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ABSTRACT

Algorithm development for vertical Lagrangian coordinate based non-hydrostatic
and hydrostatic models

by

Xi Chen

Chair: Joyce E. Penner

This thesis demonstrates a new non-staggered-grid finite-volume method for dynam-

ical cores in atmospheric general circulation models. Finite volume methods have

been proved to be robust and accurate in many research areas. These numerical

methods have many properties, which make them desirable for modeling atmospheric

dynamics. However, many non-staggered-grid finite-volume methods are numerically

expensive because they implement Riemann solvers. To bypass the requirement of

using a Riemann solver, current finite volume dynamical cores in the General Cir-

culation Models use less stable staggered grids. We developed a low-cost Riemann

solver to implement with the non-staggered-grid schemes, which matches the numer-

ical efficiency of the current staggered-grid schemes. It is much easier to develop a

scheme with a high-order of accuracy and which has better performance when using

adaptive mesh refinement (AMR) using a non-staggered grid finite volume scheme.

Adaptive mesh refinement is a method that allows one to adaptively capture

the features of small-scale motions of particular dynamical interest. However, non-

uniform grids are required in adaptive mesh refinement techniques. The varying

xiv



resolution can cause artificial reflections of waves due to incompatible mechanisms at

fine-grid and coarse-grid interfaces. We tested our models using the full set of the

conservative Euler equations with non-uniform horizontal grids, in both hydrostatic

and non-hydrostatic formulations. Our algorithm for the interface is fully two-way

interactive. There is almost no reflection observed in our results and due to the

high-order accurate interface, the waves are not damped when passing the interfaces.

Since the vertical distribution of pressure in the atmosphere is a non-polynomial

monotonic function, the polynomial based 3D AMR might create pressure gradients

at the interface of two grids, even if the atmosphere is initialized statically as a

steady state. We introduced an alternative way to find the pressure at any vertical

altitude within a control volume using an iterative method. We have shown that in

the isentropic atmosphere, the theoretical value of the pressure at any altitude can be

determined using this method. Using this method in the vertical volume refinement

can prevent creating pressure gradients at the interface between two grids.

xv



CHAPTER I

Introduction: algorithm development in weather

and climate modeling

1.1 Atmospheric models and their limitations

An atmospheric model is a mathematical model construct around the full set of

primitive dynamical equations, which govern atmospheric motions. It may be nec-

essary to supplement these equations with parameterizations for turbulent diffusion,

radiation, moist processes (clouds and precipitation), heat exchange, soil, vegetation,

surface water, the kinematic effects of terrain, and convection. Atmospheric mod-

els, if properly initialized, can predict microscale phenomena such as tornadoes and

boundary layer eddies, sub-microscale turbulent flow over buildings, as well as syn-

optic and global flows. The horizontal domain of a model is either global, covering

the entire Earth, or regional, covering only part of the Earth. An atmospheric model

of the general circulation on a rotating sphere of earth with thermodynamic terms

for various energy sources is called atmospheric general circulation model (GCM).

Atmospheric and oceanic GCMs (AGCM and OGCM) are key components of global

climate models along with sea ice and land surface components. GCMs and global

climate models are widely applied for weather forecasting, understanding the climate

and projecting climate change. Climate refers to the average of weather conditions.
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It varies on timescales ranging from seasonal to centennial. Climate models use quan-

titative methods to simulate the interactions between the ocean, the atmosphere, the

land, the ice, and changes in the Earth’s energy balance resulting from volcanic erup-

tions and variations in the sun’s intensity. A minimal GCM consists of a dynamical

core that relates material properties such as temperature to dynamical properties

such as pressure and velocity. This thesis focuses on the dynamical core component

of the GCMs.

Like all kinds of numerical simulations, the equations of motion are discretized

in GCMs, and discretization introduces errors. The precision of the discretization in

GCMs is primarily determined or limited by computational power. Global climate

is produced through a variety of processes and interactions that operate on a wide

range of scales, including molecular, regional, continental and global. Changes in

climate occur from physical interactions that take place on any or all of these scales.

The changes, and the resulting weather patterns, can occur nearly instantaneously

or they can take decades or millennia to develop. Unfortunately, the computers and

programs that run the GCMs are limited to gross representations of the geographic,

geologic and atmospheric details that they use to run climate simulations. Thus, many

small-scale features, such as a shift in the prevailing winds or unusually dry surface

conditions due to increased evaporation from forest fires and high winds cannot be

properly resolved, but must be represented by empirical parameterizations.

Since it is almost impossible to represent physical processes in the atmosphere of

all scales in GCMs, the dynamical core of GCMs is engineered to satisfy a delicate

balance between numerical stability, an accurate representation of the equations of

motion, and computational cost. Over the years, the range of scales of atmospheric

motions that could be simulated with proper resolution has been expanding with

the increasing speed and memory of supercomputers. The development of dynamical

cores in GCMs during the past 50 years is also a history of designing the most suitable

2



numerical methods to simulate atmospheric flows of the scales corresponding to the

available computer power.

1.2 A brief history of the development of numerical weather

prediction

Hundreds of algorithms for numerical modeling have been developed during the

past 50 years. It is not practical to cover every aspect of the development of numerical

weather prediction in this section. We target instead the most important milestones

during the years. A more complete introduction written by Spencer Weart could be

found online from: http://www.aip.org/history/climate/GCM.htm.

We use the word “simulate” to indicate that we use the computer to solve nu-

merically the systems of differential equations derived from the basic laws of physics,

fluid motions, and chemistry. However, the idea of predicting the weather was pre-

sented far before the introduction of the computer. Vilhelm Bjerknes suggested the

possibility of deterministic weather prediction as early as 1904 (Gramelsberger , 2009).

Around the time of the First World War, Lewis Richardson actually attempted to

produce such a forecast by manually integrating a finite-difference approximation to

the equations governing atmospheric motion (Richardson, 1922). Unfortunately, his

calculations did not yield a reasonable forecast. Moreover, the human labor required

to obtain this disappointing result was so great that subsequent attempts at determin-

istic weather prediction had to await the introduction of a high-speed computational

aid. The first computer-generated weather forecast was conducted by a team of re-

searchers under the direction of Jule Charney and John von Neumann at the Institute

for Advanced Study, at Princeton, from the first general-purpose electronic computer,

the ENIAC (Electronic Numerical Integrator and Calculator) (Charney et al., 1950).

This computer-generated one-day weather forecast was surprisingly good, and this

3



success led to the rapid growth of a new meteorological sub-discipline, “numerical

weather prediction”.

When Jule Charney was developing the first computer-generated weather fore-

cast, he used Richardson’s equations as the starting-point. However, Charney had to

simplify them to run large-scale calculations in weeks rather than centuries. Some

unwanted solutions, such as the sound waves, are filtered out. Charney’s model was

a regional model. They divided the atmosphere over North America into 270 grid

points with grid spacing of roughly 700 km, and used a time step of approximately 3

hours. The simulation was purely in 2D. The calculation time for a 24-hour forecast

was about 24 hours.

Inspired by Charney’s work, a meteorology group at the University of Stockholm

started delivering forecasts to the Royal Swedish Air Force Weather Service in Decem-

ber 1964. The American Weather Bureau and units also established a Joint Numerical

Weather Prediction Unit to issue real-time forecasts in advance of the weather. With

limited computer power available, the teams had to simplify the full “primitive equa-

tions” of Bjerknes and Richardson. These models, like Charney’s, are all regional

models, and could give fairly good forecasts up to three days ahead.

Norman Phillips at Princeton University developed the first atmospheric general

circulation model in 1955 (Phillips , 1956). Phillips had developed improved equations

for a two-layer atmosphere modeled circulation on a cylinder of 17 cells high and 16

in circumference. The calculations developed a plausible jet stream and the evolution

of a realistic-looking weather disturbance over as long as a month.

In 1958, Joseph Smagorinsky at the U.S. Weather Bureau invited Syukuro Man-

abe to join his lab to create a general circulation model of the entire three-dimensional

global atmosphere. By 1965, Manabe and Smagorinsky’s group had built a reason-

ably complete three-dimensional global model (Manabe et al., 1965). As computer

power grew, this model could directly solve the primitive equations. During the same
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period of time, Yale Mintz at the University of California at Los Angeles (UCLA) re-

cruited Akio Arakawa to develop another general circulation model. Their model also

performed on an entire globe. But unlike the Manabe model, their work incorporated

realistic orography using a two-layer model. The Mintz-Arakawa and Smagorinsky-

Manabe models were the best models during 1950s and early 1960s. However, in order

to improve the models so that they could be solved within a few weeks, computers

that were ten or even a hundred times more powerful were needed.

The early development of the algorithms for solving the primitive equations in

the GCMs proceeded by dividing the planet’s surface into a grid of elements. With

increasing computer power, a wider range of the scale of fluid motions could be solved

using smaller grid elements. However, the grids were based on the natural choice of

latitudes and longitudes. Near the Earth’s poles, the meridians converge in a point

and the mathematics gets difficult. In the 1970s, the equations of motion were re-

formulated in the forms of spherical harmonics, which got around the trouble of the

pole problems. This spectral method simplified many of the computations but re-

quired much faster computers. Nonetheless, the spectral transform technique had

many advantages, such as a high degree of accuracy, and it became a very popular

method in the GCM community and is still in use in models today. However, the

spectral methods were based on Fourier transforms, and had some problems when

discontinuity existed in the solution. One problem is that the monotonicity and pos-

itivity are not guaranteed for the flow variables. Significant spurious overshoots and

undershoots may result in negative tracer concentrations. Another problem is the so-

called “Gibbs ringing” when solutions are not smooth. High-frequency waves must be

explicitly damped. Finally, spectral methods require Fourier transforms of the global

range. The calculations of the Fourier transforms are not easily decomposed into

small calculating units. Thus modern parallel supercomputing architectures would

not work efficiently with spectral methods.
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In 1987, Richard Rood compared many algorithms for modeling advection pro-

cesses, including spectral methods (Rood , 1987). Although Spectral and pseudo-

spectral techniques consistently provided the highest degree of accuracy, monotonic-

ity was poorly handled. However, positive definite solutions and monotonicity are

perfectly handled by the finite volume methods, while high accuracy could also be

maintained. At that time, finite volume methods were very popular in other fields

such as aerospace and astrophysics, which often dealt with high-speed flows with

strong discontinuities. The finite volume method was first introduced by Godunov in

1959 (Godunov , 1959) and later extended by Bram van Leer in a series of papers (van

Leer et al., 1973; van Leer , 1974; Van Leer , 1977; van Leer , 1979) which extending

Godunov’s method to second-order accuracy. Colella and Woodward (1984) devel-

oped the piecewise-parabolic method (PPM), which achieved a third-order accurate

finite volume method. Different from the spectral methods, finite-volume methods

are similar to finite difference methods, which calculate values on a meshed geome-

try. The advection of the value in one grid only requires information from limited

number of neighboring grids, which is useful when using the modern parallel super-

computer architectures. Besides, conservation, which is important in many aspects

of both climate models and weather prediction models (Thuburn, 2008), is preserved

out-of-the-box in finite volume methods.

Guided by Rood’s work, a finite-volume dynamic core was developed by Shian-

Jiann Lin (Lin and Rood , 1996, 1997; Lin, 2004), which used a staggered grid and

the third-order PPM reconstruction procedure in a vertical Lagrangian coordinate.

This dynamical core suited perfectly with the distributed memory parallel computing

architecture, and is perhaps one of the most well-know dynamic cores today. Today, it

is still well used in many major GCMs such as the Geophysical Fluid Dynamics Lab-

oratory (GFDL) GCM, NASA’s Goddard Earth Observing System Model (GEOS)

and NCAR’s Community Atmosphere Model (CAM).
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1.3 New algorithm challenges for the dynamical core in GCMs

The smallest scale of atmospheric motions that can be resolved in an Atmospheric

numerical model is determined by the smallest grid spacing used in the models. The

grid spacing in the first numerical model on a computer developed by Charney was

about 700 km, which could resolve planetary waves. With the exponential increase in

computational power, the massively parallel supercomputing system, which consists

of thousands of interconnected processors, allows us to run our models with resolutions

on the order of 10 km. Many small scale atmospheric flows such as synoptic cyclones

and hurricanes can be simulated in today’s models. However, since global climate

is determined by the nonlinear integration of a variety of processes and interactions

that include a wide range of scales, the finest resolution a GCM could provide is never

sufficient to explicitly represent all processes. Nonetheless, with the finer resolution

available in today’s GCMs, we can improve the algorithms in the GCMs by replacing

some parameterizations, which were approximations since they were under-resolved

features, with the equations that describe the underlying physical processes.

However, not all the parameterizations of the unresolved-scale processes served at

a satisfactory level. One of the most uncertain aspects of today’s climate modeling

are the feedbacks involving clouds. The cloud related processes, such as cloud/aerosol

interactions, caused the biggest uncertainty in the calculations of the climate change.

Obviously, GCMs were not the only way to understand the clouds. Regional Cloud

Resolving Models (CRMs) could use much smaller time steps and finer resolutions

to explicitly simulate the underlying physics equations and provide us with a better

understanding of the cloud processes and the cloud related feedbacks. The results

simulated from the CRMs could serve as a reference to judge the quality of the

results generated by the GCMs. But, implementing GCMs at the resolution level of

the regional CRMs is far beyond computing capability available today.

One promising way for allowing clouds to be followed within global models is the
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so-called “super-parameterization” (Khairoutdinov and Randall , 2001; Khairoutdinov

et al., 2005; Wang et al., 2011). Super-parameterizations insert a two-dimensional

slice of a higher resolution model inside each bigger GCM box. Though the embedded

model is very rough and does not really resolve clouds as in full CRMs, it does use

appropriate fundamental equations to describe basic cloud motions rather than the

simpler formulations used in traditional GCMs. Super-parameterizations are used as

the basis for increasing the accuracy of climate models that can be run more efficiently

to simulate climate at a lower cost than a true global CRM, but more realistically than

a traditional climate model. But even for these models aerosol/cloud interactions may

be poorly resolved if grid resolutions are limited to those above 250 m.

Another alternative approach to better represent clouds in climate models in a

computationally efficient and accurate manner is to develop methods that use non-

uniform grids to resolve the 3-dimensional flow field and physics in different regions

within a climate model. Substantial savings in computer time could result if a code

had the capability to resolve water species transport and removal as well as precipi-

tation development on the scales relevant to cloud formation in the local fine grids.

The possible savings in computer time becomes even more compelling when addi-

tional trace species such as aerosols are incorporated into the climate model. This

is because some of the most important removal processes for trace species are those

involving precipitation.

In our work, the finite volume dynamical core was adopted to develop the means to

solve the problem of resolving small-scaled processes such as cloud formation within a

larger scale GCM. Our work supports the development of future climate models based

on high performance, parallel computing paradigms to address questions related to

cloud-aerosol interactions. Our aim is to refine the model resolution on a global

scale in regions of interest to the solution of the aerosol/cloud interaction problem.

This requires that non-hydrostatic regions be embedded within a hydrostatic model
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(Côté et al., 1998; Yeh et al., 2002; Lee and Penner , 2010). Previous work explored

adaptive grid techniques in a Lagrangian hydrostatic model (Jablonowski et al., 2006).

Algorithms to embed non-hydrostatic regions into the hydrostatic model need to be

developed.

1.4 Hydrostatic and non-hydrostatic models

As discussed above, the flow motions that are explicitly resolved in atmospheric

models are highly dependent on the grid spacing in the model. Most of the current

general circulation models resolve processes whose horizontal scale is significantly

larger than the vertical scale. Thus, vertical acceleration is negligible compared to

vertical pressure gradients and vertical buoyancy forces, and these models are based

on equations that assume hydrostatic equilibrium. Hydrostatic models have been

successfully applied with horizontal resolutions as small as about 10 km, resolving

some mesoscale circulations. Global and regional weather prediction models have

traditionally been hydrostatic models.

Pure hydrostatic flows are highly stratified. In the hydrostatic primitive equations,

which are formulated using a vertical Lagragian coordinate system, both left-hand-

side and right-hand-side of the vertical momentum equation vanish. Thus, the 3D

governing equations are reduced to a 2D form. The vertical Lagrangian coordinate was

first formulated in Starr (1945), and was reviewed and discussed in Kasahara (1974).

The Lin-Rood finite volume dynamic core took full advantage of the vertical La-

grangian coordinate, and constructed a terrain-following Lagrangian control-volume

coordinate system. To close the coordinate system, the model top (at a prescribed

constant pressure) is also assumed to be a Lagrangian surface. With the help of the

vertical Lagrangian coordinate, the time step is not constrained by the small vertical

grid sizes.

However, on the other hand, the embedded regions that are needed in order to
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resolve cloud-scale processes in a GCM is of much smaller grid spacing in both hor-

izontal and vertical directions. Thus, the hydrostatic assumption is not valid in the

embedded regions. However, discretizing the non-hydrostatic formulations in a verti-

cal Lagrangian coordinate is not straightforward based on the existing discretization

of the hydrostatic formulations. The Lin-Rood hydrostatic finite volume dynamical

core was based on a two-step advection scheme of a staggered Arakawa C- and D-grid

approach (Arakawa and Lamb, 1977), which was originally designed for 2D appli-

cations. Additionally, when a wave propagates through a resolution discontinuity,

staggered schemes would cause more reflections compared to non-staggered schemes

(Ullrich and Jablonowski , 2011), which is a big disadvantage for non-hydrostatic em-

bedded models. On the other hand, when solving the full set of non-hydrostatic

primitive equations in non-staggered grids, the fluxes at the finite-volume interfaces

are usually calculated using a Riemann solver in order to provide stability for the

numerical schemes. Unfortunately, the traditional Riemann solvers were mostly de-

veloped in field, which often dealt with high-speed flows and strong discontinuities.

The computational costs of implementing the Riemann solvers in a non-staggered-grid

system would be significantly larger than solutions based on the Lin-Rood hydrostatic

staggered-grid system.

Fortunately, although the primitive equations governing the atmospheric flows are

often nonlinear, their solutions almost never develop energetic shocks or discontinu-

ities. A Riemann solver to be implemented in atmospheric models does not need to

deal with supersonic flows or strong discontinuities, and it is applicable to assume

that the temperature is a constant at the finite volume interfaces where the fluxes

are to be calculated. In this thesis, we will build a computationally efficient approx-

imate Riemann solver based on these assumptions, and implement this technique in

a non-staggered grid non-hydrostatic model using a Lagrangian vertical coordinate.
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1.5 An introduction of models with non-uniform grids

The non-uniform grids with increased resolution over areas of interest have been

implemented in regional models for decades (Fox-Rabinovitz et al., 1997). Methods

that use stretched grids, nested grids and adaptive mesh refinement (AMR) methods

have been discussed.

Grid nesting is a kind of non-conformal mesh set up. It is very common in

mesoscale and limited-area modeling but is not often used in global modeling. In

models that implement a nested grid, a smaller area, where small-scale features are

better resolved, is covered using a smaller grid spacing, while its “parent” or the rest

of the domain is of coarse grid. The boundary conditions for the nested grid are

then initialized from coarse-grid data using refinement techniques at the beginning of

each time step. The nested-grid data can also feed back onto the coarse grid through

“two-way” nesting, in which the boundary conditions of the coarse grid are formed

from nested-grid data.

Grid stretching is a kind of conformal mesh. It uses a smooth mapping between

the original grid and the desired mesh. It is less commonly used than grid nesting,

but holds some advantages over nesting. The primary benefit of a stretched grid is

that the grid resolution is smoothly changed, so there are no clear boundaries between

the coarse grid and refined grid. Thus no reflection is caused due to an abrupt change

of grid resolution.

Adaptive mesh refinement refers to the addition of grid elements to regions, where

small-scale features are explicitly simulated with sufficient resolution. The goal of

adaptive mesh refinement is not to move the grid, rather to refine the grid in advance

of any important physical course that needs additional grid resolution. It allows the

grid to change over the process of the simulation.
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1.6 Outline of the thesis

The goal of this thesis is to design an efficient numerical scheme for small-scale

non-hydrostatic models. Since the purpose of this exploration is to ultimately be able

to join hydrostatic and non-hydrostatic formulations as grid resolution is decreased,

this non-hydrostatic approach should follow some basic design features of the existing

finite volume hydrostatic dynamic core, such as implementing a vertical Lagrangian

coordinate.

This thesis is organized as follows. In Chapter II, we introduce the non-staggered-

grid-based 2-dimensional finite volume dynamical model using a vertical Lagrangian

coordinate. In order to take advantage of the low-speed and smooth atmospheric

flow, we also developed a Low Mach number Approximate Riemann Solver (LMARS)

to calculate the fluxes and velocity at the interface of the control volumes. This nu-

merical scheme is available with both hydrostatic and non-hydrostatic formulations.

Chapter III is a natural extension of Chapter II, and will discuss how to connect the

computational blocks of hydrostatic and non-hydrostatic formulations. The compu-

tational blocks are 2D (x-z) and aligned in the horizontal direction. The quality of

the numerical algorithm is judged by observing reflections at the interface between

different models. Additionally, joining blocks with different horizontal grid spacing,

which is denoted as two-dimensional horizontal nesting, will also be tested. However,

joining horizontally aligned blocks with different vertical grid spacing, which is de-

noted as vertical nesting, is a much more complex problem. Chapter IV will take a

first step towards this application by examining the existing techniques that are used

in dynamical cores. A “stationary rule”, which indicates that no motion should be

produced if a model implements the vertical nesting in a statically initialized atmo-

sphere, is introduced. In the vertical nesting algorithms, vertical grid refinement and

coarsening would be performed at the boundaries, which connect blocks of different

vertical grid spacing. The polynomial interpolation based refinement will break the
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stationary rule. In order to keep the refinement from breaking the stationary rule,

an iteration-based vertical interpolation technique is introduced. Finally, conclusions

and future work are presented in Chapter V. A substantial portion of some validation

and detailed tests to the non-staggered finite volume non-hydrostatic scheme can be

found in Appendix A. A polynomial interpolation of Newton’s form is explained for

reference in Appendix B.
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CHAPTER II

A control-volume model of the compressible Euler

equations with a vertical Lagrangian Coordinate

2.1 Introduction

Most of the current global climate models are based on equations that assume

hydrostatic equilibrium. These models resolve processes whose horizontal scale is sig-

nificantly larger than the vertical scale. However, if a global model aims to resolve

motions whose horizontal and vertical scales are similar, the model must also include

non-hydrostatic effects (Daley , 1988). One difficulty with the non-hydrostatic equa-

tions is that the fast sound waves, generated by the model’s equations, can travel

in all directions, vertically and horizontally, and thus, require special computational

approaches, e.g. implicit methods (Skamarock and Klemp, 1992) and/or small time

steps in explicit time stepping schemes. Therefore, the main question is how to for-

mulate an efficient numerical scheme for small-scale non-hydrostatic models, which

has the ability to correctly and stably represent the important small atmospheric

interactions at the model’s resolution limits (Smolarkiewicz et al., 2001; Skamarock

and Klemp, 2008).

A large number of hydrostatic and non-hydrostatic models use pressure or pressure-

based terrain-following sigma or hybrid coordinates as the vertical coordinate (Phillips ,
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1956; Smagorinsky , 1963; Kasahara, 1974; Bates et al., 1993; Miller and Pearce, 1974;

Miller and White, 1984; Xue and Thorpe, 1991; Juang , 1992; Skamarock and Klemp,

2008). Laprise (1992) suggested that hydrostatic-pressure coordinates could be used

advantageously in non-hydrostatic atmospheric models. Since the mass in the layers

between adjacent coordinate surfaces is proportional to the increment in the vertical

coordinate across the layer, this coordinate is often referred to as a mass coordinate.

A “floating” mass coordinate, which does not allow mass to flow across vertical lay-

ers, is called a vertical Lagrangian coordinate. A few hydrostatic climate models

have been developed using this formulation, including the NCAR Community Atmo-

sphere Model (CAM) version 4 and 5 (Neale et al., 2010) and NOAA Geophysical

Fluid Dynamics Laboratory (GFDL) models (Putman and Lin, 2009; Donner et al.,

2011) based on the finite-volume dynamical core by Lin (2004). A major advantage

of applying a vertical Lagrangian coordinate is that the 3D motion can be reformu-

lated into pure horizontal 2D flow within the floating Lagrangian layers, with the

resulting system closely resembling that of the shallow water system (Lin, 2004).

Developing a non-hydrostatic model based on a vertical Lagrangian coordinate could

allow the dynamics component of General Circulation Models (GCMs) to switch be-

tween different representations with hydrostatic dynamics in some regions and non-

hydrostatic dynamics in other regions where higher resolution is desired. Klemp et al.

(2007) implemented a vertical mass coordinate in a non-hydrostatic model. However,

their vertical mass coordinate was not implemented using a Lagrangian formulation.

The Geophysical Fluid Dynamics Laboratory Finite Volume Cubed Sphere (GFDL

FVcubed) model (Donner et al., 2011) which is based on a vertical Lagrangian coor-

dinate has a nonhydrostatic option. However, an explicit divergence damping term

was required to maintain its stability. Numerical damping in atmospheric modeling in

general, whether accomplished implicitly through the numerical scheme or explicitly

through the addition of specific terms to the equations, should only be large enough
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to maintain a smooth and stable integration.

In this paper we present the development of a 2D (x-z) non-hydrostatic dynam-

ical model based on the use of a generalized Lagrangian vertical coordinate, which

was also adopted in the well-known Lin-Rood hydrostatic dynamical core (Lin and

Rood , 1996, 1997; Lin, 2004). The multidimensional Flux-Form Semi-Lagrangian

(FFSL) Lin-Rood dynamical core simulates the conservative, monotonic advection of

the prognostic variables, and uses a floating vertically Lagrangian finite-volume (FV)

representation of the model equations with a conservative remapping algorithm in

the vertical direction. The Lagrangian coordinate requires periodic remapping to a

reference grid in order to avoid severe deformation of the vertical mesh which would

occur, for example, if layers with overlapping interfaces develop. The horizontal nu-

merical algorithm of the Lin-Rood dynamical core is based on a staggered C-D grid

approach (Arakawa and Lamb, 1977). This FFSL FV algorithm has been adopted in

several atmospheric GCMs (e.g., CAM, GFDL).

The development of a global non-hydrostatic climate model represents a compu-

tational challenge. However, it has become feasible to embed non-hydrostatic regions

within a hydrostatic model (Yeh et al., 2002). While an FV model formulation based

on the flux form of the equations is favorable for maintaining mass and momentum

conservation when merging the hydrostatic and non-hydrostatic regions, grid stagger-

ing in a C-D fashion for the non-hydrostatic atmosphere may limit the ability of the

model to perform in a stable and accurate fashion (Skamarock , 2008; Ullrich et al.,

2010; Whitehead et al., 2011).

Here, we explore the use of a vertically Lagrangian nonhydrostatic model. The

purpose of this exploration is to ultimately be able to join hydrostatic and nonhy-

drostatic formulations as grid size is decreased. Because a large number of gen-

eral circulation models currently use a Lagrangian hydrostatic formulation, and our

previous work explored adaptive grid techniques in a Lagrangian hydrostatic model
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(Jablonowski et al., 2006), it is more straightforward and easy to do this using the

Lagrangian formulation in both models. This will hopefully lead to the ability to

seamlessly treat both hydrostatic and non-hydrostatic regimes and allow adaptive

mesh refinement using this framework. Here, we develop a method for solving the

2D (x-z) non-hydrostatic equations in Cartesian geometry using a finite-volume ap-

proach based on an unstaggered grid together with a generalized Lagrangian vertical

coordinate. We do not filter acoustic waves in order to minimize any added numerical

diffusion caused by filtering. Since the non-hydrostatic equations are nonlinear, no

analytical solution can be used to validate the accuracy of our results. Thus we also

applied our scheme using an Eulerian coordinate system to act as a reference for com-

parison purposes. We test the method based on both an Eulerian and a Lagrangian

formulation, using the 2D warm bubble tests of Robert (1993) and propagating gravity

waves.

Several advantages of the current scheme are:

1. No divergence damping is needed;

2. The use of an unstaggered grid simplifies the numerical representation of the

advection equations;

3. We developed a fast method for evaluating the fluxes using a new approximate

Riemann solver for low speed flow;

4. A Lagrangian vertical coordinate was introduced to facilitate the switching

between a Lagrangian hydrostatic and non-hydrostatic treatment, since the variables

in both treatments share the same definition. This approach allows us to easily join

the efficient Lagrangian hydrostatic approach with the nonhydrostatic approach in

the GCM;

Some advantages inherited from the finite volume framework:

5. Its built-in physical conservation laws;

6. Free of Gibbs oscillations.
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One disadvantage of our current scheme is that we implement a vertically-explicit

scheme. In weather or climate models where the ratio of horizontal to vertical

grid spacing might be of order 10 to 100, it might be more efficient to implement

a vertically-implicit scheme in order to allow longer time steps. However, in this

work, in order to examine the numerical properties of our non-staggered, Riemann

solver-based algorithm, we kept the numerical treatments simple and applied them

to a problem with similar vertical and horizontal grid spacing. We also do not use a

limiter for the reconstruction of the conservative variables profiles in order to avoid

the added diffusion when limiters are adopted. This approach represents a first step

towards a more generally applicable formulation.

The paper is organized as follows: in Section 2.2 we present a 2D (x-z) version

of the fully compressible Euler equations. Section 2.3 introduces the numerical tech-

nique for their solution. In Section 2.4 the results of the model tests are discussed.

Section 2.5 presents the conclusions. We present a converged solution for the Eule-

rian and Lagrangian formations at high resolution in the appendix, section A.1, and

examine which formulation is more accurate formulation at low spatial resolution.

This test is used to demostrate that the Eulerian solution should be considered the

more accurate of the two formulations. Section A.2 of the appendix discusses the

order of accuracy of our model and shows our model is fourth-order accurate in one-

dimensional formulations and second-order accurate in two-dimensional formulations.

Section A.3 shows that at shorter time scales, prior to the development of a significant

amount of turbulence in our Guassian bubble tests, and in our gravity wave tests,

the Eulerian and Lagrangian formulations without the addition of diffusion produce

similar results.
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2.2 Model Equations

In order to be able to embed our non-hydrostatic model into a hydrostatic model

with a vertical Lagrangian coordinate, we focus on developing the non-hydrostatic

model with a similar vertical coordinate. However, the Eulerian vertical coordinate

can also be used based on a natural extension of the technique we introduce. Thus,

we also include some results using the non-hydrostatic model with an Eulerian coordi-

nate configuration. We introduce the control equations using the vertical Lagrangian

coordinate in section 2.2.1, and the equations using the Eulerian coordinate in sec-

tion 2.2.2.

2.2.1 The finite volume equations in a vertical Lagrangian coordinate

2.2.1.1 The non-hydrostatic formulation

The model equations are the fully compressible 2D (x, z) Euler conservation equa-

tions in flux form with a vertical Lagrangian coordinate. Because of the latter, the

model layers are material impenetrable surfaces and the bottom surface is terrain

following. This eliminates the need for the vertical advection terms and renders the

equations one-dimensional. Instead, vertical transport is represented by the remap-

ping mechanism.

The mass conservation law is written in the form:

∂π

∂t
+

∂πu

∂x
= 0 (2.1)

where π is interpreted as a pseudo-density, which is the density multiplied by the

vertical geopotential gradient within the Lagrangian FV, and has the units of pressure.

u is the horizontal wind. π is defined as:
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π =
∂p∗

∂s
= −ρg

∂z

∂s
= −ρ

∂Φ

∂s
(2.2)

where ρ, g, Φ, p∗ are the nonhydrostatic density, gravity, geopotential, and hydrostatic

pressure respectively, and s is a generalized vertical coordinate which is the integer

index of each of the layer interfaces, numbered in the top-down direction. ∂/∂s thus

denotes the difference of the value of any parameter between two Lagrangian layer

interfaces.

The horizontal momentum equation is:

∂πu

∂t
+

∂

∂x
(πuu+Ψ) = − ∂

∂s

(

p
∂Φ

∂x

)

(2.3)

where Ψ is defined as the nonhydrostatic pressure p multiplied by the vertical geopo-

tential gradient:

Ψ = −p
∂Φ

∂s
(2.4)

Since π is interpreted as a pseudo-density, the left hand side of equation (2.3) is

consistent with the general 1D flux form momentum equation.

The vertical momentum equation is:

∂πw

∂t
+

∂πwu

∂x
= g

∂p′

∂s
(2.5)

where w is the vertical velocity, p′ = p − p∗ is the deviation from the hydrostatic

20



pressure, and ∂p′/∂s = ∂p/∂s−π is the perturbation of the pressure from hydrostatic

balance between layers.

The first law of thermodynamics provides the conservation of the potential tem-

perature equation:

∂Θ

∂t
+

∂Θu

∂x
= 0 (2.6)

where Θ = πθ/pκ0 , is a scaled pseudo-potential temperature density with θ the poten-

tial temperature, p0 a constant reference pressure at the surface with p0 = 1000 hPa

and κ the ratio of the gas constant Rd and the heat capacity at constant pressure cp

for dry air.

In these equations, the variables π, πu, πw and Θ are treated as prognostic vari-

ables. Two additional equations are needed to predict the full set of non-hydrostatic

variables, and we add equations for the geopotential Φ and the nonhydrostatic pres-

sure p. The geopotential advection equation comes from the definition of the vertical

velocity in z-coordinates:

∂Φ

∂t
+ u

∂Φ

∂x
= wg (2.7)

The equation for the non-hydrostatic pressure is derived from the equation of

state:

p =

(

− RdΘ

∂Φ/∂s

)γ

(2.8)

where γ = 1/(1 − κ) Since the index s is numbered in top-down direction, ∂Φ/∂s is
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negative.

Equations (2.1), (2.3), and (2.5) - (2.8) define our non-hydrostatic system.

2.2.1.2 The hydrostatic formulation

In the hydrostatic system the vertical velocity w is not treated as a prognostic

variable. Our system of equations is fully consistent with a hydrostatic system if we

add the assumption that p′ = 0, i. e. p is simply the hydrostatic pressure p∗. In

addition, equation (2.5) is not used, and the vertical velocity may be diagnostically

derived from equation (2.7). The pressure p∗ at the layer interfaces is calculated by

(for level index k > 1):

(p∗I)k = p∗
k− 1

2
= p∗top +

n=k−1
∑

n=1

πn (2.9)

where (p∗I)k=1 = p∗
k= 1

2

= p∗top is the pressure at the model top. The layer mean pressure

p∗ is calculated by:

p∗ =

(

κ
∂p∗I/∂s

∂p∗I
κ/∂s

)γ

(2.10)

and the equation of state (2.8) is modified to calculate geopotential:

∂Φ

∂s
= −cpΘ

∂p∗I
κ/∂s

∂p∗I/∂s
(2.11)

Equations (2.9), (2.10) and (2.11) are the auxiliary equations needed to calculate

Ψ and −∂ (p∂Φ/∂x) /∂s in equation (2.3). Thus, equations (2.1), (2.3), (2.6) (2.9),

(2.10) and (2.11) complete the hydrostatic system.
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2.2.2 The finite volume equations in an Eulerian coordinate system

The layers in the Eulerian coordinate are stationary, so that vertical fluxes across

layer boundaries take place at the layer interfaces. The prognostic variables in the

Eulerian coordinate are ρ, ρu, ρw, Θ̃, with the scaled potential temperature density

Θ̃ = ρθ/pκ0 , and the corresponding set of equations are:

∂ρ

∂t
+

∂ρu

∂x
+

∂ρw

∂z
= 0 (2.12)

∂ρu

∂t
+

∂

∂x
(ρuu+ p) +

∂ρuw

∂z
= 0 (2.13)

∂ρw

∂t
+

∂ρwu

∂x
+

∂

∂z
(ρww + p′) = 0 (2.14)

∂Θ̃

∂t
+

∂Θ̃u

∂x
+

∂Θ̃w

∂z
= 0 (2.15)

p =
(

RdΘ̃
)γ

(2.16)

Note that the position of the layers are prescribed, so there is no equation for the

geopotential.

2.3 Solution Technique

In this section, we mainly discuss the discretization technique using the vertical

Lagrangian coordinate configuration. The discretization using the Eulerian coordi-

nate system is analogous.

Our dynamical core consists of six equations (2.1), (2.3), (2.5), (2.6), (2.7) and

(2.8) for six variables: Q = (π, u, w,Θ, p,Φ). Since Φ is not a conservative variable,

equation (2.7) is updated using the advective form. We use the flux form for the

equations (2.1), (2.3), (2.5) and (2.6), which has the general form:
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∂R

∂t
+

∂F

∂x
=

∂S

∂s
(2.17)

where R = (π, πu, πw,Θ) is a vector of the π-weighted variables, F = (πu, πuu +

Ψ, πwu,Θu) is the flux vector and S = (0,−p∂Φ/∂x, gp′, 0) is a source vector. The

use of the equations in the flux form assures conservation of mass, momentum, and

potential temperature.

In our numerical representation of the model equations, we use an unstaggered

grid and place the variables π, πu , πw , Θ , p and ∂Φ/∂s at the center of the cell (the

A grid) so that they represent the volume mean values of these variables. The volume

mean values of u and w are calculated as: u = (πu)/π and w = (πw)/π respectively.

An upwind method for determining the flux is used. The flux vector F is placed

at the FV horizontal interfaces and is split according to:

F =
(

πbu 1
2
, (πu)bu 1

2
+Ψ 1

2
, (πw)bu 1

2
,Θbu 1

2

)

= Rbu 1
2
+Ψ 1

2
(0, 1, 0, 0) (2.18)

with u 1
2
as the interface velocity and the index b as an upwind indicator: b = l,

if u 1
2
> 0, and the scalar advection terms are chosen from the left (l) side of the

interface; and b = r, if u 1
2
6 0, and the scalar advection terms are chosen from the

right (r) side of the interface. Lin (2004) used a similar form to transport moisture

in a general circulation model, with the horizontal velocity defined on the interface

of the FV using a C-D grid and achieved a second-order overall accuracy. However,

in a non-hydrostatic model, the vertical velocity needs to be taken into account, and

the expansion of the staggered grid approach to three dimensions in the treatment

of vertical velocity is not intuitive. Lin (2007) used an A-grid to treat the vertical

velocity. However, the use of a staggered grid for the horizontal velocity and an
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unstaggered grid for the vertical velocity introduces an inconsistency.

Liou (2006) invented an Advection Upstream Splitting Method (AUSM+-up) for

accurate flux calculations for all flow speeds. This method was also based on an

upwind method with the flux as presented in equation (2.18). Ullrich et al. (2010)

applied this method to a shallow water model and achieved 3rd- and 4th-order accu-

racy.

However, to make the AUSM+-up method suitable for all flow speeds (i.e. Mach

number M ∼ 1 and M >> 1), the calculation of the interface flux vector is relatively

complicated, and as a result, is computationally intensive. For most atmospheric

phenomena, the Mach number is small (M << 1) and it is acceptable to assume

the acoustic speed is locally constant. Thus, in order to achieve a computationally

economic scheme, we invented the Low Mach number Approximate Riemann Solver

(LMARS) to solve the system of equations (2.17) in the work described here. In the

following sections, we show that the LMARS method has a simple form, which saves a

substantial number of computational steps, but retains the accuracy of the AUSM+-

up method. Similar to the AUSM+-up method, the LMARS consists of two steps. For

the first step, the interface velocity u 1
2
and the pseudo-pressure Ψ 1

2
are calculated by

solving a Riemann problem. Note that in the Eulerian coordinate the pseudo-pressure

Ψ 1
2
is replaced by the real pressure p 1

2
. For the second step, the fluxes are updated

using equation (2.18). Rb can be acquired by any kind of interpolation scheme. As

an aside, the AUSM+-up method is slightly different in that it does not calculate the

interface velocity in the first step but calculates the interface mass flux instead. To

achieve low diffusivity, we use a conservative 5-point central polynomial interpolation

scheme. Here we provide the expression of the interface values of η, where η could be

velocity, pseudo-density or pseudo-pressure, etc., at the cell i, where i could be either

the horizontal or vertical index.
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ηi− 1
2
= − 1

20
ηi−2 +

9

20
ηi−1 +

47

60
ηi −

13

60
ηi+1 +

1

30
ηi+2 (2.19)

ηi+ 1
2
=

1

30
ηi−2 −

13

60
ηi−1 +

47

60
ηi +

9

20
ηi+1 −

1

20
ηi+2 (2.20)

On the horizontal boundaries, we have 4 “ghost cells”, which allow us to use

the expression above for boundary cells; however, we do not use “ghost cells” for

the vertical boundaries; thus, equations (2.19) and (2.20) cannot be applied at the

boundaries. Here we use the top boundary cells 1 and 2 as an example to describe

the top boundary condition; the 2 cells at the bottom boundary can be treated

analogously with reversing the index number.

We should point out that the interpolated profile of η by the polynomials is more

stable when it is evaluated near the middle of the cells, i. e. the 3rd cell’s control

volume interface values η2.5, η3.5 are evaluated using cells 1 to 5. However, if the

1st cell’s control volume interface values η0.5, η1.5 are evaluated using cells 1 to 5,

unpredictable behavior might appear. On the other hand, although a lower order

of accuracy of the interpolation scheme at the boundaries does not affect the overall

accuracy in the full domain, if cell 1 uses a uniform distribution of η, such that

η0.5 = η1 = η1.5, the numerical diffusion might be too large and it might mask or filter

out the waves at the boundaries. Conservatively, we use a central 3-point interpolation

for cell 2:

η1.5 =
1

3
η1 +

5

6
η2 −

1

6
η3 (2.21)

η2.5 = −1

6
η1 +

5

6
η2 +

1

3
η3 (2.22)

and a one-side interpolation for cell 1:
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η0.5 =
3

2
η1 −

1

2
η2 (2.23)

η1.5 =
1

2
η1 +

1

2
η2 (2.24)

This treatment is not the least diffusive, but it is more generally applicable.

We derive the LMARS for the vertical Lagrangian coordinate in sub-sections 2.3.1

and 2.3.2, provide the calculation using LMARS for the Eulerian coordinate and

some tuning techniques in section 2.3.3 and 2.3.4. The boundary conditions, time

integration and the remapping scheme are discussed in sections 2.3.5, 2.3.6 and 2.3.7.

2.3.1 Horizontal Riemann solver

In order to derive the interface flux vector F in the first step, we need u 1
2
and Ψ 1

2
.

When evaluating the fluxes at each cell face, only one flux vector at each cell face,

namely, the vector of normal fluxes is needed. The vector of normal fluxes can be

obtained by evaluating the normal speed u1/2 and the pseudo-pressure Ψ1/2 using a

local 1-dimensional form of the Euler equation. Equation (2.3) can be written in the

form of an advection-type equation, assuming a zero RHS (right hand side) for purely

horizontal flow:

∂u

∂t
+ u

∂u

∂x
= − 1

π

∂Ψ

∂x
(2.25)

Assuming a local isothermal condition, we used the gas pressure equation in the

form generally defined in compressible flow (Laprise, 1992):
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dp

dt
+ a2ρ

∂u

∂x
= 0 (2.26)

where a =
√

γp/ρ =
√

γΨ/π is the Eulerian speed of sound. Taking the total

derivative of equation (2.4) and using equations (2.26) and (2.2) we have:

∂Ψ

∂t
+ u

∂Ψ

∂x
= −a2π

∂u

∂x
(2.27)

Note that the equations (2.25) and (2.27) do not need to be solved using the

conservation form of the equations, since they are only used for deriving an expression

to calculate the values of u 1
2
and Ψ 1

2
on the interfaces of the FV (finite volume) cells

in the x-direction. In general, these two equations can be represented as:

Ut + AUx = 0, (2.28)

where U =







u 1
2

Ψ 1
2






; and A =







u 1
2

1/π

a2π u 1
2






(2.29)

Solving this system, AU = λU, for its eigenvalues, we find that λ1,2 = u 1
2
∓ a.

We assume that we have a discontinuity at the interface of two FV cells, which

comes from the interpolation of u and Ψ in different FV cells. Using the interpolation

scheme given in equations (2.19), (2.20), we define the pair of the variables u and Ψ

to the left of the discontinuity as Ul = [ul,Ψl], to the right of it as Ur = [ur,Ψr],

and at the interface as U =
[

u 1
2
,Ψ 1

2

]

. Then we use the Rankine-Hugoniot “jump”

conditions (Hirsh, 2007) to write:
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λ1 (U−Ul) = A (U−Ul) and λ2 (U−Ur) = A (U−Ur) (2.30)

For λ1 = u 1
2
− a we have:







u 1
2

1/π

a2π u 1
2













u 1
2
− ul

Ψ 1
2
−Ψl






=

(

u 1
2
− a

)







u 1
2
− ul

Ψ 1
2
−Ψl







or Ψ 1
2
+ πau 1

2
= Ψl + πaul (2.31)

Similarly, for λ2 = u 1
2
+ a :







u 1
2

1/π

a2π u 1
2













u 1
2
− ur

Ψ 1
2
−Ψr






=

(

u 1
2
+ a

)







u 1
2
− ur

Ψ 1
2
−Ψr







or Ψ 1
2
− πau 1

2
= Ψr − πaur (2.32)

Rearranging equations (2.31) and (2.32), we obtain the values of velocity u and

Ψ at interfaces of the cells:

Ψ 1
2
=

1

2
(Ψr +Ψl)−

πa

2
(ur − ul) (2.33)

u 1
2
=

1

2
(ur + ul)−

1

2πa
(Ψr −Ψl) (2.34)

The flux F is updated in the second step according to equation (2.18).
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2.3.2 Vertical Riemann solver

To fully solve the system of equations represented by equation (2.17), we need

to calculate the source vector S = (0,− (p∂Φ/∂x) 1
2
, gp′1

2

, 0). The source terms are

discretized in the vertical direction, and the discretization terms −p∂Φ/∂x and gp′

are defined at the layer interfaces. Here, the subscript 1/2 denotes to the value at

the vertical layer interfaces. Thus, we need to find the values of p′1
2

, w 1
2
and Φ 1

2
at

the vertical interfaces of the Lagrangian layers. Although there is no vertical flux

across the Lagrangian coordinate, we can still create a Riemann problem to derive an

expression to calculate the values of w 1
2
and p′1

2

at the vertical interfaces by performing

the first step of LMARS, so that Φ 1
2
can be updated using equation (2.7).

Similar to the treatment for the horizontal flux evaluation, the local normal ve-

locity and pressure at the control volume interface can be evaluated using the 1-

dimensional Euler equations. We start by differentiating the state equation (2.8)

along the time axis. Then taking into account equations (2.1) and (2.6), where, for

pure vertical flow, π and Θ are both constant, we derive:

∂p

∂t
= γρp

∂w/∂s

∂m/∂s
(2.35)

where ∂m/∂s = −ρ∂z/∂s. Using the definition p′ = p − p∗, we assume ∂p∗/∂t = 0.

This is valid because mass is conserved in each control volume, and we can write:

∂p′

∂t
− C2 ∂w/∂s

∂m/∂s
= 0; or

∂p′

∂t
− C2 ∂w

∂m
= 0 (2.36)

where C =
√
γρp is the sound speed along the m axis in the Lagrangian vertical

coordinate. From equation (2.1) and (2.5) and considering only vertical movements,
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(∂/∂x = 0), we obtain:

∂w

∂t
− ∂p′/∂s

∂m/∂s
= 0; or

∂w

∂t
− ∂p′

∂m
= 0; (2.37)

Equation (2.36) and (2.37) will be used to solve the Riemann problem at the

interface of the Lagrangian layers. Analogous to the horizontal case, we have:

Ut + AUm = 0, (2.38)

where U =







w

p′






; and A =







0 −1

−C2 0






(2.39)

As before, we find the eigenvalues: λ1,2 = ∓C. Also, we assume that we have a

discontinuity of w and p′ at the interface of two Lagrangian layers, and we define the

pair of the variables w and p′ above the discontinuity as Uu = [wu, p
′

u], below it as

Ud = [wd, p
′

d], (where u, d denote up and down), and at the interface as U =
[

w 1
2
, p′1

2

]

.

Then, the Rankine-Hugoniot conditions are:

λ1 (U−Uu) = A (U−Uu) and λ2 (U−Ud) = A (U−Ud) (2.40)

Equation (2.40) can be expanded for both eigenvalues as:







0 −1

−C2 0













w 1
2
− wu

p′1
2

− p′u






= −C







w 1
2
− wu

p′1
2

− p′u







or p′1
2
− Cw 1

2
= p′u − Cwu (2.41)
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





0 −1

−C2 0













w 1
2
− wd

p′1
2

− p′d






= C







w 1
2
− wd

p′1
2

− p′d







or p′1
2
+ Cw 1

2
= p′d + Cwd (2.42)

Rearranging equations (2.41) and (2.42), we obtain:

p′1
2
=

1

2
(p′d + p′u) +

C

2
(wd − wu) (2.43)

w 1
2
=

1

2
(wd + wu) +

1

2C
(p′d − p′u) (2.44)

The overall stability is not sensitive to the representation of the horizontal velocity

at the interface. The simplest representation u 1
2
= (ud+uu)/2, is sufficient. With u 1

2

and w 1
2
, the geopotential Φ 1

2
can be updated using equation (2.7). These values can

then be used to calculate the source vector S.

2.3.3 The LMARS in Eulerian coordinate

The system of equations in the Eulerian coordinate is:

∂R

∂t
+

∂F

∂x
+

∂H

∂z
= 0 (2.45)

where R = (ρ, ρu, ρw, Θ̃) , F = (ρu, ρuu + p, ρwu, Θ̃u), and H = (ρw, ρwu, ρww +

p′, Θ̃w), with Θ̃ = ρθ/pκ0 . Similar to the representation in the Lagrangian system, we

derive the left and right flux vectors as:
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F = Rbu 1
2
+ p 1

2
(0, 1, 0, 0) (2.46)

H = Rcw 1
2
+ p′1

2
(0, 0, 1, 0) (2.47)

where,

b =















l, if u 1
2
> 0

r, if u 1
2
6 0

and c =















d, if w 1
2
> 0

u, if w 1
2
6 0

(2.48)

The derivation of the LMARS is very similar to that given in section 2.3.1. Here

we provide the result:

p 1
2
=

1

2
(pr + pl)−

ρa

2
(ur − ul) (2.49)

u 1
2
=

1

2
(ur + ul)−

1

2ρa
(pr − pl) (2.50)

p′1
2
=

1

2
(p′d + p′u) +

ρa

2
(wd − wu) (2.51)

w 1
2
=

1

2
(wd + wu) +

1

2ρa
(p′d − p′u) (2.52)

Although the system represented by equations (2.17) and (2.45) are only described

in 2D, the extension of the solution to multi-dimensions follows the standard proce-

dure using directional splitting.

2.3.4 The tuning of LMARS

The equations (2.33) (2.34) (2.43) (2.44) and (2.49) to (2.52) are in similar form,

if we denote p̃, ρ̃, ũ, and ã as the pressure/pseudo-pressure, density/pseudo-density,

velocity perpendicular to the flux interface, and speed of sound. The equations for
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the velocity and pressure at the flux interface can be expressed as:

p̃ 1
2
=

1

2
(p̃upwind + p̃downwind) +

ρ̃ã

2
(ũupwind − ũdownwind) (2.53)

ũ 1
2
=

1

2
(ũupwind + ũdownwind) +

1

2ρ̃ã
(p̃upwind − p̃downwind) (2.54)

The second terms on the right hand side are associated with implicit diffusion

effects. This diffusion can be minimized under conditions, which do not have strong

vertical convection and have continuous physical variables with small perturbations,

by introducing the form:

p̃ 1
2
=

1

2
(p̃upwind + p̃downwind) + β

ρ̃ã

2
(ũupwind − ũdownwind) (2.55)

ũ 1
2
=

1

2
(ũupwind + ũdownwind) + β

1

2ρ̃ã
(p̃upwind − p̃downwind) (2.56)

with β a variable diffusion parameter, β 6 1. Using β = 1 provides stability for most

situations, but introduces more diffusion. Using a smaller value of β, we are able to

achieve smaller diffusion in the LMARS scheme, but should be tested on a case by

case basis.

2.3.5 Boundary Conditions

2.3.5.1 Horizontal boundary conditions

Since all the prognostic variables are defined on an unstaggered grid, we can

apply standard boundary conditions in the horizontal direction (the position of Φ

is vertically staggered, however, it is unstaggered in the horizontal direction). In

the bubble tests shown in section 2.4, a reflective boundary condition is applied by

mirroring the ghost cells. The ghost cells are extra grid cells on the boundaries used
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for the interpolation of the variables.

In the gravity wave test shown in section 2.4, a periodic boundary condition is

applied.

2.3.5.2 Vertical boundary conditions

In the vertical Lagrangian coordinate, the top/bottom boundary conditions are

derived from the equations (2.41) and (2.42). At the bottom of the model we adopt

a reflective surface by setting:

w = 0 (2.57)

p′ = p′u − Cwu (2.58)

At the top of the model, we have two options: either a “rigid lid” condition or an

“open boundary” condition to allow waves and disturbances originating within the

model domain to leave the domain without affecting the interior solution.

For the “rigid lid” condition, we set reflective conditions similar to the bottom

boundary condition:

w = 0 (2.59)

p′ = p′d + Cwd (2.60)

For the open boundary condition we set:
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w = wd (2.61)

p′ = p′d (2.62)

Although we do not have any vertically-oriented ghost cells, however, using equa-

tions (2.43) (2.44) and (2.61) (2.62) we can derive that the upper and lower side

values at the boundary interface are identical, which has an effect similar to that of

building a ghost cell using the non-reflective boundary condition.

The vertical boundary condition in the Eulerian coordinate are all set as reflective

boundary conditions.

2.3.6 Time integration

The application of a two step prediction-correction time marching scheme with

the conservative 5-point polynomial interpolation scheme, will lead to different re-

sults if different time-steps are used, because the two-step prediction-correction time

marching scheme is only 2nd-order accurate in time (unless very small time steps

are used). However, when paring the conservative 5-point polynomial interpolation

scheme with a 4-step Runge-Kutta method, the choice of time step would not affect

the result as long as the CFL < 1 condition is met. In two dimensions, the interface

values may be regarded as having been averaged along the interface. The interface

flux based on such an average, though, is not the proper flux average along the inter-

face, because the flux is not a linear function of the state quantities. So fourth-order

accuracy is downgraded to second-order accuracy. However, the higher-order inter-

polation scheme does achieve low diffusivity of the overall scheme so that we are able

to observe small-scale structures if we use a small grid size configuration.

We use a 4-step Runge-Kutta method to integrate the equation for the prognostic
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variables in time. In the nonhydrostatic Lagrangian version, the prognostic variables

are U = (π, u, w,Θ,Φ) (equation (2.7) is included, which is not in flux form). The

prognostic variable vectors in the Eulerian version and the hydrostatic version are

similar. The differential form of U is:

dU

dt
= RHS (U) (2.63)

where RHS stands for “right hand side” of the system of differential equations (2.1),

(2.3), (2.5), (2.6) and (2.7), and these functions are independent with variable of time

. The 4th-order in time 4-step Runge-Kutta method is:

U1 = U(t) +
∆t

2
RHS (U(t)) (2.64)

U2 = U(t) +
∆t

2
RHS

(

U1
)

(2.65)

U3 = U(t) + ∆tRHS
(

U2
)

(2.66)

U(t+∆t) = U(t) +
∆t

6

(

RHS (U(t)) + 2RHS
(

U1
)

+ 2RHS
(

U2
)

+RHS
(

U3
))

(2.67)

where ∆t is the time step. More standard 4-step Runge-Kutta methods are described

in Durran (2010).

2.3.7 Vertical Remap

When using the vertical Lagrangian coordinate, the Lagrangian surfaces that

bound an atmospheric layer deform and need to be re-mapped onto the original

coordinates. The volume mean prognostic variables π, πu, πw, and Θ are remapped.

Taking π as an example, our procedure is as follows: 1. Integrate π in the top-down

direction to build a continuous profile. If we denote the vertical integral to grid level

k + 0.5 as mk+0.5 =
∑k

i=1 πi, with m0.5 = 0, then mk+0.5 is defined at the layer in-
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terface with vertical location represented by the geopotential Φ = gz, where z is the

height. 2. The profile of mk+0.5 is acquired using a 7-point polynomial interpolation

scheme, with a Newton form polynomial interpolation (Yang , 2001), i. e. to get m at

location Φrefk+0.5
i. e. (mnewk+0.5

,Φrefk+0.5
), we use the following inputs to the polyno-

mial interpolation (mk−2.5,Φk−2.5), (mk−1.5,Φk−1.5), (mk−0.5,Φk−0.5), (mk+0.5,Φk+0.5),

(mk+1.5,Φk+1.5), (mk+2.5,Φk+2.5), (mk+3.5,Φk+3.5). Near the top and bottom of the

domain, the top most and bottom most 7 points are used for the input to the poly-

nomial interpolation, i. e. (mnew1.5 ,Φref1.5), (mnew2.5 ,Φref2.5), (mnew3.5 ,Φref3.5) are all

calculated using the profile built by the points (m0.5,Φ0.5), (m1.5,Φ1.5), (m2.5,Φ2.5),

(m3.5,Φ3.5), (m4.5,Φ4.5), (m5.5,Φ5.5), (m6.5,Φ6.5) using a polynomial interpolation. 3.

Using the profile (mnewk+0.5
,Φrefk+0.5

), the remapped π is calculated from πnewk
=

mnewk+0.5
− mnewk−0.5

. Steps 1 to 3 complete the remap for π. Since the values of

mk+0.5 at the top and bottom remain unchanged during the remapping process, the

total mass
∑

π/g is automatically conserved. Similarly, the total momentum is also

conserved (conservation of
∑

πu and
∑

πw), and no extra heat is introduced into the

system (conservation of
∑

Θ). For simplicity, there is no limiting mechanism used in

step 2.

2.4 Tests and Results

2.4.1 Robert’s warm bubble tests

We test our non-hydrostatic approach for solving the equations for the 2D (x, z)

non-hydrostatic atmosphere using two standard tests from Robert (1993). These tests

are for two different types of warm bubbles: the “Gaussian” and “uniform” bubbles,

which rise in an isentropic atmosphere (303.15 K) within a closed box.

The Gaussian bubble is placed in a 1 km wide by 1.5 km high box and is repre-

sented by a perturbation of the potential temperature of the form:
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θ′ =















A, if r 6 a

Ae−(r−a)2/s2 , if r > a

(2.68)

where r2 = (x− x0)
2 + (z − z0)

2 is the distance from the bubble center; x0 = 500 m;

z0 = 260 m; A = 0.5 K; a = 50 m; and s = 100 m. The uniform bubble with a radius

of 250 m and with an initial 303.65 K “flat” potential temperature was positioned at

(x0, z0) = (500, 260) m in a 1 km by 1 km box.

2.4.1.1 Eulerian framework vs. Lagrangian framework

Although the Lagrangian framework is useful in reducing the 2D flow to 1D flow,

and hence enhancing the computational efficiency of the solution, it allows the finite

volume cells to deform from their rectangular shape, which will introduce some geo-

metric errors when the Lagrangian interfaces of the layers are significantly distorted.

Using the Eulerian framework avoids this problem because the rectangular shape of

the grid cells is fixed. The LMARS solver can calculate fluxes in both Lagrangian

coordinates and Eulerian coordinates using a similar framework, so the results in the

Eulerian framework can serve as the reference solution.

Figure 2.1 shows the potential temperature perturbation in the experiments. The

output times selected are the same as those shown in Robert (1993). The first row

shows the Gaussian bubble results from the Eulerian configuration, while the second

row shows the same results from the Lagrangian configuration. The output times for

the Gaussian bubble results are 0, 6, 12 and 18 min. The last row shows the uniform

bubble test, with the left two sub-plots from the Eulerian configuration while the

right two are from the Lagrangian configuration. The grid size for all the results was

∆x = ∆z = 5 m, and the time step ∆t = 0.007 s scales with the grid spacing. The

color range is presented from 0 to 0.5 K for comparison purposes with the results
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t=0min t=6min t=12min t=18min

t=7min t=10min t=7min t=10min

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 2.1: The upper two rows show the potential temperature (PT) (in K) for a
Gaussian bubble perturbation in a 1 km by 1.5 km domain using the
Eulerian coordinate (row 1) and the Lagrangian coordinate (row 2). The
bottom row shows an initial uniform bubble perturbation in a 1 km by
1 km domain using the Eulerian coordinate (left 2) and the Lagrangian
coordinate (right 2). The grid spacing of all results is 5 m. The cross-
section of the PT perturbation along the dashed line in the lower left
panel is presented in figure 2.2
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Figure 2.2: Cross-section of the potential temperature perturbation (in K) at x = 500
m of the uniform bubble test after 7 min using the Eulerian coordinate.

shown by Robert (1993). The output times for the uniform bubble results are at 7

and 10 min. The AUSM+-up method was also tested with the Eulerian configuration

and shows almost identical results (figures omitted), but requires about 50% more

computer time compared to the LMARS method.

Since no limiter is applied in either interpolation scheme for the variables or remap-

ping, 2-grid-size waves can be observed. These waves do not grow or cause instability.

Figure 2.2 provides a clearer picture of these small-scale oscillations. It shows the

cross-section at the center of the uniform bubble test for the 7 min plot (the dashed

line in the lower left plot in figure 2.1). The oscillations are especially present near

the sharp edges of the rising uniform bubble.

In figure 2.1, the 6 and 12 min results for the two different coordinate configu-

rations agree well with each other and with the corresponding solutions by Robert

(1993). However, at 18 minutes, the Kelvin-Helmholtz instability starts to appear,
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and the results are different between the 2 different schemes, especially for the shape

of the bubble head. Since we have not applied any diffusion or limiters in our ex-

periments, the numerical solutions are only expected to agree at finite times and

may diverge depending on the implicit damping and dispersion characteristics of the

chosen algorithms. Similar behavior is also found when comparing the results of

the uniform bubble: the general shapes of the uniform bubbles are similar; however,

the Kelvin-Helmholtz instability is resolved differently between different schemes at

longer times. The bubble head and bubble’s width show a slight difference between

our results and those of Robert (1993), which could be due to different applications

of the reflective boundary conditions.

In this particular case, because the Eulerian framework is able to maintain a

rectangular shape for the control volume at each time step, the fluxes are always

perpendicular to the control volume interfaces. Moreover, we note that the error

induced by the remapping scheme is not included in the Eulerian framework. There-

fore, we consider the Eulerian version to be the more accurate solution and use it as

the reference below. In the appendix, Section A.1, we also conducted a sensitivity

test in which we added strong viscosity to both the Lagrangian and Eulerian formu-

lations. With the addition of viscosity, the results for both formulations converge at

high resolution. But at coarse resolution, the plots using the Eulerian formulation

are slightly closer to the high-resolution solution. In general, if sub-grid turbulence

is added to a model using a parameterization, both Eulerian and Lagrangian frame-

works should provide converged results. At shorter time scales, before any turbulence

develops in the Guassian bubble tests (i.e. at 6 and 12 minutes) or for the results of

the gravity wave tests in the next section, the Eulerian and Lagrangian results are

similar. The difference between the Eulerian and Lagrangian results without explicit

diffusion, which related to the plots mentioned above are compared in Section A.3 of

the Appendix.
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2.4.1.2 Grid spacing versus numerical diffusion

We do not need to apply any diffusion such as divergence damping to stabilize

our numerical scheme because our LMARS solver provides the necessary stability.

Since LMARS is applied in both the horizontal and vertical directions, any implicit

numerical diffusion is consistent in all directions. As the diffusion is determined by

the difference of the pressure and velocities at the interface of the FV cells, which are

acquired by interpolation, a high-order interpolation scheme will lead to less diffusion.

The numerical diffusion is not a linear function of the grid size. As a result,

when the grid spacing is decreased, the result may not converge. Instead, numerical

viscosity will be decreased strongly and an ultra-low diffusive result will be found.

Figure 2.3 shows a plot at 18 min of the Gaussian bubble using the Eulerian configu-

ration and the result of the uniform bubble at 7 min in the Lagrangian configuration

with a grid size of 10 m and 2.5 m, respectively. The 10 m run is actually more diffu-

sive than the results of Robert (1993), however, the 2.5 m results are of high quality.

With smaller grid size, the smaller scale Kelvin-Helmholtz waves can be resolved in

the Gaussian bubble. In addition, in the uniform bubble test, the discontinuity at

the bubble edge is very sharp.

These tests show that we are able to resolve the warm bubble tests with small nu-

merical diffusion using a high-order interpolation scheme for the prognostic variables

and a small grid size. Although the amount of numerical diffusion that can be tol-

erated in the solution depends on the specific application, and for some applications,

an economic computational performance is preferred, we have shown that LMARS

provides stable solutions with a small amount of implicit numerical diffusion. Our

algorithm can be “downgraded” by using a lower order interpolation scheme for the

prognostic variables without any special treatment such as introducing a divergence

damping term for stability. An implicit time marching scheme might also be used and

equipped with the LMARS numeric solver to filter out acoustic waves and achieve a
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Figure 2.3: Plot of the Gaussian bubble at 18 min using the Eulerian configuration
(row 1) and the result of the uniform bubble at 7 min in the Lagrangian
configuration (row 2) with a grid size of 10 m (left column) and 2.5 m
(right column).
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CFL number larger than one, but this technique will introduce additional diffusion

into the solution. The discussion of time-marching schemes is beyond the scope of

this work.

2.4.2 Gravity wave test

Figure 2.4 presents the results from a gravity wave test using the vertical La-

grangian coordinate, Eulerian coordinates, with the nonhydrostatic and hydrostatic

setups, which is very similar to the test case developed by Skamarock and Klemp

(1994). The vertical domain size is 10 km and the horizontal domain size is 300 km.

The background atmosphere has a constant Brunt-Väisälä frequency of 10-2 s-1 with

a surface temperature of 300 K, and the surface pressure is 105 Pa. The grid spacings

are ∆x = ∆z = 1 km and time step is 2 s. The initial horizontal wind is 20 ms-1 and

a periodic horizontal boundary condition is used. The waves are excited by an initial

θ perturbation of the form:

θ′ = ∆θ0
sin πz

H

1 + (x− xc)2/a2
(2.69)

where ∆θ0 = 10−2 K, H = 10 km, a = 5 km, and xc = 100 km.

The original test published in Skamarock and Klemp (1994) used a Boussinesq

model and a rigid lid boundary condition. A rigid lid boundary condition is used in

the test using the Eulerian coordinates. However, the way we apply the hydrostatic

approximation requires that we use a free surface at the top of the model, so an open

boundary condition is applied in all Lagrangian coordinate tests. Additionally, since

the Coriolis force would bring in one more equation for v, and this would break the

momentum conservation, we did not include this in our test, and set the Coriolis

parameter to zero. This is different from the approach in Skamarock and Klemp
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Figure 2.4: The potential temperature perturbation (in K) at t = 3000 s in the
Gravity wave test. The configurations are a) nonhydrostatic with Eulerian
coordinates. b) nonhydrostatic with vertical Lagrangian coordinate and
a remap frequency of 60 s. c) same as b), but only a single remap at the
end of the simulation. d) hydrostatic with vertical Lagrangian coordinates
with 60 s remap frequency. The contour interval is 0.0005 K, the bold
line is the zero contour, the solid lines are positive, dash-dotted lines are
negative. The grid spacing is dx = dz = 1 km.
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(1994). However, Giraldo and Restelli (2008) conducted a similar test, without the

Coriolis force, with the full Euler equations. The perturbation potential temperature

at t = 3000 s is shown in figure 2.4 for comparison with the nonhydrostatic results of

Giraldo and Restelli (2008). Both the hydrostatic and the nonhydrostatic simulations

start from identical initial conditions.

The upper subplot in figure 2.4 is the potential temperature perturbation using

the nonhydrostatic configuration in the Eulerian coordinates. This result is in good

agreement with the results of Giraldo and Restelli (2008), who used a local spectral

method. Our result is slightly more damping, which may due to the fact that Giraldo

and Restelli (2008) used a 250 m resolution and 10th-order polynomials. Rows b and

c present the results of the nonhydrostatic configuration in the vertical Lagrangian

coordinate. The remap frequency of the result in row b is every 60 s, while that in

row c is only remapped at the end of the simulation. The lower subplot in figure 2.4

uses a hydrostatic configuration with remapping every 60 s.

This test is dominated by the evolution of the gravity wave. The horizontal

background velocity of the fluid, which is close to the gravity wave speed, is much

greater than the vertical velocity. So even with different boundary conditions at the

top of the model, there is no visible deformation at the model top, and the reflection

effect is small. For the same reason, the FV vertical deformation is very small and the

difference due to different remapping frequencies in this test is negligible. The only

differences are the zero-contour differences in the middle of the domain. The model’s

Eulerian version does not involve remapping, so it is least diffusive. However, since

the model’s Lagrangian version translates the vertical motion into the finite volume

deformation, and it has no vertical flux terms to calculate, it is more computationally

efficient than the Eulerian version.

Row d is the gravity wave simulation using the hydrostatic formulations in the

vertical Lagrangian coordinate. The same grid spacing and time step is used. Since
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the hydrostatic formulations does not permit vertical acoustic wave, the dispersive

wave trains observed in the non-hydrostatic model are not generated in the hydrostatic

mode.

2.5 Conclusions

The finite volume scheme using a vertical Lagrangian coordinate has proven to

be very useful in the GCM modeling community and has been applied in both the

CAM and GFDL GCMs. Here, we used a similar structure for the development of a

nonhydrostatic dynamical core in 2D (x, z) Cartesian geometry.

In this work, we developed the equation sets for a generalized vertical coordinate,

and present these in the nonhydrostatic Lagrangian and Eulerian form. We also show

their hydrostatic variant. The Arakawa A-gridding is used in our approach to keep

density, velocities and temperature all volume mean variables. With the A-grid, the

fluxes between the FVs or the vertical movement of the Lagrangian layer interfaces

are calculated by Riemann solvers.

The Low Mach number Approximate Riemann Solver is designed for atmospheric

fluid motions, and is extremely efficient when compared with the traditional (ap-

proximate/exact) Riemann solvers. With the introduction of LMARS, the numerical

treatment of the fluxes is decoupled from the governing equations. The algorithm

developer can chose variables or equations based on the specific physical requirement

without changes to the numerical properties of the system.

No limiters or divergence damping are included in the numerical algorithm. The

treatment for the interpolation and remapping are all based on polynomial interpola-

tion. All plots present the “pure” effect of LMARS, and the 2-grid-size wave does not

grow or cause any instability. In real applications however, limiters are desirable to

prevent negative values of density, pressure or tracers, like water-vapor mixing ratios.

Also, a better remap scheme will be required when simulating physical phenomena at
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the boundaries of the domain. But both limiters and remapping schemes cause extra

diffusion in the numerical system, which, however, do not introduce any instability

properties. In future studies, we will introduce limiters and an improved remapping

scheme into our system.

LMARS is a flexible way to ensure stability for finite volume numerical schemes

both in Eulerian and Lagrangian configurations. Of course for the simulations of

clouds in a model, some form of explicit diffusion needs to be added to parameterize

the sub-grid scale turbulence. However, with the built-in stabilizing mechanism in

LMARS, there is no need to add an explicit diffusion term to the numerical scheme in

for stability purpose. The numerical diffusion of the scheme can be decreased by using

a high-order interpolation scheme or a smaller grid size or by reducing the diffusion

factor in the LMARS scheme. Although our approach utilizes the A-grid, the LMARS

technique can also be used to provide the FV cell interface velocities and pressure for

the C-grid and D-grids. As a result, it is possible to integrate this method into the

Lin-Rood scheme which is applied in many GCMs. However, taking this next step

would also entail exploring vertical implicit methods, which we have not yet done. In

the future, we will explore an application which couples the nonhydrostatic regime

and algorithm to a hydrostatic regime using a vertical Lagrangian coordinate.
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CHAPTER III

Connecting hydrostatic and non-hydrostatic

models in a vertical Lagrangian coordinate system

3.1 Introduction

Atmospheric flows can be simulated using a numerical model based on Navier-

Stokes equations. Although the full system of Navier-Stokes equations could describe

most general fluid flows, it is almost impossible to use one single numerical model

to simulate all the atmospheric processes. For example, a typical cumulonimbus

cloud has a horizontal scale of 1 km, while some large systems such as hurricanes

or synoptic cyclones might have scales of order 105 to 106 m (Holton and Hakim,

2012). Cloud resolving models (CRMs) can be used to simulate cloud processes

using a time step less than 1 s, and horizontal resolution of about 40 m. However,

extending CRMs of such high resolution to the global domain size is far beyond today’s

computational capability. A typical global resolving model (GCM) uses a time-step of

30 min and horizontal resolution of at least 10 km. The cloud processes are described

using empirically tuned parameterizations in the GCMs. It is widely agreed that

feedbacks involving clouds are among the most uncertain aspects of climate modeling.

The parameterizations used in most climate models do not accurately resolve the

interactions of aerosols, radiation, microphysics and dynamics at least if judged by
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the ability of these models to reproduce the effects in cloud resolving models or large

eddy simulations (Johnson, 2005; Lee and Penner , 2010).

One promising way for allowing clouds to be followed within global models is the

so-called “super-parameterization” (Khairoutdinov and Randall , 2001; Khairoutdinov

et al., 2005; Wang et al., 2011). Super-parameterizations are used as the basis for

increasing the accuracy of climate models that can be run more efficiently to simu-

late climate at a lower cost than a true global CRM, but more realistically than a

traditional climate model. But even for these models aerosol/cloud interactions may

be poorly resolved if grid resolutions are limited to those above 250 m. Thus, the

fidelity of these parameterizations for the treatment of aerosol/cloud interactions is

not yet known.

Alternatively, we could use non-uniform grids in climate modeling that allow us

to use the non-approximate model to locally resolve the small-scale features of the

underlying physics principles with increased resolution, so that the corresponding

parameterizations can locally be dropped. Non-uniform grids are commonly applied

using nested and stretched grid techniques, both of which can be implemented in a

statically or dynamically adaptive way (see also Fox-Rabinovitz et al. (1997) for an

overview). The adaptive mesh refinement (AMR) technique is similar to the nested

grid technique, except it adds and removes grid points locally without affecting the

resolution in distant model domains and does not require a priori knowledge of future

refinement regions. Non-uniform grids are extensively used in numerical modeling

of the atmosphere for a wide range of applications (St-Cyr et al., 2008; Prusa and

Smolarkiewicz , 2003; Mass et al., 2002; Giorgi and Mearns , 1999; Krol et al., 2005).

Like the super-parameterization, non-uniform grid techniques allow us to resolve

sub-scale physical processes within climate models without applying high resolutions

on a global scale. We prefer the more flexible AMR techniques because the model

regions at high resolution are kept at a minimum. Compared to the grid stretching
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techniques, nested grids only requires a local modification of the mesh when addi-

tional resolution is added or removed, so it is more suited to adaptive mesh refinement.

Thus, this work is more focused on the nested grid type non-uniform grid applica-

tions. One issue is that, the varying resolution of the nested grids can cause artificial

reflections. As an example, a traveling wave may undergo false reflections or alias-

ing when propagating from the fine grid to the coarse domain. One way to remedy

this problem is to use one-way (parasitic) nesting between the fine and coarse grid

interface. One-way nesting does not allow any nested-to-coarse-grid communication,

and the solution on the coarse grid is independent of that on the fine grid. However,

Harris and Durran (2010) showed that two-way nesting, in which the solution on the

coarse grid is continually replaced by that on the nested grid wherever the two grids

coincide, was found to be generally superior to one-way nesting. Thus in this work,

we pursue the non-uniform grid application using a two-way nested grid approach.

Many GCMs have the option to use finite-volume based dynamical cores. The rea-

son for using finite-volume methods is because it preserves positive-definite results,

guarantees conservation of mass and maintains high accuracy (Rood , 1987). One fi-

nite volume based dynamical core is developed in the series of papers (Lin and Rood ,

1996, 1997; Lin, 2004). This dynamical core is perhaps one of the most well-know dy-

namical models today, and well-used within Geophysical Fluid Dynamics Laboratory

(GFDL) model, NASA’s Goddard Earth Observing System Model, Version 5 (GEOS-

5) and NCAR’s Community Atmosphere Model (CAM). This dynamic core used a

staggered grid or the Arakawa C- and D-grid (Arakawa and Lamb, 1977). However,

Ullrich and Jablonowski (2011) showed that when a wave propagates through a res-

olution discontinuity, the numerical algorithms that use staggered grids might cause

more reflections than the numerical algorithms that use a non-staggered grid. Addi-

tionally, most of the current GCMs are based on equations that assume hydrostatic

equilibrium. These models resolve processes whose horizontal scale is significantly
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larger than the vertical scale. However, one reason for using non-uniform grids in

GCMs is to resolve physical processes, in which the horizontal and vertical scales are

similar, e.g., strong convections and cloud processes. The hydrostatic formulation

does not correctly simulate the vertical motions, and instead, a non-hydrostatic for-

mulation should be used in the refined grids. Thus, in order to build an algorithm

that is suited for AMR techniques in the GCMs, we have developed a non-staggered

grid finite-volume approach for solving both hydrostatic and non-hydrostatic Euler

equations with either a Lagrangian vertical coordinate or Eulerian coordinates in

Chen et al. (2012).

In this work, we present a technique that joins the hydrostatic and non-hydrostatic

models in an accurate manner without reflection. In addition, the resolution at the

interface between hydrostatic and non-hydrostatic models can be changed and the

results are still accurate. Because the “floating” vertical Lagrangian coordinate does

not allow material to penetrate between the Lagrangian layers, it eliminates the cal-

culation of fluxes between the vertical control volume interfaces and reduces the

3-dimensional problem to a 2-dimensional problem, and thus increases the computa-

tional efficiency of the dynamic core. For this reason, we use a vertical Lagrangian

coordinate in both the hydrostatic and non-hydrostatic models.

In order to validate our algorithm, we modified the gravity wave test, which was

first introduced in Skamarock and Klemp (1994). The original tests are well suited

to benchmark the ability of the dynamic models in representing the propagation

of a gravity wave in a 2D (x-z) channel in both a hydrostatic or non-hydrostatic

environment. The Coriolis force is set to zero for simplicity, which is different from

the original test. We keep the domain size of the channel as in Skamarock and Klemp

(1994) but divide it equally from the center into two blocks. Since the channel has a

background horizontal eastward velocity of 20 m/s, it is easy to see that the west block

is the upwind block and the east block is the downwind block. Different resolutions for

53



each block with hydrostatic or non-hydrostatic settings are assigned. We denote the

results of simulations using different resolutions or hydrostatic and non-hydrostatic

formulations between the upwind and downwind blocks as the “results of connected

blocks”. Since both hydrostatic and non-hydrostatic Euler equations are non-linear,

we do not have analytical solutions to validate our results. Therefore, we estimate

the reflection by comparing the difference between results of connected blocks and

results of upwind blocks in pure hydrostatic or non-hydrostatic channels.

Our model might need to implement a vertically-implicit scheme to implement it

in more realistic GCMs, in order to allow longer time steps. Nevertheless in this work,

in order to introduce the least diffusion into our system, we use a vertically-explicit

scheme in the non-hydrostatic equations. Both our hydrostatic and non-hydrostatic

models introduce no explicit diffusion terms. It is more challenging to build a non-

reflective two-way interface between blocks for different dynamical cores or resolutions

if one does not introduce additional diffusion.

This chapter is organized as follows: in Section 3.2, we briefly review the governing

equations to be used in our simulation. We also review the numerical implementation

of the governing equations in Section 3.3. Section 3.4 describes the technique to

be used in building the interface between blocks of different governing equations or

different resolutions. In Section 3.5 the results of the model tests are discussed.

Section 3.6 presents the conclusion.

3.2 Model equations

The 2-dimensional (x-z) system is used in our tests. The location of the discretized

control volume is denoted using the index (i, k), where i is incremented from the left

to right or west to east, and k is incremented in a top-down direction. We use η to

denote any scalar variable or vector of scalar variables. The volume integration of

η at control volume (i, k) is denoted by
∫∫

i,k
η dx dz. The expressions:

∫

i±0.5,k
η dz
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and
∫

i,k±0.5
η dx are used to denote the area integration at the left/right surface and

lower/upper surface of control volume (i, k).

3.2.1 Hydrostatic equations

The governing hydrostatic Euler equations in the integral form are:

∂

∂t
Ui,k = −δiF − δkH (3.1)

where

Ui,k =













∫∫

i,k
ρ dx dz

∫∫

i,k
ρu dx dz

∫∫

i,k
ρθ dx dz













(3.2)

δiη = ηi+0.5,k − ηi−0.5,k (3.3)

δkη = ηi,k+0.5 − ηi,k−0.5 (3.4)

Findex =













∫

index
ρu dz

∫

index
(ρuu+ p) dz

∫

index
ρθu dz













(3.5)

Hindex =













0
∫

index
p ∂z
∂x

dx

0













(3.6)

55



where ρ is the density, u is the horizontal velocity, p is the pressure and θ is the

potential temperature. index could be replaced by (i, k ± 0.5) or (i± 0.5, k).

We assume a constant model top pressure pi,0.5 = pi,top, then the pressure at the

vertical interfaces of each control volumes are:

pi,k+0.5 = pi,k−0.5 +

∫

k

ρg dz (3.7)

where
∫

k
η dz =

∫ zi,k−0.5

zi,k+0.5
η dz.

With the hydrostatic assumption, the control volume’s vertical thickness δkz (note

that k is indexed in top-down direction, δkz < 0) is calculated by:

δkz = −cpθi,k
gpκ0

δkp
κ (3.8)

where cp is the heat capacity at constant pressure, κ is the ratio of gas constant Rd

and cp. p0 = 105 Pa is the reference surface temperature.

The vertical velocity is diagnostically derived by:

wi,k =
∂

∂t
zi,k + ui,k

∂

∂x
zi,k (3.9)

The value of the hydrostatic pressure at the center of the control volume pi,k is

calculated from:

pi,k =

(

κ
δkp

δkpκ

)γ

(3.10)

where γ = 1/(1− κ).
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3.2.2 Non-hydrostatic equations

The governing non-hydrostatic Euler equations in the integral form can also be

described in the form of Eq. 3.1. However, vertical velocity is a prognostic variable

in non-hydrostatic models. Thus one more term is needed in each of the vectors in

Eq. 3.1:

Ui,k =



















∫∫

i,k
ρ dx dz

∫∫

i,k
ρu dx dz

∫∫

i,k
ρw dx dz

∫∫

i,k
ρθ dx dz



















(3.11)

Findex =



















∫

index
ρu dz

∫

index
(ρuu+ p) dz

∫

index
ρwu dz

∫

index
ρθu dz



















(3.12)

Hindex =



















0
∫

index
p ∂z
∂x

dx
∫

index
p′ dx

0



















(3.13)

where the pressure p is the full pressure, the hydrostatic pressure is denoted by p∗, and

there difference between the full pressure and the hydrostatic pressure is p′ = p− p∗.

The hydrostatic pressure p∗ at the control volume vertical interface and control volume
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center are acquired from Eq. 3.7 and 3.10. The full pressure p is calculated by:

p =

(

Rdρθ

pκ0

)γ

(3.14)

The location of the vertical interfaces between the control volumes in the non-

hydrostatic simulations is also a prognostic variable. Eq. 3.9 is rearranged into the

advection form of z:

∂

∂t
zi,k±0.5 = −ui,k±0.5

∂

∂x
zi,k±0.5 + wi,k±0.5 (3.15)

3.3 Numerical solutions

The numerical discretization of the prognostic Eq. 3.1 is described in Chap. II.

Here a brief description is presented. Take the hydrostatic formulation for example,

if we denote
∫

i
η dx =

∫ xi+0.5,k

xi−0.5,k
η dx, and define:

Ri,k =













∫

i,k
ρ dz

∫

i,k
ρu dz

∫

i,k
ρθ dz













(3.16)

then

Ui,k =













∫∫

i,k
ρ dx dz

∫∫

i,k
ρu dx dz

∫∫

i,k
ρθ dx dz













=

∫

i

R dx (3.17)

The values within the control volume are reconstructed by interpolation schemes.

We approximate the flux vector F , e.g., fluxes at the right interface of volume i, k,
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by:

Fi+0.5,k = ui+0.5,kRi+0.5,k + Pi+0.5,k (3.18)

where Pi+0.5,k is (0,
∫

i+0.5,k
p dz, 0)T in hydrostatic equations, and is (0,

∫

i+0.5,k
p dz, 0, 0)T

in non-hydrostatic equations. We denote the interpolated value of η at the control

volume horizontal interfaces of the volume index (i, k) to be ηWi,k and ηEi,k, where W

and E denotes the values at west and east of control volume surfaces. Ri+0.5,k is

defined with upwind values:

Ri+0.5,k =











RW
i+1,k if ui+0.5,k < 0

RE
i,k if ui+0.5,k ≥ 0

(3.19)

and ui+0.5,k and pi+0.5,k are calculated using the Low Mach number Approximate

Riemann Solver or LMARS, (Chap. II):

ui+0.5,k =
1

2

(

uE
i,k + uW

i+1,k

)

+
1

(

ρEi,k + ρWi+1,k

)

csi+0.5,k

(

pEi,k − pWi+1,k

)

(3.20)

pi+0.5,k =
1

2

(

pEi,k + pWi+1,k

)

+
1

4

(

ρEi,k + ρWi+1,k

)

csi+0.5,k

(

uE
i,k − uW

i+1,k

)

(3.21)

note the second terms in the right hand side of Eq. 3.20 and 3.21 account for the

implicit numerical diffusion, thus, the sound speed csi+0.5,k is not required to be

calculated at every step. The diffusion terms can also be scaled using a parameter β,

with 0 < β ≤ 1 (Eq. 53 to 56 in Chap. II), in order to decrease the implicit numerical

diffusion. However, we do not recommend using this tuning technique because it

might cause instability. The full derivation of Eq. 3.20 and 3.21 is described in

Chap. II.

In the non-hydrostatic formulation, the vertical interface values of wi,k+0.5 and
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p′i,k+0.5 are required in Eq. 3.13 and 3.15. We can also use LMARS to calculate these

values:

wi,k+0.5 =
1

2

(

wB
i,k + wT

i,k+1

)

− 1
(

ρBi,k + ρTi,k+1

)

csi,k+0.5

(

p′
B
i,k − p′

T
i,k+1

)

(3.22)

p′i,k+0.5 =
1

2

(

p′
B
i,k + p′

T
i,k+1

)

− 1

4

(

ρBi,k + ρTi,k+1

)

csi,k+0.5

(

wB
i,k − wT

i,k+1

)

(3.23)

where T and B denote top and bottom. Note that the vertical indices are in top-down

direction, thus the second terms in the right hand side have a negative sign.

The values at the cell interfaces, e.g. horizontal interfaces ηWi,k and ηEi,k, are calcu-

lated by:

ηWi,k = − 1

20
ηi−2,k +

9

20
ηi−1,k +

47

60
ηi,k −

13

60
ηi+1,k +

1

30
ηi+2,k (3.24)

ηWi,k = − 1

20
ηi+2,k +

9

20
ηi+1,k +

47

60
ηi,k −

13

60
ηi−1,k +

1

30
ηi−2,k (3.25)

In the horizontal direction, 4 ghost cells are appended at the boundaries of the

calculation domain or blocks. However, no vertical ghost cell is used in our model.

Thus the interpolation schemes near the vertical boundaries, e.g. top boundary, are

one-sided:

ηTi,2 =
1

3
ηi,1 +

5

6
ηi,2 −

1

6
ηi,3 (3.26)

ηBi,2 =
1

3
ηi,3 +

5

6
ηi,2 −

1

6
ηi,1 (3.27)
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ηTi,1 =
3

2
ηi,1 −

1

2
ηi,2 (3.28)

ηBi,1 =
1

2
ηi,1 +

1

2
ηi,2 (3.29)

The bottom boundary can be treated analogously by reversing the index numbers.

The standard 4-step Runge-Kutta method (Durran, 2010) is used as the time

marching scheme. The floating vertical Lagrangian coordinate requires periodical

remapping. The vertical remap scheme and vertical reflective boundary conditions

are also described in Chap. II. With the hydrostatic formulation, the top boundary

is always a free surface.

3.4 Building the interface that connects the hydrostatic and

non-hydrostatic blocks

The control volume is the basic element in the finite volume scheme. Since we use

the A-grid, each control volume simply carries the volume mean values of each physical

variable. Additionally, because the floating vertical coordinate is not a constant, the

value of the coordinate at the top surface of each control volume is also recorded. In

summary, one control volume at index (i, k) records independent physical variables:

volume mean values of the density ρi,k, horizontal velocity ui,k, the vertical velocity

wi,k, potential temperature θi,k and the scalar value of the vertical coordinate zi,k−0.5.

The topography and domain top pressure are considered as block-wise constants.

We denote these variables primary variables and constants. Other variables such as

pressure can be derived from these primary variables and constants.

61



3.4.1 Ghost cell communication between blocks of uniform grid spacing

The computational domain is divided into blocks. In the horizontal direction, each

block uses 4 ghost cells to extend the west and east boundaries. If all blocks are of

uniform horizontal resolution, the ghost cells are updated using the 4 inside columns of

nearest-to-the-interface cells of the neighbor block. Note that, each control volume is

defined the same way regardless of whether it is in the hydrostatic block or in the non-

hydrostatic block. In other words, the definition of control volume is independent of

the choice of the dynamic cores. Thus, there is no conflict to copy values from a control

volume in the hydrostatic block into the control volumes of the non-hydrostatic block

as a ghost cell or vise versa. Thus, if the neighbor blocks are of the same horizontal

grid spacing, no special treatment is required when communicating the boundary

ghost cells between the two blocks. The interface between blocks of different governing

dynamic formulations is a full two-way interface.

3.4.2 Ghost cell communication between blocks of different grid spacing

When communicating ghost cells between blocks with different horizontal grid size,

refinement and coarsening of the control volumes are required. Here we only discuss

the most basic case. The ratio of the horizontal grid size between the coarse and

refined blocks is always 2. Only one-dimensional (x) grid refinement and coarsening

is involved in our tests.

The flux form independent physical variables are described by the vector Ui,k in

Eq. 3.11. zi,k−0.5 is recorded as a point value at the top of the control volume. Assume

two blocks are connected, the left block has n horizontal cells, and the ghost cells are

labeled from n+ 1 to n+ 4. These four columns of ghost cells are to be constructed

using the innermost several columns of cells in the right block. More general cases

are analogous to this process, e.g. simply applied by reversing the indices.

If the right block is of finer grid resolution, then a coarsening process is needed.
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Since the ratio of the horizontal grid size between the blocks is 2, every two columns

of ghost cells in the left block are perfectly aligned to one column of cells in the inner

side of the right block. We denote the target ghost cells to be UL
n+1,k to UL

n+4,k and

zLn+1,k−0.5 to zLn+4,k−0.5, the preprocessed cells in the right block to be UR
i,k and zRi,k−0.5.

The cells are aligned: xL
n+0.5+2i,k = xR

i+0.5,k. The flux form physical variables are built

from:

U
L
n+i,k = U

R
2i−1,k +U

R
2i,k (3.30)

where i = 1 to 4. The coarsening of vertical coordinate is simply using:

zLn+i,k−0.5 =
1

2
(zR2i−1,k−0.5 + zR2i,k−0.5) (3.31)

If the right block is of coarser grid resolution, then a refinement process is needed.

The Newton interpolation scheme (Yang , 2001) is used for the reconstruction of the

horizontal profiles of each flux form physical variable U or vertical location z. The

reconstruction of the horizontal profile of U is performed using the following proce-

dure: 1) define A−0.5,k = 0, Ai−0.5,k = Ai−1.5,k +UR
i,k, i = 1 to 4; 2) we perform the

Newton interpolation with the points (−0.5,A−0.5,k), (0.5,A0.5,k), (1.5,A1.5,k), and

(2.5,A2.5,k) to reconstruct the profile of Ak(x); 3) build the refined cells as:

U
L
n+i,k = Ak(

i+ 1

2
)−Ak(

i

2
) (3.32)

For the refinement of z, simply get the profile of zk−0.5(x) by polynomial interpolation

using (0, zR0,k−0.5), (1, zR1,k−0.5), (2, zR2,k−0.5) and (3, zR3,k−0.5). The values of z of the

refined cells are:

zLn+i,k−0.5 = zk−0.5(
i− 0.5

2
) (3.33)
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Chap. II demonstrated that the advection scheme within the block is 4th order

accurate. The coarsening of the flux form variables U does not involve any interpola-

tion, thus will not affect the accuracy of the numerical scheme. The coarsening of the

vertical coordinate is 2nd order accurate. This treatment is for simplicity, because z

is not involved in the flux calculation, and the diffusion introduced by this low order

algorithm is very limited. The refinement algorithm is 4th order accurate. Thus, the

fluxes calculated near the block interfaces do not introduce diffusion caused by low

order numerical schemes.

3.5 Simulations and results

3.5.1 Vertical velocities and the sensitivity test

We have conducted the gravity wave test formulated by Skamarock and Klemp

(1994) with hydrostatic and non-hydrostatic formulations in Chap. II. The vertical

domain size is 10 km and the horizontal domain size is 300 km. The surface pressure is

105 Pa. The background atmosphere has a constant Brunt-Väisälä frequency of 10−2

s−1 with a surface temperature of 300 K. The initial horizontal wind is 20 ms−1 and

a periodic horizontal boundary condition is used. For simplicity, the Coriolis force is

set to zero. The waves are excited by an initial potential temperature perturbation

of the form:

θ′ = ∆θ0
sin πz

H

1 + (x− xc)2/a2
(3.34)

where ∆θ0 = 10−2 K, H = 10 km, a = 5 km, and xc = 100 km.

The contour of the potential temperature perturbation is usually used as a bench-

mark for non-hydrostatic simulations. However, since our purpose is to apply a non-

hydrostatic formulation within a hydrostatic model using non-uniform grids, and it is

crucial to correctly resolve the vertical motions, we plotted the contours of the vertical
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velocity in Fig. 3.1. Vertical velocity is more closely connected to some atmospheric

processes, such as cloud formation. (i.e. in a humid atmosphere, a rising motion will

transport the air parcel into colder environment, where water vapor condensation is

more likely to take place. Thus, cloud is more likely to form with the rising motion.)

Similarly, sinking motion is more likely to suppress cloud formation.

Rows a, b and c in Fig. 3.1 are results from the non-hydrostatic formulation. The

numerical scheme using the vertical Lagrangian coordinate is slightly more diffusive

than the scheme using Eulerian coordinate. According to this figure, we can see the

rising-sinking vertical motions appear periodically in the non-hydrostatic scheme, and

the wavelength is around 20 km to 30 km. However, the hydrostatic scheme cannot

permit such wave trains even at this high resolution of dx = dz = 1 km. According

to the different vertical velocity patterns between hydrostatic and non-hydrostatic

models, the periodic rising-sinking train in the non-hydrostatic formulation is more

likely to generate cloud formation with a periodical pattern between the two gravity

wave fronts. The hydrostatic atmosphere would have a different response to the

gravity waves propagation.

Comparing the non-hydrostatic results in Rows a, b and c from Fig. 3.1, the

differences between each plot are small. The remap frequency of every 60 s used

in Lagrangian simulation in Row b provides almost identical results compared to

its Eulerian counterpart. Since our purpose is to connect the hydrostatic and non-

hydrostatic regimes using a vertical Lagrangian coordinate, the rest of our tests are

using the vertical Lagrangian coordinate, vertical grid spacing dz = 1 km, and a

remap frequency of 60 s by default. All results are taken at t = 3000 s and the time

step is ∆t = 1 s. The contour step of the potential temperature perturbation is 0.0005

K, and the contour step of the vertical velocity is 0.0005 m/s.

In many GCMs, the horizontal grid spacing is significantly larger than the vertical

grid spacing. Although the vertical grid spacing is already sufficient for simulating
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Figure 3.1: The vertical velocity contours of the gravity wave test at t = 3000 s. The
configurations are a) nonhydrostatic with Eulerian coordinates. b) non-
hydrostatic with vertical Lagrangian coordinate and a remap frequency of
60 s. c) same as b), but only a single remap at the end of the simulation.
d) hydrostatic with vertical Lagrangian coordinates with 60 s remap fre-
quency. The contour interval is 0.0005 m/s, the dotted lines are the zero
contours, the solid lines are positive, dash-dotted lines are negative. The
grid spacing is dx = dz = 1 km.
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some non-hydrostatic processes, these processes might not be correctly resolved even

with the non-hydrostatic formulations since the horizontal grid spacing is too large.

The impact of changing the ratio of the horizontal-vertical grid size on the validity of

the hydrostatic assumption is investigated in Fig. 3.2 and 3.3. The next two figures

show the vertical velocity using hydrostatic and non-hydrostatic formulations under

different ratio of horizontal to vertical grid spacing, i.e. dx/dz = 2, 3, 5.

In the hydrostatic plots of Fig. 3.2, since non-hydrostatic patterns are not resolved,

the wave patterns of the vertical velocity are not sensitive to the ratio of horizontal to

vertical grid spacing. The intensity of the wave amplitude decreases as the horizontal

grid spacing increases. This is because that larger grid spacing results to larger numer-

ical diffusivity. However, in the non-hydrostatic plots of Fig. 3.3, when dx/dz = 2, the

non-hydrostatic rising-sinking wave train is resolved in the non-hydrostatic scheme,

but the intensity is decreased compared with the result of dx = dz. When dx/dz = 3,

the wave train pattern becomes much less clear in the non-hydrostatic model. When

dx/dz = 5, the non-hydrostatic wave patterns are almost indistinguishable compared

to the results using the hydrostatic formulation.

According to the sensitivity test by changing the ratio of the horizontal-vertical

grid spacing, resolving the non-hydrostatic wave train pattern requires high horizontal

resolution, e.g., dx = 1 or 2 km. In order to properly resolve the small-scaled non-

hydrostatic motions, the wavelength of the middle wave train should be as large as

at least 10 grid cells. As mentioned in the introduction, a typical cumulonimbus

cloud has the horizontal scale of 1 km. However, it is very expensive to keep the

global horizontal resolution smaller than a few kilometers in GCMs. Thus, we want

to develop a model that allows waves to be transported from hydrostatic regimes to

non-hydrostatic regimes. The hydrostatic regimes could have larger horizontal grid

spacing than the non-hydrostatic regimes.

In the following simulations, the Skamarock and Klemp (1994) gravity wave test
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Figure 3.2: The vertical velocity contours of the gravity wave test at t = 3000 s
with the hydrostatic formulations. The contour setups are identical with
Figure 3.1. dz = 1 km. a) ratio of the horizontal and vertical resolution
dx/dz = 2. b) dx/dz = 3. c) dx/dz = 5.
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Figure 3.3: Same as figure 3.2, but the non-hydrostatic formulations are used.
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is modified for connecting the hydrostatic regimes with non-hydrostatic regimes. We

display our results in three steps. The first step is to test the gravity wave propagat-

ing between blocks of different hydrostatic and non-hydrostatic formulations without

changing the grid spacing. In these simulations, only uniform grids are involved,

thus no refinement or coarsening is needed at the interfaces of the different blocks.

The second step is to connect blocks using the same governing dynamic formulations

with non-uniform grid spacing. And in the last step, these two representations are

integrated. Blocks of different governing dynamic formulations are connected and

non-uniform grids are applied.

3.5.2 The propagation of gravity waves between blocks of different gov-

erning equations

No control volume refinement or coarsening is applied on the block interface. Each

block just copies four outermost-to-the-interface columns of control volumes as the

ghost cells, and sends the ghost cells to its neighbor. No other special treatment is

required in this process.

3.5.2.1 The propagation of gravity waves from the hydrostatic block to

the non-hydrostatic block

In Fig. 3.4, the channel is equally divided into two blocks. The initialization of

the gravity wave is exactly the same as the one block version. However, hydrostatic

formulations are used in the left upwind block, while the non-hydrostatic formulations

are used in the right downwind block. The contours are snapshots of the potential

temperature perturbation and vertical velocity at the end of the simulation t = 3000

s. The vertical dashed line at x = 150 km indicates the interface between the two

blocks.

The results from Fig. 3.4 indicate that the waves initialized in the left block are
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Figure 3.4: Wave transported from the hydrostatic block to the non-hydrostatic
block. a) Contours of potential temperature perturbation. The contour
interval is 0.0005 K. b) Contours of the vertical velocity. The contour
interval is 0.0005 m/s. The vertical dashed line at x = 150 km indicates
the block interface. In both subplots, the dotted lines are the zero con-
tours, the solid lines are positive, dash-dotted lines are negative. The grid
spacing is dx = dz = 1 km.
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transported smoothly to the right block. No obvious reflection is observed. The

zero contours are naturally connected between the interfaces in the results of both

potential temperature perturbation and vertical velocity. Both left (upstream) and

right (downstream) blocks present certain similarities to the pure hydrostatic or non-

hydrostatic counterparts in Fig 2.4d, 2.4b and Fig. 3.1d, 3.1b. Note that even the

gravity wave generated in the upstream hydrostatic block does not produce mid wave-

trains, a wave train is produced in the downwind non-hydrostatic block when the

gravity wave front is transported into this regime.

3.5.2.2 The interface quality control

If we compare the hydrostatic block of Fig. 3.4 to the left panel of the result of the

pure hydrostatic simulation in 2.4d and Fig. 3.1d, the differences are the combination

of numerical reflections and the impact from the downwind regime. The numerical

reflection is highly undesired and should be eliminated as much as possible. In order

to investigate the amount of the numerical reflection, we sampled the potential tem-

perature and the vertical velocity at the height of z = 4.5 km at the horizontal range

from 0 to 150 km in the pure hydrostatic channel and the channel that connects the

hydrostatic and the non-hydrostatic blocks in Fig. 3.5.

If we assume the impact from the downwind non-hydrostatic regime is not coupled

with the numerical reflection, the differences of the sampled values in Fig. 3.5 are the

linear combination of these two factors. The result of the vertical velocity shows that

the main wave feature of the single rising-sinking vertical velocity pattern, which is

located from 50 to 90 km, is not affected whether the downwind block is hydrostatic

or non-hydrostatic, because Fig. 3.5b indicates almost zero difference at this area.

However, some weak motions located from 10 to 30 km and from 110 to 130 km might

come from the downwind non-hydrostatic regime. The sampled values of potential

temperature indicate very good agreement between the pure hydrostatic channel and
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Figure 3.5: a) The potential temperature perturbation sampled at z = 4.5 km in
range 0 to 150 km. b) The vertical velocity sampled at z = 4.5 km in
range 0 to 150 km. In the legends: ref indicates the values in the pure
hydrostatic channel; trans indicates the values in the channel that con-
nects hydrostatic and non-hydrostatic block; diff indicates the absolute
difference between the two sampled values mentioned above
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Figure 3.6: Same with figure 3.4, except the left block is non-hydrostatic and the
right block is hydrostatic.

the channel connected different blocks, since the difference is almost zero. No spurious

waves are generated from either numerical reflection or downwind block impact.

3.5.2.3 The propagation of gravity waves from the hydrostatic block to

the non-hydrostatic block

Simply reversing the two blocks in Fig. 3.4 can do the similar wave transportation

from non-hydrostatic block to the hydrostatic block. The results are presented in

Fig. 3.6. The non-hydrostatic formulations are applied in the left upwind block,

while the hydrostatic formulations are applied the right downwind block.

Comparing Fig. 3.6 with Fig. 3.1b and Fig 2.4b, significant similarities are ob-

served among the upwind non-hydrostatic blocks, whether or not the downwind

block is hydrostatic or non-hydrostatic. However, the downwind hydrostatic block

of Fig. 3.6 is quite different from Fig. 3.1d or Fig 2.4d. If a wave train of the rising-
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Figure 3.7: Same with figure 3.5, except the upwind blocks being sampled are non-
hydrostatic.

sinking pattern is formed in the upwind non-hydrostatic block, it will be preserved

when it is transported into the downwind hydrostatic block. However, this wave train

would not develop in the hydrostatic block, according to the intensity of the wave is

much less than the left block.

3.5.2.4 The interface quality control

Similar to Fig. 3.5, we sampled the vertical velocity and the potential temperature

perturbation in the left non-hydrostatic block in Fig. 3.7.

Fig. 3.7b shows unstructured difference of the vertical velocity, which indicates

the downwind hydrostatic block has some nonlinear impacts to the upwind non-
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hydrostatic block. These downwind impacts have little effect to the potential tem-

perature field, because the values of the differences in Fig. 3.7a are almost zero. Note

that both the potential temperature perturbation and the vertical velocity near the

interface are non-zero, however, almost zero differences are observed near the inter-

face.

It is not easy to isolate the numerical reflection and the impact from the downwind

block from the difference between the pure hydrostatic or non-hydrostatic channel

and the channel that connects different blocks. The bottom line is that the numerical

reflection would not be larger than the differences presented by Fig. 3.5 and 3.7. No

wave structures that might destroy the stability are observed in all plots.

3.5.2.5 Summary to this part

The terminology “upwind” and “downwind” is used because of the 20 m/s back-

ground horizontal velocity and the initial potential temperature perturbation is al-

ways formed on the left panel of the channel. The interface applied between the two

blocks is fully two-way. No filter is applied, thus all waves that reach the interface are

transported to the neighbor block. However, the governing dynamic formulations are

fully compressible, thus acoustic wave is permitted. In the hydrostatic regime, the

acoustic wave is not permitted in vertical direction. Due to these different physical

properties between different regimes, the incoming information develops differently

in the downwind hydrostatic and non-hydrostatic block. We observed that the single

rising-sinking vertical velocity developed in the hydrostatic left block triggered mul-

tiple rising-sinking wave trains in the non-hydrostatic right block. The wave trains

developed in the non-hydrostatic upwind block would be preserved when they were

transported into the hydrostatic block.

Our model uses no diffusive treatment at the interface between the hydrostatic

regime and the non-hydrostatic regimes. We connect these two regimes by simply
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exchange the ghost cells at the interface. Thus the numerical diffusion is kept to a

minimum. At the same time, no obvious reflection that might harm the stability

or quality of the results is observed. Since the interface ghost cell exchange is inde-

pendent of whether the block is hydrostatic or non-hydrostatic, each of the blocks

“blindly” prepares the ghost cells for its neighbors and “blindly” receives ghost cells

from its neighbors. This property is also valid when refinement or coarsening of

control volume is performed, and will be discussed in the following subsections.

3.5.3 The propagation of gravity waves between regimes of different hor-

izontal grid spacing

In order to isolate the impact from grid refinement or coarsening at the block

interface from the dynamic core change between the blocks, the tests of the gravity

wave propagation between same governing equations but with different horizontal

grid spacing are performed.

As described in section 3.4, the refinement algorithm is 4th order accurate, which

is consistent with the order of accuracy of the hydrostatic or non-hydrostatic dynamic

schemes. The consistent order of accuracy prevents wave filtering at the block inter-

face, and thus the amplitude of the wave should be retained when it is transported

between the blocks.

Fig. 3.8 shows how the gravity wave travels in the pure hydrostatic channel. The

full domain is also equally divided at x = 150 km. The horizontal resolution in the

left block is dx = 2 km, while in the right block is dx = 1 km and the vertical grid

spacing is 1 km in both blocks. In row a, the contours of the potential temperature

perturbation are plotted. In row b, the contours of the vertical velocity are plotted.

Fig. 3.9 is the same as Fig. 3.8, except both left and right blocks are non-hydrostatic.

The results presented in Fig. 3.8 and 3.9 indicate very smooth connection between

the blocks. Both the contours of zero potential temperature perturbation and vertical
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Figure 3.8: Wave transported in the hydrostatic channel from coarse upwind block of
horizontal grid spacing dx = 2 km to refined downwind block of horizontal
grid spacing dx = 1 km at time t = 3000 s. a) Contours of potential
temperature perturbation. b) Contours of the vertical velocity.

velocity are closely connected at the interfaces.

Because the refined right blocks have less numerical diffusivity than the left blocks,

the amplitudes of the waves are all stronger in the right blocks. This property indi-

cates that the block interfaces do not have strong damping effect when the gravity

waves were transported through blocks of different horizontal resolutions.

3.5.3.1 The interface quality control

We performed the same quality control procedure as we have done in Fig. 3.5

and 3.7 in order to monitor the numerical reflection at the interfaces. The results

are shown in Fig. 3.10 and 3.11. Note that no dynamic core changes were involved

in the tests, the downwind blocks should produce much less impact to the upwind
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Figure 3.9: Same as figure 3.8, except both left and right blocks are non-hydrostatic.

blocks comparing to the tests in previous section. The results from Fig. 3.10 and

3.11 indicate very little numerical reflection since the differences of both the potential

temperature perturbation and the vertical velocities between the channel of uniform

grid and non-uniform grid in all figures are almost zero.

3.5.4 Connecting blocks of different governing dynamic formulations and

different grid spacing

As we discussed above, each of the blocks do not requires information of the

neighbor block types to prepare or receive the ghost cells. No additional treatment

to the refinement and coarsening process is required. This property is desirable in

the large parallel system since the communication between each of computing threads

is minimum. Each of the blocks performs control volume refinement or coarsening

at the interfaces just as described in section 3.4, then send these ghost cells to its
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Figure 3.10: a) The potential temperature perturbation sampled at z = 4.5 km in
range 0 to 150 km. b) The vertical velocity sampled at z = 4.5 km in
range 0 to 150 km. In the legends: ref indicates the values in the hydro-
static channel of uniform grids; trans indicates the values in the channel
that connects blocks from coarse grid to refined grid; diff indicates the
absolute difference between the two sampled values mentioned above.
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Figure 3.11: Same as figure 3.10, except that the non-hydrostatic formulations are
used in the simulations.

81



0 50 100 150 200 250 300
0

2

4

6

8

10
Potential Temperature perturbation at t=3000 s (H−>NH)

z 
(k

m
)

a

interface

0 50 100 150 200 250 300
0

2

4

6

8

10
Vertical velocity w at t=3000 s (H−>NH)

z 
(k

m
)

b

interface

x (km)

Figure 3.12: The gravity waves travel from hydrostatic block on the left to the non-
hydrostatic block on the right at t = 3000 s. The horizontal grid spacing
in the hydrostatic block on the left is dx = 2 km, in the non-hydrostatic
block on the right is dx = 1 km. a) Contours of the potential temperature
perturbation. b) Contours of the vertical velocity.

neighbor and receive the ghost cells prepared by its neighbors. Fig. 3.12 shows results

of gravity waves travels from hydrostatic block to the non-hydrostatic block. Fig. 3.13

shows results of gravity waves travels from non-hydrostatic block to the hydrostatic

block. In these two figures, the horizontal grid spacing of the hydrostatic block is

dx = 2 km, and the horizontal grid spacing of the non-hydrostatic block is dx = 1

km. The vertical grid spacing of both blocks is dz = 1 km.

Similar to previous results, the zero contours of both the potential temperature

perturbation and the vertical velocity are closely connected at the block interfaces.

The 4th order refinement and coarsening algorithms created no distorted contour

at the interfaces even both governing dynamic equations and resolution of the two

blocks are different. Fig. 3.12 and 3.13 shows significant similarities to Fig. 3.4 and
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Figure 3.13: The gravity waves travel from non-hydrostatic block on the left to the
hydrostatic block on the right at t = 3000 s. The horizontal grid spacing
in the non-hydrostatic block on the left is dx = 1 km, in the hydrostatic
block on the right is dx = 2 km. a) Contours of the potential temperature
perturbation. b) Contours of the vertical velocity.
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3.6. The only difference is that the intensity of the waves in Fig. 3.12 and 3.13 is

slightly smaller. This is because the coarser hydrostatic block has more numerical

diffusion.

3.5.4.1 The interface quality control

We performed the same quality control procedure as we have done in Fig. 3.5,

3.7 and 3.10, 3.11 in order to monitor the numerical reflection at the interfaces. The

results are illustrated in Fig. 3.14 and 3.15.

The results plotted in Fig. 3.14 and 3.15 are similar to results in Fig. 3.5 and

3.7. Note that the grid spacing in Fig. 3.14 is twice as large as the grid spacing in

Fig. 3.5, the sampled values of the amplitude of the waves in Fig. 3.14 are slightly

weaker than the ones from Fig. 3.5. However the wave patterns are similar between

the results from different horizontal resolutions. The resolution of Fig. 3.15 is the

same with the resolution of Fig. 3.7, while the downwind hydrostatic blocks in these

two simulations are of different horizontal resolutions. Since few differences between

Fig. 3.15 and Fig. 3.7 are observed, the downwind block has very limited impact to

the upwind block.

3.6 Conclusions

The finite volume scheme using a vertical Lagrangian coordinate has proven to be

efficient and useful for hydrostatic formulation-based GCMs and has been applied in

several popular GCMs. Here we developed a two-way interface between models using

hydrostatic formulations and non-hydrostatic formulations with vertical Lagrangian

coordinates. This interface allows the finite volumes to be exchanged between different

blocks as the ghost cells without knowing if the neighboring blocks are using the same

governing dynamic formulations. The interface can be implemented between blocks of

different horizontal resolutions with 4th order refinement algorithms. The coarsening
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Figure 3.14: a) The potential temperature perturbation sampled at z = 4.5 km in
range 0 to 150 km. b) The vertical velocity sampled at z = 4.5 km in
range 0 to 150 km. In the legends: ref indicates the values in the hydro-
static channel of uniform grids; trans indicates the values in the channel
that connects upwind-coarse-hydrostatic block and downwind-refined-
non-hydrostatic grid; diff indicates the absolute difference between the
two sampled values mentioned above.
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Figure 3.15: a) The potential temperature perturbation sampled at z = 4.5 km in
range 0 to 150 km. b) The vertical velocity sampled at z = 4.5 km in
range 0 to 150 km. In the legends: ref indicates the values in the hydro-
static channel of uniform grids; trans indicates the values in the chan-
nel that connects upwind-refined-non-hydrostatic block and downwind-
coarse-hydrostatic grid; diff indicates the absolute difference between
the two sampled values mentioned above.
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algorithm and the 4th order refinement algorithms create few numerical damping at

the interface.

The nonlinear hydrostatic and non-hydrostatic governing formulations do not have

analytical solutions. It is also difficult to determine the correctness of the wave prop-

agation between different types of hydrostatic and non-hydrostatic regimes. However,

our interface has still shown very good smoothness and low diffusivity in two aspects:

1. The contours of both the potential temperature perturbation and the vertical ve-

locity are smoothly connected at the interfaces. 2. The intensities of the waves in the

downwind blocks are not damped. However, considering the numerical reflection is

an important measurement to determine the quality of a numerical interface between

non-uniform grids, it is still necessary to quantitatively determine the numerical re-

flection at the interface. We compared the propagation of waves between blocks of

different governing dynamic equations or resolutions with their pure hydrostatic or

non-hydrostatic counterparts in the upwind half channel. The numerical reflection

should be smaller than the differences. Our results indicate that no obvious reflection

is observed.

Our scheme uses the formulations and numerical discretization introduced by Chen

et al. (2012), which is a low diffusive framework using A-grid. The numerical represen-

tation of each conservative variable, such as density, velocities, or potential tempera-

ture, is relatively simpler than the application using C-grid or D-grid. Our interface

implementation is also benefit from the simplicity of A-grid. Thus, the low diffusivity

at the interface is easier to maintain.

The vertical Lagrangian coordinate assumes the vertical coordinate is “floating”

as the simulation processes. As a result, even though the vertical coordinates from

different regimes are not aligned at the interfaces, they are treated as the natural

coordinate deformation, thus no special treatment is required. A reasonable remap

frequency is still required in order to prevent severe coordinate deformation, which
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might cause overlapped vertical coordinates. We apply remap every 60 seconds.

The low Mach number approximate Riemann solver (LMARS) has a tuning pa-

rameter β. When extra less diffusivity is required, β can be set to a number less

than 1. However, we recommend not modifying this parameter from 1 in order to

maintain stability in most applications. Alternatively, higher order of interpolation

schemes can also achieve lower diffusivity. Note that no explicit numerical diffusion is

applied in either advection or interface algorithms. However, certain forms of explicit

diffusion could be applied in order to parameterize the sub-grid scale turbulence or

to achieve grid-independent results or convergence as the grid spacing decreases.

In a model that uses Adaptive Mesh Refinement techniques, large-scale weather

systems such as mid-latitude cyclones could be properly resolved by using the hy-

drostatic formulations, while the small-scale weather system such as cloud formation

or deep convection system could be properly resolved by using the non-hydrostatic

formulations. Using the non-hydrostatic formulations for regimes using large horizon-

tal grid spacing will introduce extra numerical efforts, e.g., techniques that conquer

the small time step problem caused by the small vertical grid spacing. It also means

extra computational resource requirement. However, the non-hydrostatic implemen-

tation would not provide results with significant enhanced quality as shown in our

grid spacing sensitivity tests. Our work provides a method that allows a model to take

full advantage of the AMR techniques and avoids implementing the non-hydrostatic

formulations through the full calculation domain. Additionally, our framework uses

finite volume based discretization, which is similar to the Lin-Rood framework. Thus,

many existing hydrostatic based dynamic codes or parameterizations of other phys-

ical processes are still valid or only needs small modifications to be adopted into

our numerical schemes. In this work, in order to examine the interface connecting

different blocks with minimum diffusion introduced by the numerical algorithms, we

use vertical-explicit scheme. In the future, we will explore an application with a

88



vertically-implicit scheme with the non-hydrostatic equations in order to allow large

time steps.
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CHAPTER IV

A first step towards connecting horizontally

aligned computational blocks with different

vertical grid spacing

4.1 Introduction

In Chapter II, we implemented the non-staggered grid based finite volume method

with a vertical Lagrangian coordinate, and developed a computationally efficient Low

Mach number Approximate Riemann Solver (LMARS) to calculate the fluxes or in-

terface physical states between the control volumes. In Chapter III, we developed a

grid-nested algorithm that would allow us to connect horizontally aligned two compu-

tational blocks, which are of different horizontal resolutions. Since both hydrostatic

and non-hydrostatic blocks are simulated using the same numerical discretization, the

algorithm that connects the blocks would be independent of the dynamical governing

equations used in each block. One major issue with nested grid techniques is that,

the various resolution of the nested grid can cause artificial reflections. We solved

the full compressible Euler equation with and without the hydrostatic assumption,

using nested grids but without any explicit diffusion. We modified the Skamarock

and Klemp (1994) gravity wave test to validate our algorithm. The results showed

almost no reflection when gravity waves propagated between blocks of non-uniform
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grids or governing dynamical equations.

The algorithm developed in Chapter III might be a good start to develop a full 2D

(x-y) nested-grid technique for non-uniform horizontal grid spacing. The horizontal

grid spacing is usually significantly larger than the vertical grid spacing in GCMs.

Some physical processes, such as hurricanes, whose vertical scale of resolution matches

the GCM’s vertical grid spacing, would be better simulated with refined horizontal

grid spacing. The nested-grid technique of non-uniform horizontal grid spacing could

be useful when these physical processes are adaptively simulated in a GCM. How-

ever, many physical processes, such as deep convection, or cloud/aerosol interactions

will require much finer resolution in both horizontal and vertical directions. Then

the nested-grid technique of non-uniform vertical grid spacing would be required to

adaptively simulate these processes in a GCM.

Oehmke developed an Adaptive Mesh Refinement (AMR) grid library for parallel

computer architectures (Oehmke, 2004) using a block-structured data layout in both

2D and 3D adaptive grid techniques on the sphere. This library was incorporated

with a 2D shallow water model (Jablonowski et al., 2006) and idealized 3D advection

test (Andronova et al., 2010) using a prescribed circulation. The 3D AMR library

has not yet been fully integrated with 3D dynamical cores because the nesting-grid

technique for non-uniform vertical grid spacing was not ready.

In this chapter, we will try to address some of the new challenges in developing the

nesting-grid technique for non-uniform vertical grid spacing. As discussed in Chap-

ter III, when waves are transported between blocks of various resolutions, artificial

reflections might be caused at the block interfaces. Eliminating unrealistic reflections

is the major consideration when developing nesting techniques. The nesting-grid tech-

nique of non-uniform horizontal grid refinement is based on the Newton’s form of the

polynomial interpolation (Yang , 2001). The polynomial based interpolation might

not work smoothly in non-uniform vertical grid refinement, because some of the basic
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numerical model requirements would be broken. For example, if a hydrostatically

balanced atmospheric domain is initialized in a dynamic model, there should be no

motion created. For simplicity, we will denote this property as the “stationary rule”.

It is very easy to prove that the stationary rule is valid in nested grid with only non-

uniform horizontal grid spacing. In this case, the vertically discretized layers of control

volumes between the nested blocks and the parent blocks are perfectly connected in a

one-to-one correspondence. If the computational domain is initialized statically, the

values of the mean control-volume pressure within each layer are constant, since the

pressure is constant at the same altitude. At the interface wherever the two grids

coincide, the two grids would have overlapped boundaries if finite volume methods

were used. At the boundary, the values in the control-volumes of the coarse grid are

continually replaced by the values of the overlapped control-volumes in the nesting

grid and vice versa. We call the control-volumes at the block boundaries that need to

be replaced “ghost cells”. The ghost cells of the coarse grids are updated by coarsening

the overlapped control volumes in the nested grids. The ghost cells of the nested grids

are updated by refining the overlapped control volumes in the coarse grids. In a static

atmosphere, since the value of the pressure (as well as the temperature and density) is

a constant in the horizontal direction, most grid refinement and coarsening algorithms

would keep values of the pressure in the refined or coarsened volumes unchanged, thus

no motion would be created since the pressure gradient will always be zero. However,

when applying nesting blocks with non-uniform vertical grid spacing, the layers from

different blocks would not connect in a one-to-one correspondence. One layer from

the coarse grid might overlap multiple layers from the nesting grids. For example, if

we choose the simplest case, in which the horizontal grid spacing is a constant and

the vertical grid spacing in the nested grids is half of the size in the coarse grids, one

ghost cell from the coarse grids would overlap two control volumes in the nested grids.

The volume-mean values of the pressure would be different among the three cells,
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which are at three different altitudes. Unfortunately, even with a static atmosphere,

the vertical profile of the pressure is a monotonic non-polynomial function of the

altitude. A polynomial interpolation could not guarantee to reconstruct an accurate

vertical distribution of the pressure. The vertical refinement of coarsening of the ghost

cells might cause pressure gradients between the interfaces, where two grids coincide.

Thus, the stationary rule might be broken in nested grids with non-uniform vertical

grid spacing.

The goal of this chapter is to maintain the stationary rule in grid nesting with

non-uniform vertical grid spacing. Section 4.2 will first look into the model initializa-

tion process, which may break the stationary rule with static grid nesting. We will

show different responses of the model when it is initialized with various vertical grid

spacings. In Section 4.3 we will show that in the hydrostatically balanced isentropic

atmosphere column, the vertical structure of the thermal dynamical properties such

as the pressure and the density can be uniquely determined by values of the pressure

at the top and the bottom of the domain and the column-mean value of the product

of the density and potential temperature. An iterative method will be introduced to

reconstruct the vertical distribution of pressure. Although this method would accu-

rately reconstruct the vertical pressure distribution in isentropic environment, it is

not accurate in a non-isentropic environment. In order to estimate the error when

applying this method in non-isentropic atmosphere, we will compare this pressure

profile reconstruction method with several polynomial interpolations. The Newton’s

form of polynomial interpolation is used to find the value of pressure, and is explained

in Appendix B. Section 4.4 summarizes the findings and outlines the future potential

of the iterative method interpolation techniques.
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4.2 Discretization and initialization of the vertical atmospheric

thermal dynamic profiles

The nested grids could be implemented in a statically or dynamically adaptive

way. If it is implemented statically, the nested blocks and the parent blocks will be

prescribed with finer and coarser grids from the initialization process. When applying

nested grids with only non-uniform vertical grid spacing, the vertical distribution

of the values of the density and the pressure in nested grids and coarse grids are

initialized with different vertical grid spacing. The stationary rule requires that no

pressure gradient should be created at the horizontal interfaces, wherever two grids

coincide. For example, the pressure at the top of the model should be a constant

between both grids. We will examine this property in the following sections.

4.2.1 Theoretical derivation

We denote density, pressure and temperature or potential temperature to be the

thermal dynamical variables. One way to initialize a one-dimensional vertical distri-

bution of density, temperature and pressure in a hydrostatically balanced atmosphere

in a numerical model is by building the profile with the surface pressure psurf and a

prescribed vertical potential temperature profile θ(z). A finite volume vertical dis-

cretization is used. For example, we could label each of the control volumes using

index k from the model top to bottom direction. The vertical grid spacing at level k

is ∆zk. Using the equation of hydrostatic balance:

dp = −ρg dz (4.1)

and ideal gas law:

p = ρRdT (4.2)
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we have:

dpκ

dz
= −

gpκsurf
cpθ

(4.3)

or:

∆pκk = − gpκ0
cpθ̄k

∆zk (4.4)

where cp is the heat capacity at constant pressure, κ is the ratio of gas constant

Rd and cp, and typically we set psurf = 105 Pa. θ̄k is the volume mean potential

temperature in the kth control volume from the top. Denote the value of the pressure

at the bottom and top surfaces of the control volume k to be pk±0.5, we have:

pk−0.5 =
(

pκk+0.5 −∆pκk
) 1

κ (4.5)

Given the prescribed surface pressure psurf , we can calculate the values of the

pressure at the control volume vertical interfaces from bottom to top using Eq. (4.5).

And the mean density of control volume k is derived from Eq. (4.1):

ρ̄k =
pk+0.5 − pk−0.5

g∆z
(4.6)

The mean pressure of each control volume is calculated by:

p̄k =

(

κ
pk+0.5 − pk−0.5

pκk+0.5 − pκk−0.5

)γ

(4.7)

where γ = 1/(1− κ)

The temperature profile or potential temperature profile is prescribed. The ther-

mal dynamical variables in each control volume are then initialized.

Assuming the atmosphere column has N control volumes, the surface pressure
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is psurf = pN+0.5, the pressure at the top is ptop = p0.5, and the total mass in an

atmosphere column above the unit surface area is:

M =
pN+0.5 − p0.5

g
=

psurf − ptop
g

(4.8)

Given a constant surface pressure, the total mass in an atmosphere column above

a unit area is determined by the pressure at the top of the column.

One approximation is made in this approach. Although the potential temperature

θ(z) is prescribed, the volume-mean value of the potential temperature θ̄k used in

Eq. (4.4) is approximated using θ(zk), where zk is the height of the central point

of control volume k. However, the potential temperature at the central point of

the control volume does not necessarily equal to the mean value of the potential

temperature. When the atmosphere is isentropic, i.e. θ(z) is a constant, θ̄k = θ(zk),

the initialization is accurate, and the value of the pressure at the top of the column

ptop would be a constant no matter what vertical grid spacing ∆z is used. In a non-

isentropic atmosphere, smaller grid spacing of ∆z would lead to more accurate value

of ptop.

In the following subsection, we will test this initialization procedure using two

kinds of potential temperature distributions.

4.2.2 Isentropic atmosphere initialization

A 1D (z) isentropic environment as an atmospheric column is initialized. The sur-

face pressure is psurf = 105 Pa. The vertical distribution of the potential temperature

is constant θ(z) = 300 K. The height of the atmosphere is H = 10 km, and the column

is vertically discretized in N equal control volumes. We performed the initialization

process described in Section 4.2.1. Fig. 4.1 shows the vertical distribution of pressure

using N = 1000.
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Figure 4.1: The vertical distribution of pressure in isentropic atmosphere with surface
pressure of 105 Pa and potential temperature of 300 K

The value of the pressure at the model top ptop is a constant of 25220 Pa with

different N of 1, 10, 100 and 1000. Note that when N = 1, the total column of the

atmosphere is just a single control volume.

In this subsection, we have shown that with the initialization of a hydrostatic

atmosphere column based on uniform vertical potential temperature profile, the value

of the pressure at the top of the domain is a constant and is independent of the number

of discretized volume used.

4.2.3 Initialization of the atmosphere with constant Brunt-Väisälä fre-

quency

Similar to the isentropic atmosphere initialization, the surface pressure is psurf =

105 Pa. The column of the atmosphere is of the height H = 10 km, and to be

discretized in N control volumes. The background atmosphere has a constant Brunt-

Väisälä frequency of 10−2 s−1 with a surface temperature of 300 K. Fig. 4.2 shows

97



0 200 400 600 800 1000
2

4

6

8

10
x 10

4

z (m)

p 
(P

a)

Brunt−Vaisala column
θ

surf
 = 300 K, N = 0.01 s−1, p

surf
 = 105 Pa

Figure 4.2: The vertical distribution of pressure in atmosphere with a constant Brunt-
Väisälä frequency of 0.01 s−1, surface pressure of 105 Pa and surface
potential temperature of 300 K

the vertical distribution of pressure using N = 1000.

The value of the pressure at the top of the column ptop is not a constant when

applying different vertical grid spacing. We have a converged value of ptop = 27382 Pa

when N = 1000. If we use ptop|N=1000 as the reference value, and denote the errors to

be the absolute differences between ptop|N=1000 and ptop calculated using other values

of N . Then we could plot ln(err)vs. ln(dz) in Fig. 4.3: in which the slope of the solid

line is 2, indicating the value of the pressure at the column top is second order accurate

with respect to dz. If the value of the pressure is not a constant when different vertical

spacing are used, then the total mass of columns with different vertical grid spacing

will not be the same value, although the physical properties of the atmosphere, such

as the potential temperature profile, surface pressure, are the same. Additionally, the

pressure of the same altitude would not be the same between columns with different

vertical grid spacing, e.g. the ptop would not be the same. Pressure gradients would
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Figure 4.3: ln(err)vs. ln(dz) where err is the error of the value of the pressure at the
column top. The slope of the solid line is 2.

be formed, wherever two grids with different vertical resolution coincided, and the

stationary rule would be broken.

Thus, in order to keep the stationary rule when initializing the non-isentropic

atmosphere, it would be better to use a relatively finer vertical grid spacing to de-

termine the vertical pressure profile, when the value of the pressure at the model top

converges. Then we can discretize the atmosphere using the relatively continuous

vertical pressure distribution to calculate the volume-mean density using Eq. (4.6).

4.2.4 Summary of this section

In this section, we reviewed some initialization techniques in idealized simulations.

We have shown that the isentropic atmosphere can be accurately initialized. However,

the initialization of an atmosphere column based on non-uniform vertical potential

temperature profile will introduce second order errors. The inaccurate initialization of

the non-isentropic atmosphere would break the stationary rule when nested grid with
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non-uniform vertical grid spacing is used. The alternative initialization of the non-

isentropic atmosphere should use a finer grid to build a converged vertical pressure

profile before vertically discretize the atmosphere into control volumes.

4.3 Reconstruction of the vertical pressure distribution using

an iterative function

Grid nesting with non-uniform vertical grid spacing requires vertical control vol-

ume coarsening and refinement procedures. For simplicity, we assume that when two

grids coincide, one control volume from the coarse grids exactly overlaps two control

volumes from the nested grids, and the vertical grid spacing of the nested grids is a

constant within each type of grids. The coarsening process is to update values, such

as density, potential temperature and momentum, of the coarse control volume using

the two nested control volumes. The values are calculated:

ρcoarse =
1

2

(

ρnestup + ρnestdown

)

(4.9)

ρvcoarse =
1

2

(

ρvnest
up + ρvnest

down

)

(4.10)

ρθ
coarse

=
1

2

(

ρθ
nest

up + ρθ
nest

down

)

(4.11)

where up or down indicates the overlapped nesting grids at higher or lower position

within the coarse control volume.

However, control volume refinement requires the knowledge of the pressure at the

location where the coarse-grid control volume is divided. In the following subsections,

we will discuss how to rebuild a pressure profile within a coarse-grid control volume.
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4.3.1 Theoretical derivation

In a column of the hydrostatically balanced atmosphere above a unit area, given

any two points at the height of z1 and z2 (z1 > z2) with values of the pressure at these

two points p1 and p2, we define the weight of the air mass segment of the column

between the two levels:

ρ̄g(z1 − z2) = p2 − p1 (4.12)

where ρ̄ is the average density within the column segment of air:

ρ̄ =
1

z1 − z2

z1
∫

z2

ρ dz (4.13)

We also denote the flux form volume mean potential temperature times density

as ρθ.

ρθ =
1

z1 − z2

z1
∫

z2

ρθ dz (4.14)

Given the two pairs (z1, p1), (z2, p2) and ρθ, our algorithm is to develop the func-

tion of the pressure p(z).

With hydrostatic balance, the averaged potential temperature between two levels

of the height zA and zB is given by:

θAB = − zA − zB
pκA − pκB

gpκ0
cp

(4.15)

where p0 = 105 Pa is the value of the pressure at the surface.

For any given z between zA and zB, the mean potential temperature between z1

and z is θ̄1, and the mean potential temperature between z and z2 is θ̄2. Then we
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have:

θ1 = − z1 − z

pκ1 − pκ
gpκ0
cp

(4.16)

θ2 = − z − z2
pκ − pκ2

gpκ0
cp

. (4.17)

The volume mean density between z1 and z is ρ̄1, and the mean density between

z and z2 is ρ̄2. From the potential temperature conservation we get:

(z1 − z)
(

ρθ
)

1
+ (z − z2)

(

ρθ
)

2
= (z1 − z2)ρθ. (4.18)

Note that the volume mean potential temperature times the density ρθ is not

necessarily equal to ρ̄θ̄, but here we make the approximation that:

ρθ = ρ̄θ̄. (4.19)

Then we have:

(z1 − z)ρ̄1θ̄1 + (z − z2)ρ̄2θ̄2 = (z1 − z2)ρθ. (4.20)

With Eq. (4.12), we have:

(p1 − p)θ̄1 + (p− p2)θ̄2 = −(z1 − z2)gρθ. (4.21)

Eliminating ρ̄1 and ρ̄2 using Eq. (4.16) and (4.17). Denote h1 = z1−z, h2 = z−z2,

we have:

f(p) =
gpκ0
cp

h1
p1 − p

pκ1 − pκ
+

gpκ0
cp

h2
p2 − p

pκ2 − pκ
− (z1 − z2)gρθ = 0. (4.22)
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f(p) can not be solved analytically. However, it can be solved using a secant

iteration method with two initial values for p.

The secant method is defined by the recurrence relation:

p(n) = p(n−1) − f(p(n−1))
p(n−1) − p(n−2)

f(p(n−1))− f(p(n−2))
(4.23)

and one initial value of p could be found using a first order linear interpolation:

p(0) =
h2p1 + h1p2

H
(4.24)

where

h1 = z1 − z (4.25)

h2 = z − z2 (4.26)

H = z1 − z2 (4.27)

The second initial value of p could be found using an exponential interpolation of

p:

p(1) = p2 exp

(

− h2

Hs

)

(4.28)

where Hs is the scale height, defined as p1 = p2 exp (−H/Hs), and calculated from:

Hs =
H

ln
(

p2
p1

) (4.29)

and the pressure p(z) can be determined by the converged value of Eq. (4.22).

This method could be used in vertical refinement techniques. Consider a control

volume in the coarse vertical grid, of which the top and bottom surfaces are located
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at z1 and z2, which is to be refined into two smaller control volumes at a point in

the middle of the height z. Since we can derive the hydrostatic pressure p(z) using

Eq. (4.22), the values of the volume mean density of the refined control volumes are:

ρ̄1 =
p(z)− p(z1)

g(z − z1)
(4.30)

ρ̄2 =
p(z)− p(z2)

g(z − z2)
(4.31)

Note that the approximation we made is to assume ρθ = ρ̄θ̄. This approximation

will be exact in an isentropic atmosphere since the potential temperature is a con-

stant. So, we would expect an accurate reconstruction of pressure in an isentropic at-

mosphere column, but there might be some errors when reconstructing non-isentropic

control volumes.

4.3.2 The reconstruction of the vertical profile of pressure in an isentropic

atmosphere

In this test, the vertical one-dimensional isentropic atmosphere column initialized

in Section 4.2.2 using N = 1000 is used as the reference. In order to determine the

vertical distribution of the pressure p(z), we will use the pressure at the top of the

atmosphere ptop = 25220 Pa at z = 10 km, and the surface pressure psurf = 100000

Pa, at z = 0 km and we use the volume mean value of the product of the density and

the potential temperature 228.774 kgK/m3. The column will be discretized into 10

control volumes with equal vertical grid spacing of dz = 1 km. The values of pressure

at each control volume interface will be calculated, and compared to the values of

pressure in the column that we initialized in Section 4.2.2. The results are shown in

Fig. 4.4.

If we denote the error as the absolute difference between the reconstructed values
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Figure 4.4: The reconstructed vertical distribution of the pressure in an isentropic
column. The circles are the reconstructed pressure, and the solid line
is the value of the vertical profile of the hydrostatic pressure built in
Section 4.2.2 with N=1000
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Figure 4.5: The absolute error of the reconstructed pressure with respect to the ver-
tical location

of the pressure and the reference values of the pressure, we could plot the errvs.z in

Fig. 4.5.

Note that the convergence condition we used in Eq. (4.22) is abs(p(n) − p(n−1)) <

10−10 Pa, and the order of magnitude of the error is 10−10 Pa. Thus, we consider the

reconstruction of the pressure is sufficiently accurate.

4.3.3 The reconstruction of the vertical profile of the pressure in the

atmosphere with constant Brunt-Väisälä frequency

We will use the atmosphere column with constant Brunt-Väisälä frequency ini-

tialized in Section 4.2.3 as the reference. The initial top pressure is ptop = 27382 Pa

at z = 10 km, and the initial surface pressure is psurf = 100000 Pa, at z = 0 km,

the volume mean value of the product of the density and the potential temperature

is 231.901 kgK/m3. The column is discretized into 10 control volumes with equal

vertical grid spacing of dz = 1 km. The values of pressure at each control volume
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Figure 4.6: The reconstructed vertical distribution of the pressure in the atmosphere
with constant Brunt-Väisälä frequency. The circles are the reconstructed
pressure, and the solid line is the value of the vertical profile of the pressure
built in Section 4.2.3 using N = 1000

interface will be calculated, and compared to the reference values. The results are

shown in Fig. 4.6.

We could calculate the errors in the same way as we did in the previous subsection.

Since the results are not accurate, the absolute errors are a function of the grid

spacing. Instead of the plotting absolute error, we plot the relative error err/p×100%

in Fig. 4.7.

As illustrated in Fig. 4.7, we observe that in the reconstructed pressure profile, the

minimum relative error is 0.55% at height z = 5 km. The reconstruction of vertical

distribution of the pressure is not accurate because of the approximation ρθ = ρ̄θ̄.
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Figure 4.7: The relative error of the reconstructed pressure with respect to the vertical
location

4.3.4 Comparison between the iteration-based interpolation scheme and

the polynomial-based interpolation schemes

Next we will compare this method to a polynomial based interpolation scheme.

In this test, we will also use the atmospheric column with a constant Brunt-Väisälä

frequency initialized in section 4.2.3 as the reference. The column is discretized into

5 equal control volumes. Assume we need to refine the volume at the location from

z = 4 to 6 km into two volumes by the mid-point at z = 5 km. The reference value

of pressure at z = 5 km is 54639 Pa.

We label the sets (pk, zk) from the top down with index k = 1, 2, ..., 6 and

zk = (12 − 2k) km. We denote the iterative based vertical pressure interpolation

to be vPrsBuilder. The input values for vPrsBuilder are the sets of (p3, z3), (p4, z4)

and the volume mean ρθ between z3 and z4, which is calculated from the reference

profiles of ρ(z) and θ(z). We use Newton’s form of the polynomial interpolation to
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Figure 4.8: The error of the values of pressure at 5 km. Poly(i : j) denotes the value
of pressure is calculated from polynomial interpolation, which taken the
sets from (pi, zi) to (pj, zj) as the input

interpolate the value of p at z = 5 km. We denote the values calculated by polynomial

interpolations to be Poly(i : j), which takes the sets from (pi, zi), to (pj, zj) as the

inputs.

The errors in the estimates of p at z = 5 km is shown in Fig. 4.8. We can see that

the vPrsBuilder is more accurate than the linear interpolation of Poly(3 : 4) and the

parabolic interpolations of Poly(3 : 5) and Poly(2 : 4), but is less accurate than the

3rd order interpolation of Poly(2 : 5).

4.3.5 Summary of this subsection

In order to maintain the stationary rule in the vertical control volume refinement,

we need accurate values of the pressure at the interfaces of the refined volumes. Un-

fortunately, the value of the pressure could not be accurately found by the polynomial

interpolations because the vertical distribution of the pressure is a non-polynomial

function of the height. This section introduced an alternative method to find the

pressure at any location between two given points of pressure and the altitude. If the

control volume is isentropic, the iteration method will find an accurate value of the

pressure, and the stationary rule is maintained. However, this method does not work
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well when the control volume is not isentropic.

4.4 Conclusions

In this chapter, we discussed the challenges when applying nested grid techniques

using non-uniform vertical spacing at the fine-coarse grid boundaries. Particularly,

if a static atmospheric domain is initialized in a dynamic model, there should be

no motion created by the model. For simplicity, we denote this property as the

“stationary rule”. We explained that the stationary rule is not satisfied when applying

grid-nesting techniques with a non-uniform vertical spacing.

We discussed the initialization methods in building a vertical distribution of the

density and pressure with the surface pressure and a prescribed vertical distribution of

potential temperature. We showed that the profile of pressure or density would not be

accurately initialized unless the atmosphere is isentropic, i.e., the prescribed potential

temperature is a constant. When the potential temperature is not a constant with

height, the volume central point value of the potential temperature is considered to

be the volume mean potential temperature, which introduced errors. The initialized

vertical distribution of pressure is second order accurate with respect to the vertical

grid spacing dz. The inaccuracy introduced by interpolation would cause pressure

gradients when two grids with different vertical grid spacing coincide, and this would

break the stationary rule.

We have also proved that the vertical distribution of the pressure in the hydro-

statically balanced atmosphere column could be uniquely determined by the pressure

at the top and bottom of the column and the column mean value of the product of

the density and the potential temperature. The value of the pressure at any altitude

within the column can be calculated using an iterative method. With the isentropic

atmospheric column, the vertical distribution can be accurately rebuilt to the accu-

racy of the convergence condition of the iterative method. Thus, if the refinement
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of the pressure is calculated using our iterative-based method in an isentropic at-

mosphere, the stationary rule will be maintained for grid nesting with non-uniform

vertical grid spacing. However, since we made an assumption that the volume mean

value of the product of the density and potential temperature is equal to the product

of the individual volume mean value of the density and potential temperature, we in-

troduced errors in the reconstruction of the vertical pressure profile in non-isentropic

atmosphere.

This work is still under development. To fully implement this scheme with the

nested grid, we need three steps: 1. Test the “stationary rule” with an isentropic

atmosphere with blocks in different vertical different resolutions. 2. Improve the for-

mulation to better represent the volume mean value of the product of the density and

the potential temperature to improve Eq. (4.22). 3. Then test the “stationary rule”

with a non-isentropic atmosphere with blocks in different vertical different resolutions.
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CHAPTER V

Summary and future research directions

The dynamical core of GCMs is built to evolve. Modelers always borrow ideas

from earlier models or ideas from other fields in devising new techniques of their

own to better represent the equations of motion with a suitable computational cost.

The increasing speed and memory of supercomputers have been driving the evolution

of development of the dynamical cores. Today’s supercomputer is of a massively

parallel architecture, with hundreds of thousands of interconnected processors working

in parallel. Current development of the dynamic core would require the ability to

divide the computational workload into small computational units, which could be

distributed to the low-cost networked processors.

The traditional spectral method, which requires global communication at each

time step, is difficult to implement in parallel computers, even though it is one the

fastest methods for obtaining solutions at high accuracy. The most widely applied

method today in computational fluid dynamics (CFD) is the finite volume method.

Its popularity is due to its generality, its conceptual simplicity and the relative ease

of application to any kind of grids. It is also relatively easy to update each finite

volume using only a few neighbors, thus the finite volume method is well suited for

parallel computing. Additionally, it is also easy to enforce the conservation, positivity

and monotonicity with finite-volume method, which is necessary for accurate tracer
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advection. All these advantages indicate that finite volume method is suited to the

evolution of the dynamical cores.

One of the most popular finite-volume dynamical cores is the so-called Lin-Rood

core. There are two signature features of the Lin-Rood framework. First, the stag-

gered C- and D-grid helps to bypass the expensive Riemann solvers when calculating

the fluxes between the finite volumes. Second, the application using the vertical

Lagrangian coordinate takes full advantage of the stratification property of the at-

mospheric flows, and eliminates the calculation of fluxes between the vertical con-

trol volume interfaces. This model has proved effective for various applications to

resolve atmosphere processes in hydrostatic models. It is also possible to use adap-

tive mesh refinement (AMR) techniques to implement this dynamical core to locally

resolve the small-scale motions. However, staggered grid systems cause much more

inconvenience than non-staggered grids when applying the finite-volume method with

non-hydrostatic formulations. So there is a big challenge in the evolution of the finite-

volume dynamical cores: how can we build a non-staggered-grid-based finite-volume

dynamical core, which could match the performance of the existing Riemann-solver-

free staggered-grid-based dynamical core? In this thesis, a new scheme using non-

staggered finite volume methods to solve the full set of conservative equations was

designed. In order to match the efficiency of the staggered scheme, we developed a

high performance Riemann solver. This method was validated in both hydrostatic

and non-hydrostatic atmospheres, and produced good results. We also developed

some techniques to apply this non-staggered dynamical core in non-uniform grids,

which is required for AMR applications.

5.1 Summary

In Chapter II, we described how to formulate both the hydrostatic and non-

hydrostatic flux-form conservative primitive equations with a vertical Lagrangian co-
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ordinate. The primitive equations has been designed for non-staggered grids finite-

volume schemes, where the state variables, such as density, velocity and potential

temperature are all volume-mean. The floating vertical Lagrangian coordinate would

eliminate all the fluxes between the interfaces of the Lagrangian layers, thus sim-

plify the system into pure horizontal flows. Although we only discussed the 2D

(x-z) system of equations, the numerical discretization is horizontally isotropic due

to the non-staggered grids. So the extension of full 3D equation in the Cartesian

coordinate would be straightforward. Finite volume methods that implemented with

non-staggered grids typically use Riemann solvers for computing fluxes along vol-

ume edges. The traditional Riemann solvers were designed for the fields, which dealt

with high-speed flows and strong discontinuities, thus are computationally expen-

sive or too diffusive for low-speed flows. In order to match the Riemann-solver-free

staggered finite-volume scheme, we took the advantage that atmospheric flows are

low-speed (low Mach number) and smooth, and we could safely assume that the vol-

ume interfaces are locally isothermal. Based on this assumption, we invented a new

Low Mach number Approximate Riemann Solver (LMARS) which is in a surprisingly

simple form and provide “just enough” implicit diffusion for stability.

Chapter III is an extension from Chapter II. Since one of our ultimate purpose is

to adaptively resolve cloud using non-hydrostatic schemes within a GCM, we need to

develop algorithms to connect the hydrostatic regimes and non-hydrostatic regimes

with non-uniform grids. We connected the hydrostatic and non-hydrostatic models in

two computational blocks with non-uniform horizontal resolution, which is a kind of

nested grids. However, one major issue with grid nested is that varying resolution can

cause artificial reflections and refractions of waves due to incompatible mechanisms

at coarse-grid interfaces. This problem is even harder to solve with two-way nesting,

in which the solution on the coarse grid is continually updated by that on the nested

grid wherever the two grids coincide. Since both hydrostatic and non-hydrostatic

114



models shares the same discretization, the control volumes are defined the same way

in both models, and the interface information exchange process is independent to

whether the hydrostatic or non-hydrostatic model is used. We used the polynomial

interpolation to rebuild the profile of state variables within the finite volumes and

use this technique for horizontal volume refinement. Our results shows both very few

reflections, and low diffusivity at the interfaces between the computation blocks.

To fully implement a 3D AMR technique within the hydrostatic GCM, we have

to implement the techniques to connect blocks with different vertical grid spacing.

We discussed this application in Chapter IV. Although using the polynomial inter-

polation to rebuild the profile of state variables is successful with grid nesting with

non-uniform horizontal resolution, it is would almost inevitably create reflections with

grid nesting with non-uniform vertical resolution. We denote a “stationary rule” that

a nested grids should not create any motion if the atmosphere is initialized statically.

We examined model initialization process and found that with non-isentropic atmo-

sphere, even with identical surface pressure and back ground potential temperature

profiles, different values of model-top pressure will be initialized with different vertical

grid spacing and the error is in 2nd order accuracy. We also developed an iterative

interpolation technique to accurately reconstruct the vertical distribution of pressure.

This new technique can find the theoretical value of the pressure at any given altitude

within a control volume. Using this method in the volume refinement would prevent

any pressure gradient at the interfaces, where two grids coincide, and maintain the

stationary rule. Unfortunately, this technique only works with isentropic atmosphere,

and is still under development.

5.2 Accomplishments and future work

The biggest accomplishment is the simplicity of all the new numerical techniques

we have developed. Simplicity translates into less computational steps when evaluat-

115



ing the fluxes in finite volume methods. It also allows more elegant coding.

The finite volume method has a history of use of over thirty years and has proven

to be robust, accurate and relatively easy to implement. When borrowing ideas from

other fields into atmospheric numerical flow simulation, we should optimize these

ideas with the properties of atmospheric flows. For example, the implementation of

the vertical Lagrangian coordinate in a finite volume scheme took advantage of the

fact that the atmospheric flows are highly stratified. However, in order to prevent the

expensive computational cost of the Riemann solver, alternative approaches, such as

staggered grids, were applied. In this work, we have reexamined the non-staggered

finite volume scheme using Riemann solvers. Based on the assumption of local isother-

mal finite volume interface, which is acceptable in atmospheric flows, we derived a

new simple form of the Riemann solver. We implement robust non-staggered grid

dynamic core without the need for any explicit diffusion, and could easily extend

this method to high-order accuracy with high-order polynomial interpolation and a

Runge-Kutta time marching scheme.

This dissertation proposes a dynamical core that has the potential to achieve

high-order-accuracy on massively parallel systems. At the same time, this dynam-

ical core maintains a high efficiency when used with the hydrostatic formulation

because it adopts a vertical Lagrangian coordinate. Our next step is to extend the

two-dimensional formulations on Cartesian coordinates into three-dimensional for-

mulations on a sphere. Since the primitive equations used in this work are similar

to the primitive equations used in the Lin-Rood dynamical core, it does not require

significant modification to implement our numerical scheme into the current popular

finite-volume dynamic cores. Incorporating water into the model is also one of our

next steps. Our ultimate purpose is to implement this 3D dynamical core with our

AMR library (Oehmke, 2004) to adaptively capture features of particular dynamical

interest.
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APPENDIX A

Validation tests on the non-staggered grid finite

volume algorithm

A.1 Comparison of the Eulerian and Lagrangian formula-

tions with large viscosity for the Gaussian warm bubble

test

The low Mach number approximate Riemann solver (LMARS) can be used in

both the Eulerian and Lagrangian frameworks. In order to demonstrate that both

methods converge to a similar result, we added a 2nd-order explicit damping term to

the momentum equation.

We repeated the rising Gaussian warm bubble test from Robert (1994), with a

strong diffusion term of the form πK(uxx + uzz) and πK(wxx + wzz) added on the

right hand side of the horizontal and vertical momentum equations to represent the

addition of a term with large viscosity. The diffusion coefficient K was set to a value

of 75 m2/s. We compared the results at different resolutions: dx = dz = 5, 10, 20 and

33 m and at the time t = 18 min. The results are illustrated in Fig. A.1. Because the
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dx = 5 m, Eul dx = 10 m, Eul dx = 20 m, Eul dx = 33 m, Eul

dx = 5 m, Lag dx = 10 m, Lag dx = 20 m, Lag dx = 33 m, Lag

Figure A.1: The rising Gaussian bubble test for different dx = dz resolutions sim-
ulated with the Eulerian (top row) and Lagrangian (bottom row) ap-
proach. A 2nd-order explicit diffusion term with the coefficient set to 75
m2/s is added to the system. The domain of the simulation is 1 km by
1.5 km. The contour interval is 0.1 K, and starts at 0.05 K.
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diffusion term changes the viscosity of the air, the Kelvin-Helmholtz instability is not

observed. Additionally in the momentum equations, ∂u/∂x is horizontally symmetric

with respect to the central vertical line, but ∂2u/∂x2 is symmetric with opposite signs.

As a result, the symmetry is broken when the diffusion term is added into the system.

The Eulerian and Lagrangian formulations started to have converged results at

a resolution of dx = dz = 10 m. When the grid spacing increases, the quality of

the results is degraded in both the Eulerian and Lagrangian versions. In particular,

the Eulerian version maintains “smoother” results than does the Lagrangian version.

Thus, we judge that the Eulerian formulation produces results that are in better

agreement with the converged solution at high resolution than is the Lagrangian

version. In our simulations, the results calculated using the Eulerian formulation are

used as the reference solution.

A.2 Order of accuracy analysis

The advection terms in our numerical scheme are discretized using a 4th-order

accurate method, and the 4-step Runge-Kutta method provides 4th-order accuracy

in time. Thus, the one-dimensional simulations are of 4th-order accuracy. In two-

dimensional simulations, however, the advection fluxes are based on averaged values

along the interface. Because the flux is not a linear function of the state quantities,

fourth-order accuracy is downgraded to second-order accuracy. However, the use

of a high-order interpolation scheme on the advection terms is able to ensure low

diffusivity. This appendix reports several simulations to validate the order of the

accuracy of our numerical scheme.

A.2.1 1D simulation error analysis

The full set of 1D compressible Euler equations permits acoustic waves. A 1D (x)

domain of 3 km length with periodic boundary conditions is used to demonstrate the
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errors inherent in our scheme. The background pressure is set to 1e5 Pa, and in order

to keep the acoustic speed at cs = 300 m/s, the background temperature is set to:

T =
c2s
γRd

(A.1)

where γ is the adiabatic index, the ratio of specific heats of the gas at constant-

pressure to the gas at a constant-volume (cp/cv), and Rd is the gas constant for dry

air. The background density is calculated from:

ρ =
p

RdT
(A.2)

An initial temperature perturbation with a Gaussian distribution is added to the

background temperature to initiate the formation of acoustic waves:

T ′ = Ae−
(x−x0)

2

s2 (A.3)

where A = 0.5 K, x0 = 1500 m, s = 100 m. The acoustic waves will travel in both

directions at the speed of cs = 300 m/s after the wave is fully developed. The result

was sampled at t = 48 s to evaluate the order of accuracy of the numerical scheme.

The grid spacing is varied from dx = dz = 5 up to 40 m. The horizontal velocity at

t = 48 s is shown in Fig. A.2.

Since no analytical solution is available for this test, we treat the result with the

finest resolution as the reference, and compare the results from coarser resolutions to

this reference. In order to compare the results at different resolutions, the reference

solution was averaged to the coarser grids. Because finite volume grids are used in our
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Figure A.2: Horizontal velocity at t = 48 s for the one-dimensional acoustic wave test
at varying resolutions.

simulation, each grid point corresponds to the average value of a grid cell of width of

dx, and for each coarsening step, since we doubled the grid spacing, we averaged the

reference results to compare to these coarser resolutions, i. e. the result of cell size

dx = 10 m was compared to the averaged value of 2 grid cells from the result with

dx = 5 m, etc. The averaged reference result is aligned to the results from coarser

resolutions, the l2 norm error is calculated using the difference between the results

from the coarser resolution and the averaged reference result. The logarithm plot of

dx vs. error is shown in figure A.3.a. The scattered points are in good agreement

with the solid line, which has the slope of 4, so the one-dimensional test of our scheme

is 4th-order accurate.
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Figure A.3: L2 error analysis to determine the order of accuracy of each of the
schemes. a) 1D acoustic wave test after 48 s, b) 2D Gaussian bubble
test with Eulerian vertical coordinate after 6 min, c) 2D gravity wave
test with Lagrangian vertical coordinate after 3000 s.

A.2.2 2D simulation error analysis

We performed the rising bubble test using different resolutions. The Gaussian

bubble tests with the Eulerian vertical coordinate were selected for the error analysis,

because the profiles of the perturbation are more continuous. The sampled results

are taken at a finite time of 6 minutes. Similar to the 1D simulation error analysis,

the results from different resolutions using dx = dz = 25 m, 50 m, 100 m, and 200

m were used, and the result from dx = dz = 25 m were used as the reference result.

Analogously to the 1-dimensional test, the results from dx = dz = 25 m were averaged

in order to compare them with results at different resolutions.

The l2 norm error is calculated using differences between the averaged reference

result and results using coarser resolutions. The logarithm plot of dx vs. error is

shown in figure A.3.b. The scattered points are in good agreement with the solid

line, which has the slope of 2, so we conclude our two-dimensional test is 2nd-order

123



accurate.

A.2.3 Error analysis with vertical Lagrangian coordinates and remapping

In the previous two sections we discussed the errors and order of accuracy of our

model using a simple horizontal 1D and 2D Eulerian framework. In this section,

the 2D Lagrangian framework together with remapping is examined. We used the

gravity wave test described in section 2.4.2 of the paper. This analysis allows us

to examine the accuracy of the Lagrangian framework for the transport of gravity

waves. The gravity wave test with the Lagrangian vertical coordinate and a remap

frequency of 60 seconds was selected for our error analysis. The sampled results are

taken at a 3000 seconds. Similar to the warm bubble simulation error analysis, the

results from different resolutions at dx = dz = 500 m, 1000 m, and 2000 m were

used. Since we consider the Eulerian simulations as the reference simulations, the

pure Eulerian simulation using a resolution of dx = dz = 500 m were used as the

reference result. Other methods of analysis are similar to those described in the warm

bubble simulation error analysis.

The logarithm plot of dx vs. l2error is shown in figure A.3.c. The scattered points

are in good agreement with the solid line, which has the slope of 2, so we conclude

our 2-dimensional tests using the vertical Lagrangian coordinate and remapping is of

2nd-order accuracy.

A.3 Comparison of the Eulerian and Lagrangian formula-

tions without viscosity

If the physical processes to be resolved do not involve the development of turbu-

lence, the simulations of both Eulerian and Lagrangian formulations produce similar

results. This is shown here by comparing the difference between early-time results
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Figure A.4: Potential temperature perturbation in the Gaussian bubble test after a)
6 min and b) 12 min sampled along the central vertical line at x = 497.5
m. In the legend, diff means the difference between the Eulerian and
Lagrangian results (absolute value).

from the rising bubble test described in section 2.4.1 of the paper and the gravity

wave test described in section 2.4.2.

For the rising bubble test, we compare the plots of the Gaussian bubble at t =

6 and 12 min using a resolution of 5 m. The value of the potential temperature

perturbation θ′ is sampled along the central vertical line (i.e. at x = 497.5 m). The

plot of θ′Eul, θ
′

Lag and abs(θ′Lag − θ′Eul) is shown in Fig. A.4: The plot shows a slight

shift between the Lagrangian bubble and the Eulerian bubble. However, the shape

of the bubbles is almost identical as shown by the difference plot.

We conducted a similar examination of the gravity wave test, using a remap

frequency of every 60 s for the Lagrangian formulation. The potential temperature is

sampled along the central horizontal line (at y = 5.5 km) and at time t = 3000 s. The

results are illustrated in Fig. A.5: Although the Lagrangian result is slightly more
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Figure A.5: Potential temperature perturbation in the gravity wave test after 3000
s sampled along the horizontal line at x = 5.5 km. In the legend, diff
means the difference between the Eulerian and Lagrangian results (ab-
solute value).

damped than the Eulerian result, the potential temperature perturbations calculated

by both formulations are almost identical.
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APPENDIX B

The Newton form of the polynomial Interpolation

Given a set of n+1 values yi of a function f(x) at n+1 distinct points xi, where

i = 0, 1, ..., n and n is a positive integer. The function f(x) could be approximated

with a polynomial pn(x) of degree n constructed using polynomial interpolation that

satisfies the conditions f(xi) = pn(xi), i = 0, 1, ..., n. Newton form is an efficient

polynomial interpolation scheme.

B.1 The Newton form of the polynomial interpolation scheme

The approximation polynomial pn(x) can be written in the Newton form

pn(x) = c0 + c1(x− x0) + c2(x− x0)(x− x1) + ...+ cn(x− x0) · · · (x− xn−1) (B.1)

where c0, c1, ..., cn are constants to be determined.

Below is the procedure to find the coefficients ci. The requirement pn(xi) = f(xi)
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leads to

f(x0) = pn(x0) = c0,

f(x1) = pn(x1) = c0 + c1(x1 − x0),

f(x2) = pn(x2) = c0 + c1(x2 − x0) + c2(x2 − x0)(x2 − x1),

... (B.2)

Thus c0 = f(x0), c1 = (f(x1) − f(x0))/(x1 − x0). Define the divided differences of

order 0 as

f [xi, xi] = f(xi) (B.3)

and of order j as

f [xi, xi+j ] =
f [xi+1, xi+j ]− f [xi, xi+j−1]

xi+j − xi

(B.4)

Then

ci = f [x0, xi] (B.5)

Given the value of ci, Newton’s form can be evaluated efficiently. Write pn(x) into

a nested multiplication form:

pn(x) = d0(c1 + d1(c2 + ...+ dn−2(cn−1 + dn−1(cn))...)) (B.6)
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where d0 = x− x0, d1 = x− x1,...,dn−1 = x− xn−1, and introduce the notation:

un = cn;

un−1 = cn−1 + dn−1un;

un−2 = cn−2 + dn−2un−1;

...

u1 = c1 + d1u2;

u0 = c0 + d0u1; (B.7)

Then pn(x) = u0.

Newton’s form of the polynomial interpolation is very efficient and the coefficients

ci can be reused when later there are more interpolation points available. For example,

if later one more point (xn+1, f(xn+1)) is given, then pn+1(x) = pn(x) + cn+1(x −

x0) · · · (x− xn) gives cn+1 = (f(xn+1 − pn(xn+1))/((xn+1 − x0) · · · (xn+1 − xn)).
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