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ABSTRACT 

 

The rapid development and adoption of high throughput technologies has led to an 

avalanche of omics data, including those from genome, transcriptome, proteome and 

metabolome, from individual laboratories as well as global-scale collaborative efforts. The 

major ensuing challenge is then how to analyze, explore and extract new biomedical 

knowledge from such omics datasets. This thesis attempted to address some of these 

challenges by 1) developing novel tools for flexible searching, clustering and visualizing 

omics networks and pathways 2) developing novel robust statistical workflows to identify 

confident associations that lead to discovery of new cell-line specific bio-signatures from 

NCI-60 omics datasets with high variability and missing measurements, and most notably, 3) 

conceiving and developing a novel visual data exploration model, the CoolMap, to bring 

multi-scale, versatile and flexible visual data mining capabilities to structured two-

dimensional omics datasets. CoolMap’s unique capabilities were demonstrated through 

several use cases including a mother-child nutrient/epigenetics study, and enables efficient 

and flexible identification of strongly correlated high-level ontological concepts as well as 

low-level specific measurements for data-driven hypothesis generation. 
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Chapter 1 Introduction 

I would like to begin my thesis by paraphrasing an Indian allegoryi: 

A merchant brought an elephant to the Emperor. Knowing no one has ever seen this creature before, 

the Emperor summoned ten most knowledgeable people to his palace and put them to a test. He blindfolded 

them and sent them to touch around the elephant, and then tell him what they felt the elephant should look 

like. The first person grabbed the leg of the elephant and said the elephant should have the shape of a pillar. 

The second person held the trunk of the elephant and stated the elephant felt like a snake. The third person 

touched the ear of the elephant and told the Emperor the elephant was interestingly flat like a giant tropical 

leaf. The last person got hold of the tail of the elephant and claimed that he was holding a snake. The 

Emperor then ordered them to take off the cloth around their eyes and said: if you draw your conclusion from 

limited observations, you will miss the big picture. We must analyze the problem as a whole .  

What does this allegory tell us? Even about two thousand years ago, people in Asia already 

understood the importance of studying a problem in its entirety; or in other words, in a 

‘systems’ manner. This requires the following practices: first of all, compile a dataset that 

contains as complete and detailed information as possible; secondly, analyze the problem in 

each information domain, identify intra-domain associations, and make domain-specific 

inferences; and most importantly, build cross-domain relationships and generate a 

comprehensive, integrated and systems conclusion. The last step produces a new entry of 

knowledge that can be used to create solutions for existing challenges or answer new 

questions.  

For sciences that are heavily reliant on measurements such as Physics, Chemistry and 

Biology, a major obstacle to analyzing a particular matter in using the systems view has been 

how quickly, accurately and affordably raw data could be obtained. Taking DNA sequencing 

as an example, the initial cost of obtaining raw sequence data could be as high as $10 for 1 

                                                
i For more details: http://en.wikipedia.org/wiki/Blind_men_and_an_elephant 

ii http://www.singularity.com/charts/page73.html 
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base pair (bp) in 1990ii, not to mention the cost for data storage and analysis. Therefore in 

the pre-high-throughput era when obtaining large amount of measurement data was 

impractical, researchers focused on specific and manageable research problems: often only a 

handful of genes or proteins are studied in a well-controlled study. Many key molecules were 

identified and carefully studied, such as the tumor suppressor p53 gene, the transcription 

modulator gene NF-κB, etc. However, for processes that involve an ensemble of factors 

such as obesity, hair-loss or cancer, it is necessary to study ‘snapshots’ of the whole 

biological system to avoid being ‘blindfolded’. While the reductionist approaches 

predominantly drove the major progresses in biomedical research in the last century, holistic 

interpretation and understanding of the data are becoming increasingly more necessary for 

complex processes. 

With the rapid development in chemistry, biomedical engineering and information sciences, 

the world has entered an era of information explosion. The human genome project reached 

the first milestone in 2001, when the first draft genome containing 3 Gigabase (Gb) was 

released under an international collaborative effort in 2001. The cost of sequencing dropped 

to about $10k for 1 Megabase (Mb) base pairs (bp) and as low as a quarter per 1Mb in 2010. 

With the arrival of Next Generation Sequencing (NGS), now it’s now possible to sequence a 

human genome at 30X coverage in less than 10 days with cost less than $10k1. Meanwhile, 

more cost-effective, efficient and precise oligonucleotide based arrays gradually replaced 

traditional blotting technology in high-throughput experiments. Molecular signatures were 

discovered that not only reflected pivot elements in disease processes, but also could be used 

as phenotypic classifiers for pathological diagnostics. Amongst this context, the term ‘Omics’, 

referring to study “all constituents considered collectively” in a systems view, has become 

increasing popular. The most referred ones are genomics, transcriptomics, proteomics and 

metabolomics, and the integrated omics analysis2.  

                                                
ii http://www.singularity.com/charts/page73.html 
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1.1 The Omics Landscape 

Genomics is the systematic elucidation of a target organism’s genome3. It entails the 

determination of DNA sequences, and characterization of the structure and function of 

genomic elements. With the latest break-through in sequencing technology, currently there 

are about 60 fully sequenced genomes for multicellular eukaryotic organisms available in the 

Ensembl database since the first draft completion of the human genome projectiii. The 

availability of assembled genomes provide the critical scaffolds needed for a wide variety of 

biomedical research, such as understanding the evolution of genes and species and 

identifying differences between individuals (polymorphisms). With the continuous 

decreasing cost of sequencing, personal genome is becoming affordable to the general public 

and personalized medicine is expected to deliver more cost-effective treatments4–7. 

Genomics data are deposited in several major repositories, such as UCSC8,9, NCBI10, 

Ensembl11. Although genomics research has clarified many biological problems, the static 

DNA sequences cannot accurately represent the dynamic metabolic and physiological state 

of the organism. Therefore Genomics is often studied along with other downstream Omics 

datasets. 

Transcriptomics is the quantitative study of the transcriptome that consists of the complete 

set of transcripts in a cells or tissues, including mRNAs that are directly used as encoding 

templates for protein synthesis, and regulatory RNAs such as non-coding RNAs and small 

RNAs12. The term was first proposed by Charles Auffray and was one of the early members 

in the Omics family13. Transcript expression profile is directly associated with developmental, 

physiological and pathological processes14. 

A variety of technologies have been developed and applied to Transcriptomics research, 

such as hybridization based Microarrays offered by Affymetrix iv  and Illumina v . The 

microarray technology remarkably facilitates the holistic analysis of transcriptome. The 

                                                
iii Ensembl: http://useast.ensembl.org/index.html 

iv http://www.affymetrix.com/ 

v http://www.illumina.com/ 
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recently developed RNA-Seq technology, considered as the successor of microarrays, has 

demonstrated the capability of accurately measure transcription activity digitally on single 

base-resolution, in a high-throughput manner, with high dynamic range, high reproducibility 

and sensitivity and can be executed at relatively low cost13,14. These advances offered new 

holistic and detailed insights into the transcriptome. Bioinformatics Tools supporting RNA-

Seq, such as designing RNA-Seq experiments, rapid short sequence alignment, detecting 

splice junctions, identification of differentially expressed genes, or transcriptome 

visualization are also publicly available15–19. The plethora of publicly available 

Transcriptomics data, such as those deposited in public domains such as NCBI GEO20 and 

European Bioinformatics Institute (EBI)21,22, also stimulated the rapid development of 

computational and statistical methods that could be immediately applied to other Omics 

datasets. 

Transcriptomics have been applied to understand research topics such as cell differentiation, 

cell cycle, development and carcinogenesis. It has been widely applied in diagnostics and 

biomarker discovery. Golub et al. demonstrated that molecular signatures from selected 

genes effectively carry sufficient information to classify different leukemia types in their 

cornerstone paper23. The RNA-Seq technology also opened new frontiers in transcriptomics 

such as more accurate transcript start site and exon boundary mapping, strand-specific 

measurements, much more precise characterization of alternative splicing patterns, detection 

of gene fusion, de novo transcriptomics, in which no prior reference genome is known, and 

Single Cell Transcriptomics (small sample Transcriptomics) that measurement is done with 

very little sample materials12–14,24,25. 

Proteomics concerns the characterization of all proteins’ peptide sequence, structure, 

function, abundance and interactions in a cell. Proteins are the actual molecular machinery 

that execute the commands encoded in the genome26. Although transcriptomics can now 

accurately capture gene expression profiles, there’s another layer of regulation from mRNA 

to protein. Gene expression can be regulated at the mRNA level via alternative splicing and 

siRNAs, and proteins are subject to one or more post-translational modifications such as 

phosphorylation, methylation, glycosylation, unbiquitination, glycation, etcvi. Processes such 

                                                
vi http://en.wikipedia.org/wiki/List_of_sequenced_eukaryotic_genomes 
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as protein localization, transport, protein-protein and protein-DNA interaction, are also 

impossible to be captured by Transcriptomics alone. Moreover, Proteomics is also more 

sensitive to the cellular state change and external stimuli26,27. 

There are several technologies developed to cater proteomics needs. Protein sequence and 

quantity can be determined using Mass Spectrometry (MS)28; physical protein-protein 

interactions can be validated using Yeast-2-Hybrid systems or high-throughput protein 

chips29; proteins from a sample can be separated using 2D gels; protein structures can be 

characterized using X-ray crystallography or Nuclear Magnetic Resonance (NMR) 

spectroscopy; in vivo protein-DNA interactions can be investigated using ChIP-seq30; 

protein localization can be directly observed using fluorescence imaging. Rich proteomics 

data encompassing sequence, structure, function, abundance and interaction are publicly 

available online, such as Proteomics IDEntifications database (PRIDE)31, RCSB Protein 

Data Bank (PDB)32, UniProt33, Reactome34 and MiMI35 for protein-protein interaction. 

Similar to Transcriptomics, Proteomics data have also been applied to medical practices such 

as biomarker discovery and disease diagnostics such as cancer and diabetes25,36,37, and to 

other domains such as ecology and population biology38. It has also been integrated with 

Transcriptomics to reveal dynamics from transcript to protein and the ensemble of 

interactions to underlying molecular mechanisms39–41. 

Metabolomics, or metabolic profiling, consists of the quantitative characterization of 

metabolites in a biological system42. Metabolites are rapid fluctuating and interchangeable 

small molecules (<1500 Da) that directly participate in the cellular regulatory processes and 

capture the physiological state of the cell. Currently there are about more than 8k annotated 

metabolites and hundreds of metabolic pathways stored in databases such as the Human 

Metabolome Database (HMDB)43,44, METLIN45, Edinburgh Human Metabolic Network 

(EHMN)46, and Kyoto Encyclopedia of Genes and Genomes (KEGG)47, and used by 

programs for analyzing metabolomics data, such as Metsscape48,49. Generally, there are three 

major metabolic profiling techniques50: targeted quantitative analysis that profiles only a 

limited number but well-characterized metabolites; unbiased profiling that measures a large 

number of metabolites (from a couple hundred to a few thousand) simultaneously, and 

metabolic fingerprinting that captures the entire ‘snapshot’ of the metabolic state of a cell 

culture or tissue. 
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Along with the technological advances in other Omics, the technological advances have also 

remarkably improved the measurement of metabolites. The pipeline usually consists of a 

molecular separation procedure, such as Gas Chromatography (GC), Liquid 

Chromatography (LC), High-Performance Liquid Chromatography (HPLC), Ultra 

Performance Liquid Chromatography (UPLC), Capillary Electrophoresis (CE), that is then 

coupled with a characterization procedure, such as Mass-Spectrometry (MS), Nuclear 

Magnetic Resonance (NMR) spectroscopy, and Fourier Transform Infrared Spectroscopy 

(FT-IR)50–53.  

Metabolomics has a variety of applications, such as plant sciences and agriculture to capture 

the states of growth, development and plants’ response to external stimuli54, pharmaceuticals 

and drug discovery53,55, environmental sciences, natural product research56, food sciences to 

benchmark processing, quality and safety57. As it has been demonstrated that cells usually 

undergo significant metabolic changes in pathological processes such as obesity, diabetes, 

complex disorders and cancer, metabolic profiling is also used in non-invasive early disease 

diagnostics, prognostics and biomarker discovery53,58–61. After careful examination and testing, 

many statistical and computational methods developed for gene expression profiles can be 

directly applied to Metabolomics50,62. 

Cross-Omics Studies. With this rapid development in each individual omics study, and 

because each omics dimension captures one aspect of the biological state of the cell, research 

using multiple omics would reveal novel biological hypotheses involving complex 

interactions among the different omics or pathways that would otherwise be impossible to 

be mined from a single omics data-type alone, and the results have a wide spectrum of 

applications in Bioinformatics and Biomedical sciences, such as cross-omics network 

building2, modeling of cellular responses63, regulatory pathways and network reconstruction64 

in plant biology41, elucidating pathways in microbial systems40,65,66 and understanding of 

human diseases67, and in association with pharmacogenomics for personalized drug therapy68. 

Recently, there have also been proposals of integrating omics data into Electronic Health 

Record (EHR)s69,70, such as the high quality personal phenomics (the systematic 

measurement of the physical and biological traits of organisms)  could also become a crucial 

component for future diagnostics supporting systems for doctors and public health 

practitioners71. Rui Chen et. al proposed a integrative personal omics profile (iPOP) system 
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that integrates genomic, transcriptomic, proteomic, metabolomics and autoantibody profiles 

for medical risks assessment72. Many Tools have also been developed to provide out-of-the-

box solutions from cross-omics research, such as the Bioconductor suite73, integrOmics74, 

MeltDB75, etc. A comprehensive list of tools can be found in Ghosh et. al76 It is expected 

that with the further development of omics such as phenomics, interactomics, etc. and the 

development in analytical methods and hardware, integrated omics analysis would be even 

more effective in understanding bioilogical systems. 

1.2 Analytical Methods for Omics Datasets 

The most frequently asked questions in omics studies, is how do we detect the key molecules, 

or key pathways and networks that consist of such molecules, that contribute to the 

observed phenomenon? Different from the pre-omics era when there were only a handful of 

candidates to manually analyze, now researchers have to mine signals from tens of thousands 

of genes, proteins or metabolites. More importantly, it is crucial to identify high-level 

concepts (protein complexes, biological processes, pathways) that contribute to the 

observations in order to develop hypotheses that link molecular events to high-level 

biological functions. High performance methods with small false discovery rate (FDR)77 and 

that are robust to high levels of noise have become critical. In general, this includes of 

methods that filter out a small set of molecular features, cluster molecular profiles based on 

their expression signatures, and map to existing knowledge of interaction networks or 

creating new networks with observed associations. 

For filtering molecular profiles that contain most signals, a Variable Selection (VS) procedure 

is often used to identify a subset of molecular profiles that best differentiates different 

sample classes. This can be done using any of the several statistical routines, such as 

conventional t-test and ANOVA78, adjusted t test like Significance Analysis of Microarrays 

(SAM)79, shrinkage t-test with adjusted variance considering multicollinearity (Shrinkage t)80,81, 

a permutation-based approach or constructing new variables using combinations of existing 

ones to reduce the data dimensionality such as the principle component analysis (PCA)82, 

independent component analysis (ICA)83, non-negative matrix factorization methods 

(NMF)84,85, support vector machines (SVM)86, K-Nearest Neighbors (KNN), Random Forest 
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coupled Variable Selection (VarSelRF)87, Discriminant Function Analysis (DFA)50. 

Regression models with variable selection can also be built using Partial Least Squares (PLS) 

and can then be used for prediction50. The filtered subset of molecular profiles carries the 

most variability of the data and can be used for future classification of samples. 

Another approach is to cluster omics variables based on their expression profiles across 

samples. Clustering is a process that assigns variables to groups while simultaneously 

minimizing the intra-cluster differences and maximizing inter-cluster differences using a 

distance function88. Because variables that tend to change synchronously are more likely to 

be involved in the same biological processes, clustering could reveal high-level molecular 

mechanisms better than the individual omics variables. The most frequently used methods 

are agglomerative hierarchical clustering (HClust), K-means, Markov clustering, Bayesian 

clustering, density based clustering, and community structure detection88–92. Because some 

hub genes participate in multiple biological processes, fuzzy clustering and probabilistic 

clustering methods were also proposed to allow multiple cluster membership assignments50,88. 

Clustering is also an unsupervised method, meaning no prior membership knowledge is used 

and memberships are only assigned based on distances computed from data. 

After obtaining omics profiles, it is then possible to gain a high level view of the individual 

molecular entities using the interrelated relationships. There are two strategies: the first 

strategy is to map the identified molecules to known statistically significantly over-

represented pathways or networks using an enrichment analysis. This can be done in a slew 

of offline and online pipelines for single or modular variable discovery, such as 

Bioconductor/R, Gene Set Enrichment Analysis (GSEA), DAVID, LRpath and 

ConceptGen, commercial services like MetaCore, etc.35,62,73,93,94. On the other hand, it’s also 

possible to reconstruct a de novo network using the Omics profiles, using 

correlation/coexpression data such as ARACNE95, WGCNA96. An inferred network can also 

be queried against an interaction network database using network mapping methods such as 

SAGA or VANLO97,98. Integrating several Omics data types could improve the quality of 

resultant networks and models99. 
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1.3 Visual Exploration of Omics Datasets 

Complementary to automated pipelines or statistical methods to generate a list of ‘research 

hotspots’ is the visual exploration process: the results can be plotted using a variety of static 

or interactive methods and the researcher then could directly explore the data and look for 

interesting features. Frequently used visualization methods for Omics data includes Scatter 

Plots, Profile Plots and HeatMaps100. For example, a numeric gene expression profile matrix, 

with each row mapped to a gene, each column mapped to a sample and cell for the 

corresponding expression value, can be color-coded and plotted as a heatmap. 

Aforementioned clustering memberships can also be superimposed, or visualized using 

schemes proposed by Hibbs et. al101, which is much easier for human interpretation rather 

than raw data. Other annotations can be added such as the hierarchical trees or cluster 

memberships102. For direct comparison of multiple Omics data, Baran et. al proposed a color 

scheme for three way comparisons103. OmicsViz can illustrate large omics datasets across 

several sources104. Dimension reduction methods such as PCA, Multi-Dimensional Scaling 

(MDS) and Non-linear dimensionality reduction algorithm such as t-statistic Stochastic 

Neighbor Embedding (t-SNE) were also applied to more accurately reflect co-expressed 

genes in visualizations105. Networks and pathways from databases or generated from 

experiments can be visualized in various ways using standalone software like R, Cytoscape, 

NAViGaTOR, VisAnt, TranscriptomeBrowser, Pajek, VANTED, GenMAPP, MetaCore 

and QluCore, or online applications like Oncomine, KEGG, Lichen and Omics Viewer 
100,106–108. Hendrik et al. proposed a slew of visualization recommendations for cross-domain 

knowledge visualization such as image stacking, network comparison, and multi-modal 

alignment109. Gehlenborg’s review compiled a comprehensive list of frequently used software 

for Omics data visualization100. 

1.4 Bioinformatics Challenges in the Omics Era 

With the rapid technological development and decreasing cost, researchers are now less 

concerned about obtaining raw data. Instead, analyzing and interpreting the exponential 

growth of data has become the new challenge – even simply handling massive high-



10 

throughput data has become as major challenge to many investigators. I hereby summarized 

the five major Bioinformatics challenges for the Omics era. 

Storage: Although the cost of storage has dropped significantly to about one dime per Gb, 

there’s still an ongoing race between data generation and data storage. Just an example,  

there are already over one million GEO microarray datasets uploaded to this day. 

Furthermore, the cost for hardware (servers), service (power, network), and maintenance 

(labor, backup, transfer, data consistency and security) also stacks up quickly with the growth 

of data. For example, to install a mirror of UCSC genome browser, it would require about a 

compute system with about 8 CPU cores, 64Gb memory, and 40 Tb disc storage for a 

typical setupvii. It was estimated that by the end of 2012, the total number of expression 

datasets has surpassed one million110. Even though free public domain data deposit (NCBI 

GEO20, UCSC genome center8, KEGG47, Reactome and MiMI34,35) and low-cost cloud 

storage (Amazon and Google) have alleviated the economic hardship for small research 

groups, it remains a big challenge with the rapid instrumental development of high-

throughput, high-resolution data generation. Besides hardware, the massive data also incurs 

challenges to databases. The traditional relational databases such as used for the UCSC 

genome browser8 have been competent for manage traditional data, but are less suitable for 

complex biomedical experiments, free-from and heterogeneous data, media rich data such as 

images and 3D models111. Key-value based big-table implementations such as Google 

LevelDB, and distributed storage system for structured data such as Big-tableviii, along with 

adaptive informatics111, can be utilized to tackle such challenges. However, this brings in 

other complications such as data synchronization across different physical servers or data 

centers. Wiesinger et. al compiled a list of crucial questions to be addressed for data and 

knowledge management for cross-Omics projects112. Ghosh et. al reviewd the software tools 

and resources, as well as workflow designs pertinent to integrated platforms designed for 

systems biology76. 

                                                
vii http://genome-source.cse.ucsc.edu/gitweb/?p=kent.git;a=tree;f=src/product 

viii http://research.google.com/archive/bigtable.html 
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Query: Assuming the storage demand can be met, the next immediate challenge is how to 

quickly locate the data of interest. It is now entirely impossible to browse a data warehouse 

manually and pick entries of interest without queries. Taking full-text search as an example, 

as of 2012 there are over one million publications indexed in medlineix. Pubmed currently 

indexes over 5600 journalsx and a Google Scholar search of cancer will return over 3.7 

million resultsxi. A search for gene expression profiles with the term MAPKxii would return 

about half million results in the NCBI GEO Profiles database20. Even for a research 

institution, it is impractical to manually explore all these data and because many of the 

hypotheses are built upon new observations and previous knowledge, information query and 

retrieval are vital to the knowledge generation process. 

Notably, there are two major issues related to data query: first of all, the query syntax must 

not be over-complicated for non-information-science-savvy people to obtain desired results, 

yet adequately flexible to tailor customized search needs. The aforementioned PubMed and 

Google both offer the user simple search that are optimized for day-to-day use and 

composite search with syntax qualifiers for building complex criteria, or more structured 

semantic searches. Secondly, the results should be returned relatively fast so that the user 

may iteratively improve queries based on ‘draft’ search attempts, but also ordered sufficiently 

informative and unbiased so that the user wouldn’t need to browse several result pages for 

desired outcome. Researches have shown that most people hardly browse search results 

appear beyond page one. Such practices may lead to significant biases and consequences in 

biological research. Development of standardized semantics and structured grammar such as 

MESH has improved the search efficiency and accuracy113. 

Analysis: The large size of raw data introduced many new issues to the existing data analysis 

work-flow, both computationally and theoretically. Let’s use N to denote the size of data. 

                                                
ix http://dan.corlan.net/cgi-bin/medline-trend?Q= 

x http://www.nlm.nih.gov/bsd/num_titles.html 

xi http://scholar.google.com/scholar?hl=en&q=cancer&btnG=&as_sdt=1%2C23&as_sdtp= 

xii http://www.ncbi.nlm.nih.gov/geoprofiles?term=mapk 
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For data structures and algorithms that grow even on the order of N2, personal computers 

quickly become incapable. For example, the Human Genome U133A 2.0 Array contains 

14500 well-characterized human gene profilesxiii. If we would like to generate a correlation 

matrix of all the expression profiles from a single U133A chip alone using 32 bit double, this 

alone would require around 850 Mb Ram without intermediate storages. More complicated 

analytical procedures will likely require much more memory and storage; therefore it would 

be very demanding even to analyze a single piece of big data set, not to mention comparative 

studies that involve a multiple of datasets. For algorithms that have a time complexity 

beyond logarithmic growth quickly become impractical to be applied to large datasets. 

Distributed, cloud computing or using heuristics can dramatically improve performance or 

the resource requirement in some conditions, but for researchers without such capabilities it 

is still a tremendous challenge. 

Another aspect of related to big data analysis is the theoretical challenges. Obtaining tens of 

thousands measurements simultaneously indeed boosted the discovery efficiency, but at the 

cost of less through investigation for individual hypothesis. The potential pitfalls include 

multiple testing, multivariate outliers, missing values, fuzzy clustering memberships, etc. 

Taking outliers as an example, Pearson correlation coefficient (PCC) has been widely used in 

determining the association between two data vectors. It has been shown that even a few 

outliers, or multi-modal distributed data could significantly affect the resultant correlation114. 

For small datasets, significant candidate correlations can be plotted and visually validated for 

data peculiarities. However, it would be impossible to manually check all false positive and 

false negative signals. Even using the multivariate outlier detection methods and robust 

methods that are outlier resistant, there is still a good chance that a strong signal could be 

resulted from wrong measurements or noise. Statistical modeling also becomes difficult with 

tens of thousands variables – even using variable selection methods there could still be 

thousands of variables left, and they may contribute to a biological process collectively. 

Moreover, because tens of thousands of hypothesis are tested simultaneously, a considerable 

number of signals may simply be a result of fluctuations. False-discovery of Omics variables 

may have a significantly impact on subsequent pathway analyses115. Therefore, how to 

                                                
xiii http://www.affymetrix.com/estore/browse/products.jsp?productId=131537#1_1 
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efficiently and correctly perform pathway analysis to identify the key elements on such big 

datasets reproducibly are yet to be addressed. Many papers have proposed best practices116. 

Meta analysis, which tests hypotheses from pooled data, has gained very strong popularity in 

the recent decade. With the vastly available data on the public domain, and the general 

notion that larger sample size would lead to more statistical power, it is very tempting to 

conduct research on merged data from different studies, especially different Omics 

measurements. Many previous researches have demonstrated the efficacy of this strategy. 

However, there are intricacies that must be addressed for data merging, such as the 

experiment condition differences, processing of missing values and data normalization. 

Exploration: Even though many analysis pipelines, such as sequence assembly, network 

clustering and pattern matching now can be executed very efficiently without a graphical 

user interface (GUI), however visual exploration still holds a very important role in 

Bioinformatics for general researchers. Translating tabulated data into plots, figures and 

interactive visualizations help data-driven hypothesis generation: the user can quickly identify 

strong signals that are related to his or her knowledge domain and trigger the intellectual 

reasoning and discovery process. There is a plethora of publicly available applications, such 

as Oncomine, Cytoscape, UCSC genome browser, just to name a few100. The omics era also 

imposed significant challenges to the analysts even with the state-of-the-art hardware and 

software. It is difficult to build high-performance yet interactive visualization that can run on 

general consumer computer hardware, while feeding the user an overwhelming amount of 

information could even be counter-productive. For example, Michael B. Eisen demonstrated 

the effective visualization of clusters of genes that share similar expression profiles in his 

seminal publication102. However, although the heatmap evidently showed overall expression 

patterns of selected genes, even for this subset that only contained of a few hundred genes 

and less than a hundred conditions, it already became difficult to examine rows or columns 

in detail, not to mention if a similar heatmap is plotted for the entire dataset that contains 

around 8,000 genes. The yeast BIND network from Cytoscape contains over 30,000 proteins 

and 30,000 interactions, and the visualizations often result in a dense ‘hair-ball’117. Expanding 

the SNP track in UCSC genome browser around MAPK9 would reveal all the SNPs in the 
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regionxiv, which could take several scrolls even on a 27 inch Apple monitor with 2560X1440 

resolution to fully display. These visualization techniques are more or less deficient of 

scalability – at certain datasets of certain size would render the visualization ineffective, 

which neither reveals much of the underlying network structure nor helping to generate new 

hypotheses using merely eyeball inspection. To cope with this challenge, the idea of ‘multi-

scale’ visualization was proposed118. Employing data clustering hierarchies, or external 

ontologies, to reduce and visualize raw data at various summarization levels could ease the 

analytical difficulty. For example, instead of investigating the individual gene expression 

profile change for tens of thousands of genes, the researcher could first screen the pathways 

or certain Gene Ontology (GO) terms which contain groups of genes and check whether 

interesting signals could be detected, and then dive deeper into the details and identify which 

genes would be the drivers of the signals119. A gene interaction network could also first be 

plotted as high-level pathway modules, and then gradually dwelt down to intermediate 

clusters and finally lowest level gene-gene pairwise interactions118. Many online applications 

that contain one or more of such exploration methods, such as Oncomine120, VANTED107, 

Qlucorexv, have been developed to tackle such challenges.  However, new ‘future-proof’, 

scalable, flexible and versatile visualization models are still yet to be developed. 

Exchange: The challenge related to data exchange is two fold. The first difficulty is 

mapping and conversion of data from different sources.  At the inception of the 

Bioinformatics era, many research institutions developed their own annotation system for 

genes, transcripts and proteins simultaneously. Because of the lack of standardization (one of 

the most important achievement from the first Emperor of China, Qin, is the national standardization of 

metrics so that people wouldn’t have to carry around a dozen of different types money for businesses), these 

annotations still coexisted. The Clone121 offers more than 20 ID conversions and the David 

gene conversion tool122 offers more than 40. Some of these ID mappings, such as probe to 

gene, gene to protein, or gene to transcript, could be one to many, many to one or many to 

many. Furthermore, many software programs have their own input-output formats – a node-
                                                
xiv http://genome.ucsc.edu/cgi-bin/hgTracks?position=chr5:179673028-

179707608&hgsid=322350387&knownGene=pack&hgFind.matches=uc021yjl.1 

xv http://www.qlucore.com 
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edge typed network can be stored as an edgelist, an adjacency matrix, structured markup files 

(XML, JSON), etc. Different databases also usually have their own data processing and 

formatting rules. Together these variabilities make a typical cross-omics analysis that involves 

the analysis of multiple datasets using several software utilities very difficult. A significant 

amount of labor and resources are usually invested only to pre-process the raw data. 

The second difficulty is to exchange data across research institutions and researchers. As the 

big problems that require expertise from life sciences, statistics, information and 

computational sciences are unlikely to be analyzed by a single research group alone, how to 

effectively share data and analysis workload across multiple sites is also critical. Not only 

terabytes of raw data and accompanying annotations need to be hosted and shared efficiently, 

but also the shared data need to be interpreted and explored consistently at different sites. 

This requires each site to have comparable hardware and software setup. Online workspace 

that allows the researchers to collaborate virtually on data exploration from different 

geographic sites123, re-playable workflows such as DAVID93, EzArray124, MeRy-B125, as well 

as public and cloud storage such as Dropbox (https://www.dropbox.com/ ) and Peer to 

peer data sharing such as Tranche, have been developed to address these challenges. 

To summarize, the big data era opened doors to many more possibilities – along with the 

new challenges that call for innovative, disruptive and collaborative solutions.  

1.5 My Thesis Work 

Through the course of my PhD research, I attempted to probe into several omics datasets, 

and tried to explore and mine new knowledge. With the aforementioned Bioinformatics 

challenges in mind, I have been developing tools that could better help understand the 

structure of networks, identify functional modules in a network, create meaningful 

visualizations, and applications that offers flexible and efficient search capabilities. I worked 

on a comprehensive transcriptomics-metabolomics study and proposed novel workflows to 

identify outliers that could lead to the identification of unknown biological processes and 

serve as biomarkers, as well as compute reliable correlations for a large number of pairwise 

comparisons of data with high variability and multivariate outliers. And finally for the 

highlight of the thesis, and to humbly address the imminent Bioinformatics challenges in this 
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big data era, I worked with my mentors and advisors to develop a new visual exploration 

model for large, complex, heterogeneous and structured biological data. While developing 

CoolMap, I have integrated not only my working experiences with the omics datasets, but 

also my experience with graphics software, trying to design a new future-proof, extensible 

and high performance visualization paradigm. I hope this generic exploratory model can 

potentially be extended to other disciplines and address existing problems in data-driven 

information mining. 

1.6 Organization of this Thesis 

Chapter 1 gives an overview of the omics era, the current methodologies and Bioinformatics 

challenges. Chapter 2 describes the development of a series of Cytoscape plugins for 

searching, clustering and visualizing omics networks. Chapter 3 presents results of bio-

signature discovery using robust statistical methods on cross-omics datasets. Chapter 4 

discusses the design, implementation and usage scenarios of the CoolMap paradigm. Chapter 

5 concludes the work of this thesis. 
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Expected Publications 2013 

Su G et al, CoolMap: Multiscale and Multidimensional exploration of omics data 

Su G et al, Data exploration using CoolMap and Cytoscape: cross-application interoperability through public APIs 

Collaborative transcriptomics-metabolomics with Dr Charles Burant’s data 

Fan GF, Fu CX, Su G, Lin G, Pappin D, Lucito R and Tonks NK. PTP1B Dephosphorylates and Antagonizes Brk-

mediated IGF-1R Signaling in Ovarian Cancer, in preparation 
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Su G, Burant CF, Beecher CW, Athey BD, Meng F. Integrated metabolome and transcriptome analysis of the NCI60 

dataset. BMC Bioinformatics. 2011 Feb 15;12 Suppl 1:S36. 

Su G, Kuchinsky A, Morris JH, States DJ, Meng F. GLay: community structure analysis of biological networks. 

Bioinformatics. 2010 Dec 15;26(24):3135-7. 
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Chapter 2 Tools for Exploration of Omics Networks 

2.1 Introduction 

As stated in Chapter 1, the omics era has produced massive amount of raw data that 

characterize many facets of organisms. One of the biggest challenges is how to make sense 

of the data for life sciences research groups without strong statistical or computational 

capabilities. There are two different paths of resolutions: the first is a ‘black box’ strategy, in 

which an automated analytical application takes the user input and feed the users human 

interpretable results. All intermediate steps are encapsulated so that a general user can use 

the ‘typical’ routines for most commonly executed tasks. For example, by using Gene Set 

Enrichment Analysis (GSEA)94 or online pipelines such as David93, the user can immediately 

obtain enriched genes and pathways from the supplied datasets. The advantages and 

disadvantages of this approach are very clear-cut: while it is efficient to perform ‘factory’ 

pipelines automatically and efficiently, it is error-prone if the user does not understand the 

underlying hypotheses and mechanisms thoroughly. An alternative strategy is the visual-

exploration: by plotting the microarray experiment and clustering results as a heatmap, or an 

inferred protein-protein interaction network using a network view, the researcher could 

intuitively identify hotspots that could lead to new knowledge discovery. Nevertheless, this 

method is not as efficient, and due to the human analytical capability and computational / 

screen estate constraints, the visual exploration quickly becomes ineffective when the 

heatmap grows more than a few hundred rows and columns or a network contains more 

than a few hundred nodes. In practice, the two strategies are usually coupled – an Omics 

dataset is first processed to generate a subset of potential candidates, and each candidate is 

then visually explored and validated. 

Networks are one of the common visualization formats for omics data. A network, or 

equivalently a graph in mathematics terms, is a set of nodes (interchangeably, vertices) or 

edges. In life sciences, nodes are usually mapped to biological entities and edges are mapped 
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to relationships. A network can be directed or undirected; a regulatory pathway can be 

modeled as a directed network while a pairwise correlation network can take the undirected 

form. There are many publicly available databases for molecular interaction networks, such 

as the Biological General Repository for Interaction Datasets (BioGRID)126, Reactome34, 

Michigan Molecular Interaction (MiMI)35, Biological Interaction Network Database 

(BIND)127. All molecular interaction data can be pooled together to capture the entire 

interaction map of a cellular organism, and such a pooled interaction network can be named 

as ‘interactome’. A network can be first analyzed using ‘black box’ pipelines such as the 

Boost Graph libraryxvi and its parallel variants, JUNGxviiand igraphxviii, and then interactively 

visualized using Cytoscape, Prefuse, VizAnt or NAViGaTOR100. Cytoscape is one of the 

most popular open source network software for biological network data exploration. One 

reason for its outstanding success is the plugin framework and strong community support – 

it is very easy for third party developers to integrate the ‘black box’ analytical functions into 

Cytoscape’s visualization framework. There were hundreds of plugins developed for network 

generation, cluster analysis, heatmap visualization, remote database query, ontology analysis, 

etc. For a complete list of current Cytoscape plugins, please refer to the list herexix. 

There are several questions researchers would like to ask when exploring a biological 

network. First of all, what’s the overall structure of the network? Does it consist of a single 

fully connected component, in which one node can reach any other node via a limited 

number of steps, or many small disconnected cliques? Is the network very dense with a large 

number of edges, or relatively sparse with only a few ‘hub’ nodes? Secondly, is it possible to 

partition the network into smaller clusters, or communities, so that each cluster contains 

densely interconnected nodes? The clusters could contain nodes share similar attributes or 

frequently interact with each other, which implies certain biological functions. Thirdly, given 

a very large visualized network, how can one find nodes that suit some complex criteria? For 
                                                
xvi http://www.boost.org/doc/libs/1_52_0/libs/graph/doc/ 

xvii http://jung.sourceforge.net/  

xviii http://igraph.sourceforge.net/ 

xix http://apps.cytoscape.org/apps/  
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example, in a molecular interaction network, we would like to find all the nodes that are 

annotated with a specific Gene Ontology term such as ‘apoptosis’; or in a gene regulatory 

network coupled with microarray data, we would like to highlight all the differential-

expressed genes. Corresponding to Chapter one, we need solutions for visualization, analysis 

and query challenges. 

When I began to use Cytoscape in the summer of 2008, there were not many tools available 

to address these challenges. Existing ones generally had difficulty with increasingly bigger 

and more complex data. I noticed there were quite a few ‘black box’ analysis libraries 

available, and would notably address the aforementioned questions if added to Cytoscape. 

Developer rule number one: don’t reinvent the wheel. 

2.2 GLay and igraph     

The GLay project was initially developed as a student project in Google Summer of Code 

2008 (GSoC) and was presented in the Intelligent Systems for Molecular Biology conference 

(ISMB) 2008. The project was continuously developed afterwards with a rich set of 

community structure detection algorithms and network layout functions, with the hope that 

it would be more useful for general network data analysis. 

2.2.1 Community Structure and igraph 

Many real world networks, including social network, biological interaction network, citation 

network, etc., are scale-free networks in which a few ‘hub’ nodes contain a very large number 

of edges, and the rest of the nodes have very few edges. The overall degree (number of 

edges a node) distribution asymptotically follows the power law. The overall effect of a scale 

free network is that nodes tend to cluster into communities. It is then possible to partition 

the network into communities and elucidate their functions respectively. Namely, using the 

divide and conquer strategy. 

Community Structure Detection is a popular way to partition a network. A network can 

be subdivided into communities without using attribute data to compute distance matrices 

similar to the Markov Clustering (clusterMaker); the resultant communities maximizes intra-

community connections and minimizes inter-community connections. These algorithms 



21 

have been applied to social sciences to identify groups that share similar interests or 

behaviors (Mark Newman). Many high-performance and scalable community detection 

algorithms have been applied to molecular interaction networks to reveal functional modules. 

It has been demonstrated that some of these algorithms are capable of clustering mega-scale 

social networks. Usually a community structure algorithm uses the modularity score Q, 

proposed by Mark Newman128, to benchmark the quality of a community structure. This 

score reflects the quality of the computed community structure with reference to a reference 

random Erdos-Renyi network, in which the probability of having an edge connecting an 

arbitrary pair of nodes is uniform. The modularity takes value between 0 and 1, for 0 

equivalent to a community structure computed on a comparable Erdos-Renyi network and 1 

for perfect community structure. Some researchers have pointed out that using only the 

modularity score may lead to resolution issues: the number of communities found does not 

scale well with the size of the network and some large communities may also possess strong 

community structure. Iterative methods, quality functions other than modularity score and 

module checking criteria have been proposed to improve the quality of community detection 

algorithms129,130. 

The igraph(http://igraph.sourceforge.net/ ) is a C based library for comprehensive graph 

analysis131. It has interfaces to many major programming environments such as R, Python 

and Ruby. This library provides a rich collection of community detection algorithms and a 

variety of layout algorithms for very large networks. 

2.2.2 Existing Network Clustering and Layout Functions in Cytoscape 

Cytoscape is not preinstalled with any network clustering functions and all clustering 

functions are contributed from the community. There are several frequently used Cytoscape 

plugins developed for functional module detection available, such as MCode132, NeMo133 and 

ClusterMaker92. However, there are some limitations to these applications. Some algorithms 

in ClusterMaker, such as hierarchical or k-means clustering, require additional numerical 

attributes to compute a dissimilarity matrix. Others, such as MCode and NeMo, are only 

engineered to find small and densely intra-connected local clusters without clustering all the 

nodes in a network network. For example, when applied to a network from Michigan 

Molecular Interaction (MiMI) containing 11884 nodes and 88134 edges with default 
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parameters, MCODE produced 105 clusters, in which 52 clusters contain less than five 

nodes. Therefore, it may not be suitable for global partioning of large networks for 

exploratory analysis. In addition, some of these plugins were not tailored for large networks 

NeMo threw an error when executed on the same network on a 2.67GHz Intel Core i7 

machine. Before GLay, no plugin offered a comprehensive collection of efficient community 

detection algorithms, which could profoundly improve cluster analysis for Cytoscape. 

Besides network clustering, visualizing very large networks is also a big challenge for 

Cytoscape. It is very desirable to plot the network in such a way that the node proximity 

reflects the network topology. Force based layout algorithms, using ball-string model 

simulation, are frequently used to generate layouts on scale-free networks. However, 

generating a force-based layout on a large network not only consumes considerable 

resources and time, but also rarely produces any informative outcome. It is suggested that 

direct application of a force-based algorithm on a dense network with greater than 500 

nodes could produce a massive hairball-like mess134. Therefore some additional procedures, 

such as brushing and visual attribute mapping may be necessary. Cytoscape is shipped with 

several layout functions, with the organic layout and force-direct layouts as most popular 

ones. However, the bundled Force-based layouts can fail when the network size grow 

beyond 10,000 nodes using default parameters. Therefore, adding scalable and versatile 

layout algorithms, along with the community detection functions would significantly 

improve the visual analytic capability of Cytoscape on large Omics datasets.  

2.2.3 Implementation of GLay 

The core of GLay was developed as a Cytoscape plugin with high-performance community 

analysis and graph layout functions ported from the igraph C library131. The bridging was 

constructed via Java native access xx  interface. JNA serves as a high level wrapper to 

encapsulate the complexities of the Java Native Interfacexxi. Functions can be written in 

prototype format in Java and they are mapped automatically to the native code declarations. 

Also JNA supports native object mapping that allows the direct coupling of Java objects and 
                                                
xx JNA https://jna.dev.java.net 

xxi JNI http://en.wikipedia.org/wiki/Java_Native_Interface 
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native objects (such as primitives and arrays) and thus facilitate efficient data transfer. The 

functions ported from igraph C library were only compiled under Windows 32/64 bit 

platform, but could be easily extended to other platforms by recompiling and C codes and 

configuring JNA accordingly. A Google Summer of Code 2011 project managed to port 

some igraph functions to Cytoscape under Mac OSXxxii.   

The general workflow is done as follows: when user issues a command to use GLay-igraph 

for community structure detection or network layout, the current network is automatically 

processed as the input network, with edge directionality, duplication and self-looping 

removed. Such a network standardization step will make the resultant community structures 

from different community structure detection algorithms comparable as well as improving 

the overall performance, as empirically, edge directionality generally don’t affect the outcome 

of community structure. Upon completion of an analysis, the community memberships are 

sent back to Cytoscape and a custom layout is created to color-code the node membership 

assignments, along with a custom node attribute for memberships. The user may browse the 

resultant community structure with the built-in GLay navigator panel. 

Currently GLay has implemented the following community structure detection algorithms: 

Edge-betweenness89, Fast-greedy135,136, Label propagation137, Leading eigenvector138, Spin 

glass139 and Walk trap140. Because of the distinct heuristics of algorithms, scalability, running 

speed and the resultant community structures vary. Some algorithms, such as the leading 

eigenvector algorithm, works well on a small network of a few hundred nodes but may not 

be suitable for very large networks. Others are optimized for large datasets but may be less 

accurate. For example, the fast greedy algorithm may produce communities with skewed 

community size distribution because of the greedy optimization of the modularity score135. 

Users may test different algorithms and evaluate performance by various benchmarks such 

as modularity, number of communities and community size distributions. Some empirical 

guidelines are provided to help the user determine the optimal algorithm for their specific 

dataset in the following sections. 

                                                
xxii http://code.google.com/p/google-summer-of-code-2011-nrnb/ 
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For layout algorithms, GLay offers the following: Fruchterman Reiingold141, graphopt 

(http://www.schmuhl.org/graphopt/), Kamada Kawai (force based spring layout)142, Large 

Graph Layout (LGL)143, Multidimensional scaling (MDS)144, Reingold Tilford (Hierarchical 

and Circular)145. These algorithms are capable of efficiently layout very large networks or 

generate characteristic views such as hierarchical or circular trees. A key advantage of GLay 

layout is that it allows the layout calculations of various algorithms to initiate from the 

current network layout state. This adds significant flexibility since it enables the user to 

progressively refine the layout by either fun-tuning parameters or using different layout 

algorithms together. For example, when attempting to calculate a force-based layout for a 

very large network, the user may specify a small number of iterations to obtain a draft layout, 

and then gradually refine this layout b adding more iteration, tuning the parameters or even 

combing multiple layout algorithms together. Once done, the user may super impose a 

community or partitioning structure on the resultant layout to investigate network topology.  

We have supplemental information on the plugin homepage and igraph library 

documentation131.  

2.2.4 GLay Usage Cases 

We have tested GLay on datasets of various scale and structure. GLay demonstrated 

substantial performance leverage in both network decomposition and layout generation over 

existing Cytoscape solutions. For example, using GLay to subdivide the MiMI human 

Interactome that contains 11884 nodes and 88134 edges takes 0.7 seconds using the label 

propagation algorithm and 20s using the fast greedy algorithm on a Intel Core i7 machine 

with 2.67GHz CPU clock. MCODE takes around 198 seconds to find functional modules 

(clusters). Generating a layout on this network using the Fruchterman Reingold grid 

algorithm takes about 20 seconds, where as the Cytoscape built-in force directed and spring 

embedded algorithms both reported failure during execution with default configurations and 

1.5G heap space. This demonstrates that Java-C hybrid model has dramatic performance 

advantage processing large network works in Cytoscape. This hybrid model adds additional 

cost of maintaining multiple code-bases across platforms, but it can take advantage of the 

high performance statistics, analysis and numerical processing libraries.  
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Figure 2-1 shows using Fruchterman Reingold grid layout on the Cytoscape built-in BIND 

human dataset, consists of 17961 nodes and 30156 edges. It demonstrates the effectiveness 

of superimposing community structure on top of a force-based layout. The red circle 

indicates a group of highly interacting immunoglobulins which don’t have strong 

interactions with other proteins.  

Users may navigate and explore communities of genes with the GLay browser. For example, 

clicking the community entry in the community browser table will select all nodes belonging 

to that community. The user can then create a new subnetwork or nested network 

(metanodes) from the selected nodes, extract gene lists from the attribute browser or 

incorporate other experimental data for various research interests.  

In addition, GLay can provide qualitatively different results from existing solutions. Figure 

2-2 shows a side-by-side comparison of MCODE using default parameters and GLay using 

the fast greedy algorithm. It can be seen that by using the default parameters, MCODE 

produces much smaller clusters than GLay, leaving the majority of the nodes un-clustered. 

Therefore, GLay outperforms MCODE in terms of structural partitioning of the original 

network. In addition, overall GLay has higher sensitivity than MCODE at the trade-off of 

specificity, which made it more suitable for functional interpretation. For example, one 

cluster in MCODE contains five genes, with four genes function in the MAPK pathway. 

The equivalent GLay cluster contains 25 genes. Submitting these genes to DAVID93 reveals 

one enriched functional cluster for the MCODE cluster and nine enriched functional cluster 

for the GLay cluster. As some of the genes such as cdc28 and ste12 are involved in multiple 

regulation processes, the GLay cluster recovered more biological-relevant information than 

the equivalent MCODE cluster. As GLay contains a variety of community detection 

algorithms, the user may also evaluate the performance of these algorithms using prior 

knowledge from their datasets and the inferred functional modules. 

In summary, GLay capitalizes on the power of highly optimized C code from several social 

network analysis and network layout algorithms to improve scalability of Cytoscape for large 

networks. GLay helped address the increasing needs for analysis and visualization of large-

scale networks. The proposed novel Java-C hybrid model implementation could also benefit 

the Cytoscape plugin developer community. 
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2.3 Comparison of Different Community Structures 

As many community detection algorithms have been proposed, there has been very little 

work done to evaluate the actual performance of these algorithms. Most of these algorithms 

rely on the optimization of the modularity score proposed by Mark Newman89. However, 

sometimes this single measure is insufficient to judge the resultant community structures as 

has been demonstrated129,130. There has been previous research on evaluation of the 

community structure algorithms146. We also therefore ventured into this problem and 

proposed some empirical evaluation guidelines. 

As mentioned in previous sections, the performance of community structure algorithms 

relies heavily on the topology of the input data and the algorithmic heuristics. Although a 

community detection algorithm could generate a partition on any input networks, networks 

lacking the small world feature (such as an Erdos-Renyi random network in which the 

probability of having an edge connecting any pair of nodes is equal) will not produce 

meaningful community structures. Also occasionally the resultant clusters may only arise as 

artifacts of the algorithms135. The challenge is that there is no good ‘golden-standard’ to 

benchmark the algorithm performances – the frequently used Karate club network is far too 

small for today’s practical uses. It is then usually reliant to the expertise, knowledge and 

discretion of the analyzer to determine which is the optimal algorithm for a given dataset129. 

2.3.1 Materials and Methods 

A Boolean rat interaction network (rat interactome) was constructed from MiMI protein-

protein interaction data, with edge duplication and directionality removed. The largest 

connected component of this network contains 3664 genes and 39150 interactions. This 

interactome data demonstrates the typical small-world property of nicely fitted power-law 

node degree distribution (with the fitted alpha = 1.608). 

We analyzed the following community structure detection algorithms used in GLay from the 

igraph package: leading-eigenvector (LE), spin-glass (SG), walk-trap (WT), fast-greedy (FG) 

and label-propagation (LP). The Clauset, Newman and Moore – Wakita and Tsurumi 

(CNM-WT) algorithm was also evaluated using the executables from the authors. We 



27 

proposed a set of rules including modularity, scalability, reproducibility, robustness and 

interpretability as quality measures, which will be discussed in detail in the Results section.  

The performances of the algorithms were also assessed by mapping communities to 

biological annotation data using standard enrichment analysis. We calculated the total 

number of enriched KEGG pathways and GO Biological Process (BP) terms using Fisher’s 

exact test with R SubpathwayMiner package and topGO package, respectively. All 

parameters are set using package recommended values. The cut-off for KEGG pathway 

enrichment is FDR < 0.05. The cut-off for GO enrichment is p-value <0.01. Gene ids are 

also permuted for 100 times to compute the mean and standard deviation of total number of 

matches for the null distribution. All analysis was done on Depression Centre Cluster from 

University of Michigan, Ann Arbor. 

2.3.2 Algorithm Evaluation Criteria 

To choose the optimal community detection method for our dataset, we proposed the 

following criteria for performance evaluation. Table 2-1 summarizes the comparison of these 

algorithms. 

• Modularity. The algorithm must be capable of producing a community structure 

significantly different from random partitioning, which is measured by modularity 

score89. Most algorithms can perform reasonably well on our dataset because the 

topology of rat Interactome (such as power-law fit of degree distribution) is 

significantly different from a random Erdos-Renyi network, which has expected 

modularity score of 0. We also compared the agreement of the community structure 

produced by different algorithms. Result showed that even though the differences in 

modularity scores are small (Table 2-1, modularity ranges from 0.65 – 0.74), the 

community structures are very dissimilar. For example, the modularity score is 

almost identical (0.71) for EB and LP, but the agreement between the two resultant 

community structures, measured by Adjusted Rand Index (ARI, ranges from 0-1 

with 1 for perfect match and 0 for comparison of two different random partitions)147, 

is only 0.15. This phenomenon demonstrates that optimization using modularity 

score is not sufficient as there may be a large number of dissimilar solutions that 

produce similar modularity score. 
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• Scalability. From the summary of running time we can see that even though these 

algorithms produce community structure with very close modularity scores, the 

running time vary dramatically. Algorithm such as LP, which is capable of 

partitioning a network in near linear time, takes less than 1 second to finish whereas 

a single run of SG takes more than 10 minutes. The original Edge betweenness 

algorithm requires more than 8 hours of running time. As the size and complexity of 

biological networks grow rapidly, scalable algorithms such as FG, KWT, LP and WT 

are more favorable to do quick and draft partition of very large networks.  

• Reproducibility. Some non-deterministic algorithms, such as SG and LP, produce 

different community structure in each execution because of its stochastic nature, 

even though these community structures produce similar modularity scores. The 

researcher will need to run the algorithm repeatedly to find the best solution or 

generate a ‘mean’ community. We estimated the dispersion148 of SG and LP, which is 

a score between 0 and 1 representing how often two nodes are consistently in the 

same community after repeated runs. The dispersion for SG is 0.82 and 0.93 LP after 

100 repeated runs, which demonstrates that communities from LP are much more 

reproducible thus easier to replicate.  

• Robustness. As the real world dataset is always incomplete and error prone, the 

algorithm must have sufficient robustness to cope with noise. To evaluate the 

robustness of algorithms, the rat Interactome was perturbed by randomly adding (ad), 

removing (rm) or rewiring (rw: edges were randomly broken down and reconnected 

while maintaining the degree distribution of the original network) a certain number 

of edges. As we don’t have a prior probabilistic distribution of edge error rates, we 

assume its uniform in entire Interactome and perturbed all edges at equal probability. 

The interrogated network is then analyzed with the same procedure and the 

produced community structure is compared with that produced from the original 

dataset using ARI. The network is perturbed 10 times for any given number of edges 

subject to change and the average ARI and dispersion score is computed. Figure 2-3 

shows the ‘deterioration curve’ of ARI and dispersion score generated by 6 

algorithms on the perturbed networks. It can be seen that ARI and dispersion for 

FG decreases rapidly even with only a small number of perturbations because of 

FG’s greedy optimization of modularity score. KWT as an improved version of FG 
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with cluster size balancing did show better performance dispersion score, which 

implies it’s more resistant to noises.  LP and SG bear no signs of ‘deterioration’ 

because of their stochastic nature, and consistent with previous analysis in 

reproducibility, LP outperforms SG as shown both in ARI and dispersion curves. 

WT outperforms all the other algorithms in both ARI and dispersion. It is capable of 

producing very stable communities with about 1% of the edges in the network 

perturbed.     

• Interpretability. It has been shown that some algorithms such as FG, despite of 

their outstanding scalability, tend to produce community structure with artefacts 

because of the heuristics135. Some of these artefacts don’t undermine modularity 

score severely but could make the results difficult to interpret. We evaluated the 

‘balance’ of the community size distribution in skewness and kurtosis, as shown in 

table 1. Large value of skewness and kurtosis indicate unbalanced community size 

distribution. For example, FG, LP, FG and WT tend to produce communities with 

skewed size distribution, with a large number of singletons and very small 

communities and several very large communities. WT produces 541 communities 

with 438 containing less than 5 nodes, which could also inflate ARI, dispersion and 

enrichment analysis. It is also not suitable for ‘draft’ partitioning of a large network 

for further investigation. KWT out-performs all other algorithms as it’s designed to 

account for unbalanced community size distribution. 

From these analysis we can see that the choice of algorithm is data and research interest 

dependent, and we can rank each algorithm based these proposed criteria. For very large 

networks, scalability is the utmost concern and FG, KWT , LP and WT are good choices. If 

the researcher prefers to do a rough cut of the network with relatively a small number of 

communities, FG, KWT and SG are favorable. If the network is with high variability (such 

as a correlation network generated from a gene expression dataset), then a robust algorithm 

such as WT, or non-deterministic algorithm such as LP and SG will work better. In addition, 

the researcher could pick the algorithm, which produces approximately desired number of 

communities if this prior knowledge is available; or the size of communities with known 

genes or proteins approximate those annotated pathway or network modules. 
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2.3.3 Algorithm Evaluation and Biological Inferences 

We performed enrichment analysis of communities from FG, KWT, LE, LP, SG and WT, 

using KEGG pathways and GO Biological Process (BP) terms. The total number of 

enriched pathways and terms are counted for the result of each algorithm. For LP and SG 

the analysis was repeated 50 times to compute the mean and standard deviation. In order to 

assess significance, gene ids were permuted to generate a random network and the 

communities were analyzed using the same procedure. 

It can be seen from Table 2-2  that communities from each algorithm is capable of capturing 

a much larger number of enriched KEGG pathways and GO BP terms than the permuted 

network. Some algorithms such as LP and WT, captured much more enriched pathway and 

GO terms. This could be resulted from the larger number and smaller communities they 

produce, as the permuted communities from LP and WT also captured more communities 

than the other algorithms. In this case, even though the enrichment is very high, it’s very 

difficult to interpret therefore other algorithms such as KWT may be favored. The 

performance of FG, KWT, LE and SG are then very close in terms of biological inference. 

Neverthless, partitioning the interaction network would reveal densely interacting modules 

for further functional interpretation. 

2.4 GSearcher 

A biological network, in which genes and proteins are modeled as nodes and interactions are 

represented as edges, can be associated with various attribute data such as gene annotation 

or expression profiles. As stated earlier, one challenge for network exploration is effective 

and efficient searching. As the size of networks and amount of attribute data accumulate, 

highly flexible and scalable search solutions become increasingly necessary.  

Cytoscape has a lightweight but powerful tabulated attribute data structure to store 

annotation data that are linked with the loaded networks. It provides some internal functions 

for searching, such as Quick Find and Filters. However, this is often insufficient for the user 

to quickly filter for a subset of nodes based on a given criteria. Cytoscape Enhanced Search 

Plugin (ESP) has been developed to incorporate more search capabilities using the Java 

Lucene text search engine functions149. The added fuzziness dramatically improved the 
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search flexibility and accuracy. However, the major drawback of these search solutions is 

that they still use the conventional (or legacy) submission-wait mechanism. The user typically 

supplies a query, hit the ‘Enter’ key to begin the search and then waits for the results to be 

shown in the default attribute browser. The submit-wait process must be repeated to 

compare different queries, to correct errors and to progressively improve a query. This 

process not only creates the perception of search slowness by forcing the user to wait for 

complete results from unsatisfactory preliminary searches, but also interrupts any coherent 

thought processes. Many modern search engines, such as iTunes and Google search, updates 

the search result instantly from the users’ input without waiting for the user to notify the 

server by the ‘Enter’ key. This interactive auto-completion and live-feedback model enables 

the user to complete a query from live feedback, dramatically improving the efficiency of 

searches and the aesthetic appeal of interaction with the software. 

Current Cytoscape search tools also have some issues that undermine the efficiency and 

accuracy of searching. First of all, all these tools use the default attribute browser to display 

results. This may result in a user interface function collision with other plugins (such as 

MCODE) or functions that also use the default attribute browser to display data. Secondly, 

these tools only select nodes or edges matching the search criteria, without indicating where 

in the attribute table matches occur. The user can only locate the position of matches by 

manual scanning, which can be very difficult for browsing the result from a fuzzy search in a 

very large attribute table with many columns. Thirdly, it is difficult for the user to compare 

matching and non-matching attributes as non-matching attributes are always hidden by 

current tools. Comparing matching and non-matching entries would also help the user refine 

the search criteria.  Finally, all these search methods only support a subset of fuzzy matching 

rules. For example, wildcards currently are not allowed at the beginning of a query, which 

prevents the user from suffix-initiated searching. GSearcher addresses these issues by 

providing a fully interactive, highly flexible search interfaced that supports full Java regular 

expression (regex). 
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2.4.1 Design and Implementation 

GSearcher is built on JDK 6. We used GlazedListxxiii library as the underlying data model. 

Upon initialization, the current network’s attribute data are transformed into a specific 

GlazedList table model for high performance searching, sorting and updating. This 

transformation is very efficient; GSearcher only takes 792ms to transform a Michigan 

Molecular Interaction (MiMI)35 human interaction network of 11884 nodes and 88134 edges 

with 21 attribute fields on a 2.67 GHz Intel Core i7 920 PC. In comparison, ESP takes about 

4 s for indexing on the same computer. The numerical primitive data types (Double, Float, 

Integer) are preserved; Hash/Array attributes are flattened into Strings. Subsequent 

searching on the same network does not require table model reloading (re-indexing). 

In order to provide interactive feedback and result sorting, browsing and highlighting, we built GSearcher’s 
independent data browser using JXTablexxiv. This browser listens to user input and updates search results 
interactively independent from the default data browser. Attribute entries that match the query are highlighted in 
the table. The user may either remove non-matching attribute rows from the browser, or keep them in the 
browser to compare with the matching rows. Similar to the default browser, the selected rows in the result table 
are dynamically linked to the network view, but now the user may either ‘select’ or ‘highlight’ nodes or edges. 
When the nodes/edges are highlighted, the selection state is preserved so that the search can be performed 
independently with minimal interference to other Cytoscape functions (Figure 2-3 Robustness test on community 
algorithms. 

These two figures demonstrate the robustness of algorithms when the rat Interactome network is perturbed with 
certain number of edges added (ad), removed (rm) or rewired (rw), measured in ARI (the agreement with result 
from original communities) and dispersion (the reliability of community structure). 

 

                                                
xxiii http://publicobject.com/glazedlists 

xxiv http://swinglabs.org/ 
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Figure 2-4). Rows in the browser can be sorted by a single click on the column header, either 

numerically or alphabetically depending on the primitive data types. Undesired attributes can 

be removed from the view and the search pool by hiding the browser table columns. 

2.4.2 Search Capabilities 

Basic Search: Quick search mode enables the user to apply a single query on all or selected 

attribute fields. There are currently six different matching modes: 

• Terms Anywhere (M): allows a match to occur anywhere in the attribute table. 

Multiple keywords can be submitted separated by spaces. Unlike ESP, the default 

operator for joining multiple terms is AND. This is more similar to typical online 

searching. 

• Begins with Phrase: only matches a phrase at the beginning of attributes. 

• Reg Exp: the query term is treated as a JAVA regular expression instance. 

• Exact: the query term must match an attribute perfectly. 

• Phrase: the query is treated as a phrase with spaces preserved. 

• Exclude Phrase: the query is treated as a phrase, and attributes that do not contain 

the phrase are highlighted. 

GSearcher provided some search functions that were unavailable for Cytoscape for version 

2.6.x or lower. For example, querying ‘nuclease’ on the MiMI network using ‘Terms 

Anywhere (M)’ returns 116 matches, while ESP only returns 13 matches. ‘endonuclease’ and 

‘ribonuclease’ were left out by ESP because suffix matching is not allowed. Using regular 

expression, the user can build even more flexible rules. Using ‘CDC\d+’ as a regular 

expression query will only match attributes beginning with ‘CDC’, followed by a number, 

such as ‘CDC16’. The ESP syntax only allows ‘CDC*’in which the wildcard cannot be 

refined to represent a set of characters. ‘biological\?\_\s+function’ will match not only 

‘biological_function’ and ‘biological-function’, but also ‘biological function’—which allows 

fuzzy matching to span over spaces. ‘(?!ATP)binding.*’ will match a binding term NOT 

following ATP, such as ‘RNA binding’. Therefore, by incorporating regular expression, 
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GSearcher substantially supplements current Cytoscape search functions. A comprehensive 

reference of regular expressions can be found at the Sun Java tutorialxxv. 

Advanced Search: While Quick search applies the same search criteria to one or multiple 

attributes, the ‘Advanced search’ combines an arbitrary number of Quick Search filters that 

can be casted on different attributes. Filters can be joined either with AND, which indicates 

all filters must be satisfied, or OR, where at least one filter is satisfied. There are currently 

three types of filters: 

• Text filter: each text filter is one implementation of Quick Search. 

• Threshold filter: compare a numerical attribute with a certain threshold value, using 

numerical comparison operators (such as >). 

• Range filter: test whether a numerical attribute is within the specific range. 

The combination of filters offers users great flexibility when querying the network. Figure 2-3 Robustness test on 
community algorithms. 

These two figures demonstrate the robustness of algorithms when the rat Interactome network is perturbed with 
certain number of edges added (ad), removed (rm) or rewired (rw), measured in ARI (the agreement with result 
from original communities) and dispersion (the reliability of community structure). 

 

                                                
xxv http://docs.oracle.com/javase/tutorial/essential/regex/ 
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Figure 2-4 call-out box also illustrates an example of incorporating a threshold filter and a 

regular expression filter. 

To conclude, the GSearcher provides Cytoscape users with an interactive interface and full 

regular expression support for building complex queries. It has demonstrated the improved 

flexibility and interactivity that supplement the current Cytoscape search functions, help 

researchers navigate large attribute datasets and facilitate exploratory analysis of biological 

networks. 

2.5 Other Related Tools 

I have also developed and contributed to some other tools for network exploration. My Java 

implementation of fast-greedy community detection algorithm and its derivatives balanced 

for community size distribution was incorporated to clusterMaker92. I co-mentored a Google 

Summer of Code project (GSoC) in 2009 for a phylogenetic tree layout plugin for 

Cytoscapexxvi, and mentored a project in GSoC 2011 for a Cytoscape igraph plugin (similar to 

GLay) on Mac OSX in 2011xxvii.  

Another plugin I developed is the NodeFilter for network expansion and traversal. In the 

previous section, we discussed the application of attribute-based filtering of Cytoscape 

networks. As the networks grow larger, a very common task is to select a subset of nodes 

from a certain criteria to pinpoint the nodes or edges of interest. On one hand, in certain 

scenarios, it is necessary to filter nodes based on the structure of the network: for example, a 

researcher may need to find all the first or second neighbors of a certain node, or extend the 

current network by fetching all nodes connected with a certain node of interest from 

external databases such as MiMI. One particular usage of NodeFilter (Figure 2-5) is to 

selectively hide the ‘hub’ nodes in a scale free network if they become obtrusive to network 

exploration. The node filter provides a series of tools for the user to conveniently filter 

nodes based on their connectivity with other nodes. After an initial selection, the user is able 

                                                
xxvi http://apps.cytoscape.org/apps/with_author/Chinmoy%20Bhatiya 

xxvii http://apps.cytoscape.org/apps/igraphplugin 
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to show only the first neighbors of a certain set of nodes. This set of nodes is called 

‘anchors’, and they will not be visible in the subsequent operations unless the user releases 

them. The user then can progressively unhide other nodes to extend the current network, or 

fetch data remotely to grow the current network from the MBNI Brainarray concept 

mapping.  

2.6 Summary 

Thanks to the continuous development of open-source software like Cytoscape and strong 

community support, visual exploration of omics networks has remarkably facilitated data-

driven hypotheses generation. Not only the structure of the networks can be clearly 

visualized, but also a variety of attribute data, such as Gene Ontology (GO), gene family, 

pathways and experimental measurement such as gene expression profiles from cross-omics 

studies or time-series experiments can be super-imposed on a network visualization. 

Nevertheless, the on-going Omics era will generate even bigger, more complex data with 

even more dimensions. Tools like GLay and GSearcher have demonstrated the effectiveness 

of facilitating the clustering and filtering of big biological networks. 

One challenge yet to be addressed is the visualization model. With the expansion of data, 

simply adding data points into the current view, such as increasing the number of nodes or 

edges of a network or the number of rows or columns in a heatmap will eventually run out 

of screen estate and resources. As stated in Chapter one, one strategy is to add hierarchies to 

the data view. By the time of this thesis, the latest release of Cytoscape (2.8.x and the 3.x 

beta) both permit nested networks – a network can be nested within a node to generate a 

‘network of network’. It is especially useful, for example, to collapse genes that share the 

same GO term into a single node that represents a functional group. Similar idea can be 

extended to other visual exploration models, which will be discussed in later chapters. 
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Table 2-1 Community Algorithm performance comparison.  

Each algorithm is performed with 50 repeated runs. The standard deviations of modularity, skewness, kurtosis 
and the number of communities from non-deterministic algorithms (LP and SG) are also provided. 

Algorithm Running Time 

(Secs) 

Modularity Skewness Kurtosis Number of 

Communities 

FG 2.88±0.16 0.71 3.16 10.68 38 

KWT 0.17±0.06 0.66 0.50 -1.10 23 

LE 20.81±0.07  0.65 2.76 8.16 56 

LP 0.14±0.06 0.71±0.01 7.18±1.72 64.6±28.38 175±8.75 

SG 739.23±65.5 0.74±0.13 2.94±0.53 9.49±3.09 24±0.80 

WT 2.50±0.09 0.70 9.45 106.45 541 
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Table 2-2 KEGG pathway and GO biological process (BP) enrichment for communities.  

Gene ids are permuted 100 times for each algorithm to obtain the average total. Numbers show the enriched 
KEGG pathways and GO terms for the null distribution. 

Algorithm Total enriched 

KEGG pathways 

(Original) 

Total enriched KEGG 

pathways (Permuted) 

Total enriched 

GO terms 

(Original) 

Total enriched GO 

terms (Permuted) 

FG 139 3.76±4.05 1317 157.78±36.79 

KWT 141 3.02±2.48 1321 140.3±29.19 

LE 137  3.25±3.16 1310 222.24±39.71 

LP 292±26 17.10±9.57 4015±232 580.49±65.71 

SG 166±9 3.68±4.24 1544±63 145.9±28.87 

WT 291 12.94±10.99 5372 1605.66±124.69 
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Figure 2-1 GLay result illustrations.  

The top figure illustrates the community structure on the galFiltered network shipped with Cytoscape106. The 
bottom figure illustrates the fast-greedy community structure superimposed on Frutcherman Reingold grid 
layout from the largest component of Cytoscape human BIND dataset, consists of 17961 nodes and 30156 edges. 
Note that nodes belong to the same community tend to aggregate spatially, which resulted in clusters with good 
visual separation. The red circle indicates a group of highly interacting immunoglobulins. 
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Figure 2-2 Comparison of GLay and MCODE results. 

Comparison between clusters produced by MCODE with default parameters and GLay using fast greedy 
algorithm on Cytoscape bundled galFiltered dataset. The node color is determined by the corresponding cluster 
membership. Left: MCODE clusters. The un-clustered genes are hidden from view. Right: GLay fast-greedy 
clusters. (A) A MCODE cluster, in which four out of five genes are associated with MAPK pathway. The 
corresponding cluster in GLay contains 25 genes, including more genes in MAPK pathway, cell cycle and ion 
binding. (B) A GLay cluster not identifiable by MCODE. This cluster consists of six genes, with four related to 
RNA processing. 
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Figure 2-3 Robustness test on community algorithms. 

These two figures demonstrate the robustness of algorithms when the rat Interactome network is perturbed with 
certain number of edges added (ad), removed (rm) or rewired (rw), measured in ARI (the agreement with result 
from original communities) and dispersion (the reliability of community structure). 
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Figure 2-4 GSearcher result illustration.  

A screen shot of GSearcher on MiMI human Interactome. A subnetwork is created from nodes with their 
attributes containing the keyword ‘cyclin’. Nodes can be dynamically selected from the GSearcher browser using 
conditions in the two illustrated filters. These nodes are highlighted in green.  In contrast, previous selections by 
the user or other plugins are highlighted in yellow, demonstrating how GSearcher interact with other plugins with 
minimal interfererence. 
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Figure 2-5 Node Filter result illustration.  

Illustrates Node Filter with the major functions. The left panel displays the search results and the user may select 
of filter out nodes of interest. The popup-panel allows the user to query the database and extend the current 
network from the selected node (yellow). Green highlights one of the marked nodes by Node Filter. The Node 
filter can work seamlessly with built-in Node Attribute Explorer and other Cytoscape plugins. 
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Chapter 3 Cross-Omics Knowledge-mining  

3.1 Introduction 

As stated in Chapter 1, the ‘omics boom’ has made it possible for high-throughput 

integrative data analysis and Biomarker discovery. As each omics data type captures one 

aspect of the data, by pooling together the jigsaw puzzles from different omics 

measurements it is potentially possible to obtain a more complete picture of the underlying 

mechanisms than study each of the Omics data alone. Because of the relatively low cost and 

time requirements, the integrated transcriptomics-metabolomics analysis has become one of 

the popular cross-omics paradigms. 

Overall, metabolites are transients, intermediate and end products of cellular processes thus 

the profile of metabolites provides a snapshot of the physiological state of a cell 

complementary to its transcriptome and proteome, which manifest functional status of more 

upstream events. The size of Metabolome is about 1-2 orders of magnitude smaller than the 

transcriptome and the proteome; the steady state concentration of a metabolite usually 

reflect the combinatorial effects of multiple upstream factors such as environmental stimuli, 

nutrition availability and genomic structure influences. Conceivably, this property may make 

metabolites better biomarkers for certain conditions as they responses rapidly to 

physiological changes. In addition, identifying relationships between metabolites and 

genes/genome structures (genomics), gene expression (transcriptomics) and protein 

expression (proteomics) can potentially help to elucidate molecular mechanisms involved in 

a variety pathophysiological processes, such as oncology, diabetes, etc. 

Studies on gene expression profile and proteomics data have shown significant molecular 

signatures. It is generally accepted that meta-analysis of the pooled omics data would notably 

improve our knowledge of biological pathways and processes. The quantitative study of gene 

to metabolite associations may not only complement the qualitative knowledge of certain 
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metabolic reactions, but also unravel novel biological processes. These associations could 

also potentially help us identify unknown metabolites by reducing the search space, classify 

and validate unknown cell-lines on metabolomics level and serve as biomarkers.  

Previous studies have investigated significant associations between the transcriptome and 

metabolome, which add another layer of quantitative inferences to gene-wise correlation. 

Ferrara et. al have coupled metabolic and transcriptional profiling to construct causal 

networks which demonstrates fluctuation of gene expression in changes of metabolite 

availability150. Xu et. al have performed integrated pathway analysis on rat urine metabolic 

profiles and kidney Transcriptomic profiles to study the underlying mechanism in toxicology 

of model nephrotoxicants151. Nam et. al demonstrated that the integrative study of 

Transcriptomics and Metabolomics could effectively identify metabolic biomarkers for 

breast cancer152. Some online databases, such as Cornell Tomato Functional Genomics 

Database (TFGD)153, provides a quick access portal to query correlations between selected 

metabolites and gene expression profiles for plant sciences. Nevertheless, the noisy nature of 

the Metabolome data, limited number of metabolites with known structures, and the lack of 

metabolite-gene interaction annotations despite databases like Edinburgh Human Metabolic 

Network (EHMN)46 and BiGG154, the indirect nature of potential gene-metabolite 

relationships, and the lack of large scale Metabolome study data in the public domain, still 

limit the knowledge mining of metabolites and their regulation in normal and disease 

processes. 

Conceivably, cancer samples provide excellent opportunities for identifying metabolic 

biomarkers and gene-metabolome relationships due to the dramatic function alternations at 

the molecular level in cancer tissues. For example, cancer tissues usually exhibit more than 

10-fold changes in the expression level of many genes in numerous microarray studies. 

Recently, the collaborative NCI60 project from the Developmental Therapeutics Program 

(DTP) of the National Cancer Institute (NCI) has made extensive measurements of various 

Omics data publicly available, including microarray, Metabolomics, Proteomics, Epigenetics, 

etc. While the number of Metabolome and Metabolome related studies and biomarker 

discoveries associated with cancer is increasing rapidly in targeted studies, there is still no 

literature on comprehensive analysis of metabolic features and their regulatory mechanisms 

of difference cancer types across multiple Omics data at the time of this analysis. 
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There are three major challenges in Metabolome analysis. First of all, the number of clearly 

characterized metabolites is much smaller (a few hundred to a few thousand) when 

comparing with transcriptome (Tens of thousands). Many metabolites are involved in 

multiple processes, which makes it difficult to establish clear-cut associations between a 

metabolite and other Omics profiles. Secondly, metabolites are small interchangeable 

molecules that fluctuate rapidly to the changes in various external signals. Therefore 

measurement of metabolites is more susceptible to the experimental designs and conditions. 

The resultant metabolic profiles are more likely to be non-normally distributed, with multi-

modes or outliers. Some of the classic analytical methods, such as Pearson Correlation 

Analysis (PCC), Principle Component Analysis (PCA) or Linear Regression models may fail 

to work properly. It has been demonstrated that using robust correlation measures instead of 

PCC or Spearman correlation could improve the estimate155,156. Thirdly, it’s more difficult to 

validate the significant findings in Metabolome than Transcriptome or Proteome. The 

annotated data for gene-wise/protein-protein associations accumulated from literature-

mining and molecular interaction databases are much more comprehensive for 

Transcriptome/Proteome than Metabolome. Although some databases, such as EHMN, 

have compiled gene to metabolite relationships from metabolic pathways, the scale and 

scope of such data are still quite small46. Moreover, some metabolite to gene associations 

may not be attributable to known primary metabolic reactions, but rather via much more 

subtle and unknown processes. Systematic validation pipelines are also not readily available 

for the metabolome, whereas for the transcriptome/proteome there’s a rich collection of 

toolkits available for researchers (GSEA94, DAVID93, etc).  

In this cross-omics study, we investigated whether different cancer cell lines have distinct 

metabolic signatures and whether available Metabolome data for NCI-60 cell lines could be 

suitable for cancer subtype classification. We also attempted to identify distinct gene-

metabolic relationships in cancer cell lines, where gene expression or genomic structure 

changes may be associated with synergistical fluctuations in metabolic profiles. Our expected 

result is that the combined Metabolome and Transcriptome analysis would reveal some 

abnormal regulatory relationships in some of the NCI-60 dataset not possible by either 

Metabolome or Transcriptome study alone. Such abnormal regulatory relationships will be 

the starting point for follow-up wet lab studies for understanding the metabolic and signal 
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transduction pathways involved in cancer genesis. We also proposed a heatmap visualization 

method for bidirectional hierarchical heatmaps that eventually leads to the development of 

the CoolMap described in chapter 4.  

3.2 The analysis of NCI-60 Dataset 

3.2.1 Materials and Methods 

Data Preprocessing: NCI-60 data preprocessing: raw molecular datasets were downloaded 

from DTP web portal (March 2007 release), consist of 57 cell-lines in 9 cancer types have 

both microarray and metabolomics data. We used our in-house Entrez-based Custom CDF 

version 12 to derive gene-level expression data from the NCI-60 Affymetrix Genechip CEL 

files157. The metabolite data averaged over triplicate experiments were manually compared 

with a reference dataset to identify annotate imputed values (Beecher, unpublished data) that 

accounts for 33.9% of the raw dataset. The imputed data could significantly bias the 

inferences drawn from subsequent statistical analysis, thus were excluded. All metabolite 

names were manually compared with KEGG metabolite database and assigned a KEGG 

compound ID whenever possible. The preprocessing step produced 11961 and 6089 gene 

expression profiles from u133a and u133b chip respectively, and quantitative data for 124 

known and 218 unknown compounds. 

Statistical Analysis: All statistical analyses were performed in R xxviii . The matrix RV 

coefficient was computed using FactoMineR package158. Classification and variable selection 

were performed by R randomForestxxix and varSelRF package87. The robust correlations were 

computed with robust packagexxx , using the parameter pair-wise Quadrant Correlation 

(pairwiseQC). Multidimensional outliers were identified by package mvoutlier114. Optimal 

robust correlation estimation was selected using methods described in previous sections. We 

                                                
xxviii http://www.r-project.org/  

xxix http://cran.r-project.org/web/packages/randomForest/index.html  

xxx http://cran.r-project.org/web/packages/robust/index.html  
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ran our computation on MBNI cluster of ~100 nodes and loaded all results into our Oracle 

database server for integrative analysis from multiple datasets.   

Resources used for validating significant correlations: The annotated gene to metabolite 

relationship data kindly offered by the EHMN project is used for identifying biological 

relevant known gene-metabolite relationships revealed by our analysis. We also compiled a 

local version of KEGG and DAVID 2008 for further validations. In order to associate 

known mutations and CNVs in NCI-60 cell lines to abnormal gene-metabolite relationships, 

we have built a local copy of COSMIC159 dataset from Sanger and Tumorscape160 from 

Broad institute for cell-line specific point-mutation and copy number variations (CNV), 

respectively. 

3.2.2 Results 

3.2.2.1 Metabolomic Signature of Cancer Cells from Different Tissue Origins 

The first question we would like to address is whether cancer cell lines exhibit tissue-origin 

specific metabolic signatures. In our initial analysis, we tried classification analysis similar to 

those performed in microarray161 to classify 57 cell-lines into 9 cancer types from metabolite 

profiles. However, regardless of method used, the classification error on metabolomics data 

is much higher than that from microarray (~0.51 for metabolomics and ~0.34 for 

microarray). Several factors could have contributed to this phenomenon. First of all, it has 

been shown that some of the cell lines may be assigned wrong labels (Unoffical discussions 

with Beecher). Some cancer samples, such as breast, contain a mixture of different tissue 

types with high intra-class heterogeneity. In addition, some cancer classes have very few 

samples. Prostate cancer only has two samples, which is insufficient to generalize adequate 

features for separation from other cell lines. Moreover, the high variability of metabolic 

profiles may also contribute to the large classification error. The Matrix RV coefficient (RVC) 

gives an estimate of correlations between different matrices. The RVC between u133a and 

u133b chip is 0.91, which demonstrates the high concordance between different microarray 

measurements. The RVC between u133a and metabolomics is 0.11 and RVC between u133b 

and metabolomics is 0.09. This implies that there could be strong disagreement between 

Transcriptome and Metabolome (disagreement also occur between Transcriptome and 
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Proteome40, or even microarray and RNA-Seq14, but much weaker), which may also elevate 

classification error. 

As the metabolite profiles are unable to correctly classify the entire set of cell lines, we then 

further inspected whether these classifiers could perform well in a subset of samples. We 

progressively removed the cancer class that contributed most to the out-of-bag (OOB) error 

estimate and recomputed classification errors. After removing Prostate, Breast Ovarian and 

CNS, metabolite classifiers can reach comparable performance with microarray classifiers 

Figure 3-1. This indicates that the disagreement between Metabolome and Transcriptome 

may arise from a subset of the samples with high variability or heterogeneity. Metabolome, if 

mined with robust methods, still captures many functional features of the cell and therefore 

the association between Metabolome and Transcriptome should provide us with new 

insights on the underlying biological processes. 

3.2.2.2 Correlation Analysis 

Although the limited number of cell lines for each cancer type and the noisy nature of 

Metabolome data prevent the use of Metabolome data alone as the cancer cell line classifier, 

we hypothesized that different cell lines should share some basic regulatory and metabolic 

processes essential for cell growth and metabolism. It is likely that although different cancer 

cell lines may have very different levels of gene expression and metabolism, the steady-state 

relationship between genes and metabolites in the same or highly coupled pathways should 

be maintained across different cell lines in the absence of dramatic genomic changes such as 

gene mutation and copy number variation (CNV). Identifying such gene-metabolite 

relationships at steady state will help us better understand the underlying molecular 

mechanisms related to metabolic change. They will also help us to infer potential metabolic 

change based on expression data or vice versa. On the other hand, if a few cell lines deviated 

significantly from the gene-metabolite relationships exhibited by the rest of the samples, the 

related genes in such outlier cell lines are likely to be silenced (no expression) or stimulated 

(over expression) due to genomic structural changes. Consequently, we are interested in both 

high correlations, which reflects steady state trend over all samples, and outliers, which 

reflects signatures in specific cell lines. The latter is usually overlooked in high-throughput 

analysis; even though outliers could have strong biological significance, systematic removal 
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of outliers could lead to better clustering, classification and prediction accuracy of 

classifiers114,162,163. 

The classic method of inspecting the relatedness of two quantitative features is by 

computing the Pearson Correlation (PCC). While PCC has been proven to work well in 

many previous gene expression studies164, the correlation is susceptible to inflation by 

outliers, which made it not suitable to analyze high throughput data with high background 

noise. As describe before, metabolic profiles have demonstrated high variability, and we have 

identified many cases in our gene-metabolite correlation analysis where a large number of 

high PCC correlations were merely artifacts resulting from a few extreme outliers (discussed 

in detail later). On the other hand, high background noise also affects PCC, which would 

underestimate the association if missing values were replaced with very small base values. To 

tackle this challenge, we proposed to use robust correlation estimates instead of PCC. 

Robust correlations offer a more precise estimate of the true association in the presence of 

multi-dimensional outliers, given a sufficient sample size. We chose Pair-wise Quadrant 

Correlation (PQC) for its good computational performance. In our following correlation 

analysis, we propose to use a novel integrative analysis with both PCC and PQC. Gene-

metabolite pairs with high PCC and high PQC tend to demonstrate true linear correlation 

across all cancer types, which imply a general functional association between gene and 

metabolite profiles; gene-metabolite pairs with high PCC and low PQC are possibly resulted 

from a few extreme outliers, which are potentially linked to cell-line-specific signatures. A 

collection of robust correlation estimation methods were evaluated using simulated data and 

the results are presented later in this chapter. 

3.2.2.3 Metabolite – Metabolite Correlations 

We have computed both PCC and PQC for metabolite-metabolite correlations. As 

metabolites with fewer than 10 valid measurement values were removed from the analysis 

results as they tend to inflate PCC and PQC because of the small sample sizes. Table 3-1 

shows the top metabolite pairs with both high PCC and PQC. It can be seen that there are 

high correlations between compounds of different forms (L-allo-theronine ~ threonine), 

between different amino-acids (leucine ~ methionine) and between mixture and compounds 

(isobar6 includes valine and betaine ~ valine). There are also some high correlations between 

unknown compounds with known compounds, such as the correlation between tyramine 
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and X-4043 that is almost perfectly linear. We could then reason that these unknown 

compounds are therefore either structurally or functionally closely associated with the 

known compounds, utilizing this information for prediction. Unfortunately, the MS data 

were missing from the NCI-60 datasets; otherwise it would be possible to search online 

databases such as HMDB43,44 to predict the unknown metabolites. 

3.2.2.4 Metabolite – Gene Correlations 

We computed the PCC and PQC for all gene expression profiles and metabolite 

measurements. Similarly, metabolites with less than 10 valid measurements were removed. 

Genes with low expression profiles in the majority of the samples due to tissue/cell-type 

specificity were also removed.  Table 3-2 shows the top 10 gene-metabolite associations. 

To investigate the biological significances of the correlation analysis, we mapped all the 

known gene-compound associations from EHMN to our NCI60 analysis. 721 entries of 

associations, including 352 genes and 81 known metabolites, were mapped. The percent of 

gene and metabolite mapping to known pathways were very low due to the current shortage 

of metabolite-gene annotations in existing databases. Besides, the fraction of gene-metabolite 

pairs with moderately high correlation among all the mapped pairs is also very small. We 

chose the top 9 pathways in EHMN mapping ordered by the number of genes contained in 

each pathway. There are several possible explanations to the low match ups of significant 

correlations to EHMN data. First of all, the high level of abnormal regulation in the cancer 

cell lines may have masked any global mechanism such that it’s difficult to identify high gene 

to metabolite correlations across all cell lines. High correlations may be identifiable in cancer 

subtypes but not applicable in this case due to the small sample sizes in each cancer class. 

Secondly, metabolites display higher variability than gene expression profiles, which could 

reduce the consistency of coupled gene and compound expression levels. Nevertheless, 

some of the gene-compound pairs does show high association in across all cell-lines. For 

example, gene AKR1B1 which reduces L-Arabitol to L-Arabinose with EHMN reaction ID 

R01758 and R01759, is associated with L-Arabitol with PQC of 0.69 and PCC of 0.36, which 

implies an association between metabolite level and gene activity. However, it is surprising 

that most of the direct enzyme-metabolite relationships could not be mapped to high 

correlations (Figure 3-2). There are several explanations to the low correspondence of 

significant correlations to EHMN data. A simple explanation is most of the annotatable 
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gene-metabolite relationships in the NCI-60 dataset may not be the rate limiting factor in the 

related pathways. It is also possible that the high level of abnormal regulation in the cancer 

cell line may have masked global mechanism such that it is difficult to identify high gene to 

metabolite correlations across all cell lines.  

Interestingly the grouping of genes in the same pathway in Figure 3-3 enables us to detect 

many metabolites that exhibit high correlations with other genes in the same pathway. For 

example, although phospoenolpyruvate does not overlap with any of the EHMN annotated 

direct reaction genes, it has high correlation with GPI and ALDOA, two of the genes in he 

glycolysis module that are known to be highly regulated by hypoxia-inducible factor1l alpha 

and such regulation is related to the aggressive phenotype of hepatocellular carcinoma. 

Consequently, ALDOA, GPI and other genes highly correlated with phosphoenolpyruvate 

in our multi-cancer cell line analysis may suggest that these genes has more significant 

regulatory or rate limiting roles in glycolysis than genes such as ENO1, ENO2 that are 

directly related to reactions involving phosphoenolpyruvatge in these cancer cell lines. 

Naturally, not all genes in the same pathway strongly correlate with each other since genes in 

the same pathway are not always changed in the same direction. 

Further investigation would be worthwhile for high correlation between metabolites and 

other genes (i.e. those not directly involved in the specific metabolic reactions) in the same 

pathway, as such un-annotated relationship are likely to help us identify speed limiting 

enzymes in a pathway, key regulatory genes of related pathways or novel metabolic 

mechanisms. 

3.2.2.5 Outlier Analysis 

In our previous analysis we used PQC in addition to PCC to identify molecule pairs with 

true high correlation. We have also identified many cases where cell lines have one or a few 

gene-metabolite pairs with much higher expression values than the rest of the other samples, 

which directly produce inflated PCC and very low PQC. To systematically identify these 

cases, we used R package mvoulier to detect multidimensional outliers, and recomputed the 

PCC and PQC scores after outlier removal. Our empirical rule shows that when PCC > 0.6 

and PQC < 0.3 (Preferably close to 0), and the number of multidimensional outliers is 

smaller than 3, the high PCC is most likely to be an artifact from very few extreme outliers. 
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To explore the biological significance of these outliers, we compared the outlier cases 

detected by the criteria mentioned above to the Sanger Cosmic Database159. Sanger Cosmic 

contains 177 mutation entries of 28 genes in our 57 NCI-60 cell lies. Interestingly, the top 

two outliers detected by our approach, the NOTCH1-X-2005 relationship in the MOLT-4 

cell line and the KRAS-X-2690 relationship in the OVCAR_5 cell line, have known gene 

mutations in those two genes, respectively, in the Sanger Cosmic database. The common 

feature of these two gene-metabolite pairs is high PCC and low PQC before outlier removal 

and low PCC and low PQC after the outlier removal. From Error! Reference source not 

found.Figure 3-3 we can verify that the inflated PCC were indeed a product of single cell-

line outliers. Besides, the sample sizes of these two cases are significantly large (22 for the 

NOTCH1-X-2005 pair and 26 for the KRAS-X-2690 pair) so that the outlier is not likely to 

be a random fluctuation as a result of small sample size. 

Since our analysis does not take advantage of any cell line or gene mutation information, the 

fact that our top two outliers overlaps with documented gene mutations in the Sanger 

Cosmic dataset from the unbiased analysis suggest that the mutations may be the cause of 

such abnormal relationships. In addition to point mutations, we also compared the outlier 

analysis results with Copy Number Variation (CNV) data from the Broad Institute. Only 34 

out of 57 samples from NCI60 have CNV data., but we have also found some gene-

metabolite outlier pairs that are consistent with CNV outliers. For example, BRIP1, with 

CNV of 14.22 in cell line MCF7, has PCC of 0.90 and PQC of 0.008 and one outlier. The 

corresponding compound, X-3363, maybe associated specifically to this copy number 

variation. 

The fact that some top ranked gene-metabolite relationship outliers detected by our 

approach matches with known genomic structure changes related to the same genes in the 

corresponding cell lines strongly suggest the usefulness of our analysis method in identifying 

potential molecular mechanisms related to Metabolome and Transcriptome changes. 

3.2.3 Summary 

Our analysis results on the NCI-60 Metabolome and Transcriptome data suggest that 1) 

while there are metabolic signatures associated with cancer subtypes, the small sample size 

and the high noise level in the current NCI-60 Metabolome dataset makes it unsuitable for 
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cancer subtype classification purposes. 2) There are indeed biologically meaningful high 

correlation gene-metabolite pairs across NCI-60 cell lines, identifiable by robust correlation 

estimates. 3) Most strikingly, there are several example of abnormal gene-metabolite 

coupling that can be directly linked to known gene mutations or copy number variations. 

These findings will help us to investigate the molecular mechanisms involved in metabolic 

changes in some of the NCI-60 cell lines through more targeted wet lab experiments.     

The high correlations as well as outliers can be utilized to aid the progressive prediction of 

unknown metabolites based on annotations in existing pathway databases and literature. For 

example, the high correlation of an unknown compound with a known gene and in 

particular, multiple known genes in a pathway can dramatically reduce the search space for 

the unknown compound, since the most likely candidates will be structurally related 

molecules or known metabolites from related pathways. We plan to compare the Mass 

Spectrometer (MS) features of these unknown compounds from the predicted candidate 

pool and conduct wet-lab experiments for validation. Since we have discovered that many 

unknown metabolites are strongly associated with each other but not with any known 

compounds. Correct determination even a small fraction of them would facilitate the 

identification of the rest, which also will in turn improve our understanding of the molecular 

processes and pathways involving these molecules. 

Our result suggests that the ‘house-keeping’ gene-metabolite association which dominates 

fundamental metabolic processes may be more informative when studied in homogeneous 

cell samples or cell-lines with fewer changes in metabolic state than those of cancer cell-lines, 

as the mapping of annotated gene-metabolite interactions from databases to computed 

PCC/PQC scores is quite poor. Nevertheless, some significant outliers can be nicely 

matched to gene-specific mutations in a few cell lines by our proposed integrative method. 

Most of the current correlation analyses in gene-expression/gene-metabolite association are 

performed with PCC only, which not only could be misleading because of multidimensional 

outliers, but also ignored the significance of these outliers. We have shown that some of 

these outliers may be a direct ‘phenotype’ of cell-specific mutations, and are worthy of 

further investigation of underlying biological causes. 
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While the diversity in cancer cell lines masked the underlying common metabolic 

mechanisms, mutations in genes may result in changes in metabolic state, accompanied by 

drastic fluctuations in certain metabolites. The metabolite-metabolite and gene-metabolite 

correlations can be explored to facilitate clarification of the structure and function of these 

compounds, which will not only help us add more paths to the metabolic pathway and 

networks, but also adds another quantitative dimension to this knowledgebase. 

3.3 Evaluation of Robust Correlations 

As described in previous text, there are two common procedures in analyzing omics data: to 

find variables that captures the most differences across sample types, and find variables with 

expression profiles that are consistent across different samples. The most popular 

approaches to address these two questions are classification and correlation. Other 

inferences, such as a clustering or network view of the correlations, can also be built165. As 

the scale and complexity of Omics data continue to grow and software that provide 

analytical aid becomes increasingly easier to use, the biological inferences may fall victim of 

the errors and noises of the input data if not handled with caution, especially when the 

analytical methods are not noise-resistant (i.e. robust). Given the large number of Omics 

profiles analyzed at the same time, it is impractical to manually validate every comparison. 

Automated methods have been proposed: Hardin et al. addressed the problem and proposed 

using Tukey’s biweight as a robust substitute for Pearson Correlation and applied to real 

world gene expression analysis116,155. 

The noise in the experimental data can be attributed to several factors. Taking microarrays as 

an example: first of all, there is individual variability across different biological samples. 

Some tissues, such as colon or breast, contain many different cell types. The growth and 

nutritional state of the cell may also significantly influence its gene-expression profiles. 

Secondly, variability, or systematic error, is introduced by the machine when operated by 

different technicians or under different experimental conditions. Some genes with very low 

expression may fall below the dynamic range of the machine. As a result, they may be 

assigned with a baseline value or marked as missing. These missing values are then 

confounded with genes with actual expression values near the lower bound of the dynamic 
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range. On the other hand, experiment errors, such as faulty sample or wrong reagent 

concentration and non-optimal experiment condition sometimes incur very large outliers, 

which could significantly bias classic analytical methods. Thirdly, the probe definition of the 

gene-chip is also error-prone. Dai et al. have demonstrated that a non-optimal mapping of 

probes to the genome may have a very significant effect on biological inferences157. Fourthly, 

the deregulated pathways of certain samples such as cancer cells may cause some genes to 

exert very non-normal distributed profiles. The violation of near normally distributed data 

may make non-robust methods invalid. Fifthly, the multi-dimensional outliers may be hard 

to detect because of the masking effects166. Visual inspections are also difficult when the 

number of gene-pairs is very large. The end-product, contaminated by the joint effect of all 

these factors, can be significantly undermined. For example, as we discussed previously the 

NCI-60 Metabolomics dataset from National Cancer Institute’s Developmental Therapeutics 

Program (DTP http://dtp.nci.nih.gov), contains the measurement of ~ 350 metabolites 

from ~ 60 cancer cell-lines in 9 different cancer classes. This data also has more than 34% 

missing values, which were substituted with small, imputed baseline values. Therefore to 

draw any inferences using non-robust methods from this dataset is difficult. Even though 

this most comprehensive Metabolomics dataset has been published in the public domain for 

about three years, there is still no available literature drawn from this dataset. 

We therefore deem it very important to evaluate various robust methods in the context of 

such noisy data. The most of the focus of this analysis will be on correlation, but some of 

the methods can be adapted to evaluate classification straightforwardly. In this analysis, we 

analyzed the resistance of seven different correlation estimators (Pearson ρ, Spearman γ, 

Kendall τ, Hardin’s Tukey Biweight, Fast MCD, M-estimate and pairwiseQC) on simulated 

data contaminated with various outlier and noise structures. We then applied the robust 

correlation estimator to a Transcriptomics-Metabolomics association study with NCI 60 cell 

lines. The simulation study and the analysis on the experimental data demonstrated that the 

classic correlation estimators, even including the naive robust estimators such as Spearman ρ 

and Kendall τ could produce very misleading results when data are contaminated with 

missing values and extreme outliers. Robust estimators, on the other hand, may over-

estimate the actual correlation for data with a small sample size. Therefore we proposed an 

integrative approach using both classic and robust correlation to identify highly correlated 
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gene-metabolite pairs, as well as extreme outliers, which could indicate cell-line specific 

pathological processes.  

3.4 Materials and Methods 

Correlation Estimators: The most frequently used correlation estimate is the Pearson 

Correlation Coefficient (PCC), as the covariance standardized over variances: 

ρ X,Y =
cov(X,Y )
σ XσY

=
E((X −µX )(X −µY ))

σ XσY

 

This correlation estimator ranges from -1 to 1, with 1 indicating perfect positive linear 

association and -1 indicating perfect negative association. It has been demonstrated that PCC 

is not outlier resistant. The major reason is that neither the sample mean estimator nor the 

sample variance estimator is outlier resistant. One quick fix could be to replace the µ and σ 

as the robust versions, such as median, trimmed mean for sample mean and median absolute 

deviation (MAD) for sample variance or apply winsorization or huberizing procedure on the 

data. However, this may cause the PCC ρ to fall outside of [-1,1]. 

Charles Spearman coined the Spearman’s rank correlation coefficient which computes the 

correlation based on transformed ranks: 
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Here d is the difference between ranks of X and Y167. It is more extreme outlier resistant 

than PCC because the large outliers’ numerical values are transformed into integer ranks. 

Spearman Υ is frequently used as a robust substitute for PCC. 

Kendall’s τ is another non-parametric rank-based correlation measure between two random 

variables. It is calculated as the difference between the number of concordant pairs and the 

number of discordant pairs: 
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Here Nc denotes the number of concordant pairs, and Nd denotes the number of discordant 

pairs. It is also considered as a robust correlation estimator168. 

Hardin et. al proposed a robust measure using Tukey’s biweight as a robust measure155. The 

idea is to use proper outlier-resistant estimators of location and scatter from the biweight 

iteration scheme to replace the sample mean and the sample variance in the Pearson 

Correlation formula: 
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The Fast Minimum Covairance Determinant (MCD) method is an improved robust 

estimator from MCD method using the subsampling technique166. This method can 

determines multivariate location and scatter by finding h observations out of n total 

observations (typically number of samples) for p variables (typically number of genes, for 

gene pairs p = 2), whose classical covariance matrix has the lowest determinant. The FMCD 

location estimate is then the average of these h points, and the scatter is the covariance 

matrix of these matrices. Similar to Hardin’s approach, the robust location and scale 

estimators are then plugged into Pearson’s formula to obtain the FMCD correlation estimate. 

The M-estimate proposed by Maronna is a solution to the system equations provided as 

below: 

∑
=

− =−−−
n

i
iii txtxVtxu

n 1

1
1 0)]()()'([1  

∑
=

− =−−−−
n

i
iiii VtxtxtxVtxu

n 1

1
2 )')(]()()'([1  

Here u1 and u2 are functions satisfying a set of general assumptions. The resultant t is the 

multivariate location estimate and V is the multivariate scatter estimate169. Pair-wise 

correlations can be directly obtained from V. 
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Marrona and Zamar recently proposed a pair-wise estimation method modified from the 

Gnanadesikan-Kettenring robust covariance estimate, using robust versions of variances to 

replace principle components of corresponding directions, then transform back to the 

original coordinates to produce a orthogonalized Gnandesikan-Kettenring estimator (OGK, 

pairwiseGK)170. Based on the similar idea, the pair-wise quadrant estimator can also be 

computed (QC, pairwiseQC). 

It should be noted that most of the correlation estimators are capable of estimating 

multivariate location and scatter. The pair-wise correlation can be obtained from the 

estimated covariance matrix. However, as the dimension of data grows rapidly, it becomes 

very demanding to run such programs on a desktop computer without parallelization. For 

example, the memory limit for 32 bit operating system is 3.5 GB (Gigabytes), and to store a 

covariance matrix of all the 14,500 genes on the U133A chip alone requires 1.6 GB memory 

with 64bit double. Some meta-analysis even requires computing correlation across several 

different chips or Omics data, which makes the estimation of covariance matrix even more 

difficult. It has been proposed by Chilson et. al that some steps in the computation the 

covariance matrix can be parallelized171. Another way to alleviate the problem is to compute 

the correlation estimators in a pair-wise manner, and then rebuild covariance matrix from 

pair-wise estimates. Hardin’s method employs such an approach155. This scheme not only 

significantly reduces the memory requirement, but also enables simultaneous computation of 

pair-wise correlation utilizing multi-core desktop computer or computer clusters. 

There are some other distance measures which capture the relatedness of two probability 

distributions, such as Kullback-Leibler divergence (KLD)172 and mutual information (MI)173. 

The key advantage is that they can capture non-linear association. To apply these methods, 

the raw data must be transformed into a probability distribution using a 2D histogram. 

However, as the n << p for most of the Omics data, the small sample size could significantly 

distort KLD and MI estimates. Therefore we did not compare the efficacy of these methods 

to the correlation estimators, but for datasets with large n they are worthy of further 

investigation. 

Identification of Outliers: Hardin suggested using robust measure of correlation to ‘flag’ 

gene pairs of poor quality whenever there’s a disagreement between the classic correlation 
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and the robust correlation155. It is also very important to flag samples which are consistently 

shown as outliers, as they most likely reflect the profile of cell-lines which severely deviate 

from the other samples or merely faulty experiments. Graphical analyses and statistical tests, 

such as Quantile-Quantile (Q-Q) plot and the Dixon’s test174, can be applied to identify 

univariate outliers. However, multivariate outliers may only appear to be extreme values in a 

subset of directions, which made them difficult to be detected using simple extension of 

univariate outlier detection methods. Figure 3-4 demonstrates a bivariate case in which 

outliers only reside on one direction. 

Filzmoser et al. proposed an outlier detection method by weighing each observation using 

principle components in high space114. As shown in Figure 3-4, this method effectively 

detected all the artificial outliers, with a small number of false positives. Therefore we used 

this method to flag outliers in the subsequent Transcriptomics-Metabolomics analysis to 

investigate cell-line specific characteristics. 

Data Simulation: We simulated bivariate normally distributed data with noises and outliers 

resemble the structure in the real world Transcriptomics-Metabolomics data. There are six 

different data structures: 

• Bivariate normal simulated from a given correlation matrix. 

• Bivariate normal, with small values resemble imputed missing values added in one 

direction. 

• Bivariate normal, with small values resemble imputed missing values added in both 

directions. 

• Bivariate normal, with extreme outliers at both directions (First Quadrant). 

• Bivariate normal, with extreme outliers at only one direction (Second Quadrant). 

• Bivariate normal, with extreme outliers at either one direction (Second and Third 

Quadrant) 

These six different data structures are illustrated in Error! Reference source not 

found.Figure 3-5, which represent the noise structure we observed in the Transcriptomics-

Metabolomics study. The bivariate normally distributed values were generated with mean of 

0.0 and σ of 1.0. For missing values, we randomly chose a subset of observations and set the 
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values on one direction to be the smallest value on that direction. For outliers, we simulated 

at the center of 4.0 and σ of 0.2 in the corresponding directions. In each simulation, we 

tested the sample size of 25, 50 and 100, and prior correlation of -0.98, -0.75, -0.5, -0.25, 0, 

0.25, 0.5, 0.75 and 0.98. Various percentages of small values/outliers are also tested. Each 

test is performed 100 times and mean and standard error for the correlation estimators are 

calculated. 

Computational Environment: The computations are performed using R project for statistical 

computing (http://www.r-project.org/ ). Pearson, Spearman and Kendall correlations are 

computed using function cor. The robust correlations are computed using the robust 

package (http://cran.r-project.org/web/packages/robust/index.html ). Hardin’s Tukey’s 

biweight code was obtained from the paper’s supplemental information. The outliers are 

identified using the mvoutlier package (http://cran.r-

project.org/web/packages/mvoutlier/index.html  ). The bivariate normal data are simulated 

using the MASS package (http://cran.r-project.org/web/packages/MASS/index.html  ). 

The transformations between correlation and covariance matrices are performed using the 

MBESS package (http://cran.r-project.org/web/packages/MBESS/index.html ). The 

analysis was done on an Intel Core i7 920 computer with 12GB memory. We also did some 

of the computation in parallel on a linux cluster with ~ 100 nodes. 

3.5 Results 

Result from the simulated Data: We investigated the behavior of seven correlation 

estimators with the presence of various systematically added errors that resemble the 

observed noise from the Transcriptomic-Metabolomic data. We use PCC, SP, KD, TB, 

FMCD, M and QC to represent Pearson, Spearman, Kendall, Hardin’s Tukey biweight, M-

estimate and pairwiseQC correlation estimators. 

The stdRandom tab shows simulation results without the addition of missing values or 

extreme outliers. We can see that: 1) Sample size does have an effect on correlation 

estimators; the standard error of all correlation estimators increases when sample size 

decreases from 100 to 25. For example, when the actual correlation is 0.98, the PCC is 0.98 

± 0.0039 when sample size is 100, 0.98 ± 0.0059 when sample size is 50 and 0.98 ± 0.0082. 
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2) The standard error for robust estimators is larger possibly due to algorithmic 

characteristics, such as the subsampling for FMCD. 3) For all sample sizes and all 

correlations, the Kendall correlation (KD) consistently under-estimates the actual correlation. 

For example, for sample size 100, the average Kendall correlations for 100 repeated runs at 

actual correlation of 0.98, 0.75, 0.5, 0.25 and 0 are 0.87, 0.54, 0.33, 0.17 and -0.0018, 

respectively. 4) FMCD shows a small degree of underestimation of correlations when sample 

size reduced from 100 to 50. All the other robust estimators have comparable performance 

with the classic PCC and Spearman estimators, at all actual correlations and sample sizes. In 

summary, when the data and are approximately normally distributed and not contaminated 

with extreme outliers or missing values, PCC and Spearman estimators are still favorable due 

to their faster execution speed. 

Next we examined the performance of these estimators when the data are tainted with 

missing values, along either direction or both directions. The NCI60 metabolomics data 

contain many small and identical values, which substituted missing values as ‘baseline’ values. 

We then similarly pushed a certain percentage of values towards the baseline to replicate the 

structure of these missing values. The results are shown in the msRandom1D and 

msRandom2D tab. It can be seen that 1) the addition of even a few dummy missing values 

could significantly reduce the classic correlation estimators. For sample size 100 and the 

actual correlation is 0.98, the adding of 10 dummy missing values can reduce PCC from 0.98 

to 0.74 and SP from 0.98 to 0.80, and the addition of missing values appear to have a smaller 

effect on KD, which is reduced from 0.87 to 0.72. It can be seen that contradictory to 

general perceptions, the rank based SP and KD are not resistant enough to counter even a 

few outliers. On the other hand, all the robust correlations at this level are almost identical to 

the actual correlation of 0.98, which demonstrated the effectiveness of their resistance. 2) 

The sample size only affects the standard error but not the value of correlation estimates. 3) 

For 10% missing values, TB, FMCD, M and QC works equally well for all sample sizes. 

However, when the percentage increased to 20%, TB demonstrated severe performance 

deterioration. For example, when the sample size is 100 and actual correlation is 0.98, TB is 

reduced to 0.78 when 20% of the values are replaced by 1D dummy missing values and 0.57 

when 30% of the values are replaced. FMCD, M and QC still have reasonably good 

performance when 30% of the values were replaced at the sample size of 25. This is 
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inconsistent with the default TB breakdown value of 0.2, which indicates the maximum 

percentage of allowed ‘bad’ values when the algorithm is still able to obtain good estimates. 

We tested percentage from 15% to 20% and result showed that the actual breakdown point 

may be smaller than the theoretical breakdown point. As it is impossible to know the 

percentage of outliers in the data a priori, it is worthy investigating the relationship between 

theoretical breakdown point and actual breakdown point for TB as using excessive large 

breakdown point may incur over-estimation. 4) The results for 2D missing values are similar 

to that of 1D missing values. There are some slight improvements for all estimators possibly 

because the missing values along both directions could offset each other. The robust 

estimators demonstrated much superior performance when the data are tainted with missing 

values, with FMCD, M and QC outperforming all the other estimators. 

Finally, we tested the effect of a few extreme outliers that severely deviate from the rest of 

the data. The tabs outliers1, outliers2 and outliers23 list results of outliers added to the first, 

second, second+third quadrant, as described in the Materials and Methods section. The 

result shows that 1) Adding outliers in the first Quadrant will severely change PCC when the 

The simulation study only demonstrated the efficacy of robust correlation estimators when 

either missing values or outliers are present. The actual Transcriptomics-Metabolomics data 

contain more complex noise than we have attempted to reproduce here. However, the 

robust estimators FMCD, M, QC and TB have shown much better performance over the 

classic PCC, SP and KD estimators. Many recent microarray/metabolomics correlation 

analyses still use PCC or SP as outlier-resistant correlation estimators, and we can see from 

the simulation analysis that those estimates could significantly deviate from the actual 

correlation are less affected than PCC but also have underestimation when the actual 

correlation is negative. TB performed equally well with FMCD, M and QC, but 

overestimated positive correlation and underestimated negative correlation when 15 outliers 

are added to the sample of size 100. 2) FMCD and M can give reasonably good estimates 

even 10 outliers are added to the first Quadrant for the sample size of 25. 3) The results for 

outliers added to the second quadrant and third quadrant are similar. FMCD and M 

consistently outperform all the other correlation estimators. 

The simulation study only demonstrated the efficacy of robust correlation estimators when 

either missing values or outliers are present. The actual Transcriptomics-Metabolomics data 
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contain more complex noise than we have attempted to reproduce here. However, the 

robust estimators FMCD, M, QC and TB have shown much better performance over the 

classic PCC, SP and KD estimators. Many recent microarray/metabolomics correlation 

analyses still use PCC or SP as outlier-resistant correlation estimators, and we can see from 

the simulation analysis that those estimates could significantly deviate from the actual 

correlation. 

As the visual inspection for tens of thousands of such gene/metabolite pairs is impractical, 

using robust correlation estimators will produce much better and more confident estimators. 

A problem of using robust correlation is related to significance estimation. For PCC, we can 

test against the null hypothesis of ρ = 0 using t test. However, for robust estimators the t is 

not guaranteed to have approximate t-distribution. Nevertheless, we can retrieve a nominal 

p-value by plugging the ρ obtained from robust correlation estimators. Another approach is 

to use permutation tests or bootstrapping if the sample size n is sufficiently large. As 

permutation tests will dramatically increase the intensity of computation, it is only feasible to 

run with parallelization on a computer cluster. The p-values can be corrected using Holm-

Bonferroni procedure or by FDR using methods proposed by Strimmer77. 

We also have observed in some cases that when the sample size is very small (n < 10, data 

not shown), sometimes the robust estimators may significantly over-estimate the actual 

correlations. For example, because FMCD uses a subsampling technique, it is very likely for 

the algorithm to detect a few points that have strong correlation when the n is very small. 

Therefore it is very important to understand the behavior of robust correlation estimators 

before application to real world data. 

3.6 Discussion 

In this chapter, we evaluated the performance of seven correlation estimators when missing 

values and extreme outliers are present in the data using both systematic simulation and 

experimental data. Our results suggest that even though the classic correlations perform very 

well on bivariate normally distributed data, the Pearson, Spearman and Kendall correlation 

estimators are unable to obtain good estimates on noisy omics data. Spearman and Kendall 
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estimators do have a weak degree of resistance, but they fail quickly when systematic missing 

values and errors are added. As it is very difficult to verify all variable pairs using graphical 

plots for very large datasets, using these classical methods could produce very misleading 

correlations for subsequent clustering or synthesized networks. The robust correlation 

estimators have shown superior performance and the strong biological relevance of our 

results also indicates that the analysis strategy we developed based on the combination of 

PCC, QC and outlier detection is a powerful approach for integrative analysis of noisy 

Omics datasets. Our pipeline also flags problematic samples for further investigation in 

addition to Hardin’s scheme that only flags gene-pairs with outliers. In doing so, we facilitate 

the characterization of sample-specific features. On the other hand, the resistance of robust 

estimators also varies with regard to data size and noise structure, due to the different 

algorithmic design. For example, the subsampling of FMCD may incur over-estimation on 

very small datasets, and Hardin’s biweight by default will have a lower breakdown point than 

the other robust estimators. It is then critical to understand both the behavior of the robust 

estimators and the characteristics of the experimental data to obtain the best correlation 

estimates. Furthermore, as the computation of robust correlation estimators is more 

intensive than the computation of classic estimators, it is more favorable to parallelize large 

meta-analyses, which involve computing correlations across many Omics datasets. 

Conceivably, high correlations as well as outliers can be utilized to aid the progressive 

prediction of unknown metabolites based on annotations in existing pathway databases and 

literature. For example, the high correlation of an unknown metabolite with a known gene 

and in particular, multiple known genes in a pathway can dramatically reduce the search 

space for the unknown metabolite, since the most likely candidates will be structurally related 

molecules or known metabolites from related pathways. Correct characterization of even a 

small fraction of the unknown metabolites would facilitate the identification of the rest, 

which will in turn improve our understanding of the molecular processes and pathways 

involving these molecules. 
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Table 3-1 Top 10 highly associated compound-compound pairs. 

With PPC and PQC both > 0.9 

Compound A Compound B PPC PQC 

L-allo-threonine threonine 0.996946 0.992606 

tyramine X-4043 0.996749 0.994182 

3-phospho-d-glycerate glyceraldehyde 0.983365 0.988978 

Isobar6 includes 
valine, betaine valine 0.982947 0.972611 

X-1713 X-4027 0.982945 0.980403 
X-1111 X-4019 0.974755 0.985652 
leucine methionine 0.968212 0.958808 

creatinine X-3176 (possible creatine) 0.967171 0.958087 

anthranilic acid valine 0.966016 0.940412 

leucine methionine 0.964969 0.974087 
 

Table 3-2 Top 10 highly associated gene-compound pairs.  

With PPC and PQC both > 0.65 

Compound Gene PPC PQC 

X-2005 CD7 0.905804 0.665047 

taurine PREB 0.850938 0.714942 

X-2005 CDK6 0.84396 0.654139 

taurine CALCRL 0.78668 0.660189 

X-2005 LOC390940 0.779039 0.659253 

X-2724 MEPCE 0.744048 0.698484 

X-3090 ALPK1 0.73805 0.821748 

X-2005 IRF1 0.736982 0.654989 

X-2139 TMEM77 0.732769 0.684709 

X-2724 KBTBD2 0.732675 0.725019 
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Figure 3-1 Estimated Out-of-Bag Error (OOB) Error with regard to progressive cancer class removal.  

At each step, cancer classes contribute most to classification error were removed and OOB error were 
recalculated. B: Breast cancer. P: Prostate Cancer. O: Ovarian Cancer. C: CNS. The left plot shows OOB errors 
on entire dataset and the right plot shows OOB errors on a subset of classifiers selected by varSelRF. The 
improvement of variable selection is more remarkable for microarray because of the much larger classifier pool to 
select from (11961 v.s. 342). Metabolite classifiers can achieve average OOB error of 0.28 when B,P,O,C are 
progressively removed, reduced from 0.51 from the full set. The OOB error for u133a was reduced from 0.34 to 
0.18. The average OOB errors from the random cancer class removal are plotted with the orange dashed line. 
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Figure 3-2 Aggregated Heatmap view of gene-metabolite relationship organized according to the KEGG 
pathway.  

Mapping of EHMN gene-metabolite association data to robust correlation matrix heatmap. A: Rows are genes 
grouped by pathway names, columns are metabolites also grouped by corresponding pathway names. Green 
circles mark the position of a specific reaction that couples a metabolite and a gene from EHMN. Orange Light 
cells indicate positive PQC, with black mapped to 0 and orange to be 1. It can be seen from that figure that even 
though there are patterns of gene-metabolite clustering, very few high correlations can be mapped to known 
reactions.  B: Gene-metabolite correlation in the Glycolysis pathway. C: The gene-gene correlation within the 
Glycolysis pathway. 
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Figure 3-3 Outlier Analysis.  

Outlier analysis shows extreme gene-metabolite outlier pairs could be resulted from cell-specific mutations. Top 
scatter plots: NOTCH1 ~ X2005, with outlier in cell line MOLT_4 and KRAS~X-2690, with outlier in OVCAR5. It 
can be seen that the high PCC were both artefacts of extreme outliers. Middle table: PCC and PQC of the 
corresponding pairs, before and after outlier removal. R_QC: PQC. R_QC_RM: PQC after outlier removal. 
P_Pearson: PCC. R_P_RM: PCC after outlier removal. Bottom table: annotated mutation records from Sanger 
Cosmic database, directly matched to these two outlier pairs. 
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Figure 3-4 Illustration of bivariate outliers.  

‘o’ denotes data generated from a bivariate normal distribution centered at (0,0) and scattered with covariance of 
(1, 0.8, 0.8, 1). The outliers are added at the center of (0,4) and scattered with the covariance of (1,0.2,0.2,1). ‘+’ 
denotes the outliers flagged by method proposed by Filzmoser et. al. 
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Figure 3-5 Simulated data structure with artificially added outliers.  

Bivariate random is simulated with bivariate normal random number generator with given location and scatter. 
Missing 1D denotes data which is similar to bivariate random but contains missing values along one direction 
and the missing values were replaced with base values. Missing 2D denotes data that contains missing values 
along both directions. Outliers are simulated bivariate normal data with outliers added for both directions, only 
one direction and either one direction, respectively. 
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Chapter 4 CoolMap for Interactive Exploration of Omics Data 

4.1 Introduction 

As discussed in previous chapters, the Omics movement has produced a large number of 

molecular profiles, usually stored in matrix (profile-sample) format or (profile-profile) 

correlation format. Such datasets are usually visualized as heatmaps using value to color 

mapping. As the size of such data matrices grow, it becomes increasingly difficult to explore 

such Omics datasets interactively. There are several challenges to the classic heatmap 

visualization: first, a modern chip may contain tens of thousands of molecular of profiles 

and it’s impractical to display the resultant heatmap into a single monitor screen without a 

significant loss of information. Therefore a scaled-down version of the heatmap is usually 

displayed and artifacts may occur due to the image resizing process. Secondly, many 

heatmaps with hierarchical clustering lack the interactivity of data exploration, such as the 

heatmap renderers in Rxxxi, R packages such as ggplot2 and bioconductor, infoViz and 

Matlabxxxii. It is often easy to identify patterns around a certain heatmap region but difficult 

to obtain exact underlying values from the plot. Thirdly, when clustering gene expression 

data, each gene only appears once in the resultant heatmap view. Some of the genes may 

actually have similar expression profiles with genes belong to different pathways or modules; 

enforcing a single membership may lead to inaccurate interpretation. Fourthly, it’s difficult to 

examine the relationships on a higher concept level – instead of investigating gene-to-gene 

or gene-to-metabolite associations, there are many research questions to be addressed from 

the raw pairwise data: how pathways or modules associate or interact? What’s the intra-

cluster variability and inter-cluster variability of a resultant clustering result? For replicate 

                                                
xxxi http://www.r-project.org/ 

xxxii http://www.mathworks.com/products/matlab/ 
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experiments, is there a way to examine all the raw values from several datasets interactively 

into a single view? Is there a way to visually compare a clustering result with regard to 

annotated pathways, or have several Ontologies (GO biological process and molecular 

functions) visualized simulatenously? In the previous NCI 60 analysis, we rendered a 

heatmap of gene-metabolite correlation with the molecules arranged in KEGG pathways 

groups. Even with only a few hundred rows and columns on each side, the heatmap was 

already quite difficult to interpret. It would be much more informative if we could obtain a 

summary matrix, that contains representative correlation values (such as max, min or median) 

at intersecting pathways. Then we only need to drive down into pathways that show strong 

correlation signals and identify the key molecules that drive such correlations. 

In the following sections, I will first provide a brief history of matrix visualizations, followed 

by addressing how CoolMap can help to answer these research questions. The idea was 

originally formulated by my mentor Fan Meng, and then I evolved the idea from the features 

of conventional heatmaps. Many design concepts were inspired by best practices of popular 

software platforms and modern web-tools such as Cytoscape, Google Map and Photoshop. 

4.2 The origins of key design concepts 

Before diving into the details of matrix visualization, I provide a brief description of the 

evolution of the whole design process. The inception of Web 2.0 revolutionized the way 

people browse remote data - the experience has become more dynamic, interactive and fluid. 

People spent much less time waiting for the system to respond, and more time exploring and 

analyzing data using modern data visualization platforms. As the size and complexity of 

biomedical data continue to grow rapidly with the development new high-throughput 

technologies, it has become more and more critical to provide efficient and effective ways 

for biomedical researchers to explore these datasets and generate hypotheses. The first 

attempt was to try the idea of ‘heterogeneous aggregation’ along only one axis. The resultant 

dynamic genome browser (DGB) prototype developed back in 2008 brought the idea of 

‘heterogeneous zooming’ of tracks. As the majority of genome browsers use one single 

zoom for all the tracks, DGB allows users to look at tracks with different zoom levels, with 

tracks containing more details such as SNPs or genomic sequences zoomed in much deeper 
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and tracks such as chromosomal bands only viewed at the overview level. The tracked are all 

synchronized at the center and scrolled at different speeds. In this way the user could 

examine certain regions in detail without losing the high-order concept context around. It 

was one of my earliest attempts to build data visualization applications with hierarchical view 

structures. 

Another inspiration comes from Google Maps. It is very common to have adaptive 

rendering capability in Geographic Information Systems (GIS). At different zooming levels, 

the visualization provides different levels of detail to the user, from displaying only the name 

of a city to all the street-level view. Most current heatmap visualization is uniform at 

different zooming levels – each pixel is represented with a color regardless the sizes they take. 

With the introduction of ontology nodes, it is possible to offer more information to the 

researcher while the region of interest is zoomed in. For example, the exact numerical value 

that underlies a certain cell can be displayed instead of color when the size of the cell is 

sufficiently large. Pie charts, box plots or statistics can also be overlayed on Ontology node 

intersections. With these added capabilities, the heatmap can provide the user with much 

more contextual information to facilitate the analytical and discovery process. 

4.3 A brief history of Matrix Visualization 

There are many ways to represent a two or multi-way associative data. For very small 

datasets, it is often desirable to use a tree-diagram. The tree-diagram resembles a hash-to-

hash data structure, and works well for unordered data. For larger two-way or three-way 

datasets, a table is more suitable. A two-way numeric table can be considered as a ‘flattened’ 

view of a three dimensional data, with each cell value indicating the z-position with regard to 

the corresponding xy position. For larger tables, it is generally more appealing to use certain 

visual cues to substitute numbers for more intuitive observations. For example, bars or 

shape sizes can be used to fill each cell175. More frequently, the cell values can also map to 

color schemes (continuous color gradient) or shade values (black and white). For example, 

Czekanowski employed a discrete mapping of five shading levels diagram to illustrate a 2D 

table176. Due to its intuitiveness and ease of implementation, heatmap representation has 

been implemented in a wide scope of disciplines, such as archaeology, cartography, sociology, 
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and psychology. It was not until Eisen’s 1998 paper that this technique was applied widely to 

gene expression data102, and it still remains the prime choice to visualize chip-like data. Many 

software packages have been developed to make static or interactive heatmaps, such as R 

(heatmap, gplots, ggplot, Bioconductor), Matlab, Gene Pattern, VistaClara, InfoViz, 

TreeViewer, JTreeMap, ClusterMaker, ConceptGen, BioSearch2D, etc73,92,177–180. However, 

many of these heatmap implementations are static that can’t be interactively explored. It is 

also difficult to associate structured annotation data in these applications.     

There are also several additional challenges to create a meaningful heatmap – the heatmap 

should not only function as a simple translation of a numeric space to a color space, but also 

unravel the otherwise inconspicuous structure of the data. To achieve this goal, the rows and 

columns should be permuted to maximize the distance of the most dissimilar entries and 

minimize the distance of the most similar ones. Due to the large number of possible 

permutations (n!m!), it is very important to use an efficient and effective algorithm. There 

are currently three major approaches: hierarchical (agglomerative/divisive) clustering, 

partitional clustering and row/column seriation.  

Hierarchical clustering is a greedy step-wise algorithm to progressively merge/remove the 

most similar/dissimilar rows or columns, based on a certain distance criteria (single, 

complete, average, median, complete, ward, centroid). This algorithm is moderately efficient 

(depending on implementation, the performance can vary from around O(N2) or O(N3)181, 

and probably the most appealing feature is that it produces a hierarchical tree that clearly 

reveals the underlying grouping structure if the data is clearly bi-modal or contains a small 

number of modes. However, as almost any dataset can produce a hierarchical tree, the 

validity of this approach is often questioned if the clustering quality is unevaluated since the 

hierarchical tree may simply be an artifact of the algorithm rather than a true reflection of 

data structure. Moreover, as each left and right node of the tree can be flipped independently 

(total of 2n-1), the resultant hierarchical tree may not best reflect the data structure. Some 

leaf-repositioning algorithms have been developed to optimize the node flipping182, but are 

not scalable for large datasets.  

The partitional algorithms, such as K-means and Model based iterative clustering, attempt to 

place entities into groups to maximize inter-group difference and minimize intra-group 
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difference. If the number of clusters is known a priori, this approach often out-perform the 

hierarchical algorithms in terms of cluster homogeneity. Sometimes the hierarchical and 

partitional procedures are even combined for better performance183. The problem of 

visualizing a heatmap using the result from a partitional clustering algorithm is that the best 

intra-cluster orders are unknown, which is trivial for functional inference but important for 

heatmap plotting.  Therefore, some heuristics or other methods are needed to find an 

optimal intra-cluster order for heatmap visualization. 

The matrix seriation (or reorderable matrix) methods are the least popular approaches in the 

Bio-domain. The main reason is possibly that in a typical chip analysis, it is more important 

to find a good cluster membership than to determine the optimal ordering of rows and 

columns of the heatmap. Furthermore, because most of the heatmaps in publications only 

plot a subset of selected gene expression profiles (or other signals), these sets usually 

represent the most drastic contrast across certain groups to provide the reader a visual cue of 

the degree or overall pattern, and the hierarchical clustering usually works fairly well. 

However, their effectiveness decays when the underlying data contain multiple small fuzzy 

groupings or other peculiarities. Seriation, by definition, is to find an ordering for an array of 

objects such that the position of the object reflects the relatedness to its neighbors. For 

example, to seriate the dissimilarity matrix for genes on an expression chip, the matrix would 

be permuted such that the least dissimilarity values are placed close to diagonal – an 

approximate anti-robinson matrix. The first documented formulation was probably from 

Petrie, where he used sorted matrix to represent tomb relic’s data. Some algorithms have 

been developed, such as those listed here184. It was only until recently that some software 

packages have been made available, such as PermutMatrix185, GAP186 and the ‘seriation’ 

package for R. The major drawback for seriation algorithms is that they are not very scalable 

(could be O(N3) even O(N4)), a combined clustering-seriation scenario has been proposed to 

only utilize seriation to refine the ordering within small clusters. 

Some methods have been developed to optimize the display of the hierarchical tree. 

Treemap place the tree nodes in alternating rows and columns and the size of the 

compartment can be mapped to the tree node attribute values. However, it is still quite 

difficult to apply these methods to matrix visualization. Although it is possible combine 

various views and update them simultaneously to provide multiple aspects of the data to the 
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user at the same time, the scale and complexity of the current datasets may cause a ‘mind’ 

overflow of the user187.     

Even with proper permutation of rows and columns, the current heatmap visualization 

applications make little use of the clustering or ontology structure other than plotting along 

sides of the heatmap only for indication purposes. It is difficult to browse large heatmaps, 

sort a region of a heatmap, or associate structural data to rows and columns. Using gene 

chips as an example, the user may want to take advantage of gene-annotation information 

such as ontology or function, to only show genes linked to certain pathways or biological 

processes in a heatmap, or to place genes in two clusters side by side for comparison, or 

even draw a heatmap of pathways versus pathways from gene expression profiles. As 

described before, we have encountered such difficulties when analyzing the NCI60 dataset, 

and subsequently spurred the design of CoolMap.     

4.4 The overall design of CoolMap  

There have been some previous attempts of integrate multi-level tree into a heatmap typed 

visualization, but each of these implementations have deficiencies. The Matrix Zoom119 and 

JTreeView188 are both capable of plotting a hierarchical tree along the heatmap and the user 

may select a branch for in-depth view, but the interactivity of the tree diminishes quickly 

when the size of the heatmap grows. The user has no easy way to only investigate a branch 

of an ontology tree only at a certain level independently. There’s no way to manipulate the 

tree nodes, such as to expand, collapse or hide certain nodes from the view while keeping 

the rest of the view regions in place. In addition, these trees can only be single inheritance 

trees, usually being a result from hierarchical clustering. As a result, it is impossible to 

visualize two ontology terms or pathways side by side, with shared child nodes. Yet this is a 

very common occurrence, as many pathways contain shared genes and metabolites. 

Furthermore, the width and height of the heatmap cell in all these applications can only be 

changed using a single zoom multiple, which makes it difficult to examine heatmaps with 

very large number of rows (genes) and very small number of samples (columns). As a result, 

the majority of the heatmaps only provide a very coarse overview of the underlying data 
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characteristics. We believe by integrating ontology trees and agile/flexible rendering pipelines, 

the capability of heatmaps can be significantly enhanced to explore current datasets. 

We developed the CoolMap specifically to address the above issues. Table 4-1 Feature comparison of CoolMap 
with some other Tools 

 R(gplots-

heatmap.2) 

JTreeView MatrixZoom CoolMap 

Interactive No Yes Yes Yes 

User-rearrange 

row/column order 

No No No Yes 

Rendering other 

data-types 

No Yes No Yes 

Rendering other 

than color 

No Yes No Yes 

Annotation overlays Yes No No Yes 

Clustering Yes Yes Yes Under-

development 

Node 

Expansion/Collapse 

No No Yes Yes 

Multiple Ontology No No No Yes 

Multiple Plot Link No Yes Yes Under-

development 

Extract Sub-portion Programmatically Yes Yes Yes 

Search/Filter Programmatically No No Yes 
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Figure 4-1 illustrates the basic concept of CoolMap. Suppose rows and columns of a matrix 

can be aggregated with an ontology tree, and the node of the tree then can be folded bi-

directionally. The resultant cell can then be replaced with a summary value using a 

compatible aggregation function, such as the mean, median, quantiles, or variance. The 

ontologies can be a result of hierarchical clustering, or user defined groups, pathways, 

networks, molecular ontologies or phylogenetic trees exported from databases. Using this 

design, it is then possible to view the data at a higher concept level. The details can then be 

shown contextually via overlays, or expansion of the node pairs of interest. A significant 

amount of peripheral functions were also developed to support the interactive visualization 

of CoolMap. The following list summarizes the main features of CoolMap: 

Major features: 

• Capable of exploring 2D data with arbitrary format. Due to the extensible interface, 

CoolMap potentially can render any type of data with a compatible data loader, 

aggregator and renderer. The current release only supports numeric data, but can be 

easily extended to string, character, boolean, image or even composite data types. 

• An ontology with arbitrary structure, but without self-loops, can be loaded. An 

ontology term is a group term that contains an arbitrary number of rows or columns 

from the base matrix. There can also be hierarchical structure between the ontology 

terms (such as Gene Ontology or intermediate nodes in the result of hierarchical 

clustering). 

• Rows or columns can be added, removed, or reordered manually or 

programmatically. For example, the row and column order from matrix seriation can 

be used to reorder the CoolMap in view. The ontology nodes can be mixed with base 

nodes in the same view for side-by-side comparison. Ontology nodes can be 

expanded to reveal ontology terms on the lower level. 

• The CoolMap in view can be dragged around; hovering the mouse near a cell 

immediately shows the underlying value in the matrix; the size of each cell can be 

adjusted using the resizing grid so that cells of interest can take more space and 

reveal more details. 
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• A renderer can be assigned to determine how the view matrix is presented. It is very 

easy to extend the renderer interface with a variety of visualization methods. Right 

now the renderer supports color mapping and size (bar). 

• An annotator can render the base rows and columns associated with a matrix on top 

of the renderer layer. This interface can also be extended to render the underlying 

group of cells as a variety of graphics (boxplots, scatter plots, etc). 

• It’s possible to use several criteria to filter the CoolMap with filters. Cells in view that 

pass the composite criteria will be shown. Others will be masked out from view. The 

user may use numeric or fuzzy string filters. Multiple filters can be joined together 

using logic AND or OR. 

• The user may use the Ontology browser, and ontology table to search for ontology 

terms of interest, inspect the hierarchical structure about that term, and then add 

selected terms to at any row/column locations in view. 

• A bridge to R is available to both the user and plugin developers to incorporate R 

functions, such as hierarchical clustering, correlation, k-means, seriation, etc to 

CoolMap.  

More details can be found in the appendix. Figure 4-2 shows a screenshot with a majority of 

the CoolMap widgets. A feature comparison is listed in Table 4-1. 

 

4.5 Application of CoolMap to Exploratory Data Analysis 

4.5.1 Nutrition experiment with multiple categorical designs 

To illustrate how CoolMap could facilitate the exploration of microarray data, we tried to 

replicate the exploratory process from a nutrition study targeted at identifing how saturated 

fatty-acid rich diet could trigger obesity-linked proinflammatory gene expression in adipose 

tissues189. The sample consists of 20 abdominally overweight subjects and they received 

Saturated fatty acid diets (SFA) or monounsaturated fatty acid rich diets (MUFA) over an 
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eight-week span. The samples were categorized into factors such as the experiment protocol, 

the gene expression profiles were analyzed and the authors discovered that consumption of 

SFA diet triggered elevated expression of genes involved in inflammation processes in 

adipose tissues, whereas the MUFA diet led to anti-inflammatory gene expression 

fingerprints. We therefore used their dataset to examine how exactly the change of 

expression profiles can be visually explored. The experiment protocol, time, individual and 

gender can all be used as group ontologies in the view. 

Figure 4-3 shows the overall expression well-known immune related genes as shown in 

Figure 3 of the original paper. By using CoolMap, it’s possible to access both gene-level 

expression and probe level expression, which is not immediately possible before. From the 

comparison figure we can see both gene IL6R and CD209 have two probes in the probeset. 

While the expression levels of IL6R probes are quite similar, the probe expression of CD209 

are quite different (~3 for NuGO_eht0340260_at and ~8 for 207277_at). As usually the 

average expression value across all probes in a probeset is used as the gene expression value, 

the overall value for CD209 may be problematic in this case. Potentially for a gene that 

could be mapped to a larger number of probes, it would be helpful to examine the individual 

probe expression values when examining filtered genes before further functional inference. 

This demonstrates the capability of CoolMap to be used for quality control when a 

molecular profile can be mapped to several child profiles, such as time series, technical 

replicates, protein or gene families, etc. 

Figure 4-4 shows the exploration of gene expression change in SFA and MUFA diet groups. 

The original paper used heatmap189 to illustrate the increased expression of immune related 

genes. The same set of genes were exported from the GEO data files (some genes were 

unable to be found, possibly due to the change of probe mapping annotations) and 

illustrated in CoolMap. By using the experiment groups, it is possible to examine the change 

of gene expression on the SFA and MUFA level instead of each individual gene. Overall by 

using mean and median expression fold change, the SFA group indeed shows overall 

increased expression in immune related genes. B,C,D. Meanwhile we found that different 

from the original heatmap, CD209 did not show elevated gene expression in the SFA group. 

As CD209 is mapped to two probes, expansion of CD209 reveals that the probe 207277_at 

shows overall elevated expression in SFA group while NuGO_eht0340260_at showed little 
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change in gene expression over all samples. It is then likely that the NuGO_eht0340260_at 

could be a probe with low sensitivity  (also shows that this probe has low expression value 

comparing with 207277_at), or it could be a wrong mapping. 

These two examples together demonstrate that CoolMap is capable of replicate heatmap 

functions, and yet provide more insights on higher level (experiment groups) as well as lower 

level (individual probes) interactive explorations, which were not possible to be done with 

existing heatmap-based applications. 

4.5.2 Analysis of Mother-Child Nutrient/Epigenome Interaction 

Another test study of CoolMap is on a collaborative research project with Dr Charles Burant, 

aiming at understanding how mother/child nutrient transfer and epigenetics could affect the 

development of the child. Mother-Child placental transfer of nutrients, such as fatty acid, is 

critical to fetus’s prenatal and postnatal growth. We collected a dataset with targeted serum 

metabolomics profiling and methylation profiling. There are two major research questions 

we would like to address: first of all, how does metabolite levels and gene methylation 

correlate between mother and child? And more specifically, how the genetics change in 

mother lead to the epigenetics change in child, and how metabolite (diet) level in mother 

across placenta transfer eventually lead to the epigenetics change in child? Also What are the 

predicted changes in gene expression, and subsequently the potential changes in the child’s 

metabolism? There are several key genes we would like to explore, such as the Insulin-like 

growth factor 2 (IGF2 http://www.ncbi.nlm.nih.gov/gene/3481) which affects 

development and growth, Peroxisome Proliferator-activated Receptor Alpha (PPARa 

http://www.ncbi.nlm.nih.gov/gene/5465 ) that regulates lipid metabolism and Estrogen 

Receptor Alpha (ESR1 http://www.ncbi.nlm.nih.gov/gene/2099 ) that also regulates 

development. The gene methylation profiles were collected from blood samples from 15 

mothers (in the first trimester) and maternal and infant cord blood collected during delivery. 

Directed metabolomics analysis was performed to quantify serum amino acids, acyl-

carnitines and the total plasma fatty acids from both the mother and the child. Ontology 

headers are also created to utilize CoolMap for multi-level exploration of the datasets (Line 1 

methylation, ESR Methylation sites, IGF2 Methylation sites, PPARa Methylation, BCAA 
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AcylCarnitines, MediumChain Acyl Carnitines, Long Chain AcylCarnitines, Aromatic Amino 

Acids, Saturated Fatty Acids, Monounsaturated Fatty Acids, PUFA, etc.) 

In order to investigate the association between the profile of these biomarkers between the 

mother and the child, we computed the Pearson Correlation Coefficient on these data along 

with a number of clinical parameters, including the preconception weight, weight gain during 

pregnancy, term fetus weight, among others. Data were (z transformed; in case of missing 

values, only complete observations were used to compute correlation). The resultant 

correlation matrix was also clustered to find close associations. By using CoolMap, instead of 

browsing the entire dataset, we could of first identify which groups of biomarkers that have 

high correlation between the mother and the child, then dive-in to further identify the 

members in a group that drive the high correlation. Filtering, annotator and a combination 

of operations will also facilitate the knowledge discovery process. Figure 4-5 shows the 

aggregated group view makes it much easier to understand the overall trend of the data than 

the heatmap drawn at the base level. From the aggregated view, we can immediately identify 

the highly correlated mother-child measurement groups, such as BCAA AcylCarnitines 

(0.45), Long Chain AcylCarnitines (0.34), PPARa methylation (0.52), ESR Methylation (0.32) 

are highly correlated overall between mother and child. 

The next step is to identify the diving forces of these high correlations within a group 

(Figure 4-6). Overlaying a boxplot on PPARa shows that the spread of correlation across 

PPARa gene methylation (mean 0.52) is quite small. This implies that the methylation 

profiles between mother and child is strongly correlated, and indicates the genetic factor on 

the correlated gene expression profiles. Using the same method on BCAA AcylCarnitines 

(0.45), we can see that the spread of correlation is much wider, and because of the C4 

AcylCarnitines, the overall correlation was brought down much lower. The mean 

methylation correlation between ESR mother and child is much lower, only 0.32. The 

boxplot overlay shows that the correlation spread is quite wide. Expanding the 

corresponding nodes to the child level reveals the heterogeneity of site-specific methylation 

correlation; with site-3 have a much higher correlation (0.838) than the other members. The 

ESR methylation site-1, on the other hand, has a moderately high correlation with mother 

valine (0.42), which implies a potential metabolic factor to gene expression profiles. By use 

the other search and filter functions of CoolMap, we could identify other highly correlated 
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pairs within an ontology/group context (Figure 4-7). By using multi-level CoolMap 

exploratory analysis, we could identify interesting signals in the data from a high level of 

view, and then investigate the lower level details to mine for more details from the data for 

hypothesis generation. The identified highly correlated methylation / metabolite pairs can 

lead to further targeted experiments and pathway/functional module elucidation. 

4.6 Other Applications 

4.6.1 Data Quality Control 

As described in chapter 3, many omics data may contain abnormally distributed data, missing 

values, or extreme outliers. It is then very helpful to quickly investigate the input data and 

identify the number, distribution and pattern of missing values. shows the CoolMap 

visualization of baseline metabolite measurement from the investigational weight 

management clinic. We can see that there are quite a few missing values for baseline 11,13 

and 14. Furthermore, the glutamine level seems to be way too high. Quickly adjusting the 

range of color mapping will better reflect the details in low value regions. 

4.6.2 Data with large amount of missing values 

List typed data with each row containing an uneven number of elements or sparse matrices 

(for networks) with a large number of missing values can be difficult to visualize using 

traditional heatmaps. Conceptually, even if there are missing values in a row or column 

group, it should still be possible to obtain representative or summary values that would 

drastically reduce the number of missing values. Illustrates and example of using CoolMap 

on DNA methylation data. This data was obtained from four squamous cell carcinoma cell 

lines (two positive for human pappilomavirus HPV, and two negative for HPV) using the 

illumine HumanMethylation27k BeadChip platform190. By building ontology groups for 

methylation sites, the original matrix view can be translated into a much more condensed 

view. Expansion of methylation groups shows the number of methylation sites for each gene 

and the values. It can be seen that some genes such as CDKN2A and CDKN2B have many 

more methylation sites than others, using the average would eliminate the intra-group 
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heterogeneity and the possibility of studying which site is actually the key that drives the 

underlying process. 

4.6.3 Sequence Analysis 

As CoolMap can visualize data types other than numeric values, we also developed a 

renderer variant that can be used to explore sequence alignment and motifs. Transcription 

factors usually bind to a sequence in a sequence specific manner, and the resultant binding 

site are usually represented as consensus sequences, position weight matrices or sequence 

logos191. CoolMap can be used to display the consensus sequence using the IUPAC 

degeneracy letter, while still preserve the underlying individual sequence information. 

Illustrates an example of CRP binding site taken from Schultz et al192. The consensus 

sequence can be aggregated at different levels to illustrate the variability of conservation. 

Base and GC content can also be overlaid on top of the sequence logos for underlying base 

distribution details. 

4.7 Summary 

CoolMap extended the visualization capability of traditional heatmap by incorporating 

ontology structure along both axes. From the usage examples we demonstrated that 

CoolMap is capable of rendering multi-scale information to the researcher for rapid 

exploratory analysis and hypothesis generation. The ontology-aided data aggregation can 

help researchers understand the signals of the data using structural knowledge. We hope that 

with this new heatmap-based model, and the versatile rendering options, streamlined user-

interface and a slew of auxiliary functions, CoolMap will improve the data-driven functional 

interpretation process. 
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Table 4-1 Feature comparison of CoolMap with some other Tools 

 R(gplots-

heatmap.2) 

JTreeView MatrixZoom CoolMap 

Interactive No Yes Yes Yes 

User-rearrange 

row/column order 

No No No Yes 

Rendering other 

data-types 

No Yes No Yes 

Rendering other 

than color 

No Yes No Yes 

Annotation overlays Yes No No Yes 

Clustering Yes Yes Yes Under-

development 

Node 

Expansion/Collapse 

No No Yes Yes 

Multiple Ontology No No No Yes 

Multiple Plot Link No Yes Yes Under-

development 

Extract Sub-portion Programmatically Yes Yes Yes 

Search/Filter Programmatically No No Yes 
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Figure 4-1 the basic concept diagram of the CoolMap.  

In the CoolMap implementation, the rows and columns of a data matrix can be aggregated (collapsed and 
expanded using a designated aggregation function). Top: illustrates the basic concept. A row and column at any 
aggregation level can be collapsed into a summarization view, or expanded to show the underlying details. The 
bottom figure illustrates the organizational flow of CoolMap: in the first step, the data objects in the raw matrix 
are aggregated into the view matrix with a designated aggregator. The aggregator translates raw data type R into 
view object type V. The renderer then renders the view matrix into a graphic CoolMap representation. An 
example flow: the raw data matrix contains gene expression values in double numeric format. The view matrix 
contains gene ontology groups and the aggregator translates the raw double numeric format into mean log2 
transformed expression values. The number to color renderer finally converts the resultant view matrix into a 
heatmap representation. 
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Figure 4-2 CoolMap screenshot.  

A CoolMap screenshot lists the majority of of currently developed modules, including CoolMap listers, filters, 
ontology browser, annotation renderer, color renderer, data browser table, etc. 
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Figure 4-3 Quality control of the GDS3678 dataset from figure 3 in the original paper.  

The genes in figure 3 of the original paper were arranged in CoolMap view. Several genes, such as HLA-DQA1,  
PPARg, HLA-DMA, etc., are missing. The majority of the probes are 1 to 1 match to gene annotations. There are 
two genes that have 2 probes in the probeset, IL6R and CD209. After expansion, it can be seen that the two probe 
expression of IL6R (yellow rectangles) are quite uniform. However, the two probes of CD209, 207277_at and 
NuGO_eht0340260_at, have very dissimilar expression profiles, with 207277_at ~ 8 across all samples and 
NuGO_eht0340260_at ~3. If the resultant expression value is taken as the average, it could be worthy of concern. 
This demonstrates that CoolMap could be utilized to investigate raw data at different hierarchies. The two groups 
on the horizontal axis denotes Saturated Fatty Acid (SFA) group and Mono Saturated Fatty Acid (MUFA) group, 
respectively.  
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Figure 4-4 Illustration of elevated expression of immune related genes in Saturated Fatty Acid (SFA) diet set.  

The original paper used a heatmap to illustrate the elevated gene expression in SFA set over an eight-week diet 
span compared with the MUFA set (A). The value is mapped from -0.5 to 0.5 for fold change, from green to red. 
We illustrated the same set of genes (some can’t be found in the downloaded dataset, probably due toe the 
change of probe definitions) using CoolMap (center). The samples can be aggregated using the experiment 
design (http://www.ncbi.nlm.nih.gov/geo/gds/profileGraph.cgi?gds=3678) . In the aggregated view, it’s much 
clearer from the mean or median fold change that the immune related genes do show elevated expression. Color 
is coded from orange to blue, from -0.5 to 0.5. A: Original heatmap visualization. B: CoolMap replication with 
matching genes. C: aggregated mean. D: aggregated median. The SFA group demonstrates elevated overall gene 
expression. E: CD209 did not show marked elevation of expression with the GEO data annotation, expansion of 
CD209 shows that the probe 207277_at shows elevated expression in SFA and is consistent with A. However, the 
NuGO_eht0340260_at didn't show any marked expression. Therefore this probe is either a wrong match, or has 
very low sensitivity. 
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Figure 4-5 Condense the raw data into methylation / metabolite groups.  

A: illustrates the efficient usage of ontologies to reduce the original pairwise correlation matrix into a condensed 
and manageable group view. From the condensed view we can identify the highly correlated groups, such as 
BCAA acylcarnitines (0.45), long chain acylcarnitines (0.34), PPARa methylation (0.52), ESR methylation (0.32). 
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Figure 4-6 Multi-level exploration of highly correlated mother-child pairs.  

Top row: the PPARa mother-child correlation. The boxplot overlay shows that the overall correlation is quite 
high. Center row: the BCAA-acylcarnitines mother-child correlation. The spread of data is bigger, and the C4-
acylcarnitine mother-child correlation is quite low. Bottom row: the ESR1 boxplot and expanded views illustrate 
the methylation site heterogeneity. 
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Figure 4-7 Using CoolMap for interactive knowledge discovery.  

A: Using filter to remove low correlations out of view would significantly reduce the exploration space (shows 
only correlation between 0.5 – 1.0). The highlighted rectangle shows high mother to child correlation with X20.4. 
B: Even though there are strong correlations of LINE1 methylation between mothers and children samples, there 
are no strong correlation of LINE1 identified between mother and child. Further expansion shows that there’s 
indeed no strong correlation signal. C: ESR1 methylation has strong correlation between mother and child, and it 
can be seen the ESR1 site 3 is the main driver for the strong correlation. 
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Figure 4-8 CoolMap data quality inspection. We can quickly identify CoolMap regions with missing values or 
other peculiarities. Top: The color scale yellow to orange is mapped from 0.0 – 1087.92. Note that the center 
column of glutamine, has values much higher than other metabolites. Bottom: adjusting the color mapping from 
0.0 – 100.0 to yellow – orange would reveal more details in the low value regions. 
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Figure 4-9 Illustration of CoolMap on unpublished methylation data from Maureen 

A illustrates the average methylation values and expression values condensed by sites, with Caski.1 and Caski.2 
expanded. B illustrates expansion of four methylation groups. Because genes have different number of 
methylation sites, it’s usually difficult to illustrate such list-typed data using heatmap. Using only the average 
value from all sites may be biased for gene with a large number of methylation sites. Expansion of methylation 
groups shows CDKN2A and CDKN2B both have around 10 methylation sites. The scale is green (-2.0) to red 
(2.0). Orange dotted regions indicate missing values. 
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Figure 4-10 Illustration of using CoolMap for sequence analysis 

Top-left: a sequence logo that illustrates the CRP (Catabolite Activator Protein) binding site, 49 sequences. 

Bottom-left: the fully expanded view of all the sequences, T(red), G(yellow), A(green) and C(blue). Top-right: the 

sequences are now collapsed into the CRP family, rendered using degenerate letters following the IUPAC rule. 

Note that the conserved pattern of TGTGA … TCACA is shown, with additional WWs on each side. Center-right: 

the base percentages are overlaid as an annotation. Center-bottom: GC content is shown.   
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Chapter 5 Conclusion 

In the course of my PhD research, I began by making incremental changes to existing 

exploration models for Omics data. I developed the GLay plugin for Cytoscape to extend 

network clustering capabilities with a variety of community structure detection algorithms, 

GSearcher to offer flexible, intuitive and fuzzy search tools for filtering nodes or edges of 

interest from big attribute tables, Node Filter to interactively explore networks with node 

connectivity and expand networks from biological concept interaction database. I developed 

a novel workflow, using robust statistical methods coupled with classic methods to analyze 

Transcriptomics-Metabolomics data with multivariate outliers and a high level of noise, to 

identify new metabolite-metabolite and gene-metabolite relationships in NCI 60 

transcriptomics-metabolomics data, which could be used for subsequent characterization of 

unknown metabolites and biomarker discovery. In this process, I began to realize that the 

growing Omics data size and complexity made it difficult to continue to use existing models 

for effective visual exploration. Therefore with the guidance of my advisor Fan Meng and 

the thesis committee, I designed a novel model that facilitate data-driven exploration of 

omics datasets that is scalable to the growing sizes of datasets in the foreseeable future. After 

about two years and over five complete overhauls, we came up with the CoolMap, in hopes 

that it would allow researchers to make better use of the enormously information rich omics 

data. 

Where’s the future of omics data exploration and analysis? With the tabletification of 

terminal computation structure and permeation of cloud storage, we could imagine the 

following change: computational model will regress to its early master-slave model. The 

client side will be lighter, with less computational power but bigger, more versatile screen 

estate (high resolution multi screen), more flexible user interactions (touch interfaces) and 

connectivity (wireless), and the server side will be cheaper but bigger (cloud, rentable servers), 

it would be expected that a large amount of Omics data will be stored in online repositories 

using more normalized formats, and heavy-duty statistical analysis, such as network 

inference, enrichment analysis, clustering and classification will all be done remotely in batch 
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and parallel. The analysis cycle will be much more efficient - the users will spend less time 

conducting local analysis, but more time analyzing results. It will also more efficient to 

collaborate online, and use reproducible workflows. Many open source software groups such 

as the developers for Cytoscape already use Google Hangout for lightweight 

teleconferencing and git for community development and code deposit. This model could 

easily be extended to other collaborative online research projects. 

With this ongoing trend, it is then critical to develop novel and intuitive visual exploratory 

analysis tools for the future datasets. The heterogeneous view design of CoolMap enables 

users to use a single view to investigate data at different aggregation levels. With the 

continuous improvement of measurement resolution, it would become impossible to 

manually investigate every piece of detail of a largess dataset. Having rapid search functions, 

efficient and robust statistic methods and visualization that can constantly adapt to the focus 

of the analyzer and provide the most relevant contextual information will be critical to the 

analysis of future omics datasets. The visual exploration model of Cytoscape for biological 

network analysis has become a paradigm193: the user could switch between a global overview 

of the entire network structure and the detailed neighborhood view of a gene within a sub-

network representing a protein complex or a pathway; the network statistics can be 

computed using NetworkAnalyzer194, the external link tools such as the Agilent literature 

search plugin can be used to retrieve external annotations of a gene or protein on the fly via 

one click195; the current gene or protein in a network can be expanded using MiMI or 

Metscape for inspecting the interaction pattern35,49; external reference networks or pathways 

can be imported directly from databases such as Reactome or KEGG34,47. The researcher has 

all the tools needed and these functions can be accessed conveniently and contextually. This 

loosely coupled ‘core framework’ + ‘peripheral services’ model is proven its effectiveness for 

visual exploratory analysis applications. 

Nevertheless, network representation is a qualitative approximation of the actual quantitative 

interactions detected in omics data. The construction of a co-expression network from 

omics datasets as proposed by many previous researches165,196–199 all requires a ‘cut-off’ – a 

certain value that indicates the qualification of an interaction edge. If the distribution of 

pairwise distances is very flat or multi-modal, a slight change in cut-off may drastically 

change the number of edges in the network, which would subsequently affect the overall 
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topology of the resultant network clustering of networks modules. Furthermore, the strength 

of pairwise association can be much better reflected using a heatmap view than in a network 

view, in which the pairwise association is usually visualized using the thickness of the edge 

and/or color + transparency, which quickly becomes extremely difficult to interpret with 

massive number stacking edges when the network grows to more than a few hundred nodes 

or edges. One reason of using network to interpret the quantitative molecular interactions 

within an Omics dataset is the lack of suitable heatmap-based visualization methods. With 

CoolMap’s hierarchical view capabilities it is possible to visualize the interactions between 

higher order concepts such as Gene Ontology terms (cellular component, biological process, 

molecular function), molecular pathway modules or clustering results. Ontologies are also 

becoming increasingly important in biological knowledge mining. It helps reorganize the data 

in structured way and in our case, help the users normalize data from different sources 

understand the data across multiple scales, which is especially important for interactive 

exploration of large-scale data. Software programs like protégé can be used to build, edit and 

explore ontology trees. As the data size and complexity continue to grow, barely flatten out 

big data on the base variable level would be difficult for humans to comprehend. Using 

ontologies in CoolMap has demonstrated its superior capability of multi-scale visualization. 

Once an interesting overall intra-high-order-concept is identified, the details can be 

inspected in detail by expanding the corresponding nodes. In this way all the quantitative 

data are preserved and can be accessed at anytime during the analysis. In the future more 

capable ontology loading, remote retrieval, generation and editing functions will be 

incorporated into CoolMap. 

It would also be very beneficial to integrate both the network view (for simplified interaction 

landscape of the omics dataset) and the CoolMap view (for pairwise interaction details at 

various hierarchy levels). Similar applications have been developed for traditional 

heatmaps92,178. We developed one prototype, ‘heatnet’, to illustrate the efficacy of such 

approaches using CoolMap. 

For future development, we envision that the CoolMap model can be implemented for 

general genome data browser. The current genome browser models such as UCSC8 and 

Ensembl11 were developed more than a decade ago. The view can be changed at different 

‘zoom’ which represents aggregation levels along the genomic axis. The UCSC genome 
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browser allows each track to be displayed at several predefined visual aggregations, such as 

‘dense’, ‘pack’ or ‘full’. At the inceptions of genome browsers, the majority of the genome is 

associated with positional annotation data; therefore this linear model has proven to be very 

useful. However, with the accumulation of functional annotation, structural and 

experimental data, the linear representation of the genome is becoming difficult for 

integrated visual exploration. For example, it’s difficult to visualize long distance genomic 

interactions such as long distance upstream enhancers, linkage disequilibrium and 

chromosomal interactions as the target regions may be very far away from each other on the 

linear scale. It is also not easy to visualize quantitative omics data such as RNA-Seq results 

from multiple series or Metabolomics measurements in time series. Furthermore, the current 

genome browser model only allows data ‘tracks’ to be different along the vertical axis. With 

the incoming personal omics era, it’s conceivable that heterogeneous data with different 

provenance would be aggregated into the same view. It would then be possible to juxtapose 

genomics (SNPs), transcriptomics (gene expression), metabolomics (metabolomics 

fingerprints) and proteomics (biomarker proteins) data along the horizontal axis, and 

multiple samples along the vertical axis to obtain an aggregated overview of integrated omics 

datasets. We think the CoolMap model, with flexible concept aggregation along both axes, 

will serve as an excellent starting candidate for future development of omics data browsers. 

Figure 5-1 shows some conceptual benefits the CoolMap model could bring to the genome 

browser. The CoolMap model could also be extended for other usages, such adaptive display 

of geographical information, aggregation of spreadsheets and user interface design, to name 

a few. 

In the end, what’s the future of the development of omics to people’s day-to-day lives? At 

the current development rate, we can only expect that omics will be even more affordable, 

portable, accurate, interpretable and complete. The embedded devices with the development 

of smart tablets may derive a variety of micro measurement devices, that we can wear or 

mount on head, waist, legs or arms 24/7, and generate a time stamped, cloud-synced 

fingerprint of people’s physiological data. Such data could be incorporated as part of the 

electronic health record (EHR) and benefit the diagnostics and prognostics enormously – 

personal, customized medicine will no longer be a dream. The future Omics Visual 

Explorers will be indispensable for life science researchers, medical practitioners, or even 
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‘civilian scientists’ to explore and make best use of such datasets. Such Omics Visual 

Explorers can also potentially serve as great support systems for decision-making – accurate 

and fast diagnostics, along with cost-effective cures will be more accessible to the general 

public. I hope my thesis work, as a whole, will humbly contribute to this on going movement. 
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Figure 5-1 Conceptual extension of next generation genome browser from CoolMap.  

Top: semantic zoom along the x-axis will enable visualization of a certain region in detail while keep the 
surrounding regions in high level overview. Middle: the browser can have ontological structures on both axes to 
make it possible to view in a highly aggregated form. Bottom: long distance interactions can be addressed in the 
aggregated form and interlinked to network or other forms of views.  
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APPENDIX 

CoolMap Implementation Details 

The CoolMap is composed of two major components: the map visualization framework 

along with a variety of user interface widgets, and underlying data structure that contains the 

numeric matrices and the row/column multiple inheritance ontology tree. The CoolMap is 

implemented in Java Development Kit version 6 (JDK6), and some of the statistical analysis 

functions are ported from the R statistical analysis framework (http://www.r-project.org/ ). 

The aim is to replicate the Cytoscape model, with a core visualization canvas and numerous 

interfaces that can be harnessed by third party developers. 

The core concept of CoolMap is to enable aggregation both along the rows and columns of a data matrix. Initially 
the design was focused on only working with numerical values – if a row or column node is represented as a 
group node that contain a number of child nodes, the corresponding cell will be a summarization value (such as 
mean, minimum or maximum). Later on I changed the design of CoolMap enable the data matrix contain 
arbitrary data types, such as strings, hyperlinks, or images.  As long as a matrix of data objects can be aggregated 
into a single object, a custom renderer can be developed to visualize such data objects. Table 4-1 Feature 
comparison of CoolMap with some other Tools 

 R(gplots-

heatmap.2) 

JTreeView MatrixZoom CoolMap 

Interactive No Yes Yes Yes 

User-rearrange 

row/column order 

No No No Yes 

Rendering other 

data-types 

No Yes No Yes 

Rendering other 

than color 

No Yes No Yes 

Annotation overlays Yes No No Yes 

Clustering Yes Yes Yes Under-
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development 

Node 

Expansion/Collapse 

No No Yes Yes 

Multiple Ontology No No No Yes 

Multiple Plot Link No Yes Yes Under-

development 

Extract Sub-portion Programmatically Yes Yes Yes 

Search/Filter Programmatically No No Yes 
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Figure 4-1 illustrates the basic design and workflow of CoolMap. This way the user can have a 

much-condensed view of a very big dataset – for example, instead of inspecting each 

individual genes and individual samples in an experiment, the researcher may look at the 

summary of gene pathways and sample groups. If anything particular of interest is 

discovered, then the researcher may expand the rows and columns for more in-depth view 

of the details. 

 

Basic Data Structure 

There are four core concepts in the CoolMap data structure: 

• The base matrix: an interface of 2D matrix that holds the source matrix data. Source 

data can take any Java Object type. 

• The aggregator: defines methods that aggregate a region in the base matrix (some 

rows and columns combinations, not necessarily consecutive) into a single value. The 

resultant view matrix can hold data objects of a different type from the source type. 

• The view matrix: holds data that will be immediately rendered into view via a 

renderer. The renderer is capable of translating the view object type into arbitrary 

type of graphics. 

• The ontology: holds mappings of labels (nodes) to groups of rows or columns in the 

source matrix data, as well as the hierarchical relationship between these labels. The 

ontology can have arbitrary number of parents as well as children. 

Next let’s explain each of the component in detail: 

Base Matrix: In the traditional heat-map like visualization, once the matrix is loaded into 

view, all rows and columns are one to one mapped to the original dataset, even though they 

can be re-ordered or sorted by a variety of clustering algorithms. The CoolMap’s base matrix 

is an abstract 2D matrix that can hold any type of data, such as Double (numeric), String 

(character), Image or even composite objects or user defined classes. It is defined as an 

interface, which means that the underlying storage of the base matrix does not necessarily 

need to be a matrix form, as long as it complies to the interface definition and returns 
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function values such as getNumberOfRows(), getNumberOfColumns(), getValueAt(int row, 

int column), getRowLabel(int row), getColLabel(int col) etc. An example is to define a sparse 

matrix, and use a hash table to store node to node pairwise interaction data for a network, or 

define a remote ‘base’ matrix, with values being pulled remotely from a server. The 

possibility of coupling the base matrix interface to different data types made it very flexible 

for CoolMap to load a variety of data by only writing new custom base matrix definitions, 

instead of imposing major changes to the software structure. The CoolMap is preloaded with 

base matrix that can handle numeric data (Double, Integer, etc.). Other matrices can be 

easily added later via the plugin interfaces. 

Aggregator: an aggregator is also an interface that defines functions of summarizing groups 

of values in the base matrix into a single value. For example, if the groups of rows for genes 

belong to a certain pathway, and the groups of columns belong to a certain cancer type, the 

summary value can be the mean expression value of all the genes in that pathway, from that 

specific cancer type. There are four possible summarization patterns: 

1. Single cell: an aggregation at [row, column] is returned. 

2. Single row: an aggregation at [row,columns[]] is returned. 

3. Single column: an aggregation at [rows[],column] is returned. 

4. Sub matrix: an aggregation at [rows[], columns[]] is returned. 

The region in the base matrix need not to be continuous, as the array rows[] and columns[] can contain arbitrary 
combinations of row and column indices. The summarized single values are then put together to produce a view 
matrix. The aggregator can produce a view matrix containing a different data type from the base matrix. For 
example, the base matrix can contain numeric values, and the aggregator can transform the base values into 
Boolean (true or false) by a comparing to a threshold. As illustrated in Table 4-1 Feature comparison of CoolMap 
with some other Tools 

 R(gplots-

heatmap.2) 

JTreeView MatrixZoom CoolMap 

Interactive No Yes Yes Yes 

User-rearrange 

row/column order 

No No No Yes 

Rendering other 

data-types 

No Yes No Yes 
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Rendering other 

than color 

No Yes No Yes 

Annotation overlays Yes No No Yes 

Clustering Yes Yes Yes Under-

development 

Node 

Expansion/Collapse 

No No Yes Yes 

Multiple Ontology No No No Yes 

Multiple Plot Link No Yes Yes Under-

development 

Extract Sub-portion Programmatically Yes Yes Yes 

Search/Filter Programmatically No No Yes 
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Figure 4-1, it is also possible to simply execute data transformation (such as log2) using the 

aggregator. This adds a layer of flexibility of visualizing the base data. 

View Matrix: A view matrix is a 2D matrix that simply holds data generated from an 

aggregator. The rows and columns of a view matrix can be customized by the user, using 

both rows and columns from the base matrix and ontology nodes, which are mapped to 

groups of base rows or columns. If the aggregator is simply a pass-through (pass the value 

without modification) and the rows and columns of the view matrix are identical to the base 

matrix, the rendered view matrix will reflect exactly the base matrix. By choosing aggregators 

and row/column nodes combinations, the view matrix can reflect a subset, or an aggregated 

view of the base matrix. The flexible arrangement of the view matrix enables the researchers 

to browse data from a very condensed way, or only focus on regions of focus interest.  

Ontology tree: An Ontology tree holds a multi-tree of nodes that can be mapped to the 

rows or columns of the source data. For example, an Ontology node can be a Gene 

Ontology term/KEGG pathway that contains a number of genes from the base matrix, or 

an intermediate node from the merge result of a hierarchical agglomerative clustering. Each 

node in an Ontology tree can have arbitrary number of parent nodes, and arbitrary number 

child nodes. When the ontology nodes are added into the rows or columns of the view 

matrix, the corresponding cell value is then replaced with the summary value generated by 

the designated aggregator. The most striking difference between the CoolMap’s Ontology 

and other heatmap implementations (such as Eisen’s tree102) is that the CoolMap’s row or 

column annotations are stored in a multi-tree200. In a conventional single tree, such as a 

hierarchical tree or Gene Ontology, each tree-node contains only a single parent, but can 

have multiple children. This single tree does not work when duplicate rows or columns 

occur in the view – for example, the result from a fuzzy clustering or Non-Negative Matrix 

Factorization (NMF) will have ambiguous gene membership assignments, which could 

require some genes be placed more than once in the heatmap; or if the user would like to 

inspect the gene expression heatmap results of two pathways, the pathway may contain 

shared house-keeping genes. In these scenarios, the recursive traversal of trees may fail 

because the multi parent structure may lead to loops, which is not allowed. The 

expansion/collapsing mechanisms of row or column nodes also require careful concern to 

tackle user-interaction conflicts. 
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Auxiliary Functions 

In addition to the basic data structures, some peripheral classes are also developed for a 

variety of CoolMap operation and visualization capabilities. The most important ones are 

CoolMap Controller, Renderer and Annotation Renderer. 

The Controller handles all the operations that alter the view matrix. As described before, the 

layout of the view matrix is determined by its row and column nodes, whenever rows or 

columns in the view matrix are changed (expanded, collapsed, moved or deleted), the view 

matrix will need to be updated accordingly. It would not be very economical to update the 

entire matrix every time using the aggregators as many of the changes happen locally. 

Therefore, the expansion, collapsing or reordering or the view matrix will only trigger local 

changes. When a view matrix is created, the active Ontology nodes are stored in the lists of 

ActiveRowNodes and ActiveColumnNodes. In addition, the expanded row or column tree 

nodes are stored in the ActiveRowTreeNodes and ActiveColTreeNodes. When a node is 

expanded, only nodes in the lowest level (that determine the layout of the view matrix) are 

stored in the active nodes lists (Figure). All other nodes are ‘pushed’ up into a tree branch. 

The following operations can be performed to alter the rows and columns view matrix: 

1. Insert nodes: insert new row or column nodes into the view matrix. 

2. Remove nodes: remove rows or columns from the view matrix. 

3. Expand to child nodes: remove the current node, and insert its immediate child 

nodes in the Ontology tree at the original position. 

4. Expand to base: remove the current node, and replace the node with its base matrix 

row or column labels. 

5. Expand node to all child nodes: remove the current node, and insert all its leaf 

child nodes in the Ontology tree at the original position. 

6. Collapse a node: remove all child nodes of the selected node from the active node 

list, and place this node back to the active node list.  

7. Shift nodes: Shift a region of rows or columns from its original location to a new 

location. Used for the drag and drop operation so the user may rearrange nodes. 

8. Rearrange nodes: Rearrange the all the rows or columns, or a subset of the rows 

and columns with new ordering (such as an optimized row/column order that 
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minimizes the distances between adjacent rows or columns, computed from a 

Matrix seriation algorithm201). 

Whenever these operations are performed, only the regions need to be updated are 

computed using the aggregator; the rest of the unchanged regions are copied over to the new 

view matrix. For example, when the user expands a column node, the other columns are 

copied to the corresponding location in the new view matrix. The sub-region corresponding 

to the newly inserted child nodes is computed, inserted and only the subregion is redrawn. 

Also when the view matrix to be updated is large enough (more than 200 rows / columns), it 

is divided into 4 sub regions and updated using parallel threads. By using these optimizations, 

even updating a view matrix with thousands of rows and columns take very little time (less 

than 1 sec). In our test case of a matrix of (5000 rows by 5000 columns, with 1000 row 

groups and 1000 column groups), the multi-threaded version can speed up the update 

process by 3~4 fold. 

One of the major challenges is how to make it intuitive to handle node operations when 

there are duplicate nodes, since the Ontology tree is a multi-inheritance tree and the rows 

and columns of the view matrix can be arranged very flexibly. The user may get lost if 

multiple copies of the nodes with the same labels are presented without clear indication of 

what the underlying ontologies they are associated with. The solution is to preserve the 

reference to the ‘ontology’ each node is descended from. In this way, multiple occurrences 

of the same node in the matrix view can be differentiated, and therefore prevent collisions in 

collapse operations. For example, if the user displays a matrix view containing all genes from 

MAPK (KEGG:ko04010), Chemokine signaling pathway (KEGG:ko04062) and Apoptosis 

(KEGG:ko04210), there will be three copies of NFKB1(KEGG:k02580) in the view as 

NFKB1 functions in all these three pathways. Each NFKB1 would then be have a reference 

to the parent pathway respectively, and it can be displayed in the row/column node browser 

(discussed later). The ontology tree is still structured as a multi-tree in which each node can 

have multiple parent and child nodes, with one condition that no loops are allowed (any 

node can not trace back to itself). The ontology tree branches in view, resulted from node 

expansion or other tree generation algorithms such as hierarchical clustering, are always 

presented as a single tree. This enables the user to explore any partial branch in an ontology 

tree with ease, and even make comparisons across multiple ontology trees. Once the layout 
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of the view matrix is determined, the view matrix is then passed to the renderer to translate 

from data to graphics. 

Renderer: The render is also written as an interface. A render takes a value in the view 

matrix, and translate it into a graphics object. Similar to the other basic components, the 

renderer can be extended to render any type of data with any type 2D visualization. For 

example, a numeric value can be rendered as a colored rectangle (traditional heatmap), bars, 

circles or even texts and images. The only thing needed to do is to override the 

corresponding abstract render methods. Similar to updating the matrix, the renderer also use 

multiple threads to update large graphics objects if necessary, to ensure performance. 

One distinct feature of the renderer interface is the adaptive rendering. CoolMap allows each 

cell of the view matrix take different render sizes (to be covered later), so that the user may 

investigate regions with more detail while keeping the context in view. The renderer defines 

three methods of rendering: SD, Normal and HD. The SD mode is used for generate 

thumbnails or the view matrix cells are very small, when speed is preferred over quality. The 

normal mode is used when the cells are moderately large, and the HD mode is used when 

the cells are sufficiently large so that more detailed graphics and annotations may be possible 

to be overlaid. In each of these abstract functions, a Graphics2D object, as long with the 

coordinates in the view matrix, row/column label and the dimension of the cell are passed 

for writing the custom renderer. In addition, the renderer can also return an optional 

ToolTip for the underlying value to be displayed in the mouse hover. 

CoolMap comes with two basic renderers, the Double to Color renderer and the Double to 

Bar renderer. The Double to Color renderer is a straightforward implementation of the 

conventional heatmap. The user may determine a color scale (currently a two-color system, 

beginning to end), and the min/max values these two colors are mapped too. All immediate 

values in the view matrix are then interpolated using the color scale and rendered as 

rectangles. The user may also assign colors for under- and over-flows, for values that are 

higher or lower than the min/max values. The color to bar maps double values to bar 

heights in each cell, with the min value of 0 height and max value mapped to the full cell 

height. Other Renders can be written easily by implementing the renderer interface.  
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Annotation Renderer: As a cell in the view matrix can actually reflect a summary of a group 

of values if the row and/or the column node is an ontology node, sometimes it’s necessary 

to have a quick look at the underlying data before expanding the row or column nodes. For 

example, if the row node is a gene pathway, and the column node is a group of samples, the 

base matrix is a table of gene expression profiles, and the summary is the maximum. When 

the researcher sees a high expression value for that group of samples in that pathway, the 

next question would be, which gene-sample actually has the high expression? And what 

about the expression profiles  in the rest of the group? An annotation is the overlay of a 

visualization of the details of the underlying data. Similar to the renderer, it is also defined as 

an interface and has SD, normal and HD renders functions for adaptive rendering. In 

addition, the base matrix elements are also accessible within the render functions, so that 

details of the members can be plotted instead of a single summary value. For example, a box 

plot of the underlying values within two ontology nodes can be plotted as an annotation 

instead of the single value summary (such as the mean value), to reveal additional details 

within the data. It is very easy to extend the interface to write custom annotation renderers.  

Standardized operations: To implement undo/redo automated operations, all operations 

are defined as a subclass of an operation class. For every redo-able operation, a reverse 

operation is defined accordingly (such as expand or collapse a node). Once an operation is 

performed, it is stored in the operations stack and can be reversed accordingly. 

The Visualization Canvas 

With all the underlying models, it is critical to provide an intuitive and flexible interface to 

utilize the exploratory capability of CoolMap. Because of the distinct features (custom 

graphics rendering, multi-tree ontology nodes as rows and columns), nothing off the shelf 

immediately satisfies our needs, although we have tried a variety of libraries such as G the 

graphics library, Java FX, Processing, etc. We eventually developed a custom visualization 

panel to render the view matrix and offer contextual ontology node operations. The display 

panel have high performance, provides the user with some smooth-scrolling experience 

similar to popular browsing software such as the Google Map, with rich interactivity and 

information prompts. After several trials, I adopted a multi-layer design that is both easily 

programmable, and extensible. 
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The root container is a JLayeredPane. The JLayeredPane allows arbitrary number of Swing 

Components to be stacked on top of each other, and thus separate different functional 

components into various layers. Furthermore, each layer can be blended together using layer 

alpha (An alpha value determines the transparency of the pixel), and mask each other’s 

mouse event functions. The user may pan the view, select nodes of interest to show detailed 

or alternative annotations, permute rows or columns, or expand/collpase certain 

row/column nodes. We have implemented the following layers: 

• Base layer: a static background, which can be a uniform color or gradient. 

• CoolMap layer: this layer stores the rendered view matrix (the CoolMap view) using 

a designated renderer, with zoomX and zoomY determine the default width and 

height or each cell respectively. If the visible region of the view matrix is larger than 

the viewport (the dimension of the display panel), only a portion of the view matrix 

plus some buffering region is rendered. When the user scrolls the heatmap, or jumps 

to a different region on the heatmap, the boundary conditions are checked. If the 

current rendered view matrix is insufficient to fill the viewport, a new sub portion of 

the heatmap will be rendered as replacement. This mechanism offers the user a 

smooth scrolling experience with minimal number of re-rendering. 

• Annotation layer: This layer is a container for the aforementioned annotation 

renderer, using brushing (ref) to add context-specific annotations to the base 

visualization. Each annotation is a small visualization of the cell value, which can be 

generated with or without other associated data. Each annotation should return two 

objects: 1) an Image which can be placed on top of the corresponding cell of the 

matrix view image; 2) an Image contains a tooltip. As rendering annotations can be 

more computationally intensive than rendering the view matrix, only the ‘selected’ 

cells are rendered with annotation overlay. So far there are two kinds of annotations: 

1. Sub-render of the base matrix: if the current row or cell is an annotation 

node, the underlying base matrix can be rendered to replace the single 

summary value. The user then could alternate between the summary value 

and the base matrix for the selected nodes. 

2. Bar representation of the cell value: sometimes the color may not be the 

best way to contrast values, especially when the differences of the values are 
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small or due to color insensitivity of the human eye. A bar representation can 

be placed on the selected cells, with the bar height representing the cell value.   

• Mask Layer: The mask layer provides an interface to block certain cells in the view 

matrix with a dark shade. This layer is utilized by the filter widget (will be described 

later) to show only cells that pass certain criteria. 

• Highlight Layer: This layer provides a single method to highlight a certain region in 

the view matrix, to indicate a change just took place (rows/columns were added, 

removed or reordered)  

• Selection Layer: The user may perform standard selection operations on this layer 

to trigger a rectangular selection region, with single mouse click selection, and shift + 

click for area selection. As mentioned before, selection will trigger rendering of 

corresponding annotations, if any annotation renderer is set to be active. The 

selections can also be set by clicking on the row labels and column labels (described 

later), or programmatically. 

• Hover layer: Whenever the mouse cursor is hovered within a heatmap, a hover grid 

is drawn to indicate the current active row – column coordinate. A tool tip is shown 

to display the cell value (the toString() method from the underlying object). If the cell 

is currently selected, a secondary tip will be shown to display the tooltip from the 

corresponding annotation. 

• CoolMap mouse listener layer: Instead of assigning mouse event to individual 

layers, this layer captures all mouse events, such as mouse move, drag, single click, 

double click, etc., and update the coordinate parameters. All layers will utilize the 

parameters to make necessary updates.  

• Grid Layer: Another distinct feature of CoolMap is it allows each cell to have its 

own dimension. This is done via the Grid Layer to remove the mouse event conflict 

between cell resizing and map pan. When the grid layer is activated (Hot Key Alt-C), 

solid lines mark the boundaries of the underlying cells are drawn on top of the other 

CoolMap layers below. The user will then be able to adjust the size of each cell by 

dragging the cell bounds, just like adjusting the dimension of cells in an excel 

spreadsheet. The adjusted cell dimensions will persist when the global zoom is 

changed.  
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• Row/Column Drawer Container: These two layers are containers for additional 

layers (Row/Column Drawer) that contain annotation information that is only 

related to rows or columns, such as the row/column labels and row/column tree. As 

this layer is placed on top of the CoolMap mouse listener layer, the mouse events 

captured on these two layers will override the heatmap mouse events. We have also 

implemented an interface to make it possible to add third party row/column drawers. 

Currently we have: 

1. Row/Column label Drawer: The label drawer displays the row and column 

node names. A row or column can be selected by single mouse left click, or 

shift + left click to select a region of rows or columns. The selected region 

can also be dragged around to rearrange row/column orders.  

2. Row/Column Ontology Tree: The Ontology Tree Panel displays the active 

nodes and their parent nodes. The user may expand ontology nodes to child 

nodes, to base nodes or collapse tree nodes. 

Each layer can be turned on or off independently; further layers could be added in the future 

to extend more functions. 

Widgets          

The CoolMap application is developed using dockable framework with Multiple Document 

Interface (MDI), which means more than one CoolMap instance can be displayed and 

explored at the same time. The dockable framework (Sanaware Javadocking) allows the user 

to arrange functional widgets freely (similar to arranging the floating tool panels in Adobe 

Photoshop). In addition, only widgets of interest can be shown to create a ‘workspace’ for a 

certain analysis. For example, if the user only want to browse a heatmap typed data without 

using any of the ontology nodes, the Ontology related widgets could be hidden from the 

view. This makes the entire user interface highly customizable and flexible. So far the 

following widgets have been developed. Other widgets can be easily added by extending the 

widget interface. 

• Canvas widget: contains all the active CoolMap instances. Each of the CoolMap 

instance can be moved, resized, maximized or minimized. The selected CoolMap 

instance will be assigned as the ‘Active’ CoolMap object. 
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• CoolMap list widget: contains all the loaded CoolMap instances. The user may 

switch the active CoolMap, read additional description, or delete CoolMap(s). 

• Aggregator widget: contains a list of available aggregators. Currently, only numeric 

aggregators are provided, such as Max, Min, Median, Mean, Standard Deviation, 

Variance and Sum. Aggregator will always check with the base matrix to determine 

whether they are compatible. Only compatible aggregators can be assigned. 

• Renderer Widget: contains a list of available renderers. Each renderer also has a 

User Interface panel for configuration of parameters. When a renderer is assigned to 

a CoolMap object, a new instance is created so that each CoolMap instance can have 

its own copy of renderer and set of parameters. 

• Annotation Renderer widget: contains a list of available annotation renderers. 

Similar to the renderer widget, each it ensures render compatibility, and each 

CoolMap instance maintains its own copy of the Annotation Renderer and set of 

parameters. 

• View Matrix Value widget: this widget displays a table for the values in the selected 

region. The values are produced using the ‘toString()’ method of the objects in the 

View Matrix. This widget allows the user to look at the rendered view matrix and its 

underlying values simultaneously. 

• Radar widget: this widget offers an overview of the entire rendered map (thumbnail) 

the user may rapidly jump to regions of interest on the map. The map will also be 

changed whenever the layout, or the renderer of the view matrix was changed. 

• Active Node Searcher widget: this widget lists all the active row/column nodes for 

the current active CoolMap instance. The user may search for a row or column using 

a keyword. The search also supports Java regular expression for fuzzy search. Single 

click on a search result will immediately bring the CoolMap view centered at the 

selected row/column node. 

• Ontology Browser widget: this widget allows the user to search ontology and add 

intermediate nodes of interest to the view. The use may select a loaded Ontology, 

and the table shows the number of parent and child nodes, as well as their labels. 

The user may add a single or multiple entries of ontology nodes at the end of the 

current view matrix, or insert at the current selected region. 
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• Ontology Display widget: this custom developed widget shows the organizational 

relationship between the parent nodes and child nodes. As the CoolMap Ontology is 

a multi-tree instead of a single inheritance tree, the standard JTree cannot be used to 

display the proximity of an Ontology term. The parent, child and siblings or a node 

can be selected respectively, and added to the active CoolMap View. 

• Filter widget: the filter widget provides a mechanism to use the mask layer to 

‘block’ certain nodes out of the view based on certain criteria. The filter is also 

defined as an interface so that a variety of filtering mechanisms can be incorporated. 

Currently CoolMap provides three kinds of filters: filter by value (range), by row 

node label or column node label.  Multiple filters can be applied at the same time, the 

user may also determine whether to use ‘AND’ (all active filtering criteria must be 

satisfied) or ‘OR’ at least one filtering criteria must be satisfied. 

The widget interface can be extended by plugin development similar to the approach 

adopted by Cytoscape. We believe that this opening framework will incorporate community 

effort to continuously improve the CoolMap framework. 

Integration with Cytoscape 

As have mentioned in many literature, linking different views can help the user better 

understand distinct aspects of the underlying data. There have been some previous efforts to 

integrate a heatmap display in Cytoscape, such as ClusterMaker and VistaClara, but these 

implementations lack rich interactivity, and row/column annotation data integration. The 

CoolMap can be bundled as a Cytoscape plugin to provide such two-way link-view functions. 

We have developed a prototype, heatnet, to illustrate the feasibility and effectiveness of using 

such network-Coolmap linked-view  
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