
Active Flux Schemes

by

Timothy Andrew Eymann

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Aerospace Engineering and Scientific Computing)

in the University of Michigan
2013

Doctoral Committee:

Professor Philip Roe, Chair
Assistant Professor Krzysztof J. Fidkowski
Professor Smadar Karni
Scott Morton, DoD HPCMP CREATE Program

This material is declared a work of the U.S. Government and is not subject to
copyright protection in the United States.

DISTRIBUTION STATEMENT A.
Approved for public release; distribution is unlimited.

To the memory of my grandfather,

Frank Eymann

who inspired so many in my family to approach flight with a never-ending sense of wonder

ii

ACKNOWLEDGEMENTS

As my friends and family are so fond of pointing out, I have been on this journey

quite a long time. I have been extremely fortunate to have so much help along the

way. First and foremost, I must thank my advisor, Prof. Phil Roe, for his support

and all of the fruitful discussions. He taught me how to think about CFD and was

always there with a dash of British humour and encouragement when I needed it. I

cannot imagine having a better guide these past four and one-half years.

I am also grateful to my committee members Prof. Krzysztof Fidkowski, Prof.

Smadar Karni, and Dr. Scott Morton for their insights and contributions to this

work. Emeritus professor Bram van Leer deserves a special note of thanks not only

for recruiting me to come to Michigan, but also for allowing me to take an idea of

his, which was perhaps a little ahead of its time, and run with it. I also thank my

masters advisor, Prof. Stephen Ruffin, for introducing me to the field of CFD and

tossing me in the deep-end.

None of this would have been possible without funding from the DoD SMART

program and the support of my supervisors at Eglin AFB. I am indebted to Sam

Revill for hiring me at the Air Force SEEK EAGLE office and for all that he did to

help me apply for a SMART fellowship and transition back to school. I thank Joe

Keen and Steve Ellison who freed me from my day-to-day duties and allowed me to

concentrate on this work. I am especially grateful to Scott Morton, who first planted

the Ph.D. seed in my head and supported me along the way even though it meant

having an undermanned team for the last few years. He was there for the beginning

iii

of this process, and I am happy to have him on my committee at the end of it.

My time at Michigan would have been far more stressful without all of the great

friends I have gained during my time in Ann Arbor. From the trivia nights, which

often led to karaoke early-mornings, to the football games and everything in between,

these people provided laughs and memories that I am sure will endure long after my

Fortran code stops working. I thank all of my past and current office mates and

members of our research group for all of the insightful discussions. I would also like

to thank Steve Kast and Tyler Lung for providing some of the comparison data for

this dissertation.

I am only here today because of the love from my great family. My parents Larry

and Judy allowed me to cross the country in pursuit of my academic goals, without

ever hesitating to give me their full support. My sisters Julie and Katie were always

there to keep me smiling and keep me grounded. I thank my brother Don for blazing

a trail through the aerospace industry and leaving behind enough breadcrumbs to get

me started down my own path.

Finally, I thank my fiancée Molly for her unwaivering love and support. She, more

than anyone, has had to sit through boring explanations of my research to friends

and had to sacrifice plans because of an impending deadline or project. And yet, she

was always there with a smile, a hug, and sometimes a fresh box of dry-erase markers.

Throughout the past few years, she has had an uncanny ability to know exactly what

I need to keep going and selflessly provided it. I am profoundly grateful and look

forward to starting the next phase of our lives together.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vii

LIST OF TABLES . ix

LIST OF ALGORITHMS . x

LIST OF APPENDICES . xi

LIST OF ABBREVIATIONS . xii

ABSTRACT . xiii

CHAPTER

I. Introduction . 1

1.1 Background . 1
1.2 Shortcomings of contemporary solvers 3

1.2.1 Multidimensional physics 3
1.2.2 Accuracy . 5
1.2.3 Compact support 8

1.3 Active flux description . 10
1.4 Thesis overview . 11

II. Linear Advection . 13

2.1 One-dimensional discretization 14
2.1.1 Reference element 14
2.1.2 Internal reconstruction 14
2.1.3 Updates . 16
2.1.4 One-dimensional analysis and results 17

v

2.2 Two-dimensional discretization 26
2.2.1 Reference element 26
2.2.2 Reconstruction . 27
2.2.3 Updates . 28
2.2.4 Time step restriction 29
2.2.5 Two-dimensional linear advection 32
2.2.6 Two-dimensional circular advection 36

III. Nonlinear Advection . 39

3.1 Burgers’ equation . 40
3.2 Limiting . 42
3.3 Test cases . 45

3.3.1 Shock . 47
3.3.2 Expansion . 48
3.3.3 E-C-E wave . 49

3.4 Alternate approaches . 52

IV. Linear Acoustics and Linearized Euler 54

4.1 One-dimensional linear acoustics 56
4.1.1 Simple wave . 58
4.1.2 Non-simple wave . 59

4.2 Two-dimensional linear acoustics 61
4.2.1 Integral around circumference 62
4.2.2 Spherical means . 64
4.2.3 Integrals of the disc interior 66
4.2.4 Comparison of radial symmetry 69
4.2.5 Comparison to exact solution 75

4.3 Combining advection and acoustics (linearized Euler) 76

V. Conclusions . 84

5.1 Summary . 84
5.2 Contributions and conclusions 85
5.3 Future work . 86

APPENDICES . 89

BIBLIOGRAPHY . 110

vi

LIST OF FIGURES

Figure

1.1 Data storage locations for active flux (AF) scheme 11
2.1 Conserved region for cell j . 15
2.2 Diffusion comparison between AF and third-order FV scheme 21
2.3 Dispersion comparison between AF and third-order FV scheme . . . 22
2.4 Dissipation of sine wave with frequency φ = π/6, represented by

twelve cells after traveling ten wave lengths 23
2.5 Gaussian peak value after one cycle through randomly-spaced mesh 24
2.6 Zalesak waveform after one cycle through mesh 25
2.7 Element mapping . 26
2.8 Node placement for AF basis functions 27
2.9 Nomenclature for 2D flux calculation 29
2.10 Relevant distances for CFL calculation 31
2.11 Nomenclature for minimum distance calculation 32
2.12 Steady advection solutions on randomized mesh 34
2.13 Convergence of steady advection cases 34
2.14 AF error compared to DG1 scheme 36
2.15 AF error for circular advection case 37
3.1 Characteristics for shock problem; uj−1/2 = 1.0, ūj = 0.3, uj+1/2 = 0.25 42
3.2 Limiting diagram for shock; uL0 = 1.5, uM = 0.775, uR0 = −1.1 . . . 45
3.3 Limiter algorithm . 46
3.4 Shock fluxes . 48
3.5 Limited solution . 49
3.6 Expansion fluxes . 49
3.7 Limited expansion solution at t = 0.1 50
3.8 E-C-E wave . 50
3.9 E-C-E wave solution at four times 51
4.1 Simple wave test after 48 cycles through mesh 59
4.2 Non-simple wave test; t = 76.8 . 61
4.3 Non-simple wave test; t = 96.0 . 61
4.4 Two-dimensional characteristic cone 62
4.5 Sphere influenced by point x; R = a0∆t 64
4.6 Integrated areas for two-dimensional acoustics 66

vii

4.7 Element nomenclature . 67
4.8 Element integral (shaded area) for node and edge centered values . 67
4.9 AF pressure solution for Gaussian pulse initial condition on the coarse

mesh . 71
4.10 Coarse mesh . 72
4.11 Medium mesh . 73
4.12 Fine mesh . 74
4.13 AF error convergence for acoustic test 76
4.14 Pressure evolution for linearized Euler case 80
4.15 x-velocity evolution for linearized Euler case 81
4.16 y-velocity evolution for linearized Euler case 82
4.17 AF error convergence for linearized Euler equation 83
A.1 Three-level upwind stencil, a > 0 91
A.2 Residuals contained within three-level definition 92
A.3 Family parameterizations . 96
A.4 Leading diffusion and dispersion coefficient values 97

viii

LIST OF TABLES

Table

2.1 Basis functions and coefficients for 1D reconstruction 15
2.2 Basis functions and coefficients for 2D reconstruction 28
2.3 Linear advection convergence of Gaussian using AF and DG methods 36
2.4 Circular advection convergence . 38
4.1 Pressure convergence for linear acoustics 75
4.2 Velocity convergence for linear acoustics 76
4.3 Pressure convergence for linearized Euler equation 83
4.4 Velocity convergence for linearized Euler equation 83
A.1 First-order scheme definitions . 95
A.2 Notable second and third-order scheme definitions 95
A.3 q-Scheme comparison . 95

ix

LIST OF ALGORITHMS

Algorithm

1.1 Core active flux algorithm . 12
2.1 Point update procedure for scalar advection 30
4.1 Point update procedure for linear acoustics 70

x

LIST OF APPENDICES

Appendix

A. Designing a compact scheme with finite differences 90

B. Shape-preserving limiter values . 98

C. Calculating integrals for the 2D wave equation 102

xi

LIST OF ABBREVIATIONS

AIAA American Institute of Aeronautics and Astronautics

AF active flux

CFD computational fluid dynamics

DG discontinuous Galerkin

DOF degree(s) of freedom

ENO essentially non-oscillatory

FCT flux-corrected transport

FD finite difference

FE finite element

FV finite volume

HLL Harten, Lax, van Leer

PPM piecewise parabolic method

RD residual distribution

SD spectral difference

SV spectral volume

ULF upwind leapfrog

WENO weighted essentially non-oscillatory

xii

ABSTRACT

Active Flux Schemes

by

Timothy A. Eymann

Chair: Philip Roe

This dissertation details the development of active flux schemes, a new class of meth-

ods for solving conservation laws. Active flux methods address three issues plagu-

ing production-level computational fluid dynamics (CFD) codes: reliance on one-

dimensional Riemann solvers, second-order accuracy, and computational stencils that

do not easily parallelize. The key concept is that edge and vertex values are updated

and evolved independently from the conserved cell-average quantities. Interface val-

ues are then used to calculate fluxes that conservatively update the cell-averages.

Because the edge updates do not need to be conservative, any convenient method

can be used and proper attention can be given to multidimensional physics. The

scheme uses parabolic reconstructions, with a cubic bubble function to maintain con-

servation in two dimensions, making it third-order accurate by construction. All of

the reconstructions and updates are local to a single element, giving AF schemes a

very compact stencil suitable for parallelization. Additionally, the AF method is fully

discrete, advancing from time-level n to n+ 1 in a single step.

The method is demonstrated on the linear advection, linear acoustics, and lin-

earized Euler equations in one and two dimensions. The AF method has several ad-

xiii

vantages over more traditional schemes. For one, the extra degrees of freedom within

the cell mean that frequencies up to 2π can be resolved, which is double the frequency

range for comparable finite volume (FV) schemes. The AF scheme has superior dissi-

pation and dispersion properties, especially as the Courant number approaches one.

Its compact stencil makes the AF solution far less sensitive to irregular meshes than

a third-order FV scheme. The AF scheme economically achieves third-order accu-

racy using two degree(s) of freedom (DOF) per element in one dimension and three

DOF in two dimensions. This is comparable to the DOF in a discontinuous Galerkin

scheme using linear reconstructions. The AF method achieves third-order accuracy

for all of the equation sets using randomized, unstructured meshes. The multidimen-

sional treatment of the acoustics system allows the AF method to preserve excellent

symmetry properties on an irregular triangular mesh.

xiv

CHAPTER I

Introduction

1.1 Background

Computational methods have been vital tools for the design and analysis of numer-

ous products for decades. Although embraced by a wide range of industrial disciplines,

computational fluid dynamics (CFD) has been advanced and matured primarily by

two fields: defense and aerospace. These fields are often closely linked and the two

place similar demands on engineering requirements. During the design or analysis of

defense systems, a premium is placed on the performance of the article. For plan-

ning and acquisition purposes, it is important to predict, with a very high degree of

accuracy, the yield of a weapon, the flight characteristics of a vehicle [10, 29], or the

complex interaction between the vehicle flow field and a store [20, 49]. In civilian

aerospace applications, performance is measured by operating cost. One of the pri-

mary factors affecting the operating cost of an aircraft is its drag. This is the main

motivation behind the American Institute of Aeronautics and Astronautics (AIAA)

drag prediction workshops that have focused on developing and communicating CFD

best-practices [55]. The pressure from both defense and civilian applications to in-

crease the accuracy of these performance predictions, has led to the current generation

of CFD solvers and techniques.

In the early days of CFD, the technical benchmark for a computational method

1

was its ability to calculate steady, transonic flow around a two-dimensional airfoil.

Steadily, the problems grew in complexity to include viscous effects, time-dependent

physics and three-dimensional phenomena, including turbulence. Consequently, the

computational resources required to perform a CFD simulation grew. Algorithm

development proceeded rapidly on two fronts: techniques to handle more complex

physics, and methods to decrease the simulation run time. Eventually, efforts to im-

prove simulation efficiency outpaced fundamental algorithm development as industry

practitioners understandably focused on meeting production deadlines. At that point

the structure of a CFD code became standardized with researchers only investigating

changes to modules of the code that were essentially independent. The parallelization

of CFD solvers further solidified the basic form of the code because major algorithm

changes would require the solver developer to re-tune the application, which required

an extensive investment in time. In a sense, it is as if one of the variables of the “CFD

system”, the code structure, had been held constant while the other, the code’s speed,

was optimized.

We now face a situation where it is becoming increasingly difficult to solve complex

problems because the underpinnings of the code were designed and optimized indi-

vidually rather than as a system. Today, the industry standard for CFD applications

is a second-order accurate finite volume (FV) code, with a one-dimensional Riemann

solver to calculate the flux at the cell interface. Despite numerous advances in time-

integration algorithms, mesh refinement techniques, and turbulence modeling, just to

name a few, most production CFD codes are built around a second-order approxima-

tion to one-dimensional physics. Furthermore, changing the core solution algorithm

alone is not usually feasible because the time-marching and parallelization has been

developed around a specific approach to solving the physics. A new paradigm for

solving CFD problems is required to meet future computational challenges. This

dissertation proposes a new CFD framework, the active flux (AF) method, as the

2

means of cutting the Gordian Knot formed by the conflict between the need to solve

increasingly complex problems with methods optimized under a rigid code structure.

1.2 Shortcomings of contemporary solvers

The following sections describe some of the most glaring shortcomings of the

current class of production-level CFD codes.

1.2.1 Multidimensional physics

Godunov [15] originated modern shock-capturing schemes by modeling the solu-

tion between two computational elements as the interaction between the discontinuous

representations of the fluid within the cells. The discontinuity at the interface is re-

solved by solving a one-dimensional Riemann problem. Because the exact solution to

the Riemann problem can be computationally expensive, many approximations have

been developed. Roe successfully linearized the full Euler wave system [44], while

others such as Rusanov [48] and later Harten, Lax, van Leer (HLL) [17] further ap-

proximated the system by reducing the number of waves considered. Einfeldt modified

the wave speed treatment in the original HLL scheme, leading to the HLLE scheme

[11]. All of these approximations, however, preserve the one-dimensional nature of

the original method.

To obtain the flow solution for two-dimensional or three-dimensional elements,

a one-dimensional Riemann problem is solved normal to each face. This approach

works fine for smooth problems, but when there is a shock or other discontinuity in

the flow, artificial numerical features can be generated if the shock is not aligned

with the mesh. The carbuncle is the most documented and studied of these features

[36, 39]. Another common manifestation of the problem is the oscillation of solution

values behind an oblique shock that is not aligned with the mesh [52].

Several fixes have been proposed to eliminate carbuncles and other solution irreg-

3

ularities around shocks. Reducing the number of waves from three to two (HLL) or

one (Rusanov) significantly reduces the occurrence of carbuncle-type behavior, but

these solvers add excess dissipation that degrades the solution in regions such as

shear and boundary layers. A common approach then is to use some combination

of reduced-wave models and the full wave approximation. Park and Kwon [35] pro-

posed a pressure switch that transitions between the HLLE Riemann solver and Roe’s

approximate Riemann solver, with Tremel [52] demonstrating the method using the

structured CFD solver OVERFLOW. Another method of mitigating the effects of a

purely one-dimensional strategy is the rotated Riemann approach [9, 24, 31, 42] where

the velocity vector at the cell interface is decomposed and two Riemann problems are

solved. These techniques are effective and can be computationally efficient, but they

were designed under the constraint that they must work within the current framework

adopted by most industrial solvers. They fix the symptoms of the problem, but do

little to address the fact that the solvers are built around one-dimensional physics.

There have been previous attempts to create solvers that do not rely on one-

dimensional Riemann solves. One obvious motivation for this is when the problem

physics are omnidirectional, as with the acoustics equations. A common approach for

two dimensions is to find the update at a point using bicharacteristics of the solution

[5, 34, 41]. The main drawbacks to this approach are that they involve integrals that

may be difficult to approximate and that they are, at best, second-order accurate.

Chapter IV contains a more detailed discussion of bicharacteristic methods for the

acoustic equations.

Fluctuation splitting methods are an important class of schemes closely related

to this work. They offer the most complete framework for solving multidimensional

fluid problems without relying on one-dimensional Riemann solves at interfaces. The

concept was outlined for linear advection by Roe [45, 46] and later extended to hy-

perbolic/elliptic systems by Rad [40]. In this approach, the solution residual is eval-

4

uated over a triangular element, and then it is distributed to the nodes according

to the upwind direction if solving an advection-type equation or distributed using

a least-squares method if solving Cauchy-Riemann-type problems. These residual

distribution (RD) schemes have been demonstrated to achieve third-order accuracy

and nearly recover potential flow around elliptical bodies [32]. The RD schemes very

nearly solve many of the problems associated with finite-volume schemes; however,

they do lack some features required of production-level codes. Most, but not all of, the

concepts translate easily to three-dimensional flows, severely limiting the application

of the RD method. Also, RD schemes are formulated chiefly for solving steady-state

problems, meaning some type of pseudo-time stepping is employed for unsteady cases

[1, 43]. This increases the computational overhead of the scheme. Nonetheless, this

class of schemes provided much of the inspiration for the framework proposed in this

dissertation.

1.2.2 Accuracy

Second-order computational methods commonly employed in production codes,

while sufficient for many applications, lack the accuracy required to perform certain

simulations on affordable meshes, such as those that require high-fidelity vortex track-

ing and computational aeroacoustics. Clearly, to increase the accuracy of a scheme,

one must address the error generated by the scheme. There are two primary means

of reducing the error: minimize sources of error within the method and increase the

order of accuracy of the scheme. The spatial order of accuracy determines the rate

at which the scheme converges to the exact solution as the mesh is refined. As the

order of a scheme increases, mesh refinement becomes a more effective tool to drive

error out of the computed solution.

Increasing the order of accuracy of a scheme is the more traditional approach

to improving the error properties of a scheme but one may also reduce the baseline

5

level of error produced by a computational method by carefully representing and

interpolating the data on a space-time mesh. For example, it is possible to create

dissipation-free, second-order schemes by including an additional time level in the

stencil. These dissipation-free methods were motivated by the need to track flow

features accurately over long distances and simulation times. Iserles [19] and Roe

[47] investigated upwind leapfrog (ULF) schemes, which are two-level schemes that

achieve zero dissipation due to their symmetric stencils in space and time. ULF

methods were also thoroughly investigated by Thomas [50] who applied the idea to

multiple dimensions and systems of equations. Using an additional time level in

the scheme provides additional degree(s) of freedom (DOF) that can also be used to

design optimum monotone schemes or minimize dispersion. Appendix A contains a

discussion of how to develop multi-level finite difference (FD) schemes that achieve

desired properties.

Two time level schemes can be effective at eliminating various sources of error,

but they all require one initialization step before there is enough data to apply the

two-level scheme. The CABARET scheme presented by Karabasov [21] collapses the

two-level ULF to a single-step scheme by independently updating cell-averages and

flux values. The scheme retains all the advantages of the ULF scheme while only

using data from one time level. Independently updating the conserved cell-average

values and flux values is a key concept that we utilize throughout this work. In fact,

the CABARET scheme can be thought of as a second-order version of the third-order

technique developed in this dissertation.

As stated earlier, the more common way of managing the error produced by a

scheme is to increase the order of accuracy and refine the mesh. There is some debate

about the optimum order of accuracy for a scheme. Methods with even orders of

accuracy behave very differently at sharp features or discontinuities than methods

with odd orders of accuracy. Fourier analysis allows us to represent the error as a

6

superposition of waves. From this type of analysis, we can categorize two types of

error. Dissipation error, also known as diffusion error, is error associated with the

amplitude of the waves and dispersion error indicates a misrepresentation of the wave

speed. Modified equation analysis [18] for the advection equation reveals that the

leading error term, which dominates and dictates the scheme’s behavior, is disper-

sive for even-ordered schemes and dissipative for odd-ordered schemes. Even-order

schemes tend to misrepresent the speed of waves while odd-order schemes misrep-

resent the wave amplitude. Because a sharp discontinuity is approximated by the

scheme as the summation of several waves with varying frequency and amplitude, the

differences between odd and even ordered schemes can be attributed to their leading

error terms. The different leading error terms have the effect of leading to more oscil-

latory behavior for even-ordered schemes than odd-ordered schemes [4]. Practically,

this means that there is a large advantage when increasing from second to third-order

because there is less damping required to mitigate the effect of the oscillations. There

is little incentive for increasing to a fourth-order scheme because that would bring

back the oscillations. One could argue for skipping fourth-order and going straight

for a fifth-order scheme, but the work required for a scheme increases dramatically as

the order is increased [26]. For this reason, we focus on third-order accuracy.

One method for increasing the order of accuracy of a finite volume scheme is

to expand the computational stencil, generating higher-order reconstructions from

which the solution may be interpolated. An early third-order scheme using this

idea was developed by Warming, Kutler, and Lomax [58]. Later, essentially non-

oscillatory (ENO) [16] and weighted essentially non-oscillatory (WENO) [25] schemes

were developed to obtain higher-order accuracy without generating spurious oscil-

lations in the solution. WENO and ENO schemes perform the higher-order recon-

structions by searching through a set of candidate stencils and either selecting the

smoothest reconstruction or using a weighted average of the possible choices. This

7

approach is most straightforward to apply on a structured mesh, but it is also ap-

plicable to unstructured meshes [33, 14]. A major drawback of increasing accuracy

by enlarging the computational stencil is that the solver attempts to build a high

order reconstruction using data from regions of the flow that may not be physically

relevant. Another is that synchronizing large stencils during parallel computations

requires extremely careful implementation to minimize the communication overhead

between processes. Because FV schemes only allow one DOF per element, increasing

the accuracy using a compact stencil requires a different solution strategy.

1.2.3 Compact support

The combined need for higher accuracy and increased parallelization has driven

massive interest in methods that achieve higher-order accuracy by increasing the in-

ternal degrees of freedom within a cell. In the late 1980s and 1990s, researchers

began to employ finite element (FE) methods for solving fluids problems. Over time,

these evolved into schemes such as the discontinuous Galerkin (DG) [6], spectral dif-

ference (SD) [57], and spectral volume (SV) method [56]. These schemes are well

suited for parallel computations on unstructured meshes since they all are capable of

generating higher-order reconstructions without extending the computational stencil

beyond the neighboring cells. DG schemes are the most popular FE-type scheme

within the research community. While a great deal of effort has been concentrated on

DG schemes, there are two classes of problems preventing their widespread adoption

for industrial applications. The first is a lack of robustness [2], which is closely related

to the absence of sufficient limiters for nonlinear problems [22]. The second, and more

fundamental issue, is their high memory requirement and computational expense. A

DG scheme stores enough DOF within each cell to reconstruct basis functions of arbi-

trary order. Advancing the solution in time requires calculating the time-dependent

coefficients for the basis functions, which involves inverting large matrices. A recent

8

variant of the DG method, hybridizable discontinuous Galerkin [37] schemes, has at-

tempted to reduce the memory overhead by sharing some DOFs between cells, but

the formulation still leaves independent DOFs at the mesh vertices, precisely where

there is most to gain from sharing between elements. Recognizing this deficiency, em-

bedded discontinuous Galerkin methods [38] are formulated such that data are also

shared at mesh vertices. These DG variants resolve the issue of repeating the DOF

within elements, yet both hybirdizable and embedded discontinuous Galerkin schemes

require implicit time marching, and thus incur a higher computational overhead than

the single-step, explicit AF method.

Before FE approaches dominated the research involving compact stencils, the issue

of generating higher-order solutions from local data was recognized and addressed by

van Leer [53]. In his 1977 paper, he presented a series of linear and nonlinear advection

schemes that evolved not only the cell-average value but also a solution gradient or

edge value. He then used the extra degrees of freedom to increase the accuracy of

the solution. A key aspect of the scheme was that the solution reconstruction he

used was C0 continuous at the cell interface, meaning DOF could be shared between

elements. Furthermore, the continuous solution meant that finding the interface value

did not require solving a Riemann problem. Despite these advantages, the prevailing

thought at the time was that storing edge values in addition to conserved quantities

and solving for each independently was simply too expensive for the computers of

the era. The idea was largely abandoned although aspects of it later showed up in

schemes like the piecewise parabolic method (PPM) [7]. Thirty-five years later, we

can now look back and see that the method he simply referred to as Scheme V has

many of the features that are lacking in modern production codes. The independent

edge updates, third-order accuracy, and compact stencil provide a very attractive

foundation around which to build a new computational method.

9

1.3 Active flux description

Active flux schemes provide a flexible and powerful framework for solving conser-

vation laws. The name of the scheme is a direct reference to the fact that interface

values are updated independently from conserved quantities. In a traditional scheme,

the flux at an interface is determined by the solution to a Riemann problem using

reconstructions or interpolations of conserved variables as the input. We refer to

this type of update as a passive flux because the interface quantity is derived from

conserved quantities. An active flux is computed directly from edge values in a way

that depends both on previous cell values and previous edge values. Importantly, the

interface update does not need to be conservative. The only requirement on fluxes is

that they are consistent, so any convenient method can be used to generate a point

update. As long as we consistently generate flux values from the interface data, we

are able to obtain a conservative scheme. Therefore, the freedom to choose an edge

update method allows us to build in the appropriate multidimensional physics rather

than limit ourselves to solving a one-dimensional Riemann problem. This powerful

idea opens a wide range of new possibilities for solving conservation laws.

The active flux scheme is third-order accurate by construction. The internal

data are represented by parabolic functions, meaning the scheme will be exact for

quadratic data, provided the edge fluxes are calculated to third-order accuracy. Con-

sequently, AF schemes have less severe oscillations around flow discontinuities than

typical second-order FV schemes. Additionally, AF schemes do not use data external

to the element to update quantities within the cell, so they have a very compact

stencil. Another advantage of active flux schemes is that they store the data required

to define and update a given reconstruction very economically. Figure 1.1 illustrates

the data storage for a one-dimensional and two-dimensional elements. Cell-averages

are stored at the centroid of each cell with point values at face centroids and vertices.

Because cells share data between faces and vertices, the scheme is able to achieve

10

!
!
!
!
!
!
!

ūn+1
j

n

n + 1/2

n + 1

t

x

(a) One dimension

!

n

n+1/2

n+1
y

x

t

ūn
j

(b) Two dimensions

Figure 1.1: Data storage locations for AF scheme

savings over other higher-order approaches. These savings become even more appar-

ent in higher dimensions. In one dimension, active flux schemes require two DOF for

third-order accuracy, and in either two or three dimensions, the AF method requires

approximately three DOF per cell for the same level of accuracy. This is a large

memory savings over other compact schemes such as DG.

Regardless of the conservation law, the AF method has the same basic procedure.

Point values are updated at the interfaces, then average fluxes are constructed from

the point-data and used to advance the conserved cell-average. Algorithm 1.1 lists

how this update procedure requires one loop through the cells and one loop through

the faces in the domain. The only difference between conservation laws is the mul-

tidimensional method used to update the interface values and how those interface

values are used to calculate a flux. It is important to note that the AF method is

a single-step, fully discrete scheme, meaning that the solution improves as the time

step approaches its theoretical maximum. The AF scheme is also time-accurate and

inherently capable of solving unsteady flows.

1.4 Thesis overview

The objective of this dissertation is to develop active flux schemes for linear model

problems used to study the elemental behavior of fluids. It also includes a brief

11

Algorithm 1.1 Core active flux algorithm

for cell = 1, cells in domain do

Calculate point-updates at flux quadrature points (defined in Chapter II)

end for

for face = 1, faces in domain do

Calculate the average flux

Add/subtract the proper residual value to the neighboring cells

end for

Store n+ 1 values as n values for next time step

discussion of nonlinear equations and limiting. Throughout this work, the emphasis

is placed on strictly implementing the theory rather than maximizing computational

efficiency. I have indicated possible shortcuts/approximations wherever possible.

Chapter II introduces the AF discretization and implements the method for the

familiar linear advection equation. Nonlinear extensions are discussed in Chapter III

as well as a novel approach to solution limiting that maintains the compact stencil of

the scheme. The truly multidimensional nature of the method is illustrated in Chapter

IV, which details the AF method applied to the linear acoustics equation. That

chapter also demonstrates how operator splitting can be used to combine different

types of AF solves for more complex equations. Chapter V provides a summary of

the work and details the major contributions to the field. The dissertation concludes

with suggestions for future avenues of research.

12

CHAPTER II

Linear Advection

This chapter develops the active flux method for the scalar advection model equa-

tion given in Eq. (2.1).

∂u

∂t
+∇ · (uλ) = 0 (2.1)

The two-dimensional conservation form is:

∂u

∂t
+
∂f(u)

∂x
+
∂g(u)

∂y
= 0 (2.2)

where f(u) = au and g(u) = bu. In general, a and b, which represent the components

of the wave speed λ, may be a function of the spatial coordinates x and y. We’ll

begin with the one-dimensional forumulation where b = 0. This simplest case will be

used to highlight the active flux scheme’s error properties and grid independence. We

then increase the complexity by developing the two-dimensional discretization and

demonstrate the method for cases when the two-dimensional wave speed is constant

throughout the domain and the cirucular advection case for which the wave speed is

a function of the distance from the center of rotation.

13

2.1 One-dimensional discretization

2.1.1 Reference element

We seek a general representation of the solution within a given cell j, illustrated in

Fig. 2.1, which has a width ∆x. Working with nondimensional coordinates simplifies

the definition of the solution within an element. The cell coordinates are normalized

such that the left (j − 1/2) edge is at ξ = 0 and the right edge is ξ = 1. We then

have the following mapping from physical coordinates to reference coordinates:

x = xj−1/2 + ξ∆x

ξ =
x− xj−1/2

∆x

(2.3)

The solution to the hyperbolic partial differential equation (PDE) Eq. (2.1) is constant

along special curves called characteristics. For one-dimensional linear advection, the

characteristics are straight lines with a slope of 1/a on a x-t plot. Therefore, we can

find the solution at any interface coordinate ξi and time t by tracing the characteristic

back in time to a point when the solution is known. We define this point as the

characteristic origin ξ0. The conservation law tells us that the change in the solution

between any two points is due to the flux through the end points [23]. The case for

a > 0 is illustrated in Fig. 2.1. Here, the solution between ξ0 and ξi changes as a

result of the flux through ξi. The region is bounded by the solution characteristic

originating at ξ0 and terminating at (ξi, t). Note that this is a general illustration of

the concept. In practice, the interface coordinate ξi will either be the left (ξ = 0) or

right (ξ = 1) interface.

2.1.2 Internal reconstruction

The accuracy of the vertex update and average flux calculation is determined by

the representation of the solution within the cell, i.e. the internal reconstruction. By

14

!

∆t

∆x

ξ0

ξ = 0

 j - 1/2 j + 1/2

ξ = 1

ξi

t

 n

 n+1

Figure 2.1: Conserved region for cell j

choosing parabolic representations, we guarantee the scheme is exact for quadratic

data, and achieve third-order spatial accuracy. A quadratic is uniquely determined

by three pieces of information. The cell averages represent the conserved quantity in

each element, so this is a natural choice for one of the quadratic parameters. The left

interface value and right interface value provide the other two degrees of freedom. The

resulting quadratic can be written in several equivalent forms. We choose to follow

the standard finite element convention and represent the solution as a summation of

basis functions.

u(ξ) =
3∑
i=1

ciφi(ξ) (2.4)

The indices are ordered left to right so that index 1 corresponds to the j − 1/2

interface, 2 the midpoint, and 3 the j + 1/2 interface. Standard one-dimensional,

Lagrange basis functions are used, valid over the interval ξ ∈ [0, 1]. The coefficients

and basis functions defining the reconstruction are listed in Table 2.1.

Table 2.1: Basis functions and coefficients for 1D reconstruction

Index ci φi

1 uj−1/2 (2ξ − 1) (ξ − 1)

2 1
4

(
6ūnj − unj−1/2 − unj+1/2

)
4ξ (1− ξ)

3 uj+1/2 ξ (2ξ − 1)

15

2.1.3 Updates

Recall that in an active flux scheme, the cell averages and edge point values are

independently updated. The conserved quantities are evolved through flux functions

constructed from the edge values at different time levels. A key advantage of the AF

method is that the point updates do not need to be conservative, so any convenient

method can be used. Our model problem is simple enough that there is a closed form

for the origin of the solution characteristic passing through the interface ξi at time

t. The linear nature of the characteristics for linear advection means the following

relationship is valid:

at = (ξi − ξ0) ∆x (2.5)

Rearranging to solve for the characteristic origin:

ξ0 = ξi −
at

∆x
(2.6)

The updated vertex value is simply u(ξ0).

There are multiple ways to calculate the flux. We need only choose the most

convenient form that meets our requirements. One method is to find the exact flux

expression by integrating the conservation law over the shaded, triangular region in

Fig. 2.1.

∆x

ξi∫
ξ0

[u(ξ)− u(ξ0)] dξ =

∆t∫
0

[f(t)− f(u(ξ0))] dt (2.7)

Rearranging Eq. (2.7), and dividing by the time interval leads to a general expression

for the average flux, f̄ , at the interface ξi.

f̄ =
1

∆t

∆t∫
0

f(t)dt =
∆x

∆t

 ξi∫
ξ0

u(ξ)dξ − (ξi − ξ0)u(ξ0)

+ f(u(ξ0)) (2.8)

16

Substitution of Eq. (2.6) into Eq. (2.8) results in the familiar result that the average

flux in time is equal to the integration of the solution in space over the domain of

influence.

f̄ =
∆x

∆t

ξi∫
ξ0

u(ξ) dξ (2.9)

The average flux may also be determined by employing a sufficiently accurate numer-

ical integration technique, such as Simpson’s rule, which is exact for our quadratic

representation of the solution. In this case, we need both the ξn+1
0 value that in-

tersects the interface at t = ∆t and an intermediate value ξ
n+1/2
0 value that crosses

the interface at ∆t/2. Once the two characteristic origins have been determined, the

average flux is

f̄ =
1

6

[
f(u(ξi)) + 4f(u(ξ

n+1/2
0)) + f(u(ξn+1

0))
]

+O(∆t4) (2.10)

In this case, both forms of the flux expression are mathematically equivalent, but

Eq. (2.10) lends itself more easily to a general algorithm because a single function

can compute the flux for various conservation equations if the basis coefficients and

characteristic origin are available.

2.1.4 One-dimensional analysis and results

For one-dimensional linear advection, the characteristic origin is a function of the

Courant number ν = a∆t/∆x. The expressions below give the characteristic origin

at the n+ 1/2 and n+ 1 time levels.

ξ
n+1/2
0 = ξi −

ν

2
(2.11)

ξn+1
0 = ξi − ν (2.12)

17

When the wave speed is positive, we only need to consider the right interface (ξi = 1)

in every cell. As expected, we recover van Leer’s original vertex update equation for

Scheme V [53] by substituting Eq. (2.12) into the one-dimensional Lagrange basis

functions in Table 2.1.

un+1
j+1/2 = ν (3ν − 2)unj−1/2 + 6ν (1− ν) ūnj + (1− ν) (1− 3ν)unj+1/2 (2.13)

The flux function can be calculated from Eq. (2.10):

f̄j+1/2 = a
[
ν (ν − 1)unj−1/2 + ν (3− 2ν) ūnj + (1− ν)2 unj+1/2

]
(2.14)

The cell averages are updated conservatively from the flux functions:

ūn+1
j = ūnj −

∆t

∆x

(
f̄j+1/2 − f̄j−1/2

)
(2.15)

Substituting the flux functions for the left and right interface into Eq. (2.15) results

in the full update for the conserved quantity.

ūn+1
j = ν2 (ν − 1)unj−3/2 + ν2 (3− 2ν) ūnj−1 + ν (1− ν)unj−1/2

+ (1− ν)2 (1 + 2ν) ūnj − ν (1− ν)2 unj+1/2

(2.16)

The update equations Eq. (2.13-2.16) reveal several notable properties of the scheme.

First, it is obvious that the vertex update un+1
j+1/2 is exact for Courant numbers of

ν = 1 and ν = 0. Second, the additional degrees of freedom within each cell double

the frequencies that can be resolved by the scheme compared to standard finite-volume

methods.

The independent updates for the flux values and conserved variable mean that the

amplification factor, derived from a Fourier analysis of the method, is now a matrix

18

rather than a scalar.  ūj

uj+1/2


n+1

= G

 ūj

uj+1/2


n

(2.17)

We repeat the amplification matrix reported by van Leer for Scheme V[53]:

G =

g11 g12

g21 g22


g11 = 1 + e−iφ

(
1− eiφ

)
ν2(3− 2ν)

g12 = e−2iφ
(
1− eiφ

)
(1− ν)ν

[
eiφ(1− ν)− ν

]
g21 = 6ν(1− ν)

g22 = (1− 2ν)− ν(2− 3ν)
(
1 + e−iφ

)

(2.18)

The two eigenvalues of this matrix correspond to the damping on the true solution

and spurious mode of the scheme. Because the spurious mode is quickly damped,

plots of the eigenvalue corresponding to the true solution reveal the diffusion and

dispersion properties of the scheme.

We compare the AF scheme to a third-order FV scheme of Warming, Kutler, and

Lomax [58] to highlight the advantages of the scheme over traditional finite volume

methods. The Warming, Kutler, Lomax (WKL) scheme uses a larger stencil to achieve

the same order of accuracy.

ūn+1
j = ūnj −

ν

2
(ūnj+1 − ūnj−1) +

ν2

2
(ūnj+1 − 2ūnj + ūnj−1)

+
ν(1− ν2)

6
(−ūnj−2 + 3ūnj−1 − 3ūnj + ūnj+1)

(2.19)

19

The amplification factor for the WKL scheme is:

gWKL = 1− 1

2
ν − ν2 +

1

2
ν3

−
[

1

6
ν (ν − 1) +

1

2
ν (ν + 1)

]
(ν − 2) cosφ

+
1

6
ν (ν − 1) (ν + 1) cos 2φ

− i
{[

1

6
ν (ν − 1)− 1

2
ν (ν + 1)

]
(ν − 2) sinφ

+
1

6
ν (ν − 1) (ν + 1) sin 2φ

}
(2.20)

Figure 2.2 shows that the AF scheme has a much lower amount of diffusion than a

standard third-order FV scheme at all frequencies. Note that the additional degrees

of freedom within the cell allows the AF scheme to resolve frequencies up to φ = 2π,

compared to a maximum frequency of φ = π for the FV scheme. The AF scheme

also represents the wave speeds more faithfully than the finite volume scheme, as

illustrated in Fig. 2.3 where values close to zero indicate no error.

The amplification factor for a scheme, from which the diffusion and dispersion

factors are derived, indicate how a scheme behaves from one iteration to the next, but

a more practical method to evaluate a scheme is to examine the level of dissipation

after a fixed amount of n iterations. The number of iterations is determined by

calculating the time t required for the wave to move m times its wave length. We can

further parameterize the problem by specifying the number of grid points per wave

length as k. Thus the distance traveled by the wave is l = mk∆x. The required time

to travel this distance is determined by the wave speed a, and dividing the distance

expression by the speed gives us the time t = l/a = mk∆x/a. Finally, the number

of iterations is found by dividing this time by the time step ∆t. The final expression

for the dissipation after our parameterized time is given below.

|g|n = |g|mk∆x
a∆t = |g|mkν (2.21)

20

0 pi/2 pi 3/2 pi 2 pi0

0.2

0.4

0.6

0.8

1

φ

|G
|

(a) ν = 0.25

0 pi/2 pi 3/2 pi 2 pi0

0.2

0.4

0.6

0.8

1

φ

|G
|

(b) ν = 0.45

0 pi/2 pi 3/2 pi 2 pi0

0.2

0.4

0.6

0.8

1

φ

|G
|

(c) ν = 0.55

0 pi/2 pi 3/2 pi 2 pi0

0.2

0.4

0.6

0.8

1

φ

|G
|

(d) ν = 0.75

Figure 2.2: Diffusion comparison between AF and third-order FV scheme

We set our target distance for the wave to travel as ten times its own wave length.

Twelve points per wavelength is generally accepted among industry practitioners of

CFD to be the number of points required to resolve flow field features. Prior analysis

by Thomas, who showed that second and third-order FV schemes required 11 to

18 points per wavelength to compute a solution with less than 1% dissipation at a

Courant number of 3/4, is consistent with this observation [50]. A distance value of

ten times the wavelength with a resolution of twelve points per wavelength makes

the exponent on the amplification factor 120/ν. Figure 2.4 plots the AF dissipation

for these parameters against the third-order FV scheme as well as the second-order

21

0 pi/2 pi 3/2 pi 2 pi−1

−0.5

0

0.5

1

φ

1−
|ε φ

|

(a) ν = 0.25

0 pi/2 pi 3/2 pi 2 pi−1

−0.5

0

0.5

1

φ

1−
|ε φ

|

(b) ν = 0.45

0 pi/2 pi 3/2 pi 2 pi−1

−0.5

0

0.5

1

φ

1−
|ε φ

|

(c) ν = 0.55

0 pi/2 pi 3/2 pi 2 pi−1

−0.5

0

0.5

1

φ

1−
|ε φ

|

(d) ν = 0.75

Figure 2.3: Dispersion comparison between AF and third-order FV scheme

Lax-Wendroff (LW) scheme. The figure shows the AF scheme has a much lower level

of dissipation than the FV scheme for all Courant numbers and also outperforms the

LW scheme over all but the lowest Courant numbers.

Another property of the AF scheme is that its compact stencil makes it more

insensitive to mesh sizing irregularities than schemes that use more points in their

update formula. This is clearly illustrated in Fig. 2.5, which compares the third-

order FV and AF solutions for a Gaussian pulse after one cycle through the mesh.

The nodal locations were randomly perturbed by ejh, where ej is a random variable,

uniformly distributed from [−d, d], and h is the baseline mesh spacing of 0.0125. As

22

0 0.2 0.4 0.6 0.8 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ν

|G
|12

0/
ν

AF
3rd Order FV
LW

Figure 2.4:
Dissipation of sine wave with frequency φ = π/6, represented by twelve
cells after traveling ten wave lengths

the perturbation increases, the ratio of minimum to maximum cell spacings increases.

The figure shows that the AF method has much less dissipation on the random meshes

than the FV scheme and that the maximum peak loss is only 0.82% for the AF scheme

compared to 27% for the WKL scheme.

The AF scheme performs similarly well when the initial solution is discontinuous.

Figure 2.6 shows the AF solutions on a uniform and randomized mesh, where Zalesak’s

waveform was used as the initial condition. The wave consists of a square wave, a

raised cosine, a Gaussian, and a half-ellipse, all of which pose different challenges for

an advection scheme. The figure shows that there are only minor differences between

the uniform and random mesh, even for this extreme case where the deviation is

±31/64h.

23

Δxmax/Δxmin

Pe
ak

 V
al

ue

5 10 15 20 250.7

0.75

0.8

0.85

0.9

0.95

1

Exact
AF
3rd Order FV

Figure 2.5: Gaussian peak value after one cycle through randomly-spaced mesh

24

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

Iteration: 300

x

u

(a) Uniform mesh

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

Iteration: 1000

x

u

(b) Random mesh

Figure 2.6: Zalesak waveform after one cycle through mesh

25

2.2 Two-dimensional discretization

2.2.1 Reference element

In two dimensions, the mapping from physical space to reference space is slightly

more complex. Any point x in the plane of the triangle can be expressed as a combi-

nation of the vectors forming the element edges. Assuming counterclockwise ordering

of the nodes, we can write:

x = x1 + ξ (x2 − x1) + η (x3 − x1) (2.22)

Or rewriting as matrix:

x = x1 + Jξ (2.23)

where the Jacobian matrix is defined:

J =

x2 − x1 x3 − x1

y2 − y1 y3 − y1

 (2.24)

!

1

2

3

x

x

y

(a) Physical space

!

1 2

3

ξ !

ξ!

η!

(b) Reference space

Figure 2.7: Element mapping

26

2.2.2 Reconstruction

The six degrees of freedom provided by the triangle’s vertices and edges are suf-

ficient to define a quadratic surface, but the average of the resulting reconstruction

is not guaranteed to match the average of the initial data over the element area. To

ensure this property, which is required for a conservative scheme, we add a third-order

bubble function to the six p = 2 Lagrange basis functions. We do not want the third-

order function to influence the edge values, so the only non-zero p = 3 coefficient

is the center value, labeled “7” in Fig. 2.8. While it is obvious that the coefficients

!

!�

�

7

1

2

3

4

5

6

Figure 2.8: Node placement for AF basis functions

multiplying the quadratic basis functions should be the appropriate edge or vertex

value, we have to carefully choose the bubble coefficient, c7, to recover a cell average

consistent with the given data. We start with the definition of the average for element

j.

ūj =
1

A

∫∫
Ωj

u(x, y) dΩ

=
J

A

1∫
0

1−ξ∫
0

u(ξ(x, y), η(x, y)) dη dξ

= 2

1∫
0

1−ξ∫
0

[(
6∑
i=1

uiφi

)
+ c7φ7

]
dη dξ

(2.25)

27

We can rearrange this equation to solve for the unknown bubble coefficient. The

complete set of basis functions and coefficients is listed in Table 2.2.

Table 2.2: Basis functions and coefficients for 2D reconstruction

Index ci φi

1 u1 (1− ξ − η) (1− 2ξ − 2η)

2 u2 4ξη

3 u3 ξ (2ξ − 1)

4 u4 4η (1− ξ − η)

5 u5 η (2η − 1)

6 u6 4ξ (1− ξ − η)

7 (bubble) 20
9

[
ūj − 1

3 (u2 + u4 + u6)
]

27ξη (1− ξ − η)

2.2.3 Updates

Once the reconstruction has been fully defined, we can develop expressions for

the nodal updates, which are simply the function value at the characteristic origin.

Similar to the one-dimensional case, we exploit the fact that the characteristics are

straight lines.

tλ = J (ξi − ξ0) (2.26)

Solving for the origin:

ξ0 = ξi − tJ−1λ (2.27)

Once the origin has been calculated, it can simply be used in the reconstruction

function to find the solution at a given time.

u(ξi, t) = u(ξ0) (2.28)

A two-dimensional version of Simpson’s numerical integration rule is used to es-

timate the average flux through an interface, where Eq. (2.28) is used to find the

28

!

n

n+1/2

n+1

L
M

R

Ωj

y

x

t

Figure 2.9: Nomenclature for 2D flux calculation

required point values.

f̄ =
1

9

[
1

4

(
fnL + fnR + fn+1

L + fn+1
R

)
+
(
fnM + f

n+1/2
L + f

n+1/2
R + fn+1

M

)
+ 4f

n+1/2
M

] (2.29)

The conserved variable in each cell is updated by integrating the flux around the

boundary of the element. This is equivalent to dotting the flux with the face normal

and multiplying by the face length for all three faces of the cell.

ūn+1
j = ūnj −

∆t

Ωj

3∑
m=1

(
f̄m · nm

)
`m (2.30)

Note that each face makes the same contribution to the cells neighboring the interface,

but with opposite signs due to the unique normal direction. Therefore, it is more

efficient to perform the calculation within a loop over the mesh faces, changing the

sign according to the normal direction. The point-update procedure used within the

cell-loop is described by Algorithm 2.1.

2.2.4 Time step restriction

The AF point update formulas assume that characteristics drawn backward from

a point do not cross more than one cell. This places a time step restriction on the

29

Algorithm 2.1 Point update procedure for scalar advection

for cell vertex = 1, 3 do

if ξn+1
0 lies within cell then

Update the point values at n+ 1/2 and n+ 1; Eq. (2.28)

end if

end for

if two-dimensional then

for cell edges = 1, 3 do

if ξn+1
0 lies within cell then

Update the point values at n+ 1/2 and n+ 1; Eq. (2.28)

end if

end for

end if

scheme and allows us to define a CFL condition.

∆tmax =
`min

|λ| (2.31)

This time step limitation has been implemented in a simplified form. Clearly, the

characteristics stemming from the edge midpoints are most restrictive. In Eq. (2.31),

`min is the minimum distance from an edge midpoint to the other two faces and |λ|

is the magnitude of the wave speed. We have imposed that these characteristics

will not leave the cell even if they are directed normal to the opposite face. Figure

2.10(a) illustrates the various possibilities for `min. In practice, there is only one

unique distance per cell edge. We can prove this is true by labeling the triangle as

shown in Fig. 2.10(b). Using the fact that the sub-elements containing θ1 and θ3 are

right-triangles we can write expressions for the lengths `23 and `12 connecting opposite

edges.

30

!

(a) Minimum distances from edge centers

!

�1

�3

�23

�12

�1

�3

�2

(b) Similar lengths `12 and `23

Figure 2.10: Relevant distances for CFL calculation

`23 =
`3

2
sin θ1 (2.32a)

`12 =
`1

2
sin θ3 (2.32b)

Dividing Eq. (2.32a) by the length `1:

`23

`1

=
`3

2

sin θ1

`1

(2.33)

By the law of sines:

sin θ1

`1

=
sin θ3

`3

(2.34)

Combining Eq. (2.33) and Eq. (2.34) to eliminate sin θ1, we arrive at an expression

for the length `23 that is identical to length `12 from Eq. (2.32b).

`23 =
`1

2
sin θ3 (2.35)

Therefore, we only need to check one distance per edge. The element area and one

edge length can be used to efficiently calculate the minimum normal distance between

an edge-midpoint and its opposing side. Let xE represent the edge midpoint coor-

dinate and xI represent the intersection point, with ` defining the distance between

31

!

�j

xj+1xExj

xI

�

xj�1

L

Figure 2.11: Nomenclature for minimum distance calculation

these two points. We can then use the well known formula for the area of a triangle

to derive an expression for the length L between node j + 1 and the opposite edge,

where S is the element area.

L

2
=

S

|xj−1 − xj|
(2.36)

The lengths ` and L are related because they are sides of similar triangles sharing

angle θj.

sin θj =
L

|xj+1 − xj|
=

`
1
2
|xj+1 − xj|

(2.37)

The minimum normal distance can be calculated by combining Eq. (2.36) and Eq.

(2.37) and looping over the three edge indices.

`min = min
j

(
S

|xj−1 − xj|

)
(2.38)

This minimum length can then be used in Eq. (2.31) to (conservatively) determine

the maximum allowable time step.

2.2.5 Two-dimensional linear advection

The simplest example using the two-dimensional AF algorithm is the case when

the wave speed λ = (a, b)T is constant throughout the domain. With this definition,

32

the average flux at the interface becomes:

f̄ =λ
1

9

[
1

4

(
unL + unR + un+1

L + un+1
R

)
+
(
unM + u

n+1/2
L + u

n+1/2
R + un+1

M

)
+ 4u

n+1/2
M

] (2.39)

One method to verify the two-dimensional AF method is to compute a steady-

state advection case. We prescribe a function at one boundary, advect the waveform

through the domain, and compare the solution at the exit interface once the norm of

the residual over the N cells, defined in Eq. (2.40), drops to machine zero.

‖R‖2 =

√∑N
j=1

[∑3
m=1

(
f̄m · nm

)
`m
]2

N
(2.40)

At steady state, the coordinate direction along the flow vector acts as a time-like

variable. This reduces the dimensionality of the problem, and allows us to predict

the solution at the exit interface, which should match the one-dimensional solution.

If the advection speed only has one non-zero component and the domain is square,

the solution profile at the outflow boundary should exactly match the inflow solution.

The steady-state case was run on a square mesh with dimensions [−1, 1] in the x

and y directions. The mesh consisted of 2398 randomly oriented elements. Figure 2.12

shows the steady-state solutions for a smooth Gaussian profile and the cross section

of a slotted cylinder. Each case converged to machine zero within 600 iterations, and

both show very good accuracy. The peak value for the Gaussian is only reduced 0.4%,

while the cylinder exhibits typical third-order behavior with overshoots of 4%-6%.

Another quantitative measure that the scheme is behaving correctly is to calculate

the error as the mesh is refined. The AF scheme, by construction, is third-order accu-

rate. This means that, when computing smooth solutions, the error should decrease

by a factor of eight (23) every time the relevant length scale is halved. Because the

mesh is unstructured and the Courant number varies from cell to cell, we approximate

33

x

u

-0.2 -0.1 0 0.1 0.2

0.5

0.6

0.7

0.8

0.9

1 Inflow
Outflow

(a) Gaussian

x

u

-0.6 -0.4 -0.2 0 0.2 0.4 0.6-0.2

0

0.2

0.4

0.6

0.8

1

(b) Slotted cylinder

Figure 2.12: Steady advection solutions on randomized mesh

Iteration

R
1

0 200 400 600 80010-19

10-17

10-15

10-13

10-11

10-9

10-7

10-5

10-3

Gaussian
Cylinder

Figure 2.13: Convergence of steady advection cases

the average mesh spacing as 1/
√

DOF. The error for any high-order scheme must be

computed by integrating over each element. Equation (2.41) defines the error norm,

where again N is the total number of cells, u is the computed solution after a set

34

number of iterations and U0 is the projection of the exact solution.

‖ε‖p =

[∑N
j=1

∫∫
Ωj
|u− U0|p dΩj∑N
j=1 Ωj

]1/p

(2.41)

In practice, the error integral is computed with an appropriate numerical integration

method that samples the function at M locations within an element.

‖ε‖p =

{∑N
j=1 Jj

∑M
i=1 wi |u(ξi)− U0(ξi)|p∑N

j=1 Ωj

}1/p

(2.42)

For an AF scheme the total DOF are simply the sum of the nodes, faces, and

cells in the mesh. Because nodes and faces are shared between elements, this works

out to approximately three DOF per cell. A fair comparison is to compare the AF

scheme to a DG scheme that also uses three DOF per cell. This means solving the

problem using a DG1 scheme, which uses linear (p = 1) basis functions. Figure 2.14

compares the error with respect to the initial projection for the AF scheme and a

DG1 solution computed with the XFlow solver [12], [13]. The AF scheme achieves

third-order accuracy for the smooth Gaussian profile, and performs comparably to the

DG1 code on the discontinuous slotted cylinder profile. It is important to note that

the DG1 scheme achieves third-order accuracy through superconvergence. In general,

three DOF per cell may not be sufficient to obtain third-order accuracy with the DG

scheme; only second-order accuracy is guaranteed. By contrast, the AF scheme does

not rely on superconvergence to realize third-order accuracy. Thus, if the DG scheme

is not superconverging, and therefore using p = 2 basis functions to obtain third-order

accuracy, the AF scheme will be much more efficient when computing solutions to

the same error level, assuming the two methods have similar constants on the leading

error term.

35

1/DOF1/2

|ε|
1

0.02 0.04 0.06 0.08 0.1

10-5

10-4

10-3

10-2

10-1

1st Order
3rd Order
DG1 - Cylinder
DG1 - Gaussian
AF - Cylinder
AF - Gaussian

Figure 2.14: AF error compared to DG1 scheme

Table 2.3: Linear advection convergence of Gaussian using AF and DG methods

DOF−1/2 ‖u‖1 O(L1)

Ref. Level AF DG AF DG AF DG

1 8.5436×10−2 - 3.1855×10−2 - - -

2 4.5502×10−2 - 2.2347×10−2 - 0.5627 -

3 2.3119×10−2 2.3531×10−2 1.1293×10−2 1.3503×10−2 1.0080 -

4 1.1681×10−2 1.1785×10−2 2.9386×10−3 3.2609×10−3 1.9720 2.0549

5 5.8798×10−3 5.9061×10−3 5.0247×10−4 5.4153×10−4 2.5729 2.5988

6 2.9379×10−3 - 6.5412×10−5 - 2.9385 -

2.2.6 Two-dimensional circular advection

An intermediate step between linear advection, which has a constant wave speed,

and nonlinear advection, in which the wave speed depends on the solution, is circular

advection. In this case the wave speed is a function of the distance from the center

36

of rotation (x0, y0).

λ(x, y) = ω

y0 − y

x− x0

 (2.43)

The velocity function described by Eq. (2.43) represents a counter-clockwise rotation

with angular velocity ω. The flexibility of the AF method means that there is very lit-

tle difference between this case and the constant speed calculation. The non-constant

speed can be handled by accounting for the velocity variation in the flux function.

f̄ =
1

9

{
λL

[
1

4

(
unL + un+1

L

)
+ u

n+1/2
L

]
+ λM

(
unM + 4u

n+1/2
M + un+1

M

)
+λR

[
1

4

(
unR + un+1

R

)
+ u

n+1/2
R

]} (2.44)

Figure 2.2.6 shows that the AF scheme maintains third-order accuracy for problems

with varying wave speeds.

1/DOF1/2

|ε|
1

10-3 10-2 10-1

10-5

10-4

10-3

10-2

3rd Order
AF

Figure 2.15: AF error for circular advection case

37

Table 2.4: Circular advection convergence

Ref. Level DOF−1/2 ‖u‖1 O(L1) ‖u‖2 O(L2)

1 8.5436×10−2 1.0054×10−2 - 2.3134×10−2 -

2 4.5502×10−2 9.2948×10−3 0.1246 3.2855×10−2 -0.5568

3 2.3119×10−2 5.1388×10−3 0.8752 2.9425×10−2 0.1628

4 1.1681×10−2 2.2767×10−3 1.1925 1.6113×10−2 0.8821

5 5.8798×10−3 5.2578×10−4 2.1351 4.4937×10−3 1.8603

6 2.9379×10−3 7.7843×10−5 2.7531 7.4098×10−4 2.5979

7 1.4741×10−3 1.0370×10−5 2.9228 1.0042×10−4 2.8978

We have demonstrated many of the basic properties and advantages of the AF

method in this chapter. The one-dimensional analysis of the AF scheme shows that it

has superior error properties, especially compared to FV schemes. Its compact stencil

invites comparisons with FE-based methods such as DG. The two-dimensional linear

advection results demonstrate that the method performs similarly to DG1 scheme

without relying on superconvergence for third-order accuracy. The AF scheme is

able to achieve this accuracy efficiently by sharing edge and vertex values between

elements. Finally, the circular advection results demonstrate the flexibility of the

approach and show the good results are not limited to constant wave speeds. To-

gether, the linear advection results show that the AF method is a capable scheme,

and validate that the method has all that is required to tackle more complex cases.

38

CHAPTER III

Nonlinear Advection

When the advection speed is a function of the local velocity, the problem becomes

nonlinear. In this case, the solution characteristics may intersect, creating shock

waves, or diverge, creating expansions. The inviscid Burgers’ equation is a simple,

scalar equation that may be used to evaluate how a scheme treats these features.

∂u

∂t
+ u

∂u

∂x
= 0 (3.1)

Rewriting in conservation form:

∂u

∂t
+

∂

∂x

(
1

2
u2

)
= 0 (3.2)

The addition of flow discontinuities necessitates the use of solution limiters that con-

trol the oscillations created by these features. The flexibility of the AF method

means that there are several possible techniques that can be employed to solve non-

linear problems. In this chapter, we investigate one possible method and detail an

approach to limiting that we have found quite useful.

39

3.1 Burgers’ equation

The edge updates for the linear advection equation are directionally biased. Each

point is updated from only one of the two cells sharing that interface. When solving

Burgers’ equation, the cells on either side of the interface may contribute to the point

update. It is important then for the update procedure to properly sum the individ-

ual contributions from every cell because the solution characteristics intersecting an

update point can originate from multiple cells. The update procedure we follow in

this chapter, which is one of several possibilities, is to write the element contributions

to the interface as a correction to the vertex value at time n. The expression for the

point-value updates is straightforward, and we use Eq. (2.8) to develop an expression

for the flux signal.

δu = u(ξ0)− u0(ξi) (3.3a)

δf̄ =
∆x

3∆t
(ξi − ξ0)

[
u(ξi)− 2u(ξ0) + αξiξ0 +

β

2
(ξi + ξ0) + c1

]
+ f(u(ξ0))− f(u0(ξi))

(3.3b)

where u0 is the unlimited solution reconstruction at time n and the variables α and

β are combinations of the one-dimensional basis coefficients.

α = 2 (c1 − 2c2 + c3)

β = − (3c1 − 4c2 + c3)

(3.4)

To find update equations for Burgers’ equation, we follow the same procedure as the

linear case with one notable exception. Although the solution characteristics are still

straight, the wave speed λ is no longer constant. It is a function of the flow field,

specifically λ = u(ξ0). Combining Eqs. (2.4-2.5) yields a quadratic equation in ξ0

40

which has the solutions given below.

ξ0 =
2
(
ξi − c1

∆t
∆x

)
(
β ∆t

∆x
+ 1
)
±
√(

β ∆t
∆x

+ 1
)2

+ 4α ∆t
∆x

(
ξi − c1

∆t
∆x

) (3.5)

The characteristic origin defined in Eq. (3.5) presents two primary challenges: select-

ing the proper solution branch and ensuring that the origin is real. Closely examining

the solution characteristics for an example problem can help make sense of Eq. (3.5).

Take a moving shock problem for which the left state is uL = 1.0 and the right

state is uR = 0.25. If we choose to look at a moment in time when the shock

is positioned within the cell such that the cell average is ūj = 0.3, we have the

quadratic reconstruction shown in Fig. 3.1(a). The characteristic origin equation,

however, does not account for neighboring information, so from the perspective of

the mathematics, the quadratic reconstruction extends beyond the cell as illustrated

in Fig. 3.1(b). The solution characteristics resulting from these two reconstructions

are illustrated in Fig. 3.1(c) and Fig. 3.1(d), where the horizontal axis has been limited

to the left and right cell interface. The dashed lines show characteristics originating

outside of the cell, while the solid lines show the characteristics resulting from the

parabolic reconstruction from ξ = 0 to ξ = 1. The non-physical picture shows that

external characteristics and internal characteristics meet at the right interface. The

two lines that intersect at every point in time at ξ = 1 correspond to the two solution

branches for Eq. (3.5). The relevant solution for the origin ξ0 is the characteristic

that originates within the cell. In other words, we seek the solution branch that lies

closest to the interface of interest. Whether we are finding the origin for the left

interface, at which ξi = 0, or the right interface where ξi = 1, the difference between

the two solution branches is solely determined by the denominator. Assuming the

term beneath the square root is positive, it is clear from Eq. (3.5) that the positive

solution branch maximizes the denominator and therefore minimizes the distance

41

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ξ

u

(a) Reconstruction for domain

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ξ

u

(b) Reconstruction neglecting neighbors

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

ξ

(c) Physical characteristics for shock

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

ξ

(d) Non-physical characteristics

Figure 3.1: Characteristics for shock problem; uj−1/2 = 1.0, ūj = 0.3, uj+1/2 = 0.25

between the interface and the characteristic origin. Therefore it is the positive branch

that describes the characteristic origin closest to the test interface. Although we can

deduce which is the proper solution branch, there is no guarantee that the radicand

is positive and the origin is a real value. We enforce positivity of the term as part of

a holistic limiting approach that addresses the major issues that arise from Burgers’

equation.

3.2 Limiting

We seek a limiting strategy that eliminates overshoots in the conserved variables

without being overly dissipative. We also want to develop a limiter that only uses

42

information local to a single cell, maintaining a compact stencil. The AF method gives

us the freedom to modify the left and right edge values as long as we do not alter

the cell average. Graphically representing the possible reconstructions for an element

makes it easier to determine cases when the data may be suspect and identify methods

to modify the data to produce a desired result. One general way of illustrating all the

possible reconstructions for a given cell is to hold the cell average constant and plot the

values at the right interface versus the values at the left interface. For example, the

cell average for a linear reconstruction is defined as ūj = 1/2
(
uj+1/2 + uj−1/2

)
. This

would be represented as the line uR = −uL + 2uM on the graph, where uL = uj−1/2,

uM = ūj, and uR = uj+1/2.

At its heart, a limiting strategy comes down to deciding when to be skeptical of

a solution and what to do when you don’t trust the results. We choose to accept the

general shape of a given reconstruction, measured by the ratio of the curvature to

the gradient. This constrains the possible limited reconstructions to the straight line

formed between the original data point (uL0, uR0) and the point (uM , uM), which is

the first-order representation of the conserved data. We also need to define regions

where the reconstruction is not acceptable. One such region is clear from Eq. (3.5),

where negative values of the radicand will lead to complex values for the characteristic

origin. A second region is the set of left and right values that produce an internal

extremum that exceeds an acceptable value, for example the maximum (or minimum)

of the left edge value, right edge value and cell average. We also want to avoid

reconstructions that lead to intersecting characteristics, which produces a shock in

the cell that invalidates the form of the characteristic origin equation given in Eq.

(3.5). A final constraint is that the vertex updates from each cell do not give rise to

an interface flux that creates a new local extremum.

Taken together, this set of constraints form the basis for a shape-preserving limiter.

The main objective of the shape-preserving limiter is to select left and right edge

43

values such that the resulting reconstruction has the following properties:

1. Characteristics do not intersect (no shock within cell)

2. Characteristic origin is real

3. Reconstruction extremum is bounded by max (uL, uM , uR) when curvature is

positive and min (uL, uM , uR) when curvature is negative

4. Vertex updates do not create new extremum

The first property defines a line where the left, right, and cell average values lead

to a reconstruction that has characteristics that intersect at t = ∆t. The second

and third properties are represented by ellipses, illustrated in Fig. 3.2. We term the

reconstruction defined by the unmodified data the natural reconstruction. The line

between the natural reconstruction point and the first-order reconstruction may be

parameterized with the equation below, where τ = 0 is the original point (uL0, uR0)

and τ = 1 is the constant (flat) reconstruction point (uM , uM).

τ =
uL − uL0

uM − uL0

=
uR − uR0

uM − uR0

(3.6)

The intersections between the shape-preserving line and the features that define

undesirable behavior lead to a set of finite choices for the limited reconstruction. Each

intersection between an ellipse or shock formation line has an associated τ value. The

methods for finding the intersections and their associated τ values are discussed in

Appendix B. The most conservative choice is to choose the value closest to the first-

order representation, but this may be overly dissipative. Figure 3.3 presents one

possible algorithm that determines the minimum amount of limiting that eliminates

overshoots. Within the flow chart, the intersection with the shock formation line

is τs.f., the intersection with the bounded extremum ellipse is τb.e., the real ellipse

44

−0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

1.5

uL

u
R

Shock formation tf =
∆t

Linear reconstructionLimited extremum

Complex ξ0

(uM, uM)

(uL0, uR0)

Figure 3.2: Limiting diagram for shock; uL0 = 1.5, uM = 0.775, uR0 = −1.1

intersection point is τreal, the first-order point (uM , uM) is τflat, and the point on the

shape-preserving line that corresponds to the maximum signal value is τsig. Notably,

for the simpler case of linear advection, the characteristics will always be real and

will not intersect. This leaves only the left-hand of the flow chart pictured in Figure

3.3. Additionally, the only feature appearing in the limiting diagram, Figure 3.2, will

be the limited extremum ellipse. When used with either linear advection or Burgers’

cases, the limiter algorithm systematically determines when it is necessary to limit

and if so, what the left and right states should be to produce the desired result.

3.3 Test cases

The simplest way to evaluate a limiter is to monitor the cell averages for new

extrema. In addition to looking at the cell averages, an additional measure of the

45

	

Shock or
complex origin?

s.p. line
intersects real

ellipse?

Real ellipse
intersection

creates shock?

τreal > τb.e.

Yes

Yes

Yes

No

Yes

No

Yes

No Linear
data?

Bounded
extremum?

Extremum
outside the cell?

No

No

No

No

No

τs.f. > τb.e. τ*=τb.e.
	

τ*=τs.f.
	

τ*=τflat
	

τ*=τreal
	

τ*=τsig

τs.f.= 0

	

τ*=
max(τ*,
 τs.f.)	

Keep
natural
recon.

τlim=min(τ*,τsig,τb.e.,τflat)

Yes

Yes

Yes

Figure 3.3: Limiter algorithm

46

limiter’s effectiveness is to plot the time history of the fluxes. The exact solution

for Burgers’ equation can be used to find the cell averages at any point in time.

With this information, we can calculate the flux difference across each cell in the

one-dimensional domain, assuming forward Euler time integration.

Fj−1/2 − Fj+1/2 =
∆x

∆t

(
ūn+1
j − ūnj

)
(3.7)

Equation (3.7) holds for each of the N cells in the domain and therefore defines a

linear system that can be solved to find the expected flux at every edge. For simplicity,

we assume equal spacing. In order to close the system, we set the flux at the right

edge of the domain to the analytical flux calculated with the conserved value, which

is valid as long as the right-most cell average does not change from the initial value.



1 −1 0 · · · 0

0 1 −1
. . .

...

...
. 0

... 0
. . . 1 −1

0 · · · · · · 0 1





F1/2

F3/2

F5/2

...

FN+1/2


=



∆x
∆t

(
ūn+1

1 − ūn1
)

∆x
∆t

(
ūn+1

2 − ūn2
)

...

∆x
∆t

(
ūn+1
N − ūnN

)
1
2

(ūnN)2


(3.8)

The limiting algorithm was tested using three test cases: a moving shock, an expan-

sion, and a more complex wave that combines features of both.

3.3.1 Shock

The initial conditions for the shock case were uleft = 1.25 and uright = −0.5 with

the shock starting at a cell interface. The cell spacing and time step were set to

∆x = 0.1 and ∆t = 5 × 10−3, respectively. Figure 3.4 shows the shock fluxes for

four cell edges with and without limiting, with the exact values shown with open

symbols connected with dotted lines and the active flux solution with closed symbols

47

connected with solid lines. Without limiting it is possible to compute negative fluxes

using the flux-signal expression Eq. (3.3b) due to incorrect contributions from the

left and right cells. The figure clearly demonstrates that the limiter keeps the fluxes

positive and controls overshoots in the flux values as the shock moves through the

domain.

iter

F j-3
/2
, F

j-1
/2
, F

j+
1/

2,
F j+

3/
2

0 5 10 15 20 25-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

(a) No Limiting

iter

F j-3
/2
, F

j-1
/2
, F

j+
1/

2,
F j+

3/
2

0 5 10 15 20 250

0.2

0.4

0.6

0.8

(b) Limited

Figure 3.4: Shock fluxes

The cell averages and internal reconstructions are shown in Fig. 3.5. The figure

illustrates good agreement with the exact solution and shows that the scheme captures

the shock within one or two cells.

3.3.2 Expansion

To create an expansion, the left state was set to uleft = −1.0 and the right state

uright = 1.0 with the discontinuity again starting at a cell interface. The cell spacing

and time step used were ∆x = 0.1 and ∆t = 1 × 10−3. Figure 3.6 compares the

limited and unlimited fluxes for this case. Again, the limiter eliminates the overshoots

in the flux values seen in the unlimited case. Figure 3.7 shows the cell averages and

reconstructions for the expansion solution at t = 0.1. The AF scheme naturally

breaks up the discontinuity without an entropy fix. The solution matches the exact

48

x

u

-0.02 0 0.02 0.04 0.06 0.08

-0.5

0

0.5

1

1.5

(a) t = 0.085 (iteration 17)

x

u

-0.02 0 0.02 0.04 0.06 0.08

-0.5

0

0.5

1

1.5

Exact wave
Exact averages
AF reconstruction
AF averages

(b) t = 0.15 (iteration 30)

Figure 3.5: Limited solution

iter

F j-3
/2
, F

j-1
/2
, F

j+
1/

2,
F j+

3/
2

0 20 40 60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) No Limiting

iter

F j-3
/2
, F

j-1
/2
, F

j+
1/

2,
F j+

3/
2

0 20 40 60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Limited

Figure 3.6: Expansion fluxes

solution well and exhibits good symmetry.

3.3.3 E-C-E wave

This case is a compression wave centered at x = 0, sandwiched between two

expansions. Figure 3.8 shows the parameters that define the problem. Equation

(3.9), taken from [54], defines the shock path and is valid for xs ∈ [xL, xR]. Certain

combinations of xL,R and uL,R can lead to a shock path that reverses direction over

49

x

u

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) Full wave

x

u

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.160

0.2

0.4

0.6

0.8

1

Exact wave
Exact averages
AF reconstruction
AF averages

(b) Close-up of right wave front

Figure 3.7: Limited expansion solution at t = 0.1

time. We choose one such case, where xL = −1, xR = 1/2, uL = 3/2, and uR = −2.

To ensure that the shock traverses several cells before reversing direction, the grid

spacing was set at ∆x = 2× 10−3 and the time set to ∆t = 7.5× 10−4.

!

xL xR

uR

uL

x

u

(a) Problem parameters

−0.02 0 0.02 0.04 0.06 0.080

0.2

0.4

0.6

0.8

1

1.2

iteration 67

iteration 307

iteration 774

iteration 1500

xs

t

(b) Shock path

Figure 3.8: E-C-E wave

xs(t) =
xLxR

uLxR − uRxL

[
uL

(
1− uR t

xR

)
− uR

(
1− uL t

xL

)

+ (uR − uL)

√(
1− uL t

xL

)(
1− uR t

xR

)] (3.9)

50

Figure 3.9 shows the exact and AF solutions at four shock positions: half-way

to the turnaround point (iteration 67), minimum x location (iteration 307), x = 0

(iteration 774), and the final shock location for the simulation (iteration 1500). There

is good agreement between the exact and AF solutions and again the AF scheme

captures the shock within one to two cells. There is a very small overshoot present in

the solution at the left-most shock location, indicating that there may be some more

tweaking necessary to ensure the limiter always prevents overshoots, but overall the

shape-preserving limiter performs quite well.

x

u

-0.02 0 0.02 0.04 0.06 0.08
-2

-1.5

-1

-0.5

0

0.5

1

1.5

Exact avg. iter = 67
Exact avg. iter = 307
Exact avg. iter = 774
Exact avg. iter = 1500
s5burg iter = 67
s5burg iter = 307
s5burg iter = 774
s5burg iter = 1500

Figure 3.9: E-C-E wave solution at four times

51

3.4 Alternate approaches

Although the shape-preserving limiting algorithm presented in Fig. 3.3 is effective

on a wide range of test cases, the flexibility of the AF method makes it possible to

explore many other possibilities. In addition to opening multiple paths for limiting,

the non-conservative interface updates of the AF scheme facilitate alternate methods

of updating edge quantities. For instance, one could use a local linearization and

assume the characteristic speed within each cell is constant. Here too, there are

many ways to determine an average characteristic speed for the cell, but the most

straightforward choice is to use the conserved value (cell average). This strategy

eliminates the need to handle the complexities introduced by Eq. (3.5).

ξ0 = ξi − ūj
∆t

∆x
(3.10)

Another way to simplify the characteristic origin calculation without sacrificing third-

order accuracy is to use a series approximation for Eq. (3.5).

ξ0 = ξi − [c1 + ξi (β + αξi)]

(
∆t

∆x

)[
1− (β + 2αξi)

(
∆t

∆x

)]
+O(∆t3)

α = 2 (c1 − 2c2 + c3)

β = − (3c1 − 4c2 + c3)

(3.11)

Both Eq. (3.10) and Eq. (3.11) are better suited to implementation in a multidi-

mensional scheme than the exact origin expression of Eq. (3.5). Starting with two-

dimensional cases, the exact characteristic origin equation becomes a nonlinear sys-

tem, requiring the use of a root finder or some other comparable method, which

greatly increases the cost. The local linearization makes it possible to use techniques

from Chapter II. The alternate characteristic origin expressions also remove the square

root from the equation, ensuring that the result is real.

52

Forcing the characteristic origin to be real simplifies the shape-preserving limiter

diagram in Fig. 3.2, but it does not resolve the larger issue of how to apply shape-

preserving ideas to multiple dimensions. In one dimension, there are only two free

parameters, the left and right edge values. In two dimensions the number of param-

eters increases to six and in three dimensions it is ten. As the number of parameters

increases, it is necessary to use more sophisticated methods to ensure that the limiter

is effective without over-damping legitimate extrema. For example, one could define

a set of objective functions and constraints and use optimization techniques to find

edge values that do not produce new extrema. In short, the ideas presented in this

chapter represent only one possible approach to nonlinear equations and limiting.

The fact that the edge updates in the AF scheme do not need to be conservative

makes the techniques for improving limiting and nonlinear solutions fertile ground

for future research.

53

CHAPTER IV

Linear Acoustics and Linearized Euler

We can begin to study more complex flow behavior by examining the linear acous-

tic equations. The linear acoustics system is derived from the Euler equations by as-

suming that the density, pressure, and velocity peturbations around some background

state are small.

ρ = ρ0 + ρ′

u = u0 + u′

p = p0 + p′

(4.1)

Because the peturbations are small, we can assume there is no change in entropy. Un-

der the homentropic flow assumption, the pressure peturbations and velocity petur-

bations are related through the (constant) sound speed.

p′ = a2
0ρ
′ (4.2)

54

After substituting Eq. (4.1) and Eq. (4.2) into the Euler equations, we arrive at the

linear acoustic equations.

∂p′

∂t
+ ρ0a

2
0 (∇ · u′) = 0

∂u′

∂t
+

1

ρ0

∇p′ = 0

(4.3)

We non-dimensionalize the pressure p∗ = p′/ρ0a
2
0 and velocity u∗ = (1/a0) u′ and

write as a first-order system:

∂p∗

∂t
+ a0

(
∂u∗

∂x
+
∂v∗

∂y
+
∂w∗

∂z

)
= 0 (4.4a)

∂u∗

∂t
+ a0

∂p∗

∂x
= 0 (4.4b)

∂v∗

∂t
+ a0

∂p∗

∂y
= 0 (4.4c)

∂w∗

∂t
+ a0

∂p∗

∂x
= 0 (4.4d)

Let the state vector q = (p∗, u∗, v∗, w∗)T. The sound speed a0 is constant, so we can

easily write the system in conservation form:

∂q

∂t
+
∂f

∂x
+
∂g

∂y
+
∂h

∂z
= 0 (4.5)

where

f =



a0u
∗

a0p
∗

0

0


g =



a0v
∗

0

a0p
∗

0


h =



a0w
∗

0

0

a0p
∗


(4.6)

Equation (4.6) defines the flux expressions that update the conserved variables,

55

but we also need a means of calculating the point values that appear. Rewriting the

system defined by Eq. (4.4) makes it easier to see possible paths forward. When the

time deriviative of Eq. (4.4a) and the gradient of Eqns. (4.4b-4.4d) are combined, it

is clear that pressure obeys the wave equation.

∂2p∗

∂t2
− a2

0 ∇2p∗ = 0 (4.7)

Similarly, taking the time deriviative of the velocity terms from Eq. (4.4) and spatial

derivatives of Eq. (4.4a) results in the following system for the velocity.

∂2u∗

∂t2
− a2

0 ∇ (∇ · u∗) = 0 (4.8)

We can rewrite the equation such that the left hand side has the form of the wave

equation:

∂2u∗

∂t2
− a2

0 ∇2u∗ = a2
0 (∇× ω) (4.9)

where the vorticity ω = ∇×u∗ = (∂yw
∗−∂zv∗, ∂zu∗−∂xw∗, ∂xv∗−∂yu∗)T. Equation

(4.9) clearly shows that velocity obeys the wave equation in flows with constant (or

zero) vorticity. For this subset of problems, the pressure and velocity at any point

in time can be calclated using exact solutions to the wave equation. Our strategy

for linear acoustics is exactly the same as for the linear advection case. The first

step is to find the pressure and velocity at a specified set of quadrature points, which

we then use to construct an average flux at the interface. We detail this process for

one-dimensional and two-dimensional flows below.

4.1 One-dimensional linear acoustics

While the pressure and velocity satisfy the scalar wave equation in one dimension,

the similarities between the one-dimensional acoustics and advection approaches are

56

easier to see when the system is left as a set of first-order PDEs. The one-dimensional

acoustics system has the following form:

∂q

∂t
+ A

∂q

∂x
= 0 (4.10)

where the state vector q = (p∗, u∗)T and the Jacobian matrix A is

A =

 0 a0

a0 0

 (4.11)

The acoustic system can be diagonalized by performing an eigenvalue decomposition

of the Jacobian matrix.

A = RΛL

=

 1/2 1/2

−1/2 1/2


−a0 0

0 a0


1 −1

1 1

 (4.12)

Multiplying Eq. (4.10) by L results in a decoupled system of two linear advection

equations for the characteristic variables w = Lq.

∂w

∂t
+ Λ

∂w

∂x
= 0 (4.13)

Once the system is diagonalized, each characteristic field can be updated using the

linear advection techniques from Chapter II. The opposite signs for the characteristic

speed means that each interface will be updated from both of the cells sharing the

edge. Therefore the algorithm must update the interface point values by summing

contributions from each cell. The contribution δq each cell makes to the interface

57

state can be calculated as a sum over the k characteristic fields:

δqi =
∑
k

wk(ξ0k)rk

=
∑
k

wk(ξi − νk)rk
(4.14)

where, wk is the value of the characteristic variable at the origin for that field ξ0k , and

rk is the kth column of the right eigenvector matrix. The value of the Courant number

ν will be different for every field because, in general, each field will be associated with

a different characteristic speed. If the point ξ0 lies outside the cell, wk is set to zero

and the cell does not modify the value of that variable.

4.1.1 Simple wave

A simple wave is a region in which one of the characteristic variables, or Riemann

invariants, is constant. The simplest method of initializing the flow field for a simple

wave case is to choose the initial states such that one of the characteristic variables

is zero. The initial conditions prescribed by Eq. (4.15) ensure that w2 = p∗ + u∗ = 0

while keeping w1 = p∗ − u∗ ≥ 0.

p′(x, 0) =
1

2
sin (πx)

u′(x, 0) = − sin (πx)

a0 = 1

ρ0 = 1/2

(4.15)

Because there is only one non-zero characteristic variable, the one associated with

λ1, the exact solution for the simple wave problem is the initial data from Eq. (4.15)

advected by a distance λ1t = −a0t. The one-dimensional acoustics implementation

was tested on a uniform mesh with 50 cells and x ∈ [0, 2]. With the speed chosen

as a0 = 1, and a time step of ∆t = 0.03 (ν = 0.75), the wave completes three cycles

58

through the mesh every 200 iterations. Figure 4.1 shows the simulation results after

48 cycles through the mesh. The symbols denote the vertex values. The results at

t = 96 are visually indistinguishable from the exact solution. The third-order method

handles this smooth case exceptionally well, losing only 0.18% of the peak value in

the pressure and velocity over the course of the simulation.

x

p

0 0.5 1 1.5 2-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Exact
iter = 3200

(a) Pressure

x

u

0 0.5 1 1.5 2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Exact
iter = 3200

(b) Velocity

Figure 4.1: Simple wave test after 48 cycles through mesh

4.1.2 Non-simple wave

When both characteristic variables vary over the domain, the solution is slightly

more complex. The exact solution still has a simple form due to the linear nature of

the problem.

w1(x, t) = w1(x+ a0t, 0)

w2(x, t) = w2(x− a0t, 0)

(4.16)

59

Re-writing in terms of the state variables:

p∗(x, t) =
1

2
[p∗(x− a0t, 0) + u∗(x− a0t, 0) + p∗(x+ a0t, 0)− u∗(x+ a0t, 0)]

u∗(x, t) =
1

2
[p∗(x− a0t, 0) + u∗(x− a0t, 0)− p∗(x+ a0t, 0) + u∗(x+ a0t, 0)]

(4.17)

The same domain and time step were used for the non-simple case. The initial

conditions used are defined in Eq. (4.18).

p′(x, 0) =
1

4
+

1

80
sin (2πx)

u′(x, 0) =
1

4
− 1

10
sin (πx)

a0 = 1

ρ0 = 1/2

(4.18)

Figure 4.2 compares the exact and computed results far into the simulation at t =

76.8. Again, the AF solution nearly matches the exact solution. The deviation be-

tween the two solutions ranges from 0.04% to 0.13%. The difference between the

exact and computed solution is slightly more apparent in Fig. 4.3. The higher fre-

quency pressure wave leads to more dissipation than the simple wave case, but the

peak value is reduced by just 0.13% after 48 cycles through the mesh. The computed

velocity peak is 0.06% less than the exact value.

Both the simple and non-simple tests show that the AF scheme can accurately

compute solutions for the one-dimensional wave equation, and by extension, any one-

dimensional linear system. The key is computing the point values in such a way

that each cell simply adds its individual contribution to the edge. As with linear

advection, the algorithm has one loop through the cells to update the point values

and one loop through the faces to calculate the average flux at each interface and

update the conserved cell averages.

60

x

p

0 0.5 1 1.5 20.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

Exact
iter = 2560

(a) Pressure

x

u

0 0.5 1 1.5 2

0.15

0.2

0.25

0.3

Exact
iter = 2560

(b) Velocity

Figure 4.2: Non-simple wave test; t = 76.8

x

p

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.24

0.25

0.26

Exact
iter = 3200

(a) Pressure

x

u

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.15

0.2

0.25

0.3

0.35

Exact
iter = 3200

(b) Velocity

Figure 4.3: Non-simple wave test; t = 96.0

4.2 Two-dimensional linear acoustics

The behavior of the wave equation in even dimensions is significantly different

from odd dimensions [8]. In one and three dimensions, the solution at any point in

the flow depends only on the boundary of a region in the flow field; however, in two-

dimensional flows, the domain of dependence for a point x = (x, y) at time t is the

interior of a circle with radius a0t centered at x. There are two primary approaches

61

to numerically computing the solution while preserving the multidimensional nature

of the physics. The first is to integrate around the bicharacteristic surface formed

between the point of interest and the acoustic disc. The second approach is to directly

integrate the domain of dependence.

4.2.1 Integral around circumference

Several computational methods for the scalar wave equation focus on approximat-

ing the integral around the bicharacteristic cone shown in Fig. 4.4. These methods

include the evolution Galerkin method (EGM) of Lukác̆ová-Medvid’ová, Morton, and

Warnecke [27], which is primarily based on work by Ostkamp [34], and methods by

Butler [5] and Reddy [41]. As previously stated, the state at point F in Fig. 4.4

depends on a circle of radius a0∆t centered around point x. The unit vector in

!

θ

a0∆t

∆t

F

x C

σ

Figure 4.4: Two-dimensional characteristic cone

the characteristic direction σ can be found by subtracting the coordinates at point

F = (x, y, t+ ∆t) and C = (x+ a0∆t cos θ, y + a0∆t sin θ, t), which is on the charac-

teristic manifold at time t.

σ̂ =
1√

1 + a2
0


−a0 cos θ

−a0 sin θ

1

 (4.19)

62

The directional derivative is then:

d

dσ
= − a0 cos θ√

1 + a2
0

∂

∂x
− a0 sin θ√

1 + a2
0

∂

∂y
+

1√
1 + a2

0

∂

∂t
(4.20)

The system in Eq. (4.4) can be multiplied by the proper weights and combined to

obtain:

d

dσ
(p− u cos θ − v sin θ) = − a0

[
sin2 θ∂xu− cos θ sin θ (∂yu+ ∂xv)

+ cos2 θ∂yv
] (4.21)

Finally, integrating from point C to point F and then around the circumference of

the characteristic footprint, we arrive at an expression for the pressure at point F .

pF =
1

2π

2π∫
0

(pC − uC cos θ − vC sin θ) dθ

− a0

2π

t+∆t∫
t

2π∫
0

[
sin2 θ∂xu− cos θ sin θ (∂yu+ ∂xv) + cos2 θ∂yv

]
dθdτ

(4.22)

Expressions for the update of each velocity component are obtained by multiplying

Eq. (4.3) first by cos θ then by sin θ.

uF =
1

π

2π∫
0

(
−pC cos θ − uC cos2 θ − vC cos θ sin θ

)
dθ

+
a0

π

t+∆t∫
t

2π∫
0

cos θ
[
sin2 θ∂xu− cos θ sin θ (∂yu+ ∂xv) + cos2 θ∂yv

]
dθdτ

(4.23)

vF =
1

π

2π∫
0

(
−pC sin θ − uC cos θ sin θ − vC sin2 θ

)
dθ

+
a0

π

t+∆t∫
t

2π∫
0

sin θ
[
sin2 θ∂xu− cos θ sin θ (∂yu+ ∂xv) + cos2 θ∂yv

]
dθdτ

(4.24)

63

The difficulty in using these expressions is approximating the integrals appearing in

the equations. The numerical methods based on this idea are distinguished by how

they treat the spatial and temporal integrals. Most of the methods treat the mesh

points as quadrature points for the spatial integrals. The time integral appearing in

the last term of Eqns. (4.22-4.24) is particularly challenging. Lukác̆ová-Medvid’ová

et al. use a trapezoidal rule to approximate the value, but this is only second-order

accurate. One could use Simpson’s rule to achieve third-order accuracy, but this

would require solution data at t+ ∆t/2, which is not readily available.

4.2.2 Spherical means

Spherical means may be used as an alternate method of calculating the exact

solution to the initial-value problem for the scalar wave equation at an arbitrary

point in space and time [8]. Define the spherical mean of a function f over a sphere
!

θ
a0∆t x

φ!

Figure 4.5: Sphere influenced by point x; R = a0∆t

of radius R = a0∆t to be its average over the surface:

M3D
R {f}(x, y, z) =

1

4πR2

2π∫
0

π∫
0

f (x+R sinφ cos θ,

y +R sinφ sin θ, z +R cosφ)R2 sinφ dφ dθ

(4.25)

We treat two-dimensional cases as a three-dimensional problem with no dependence

on the z-coordinate. The method of descent allows us to convert the integral over the

64

spherical surface in Fig. 4.5 to an integral over the shaded disc.

M2D
R {f}(x, y) =

1

2πR

2π∫
0

R∫
0

f(x+ r cos θ, y + r sin θ)
r√

R2 − r2
dr dθ (4.26)

By using spherical means, we transform the original PDE into a form with a

simple, and known, exact solution. Courant and Hilbert [8] provide the following

solution for the wave equation ∂ttu = a2
0∇2u:

u(t) = tMR {∂tu}+ ∂t [tMR {u}] (4.27)

We can expand the second term using the product rule to get:

u(t) = tMR {∂tu}+MR {u}+ t∂tMR {u} (4.28)

The time derivative in the last term of Eq. (4.28) is cumbersome, so we seek alternate

forms. We are able to replace the time derivative with a derivative with respect to R

using the relationship R = a0t.

t∂tMR {u} = t∂RMR {u}
∂R

∂t
= R∂RMR {u} (4.29)

Substituting the expression Eq. (4.29) into Eq. (4.28) results in the final expression

for u(t):

u(t) = tMR {∂tu}+MR {u}+R∂RMR {u} (4.30)

All that remains is to apply the exact solution to the acoustic wave equation. We

can use Eq. (4.4) to replace the time derivatives in Eq. (4.30) with spatial derivatives.

65

Assuming constant vorticity, we get the following update equations:

p∗(t) = MR {p∗}+R [∂RMR {p∗} −MR {div u∗}]

u∗(t) = MR {u∗}+R [∂RMR {u∗} −MR {∇p∗}]
(4.31)

In flows with varying vorticity, the term on the right-hand side of Eq. (4.9) can be

treated as a constant source term [8].

4.2.3 Integrals of the disc interior

We perform the integrals appearing in Eq. (4.31) over discs of radius a0t centered

at the solution nodes. Each cell that shares that node contributes to the integral

over one sector, making the method upwind. In one-dimensional flow, the method

of spherical means collapses to the method of characteristics [8] so that our method

collapses to a regular upwind scheme in one dimension. Because we only seek updates

!

(a) Cells contributing to node
update

!

(b) Cells contributing to
edge update

Figure 4.6: Integrated areas for two-dimensional acoustics

at the vertices and edge-midpoints, the acoustic integral will either be centered at a

node or edge, as pictured in Fig. 4.6. Within each element, the integral of the function

is simply the sum of the integrals of each basis, multiplied by the appropriate weight.

Introducing a consistent nomenclature allows us to generalize the integral expres-

sions by exploiting the fact that the elements are triangular. We number the nodes of

66

an element in a counterclockwise order, with the edges and their associated normals

numbered to match the opposing node. The local element numbering is illustrated in

Fig. 4.7.

!

1

2

3

S1
S3

S2

n3
n1

n2

x

Figure 4.7: Element nomenclature

The intersection of the integral disc with the element edges sets the angular limits

of integration. Point P and Q in Fig. 4.8 correspond to radial angles for a circle

centered at the solution node. For example, the intersection angle for a disc centered

at node 1 could be calculated as θQ = tan−1 [(yQ − y1) / (xQ − x1)]. Point P is always

defined as the smaller angle. Following standard practice, angular values increase in

the counterclockwise direction.

!

P

1

2

3
Q

θ1

(a) Centered at node 1

!

1

2

3

Q

P

(b) Centered at edge 1

Figure 4.8: Element integral (shaded area) for node and edge centered values

Any point x within the triangular element can be described by the area coordinates

67

S1, S2, and S3, defined below. The total element area S = S1 + S2 + S3.

S1 =
1

2
[(x2 − x) (y3 − y)− (y2 − y) (x3 − x)]

S2 =
1

2
[(x3 − x) (y1 − y)− (y1 − y) (x3 − x)]

S3 =
1

2
[(x1 − x) (y2 − y)− (y2 − y) (x1 − x)]

(4.32)

We can then re-write the reference coordinates ξ and η in terms of the area coordi-

nates.

η =
S3

S

ξ =
S2

S

1− ξ − η =
S1

S

(4.33)

Substituting these expressions into those in Table 2.2, we find that the edge basis

functions and nodal basis functions have two basic forms. Equation (4.34) defines

the basis functions in terms of area coordinates, where i represents a node index, j

represents an edge index, and it is understood that the indices cycle (e.g. 3 + 1 = 1

and 1− 1 = 3).

φ2i−1 =
Si (2Si − S)

S2

φ2j =
4Sj−1Sj+1

S2

(4.34)

The bubble function basis is the product of the area coordinates.

φ7 =
27S1S2S3

S3
(4.35)

The chain rule can be used to find expressions for the basis derivatives in terms of

68

the area coordinates.

∇φ2i−1 =

(
4Si − S

2S2

)
ni

∇φ2j =
2

S2
(Sj+1nj−1 + Sj−1nj+1)

(4.36)

The derivative of the bubble function is the sum of three terms:

∇φ7 =
27

2S3

3∑
j=1

Sj−1Sj+1nj (4.37)

The normal vectors appearing in the derivative expressions Eq. (4.36) and Eq. (4.37)

are not unit vectors. They have a length equal to the length of the side with which

they are associated.

nk =

yk+1 − yk−1

xk−1 − xk+1

 (4.38)

Fortunately, trigonometric identities can be used to simplify the resulting integral

expressions to a form that is easily coded. The integrated basis functions and deriva-

tives are listed in Appendix C. We have chosen to implement the closed form of the

integrals; however, it may be more efficient to carry out the integration numerically.

Algorithm 4.1 details the point-update procedure for linear acoustics.

4.2.4 Comparison of radial symmetry

One method of evaluating an acoustics method is to investigate its ability to

maintain radial symmetry by plotting the solution at a specified time as a function

of the distance from an initial disturbance. If the solution is perfectly symmetric,

a scatter plot of the individual cell values plotted against the radial distance from

the disturbance should collapse to a single line. Equation (4.39) defines the initial

conditions used to evaluate the AF implementation, where the disturbance center

(x0, y0) = 0 and µ = 50. The sound speed was set at a0 = 1 and the free stream

69

Algorithm 4.1 Point update procedure for linear acoustics

for cell nodes and edges (basis index = 1,6) do

for τ = 1/2∆t and ∆t do

Integrate from θ ∈ [θP , θQ] and r = [0, a0τ] using Eq. (C.1), Eq. (C.19)

Combine integrals to calculate partial updates; Eq. (4.31)

if basis index is odd then

Add contribution to vertex value

else

Add contribution to edge value

end if

end for

end for

density was set to ρ0 = 1.4.

p′(x, 0) = 1 + exp
{
−µ
[
(x− x0)2 + (y − y0)2]}

u′(x, 0) = 0

(4.39)

The AF scheme was compared to two structured, second-order, schemes: a vorticity-

preserving scheme of Morton and Roe [28], supplemented by a flux-corrected transport

(FCT) limiter and a more traditional MUSCL-Hancock method [51]. Three mesh

densities were tested in which the number of elements contained within the structured,

quadrilateral mesh and unstructured, triangular mesh were approximately equal. A

square domain was used with x ∈ [−2, 2] and y ∈ [−2, 2]. Figure 4.9 shows the

initial condition and AF solution at t = 1.25. All of the schemes used a time step

of ∆t = 2.5 × 10−2 to march to a final time of t = 1.25. Figures 4.10-4.12 show the

AF result, the MUSCL-Hancock method (MUSCL), and vorticity-preserving (FCT)

solutions for the coarse, medium and fine mesh densities. In all of the plots, the AF

scheme shows superior symmetry properties in both pressure and velocity magnitude.

70

(a) t = 0

(b) t = 1.25

Figure 4.9:
AF pressure solution for Gaussian pulse initial condition on the coarse
mesh

71

(a) Pressure

(b) Velocity magnitude

Figure 4.10: Coarse mesh

72

(a) Pressure

(b) Velocity magnitude

Figure 4.11: Medium mesh

73

(a) Pressure

(b) Velocity magnitude

Figure 4.12: Fine mesh

74

4.2.5 Comparison to exact solution

The order of accuracy of the acoustics method was confirmed by initializing the

domain using the conditions proposed by Lukác̆ová-Medvid’ová, Morton, and War-

necke [27]:

p′(x, 0) =
1

a0

[sin(2πx) + sin(2πy)]

u′(x, 0) = v′(x, 0) = 0

(4.40)

They give the exact solution to Eq. (4.40) as:

p′(x, t) =
1

a0

cos(2πa0t) [sin(2πx) + sin(2πy)]

u′(x, t) =
1

a0

sin(2πa0t) cos(2πx)

(4.41)

It is clear from Eq. (4.41) that the exact solution matches the initial condition for

integer values of a0t. To measure the order of accuracy, we set the sound speed to

a0 = 1 and evaluate the error at t = 1. Figure 4.13 and Table 4.2 both show that the

AF scheme achieves third-order accuracy as the mesh is refined.

Table 4.1: Pressure convergence for linear acoustics

Ref. Level DOF−1/2 ‖p‖1 O(L1)

1 8.5436×10−2 3.2661×10−1 -

2 4.5502×10−2 9.7451×10−2 1.9197

3 2.3119×10−2 1.3461×10−2 2.9236

4 1.1681×10−2 1.7868×10−3 2.9580

5 5.8798×10−3 2.2191×10−4 3.0388

6 2.9379×10−3 2.7876×10−5 2.9899

75

(1/DOF)1/2

L 1 E
rr

or

0.02 0.04 0.06 0.08 0.110-6

10-5

10-4

10-3

10-2

10-1

3rd Order
p
u
v

Figure 4.13: AF error convergence for acoustic test

Table 4.2: Velocity convergence for linear acoustics

Ref. Level DOF−1/2 ‖u‖1 O(L1) ‖v‖1 O(L1)

1 8.5436×10−2 8.4059×10−2 - 1.0430×10−1 -

2 4.5502×10−2 1.0200×10−2 3.3477 1.2426×10−2 3.3769

3 2.3119×10−2 1.4328×10−3 2.8988 1.6883×10−3 2.9479

4 1.1681×10−2 1.5168×10−4 3.2894 1.9372×10−4 3.1715

5 5.8798×10−3 1.6585×10−5 3.2244 2.1131×10−5 3.2278

6 2.9379×10−3 1.9890×10−6 3.0567 2.6257×10−6 3.0057

4.3 Combining advection and acoustics (linearized Euler)

Model equations such as the ones detailed in Chapter II, Chapter III and the linear

acoustics system of this chapter are used to verify aspects of a numerical scheme in

preparation for applying the scheme to more complex physical systems. The Euler

equations accurately describe fluid behavior when viscous effects are negligible. In

conservative form, the two-dimensional equations read:

∂q

∂t
+
∂f

∂x
+
∂g

∂y
= 0 (4.42)

76

where,

q =



ρ

ρu

ρv

ρE


f =



ρu

ρu2 + p

ρuv

ρuH


g =



ρv

ρuv

ρv2 + p

ρvH


(4.43)

and,

E =
1

γ − 1

p

ρ
+

1

2
|u|2

H = E +
p

ρ

(4.44)

The conservative form obscures how the Euler equations contain nonlinear versions

of the model problems studied thus far. Rewriting the equations using the primitive

variables makes these terms clear:

∂tρ + u∂xρ+ v∂yρ + ρ (∂xu+ ∂yv) = 0 (4.45a)

∂tu + u∂xu+ v∂yu + (1/ρ) ∂xp = 0 (4.45b)

∂tv + u∂xv + v∂yv + (1/ρ) ∂yp = 0 (4.45c)

∂tp + u∂xx+ v∂yp + ρa2 (∂xu+ ∂yv) = 0 (4.45d)

This form suggests three operators: advection, acoustics, and dilation.

∂tρ

+ Advection +

Dilation

= 0
∂tu

Acoustics∂tv

∂tp

The idea behind operator splitting is to use known methods to solve each of the

sub-problems in a way that reconstructs the solution to the full system after each time

77

step. To demonstrate this technique with the AF scheme, we develop an analogue

for the nonlinear Euler system by adding advection terms to the linear acoustics

equations, where the advection speed λ = (α, β)T.

∂tp
∗ + α∂xp

∗ + β∂yp
∗ + a0 (∂xu

∗ + ∂yv
∗) = 0

∂tu
∗ + α∂xu

∗ + β∂yu
∗ + a0∂xp

∗ = 0

∂tv
∗ + α∂xv

∗ + β∂yv
∗ + a0∂yp

∗ = 0

(4.46)

Rewriting in terms of linear coefficient matrices:

∂q

∂t
+ A

∂q

∂x
+ B

∂q

∂y
= 0 (4.47)

where

q =


p∗

u∗

v∗

 A =


α a0 0

a0 α 0

0 0 α

 B =


β 0 a0

0 β 0

a0 0 β

 (4.48)

Both A and B have the form L1 +L2 where one operator represents the pure advec-

tion problem from Chapter II and the other represents the linear acoustics equation.

Furthermore, it is easy to show that the operators commute (L1L2 = L2L1). We

apply sequential operator splitting and solve each sub-problem separately. Because

the operators commute, there is no error due to the splitting.

q̃ = qn + ∆tL1(q)

qn+1 = q̃ + ∆tL2(q)

(4.49)

Once methods for the advection and acoustics equations have been implemented,

solving the combined case is trivial. Algorithmically, we find an intermediate solution

q̃ by computing the solution to the linear acoustics equation, directly followed by an

78

advection solve that uses the intermediate solution as the initial conditions. These

steps may also be executed in the reverse order, that is, performing an advection solve

followed by an acoustics solve.

To verify the implementation, we return to the pressure and velocity field specified

in Eq. (4.40) and add a purely horizontal advection speed of α = 1 (β = 0). The

case was run with periodic boundary conditions. Setting the acoustic speed a0 = 1,

combined with an advection speed of λ = (1, 0)T, yields an exact solution that returns

to the initial state every two seconds. An order of accuracy suite was run on a square

domain with x ∈ [−1, 1] and y ∈ [−1, 1]. Figure 4.17 shows the error levels for the

sequence of refined meshes and the convergence rates for pressure and velocity are

listed in Table 4.3 and Table 4.4. The figure and tables verify that the AF scheme

maintains third-order accuracy even with the operator splitting.

Demonstrating the AF method for the combined advection and acoustics case is

an important step toward simulating more realistic flows. If a complex problem can

be described by a series of sub-problems, we can leverage the flexibility of the AF

scheme to obtain the solution of the simpler systems. All that is required is a means

of updating variables at the interface and a flux function. The active flux acoustics

tests demonstrate that the scheme can be combined with novel update approaches to

systematically build accurate methods for complex flows.

79

(a) t = 0 (b) t = 1/8

(c) t = 3/4 (d) t = 7/8

Figure 4.14: Pressure evolution for linearized Euler case

80

(a) t = 0 (b) t = 1/8

(c) t = 3/4 (d) t = 7/8

Figure 4.15: x-velocity evolution for linearized Euler case

81

(a) t = 0 (b) t = 1/8

(c) t = 3/4 (d) t = 7/8

Figure 4.16: y-velocity evolution for linearized Euler case

82

(1/DOF)1/2

Er
ro

r

0.02 0.04 0.06 0.0810-6

10-5

10-4

10-3

10-2

10-1

3rd Order
p
u
v

Figure 4.17: AF error convergence for linearized Euler equation

Table 4.3: Pressure convergence for linearized Euler equation

Ref. Level DOF−1/2 ‖p‖1 O(L1)

1 8.5436e-02 5.1728e-01 -

2 4.5502e-02 1.4452e-01 2.0240

3 2.3119e-02 1.7753e-02 3.0968

4 1.1681e-02 2.0975e-03 3.1286

5 5.8798e-03 2.5712e-04 3.0578

6 2.9379e-03 3.2014e-05 3.0027

Table 4.4: Velocity convergence for linearized Euler equation

Ref. Level DOF−1/2 ‖u‖1 O(L1) ‖v‖1 O(L1)

1 8.5436×10−2 5.1728×10−1 - 1.9388×10−1 -

2 4.5502×10−2 1.4452×10−1 1.9883 6.3559×10−2 1.7702

3 2.3119×10−2 1.7753×10−2 3.1994 8.6957×10−3 2.9377

4 1.1681×10−2 2.0975×10−3 3.2399 9.9351×10−4 3.1777

5 5.8798×10−3 2.5712×10−4 3.3769 1.2217×10−4 3.0533

6 2.9379×10−3 3.2014×10−5 3.1392 1.5747×10−5 2.9528

83

CHAPTER V

Conclusions

5.1 Summary

This dissertation details the development of active flux schemes, a new class of

methods for CFD. Active flux methods address three issues plaguing production-level

CFD codes: reliance on one-dimensional Riemann solvers, second-order accuracy, and

computational stencils that do not easily parallelize. The key concept is that edge and

vertex values are updated and evolved independently from the conserved cell-average

quantities. Interface values are then used to calculate fluxes that conservatively up-

date the cell-averages. Because the edge updates do not need to be conservative,

any convenient method can be used and proper attention can be given to multidi-

mensional physics. The scheme uses parabolic reconstructions, with a cubic bubble

function to maintain conservation in two dimensions, making it third-order accurate

by construction. All of the reconstructions and updates are local to a single element,

giving AF schemes a very compact stencil suitable for parallelization. Additionally,

the AF method is fully discrete, advancing from time-level n to n+ 1 in a single step.

The method is demonstrated on the linear advection, linear acoustics, and lin-

earized Euler equations in one and two dimensions, where the extension to three

dimensions is straightforward. Each class of problem highlights different aspects of

the AF method. The linear advection implementation covered in Chapter II shows

84

the basic mechanics of the update procedure and explicitly demonstrates how upwind-

ing is incorporated. The linear acoustics equations are solved in Chapter IV using

the fully multidimensional method of spherical means and the same chapter details

how the freedom to use non-conservative edge updates allows radical departures from

one-dimensional Riemann solutions. The end of Chapter IV also illustrates how the

solution for the linearized Euler equations can be simply obtained by operator split-

ting. Because the scheme is third-order, oscillations develop in non-smooth regions

of the flow. Chapter III discusses some one-dimensional limiter strategies for the AF

method and demonstrates the scheme with the inviscid Burgers equation.

5.2 Contributions and conclusions

The major contributions of this dissertation are:

• Extension of van Leer’s one-dimensional Scheme V into a general multidimen-

sional framework applicable to linear conservation laws

• Development of a limiter for parabolic reconstructions that uses local informa-

tion and is not overly dissipative

• Use of spherical means to obtain evolution equations for physical systems that

obey the scalar wave equation

Chapter II shows that the AF method has several advantages over more traditional

schemes. For one, the extra degrees of freedom within the cell mean that frequencies

up to 2π can be resolved, which is double the frequency range for comparable FV

schemes. The AF scheme has superior dissipation and dispersion properties, especially

as the Courant number approaches one. The advantage of the compact stencil is also

demonstrated by showing that the AF solution is far less sensitive to irregular meshes

than a third-order FV scheme. The AF scheme achieves third-order accuracy using

85

two DOF per element in one dimension and three DOF in two dimensions. This

is comparable with a DG1 scheme, which uses a linear reconstruction. If the DG

scheme superconverges, the work needed to compute the solution for the AF and

DG methods is approximately equal; however, superconvergence is not guaranteed.

When the DG rate of convergence is only equal to p+ 1, the DG method requires six

DOF per element for third-order accuracy, while the AF method needs approximately

three. The increased number of DOF represents a significant workload increase for

non-superconverging DG methods compared to the third-order AF solution.

Chapters III-IV clearly demonstrate the advantage of non-conservative edge up-

dates. This feature makes the novel limiting approach possible and facilitates the

use of spherical means to calculate edge and vertex updates. The flexibility of the

approach is also highlighted by showing how trivial it is to extend the method to the

linearized Euler equations. The AF method retains third-order accuracy even when

these more exotic methods are used to update or modify interface values. The mul-

tidimensional treatment of the acoustics system allows the AF method to preserve

excellent symmetry properties on the irregular triangular mesh. Both the acoustics

and advection results demonstrate that the AF scheme is stable provided that the

physical domain of dependence is contained within the nearest-neighbors of the point

to be updated, giving the scheme the robustness and accuracy combination required

of production-level codes.

5.3 Future work

This dissertation is meant to demonstrate the merit of the AF method and provide

examples of its implementation. There are a wealth of research avenues that may

proceed from this work.

86

• Steady state: The AF method is fully discrete, meaning that the solution

is dependent on the time step. This means that it is possible to compute

different steady-state solutions by using different time steps. Techniques can be

developed to remove the time step dependence from the steady-state solution.

One possible path forward is to use the first-order residuals of the sub-elements

to produce time-independent flux values.

• Computational efficiency: There are numerous opportunities to improve the

efficiency of the scheme. One obvious example is numerically integrating the

spherical mean formulas rather than using the explicit form. Also, any term in

the point-update formulas that is O(∆t3) or higher can be neglected without

losing third-order accuracy.

• Three-dimensional flow: All of the core ideas presented will extend to three-

dimensions, but new expressions for the bubble function and acoustic integrals

will need to be derived.

• Alternate applications: This dissertation illustrates the AF method as ap-

plied to the linear acoustics equation, but the derivation holds for any physical

system that can be described by the wave equation, such as electromagnetics

and linear elasticity. There are also integral solutions for the heat equation

that are similar to those demonstrated for the wave equation. Additionally, the

advection scheme from Chapter II may be of interest to the weather prediction

and radiation hydrodynamics communities.

• Multidimensional limiters: It is difficult to imagine how the equations for

the one-dimensional limiting technique in Chapter III directly extend to two

and three dimensions. However, the concept of a shape-preserving limiter will

hold and may provide useful insights toward limiting higher dimension flows.

87

• Viscous terms: The AF method must be able to solve the full Navier-Stokes

equations in order to accurately compute near-body flows. One promising ap-

proach proposed by Nishikawa is to rewrite the Navier-Stokes equations as a

first-order system of hyperbolic equations [30]. A drawback is that this for-

mulation assumes a steady-state calculation, meaning subiterations would be

needed within each time step for time-accurate computations.

• Nonlinear equations: The flexibility of the AF approach means that there are

several possible ways to develop a solver capable of computing nonlinear Euler

solutions. One possible way forward is to choose an appropriate linearization,

which would define locally constant quantities, and apply the techniques from

this dissertation. Initial investigations have been conducted for Burgers’ equa-

tion but a much more detailed study will be required to find the best approach

that extends to multidimensional systems of equations.

88

APPENDICES

89

APPENDIX A

Designing a compact scheme with finite differences

A.1 Compactness

Traditional methods of increasing the accuracy of a given scheme often involve

extending the computational stencil in space. While the larger spatial stencil provides

the degrees of freedom needed to achieve desired properties, it can make the resulting

method difficult to parallelize because of increased communication between processes.

Additionally, larger spatial stencils tend to sample the flow at points far from the

region being updated where the physics may not be relevant. The compactness of a

scheme can be preserved by extending the stencil in time. The temporally extended

stencil reduces the parallel communication required when neighboring cells are on

different processors and uses information from physically meaningful regions of the

flow. Figure A.1 illustrates the stencil created by including one additional time-level

in the first-order upwind scheme. This new stencil has four degrees of freedom, which

allows for a maximum of third-order accuracy. A family of schemes may be defined

by applying different weights to each of the points in the stencil.

90

!

jj � 1

n � 1

n

n + 1

Figure A.1: Three-level upwind stencil, a > 0

A.1.1 Family definition

All of the schemes possible on this stencil may be written by leaving the coefficients

on each point unknown. Consistency and accuracy arguments can then be used to

define the coefficients and their corresponding schemes. Let c be the coefficients

applied at the n time level and d be the coefficients at the n− 1 level.

un+1
j = cju

n
j + cj−1u

n
j−1 + dju

n−1
j + dj−1u

n−1
j−1 (A.1)

Substituting in the Taylor series expansions for each point and requiring consistency

with the linear advection equation places the following constraints on the coefficients

corresponding to the points at the n time level:

cj = (1− dj)− ν (1 + dj + dj−1)

cj−1 = ν (1 + dj + dj−1)− dj−1

(A.2)

91

Inserting the result into Eq. (A.1) and rearranging leads to a three time level scheme

with two parameters dj and dj−1.

un+1
j = unj − ν(unj − unj−1)

− dj[(unj − un−1
j) + ν(unj − unj−1)]

− dj−1[(unj−1 − un−1
j−1) + ν(unj − unj−1)]

(A.3)

Equation (A.3) suggests that the family of schemes sharing this stencil are a linear

combination of three residuals. A more natural choice for the residuals weighted by

dj and dj−1 are the upwind residuals between time levels n and n − 1. The stencil

with the associated weights α, β, and γ is illustrated in Fig. A.2, where α = 1.

un+1
j = unj − ν(unj − unj−1)

− β[(unj−1 − un−1
j−1) + ν(unj − unj−1)]

− γ[(unj − un−1
j) + ν(un−1

j − un−1
j−1)]

(A.4)

!

!!"!

!

Figure A.2: Residuals contained within three-level definition

A.1.2 Positivity region

A series of first-order schemes may be derived by integrating over control volumes

defined by the convex-hull surrounding un+1
j and any other two points in the stencil.

92

Positivity constraints on the coefficients of each point in Eq. (A.5) may also be used

to define monotone, first-order schemes.

un+1
j = [ν − (1− ν) β]unj−1 + [(1− γ)− ν (1 + β)]unj

+ (β + νγ)un−1
j−1 + γ (1− ν)un−1

j

(A.5)

Solving for β and γ leads to the inequalities below.

0 ≤ γ ≤ 1− ν (β + 1)

−νγ ≤ β ≤ ν

1− ν (A.6)

Note that setting γ = 0 leads to schemes that most closely surround characteristics

originating from un−1
j−1 . These schemes include a first-order monotone scheme with

low truncation error and an optimally small stencil (OPTM) as well as the second-

order upwind leapfrog (ULF) scheme [50]. Solving the system defined by Eq. (A.6)

for the maximum value of β and γ leads to the three time-level version of the first-

order upwind (FUP) scheme. Minimizing β and maximizing γ results in a first-order

scheme with few desirable fewatures, which we’ve termed Scheme 1-2 because it was

the second identified first-order scheme. Setting β = γ = 0 recovers the classical

two-level FUP scheme. The two and three-level FUP schemes, OPTM scheme, and

Scheme 1-2 define the positivity region for the family.

A.1.3 Truncation error and amplification factor

Performing a modified equation analysis on Eq. (A.4) leads to the values defined

in Eqns. (A.7-A.8) for the leading diffusion and dispersion coefficients, respectively.

A first-order low-phase-error (LPE) scheme may be defined by setting γ = 0 and

93

solving for the β that eliminates the leading dispersion term.

Cdiffusion

a∆x
=

(1− ν) (1− β + γ)

2 (1 + β + γ)
(A.7)

Cdispersion

a∆x2
=

1

6 (1 + β + γ)2 {(1− ν) [4β (1 + γ)− 2νβ (4 + γ)

− β2 (1− 2ν)− (1 + γ)2 (1− 2ν)
]} (A.8)

The amplification factor g for the family of three-level schemes is given by Eq.

(A.9). There are two solutions for the amplification factor because the scheme con-

tains three time levels.

g =
1

2
e−iθ

{
ν − β(1− ν)− eiθ [(γ − 1) + ν(1 + β)]

}
± 1

2
e−iθ

{
4eiθ

[
β + γ(eiθ(1− ν) + ν)

]
+
{
β − ν(1− β) + eiθ [(γ − 1) + ν(β + 1)]

}2
}1/2

(A.9)

The diffusion and dispersion errors may be defined as:

εD = |g| (A.10)

εθ =
1

νθ
tan−1

(−Im g

Re g

)
(A.11)

A.1.4 Family album

Table A.1 displays the coefficient values that define the various first-order schemes.

Second-order schemes may be derived in the same manner as the first-order schemes.

The most notable scheme in the second-order family is the upwind leapfrog scheme

which has zero dissipation due to its stencil symmetry in space and time. Using the

two parameters to eliminate both the leading diffusion and dispersion terms leads to

the third-order chair scheme. Table A.2 gives the parameters defining these schemes.

94

Table A.1: First-order scheme definitions

Scheme β γ

FUP 0 0

OPTM, ν < 1
2

ν
1−ν 0

OPTM, ν > 1
2

1−ν
ν 0

LPE 2−
√

3 0

1-2 −ν
1+ν

1
1+ν

3-Level FUP ν
1−ν

1−2ν
1−ν

Table A.2: Notable second and third-order scheme definitions

Scheme β γ

ULF 1 0

Chair 3ν
1+ν

2ν−1
1+ν

A.1.5 Cousins: the q-schemes

The three-level schemes with γ = 0 closely parallel the familiar q-schemes that

are based on the stencil of points unj+1, unj , and unj−1. The q-schemes are defined by

Eq. (A.12).

un+1
j = unj −

ν

2
(unj+1 − unj−1) +

q

2
(unj+1 − 2unj + unj−1) (A.12)

Both the q-schemes and three-level families contain a scheme that minimizes the

truncation error, a scheme that maximizes the truncation error, a low-phase-error

scheme, and a uniquely defined second-order scheme. Table A.3 lists the q values

that define these schemes and their corresponding three-level analogue. Figure A.3

visually compares the scheme definitions. Table A.3 shows that the FUP scheme,

Table A.3: q-Scheme comparison

q q-Scheme 3-Level Scheme

Min Error |ν| FUP OPTM

Max Error 1 Lax-Friedrichs (LXF) FUP

Min Dispersion 1+2ν2

3 Low-Phase-Error (LPE) 3-Level LPE

Second-Order ν2 Lax-Wendroff (LXW) ULF

95

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

ν

q

LXF
FUP
LPE
LXW

(a) Two-level definitions

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

ν

1−
δ

FUP
OPTM
3−Lev LPE
ULF

(b) Three-level definitions

Figure A.3: Family parameterizations

which has the lowest error of the two-level schemes, actually has the greatest error

of the three-level schemes. In general, the three-level schemes have less error than

their q-scheme counterparts. Figure A.4 compares the leading diffusion and dispersion

errors of each scheme. Note that, for these definitions of the diffusion and dispersion

coefficients, values of zero indicate no error.

96

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

ν

Le
ad

in
g

di
ffu

si
on

OPTM
FUP

(a) Min error diffusion

0 0.2 0.4 0.6 0.8 1
−0.2

−0.15

−0.1

−0.05

0

0.05

ν

Le
ad

in
g

di
sp

er
si

on

OPTM
FUP

(b) Min error dispersion

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ν

Le
ad

in
g

di
ffu

si
on

FUP
LXF

(c) Max error diffusion

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

ν

Le
ad

in
g

di
sp

er
si

on

FUP
LXF

(d) Max error dispersion

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ν

Le
ad

in
g

di
ffu

si
on

3−Lev LPE
2−Lev LPE

(e) Low phase error diffusion

0 0.2 0.4 0.6 0.8 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

ν

Le
ad

in
g

di
sp

er
si

on

ULF
LXW

(f) Second-order dispersion

Figure A.4: Leading diffusion and dispersion coefficient values

97

APPENDIX B

Shape-preserving limiter values

The shape-preserving limiter from §3.2 is based on calculating the intersection of

the line representing the constant gradient/curvature ratio with various features that

can negatively impact the solution. Recall that the line is parameterized by τ where

τ = 0 represents the original data and τ = 1 represents a constant reconstruction

equal to the cell average value (first-order solution). In (uL, uR) space, the shape-

preserving line is decribed Eq. (B.1).

us.p.
R = −uL

(
δR
δL

)
+ uM

(
1 +

δR
δL

)
(B.1)

where,

δL = ūnj − unj−1/2 = uM − uL0

δR = unj+1/2 − ūnj = uR0 − uM
(B.2)

98

B.1 Shock formation at ∆t

A shock forms when two solution characteristics intersect. The shock formation

time is given by the following expression [3]:

tF = −∆x

[
min

(
du

dξ

)]−1

(B.3)

To prevent a shock from forming within a given time step, we set tF = ∆t. Equation

(B.3) reveals that a necessary condition for a shock to form inside of a cell is that

the minimum slope must be negative. The slope for our quadratic reconstruction is

linear, meaning the slope will attain its minimum value at either the left or right

interface.

du

dξ
= 2αξ + β

α = 2 (c1 − 2c2 + c3)

β = − (3c1 − 4c2 + c3)

(B.4)

The parameter α is proportional to the curvature. When α > 0, the minimum

negative slope will occur at the left edge and when α < 0, occurs at the right edge.

This leads to two possibilities for the shock formation line.

us.f.
R =


−2uL + 3uM + ∆x

2∆t
if α ≥ 0

−1
2

(
uL − 3uM + ∆x

2∆t

)
if α < 0

(B.5)

Finally, the uL and uR values corresponding to the intersection between the shape-

preserving line and shock formation line can be found by combining Eq. (B.1) and

Eq. (B.5).

τs.f. =


1− ∆x

2∆t(δR−2δL)
if α ≥ 0

1 + ∆x
2∆t(2δR−δL)

if α < 0

(B.6)

99

B.2 Real characteristic origin

The solution for the characteristic origin will be real if the radicand in Eq. (3.5)

is positive. Setting the term to zero and solving for uR leads to the ellipse shown in

the limiting diagram. We can then set the result equal to Eq. (B.1) to find the uL

values at the intersection point.

uL =
2ruMδ

2
R + δL

[
δL (δL − δR) (1 + 5ruM − 3ξi)±√µ

]
2r (δ2

L − δLδR + δ2
R)

(B.7)

where,

r =
∆t

∆x

µ = 3δL + 3 (ruM − ξi) [(3δL − δR) + (δL − δR) (1 + 3ruM − 3ξi)]

(B.8)

If the shape-preserving line does not intersect the ellipse defining the complex region,

then µ < 0.

B.3 Bounded extremum

The extremum allowed in the cell is defined as

uE =


min (uL0, uM , uR0) if a0 > 0

max (uL0, uM , uR0) if a0 < 0

maxmod (uL0, uR0) if a0 = 0

(B.9)

The intersection of the ellipse with the shape-preserving line is:

uL = uM −
3δL (δR − δL) (uM − uE)

δ2
L − δLδR + δ2

R

uR = uM + 3 (uM − uE)

(
1− δ2

L

δ2
L − δLδR + δ2

R

) (B.10)

100

B.4 Limited signal

Let σ be the maximum or minimum vertex signal that can be applied before the

edge value is a new extremum. Again, define an intermediate variable, γ:

γ = ξi + r [uM + σ + δL (2− 3ξi) ξi + δR (1− ξi) (1− 3ξi)] (B.11)

Here, the interface ξi affected by the signal is determined by estimating the average

wave speed.

ξi =


1 when 1

2
(uL0 + uR0) > 0

0 when 1
2

(uL0 + uR0) < 0

(B.12)

The point on the shape-preserving line with this specified vertex signal is:

uL =
ruMδR (1− γ) (1− 3γ)− δL {γ − ruM [1 + γ (2− 3γ)]− ξi}

r [δL (2− 3γ) γ + δR (1− γ) (1− 3γ)]

uR =
γruMδL (2− 3γ) + {γ [1− ruM (4− 3γ)]− ξi}

r [δL (2− 3γ) γ + δR (1− γ) (1− 3γ)]

(B.13)

Currently, the allowable signal is calculated from the maximum and minimum signals

umax = max (uL0, uM , uR0) umin = min (uL0, uM , uR0) (B.14)

σmax = umax − u0(ξi) σmin = umin − u0(ξi)

resulting in a final value for the allowable signal value:

σ = max [σmin,min (σmax, σ0)] (B.15)

Because the magnitude of the signal monotonically decreases along the shape-preserving

line, these calculations can be avoided by checking if σ0, which is based on the natural

reconstruction, is within the acceptable bounds.

101

APPENDIX C

Calculating integrals for the 2D wave equation

We must compute integrals of the basis functions and derivatives in order to use

spherical means to update edge and vertex values. The integrals have the form shown

in Eq. (C.1).

MR{u} =
1

2πR

7∑
i=1

ci

 θQ∫
θP

R∫
0

φi
r√

R2 − r2
drdθ

 (C.1)

The integral appearing in Eq. (C.1) is purely a function of the element geometry.

Furthermore, the difference between the starting and ending integration angles with

either be π if we are computing an edge update, or the vertex angle θi if we are com-

puting a node update. The integrals for the basis functions and derivatives contain

six common terms:

g1(k) = nky cos θP − nkx sin θP

g2(k) = nky cos θQ − nkx sin θQ

g3(k) = g1(k)− g2(k)

g4(k) = nkx cos θP + nky sin θP

g5(k) = nkx cos θQ + nky sin θQ

g6(k) = nk · nk+1

(C.2)

102

C.1 Simplified common functions

The common functions g1 through g6 appearing in the integral expressions may

be further simplified using the knowledge that the elements are triangular.

C.1.1 Simplification of g1

The function has two forms, depending on whether the acoustic disc is centered

at a node or edge midpoint. Let subscript i represent the node at which the disc is

centered, and subscript j be the edge over which the disc is centered. When the disc

is centered on a node, the expression simplifies to:

g1(k) =


`k if i = k + 1

`k cos(θk + θi−1) otherwise

(C.3)

where `k is the length of side k. When the integral is centered at an edge midpoint,

the function simplifies to:

g1(k) =


`k if j = k

`k cos(θk + θj) otherwise

(C.4)

C.1.2 Simplification of g2

Again the simplified functions change whether the acoustic disc is centered at a

node or edge midpoint. When the disc is centered on a node:

g2(k) =


−`k if i = k − 1

−`k cos(θk + θi+1) otherwise

(C.5)

103

When the integral is centered at an edge midpoint, the function simplifies to:

g2(k) =


−`k if j = k

−`k cos(θk + θj) otherwise

(C.6)

C.1.3 Simplification of g4

The functions that contain sums of trigonemetric expressions, g4 and g5, only show

up in the integral expressions for the nodal updates.

g4(k) =


`i+1 sin θi if i = k − 1

−`i+1 sin θi if i = k

0 if i = k + 1

(C.7)

C.1.4 Simplification of g5

g5(k) =


0 if i = k − 1

−`i−1 sin θi if i = k

`i−1 sin θi if i = k + 1

(C.8)

C.1.5 Simplification of g6

The dot product of two edge normals can be also be expressed as:

g6(k) = −`k−1`k+1 cos θk (C.9)

C.2 Basis function integrals

As stated earlier, the basis functions have three basic forms: one for nodal bases,

one for edge bases, and one for the bubble function. The form of the update equations

104

also fall into separate categories for the node and edge updates. Let the integral of a

basis function be denoted by Ii/j,k, where the first index represents the basis index.

Again, the subscript i is used for nodes and j used for edges. The second index

represents the update index which is either associated with a node or an edge. With

this notation, the spherical mean formula becomes:

MR{u} =
1

2πR

[
3∑
i=1

(c2i−1Ii,k) +
3∑
j=1

(c2jIj,k) + c7I7,k

]
(C.10)

C.2.1 Nodal basis index, nodal update

Ii,k =



[
1 + 1

6

(
liR
S

)2
]
Rθk + 3πR2

8S
g3(i)− R3

6S2 [g2(i)g5(i)− g1(i)g4(i)] if i = k

1
6

(
liR
S

)2
Rθk − πR2

8S
g3(i)− R3

6S2 [g2(i)g5(i)− g1(i)g4(i)] otherwise

(C.11)

C.2.2 Nodal basis index, edge update

Ii,k =



πR2

12S2 [2Rl2i − 3Sg1(i)] if i = k

πR2

12S2 [2Rl2i + 3Sg1(i)] otherwise

(C.12)

C.2.3 Edge basis index, nodal update

Ij,k =
R3

3S2
{g6(j)θk + [g4(j + 1)g5(j − 1)− g1(j + 1)g2(j − 1)] sin θk}+ ζ(j, k)

(C.13)

105

where

ζ(j, k) =


0 if j = k

g3(j − 1) if j = k − 1

g3(j + 1) if j = k + 1

(C.14)

C.2.4 Edge basis index, edge update

Ij,k =
πR3

3S2
g6(j) + ζ(j, k) (C.15)

where

ζ(j, k) =


πR
[
1 + R

2S
g1(k)

]
if j = k

πR2

2S
g1(k) otherwise

(C.16)

C.2.5 Bubble index, node update

I7,k =
9R3

4S2
{g6(k)θk + [g4(k + 1)g5(k − 1) + g1(k + 1)g2(k − 1)] sin θk}

+
27πR4

128S3

{(
n1xn2xn3x − n1yn2yn3x − n1yn2xn3y − n1xn2yn3y

) (
sin3 θP − sin3 θQ

)
+
(
n1yn2xn3x + n1xn2yn3x + n1xn2xn3y − n1yn2yn3y

) (
cos3 θP − cos3 θQ

)
+ 3

[
n1yn2yn3y (cos θP − cos θQ)− n1xn2xn3x (sin θP − sin θQ)

]}
(C.17)

106

C.2.6 Bubble index, edge update

I7,k =
9πR2lk

8S

(
3

2
− Rlk

S

)
+

27πR4

64S3

[(
n1xn2xn3x − n1yn2yn3x − n1yn2xn3y − n1xn2yn3y

)
sin3 θP

+
(
n1yn2xn3x + n1xn2yn3x + n1xn2xn3y − n1yn2yn3y

)
cos3 θP

+ 3
(
n1yn2yn3y cos θP − n1xn2xn3x sin θP

)]
(C.18)

C.3 Basis derivative integrals

The spherical mean formulas for the basis function derivatives have a similar form

as the previous section and contain the same common functions listed in Eq. (C.2).

MR{∇u} =
1

2πR

7∑
i=1

ci

 θQ∫
θP

R∫
0

∇φi
r√

R2 − r2
drdθ


=

1

2πR

[
3∑
i=1

(c2i−1Ji,k) +
3∑
j=1

(c2jJj,k) + c7J7,k

] (C.19)

C.3.1 Nodal basis index, nodal update

Ji,k =



R
4S2 [πRg3(i) + 6Sθk] ni if i = k

R
4S2 [πRg3(i)− 2Sθk] ni otherwise

(C.20)

107

C.3.2 Nodal basis index, edge update

Ji,k =



πR
2S2 (Rg1(i)− S) ni if i = k

πR
2S2 (Rg1(i) + S) ni otherwise

(C.21)

C.3.3 Edge basis index, nodal update

Jj,k =
πR2

4S2
[nj+1g3(j − 1) + nj−1g3(j + 1)] + ζ(j, k) (C.22)

where,

ζ(j, k) =


0 if j = k

nj+1
2Rθk
S

if j = k + 1

nj−1
2Rθk
S

if j = k − 1

(C.23)

C.3.4 Edge basis index, edge update

Jj,k =
πR2

2S2
[nj+1g1(j − 1) + nj−1g1(j + 1) + ζ(j, k)] (C.24)

where,

ζ(j, k) =



2S
R

(nj+1 + nj−1) if j = k

nj+1
2S
R

if j = k − 1

nj−1
2S
R

if j = k + 1

(C.25)

108

C.3.5 Bubble index, node update

J7,k =
27πR2

16S2
[nk−1g3(k + 1) + nk+1g3(k − 1)]

+
9R3

8S2

{
3∑

m=1

nmg6(m+ 1)

+ sin θk

3∑
m=1

nm [g4(m+ 1)g5(m− 1)− g1(m+ 1)g2(m− 1)]

}
(C.26)

C.3.6 Bubble index, edge update

J7,k =
27πR

8S2
[S −Rg1(k)] nk +

9πR3

8S3

3∑
m=1

nmg6(m+ 1) (C.27)

109

BIBLIOGRAPHY

110

BIBLIOGRAPHY

[1] Rémi Abgrall and Mohamed Mezine. Construction of second order accurate
monotone and stable residual distribution shcmes for unsteady flow problems.
Journal of Computational Physics, 188:16–55, 2003.

[2] Steven R. Allmaras, John E. Bussoletti, Craig L. Hilmes, Forrester T. John-
son, Robin G. Melvin, Edward N. Tinoco, Vinkat Venkatakrishnan, Laurence B.
Wigdon, and David P. Young. Algorithm issues and challenges associated with
the development of robust CFD codes. In Variational Analysis and Aerospace
Engineering, pages 1–19. Springer New York, 2009.

[3] Peter Bakker and Bram van Leer. AERO 520 Compressible Flow: Lecture Notes.
University of Michigan, 2008.

[4] Daniel Bouche, G. Bonnaud, and D. Ramos. Comparison of numerical schemes
for solving the advection equation. Applied Mathematics Letters, 16:147–154,
2003.

[5] D. S. Butler. The numerical solution of hyperbolic systems of partial differential
equations in three independent variables. In Proceedings of the Royal Society
of London. Series A, Mathematical and Physical Sciences, volume 255, pages
232–252, 1960.

[6] Bernardo Cockburn, San-Yih Lin, and Chi-Wang Shu. TVB Runge-Kutta lo-
cal projection discontinuous Galerkin finite element method for conservation
laws III: one-dimensional systems. Journal of Computational Physics, 84:90–
113, 1989.

[7] Phillip Colella and Paul R. Woodward. The piecewise parabolic method (PPM)
for gas-dynamical simulations. Journal of Computational Physics, 54:174–201,
1984.

[8] Richard Courant and David Hilbert. Methods of Mathematical Physics, volume 2.
Wiley-VCH, 1962.

[9] S.F. Davis. A rotationally biased upwind difference scheme for the Euler equa-
tions. Journal of Computational Physics, 56:65–92, 1984.

[10] John P. Dean, Scott A. Morton, David R. McDaniel, James D. Clifton, and
David J. Bodkin. Aircraft stability and control characteristics determined by

111

system identification of CFD simulations. In AIAA Atmospheric Flight Mechan-
ics Conference and Exhibit, 2008. AIAA Paper 2008-6378.

[11] B. Einfeldt. On Godunov-type methods for gas dynamics. SIAM Journal on
Numerical Analysis, 25(2):294–318, 1988.

[12] Krzysztof J. Fidkowski and Y. Luo. Output-based space-time mesh adaptation
for the compressible Navier-Stokes equations. Journal of Computational Physics,
230:5753–5773, 2011.

[13] Krzysztof J. Fidkowski and Philip. L. Roe. An entropy adjoint approach to mesh
refinement. SIAM Journal on Scientific Computing, 32:1261–1287, 2010.

[14] Oliver Friedrich. Weighted essentially non-oscillatory schemes for the interpola-
tion of mean values on unstructured grids. Journal of Computational Physics,
144:194–212, 1998.

[15] Sergei K. Godunov. A difference scheme for numerical computation of discontin-
uous solution of hydrodynamic equations. Matematicheskii Sbornik, 47:271–306,
1959.

[16] Ami Harten, Bjorn Engquist, Stanley Osher, and Sukumar R Charkravarthy.
Uniformly high order accurate essentially non-oscillatory schemes, III. Journal
of Computational Physics, 71:231–303, 1987.

[17] Amiram Harten, Peter D. Lax, and Bram van Leer. On upstream differencing
and Godunov-type schemes for hyperbolic conservation laws. SIAM Review,
25(1):35–60, 1983.

[18] Charles Hirsch. Numerical Computation of Internal and External Flows: Fun-
damentals of Fluid Dynamics. Butterworth-Heinemann, 2nd edition, 2007.

[19] Arieh Iserles. Generalized leapfrog methods. IMA Journal of Numerical Analysis,
6:381–392, 1986.

[20] Rudy A. Johnson, Michael J. Stanek, and James E. Grove. Store separation
trajectory deviations due to unsteady weapons bay aerodynamics. In 46th AIAA
Aerospace Sciences Meeting, 2008. AIAA Paper 2008-0188.

[21] S.A. Karabasov and V.M. Goloviznin. Compact Accurately Boundary-Adjusting
high-REsolution Technique for fluid dynamics. Journal of Computational
Physics, 228:7426–7451, 2009.

[22] Dmitri Kuzmin. A vertex-based hierarchical slope limiter for p-adaptive discon-
tinuous Galerkin methods. Journal of Computational and Applied Mathematics,
233:3077–3085, 2010.

[23] Randall J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge
University Press, 2nd edition, 2004.

112

[24] D.W. Levy, Kenneth G. Powell, and Bram van Leer. Use of a rotated Rie-
mann solver for the two-dimensional Euler equations. Journal of Computational
Physics, 106:201–214, 1993.

[25] Xu-Dong Liu, Stanley Osher, and Tony Chan. Weighted essentially non-
oscillatory schemes. Journal of Compuatational Physics, 115:200–212, 1994.

[26] Rainald Löhner. Error and work estimates for high order elements. In 49th AIAA
Aerospace Sciences Meeting, 2011. AIAA Paper 2011-0211.

[27] Maria Lukác̆ová-Medvid’ová, K.W. Morton, and Gerald Warnecke. Evolution
Galerkin methods for hyperbolic systems in two space dimensions. Mathematics
of Computation, 69(232):1355–1384, 2000.

[28] K.W. Morton and Philip L. Roe. Vorticity-preserving Lax-Wendroff-type
schemes for the system wave equation. SIAM Journal on Scientific Comput-
ing, 23(1):170–192, 2001.

[29] Scott A. Morton, Russell M. Cummings, and Denis B. Kholodar. High resolution
turbulence treatment of F/A-18 tail buffet. Journal of Aircraft, 44(6):1769–1775,
2007.

[30] Hiroaki Nishikawa. A first-order system approach for diffusion equation. II: uni-
fication of advection and diffusion. Journal of Computational Physics, 229:3989–
4016, 2010.

[31] Hiroaki Nishikawa and Keiichi Kitamura. Very simple, carbuncle-free, boundary-
layer-resolving, rotated-hybrid Riemann solvers. Journal of Computational
Physics, 227:2560–2581, 2008.

[32] Hiroaki Nishikawa, Mani Rad, and Philip Roe. A third-order fluctuation split-
ting scheme that preserves potential flow. In 15th AIAA Computational Fluid
Dynamics Conference, 2001. AIAA Paper 2001-2595.

[33] Carl F. Ollivier-Gooch. Quasi-ENO schemes for unstructured meshes based on
unlimited data-dependent least-squares reconstruction. Journal of Computa-
tional Physics, 133:6–17, 1997.

[34] S. Ostkamp. Multidimensional characteristic Galerkin mehods for hyperbolic
systems. Mathematical Methods in the Applied Sciences, 20:1111–1125, 1997.

[35] S.H. Park and J. Kwon. An improved HLLE method for hypersonic viscous flows.
In 19th AIAA Computational Fluid Dynamics Conference, 2001. AIAA Paper
2001-2633.

[36] K.M. Peery and S.T. Imlay. Blunt-body flow simulations. In
AIAA/SAE/ASME/ASEE 24th Joint Propulsion Conference, 1988. AIAA Paper
88-2904.

113

[37] Jaime Peraire, N.C. Nguyen, and Bernardo Cockburn. A hybridizable discontin-
uous Galerkin method for the compressible Euler and Navier-Stokes equations.
In 48th AIAA Aerospace Sciences Meeting, 2010. AIAA Paper 2010-0363.

[38] Jaime Peraire, N.C. Nguyen, and Bernardo Cockburn. An embedded discontin-
uous Galerkin method for the compressible Euler and Navier-Stokes equations.
In 20th AIAA Computational Fluid Dynamics Conference, 2011. AIAA Paper
2011-3228.

[39] James J. Quirk. A contribution to the great Riemann solver debate. International
Journal for Numerical Methods in Fluids, 18:555–574, 1994.

[40] Mani Rad. A Residual Distribution Approach to the Euler Equations that Pre-
serves Potential Flow. PhD thesis, University of Michigan, 2001.

[41] A. Sivasankara Reddy, V.G. Tikekar, and Phoolan Prasad. Numerical solution
of hyperbolic equations by method of bicharacteristics. Journal of Mathematical
and Physical Sciences, 16(6):575–603, 1982.

[42] Y.X. Ren. A robust shock-capturing scheme based on rotated Riemann solvers.
Computers and Fluids, 32:1379–1403, 2003.

[43] Mario Ricchiuto. Construction and analysis of compact residual discretizations
for conservation laws on unstructred meshes. PhD thesis, Université Libre de
Bruxelles and von Karman Institute for Fluid Dynamics, 2005.

[44] Philip L. Roe. Approximate Riemann solvers, parameter vectors, and difference
schemes. Journal of Computational Physics, 43:357–372, 1981.

[45] Philip L. Roe. Fluctuations and signals, a framework for numerical advection
problems. In Numerical Methods for Fluid Dynamics, pages 219–257, 1982.

[46] Philip L. Roe. “Optimum” upwind advection on a triangular mesh. Technical
report, ICASE, 1990. Technical Report 90-75.

[47] Philip L. Roe. Linear bicharacteristic schemes without dissipation. SIAM Journal
of Scientific Computing, 19(5):1405–1427, 1998.

[48] V.V. Rusanov. The calculation of the interaction of non-stationary shock waves
and obstacles. USSR Computational Mathematics and Mathematical Physics,
1(2):304–320, 1962.

[49] Michael J. Shea, Matthew M. Constantino, Christopher W. O’Brien, Murray R.
Snyder, Scott A Simpson, and Alexis Cenko. Litening pod modification to im-
prove MK-83 store trajectories. In 29th AIAA Applied Aerodynamics Conference,
2011. AIAA Paper 2011-3158.

[50] Jeffrey Thomas. An Investigation of the Upwind Leapfrog Method for Scalar
Advection and Acoustic/Aeroacoustic Wave Propagation Problems. PhD thesis,
University of Michigan, 1996.

114

[51] Eleuterio F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics.
Springer, 3rd edition, 2009.

[52] Robert W. Tramel and Robert H. Nichols. Addition of improved shock-capturing
schemes to OVERFLOW 2.1. In 19th AIAA Computational Fluid Dynamics
Conference, 2009. AIAA Paper 2009-3988.

[53] Bram van Leer. Towards the ultimate conservative difference scheme. IV. A new
approach to numerical convection. Journal of Computational Physics, 23(3):276–
299, 1977.

[54] Prasanna A. Varadarajan. Noise Transmission Along Shock-Waves. PhD thesis,
University of Michigan, 2011.

[55] John C. Vassberg, Edward N. Tinoco, Mori Mani, Ben Rider, Tom Zickuhr,
Devid W. Levy, Olaf P. Brodersen, Bernhard Eisfeld, Simone Crippa, Richard A.
Wahls, Joseph H. Morrison, Dimitri J. Mavriplis, and Mitsuhiro Murayama.
Summary of the fourth AIAA CFD drag prediction workshop. In 28th AIAA
Applied Aerodynamics Conference, 2010. AIAA Paper 2010-4547.

[56] Z. J. Wang. Spectral (finite) volume method for conservation laws on unstruc-
tured grids: Basic formulation. Journal of Computational Physics, 178:210–251,
2002.

[57] Z. J. Wang and Yen Liu. The spectral difference method for the 2D Euler
equations on unstructured grids. In 17th AIAA Computational Fluid Dynamics
Conference, 2005. AIAA Paper 2005-5112.

[58] R.F. Warming, Paul Kutler, and Harvard Lomax. Second- and third-order non-
centered differnce schemes for nonlinear hyperbolic equations. AIAA Journal,
11(2):189–196, 1973.

115

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	LIST OF APPENDICES
	LIST OF ABBREVIATIONS
	ABSTRACT
	Introduction
	Background
	Shortcomings of contemporary solvers
	Multidimensional physics
	Accuracy
	Compact support

	Active flux description
	Thesis overview

	Linear Advection
	One-dimensional discretization
	Reference element
	Internal reconstruction
	Updates
	One-dimensional analysis and results

	Two-dimensional discretization
	Reference element
	Reconstruction
	Updates
	Time step restriction
	Two-dimensional linear advection
	Two-dimensional circular advection

	Nonlinear Advection
	Burgers' equation
	Limiting
	Test cases
	Shock
	Expansion
	E-C-E wave

	Alternate approaches

	Linear Acoustics and Linearized Euler
	One-dimensional linear acoustics
	Simple wave
	Non-simple wave

	Two-dimensional linear acoustics
	Integral around circumference
	Spherical means
	Integrals of the disc interior
	Comparison of radial symmetry
	Comparison to exact solution

	Combining advection and acoustics (linearized Euler)

	Conclusions
	Summary
	Contributions and conclusions
	Future work

	APPENDICES
	BIBLIOGRAPHY

