total electron content data and total electron content occultation

measurements between satellites.

Chapter 5 considered the case where a much smaller data set coming from a single

satellite (CHAMP neutral density) was assimilated into GITM. A large part of this chapter

was devoted to describing and validating the DART-GITM interface created for the pur-
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poses of this study. In particular, it was found that during the dates in this study, CHAMP

was almost in the terminator orbit, making it more difficult to estimate F10.7 as compared

to dates when CHAMP would fly directly above the subsolar point. Even in the presence

of this difficulty, the assimilation was shown to perform well at removing the discrepancy

between the data and the model. One major changes inspired by developments of chapter

6 is defining neutral density as a measurement inside the DART-GITM interface instead of

making it a state variable. While this distinction might seem somewhat technical, it affects

the source code implementation side of this project by reducing how much of DART and

GITM source code needs to be modified to create another state variable. Arguably this

reduction is offset by the need to write a forward operator relating the density of various

GITM species to the neutral density, but the benefits of such an operator seem to outweigh

the costs.

Another possible change to DART-GITM interface that became apparent at the later

stages of the project described in Chapter 6 pertains mostly to GITM and deals with how

GITM writes its output. Currently, unformatted binary files are used for GITM output and

restart files. The alternative solution is to use netCDF files, which are designed with large

atmospheric applications in mind and are much quicker to access.

Progressing backwards towards the beginning of the dissertation we encounter Chapter

4, which described a nonlinear application of RCAC. More precisely, it began with proving

the technique on a linear approximation of the plant (much like chapters 5 and 6 started with

simulated data) and then used the NMP zero of the linearization to control the nonlinear

system. Perhaps the most obvious extension of this project inspired by space weather

projects would be figuring out how nonlinear the linkage system is. In a way it is obvious

that it is strongly nonlinear as shown by the equations of motion, but on the other hand it

is not clear “how far” the system is from being linear. Essentially, it would be of interest

to come up with a nonlinearity index (or use an existing one [133]), where a linear system

would get an index of zero, the same linear system with a small nonlinearity added would
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get a small positive value, and so on. This index could provide insight into how “easy” it is

to control certain nonlinear system or class of nonlinear systems.

The next (or previous) chapter considered was Chapter 3, which described RCAC ro-

bustness to the NMP zero locations. In particular it was found that the algorithm is more

robust to overestimating NMP zero locations than to underestimating them and that there

exist inherent difficulty in controlling plants for which the NMP zero needs to be known.

One possible extension of this project inspired by the space weather projects is to use real

systems instead of randomized plants. This idea is inspired by the model and data libraries

that the space weather community (and numeric weather prediction community in general)

maintains. Similarly, it could be beneficial to have a publicly accessible database of real

systems. This virtual library could have several divisions, either by application area or by

plant characteristics. The more specimens such library would have, the more credibility the

simulation results based on it would have.

Lastly, Chapter 2 introduced a method to improve robustness of the RCAC to the lo-

cation of NMP zeros. In particular, this modification was found to improve transient per-

formance and increase robustness to NMP zero locations for the command following and

disturbance rejection problems. One possible extension of this work is to design a new

version of RCAC around this convex constraint.
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