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ABSTRACT

Explanation-Based Auditing

by
Daniel Fabbri

Chair: Kristen LeFevre

Recent U.S. legislation such as the Affordable Care Act, HIPAA and HITECH

outline rules governing the appropriate use of personal health information (PHI).

Unfortunately, current technologies do not meet the security requirements of these

regulations. In particular, while electronic medical records (EMR) systems maintain

detailed audit logs that record each access to PHI, the logs contain too many ac-

cesses for compliance officers to practically monitor, putting PHI at risk. This thesis

presents the explanation-based auditing system, which aims to filter appropriate ac-

cesses from the audit log so compliance officers can focus their efforts on suspicious

behavior. The main observation of the system is that most appropriate accesses

to medical records occur for valid clinical or operational reasons in the process of

treating a patient, while inappropriate accesses do not. This thesis discusses how ex-

planations for accesses (1) capture these clinical and operational reasons, (2) can be

mined directly from the EMR database, (3) can be enhanced by filling-in frequently

missing types of data, and (4) can drastically reduce the auditing burden.
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CHAPTER I

Introduction

1.1 Overview

Database systems increasingly manage volumes of valuable and sensitive informa-

tion. These systems allow employees to query, view and retrieve data from a single

location quickly and efficiently. In certain environments, employees are free to access

and analyze all data stored in the database. However, in other environments, there

are restrictions on who can access what data. Ideally, the database system would

deploy the necessary technology to restrict access when necessary. Unfortunately,

modern technologies cannot always secure the sensitive data while still permitting

normal operations. As a result, limited security systems are deployed, putting the

sensitive data at risk of misuse.

One environment that requires this type of access restriction is the medical do-

main. In recent years, there has been a migration from paper medical records into

their digital form. Electronic medical records (EMR) systems have the potential

to drastically improve patient care by aggregating clinical information, improving

caregiver communication and reducing medical errors. However, because of their

increased accessibility, the security and appropriate use of the personal health in-

formation (PHI) contained in medical records is at greater risk. For example, as

1
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reported in the news, various celebrities and dignitaries from Britney Spears [62] to

Congresswoman Gabrielle Giffords [41] have had their PHI breached. While these

inappropriate accesses were detected and publicized in the news, many likely go

unnoticed.

What is interesting about these breaches is that often these employees are not

malicious but are rather simply curious. As stated by a healthcare employee, “‘It’s

pretty damn common’ for medical professionals to peek at files for unwarranted

reasons” [21]. Moreover, after analyzing many breaches, one compliance officer noted,

“Most of the time, the motivation for the snooping is curiosity or concern about a

coworker, family member or neighbor” [57]. However, simply looking at a patient’s

medical record out of curiosity is not legally allowed.

Recent U.S. legislation such as the Affordable Care Act, the Health Insurance

Portability and Accountability Act (HIPAA) and the Health Information Technol-

ogy for Economic and Clinical Health (HITECH) Act outline rules governing the

appropriate use of personal health information. These laws provide guidance on

how PHI can be used, requirements for monitoring accesses to PHI, and penalties

and fines for breaches. Unfortunately, current technologies fail to meet the security

requirements of the regulations.

One possible way to secure electronic medical records is with fine-grained ac-

cess controls. Fine-grained access controls limit which patients’ medical records an

employee can view. The problem with this technology is that these access control

policies must be specified proactively. However, the medical environment is dynamic,

and it is difficult to predict who will treat a patient. As a result, fine-grained access

controls cannot meet the data needs of employees. Moreover, in emergency situ-

ations, it is irresponsible to prevent access if needed. As a result, EMR systems
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typically do not deploy fine-grained access controls [32]. Instead, once a hospital em-

ployee is authenticated by the EMR system, the employee can access any patient’s

medical record, which makes PHI susceptible to curious behavior.

A slightly more relaxed security mechanism still deploys access controls, but allows

employees to escalate their permissions (or “break-the-glass” [43]) to access restricted

patient data. Before an employee accesses the data, a large warning is displayed, and

if they choose to continue, the escalated accesses are specially logged and monitored.

Unfortunately, studies have show this type of escalation can be overused. Specifically,

because of the dynamics of patient care, employees escalated their permissions to

access approximately 50% of the patients’ medical records in the study, which makes

an escalated access the norm [69].

Instead of these proactive security mechanisms, hospitals maintain audit logs that

record all accesses to PHI. Compliance officers can retrospectively review accesses

in the log to detect breaches. Ideally, this type of security approach would act as a

deterrent to inappropriate behavior because employees are aware that their accesses

are logged and analyzed. (In fact, hospitals are required by law to maintain audit

logs, analyze accesses for inappropriate use and report breaches [23].)

Unfortunately, analyzing the audit log to detect inappropriate accesses presents

many challenges. First, most accesses are appropriate. Therefore, finding the few

inappropriate accesses is similar to finding a needle in a haystack. Second, medical

records systems from large institutions record millions of accesses a week. Therefore

it is infeasible for compliance officers to manually review all accesses in the limited

time that they have budgeted. In practice, compliance officers monitor accesses to

VIPs or patients who have registered a complaint, but no additional monitoring

is provided to the general public. Third, it is not immediately apparent how to
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determine if an access is inappropriate from the information stored in the log, which

makes automating the auditing process difficult.

In summary, current technologies do not provide adequate accountability and

security for EMR systems because of the complexities of the work environment,

where there are no fine-grained access controls, and the raw number of accesses that

occur, which does not scale with manual analyses.

1.2 Objective

Observing the challenges of the medical work environment and the limitations

of current security technologies, the objective of this thesis is to provide compliance

officers the ability to quickly and accurately find inappropriate accesses from the audit

log.

In addition to this main objective, this thesis also addresses a secondary objective.

Recent Health and Human Services proposed rules allow patients to request access

reports detailing all accesses to their medical records. One concern about these re-

ports is that they will create more problems than benefits because patients will not

know many of the employees listed (e.g., the nurses or pharmacists). Thus, the sec-

ondary objective of the thesis is to develop security systems that provide interpretable

results that both compliance officers and patients can comprehend. If this objective

is met, the concerns about the access reports may be mitigated (if the rules are put

in place).

1.3 Approach

This thesis presents the explanation-based auditing system (EBAS) as a means

to quickly and efficiently find inappropriate accesses from audit logs, while providing

interpretable results. The remainder of this thesis will discuss the basic observations
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Figure 1.1: The explanation-based auditing system attempts to find a valid clinical or operational
reason for each access in the audit log. Accesses without a reason are suspicious and
manually reviewed by the compliance officer.

and assumptions of the systems, the mechanisms used and evaluation results using

real hospital data from the University of Michigan Health System.

The main insight of this thesis is that most appropriate accesses to medical records

occur for valid clinical or operational reasons in the process of treating a patient, while

inappropriate accesses do not. Moreover, if a valid reason for access can be deter-

mined, the access is most likely appropriate and does not need to be reviewed by the

compliance officer. This insight is exemplified by the University of Michigan Health

System’s screen saver: “Authorized access is limited to those with the need to know

for purposes of patient care, billing, medical record review, or quality assurance”

[77].

As Figure 1.1 shows, for each audit log entry, the explanation-based auditing

system attempts to find the clinical or operation reason for access. If a valid reason

is found, the access is classified as appropriate and does not need to be analyzed

further. If no reason is found, the access is marked as suspicious and reviewed by

the compliance officer. Intuitively, the EBAS serves as a filter on the audit log so

that compliance officer only must review a subset of the log.
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The challenge for the EBAS is to detect valid reasons for access that are also

interpretable. There are several classes of reasons that logically explain why accesses

occur. The main observation of this research is that EMR databases store information

describing the process by which a patient is treated, which can be used to explain why

accesses occur. For example, the EMR database stores appointment information,

medication orders and radiological findings, all of which can be used as evidence

to infer the reason for an access based on who participated in the appointment,

administered the medication or reviewed the X-ray. The auditing system can use the

EMR database to construct valid reasons for access that can then be used to filter

appropriate accesses from the audit log.

This thesis explores various issues related to determining the reasons for access

(or explanation) and filtering appropriate accesses from the audit log.

• Defining Explanations: The first goal of this thesis is to define an explanation

that captures the reason for access. Conceptually, an explanation is logically

represented as a path connecting the data that are accessed (i.e., the patient’s

medical record) to the employee accessing the data, possibly using data stored

in the EMR database. The thesis discusses various examples and demonstrates

how this model captures the desired semantics of appropriate use (Chapter V).

• Mining Explanations: Before explanations can be used, they must be spec-

ified. In the naive case, the compliance officer would specify all explanations.

However, this manual process is burdensome for large databases. Therefore, this

thesis presents algorithms to automatically mine explanations from the database

(Chapter V). The hypothesis is that the same clinical and operational reasons

for access are common across many employees and patients, and therefore can

be discovered by analyzing frequently occurring connections between employ-
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ees and patients in the database. Variations of a basic mining algorithm are

presented that improve system performance.

• Dealing With Missing Data: Unfortunately, databases are not perfectly cu-

rated and are often missing data. For example, patients make appointments

with doctors, not nurses. Therefore, while a doctor’s access to the patient’s

medical record can be explained using the appointment information, no connec-

tion exists between the nurse and the patient. To improve the auditing system,

Chapter VI presents two algorithms to fill-in missing types of data such as (i)

employee collaborative working relationships and (ii) information describing the

medical diagnoses each department is responsible for treating. With this added

information, the auditing system is able to mine new explanations and filter

more appropriate accesses from the audit log.

• Ordering Accesses By Suspiciousness: The explanation-base auditing sys-

tem is able to filter over 94% of the accesses from a University of Michigan

Health System audit log. Unfortunately, the number of unexplained accesses

is still too large for compliance officers to manually review. Interestingly, most

unexplained accesses originate from general departments in the hospital such

as Central Staffing Nurses, Pharmacy and Radiology. To best utilize the com-

pliance officers’ time, this thesis presents techniques to order the remaining

unexplained accesses by suspiciousness, so that compliance officers can review

the most suspicious accesses first (Chapter VII). The observation here is that

these general departments’ accesses are temporally related to events occurring

around the hospital. For example, a pharmacist’s access is temporally depen-

dent on when a medication order is placed. Using this observation, the EBAS

can order accesses by the likelihood that a department will access a patient’s
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record at a given point in time.

• Developing A Prototype Auditing System: To close-the-loop and verify

that the explanation-based auditing system is accurate and improves compli-

ance officer efficiency, Chapter VIII presents the design and development of a

prototype auditing system. The prototype allows compliance officers to extract

data from a commercial EMR system, load the data into the prototype, create

and mine explanations, and search for inappropriate behavior. The University

of Michigan Health System’s Compliance Office will evaluate the effectiveness

of the prototype with known instances of inappropriate behavior.

• Auditing Ad-Hoc SQL Query Logs: Typically, employees access EMR

databases through restrictive user interfaces that restrict access to a single

patient’s medical record at a time. In these cases, the audit log records the

employee who is accessing the database, the patient’s medical record that is

accessed and the time. However, in certain situations, employees query patient

information using ad-hoc SQL queries. For example, a doctor may pose the

question: How many pediatric patients had asthma over the last year grouped by

month? In this latter case, the database constructs an audit log that stores the

raw SQL query. These SQL audit logs present some challenges for the EBAS

because they do not explicitly record which employees accessed which patients’

records. This thesis presents algorithms to audit SQL logs to determine which

medical records each employee accesses (Chapter IX).

The explanation-based auditing system was evaluated using a de-identified tempo-

ral snapshot of the University of Michigan Health System’s EMR database (Chapter

III). The snapshot was acquired over one year after numerous meetings with Medi-

cal Center Information Technology (MCIT) staff members. The data set contains an
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audit log with over four million accesses by 12K hospital employees (inpatient and

outpatient) to 120K patients. In addition to the audit log, information describing

the process by which a patient was treated was also acquired (e.g., appointment,

medication and diagnosis information). The auditing system was evaluated using

this temporal snapshot. While the specific results presented are derived from the

University of Michigan Health System, the approaches are generally applicable to

other health care institutions.

The explanation-based auditing system makes two simplifying assumptions (Fig-

ure 1.2). First, it addresses the threat posed by a curious employee who only accesses

PHI; it does not address the potential threat posed by a malicious employee who

modifies database information or the threat posed by a malicious outsider who com-

promises the authentication system. Second, it assumes that all appropriate accesses

occur for a valid clinical or operational reason to treat a patient. However, some ap-

propriate accesses occur for alternative reasons such as retrospective research. As

a result, the EBAS can produce false positives and negatives. These assumptions

strike a reasonable balance between addressing a real and meaningful threat to PHI

and addressing the practical aspects of the problem, but if these assumptions do

not hold, the system reverts back to the case where compliance officers still must

manually analyze all accesses.

It is important to note that while the techniques presented in this thesis are

developed and evaluated on medical data, the approaches are applicable to other

environments. Specifically, the methods presented are applicable for domains where

accesses occur for operational reasons, and information describing these operational

reasons are stored in the database. For instance, the explanation-based auditing

system could be used to audit accesses by passport officials who inappropriately
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Figure 1.2: Problem Taxonomy: This thesis considers the problem of explaining the clinical or
operational reason for appropriate accesses in the audit log using data stored in the
EMR database. Inappropriate accesses that occur out of curiosity are not explained,
but reviewed by the compliance officer. The auditing system produces a false positive
if no reason can be found for an appropriate access, while a false negative occurs if a
reason for access is mistakenly found for a curious access.

review the travel history of specific individuals (e.g., Obama’s passport file [46]).

The database information describing which passport officials are assigned to review

each individual’s travel history could be used to mine and explain accesses.

In summary, this thesis presents the explanation-based auditing system, a tool

for compliance officers to quickly and accurately find inappropriate (curious) ac-

cesses from audit logs by filtering appropriate accesses that occur for clinical or

operational reasons. These reasons for access are represented as paths connecting

the employee accessing the patient’s medical record to the patient whose record is ac-

cessed. Moreover, these connections are constructed using information stored in the

EMR database that describes how the patient was treated. Because EMR databases

are often missing important information such as doctor and nurse working relation-

ships, this thesis also presents techniques to fill-in missing data to improve the quality

of the auditing system. For compliance officers to efficiently process the remaining

unexplained accesses, the auditing system orders these accesses by their suspicious-
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ness so the most suspicious accesses are reviewed first. The quality of the auditing

system is measured using data from the University of Michigan Health System.

This thesis describes the main components of the explanation-based auditing sys-

tem, but many other extensions are possible in the future. In particular, this thesis

utilized de-identified data for its analysis. However, if patient privacy can be ensured,

there are opportunities to examine if clinical notes can be used to fill-in additional

types of missing information such as patient referrals. Additionally, as the number

of accesses to EMR systems increase, the auditing system must scale out with its

usage. Future work is needed to analyze how distributed computation architectures

can be leveraged to parallelize the auditing system.



CHAPTER II

Background

This chapter provides an overview of past work in data auditing and security.

2.1 Access Controls

One common mechanism used to secure sensitive data stored in a database are

access controls. In the simplest case, administrators can configure access control

policies such that each user (or employee) can only access specific database tables.

While these types of broadly-specified access control polices are useful in many en-

vironments, they are often too coarse for tables that aggregate large amounts of

diverse data. Instead, fine-grained access controls (or row-level access controls) can

be configured to restrict users to a subset of a table. Databases enforce these access

control policies by rewriting queries as they are executed (e.g., [60, 68]). For ex-

ample, a pediatrician’s query for all patients’ medical records could be rewritten to

return only pediatrics records by appending the condition age < 18 onto the query’s

selection condition. Unfortunately, deploying access controls for many users in large

databases is difficult. As a result, misconfigurations in the access control policies can

occur, allowing users to access data inappropriately.

Instead of specifying access control policies for each employee, role-based access

controls restrict access to employees based on their roles and responsibilities [73].

12
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Role-based access controls have many practical benefits for the medical domain; for

example, secretaries can be restricted to patient contact information, while physicians

can access contact information and clinical notes. However, these roles are often too

general, allowing employees that are not involved in a patient’s care to access medical

information. Team-based access controls provide administrators greater flexibility to

specify access control policies than role-based access controls, which is useful in

collaborative environments like the medical domain where many employees from

different roles treat patients together [36, 76]. However, team-based approaches

are limited because it is often difficult to determine the treatment team a priori.

Moreover, employees are constantly rotating between services, making the task of

updating these teams extremely challenging and error prone.

To better manage dynamic collaborative work environments, context-aware access

controls extend previous approaches by granting and adapting permissions based on

the current context [82]. For example, if the access control system knows a patient

has an outstanding medication order, then the pharmacist can access the patient’s

medical record. Similarly, the context can also include relationships between the

data that are accessed and the user accessing the data [10]. For example, Salazar-

Kish et al. use pre-existing relationships between the user and patient (that are

already stored in the database) to allow access for a patient’s primary care physician,

scheduled provider and referring provider [72]. Interestingly, the authors explore how

long (temporally) after an appointment a user should be able to access a patient’s

record. The results show that the relationship provides minimal additional benefits

after four months have passed. Additionally, Russelo et al. propose an access control

framework for e-Health that adapts access rights to the actual tasks employees have

to fulfill [71].
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The challenge with context-based systems is identifying what information should

be used to make an access control decision. Moreover, in some cases, the informa-

tion needed for the access control decision may be missing from the database at the

time of access (e.g., the medication order is ordered verbally at first, but electron-

ically entered later). As a result, legitimate accesses may be prevented. Chapter

V adapts some of these ideas (i.e., (i) finding relationships between the data and

the user accessing the data, and (ii) using the database context) to model and mine

explanations for access.

Deploying fine-grained access controls in the medical domain is challenging be-

cause of the dynamics of patient care and the associated difficulty of predicting who

will access a patient’s medical record. As a result, any specified access control policy

is likely to prevent access when necessary. Even worse, access controls could unnec-

essarily restrict access in an emergency, potentially resulting in patient harm. To

provide exceptions to access control policies, previous work evaluated if employees

should be able to escalate their permissions (or “break-the-glass” [43]) to access re-

stricted data. In these cases, the EMR database warns the employee about his or

her access, and if the employee chooses to continue, the access is specially logged and

monitored by the compliance office. Unfortunately, in the study, employees escalated

permissions for approximately 50% of the patients’ medical records [69], making an

escalation the norm rather than an exception. As a result of these challenges (i.e.,

many escalations and the difficultly of predicting who will access what data), fine-

grained access controls are irregularly deployed in EMR databases [32]. Instead, once

employees log in and are authenticated, they can access any patient’s medical record.

The explanation-based auditing system is designed for retrospective auditing

rather than proactive access prevention. However, the techniques presented in this
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thesis could be leveraged to enhance fine-grained access control systems. In particu-

lar, the explanation-based auditing system can be modeled as a type of context-based

access control system, where an access is allowed if the system can determine the

clinical or operational reason for access. Moreover, the access control decision can

be improved by filling-in missing types of data (e.g., diagnosis responsibility infor-

mation) as discussed in Chapter VI. One limitation of this application is that the

information needed to determine the reason for access may not be available (i.e.,

stored in the database) at the time of access.

2.2 Audit Logs

To comply with data compliance requirements, most commercial databases have

the ability to maintain audit logs, which record a history of accesses to the database

[47, 60, 79]. Each audit log record typically stores information about who accessed

the data, when it was accessed and what data was accessed. The audit log is stored

in a separate, secure, and tamper-proof database. A compliance officer can review

the audit log to detect inappropriate accesses.

Generally, audit logs are designed for specific levels of abstraction. Application-

level audit logs store information detailing the exact data objects accessed by a

user (e.g., Dr. Dave accessed Alice’s record). With this type of log, it is trivial to

answer the question: Who accessed the sensitive data? In contrast, a recent body

of work has focused on the related problem of SQL log auditing. In this case, logs

are collected at the level of the Database Management System (DBMS), recording

the text of all SQL queries and updates; most commercial DBMSs now support this

form of logging [47, 60, 79]. In contrast to application-level auditing, it is non-trivial

to determine which logged queries accessed particular portions of the database from



16

these raw SQL audit logs (or database-level audit logs), and used these records in

non-trivial ways.

2.3 Auditing SQL Audit Logs

Various models and systems have been proposed to address the problem of au-

diting SQL audit logs [6, 30, 31, 45, 59]. Here, the goal of an auditing system is to

determine which users accessed sensitive data (sensitive data are pre-specified by the

compliance officer). The challenge is then to determine what it means for a query to

“access” sensitive data.

Broadly, there are two approaches used to determine if a SQL query accessed sen-

sitive data. An instance independent auditing approach marks a query as suspicious

of accessing the sensitive data if there exists some database instance in which the

query’s result changes when sensitive data are removed from the database instance

[59]. Alternatively, an instance dependent auditing approach marks a query as suspi-

cious if the query’s result changes when sensitive data are removed from the current

database instance [6]. The current database instance refers to the database state that

existed at the time when the query was originally executed. As a result, databases

that use an instance dependent auditing system need to be able to reconstruct past

database states (e.g., temporal databases [44] or “point-in-time” recover APIs). Ide-

ally, the auditing system would be able to analyze the SQL audit log and construct

an application-level audit log that specifies exactly the data each user accessed.

In some ways, these auditing semantics are similar to those described in prove-

nance research. At a high-level, provenance work attempts to answer questions like:

How was this row produced, what information contributed to this query result, or why

was this row not in a result [13, 16, 19]? To answer these questions, additional flags



17

or bits are often added to the data to track the propagation of information. While

useful, this line of work is not immediately applicable to the auditing problem.

2.4 Inappropriate Access Detection

Anomaly detection systems have been studied extensively in the past to detect

inappropriate access [15]. One line of research considers the user (or employee) as the

unit of suspiciousness and attempts to determine whether or not a user is behaving

in an unexpected way. For EMR systems, Chen et al. study the extent to which

user access patterns deviate from their peers to detect inappropriate use [17, 18].

In contrast, this thesis considers individual accesses as the unit of suspiciousness,

and tries to explain why each access occurs. This approach is more suitable if, for

example, hospital employees are generally well behaved, but in some isolated cases

inappropriately access information (e.g., the Britney Spears case [62]).

Recent work has also considered finding individual inappropriate accesses, and

therefore are the closest related works to this thesis. Boxwala et al. extract patient-

employee relationships (e.g., the user is the patient’s provider), patient characteris-

tics (e.g., the patient’s address and name), and employee characteristics (e.g., the

employee’s address and care unit) that are used as features in classifiers to detect

suspicious accesses [12]. Experiments demonstrate good prediction quality (sensitiv-

ity > 0.75). Interestingly, the output probabilities from these classifiers can be used

to order accesses for review, so compliance officers can analyze the most suspicious

accesses first. This ordering approach is similar to the the work presented in Chapter

VII that orders accesses using temporal relationships between hospital events.

Similarly, other approaches use patient and employee characteristics to detect

inappropriate access. Asaro et al. analyze patient characteristics (e.g., the patient is
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a V.I.P. or recently had a drug test), patient-employee interactions and access session

characteristics (e.g., large numbers of accesses at a time) to create a taxonomy of

indicators designating when a breach may occur [8]. While these related works and

this thesis focuses on data available within the EMR database, other work considers

aggregating external data sources to improve auditing [42].

There are obvious similarities between these related works and the work presented

in this thesis. Specifically, they leverage patient and employee information already

stored in the database to detect inappropriate access. One challenge of deploying

these related systems is that compliance officers must manually engineer features

to be used as input to the classifier, which can be time consuming. To reduce

the burden for compliance officers, Chapter V presents methods to mine frequently

occurring reasons for access from the database so that compliance officers only need

to approve those mined explanations instead of generating them by hand. The

standardized structure of an explanation template (i.e., a path on the schema graph

connecting the patient and user) allows the system to easily incorporate new types of

data and construct interpretable access reports. For example, Chapter VI describes

techniques to fill-in frequent types of missing data that can be easily used to produce

new explanations.

Other auditing systems have attempted to understand and mine the workflows of

organizations to detect inappropriate access [78]. The experience-based access man-

agement system attempts to understand medical record usage under a probabilistic

framework to construct relational access control policies to better predict user data

needs [37, 51, 56]. Using these relationships, for example, the system can determine

the probability with which a patient’s medical record will be accessed by a surgeon

after an emergency room physician accesses it. Similarly, Li et al. characterize work-



19

flows on a per-object basis using hidden Markov models, and if an extracted workflow

deviates from the expected, the access is marked as suspicious [52].

Anomaly detection systems have been studied in a variety of other domains be-

sides electronic medical records access. For example, researchers have developed

techniques for detecting anomalous traffic to web servers [48] and finding irregular-

ities in process system calls [33]. Often these anomaly detection systems aim to

find behavior that deviates from ‘normal’ activity to serve as evidence for malicious

activity. Moreover, rather than requiring administrators to manually specify the

input features for these anomaly detection systems, researchers have proposed tech-

niques to learn anomaly detection parameters from the data [49]. In some sense, the

approaches presented in Chapter V (i.e., mining explanations from data) are simi-

lar to this concept of mining anomaly detection parameters in that the explanation

template can be thought of as a frequently occurring pattern contained within the

data that signifies appropriate access. One major difference between these previous

approaches and this work is that the explanation-based auditing system attempts

to find appropriate rather than inappropriate access behavior. Moreover, these tra-

ditional anomaly detection approaches do not always produce easily interpretable

results (e.g., a numeric value describing the difference from the norm, rather than a

logical boolean statement), which can make it difficult to produce access reports.

Observing these differences, there appears to be two extreme approaches for build-

ing an inappropriate access detection system. One option is to explicitly search for

inappropriate accesses [8, 12]. These systems are designed with the hypothesis that

inappropriate accesses have distinguishable characteristics that make them stand out

from all the other accesses in the audit log. Such a proactive anomaly system natu-

rally fits in an online security infrastructure that attempts to warn users as the access
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occurs, which has some parallels with access controls. Alternatively, the system can

first find all appropriate accesses and then mark the remaining accesses as suspicious

[27, 37, 56]. In some cases, this approach is preferable if the appropriate reasons for

access are easily enumerable. This retrospective security approach naturally fits in

an offline security infrastructure that analyzes accesses after the fact.

2.5 Threats

There are many possible threats to sensitive data. This thesis considers the threat

of a curious user who inappropriately accesses sensitive data without a valid clinical or

operational reason. This threat represents many of the real instances of inappropriate

behavior publicized in the press (e.g., [46, 62]) and ‘snooping’ employees are even

referenced in Health and Human Services regulations [23]. Recent articles specifically

focus on the risk of curious users [21]: “Even though these professionals are trained

in this, for whatever reason – their curiosity or snoopiness, or sometimes something

more malignant – prevails over their ethics and what they know they shouldn’t do.”

Additionally, the research community has also looked at the threat of curious users

and administrators in other environments (sometimes referred to as the ‘honest-but-

curious’ adversary model) [58, 64].

There are other threat models that this thesis does not consider and leaves for

future work. One possible threat is from malicious users who inappropriately ac-

cess sensitive data and attempt to subvert the security system to prevent detection.

Specifically, a malicious user could create fake appointments to cover-up inappropri-

ate accesses. Related work on adversarial data mining addresses a variation of this

problem where a malicious user misrepresents data such that a data mining algorithm

produces incorrect results [22]. Another type of threat is from malicious outsiders
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who attempt to subvert the authentication system to gain admission to the database.

While this threat has been publicized in the press, the authentication problem is out-

side the scope of this work. Instead, we assume a working authentication system that

verifies that each user is who they say they are.

2.6 EMR Meta-Data

EMR databases store a wide range of meta-data that can be used for auditing.

Hospital-designated departments serve as a natural grouping of employees based on

shared roles and responsibilities. The approximately 300 departments at the Uni-

versity of Michigan Health System include Pediatrics, Nursing-Pediatrics, Pharmacy

and Central Staffing Nurses, among others. It is important to note that employees

that frequently work together (e.g., Pediatrics and Nursing-Pediatrics employees)

are often assigned to different groups. Moreover, the task of assigning thousands

of employees to departments is difficult. To automate this process, recent work has

examined predicting an employee’s department or role using EMR audit logs [83].

These roles have the potential to be used in a role-based access control system if

highly accurate [73].

Additionally, EMR databases record ICD-9 diagnosis codes for billing. It is as-

sumed that these codes are correctly entered. However, errors are possible. Recent

work has proposed techniques to analyze medical record text to predict the patient’s

ICD-9 code in order to detect errors [81]. Moreover, patients are often diagnosed

with many related conditions. Patnaik et al. mine temporal sequences of diagnoses

to better understand their correlation and temporal relationships [63].
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2.7 Broader Impact

This thesis presents the explanation-based auditing system as a tool to improve

the accountability and security of electronic medical records. While the methods pre-

sented here are developed and evaluated on medical data in response to health care

legislation [23], these techniques are applicable to other environments. For example,

financial institutions and military departments store sensitive data that are protected

with access controls. However, because of the difficultly in specifying fine-grained ac-

cess control policies, administrators provide greater access to the data than necessary

(often with coarse security designations such as ‘secret’ or ‘top secret’), so employ-

ees can complete their normal business operations. Observing the potential abuse

of these access rights, various pieces of regulation from Sarbanes-Oxley [2] to the

Department of Homeland Security’s Handbook for Safeguarding Sensitive Personally

Identifiable Information [24] outline rules for when employees in financial organiza-

tion or military positions can access sensitive data, respectively. The regulations

often cite an employee’s ‘need to know’ when determining if an access is appropriate

or not (i.e., access is required for the performance of official duties). However, like

in the medical domain, it is difficult to determine if an access occurred for normal

operational reasons or curiosity. Therefore, inappropriate accesses are difficult de-

tect except in the case of large-scale abuse (e.g., the disclosure of government files

to WikiLeaks [75]).

The explanation-based auditing system can serve as a complementary security tool

for a wide range of organizations that retrospectively monitor accesses to sensitive

data because their access control policies are too broadly specified. For example,

financial institutions and government agencies can deploy the system to better ensure
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that employees only access the data they require for their job. The auditing system

is applicable for those domains where accesses occur for operational reasons, and the

reason describing why the access occurred is stored in the database as part of normal

operations. Moreover, because databases are often missing information, some of the

techniques presented in this thesis can be leverage to fill-in data to explain additional

accesses.



CHAPTER III

Data Overview

3.1 Data

We conducted an extensive experimental study using data from the University of

Michigan Health System. The data set contains a de-identified audit log consisting

of 4.5M accesses during a week by 12K employees from 291 departments to 124K

patients’ medical records. The number of distinct user-patient pairs is approximately

500K, which gives a user-patient density of |user−patient pairs||users|×|patients| = 0.0003. We were also

given 291 descriptive codes describing which users worked in which departments such

as Pediatrics and Nursing-Pediatrics. The accesses in the log can be divided into two

groups: first accesses (i.e., accesses where an employee accesses a patient’s medical

record for the first time in the log), and repeat accesses.

The data set also contains evidence describing the reason for access such as diag-

nosis, appointment, visit, and medication information, among others listed in Table

3.1. It is important to note that our data set is a temporal snapshot of the EMR

database from the weeks around the accesses in the audit log. As a result, informa-

tion such as diagnoses and appointments outside this snapshot were not reported for

our study. This directly impacts the number of diagnoses that we were provided (we

have diagnoses for approximately 47% of the patients).

24
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Log Characteristic Value

# Employees 12K

# Departments 291

# Patients 124K

# Patients with Diagnoses 58K

Evidence # Records

Audit Log Accesses 4.5M

Audit Log First Accesses 509K

Appointments 51K

Diagnosis Instances (ICD-9) 248K

Documents 76K

Inpatient Medications 122K

Labs 45K

Outpatient Medications 120K

Radiology Orders 17K

Services/Orders 106K

Visits 3K

Table 3.1: Data Overview

When we started the study, we initially requested the Appointments, Visits, and

Documents tables (sometimes referred to as data set A), in addition to the log. How-

ever, after some preliminary analysis, we discovered that a large proportion of the

unexplained accesses were by users who worked in departments that provide consul-

tation services throughout the hospital (e.g., radiology, pathology, and pharmacy).

Users in these departments often do not have appointments with patients. However,

there is often an explicit request recorded in the database. Therefore, we expanded

the study to also include the Labs, Medications, Diagnosis and Radiology tables (data

set B), which maintain a record for each such event.

3.2 Basic Usage

In this section, we use the access log to provide a basic characterization of

CareWeb usage patterns.

3.2.1 Log Characteristics

First, we examined the general properties of the access log. Figure 3.1 shows the

number of accesses per hour over the week (December 13-19, 2010). Clearly, the
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Figure 3.1: Accesses Per Hour (12/2010)

accesses follow a diurnal pattern, where the number of accesses is low in the early

morning, increases through the day, drops during lunch, increases in the afternoon,

and then declines again in the evening. Additionally, fewer accesses occur on the

weekend (December 18-19) than during the week. Intuitively, the number of accesses

appears to be proportional to the number of people working in the hospital system

at a given point of time.

While the raw number of accesses can be useful, we are also interested in the types

of actions that are executed. Along with each access, CareWeb records a description

of the action that was performed. There are 124 distinct action types. Figure 3.2

shows the eight most frequent actions, which account for over 65% of all accesses.

Unsurprisingly, the most common action is to view a list of a patient’s documents,

and the second most common action is to view a patient’s document (e.g., doctor’s

note).

Finally, we examined the number of actions that read data vs. write data. Figure

3.3 shows that most accesses only read EHR data, while a smaller fraction modify

the data.
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Figure 3.4: Accesses Per User
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Figure 3.5: Patients Per User

3.2.2 User and Patient Characteristics

Due to the different types of jobs within the hospital system, EHR users access

patient records in different ways. For instance, some users repeatedly access the

same patient’s record, while others access many different patients’ records. Similarly,

patients have their medical records accessed in different ways. For some patients,

only their primary care physician accesses their medical record; other patients have

large teams of doctors.

To better understand the types of users and patients in our data set, we analyzed

the log of accesses based on four quantitative measures:

1. Total number of accesses per user (accesses/user)

2. Number of distinct patients accessed per user (patients/user)

3. Total number of accesses to a patient’s medical record (accesses/patient)

4. Number of distinct users that access a patient’s medical record (users/patient)

Figures 3.4, 3.5, 3.6 and 3.7 show the distribution of each measure using a log-log

scale. We find that all four measures have heavily-skewed (”long-tail”) distributions.

While the average user performed 358 accesses (39 distinct patients) during the

week, most users accessed very few records. Similarly, the average patient’s record
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Figure 3.6: Accesses Per Patient
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Figure 3.7: Users Per Patient

Accesses/User Patients/User Accesses/Patient Users/Patient
UMHS Int Med - General Medicine (Physicians) UMHS Int Med - General Medicine (Physicians) Cancer Center Radiology 
UMHS Internal Medicine (Physicians) Central Staffing Resources UMHS Int Med - General Medicine (Physicians) Central Staffing Resources 
Cancer Center Int Med - Outpatient Svcs - Taubman UMHS Internal Medicine (Physicians) Pathology 
Health Information Management  Physician Services Medical Students Operating Rooms/PACU 
UMHS Pediatrics - General Medicine (Physicians) Radiology Health Information Management Cancer Center 
Medical Students Cancer Center Central Staffing Resources Physician Services 
UMHS Family Medicine (Physicians) Health Information Management Radiology Medical Students 

Figure 3.8: Top departments by access behavior. For example, Internal Medicine physicians access
the most medical records and the most unique patients.

was accessed 36 times (4 distinct users), but most patients’ records were accessed

very few times.

For both patients and users, there is a small subset of ”heavy” users and patients.

To further understand who these people are, we examined the users and patients in

the tails of the distribution. For example, for accesses per user, we identified the

top 10% of users (i.e., those with the most accesses). Among these users, the most

frequent department codes are shown in Figure 3.8. Notice that internal medicine

physicians perform the most accesses, and they access the most unique patients. In

general, physicians tend to be among the heaviest users.

We also looked at the top 10% of patients (i.e., those with the most accesses to

their records). Because we were working with de-identified data, we were not able to

examine the patients’ characteristics directly. Instead, we looked at the department

codes of the users who accessed the patients’ records, which gives us a good idea of
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Figure 3.9: Diagnoses Per Patient: Patients on average have three diagnoses, but the distribution
has a long tail.

where the patients were being treated. Figure 3.8 shows the common department

codes of the users who treated this group of patients. Interestingly, and perhaps

unsurprisingly, many of the patients were treated by users from the Cancer Center.

When we look at the patients whose records were accessed by the most distinct users,

we find that the users are from radiology, pathology and the operating room. These

departments make sense for heavily accessed patients, since patients with x-rays,

labs or who are in the operating room are typically treated by teams of hospital

employees.

3.2.3 Diagnosis Characteristics

To provide more insight into the diagnosis information, Figure 3.9 shows that

patients on average have three distinct diagnoses, but the distribution is heavily

skewed (“long-tail”). When a patient has multiple diagnoses, the auditing system

does not know which accesses correspond to each diagnosis. Figure 3.10 shows that

the number of distinct accesses to a patient’s medical record (i.e., distinct patient-

employee pairs in the real audit log) is positively correlated with the number of

distinct diagnoses for the patient (Pearson’s correlation coefficient of 0.74).
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Figure 3.10: Access-Diagnosis Correlation: The number of distinct accesses for a patient is corre-
lated with the number of distinct diagnoses for the patient.



CHAPTER IV

Experimental Methodology

The goal of the explanation-based auditing system is to determine if a given

access occurred for a valid clinical or operational reason to treat a patient. Previous

work (e.g., [17]) focused on finding individual employees who consistently displayed

anomalous behavior across many accesses (e.g., downloading large amounts of patient

data). However, in the medical domain, there is another threat: individual employees

who are generally well-behaved, but who have occasional instances of curiosity that

lead to inappropriate accesses. Thus, our work focuses on discovering individual

inappropriate accesses, rather than finding users who consistently display anomalous

behavior.

We first describe what information is available to the auditing system to determine

if an access is appropriate. An access is stored in the audit log as an audit log

entry that describes the employee who accessed the EMR system, the patient whose

record was accessed, and the time of the access (i.e., Audit Log(employee, patient,

timestamp)). The EMR database additionally stores patient information that can be

used as evidence to infer the reason for an access, such as appointment and medication

information. A reason for access is conceptually represented as a logical expression

using information from an audit log entry and the evidence. If satisfied, then the

32
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access is explained by the reason and is deemed to be appropriate. For example, an

employee accessing a patient’s record because of an appointment can be represented

as a logical condition on the audit log entry and appointment evidence [27].

The auditing system works as follows: The auditing system is given as input

an audit log entry, the evidence and a set of valid reasons that are approved by

the compliance officer. The system outputs whether the access is appropriate or

suspicious. If the access is appropriate, the system also outputs the set of reasons

that explain why it is appropriate.

Ideally, the auditing system would correctly classify each access such that the

suspicious set of accesses contains all inappropriate accesses and no appropriate ac-

cesses. However, in this environment, it is difficult to determine the gold standard

label for an access (i.e., is the access really appropriate or inappropriate) because

of the volume of accesses (4.5M per week), the compliance officer’s limited time to

manually label data and restrictions on the data that researchers can view (we were

only provided with de-identified data and therefore could not manually label the

data ourselves). Instead, for the purpose of evaluating our techniques, we construct

a fake (random) audit log as a proxy for inappropriate (“curious”) behavior. The

fake log is constructed by copying the real audit log, and for each audit log entry,

replacing the employee with a randomly selected employee from the hospital system.

The resulting fake audit log is of equal size and has the same distribution of diag-

noses as the real audit log. This randomness is intended to mimic curious access

patterns. Previous work has used similar approaches of inserting random accesses

to detect inappropriate behavior [17]. We acknowledge that the lack of manually

labeled data is a limitation of this work, but believe the methodology allows for the

effective study of a difficult problem.
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Figure 4.1: Experimental Methodology Overview: First, a fake (random) audit log is created by
copying the real log and replacing each employee with a randomly selected employee.
Second, accesses in the real log are labelled as appropriate and accesses in the fake
(random) log are labelled as inappropriate. Third, the combined test log is given as
input to the auditing system, which then classifies each access as explained or suspicious.
The quality of the auditing system is determined by analyzing the accuracy of this
classification.

Due to the lack of labeled data, the quality of the auditing system’s classification is

measured by analyzing which real and fake accesses can be explained (i.e., labeled as

appropriate) as a proxy for correctly labeling appropriate and inappropriate accesses.

While this methodology requires the assumption that all accesses in the real log are

appropriate and all accesses in the fake log are inappropriate (even though there

may be a few inappropriate accesses in the real log or visa versa), it is a reasonable

strategy given that employees are generally well-behaved.

More formally, this objective can be expressed in terms of recall, precision and

F-measure metrics. The recall for a set of reasons R, evidence E and audit log L is

the fraction of real accesses explained from the entire real log (a recall of 1.0 implies

that all real accesses are explained).

Recall(L,E,R) =
|access ∈ L explained by reasons R using evidence E|

|L|

The precision for a set of reasons R, evidence E, audit log L and fake audit log

F is the fraction of real accesses explained versus real and fake accesses explained (a
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precision of 1.0 implies that no fake access is spuriously explained).

Precision(L, F,E,R) =
|access ∈ L explained by reasons R using evidence E|
|access ∈ L ∪ F explained by reasons R using evidence E|

F-measure takes into account the system’s ability to correctly classify accesses

versus its ability to find all appropriate accesses.

F−Measure(L, F,E,R) = 2× Precision(L, F,E,R)× Recall(L,E,R)

Precision(L, F,E,R) + Recall(L,E,R)

The auditing system’s objective is to select the reasons R to maximize the F-

measure. In our case, a high F-measure is not sufficient to ensure the auditing system

functions properly. That is, if the precision of the system is low, then even though

many real accesses are explained, the utility of the system is minimal. Therefore, we

also add an additional constraint that the precision must be greater than a minimum

threshold (e.g., precision ≥ 0.85).

For a fair analysis, the size of the fake log was explicitly set to the size of the

real log. While the number of inappropriate accesses is smaller than the number of

appropriate accesses in practice, it would be unfair to measure the quality of the

auditing system using a fake log that is significantly smaller than the real log. This

configuration is unfair because the auditing system could simply classify each real

and fake access as appropriate, even though the explanation is meaningless, and still

attain near perfect precision and recall. Instead, with equally sized logs, the auditing

system is forced to produce explanations that correctly explain real accesses without

spuriously explaining fake accesses.



CHAPTER V

Explaining Accesses

5.1 Introduction

In recent years, laws and regulations have imposed a number of new requirements

governing the responsible management of personal and private data. For example, in

the United States, the Health Insurance Portability and Accountability Act (HIPAA)

stipulates that individuals have the right to request an accounting of the disclosures of

their protected health information (PHI) by hospitals and other healthcare providers

(so-called “covered entities”). Recently, the U.S. Department of Health and Human

Services proposed an expansion of this rule, which would require covered entities to

provide individuals with detailed access reports, including the names of all people

who have accessed their electronic PHI.1

Most modern electronic health records systems (EHRs) collect access logs auto-

matically. For example, the University of Michigan Health System has built and

deployed a web-based clinical EHR system called CareWeb2. To support regulatory

compliance, each time an employee accesses a medical record via CareWeb, a record

is added to the access log. While the precise format can vary among EHR systems, it

is typically quite simple. CareWeb access logs contain four main attributes: Times-

1HHS Press Release, May 31, 2011.
http://www.hhs.gov/news/press/2011pres/05/20110531c.html

2http://www.med.umich.edu/mcit/carewebwe/help/overview.html
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Lid Date User Patient 
L100 Mon Jan 03 10:16:57 2010 Nurse Nick Alice 

L116 Mon Jan 03 11:22:43 2010 Dr. Dave Alice 

L127 Mon Jan 03 17:09:03 2010 Radiologist Ron Alice 

L900 Mon Apr 28 14:29:08 2010 Surgeon Sam Alice 

Alice had an appointment with 
Dr. Dave on Jan 3, 2010. 

Figure 5.1: Sample access log and explanation

tamp, User ID, Patient ID, and a coded description of the Action performed (e.g.,

viewed lab reports, or updated history).

One promising approach to providing access reports, and improving overall trans-

parency, is the idea of user-centric auditing. Basically, the idea is to construct a

portal where individual patients can login and view a list of all accesses to their

medical records. When the underlying access logs are of the form described above,

this is relatively straightforward. Unfortunately, the resulting access histories are

often long and hard to analyze. Worse, the list of accesses often includes accesses by

many people the patient does not know. (For example, the patient probably knows

the name of his primary care physician, but he is not likely to recognize the name of

the intake nurse or the radiologist who read his x-ray.)

In this chapter, we observe that in addition to asking who has accessed their

medical records, patients will want to understand why these people accessed their

records.

Example V.1. Consider a patient Alice who is using a user-centric auditing system.

She logs into the patient portal and requests a log of all accesses to her medical

record. The resulting log is shown in Figure 5.1, and includes accesses by four

different hospital employees.

Looking at this log, Alice would like to understand the reason for each of these
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accesses. Ideally, we would like to provide an explanation for each access; if Alice

clicks on a log record, she should be presented with a short snippet of text:

• L100 Nurse Nick works with Dr. Dave, and Alice had an appointment with Dr.

Dave.

• L116 Alice had an appointment with Dr. Dave.

• L127 Radiologist Ron reviewed Alice’s x-rays for Dr. Dave.

• L900 Surgeon Sam performed a surgery for Alice after Dr. Dave referred Alice

to Sam.

One approach to providing explanations would require the user (e.g., the doctor)

to enter a reason each time he accesses a medical record. While some systems may

require this (e.g., [14]), it places a large burden on users.

Another approach would identify the access control rule(s) that allowed access to

the medical record. (For example, users with a clinical appointment may be granted

access to patient records.) Unfortunately, in environments like hospitals, it is very

difficult to specify and maintain detailed access control policies [1]. (For example,

residents and medical students change departments as often as once per week.) Fur-

ther, overly restrictive policies can have disastrous consequences, interfering with

patient care. As a result, it is typical for many more users to be granted access to

a particular medical record than have a legitimate clinical or operational reason for

accessing the record.

Instead, we would like to develop a technique to automatically produce informative

explanations. Of course, there may be accesses for which we are not able to generate

explanations. In these cases, if the access appears suspicious, the patient has the right

to report the access to the hospital compliance office, and to request an investigation.

However, developing a system to generate explanations automatically is useful both
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for the purpose of informing patients how their medical records are being used and

for reducing the burden on the compliance office in handling complaints.

Interestingly, this also suggests a secondary application of explanations for the

purpose of automated misuse detection. Because of the difficulties in expressing and

maintaining access control policies up-front, rather than preventing data access, hos-

pitals often err on the side of maintaining an access log in hopes of detecting misuse

after the fact. Unfortunately, there are few technical tools for proactively detect-

ing misuse from the access log. Common approaches often involve manual analysis

in response to a complaint, or monitoring accesses to the medical records of VIPs

(high-profile people).3 Of course, manual analysis does not scale to the access logs

collected by modern hospitals. (For example, in just one week, the University of

Michigan Health System collected over 4 million access log records via CareWeb.)

On the other hand, if we are able to automatically construct explanations for why

accesses occurred, we can conceivably use this information to reduce the set of ac-

cesses that must be examined to those that are unexplained. While we are not likely

to be able to explain every access, this process significantly reduces the set of records

that are potentially suspicious.

5.1.1 Contributions

In this chapter, we study the novel problem of automatically explaining individual

log records (accesses) in an access log. Our work is inspired by a fundamental

observation: For certain classes of databases, including those used to store EHR

data, there is typically a clear reason for each access. Further, this reason can often be

gleaned from information stored elsewhere in the database. We provide an extensive

empirical study in Section 5.4 using a large access log and EHR data from the

3For example, in 2008, hospital employees inappropriately accessed Britney Spears’ medical record [62]. Also, in
2008, U.S. State Department employees were fired for inappropriately accessing President Obama’s passport file [46].



40

Michigan Health System (CareWeb), which validates our hypothesis. Based in part

on this observation, we make the following important contributions:

• In Section 5.2 we define a novel approach to modeling explanations. Intuitively,

an explanation can be viewed as a connection from the data accessed (e.g., the

Patient), through the database, and back to the user who accessed the data (e.g.,

the User).

• Before explanations can be used, they must be generated or specified. Our empir-

ical study indicates that most accesses can actually be explained using a limited

number of explanation types, or templates. For example, the fact that a patient

had an appointment with the user who accessed his record is a general explanation

type that can explain many different accesses.

• Nonetheless, we would like to remove some of the burden from the administrator

in specifying explanation templates. Thus, in Section 5.3 we propose algorithms

for automatically discovering templates that occur frequently in a given database

(i.e., that explain a large number of accesses).

• Finally, in Section 5.4, we describe an extensive empirical study and experimen-

tal evaluation using data from CareWeb, which contains over 4.5 million accesses

as well as records of appointments, visits, documents produced, and other infor-

mation. Our experiments confirm the hypothesis that there is a reason for most

accesses in our log, and that these accesses can be explained using data located

elsewhere in the database.

5.2 Explaining Accesses

Given an entry in an access log, which describes both the data that was accessed

(e.g., the patient’s medical record) and the user who accessed the data, our goal is
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to construct a simple explanation describing the reason for the access. In addition,

an explanation should satisfy the following basic properties:

• Human Interpretable: The reason why the access occurred should be easily

understood. Among other things, we argue that an explanation should be logical

and boolean (either it explains the access or not). In contrast, systems that provide

probability distributions or other ambiguity are difficult to interpret.

• General: Explanations should take on a general form whereby a single expla-

nation type or template explains many accesses by many users. For example, a

patient having an appointment with the doctor who accesses his medical record

is a common explanation template that can be used to explain many different

accesses in the log.

• Concise: The explanation should be represented concisely.

• Easy to produce/calculate: Given a particular access, it should be easy to

compute the explanation(s) for the access.

5.2.1 Explanation Templates

We begin by formalizing the structure of explanations, which can be used to

describe why individual accesses occurred. We model an explanation based on the

hypothesis that for every legitimate data access, there is a reason for the access, and

in most cases the reason can be gleaned from information stored elsewhere in the

database.

Example V.2. Consider the patients Alice and Bob, who log into the patient portal

of their healthcare provider’s electronic medical records system. To support trans-

parency, the portal allows the patients to view a log of hospital employees who have

accessed their records. Among others, the patients observe that an employee named

Dr. Dave accessed their medical records. While this information may itself be use-
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ful, oftentimes it is important to provide further details, explaining why Dr. Dave

accessed the record. Consider the following possible explanations:

A. Dr. Dave accessed Alice’s medical record because Alice had an appointment

with Dr. Dave on 1/1/2010.

B. Dr. Dave accessed Bob’s medical record because Bob had an appointment with

Dr. Mike on 2/2/10, and Dr. Dave and Dr. Mike work together in the Pediatrics

department.

C. Dr. Dave accessed Alice’s medical record because Dr. Dave previously accessed

Alice’s record.

D. Dr. Dave accessed Alice’s medical record because Alice had an appointment

with someone else.

Intuitively, an explanation should connect the user who accessed the data with

the data itself (i.e., the patient’s medical record). In examples (A-C), notice that

there is a connection from the user who accessed the data (Dr. Dave), through the

data in the database (appointment and department information), back to the data

that was accessed (Alice or Bob’s medical record). In contrast, the final explanation

does not provide a connection between the user and the data. Consequently, the final

explanation does not provide a meaningful description of why Dr. Dave in particular

accessed Alice’s record.

To capture this intuition more formally, we can model the explanation as a path

through the database, beginning and ending in the log. We assume that the database

stores a log of accesses, which records the time of the access, the user who accessed

the data (Log.User) and a reference to the data that was accessed

(Log.Patient). An explanation template is a tool that can be used to explain many



43

individual accesses.

Definition V.3 (Explanation Template). An explanation template is a stylized

query on the database and log.

Consider a query Q of the following form, where T1, ..., Tn are (not necessarily

distinct) tables in the database, and each Ci is an attribute comparison condition of

the form A1θA2 where θ ∈ {<,≤,=,≥, >}.

SELECT Log.Lid, A_1, ..., A_m

FROM Log, T_1, ..., T_n

WHERE C_1 AND ... AND C_j

Let G be a graph, where each attribute in Log, T1, ..., Tn is a node. Let there be

an edge from attribute A1 to A2 in G if (i) A1 and A2 are in the same tuple variable

(i.e., Log, T1, ..., Tn) or (ii) Q imposes a comparison condition between A1 and A2.

Query Q is an explanation template if there is a path P on G that starts at the

data that was accessed (Log.Patient) and terminates at the user who accessed the

data (Log.User), touching at least one attribute from each tuple variable mentioned

in the query, and where no edge is traversed more than once.

Because an explanation template is a query, it can be used to explain why many

different data accesses occurred. We refer to these data-specific descriptions (query

results) as explanation instances. Notice that instances of a particular explanation

template can be easily converted to natural language by providing a parameterized

description string.

Example V.4. Consider the database and log provided in Figure 5.3. Explanations

like (A) from Example V.2 can be derived from the following explanation template:

SELECT L.Lid, L.Patient, L.User, A.Date
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Figure 5.2: Paths through the explanation graph

Patient Date Doctor

Alice 1/1/2010 Dave

Bob 2/2/2010 Mike
(a) Appointments

Doctor Dept.

Mike Pediatrics

Dave Pediatrics
(b) Doctor Info

Lid Date User Patient

L1 1/1/2010 Dave Alice

L2 2/2/2010 Dave Bob
(c) Log

Figure 5.3: Example hospital database and log of accesses

FROM Log L, Appointments A

WHERE L.Patient = A.Patient

AND A.Doctor = L.User

Figure 5.2 (A) shows the graph G associated with this explanation template.

Notice that there is a path P that starts at Log.Patient and terminates at Log.User.

The edges between attributes in the same tuple variable are implicit.

Instances of this explanation template can easily be converted to natural language

using a simple description string: “[L.Patient] had an appointment with [L.User] on



45

[A.Date].” For example, log record L1 can be explained using the description “Alice

had an appointment with Dave on 1/1/2010.”

Explanations like example (B) can be derived from the following explanation

template:

SELECT L.Lid, L.Patient, L.User, A.Doctor,

A.Date, I1.Department

FROM Log L, Appointments A, Doctor_Info I1,

Doctor_Info I2

WHERE L.Patient = A.Patient

AND A.Doctor = I1.Doctor

AND I1.Department = I2.Department

AND I2.Doctor = L.User

Figure 5.2 (B) shows the graph associated with this explanation template. In-

stances of this explanation are easily expressed in natural language: “[L.Patient]

had an appointment with [A.Doctor] on [A.Date], and [L.User] and [A.Doctor] work

together in the [I1.Department] department.”

Notice that a single log record may have multiple explanation instances, generated

from one or more explanation templates. For example, the query implementing

explanation (A) would produce multiple results with Lid = L1 if Alice had multiple

appointments with Dr. Dave. We consider each of these instances to be a valuable

source of information; in practice, when there are multiple explanation instances for

a given log record, we convert each to natural language and rank the explanations

in ascending order of path length.

It is useful to draw a further distinction between what we will call simple expla-
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nation templates and their more complex decorated counterparts.

Definition V.5 (Simple Explanation Template). Consider an explanation template

and its associated graph G and path P . The explanation template is simple if it is

not possible to remove any set of selection condition edges from G and still have a

path P ′ from Log.Patient to Log.User.

Intuitively, a simple explanation provides a minimal connection between the data

and the user who accessed it. Notice that explanation templates (A) and (B) in

Example V.4 are both simple.

At the same time, simple explanations may not always be sufficient to express the

desired semantics. For example, suppose we want to express the idea that an access

occurred because the same user previously accessed the data (e.g., explanation (C)

in Example V.2). A simple explanation template could partially capture the desired

semantics as follows:

SELECT L1.Lid, L1.Patient, L1.User

FROM Log L1, Log L2

WHERE L1.Patient = L2.Patient

AND L2.User = L1.User

However, to express the temporal aspect of the explanation, we need the ad-

ditional selection condition L1.Date > L2.Date. Figure 5.2 (C) shows the graph

associated with this explanation template. As a result, this decorated explanation

always explains a subset of the accesses that are explained by the corresponding

simple explanation.

Definition V.6 (Decorated Explanation Template). A decorated explanation tem-

plate is a simple explanation template with additional selection conditions added.
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Finally, for modern databases with large schemas, the number and complexity

of explanations can be very large, even if we only consider simple explanations.

At the same time, we hypothesize that most explanations only require information

from a few tables in the database. (We verify this hypothesis in Section 5.4.) For

this reason, we may restrict the number of tables that a path can reference to an

administrator-specified value T .

Definition V.7 (Restricted Explanation Template). A restricted simple explanation

template is a simple explanation template that only refers to at most T tables.

5.3 Mining Explanations

Before explanations can be used in any particular database, the appropriate ex-

planation templates must be specified. One approach would require the security

or database administrator to specify explanation templates manually. However, this

can be a tedious process. Worse, due to the complexity of modern database schemas,

a single administrator may not have complete knowledge of all the different reasons

that data accesses occur.

While it is important to keep the administrator in the loop, we argue that the sys-

tem should reduce the administrator’s burden by automatically suggesting templates

from the data. In this section, we describe our approach to mining templates from

a given database. The administrator can then review the suggested set of templates

before applying them.

The goal of the mining algorithms is to find the set of frequent explanation tem-

plates, or those that can be used to explain many accesses. Intuitively, this reduces

the possibility of spurious results. The problem of mining frequent explanation tem-

plates is related to previous work on frequent pattern mining [4]. Indeed, our algo-
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rithms take a bottom-up pruning approach inspired by algorithms like a priori. At

the same time, there are several important differences between the template mining

problem and frequent pattern mining that prevent us from directly applying existing

algorithms: First, we are mining connected paths between a start and end attribute

in the schema. Second, our measure of frequency (support) is different; for explana-

tion templates, frequency is determined by the number of accesses in the log that are

explained by the template, so every path we consider must reference the log. Finally,

the data is stored across multiple tables in the database, rather than in a single large

file of transactions.

5.3.1 Problem Statement

Our goal is to find the set of explanation templates that occur frequently in a

given database instance. We define support to be the number of accesses in the log

that are explained by the template.

An extremely naive approach would enumerate all possible templates of the form

described in Definition V.3. However, the number of possible templates is un-

bounded. Even if we restrict ourselves to simple templates without self-joins, the

number of possible templates is still exponential in terms of the number of attributes

in the schema.

To reduce the space, we make some practical simplifying assumptions: (1) We

only consider simple explanation templates. (2) We only consider equi-joins between

two tables if there exists a key-foreign key relationship, or if another relationship

between two attributes is explicitly provided by the administrator. (3) An attribute

and table can only be used in a self-join if the administrator explicitly allows the

attribute to be used in a self-join. (4) We restrict the path length to M and restrict

the number of tables referenced to T . We leave the task of developing algorithms for
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Algorithm 1 One-Way Template Mining Algorithm

Input: Start attribute (Log.Patient), end attribute (Log.User), support (S), max path length (M),
restricted number of tables referenced (T ), the set of edges from the schema (Edges) and the
database instance (D).

Output: Set of supported explanation templates (up to the max length).
1: Length = 1
2: Paths = {Edges that begin with the start attribute}
3: Explanations = {}
4: while Length ≤ M do
5: New Paths = {}
6: for Path p ∈ Paths do
7: for Edge e ∈ Edges do
8: if areConnected(p, e) then
9: Candidate Path = p.append(e)

10: if isARestrictedSimplePath(Candidate Path) then
11: if Support(Candidate Path, D) ≥ S then
12: New Paths.add(Candidate Path)
13: if isAnExplanation(Candidate Path) then
14: Explanations.add(Candidate Path)
15: Paths = New Paths
16: Length += 1
17: Return Explanations

mining more complex (decorated) explanation templates to future work.

Definition V.8 (Explanation Mining). Given a database D and a log of accesses

L, return those explanation templates of length at most M , that reference at most

T tables and that explain (support) at least s% of the accesses in the log, where

the edges in the path are restricted to attributes from the same tuple variable, key

relationships, specified self-joins, or administrator-specified relationships.

Example V.9. Continuing with Example V.2 and the database in Figure 5.3, tem-

plate (A) has support of 50% (from access L1), and template (B) has support of

100% (from accesses L1 and L2).

5.3.2 One-Way Algorithm

We begin by describing a basic algorithm. (Details are provided in Algorithm

1.) The administrator provides the start attribute Log.Patient (the data that is
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accessed), the end attribute Log.User (the user who accessed the data), the minimum

support S, the maximum length M , the maximum number of tables referenced T ,

the schema, and the database. We restrict the set of edges (denoted as Edges) that

can be used in explanations as described in Section 5.3.1. An initial set of paths of

length one are created by taking the set of edges that begin with the start attribute

Log.Patient. The goal of the algorithm is to find the set of supported explanation

templates, which are those templates that explain at least s% of the accesses.

The algorithm finds the set of supported templates as follows: First, for each path

at the current length, and for each edge, the algorithm tests if the two are connected.

Intuitively, the path and edge are connected if the last attribute in the path is the

same attribute as the first attribute in the edge. Second, for those connected paths

and edges, the path and edge are combined by appending the edge to the right end

of the path. Third, the algorithm checks if this candidate path is a restricted simple

path. Intuitively, the candidate path is simple if it begins at the log and continues

to join with previously untraversed tables until the log is reached (the path traverses

each node at most once and at most two nodes per table). The candidate path is a

restricted simple path if it references no more than T tables (a path that references

a table and a self-join for that table is counted as a single reference). Next, the

candidate path is converted to SQL and evaluated on the database to calculate the

path’s support. We calculate the support using the following query:

SELECT COUNT(DISTINCT Log.Lid)

FROM Log, T_1, ..., T_N

WHERE C

If the support is greater than or equal to S = |Log| × s%, then the path is added

to the set of new paths that will be used in the next iteration of the algorithm.
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Furthermore, if the path has the appropriate start and end attributes, then the path

is also an explanation template, and is marked accordingly. The algorithm repeats

for paths of increasing length until the maximum path length is reached.

Example V.10. Consider the database shown in Figure 5.3; the one-way algo-

rithm works as follows: The input set of edges includes key-foreign key equi-joins

such as {Log.Patient = Appointments.Patient, Appointments.Patient = Log.Patient,

Log.User = Appointments.Doctor, Appointments.Doctor =Log.User} and the

administrator-provided self-join {Doctor Info.Department = Doctor Info2.Department}.

The initial set of paths is: {Log.Patient = Appointments.Patient}. This first path

is converted into SQL and has the selection condition Log.Patient =

Appointments.Patient and is evaluated on the database. The path has support of

100%.

Next, connected edges are appended onto the path. For example, one candi-

date path has the selection condition: Log.Patient = Appointments.Patient AND

Appointments.Doctor

= Log.User. This candidate path is also an explanation since it has the correct start

and end attributes. The explanation has support of 50%.

The one-way algorithm works in a bottom-up manner to find the supported expla-

nation templates. We observe several important properties of the algorithm: First,

the paths must always include an attribute from the Log in order to calculate the

support for the path; if there was no Log attribute, then it would be impossible to

count the number of log entries explained.

Second, the support function is monotonic. If a path P of length ` − 1 does not

have the necessary support (i.e., does not explain ≥ s% of the accesses in the log),

then adding additional edges to the path will never produce an explanation template
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with the necessary support. Thus, the bottom-up algorithm is able to prune certain

paths that are guaranteed not to have the necessary support.

The mining algorithms presented in this section have some similarities to previous

work on pattern mining [4, 5, 39, 74], although existing algorithms do not solve our

problem directly. The main differences between our problem and classical frequent

pattern mining are as follows: First, we are mining connected paths between a

start and end attributes in the schema, where the classical problem mines item sets.

Second, our metric for frequency (support) is determined by the number of accesses

in the log that are explained by the template. Therefore, every path we consider

must reference the log. Additionally, the structure of the patterns that are mined

and where the data is stored differs from the classical problem. For instance, the

templates represent logical expressions that data in the database must satisfy. In

contrast, the classical problem learns relationships between actual values. Lastly,

the data is stored across multiple tables in the database, rather than in a single file

of transactions.

Performance Optimizations

We apply three performance optimizations for the algorithm:

Caching Selection Conditions and Support Values: We observe that mul-

tiple paths may have the same selection conditions, even though the paths traverse

the explanation graph in different orders. Since the order in which the selection con-

ditions are applied does not change the result, these paths are guaranteed to have

the same support (i.e., R.attr = T.attr is equivalent to T.attr = R.attr). Thus,

a simple optimization is to cache the support of each path that has already been

tested. Then, before the next path’s support is calculated, the algorithm checks if

some variation of the path (with an equivalent selection condition) has already been
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tested. If so, the algorithm does not need to evaluate the query on the database and

can use the previously recorded support value instead.

Reducing Result Multiplicity: The multiplicity of data in the database can

impact performance. For example, from Example V.4, if Alice had three appoint-

ments with Dr. Dave, then there would be three instances of explanation (A) for the

same log id. These additional rows in the output make computing the support (i.e.,

the distinct set of log ids) more costly. Therefore, since it does not matter how many

times a given log id is in the result, the performance can be improved by reducing

the number of rows in the result. To remove duplicates from each table, we use a

subquery to extract the distinct set of rows from the table, while only projecting

those attributes needed for the path. For example, the query from Example V.4 can

be rewritten as follows:

SELECT COUNT(DISTINCT L.Lid)

FROM Log L,

(SELECT DISTINCT Patient, Doctor

FROM Appointments) A

WHERE L.Patient = A.Patient

AND A.Doctor = L.User

Skipping Non-Selective Paths: For many (short) paths, the selection condi-

tions are not selective and return most of the log. Computing the support for these

paths wastes time because these non-selective paths typically have sufficient support

and are not pruned. Therefore, the algorithm’s performance can be improved by

passing these non-selective paths directly to the next iteration of the algorithm, in-

stead of calculating their support. We determine if a path is likely to have sufficient

support by asking the database optimizer for the number of log ids it expects to be
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in the result of the query. If the value is greater than the desired support S × c

(where c is a constant like 10), the system skips this path and adds it to the set of

paths to try in the next iteration of the algorithm. In the special case when the path

is also an explanation, the path is not skipped. The constant c is used to account

for the optimizer’s estimation error. Using this optimization, the system trades off

pruning some paths in order to not have to calculate the support of the non-selective

paths. Even in the worst case when the database optimizer significantly errs with its

estimation, the output set of explanation templates does not change because paths

are not discarded; rather, they are tested in the next iteration of the algorithm.

5.3.3 Two-Way Algorithm

Intuitively, the two-way algorithm constructs paths in two directions: from the

start to the end, and from the end to the start. The two-way algorithm is initiated

with the edges that begin with the start attribute and the edges that terminate with

the end attribute. The paths that begin with the start attribute are extended to

the right with connected edges until the end attribute is reached (i.e., the one-way

algorithm), while the paths that terminate with the end attribute are extended to

the left with connected edges until the start attribute is reached. Therefore, an

optimized algorithm would have them meet in the middle.

Bridging Paths

The one-way and two-way algorithms explore all paths that have the desired sup-

port. However, the goal of the algorithms is to find supported explanation templates.

Therefore, by enforcing the constraint that paths must start and end with particular

attributes, we can restrict the set of paths the algorithms must consider. Moreover,

since we have paths extending from the start and end attributes, we can combine,
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Figure 5.4: Bridging paths to create explanations

or bridge, these paths.

Consider the case where the two-way algorithm has executed and produced all

supported paths up to length `. The algorithm can use these paths to easily con-

struct the set of candidate explanation templates up to length 2`− 1 (the candidate

templates are a superset of those templates that have the necessary support). These

candidate templates can be produced by connecting those paths that begin with the

start attribute to those paths that terminate with the end attribute as shown in Fig-

ure 5.4. The remaining paths that do not start or end with one of these attributes

can be ignored.

More concretely, candidate templates of length n (2 ≤ ` < n ≤ 2` − 1) can

be produced by taking paths of length ` that begin with the start attribute and

connecting them to paths of length n− `+ 1 that terminate with the end attribute.

We say the paths are bridged because the algorithm requires that the edges where

the two paths are connected (the bridge edge) are equivalent. As a result, the length

of the combined path is one less than the sum of the individual path lengths. Once

the set of candidate templates is produced, the support for each candidate is tested.

Example V.11. Template (B) from Example V.2 can be created by bridging the

following two paths:
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SELECT COUNT(DISTINCT L.Lid)

FROM Log L, Appointments A, Dept_Info I1,

Dept_Info I2

WHERE L.Patient = A.Patient

AND A.Doctor = I1.Doctor

AND I1.Department = I2.Department

SELECT COUNT(DISTINCT L.Lid)

FROM Log L, Dept_Info I1, Dept_Info I2

WHERE I1.Department = I2.Department

AND I2.Doctor = L.User

Notice that the combined path has the appropriate start and end attributes, and

the condition I1.Department = I2.Department can be used to bridge the paths.

When the length of the desired path is greater than or equal to 2`, the candidates

cannot be constructed from the paths that have been found thus far. While the

algorithm can still use the paths to restrict the ends that the candidate template can

take, the algorithm does not have knowledge about which edges should be included

in the middle of the explanation. Thus, the algorithm must consider all combinations

of edges from the schema to bridge these paths.

Bridging paths is beneficial because it can greatly reduce the space of candidate

templates to test. In general, since the algorithm’s performance is proportional to the

number of candidates that must be tested, bridging improves performance because

the start and end attribute constraints are pushed down in the algorithm. However, if

only short paths are mined, but long explanation templates are desired (i.e., n > 2`),

then the number of candidates exponentially increases with the length. Thus, for
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some length n, it is then no longer beneficial to bridge paths.

5.4 Experimental Evaluation

To test our ideas, we conducted an extensive experimental study using a real

access log and database from the CareWeb system at the University of Michigan

Health System. Our experiments aim to answer the following questions:

• Do explanations (as we described them in Section 5.2.1) exist in real databases?

We find that explanations like those described in Example V.2 occur in the real

hospital database and can explain over 94% of the accesses in the log.

• Can we mine explanation templates efficiently? We measure the performance of

the one-way, two-way and bridged algorithms from Section 5.3 and find they are

able to discover explanation templates automatically and efficiently. Moreover,

the bridging optimization can improve performance in particular cases.

• How effective are the mined explanation templates at correctly classifying future

accesses? We measure the precision and recall of the mined explanations and

find that shorter explanations provide the best precision, but moderate recall.

Longer explanations, including those that use the group information, can be used

to improve recall.

• Is the same set of explanation templates mined over time? We find that the set

of explanation templates discovered by the mining algorithms is relatively stable

across time.

5.4.1 Implementation & Environment

Our system is a Python layer on top of PostgreSQL4. This layer constructs paths

from the schema and executes queries on the database to determine an explanation’s

4http://www.postgresql.org
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Figure 5.5: Frequency of events in the database for all accesses.
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Figure 5.6: Hand-crafted explanations’ recall for all accesses.

support. Clustering was performed with a Java implementation of the graph modu-

larity algorithm. The experiments were executed on a dual core CPU with 4 GB of

RAM, running Red Hat Linux.

5.4.2 Results

Explanations in a Real Data Set

Our first set of experiments tests the fundamental hypothesis that accesses in the

log can be explained using data stored elsewhere in the database.

We began by measuring the proportion of accesses in the log pertaining to a pa-

tient such that the patient had some type of event recorded elsewhere in the database.

In particular, we started by measuring the proportion of patients who had an ap-

pointment (Appt), visit, or document produced (Document). Figure 5.5 shows the
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Figure 5.7: Frequency of events in the database for first accesses.
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Figure 5.8: Hand-crafted explanations’ recall for first accesses.

frequency of these events in the log. (The recall of Appointment would be 1.0 if every

patient whose record was accessed also had an appointment with someone listed in

the database.) As expected, many patients had an appointment with someone or had

a document produced (e.g., a doctor’s note added to the file) by someone. Addition-

ally, a majority of the accesses can be categorized as repeat accesses, meaning that

the same user accessed the same patient’s record for an additional time. When we

combined all these events together, approximately 97% of all accesses corresponded

to a patient who had some type of event in the database. Interestingly, a small per-

centage of the accesses did not correspond to a patient who experienced some type of

event. We suspect that this is largely due to the incomplete data set. For example,

appointments outside of the study’s timeframe were not considered.
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Of course, these events do not constitute explanations since they do not necessarily

connect the patient whose record was accessed to the specific user who accessed the

record. (For example, a patient may have an appointment listed, but it may not be

with the person who accessed her record.) To measure the proportion of accesses

that can be explained using the approach described in Section 5.2.1, we hand-crafted

a simple set of explanation templates, based on common reasons for medical records

to be accessed, that test if the patient: (i) had an appointment with the specific

doctor who accessed the record (Appt w/Dr.), (ii) had a visit with the doctor (Visit

w/Dr.), (iii) had a document produced by the doctor (Doc. w/Dr.), or (iv) the access

was a repeat access.

Figure 5.6 shows the recall for the explanations (i.e., proportion of the log records

explained). While the repeat accesses can still explain a majority of the accesses,

the recall of the other explanations is lower. This result is expected because the

appointments, visits and documents produced typically only reference the primary

doctor in charge of the patient’s care. Therefore, using these basic explanation

templates, we cannot explain why a nurse accesses a medical record. Even with this

lower recall, these explanation templates can still explain 90% of the accesses.

Although repeat accesses make up a majority of the log, it is more challenging

and interesting to explain why a user accesses a record for the first time. To do

this, we analyzed all of the first accesses in the log, where a user accesses a patient’s

medical record for the first time. (Notice that since we only have a subset of the

log, some accesses that are actually repeat accesses appear to be first accesses due

to truncation.)

Figures 5.7 and 5.8 show the recall for the events and explanation templates among

only the first accesses. When combined, the explanation templates for appointments,
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visits, and documents produced explain approximately 11% of first accesses (see the

All w/Dr. bar in the chart). Ideally, we should be able to explain approximately

75% of the first accesses because 75% of the patients have some corresponding event

in the database (see Figure 5.7). For the remaining 25% of the patients, we have no

corresponding event. We attribute this result in large part to the incomplete data

set.

In the next sections, we will show that it is possible to improve recall by adding

missing data, and also by mining additional explanation templates.

Mining Explanations

Our next set of experiments measured the performance of the mining algorithms

presented in Section 5.3. We ran the algorithms on the first accesses from the first

six days of the log, with the combined data sets A and B, and the added group

information (see Section 6.2 for details on how these groups are constructed). Based

on an initial study, we set the support threshold to 1%. (A support threshold of

1% was sufficient to produce all of the explanation templates that we constructed

by hand except one template where a doctor has a visit with a patient, which had a

very small support.) We restricted the size of templates to T = 3 tables. We allowed

self-joins on the Groups.Group id attribute and the department code attribute. The

algorithms utilized the optimizations described in Section 5.3.2. Due to how the

data was extracted, data set B identifies users with a key audit id, and data set A

identifies users with a caregiver id. We used a mapping table to switch from one

identifier to the other. Thus, to deal with the slight difference in how the data was

extracted, we did not count this added mapping table against the number of tables

used.

We evaluated the algorithms based on their performance and their ability to find
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Figure 5.9: Mining performance (Data sets A & B, log days 1-6, T = 3, s = 1%)

the hand-crafted explanation templates we previously constructed. Figure 5.9 shows

the cumulative run time of the various algorithms by path length (the length corre-

sponds to the number of joins in the path). The algorithms mined explanations up

to a length of five when the path included a self-join and the mapping table. Bridge-`

indicates that we used paths up to length ` for bridging. For our experimental setup,

the Bridge-2 algorithm was the most efficient because it pushes the start and end

constraints down in the algorithm. The one-way algorithm was faster than the two-

way algorithm because the two-way algorithm considers more initial edges. Without

the optimizations described in Section 5.3.2, the run time increases by many hours.

Each algorithm produced the same set of explanation templates. Moreover, it

is worth noting that our mining algorithms were able to discover all the supported

hand-crafted explanation templates we described in the chapter such as appoint-

ments with doctors, appointments with users that work in the same department,

and appointments with users that are in the same group.

It is important to note that this chapter is not intended to be a full performance

study. Rather, we intend this as a proof of concept, demonstrating that explanation
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Figure 5.10: Recall for direct explanations.

templates can be mined automatically from a real data set. Therefore, the adminis-

trator’s time can be saved if algorithms can find these explanation templates.

Predictive Power Of Direct Explanations

Next, we evaluated the predictive power of the explanation templates that were

produced by the mining algorithm. To do this, we split the log and other data (data

sets A and B) into two sets (training and testing). Each patient was assigned to

one of the two sets. We then ran the mining algorithm on the training set and

extracted direct explanation templates, where a direct explanation template has a

path of length two. The mined templates included explanations such as the patient

had an appointment with the user, the user administered a medication for the patient

or the decorated template that a user previously accessed a patient’s record. The

mined explanation templates were then evaluated on the testing set. We measured

the precision and recall using the combined real and fake logs.

Figure 5.10 shows the recall for the mined direct explanation templates. When

all access in the testing set are included, the templates can explain approximately

90% of the accesses. However, a large proportion of the accesses are explained with

the repeat access explanation. If we instead look at only first accesses, we find that

only 22% of the accesses are explained. It is important to note that the precision
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Figure 5.11: Mined explanations predictive power for first accesses (Data sets A & B, trained on
days 1-6, tested on day 7)

for these direct explanation templates is 99% because it is unlikely that a randomly

generated access corresponds to a real appointment.

Predictive Power Of Explanations

Using the explanation templates mined from the first six days of accesses from

Section 5.4.2 on data sets A and B, we tested the predictive power of the explanation

templates on the seventh day of accesses using the same fake log that was described

in Section 6.2.2. The goal is to determine if the mined explanation templates can

correctly explain real accesses, while not spuriously explaining fake accesses. Figure

5.11 shows the results for explanations of various lengths, and the results when all

of the explanations are tested together (All) for first accesses.

Explanation templates of length two have the best precision, while the recall is

approximately 34% (42% normalized). These short explanations are like explanation

(A) from Example V.2, where the doctor has an appointment with the patient. The

precision is high for these explanations because it is very unlikely that, for example,

a fake access corresponds to an actual appointment. We believe this is a result of
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the user-patient density being so small.

It is also important to point out that the recall for these length-two explanation

templates is higher when data set A and B are combined compared to when only

data set A is included in Figure 6.4 (the recall increases from 13% to 34% when

analyzing the first accesses for day seven). This change in recall shows that as more

data is added to the database, we can explain additional accesses. With a complete

data set, we argue that we can explain more accesses.

As explanation template paths get longer, the recall increases while the precision

drops. Explanations of length three, which typically combine event information of

two types (e.g., appointments and medications) have a recall of 51% (65% normal-

ized). Explanation templates of length four, which use group information, increase

the recall to 73% (89% when normalized). The precision drops since it is more likely

that the user from a fake access corresponds, for example, to an appointment with

another user that is in the same group. When all the explanations are combined

and tested together, we find the recall and precision only change slightly from the

length-four explanation templates because the longer explanations typically are more

general versions of the shorter explanations. Therefore, the longer explanation tem-

plates explain most of the accesses that the shorter templates explain. For example,

template (B) from Example V.2 explains all those accesses explained by template

(A).

We analyzed the department codes for which we could not explain the largest

number of accesses. The top four departments were: Nursing-Vascular Access Ser-

vice, Anesthesiology, Health Information Management, and Paging & Information

Services. The users in the vascular access service department typically assist with

IVs. Therefore, since our data set does not explicitly record why each nurse treated
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# Explanation Templates

Length Days 1-6 Day 1 Day 3 Day 7 Common Templates

2 11 11 11 12 11

3 241 257 231 268 217

4 25 25 25 27 25

Table 5.1: Number of explanations mined

a patient and these nurses assist many different departments, it makes sense that the

mined explanation templates could not explain their accesses.

For the evaluation, we used group information from any depth in the hierarchy (see

Section 6.2 for details on how these groups are constructed). However, we observe

that not every event type should use the same depth. For example, when only data

set A was used, we had a precision of approximately 93% for depth 1, however when

data set B was included, the precision dropped to 66%. Therefore, group information

at one depth may be sufficient to explain an access with an appointment, but group

information at another depth may be necessary to explain accesses with medication

information to attain a desired level of precision. In the future, we will consider how

to mine decorated explanation templates that restrict the groups that can be used

to better control precision.

Stability of Explanations

Next, we measured the stability of the explanation templates that were mined

over different time periods to determine if there exists a set of consistently occurring

explanation templates. To do this, we ran the mining algorithms on different subsets

of the log: days 1-6, day 1, day 3 and day 7. Table 5.1 shows the number of

explanation templates produced per time period. For our data sets, the number of

explanations that are produced is small enough for an administrator to manually

analyze and approve those semantically correct explanations. Moreover, there is a

set of common explanation templates that occur in every time period. Therefore,
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we believe the explanation templates mined represent generic reasons why medical

records are accessed.

We did observe a small difference in the explanations mined across time periods.

For example, on the seventh day, a twelfth length-two explanation template was

added because there were more accesses corresponding to visits. We found larger

variability in length-three explanations. This variation occurred from those expla-

nation templates that connected two event types. For example, the path through

radiology information to medication information occurred frequently on some days,

but did not occur frequently during others.

5.5 Summary

In this chapter, we outlined the main components of the explanation-based au-

diting system. Many systems, including EHRs, collect access logs. While this in-

formation is sufficient to explain who has accessed a particular piece of data (e.g.,

a patient’s medical record), it is not usually enough to explain why. To address

this problem, we introduced a framework that generates explanations automatically.

Our work is based on the fundamental observation that accesses in specific classes

of databases occur for a reason, and the reason can be inferred from data in the

database. Thus, we model an explanation as a path that connects the data accessed

to the user who accessed it, by way of data elsewhere in the database. Producing

explanations for a large database can be time consuming. Instead, we provided al-

gorithms to automatically mine explanation templates from the data. We evaluated

our system on a real log and data set from the University of Michigan Health System.

Using our model, we can explain over 90% of the accesses with high precision.



CHAPTER VI

Dealing With Missing Data

6.1 Overview

So far we have only considered explanations that can be expressed solely in terms

of the data stored in the database. Unfortunately, real databases are typically not

perfectly curated. Information may be missing from the database, or relationships

may not be recorded. For example, consider a nurse in a hospital who works directly

with a doctor. When a patient has an appointment with the doctor, the appointment

is recorded in the database, and we can use explanations of the type described in

Section V to explain the doctor’s accesses. Unfortunately, appointments are typically

only scheduled with the doctor, not with the nurse. Thus, we cannot explain why

the nurse accessed the patient’s record, even though the access is appropriate.

To explain these types of accesses, we must deal with “missing” data in the

database. One common type of missing data are the relationships between users

of the database. While a database may store information such as the department

each user works in, our evaluation shows that additional information is still needed

to explain accesses. Moreover, as we found in our data set, nurses and doctors are

assigned to different departments. We hypothesize that information used to explain

an access such as an appointment often is stored in the database with a reference

68
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to a single user, but that information can be used to explain why many other users

access the data. Thus, if the database stored relationships among users, additional

accesses could be explained.

Another common type of missing data is information describing the diagnoses

each department is responsible for treating [28]. Specifically, EMR databases store

codes from the International Statistical Classification of Diseases and Related Health

Problems, revision 9 (ICD-9) that describe over 6K diagnoses, diseases and proce-

dures (e.g., acne, breast cancer, encounter of chemotherapy), which are later used for

billing purposes (for conciseness, this thesis uses the term diagnosis to refer to the

ICD-9 diagnoses, diseases and procedures). Our hypothesis is that specific hospital

employees are responsible for treating each diagnosis (i.e., ICD-9 code) and that a

group of employees treat a diagnosis together. Thus, if the database stored this

diagnosis responsibility information, additional accesses could be explained such as:

Dr. Carl accessed Alice’s record because Dr. Carl works in the Oncology Department

and Alice has cancer. The challenge is to determine which employees are responsible

for each diagnosis.

After these types of missing data are added to the database, the mining algorithms

can automatically use the data to discover new explanations. We evaluate if adding

missing data improves the quality of the auditing system. However, it is important

to note that by adding data, the auditing system can potentially produce false pos-

itive explanations, where an access is explained through a spurious connection. We

evaluate the trade-offs of including the missing data at the end of this chapter.
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6.2 Collaborative Groups

A natural method to determine relationships between users of a database is to

analyze user access patterns [17, 56]. In general, users who work together often

access the same data. Using the log of accesses, we can automatically discover

collaborative groups of users who access the same data often and use these groups

to explain more accesses. For example, an explanation for why the nurse accessed

the patient’s medical record could be described as follows: the nurse accessed the

patient’s medical record because the nurse works with the doctor and the doctor had

an appointment with the patient.

Next, we outline one possible approach to construct collaborative groups that

we found to be effective for our data set. However, we note that there has been

extensive work on clustering [34, 80], and alternative approaches are possible. In

general though, we treat these algorithms as a black box that produces a set of

relationships between users of the database. Once this data is plugged into the

database, our explanation mining algorithms can incorporate the information to find

additional supported templates.

6.2.1 Extracting Collaborative Groups

Given an access log, we can model the relationships between database users using

a graphical structure. We use a method similar to that presented by Chen et al. [17].

Let a node in the graph represent a user. An edge exists between two users if the

users access the same data. We assign weights to the edges to signify the strength

of the users’ relationship. To do this for a log of accesses that occur between some

start and end time that has m patients and n users, we construct an m× n matrix

A. The index A[i, j] represents the inverse of the number of users (including user j)
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that accessed patient i’s record. More formally, if user j does not access i’s record,

then A[i, j] = 0, else:

A[i, j] =
1

# users who accessed patient i′s record

The weight of an edge between user u1 and user u2 can be found in W [u1, u2]

where W = ATA. Intuitively, W [u1, u2] represents the similarity of two users’ access

patterns, relative to how often a particular record is accessed. Our current approach

does not adjust the weight depending on the number of times a user accesses a specific

record, but rather it only considers if a user accesses the record. A node’s weight is

defined as the sum of the connected edges’ weights.

Given the graph structure, we can directly apply weighted graph clustering al-

gorithms. Specifically, we use an algorithm that attempts to maximize the graph

modularity measure [61]. Intuitively, optimizing for the graph modularity measure

attempts to maximize the connections (and weights) for nodes within a cluster and

minimize the connections between nodes that reside in different clusters. The al-

gorithm is also parameter-free in the sense that it selects the number of clusters

automatically.

After running the clustering algorithm once, the algorithm outputs a set of clusters

and an assignment of users to clusters. We can recursively apply the clustering

algorithm on each cluster to produce a hierarchical clustering. Intuitively, clusters

produced at the lower levels of the hierarchy will be more connected than clusters

produced at higher levels. In Section 6.2.2 we show how this affects the precision

and recall of explanations.

Example VI.1. Consider the log of accesses in Figure 6.1 that lists which users

have accessed which patient’s medical records. From the log, we can construct the
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Patient User Ids
A 0, 1, 2
B 0, 2
C 1, 2
D 2, 3
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Figure 6.1: (i) Example log of accesses (per patient), and (ii) the associated graphical representation
with clustering.

matrix A. For example,

A[patient A, user 0] = 1
3

since three users accessed patient A’s record. After evalu-

ating W = ATA, we find the edge weights that are labeled on the graphical repre-

sentation. After running the clustering algorithm, users 0, 1 and 2 are assigned to

the same cluster.

After clustering, the table Groups(Group Depth, Group id, User) is added to the

database. By applying a self-join on this table, the mining algorithms can use these

groups to explain additional accesses.

Example VI.2. Nurse Nick’s access of Alice’s record in Figure 5.1 occurred because

Nick works with Dr. Dave, and Dr. Dave had an appointment with Alice. The

corresponding explanation template is expressed as follows:

SELECT L.Lid,L.Patient,L.User,A.Date,G1.User

FROM Log L, Appointments A,

Groups G1, Groups G2

WHERE L.Patient = A.Patient

AND A.Doctor = G1.User

AND G1.Group_id = G2.Group_id

AND G2.User = L.User
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Figure 6.2: Collaborative Group I (Cancer Center)
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Figure 6.3: Collaborative Group II (Psychiatric Care)

6.2.2 Results

When a patient has an appointment, the appointment is scheduled with the doc-

tor. However, the nurses who work with the doctor also typically access the patient’s

medical record. For this reason, we could only explain 11% of the first accesses, even

though 75% of these patients have some associated event (e.g., an appointment with

someone). To improve recall, we applied the algorithm described in Section 6.2.1 to

cluster users who access similar medical records using the first six days of accesses

in the log, and we added these collaborative groups to the database.

Since we were working with de-identified data, it was impossible to systematically

verify the correctness of the resulting groups. However, a manual inspection of
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Figure 6.4: Group predictive power for first accesses (Data set A). Collaborative groups were trained
using the first 6 days of the log; precision and recall were tested using the seventh day.

the groups suggests that the process was successful. For example, we studied the

department codes present from the users in each group. Figures 6.2 and 6.3 show the

department codes present in two of the 33 top-level groups. The first group clearly

contains users who work in the Cancer Center, and the second group contains users

who work in psychiatric care.

Interestingly, department codes themselves do not directly coincide with collab-

orative groups. For example, the Medical Students department code appears in

the psychiatric care collaborative group. This makes sense because certain medical

students were rotating through psychiatric care during the week when our log was

collected, and they accessed the associated patients’ medical records. However, med-

ical students change rotations on a regular basis. This indicates that it would be

incorrect to consider all medical students as their own collaborative group. It also

indicates that we must update the collaborative groups from time to time in order

to capture dynamic collaboration patterns.

Our goal in extracting collaborative groups is to improve explanation recall (i.e.,
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the number of accesses that can be explained). As a baseline, we could assign all

users to a single group; doing this, we are able to explain the 75% of first accesses

where the patient has an event (see Figure 5.7). However, this approach has the

consequence of potentially providing spurious false positive explanations if two users

are not actually part of a collaborative group.

To measure the trade-off between adding collaborative groups to improve recall

and introducing false positives, we performed a simple experiment. We constructed a

fake log that contains the same number of accesses as the real log. We generated each

access in the fake log by selecting a user and a patient uniformly at random from the

set of users and patients in the database. (Because the user-patient density in the

log is so low, it is unlikely that we will generate many fake accesses that “look” real.)

We then combined the real and fake logs, and evaluated the explanation templates

on the combined log.

We define recall to be the proportion of real accesses returned by an explanation

template from the set of all real accesses (Recall = |Real Accesses Explained|
|Real Log| ). We de-

fine precision to be the proportion of real accesses that are in the set of all accesses

returned (Precision = |Real Accesses Explained|
|Real+Fake Accesses Explained|). The normalized recall is the pro-

portion of real accesses returned by an explanation template from the set of accesses

we have information on

(Normalized Recall = |Real Accesses Explained|
|Real Accesses With Events|). The normalized recall takes into

account the fact we have a partial data set. In an ideal world, our explanation

templates would observe precision and recall values close to 1.0.

We ended up with an 8-level hierarchy of collaborative groups, and we created the

Groups table as described in Section 6.2.1. Using hand-crafted explanation templates

that incorporate the groups (e.g., Example VI.2), we measured the precision, recall
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and normalized recall. Figure 6.4 shows the results for the groups at different levels of

the hierarchy, measured using the first accesses from the seventh day of the log. Depth

0 refers to the naive approach of placing every user in a single group. Additionally,

we included the hand-crafted explanation template that captures the idea that a user

accesses a medical record because another user with the same department code has

an appointment, visit or produced a document with the patient (e.g., explanation

(B) from Example V.2).

As expected, the top-level groups in the hierarchy (depths 0 and 1) result in higher

recall, but lower precision. On the seventh day, the depth 0 group explains 81% of

the first accesses. We also found that explanations based on collaborative groups

outperformed explanations based on department codes, because users from different

departments (e.g., Pediatrics and Nursing-Pediatrics) often work together.

In practice, depth 1 collaborative groups appear to strike a reasonable balance of

high precision (>90%) and improved recall. For day seven in the log, if we consider

explanations based on appointments, visits, documents produced, and repeat accesses

(e.g., Figure 5.6), and we also include collaborative groups at depth 1, we are able

to explain over 94% of all accesses.

6.3 Diagnosis Responsibility Information

Another common type of missing data is information describing the diagnoses

each department is responsible for treating. EMR databases record ICD-9 codes

for billing purposes that detail each patient’s diagnoses. However, this information

currently cannot be used to explain why accesses occur. Our hypothesis is that

specific hospital employees are responsible for treating a diagnosis. Moreover, instead

of acting independently, employees treat patients collaboratively. We leverage these
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observations to explain why accesses to medical records occur. That is, if the auditing

system is confident that an employee is responsible for treating a diagnosis, then

the associated accesses are appropriate. For example, consider the patient Alice

who requires chemotherapy, and Dr. Carl who works in the Hematology/Oncology

(Hem/Onc) Department. The auditing system can explain why Dr. Carl accessed

Alice’s medical record: Dr. Carl accessed Alice’s medical record because Hem/Onc

employees are responsible for chemotherapy patients.

The challenge is then to determine which employees are responsible for each di-

agnosis and to quantify the confidence in this decision. The first part of this section

examines this problem when departments treat a diagnosis, and the second part

considers clustering similarly treated diagnoses.

6.3.1 Method

Given a diagnosis, the objective is to determine the set of employees that are

responsible for treating it. While it is possible to determine, at the granularity of

individual employees, who is responsible for a diagnosis, we observe several limita-

tions with this fine granularity. First, many employees treat the same diagnosis. For

example, another doctor in the Hem/Onc Department could also adequately treat

Alice. Second, hospitals typically schedule employees in shifts and rotations, where

different employees are responsible for the same patients at different times. There-

fore, analyzing treatment behavior at the granularity of individual employees suffers

from noise.

Instead, we determine diagnosis responsibility information at the granularity of

hospital-designated departments. Intuitively, these departments serve as a grouping

of employees with similar responsibilities. Moreover, we can assume these groupings

are relatively accurate since EMR administrators manage them. Interestingly, the
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specificity of the diagnoses a department treats varies greatly. In some cases, like

the Hem/Onc Department, employees are responsible for specific types of diagnoses.

In contrast, departments such as the Central Staffing Department (which contains

nurses who rotate throughout the hospital based on need) treat a wide range of

diagnoses. Hospital-designated departments are limited because they cannot be used

to detect fine-grained inappropriate behavior such as when one employee from a

department should be able to access a patient’s record while another employee in the

same department should not. However, given that employees in the same department

often speak about patients during rounds, this level of abstraction seems to be a

reasonable compromise between the typical flow of information in a hospital and

the expressivity of security policies. While previous work has used access patterns to

construct collaborative groups to more accurately capture working relationships [17],

these hospital-designated departments provide a natural starting point for defining

employee groups that are interpretable and effective.

The objective can then be restated as: Given a diagnosis, find the set of depart-

ments that are responsible for treating it. A simple metric is the likelihood that an

employee from a department accesses the medical records of patients with the given

diagnosis. The intuition is that if a department is responsible for a diagnosis, then it

is highly likely that someone from the department will access the associated patients’

records. For example, if we consider a chemotherapy patient, it is more likely that

the Hem/Onc Department will access the patient’s record than the Dermatology

Department.

Definition VI.3 (Access Probability). The access probability for a diagnosis c and

a department d is defined as the probability that an employee in department d will

access a patient’s medical record, given that the patient has diagnosis c:
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AP (Department d|Diagnosis c) =
|Patients with diagnosis c accessed by department d |

|Patients with diagnosis c|

One might consider using the access probability alone to conclude that a depart-

ment d is responsible for diagnosis c. (I.e., if the access probability is greater than

a given threshold, the auditing system would conclude that all accesses by employ-

ees of department d to the records of patients having diagnosis c are appropriate.)

However, this ignores an important problem: accesses by employees in general depart-

ments (e.g., Central Staffing) would nearly always be deemed appropriate because

employees in these departments are involved in broad aspects of patient care. While

it is likely that someone from Central Staffing accesses each chemotherapy patient’s

record, it would be a mistake to conclude that Central Staffing is responsible for

treating chemotherapy patients.

Observing these limitations, an additional metric is required to differentiate auxil-

iary accesses from accesses of employees that are responsible for treating a diagnosis.

To this end, the treatment probability measures how likely it is that a patient has a

specific diagnosis when employees from a given department access his medical record.

The basic assumption here is that departments responsible for a diagnosis will have

higher treatment probabilities because these departments treat a smaller and more

narrow set of diagnoses than auxiliary departments (e.g., Hem/Onc employees treat

a smaller set of diagnoses than Central Staffing employees).

Definition VI.4 (Treatment Probability). The treatment probability for a diagnosis

c and department d is defined as the probability that an employee in department d

is accessing a patient’s medical record to treat diagnosis c:
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TP (Diagnosis c|Department d) =
|Patients with diagnosis c accessed by department d |

|Patients accessed by department d|

A higher treatment probability indicates that the department is responsible for

the diagnosis. For example, the treatment probability for the Hem/Onc Department

to access a chemotherapy patient’s medical record is much higher than the Cen-

tral Staffing Department, even though Central Staffing employees frequently access

chemotherapy patients.

The auditing system combines the probabilities to determine if a department is

responsible for a diagnosis. Specifically if the access and treatment probabilities

are above a threshold, the department is responsible for the diagnosis. Here, a

responsible department implies that the department is specifically tasked to treat the

diagnosis. It is important to note that while general diagnoses (e.g., hypertension)

are treated throughout the hospital, they are often not the responsibility of specific

departments.

Ideally, a single pair of thresholds could be set to determine the responsible de-

partments for all diagnoses. However, because the probabilities for each diagno-

sis have their own means and variances, responsibility information can be missed.

For example, given TP (Chemotherapy | Hem/Onc) = 0.12, TP (Chemotherapy

| Central Staffing) = 0.05, and TP (Strep Throat| Pediatrics) = 0.01, selecting a

single threshold such that the Hem/Onc Department, but not Central Staffing, is re-

sponsible for chemotherapy, while the Pediatrics Department is responsible for strep

throat, is not possible. Instead, the probabilities are normalized (denoted APn and

TPn) to a mean of zero and unit variance. 1 Thresholding the normalized access and

treatment probabilities allows the auditing system to find responsible departments
1The access probability is normalized as follows: Let Vc = {AP (d1|c), . . . , AP (dN |c)}, m = mean(Vc), std =

stdev(Vc), then Normalized(Vc) = {(AP (d1|c)−m)/std, . . . , (AP (dN |c)−m)/std}.
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across all diagnoses with a single pair of thresholds. Moreover, thresholding the nor-

malized probabilities provides for a relative comparison between the departments,

so that responsible departments can be found even if the probabilities are small. As

a result, this methodology finds responsible departments that have relatively larger

access and treatment probabilities than other departments in the hospital.

More formally, responsibility is defined as follows:

Definition VI.5 (Responsibility). Given a diagnosis c, department d is responsible

for the diagnosis if both of the following are true:

• The department frequently treats the diagnosis: APn(d | c) ≥ s

• The department is directly involved in the diagnosis’ treatment: TPn(c | d) ≥ t

Where s and t are thresholds specified by the compliance officer.

Recall that the explanation-based auditing system is provided with a set of rea-

sons for access as input. For our purposes, the set of reasons that are input to the

auditing system include departmental responsibility information and direct explana-

tions from the EMR database (e.g., patient appointments, visits, medications, etc.)

[29]. Alternative clinical and operational reasons are possible and we plan to study

them in future work.

Definition VI.6 (Reasons For Access). Consider an audit log entry describing the

employee that accessed the medical record and the patient whose record was accessed.

The patient is diagnosed with a set of diagnoses C. The EMR database also stores

direct explanations using appointment, visit and medication information, among

others. The access is appropriate if one of the following is true:

• The employee is assigned to a department that is responsible for treating one of the

patient’s diagnoses.
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Figure 6.5: Access patterns for the diagnoses chemotherapy and follow-up chemotherapy are highly
correlated compared to the access patterns for acne. The most likely department to
access chemotherapy patients is the Cancer Center, while the most likely department
for acne patients is Dermatology.

• The EMR database stores direct explanations describing the reason for access.

6.3.2 Overfitting Diagnoses

As described above, the auditing system attempts to determine which departments

are responsible for a given diagnosis. However, in many cases, multiple diagnoses

(with unique ICD-9 codes) require the same or similar treatment. For example,

“encounter for antineoplastic chemotherapy” and “follow-up examination following

chemotherapy” (with ICD-9 codes V58.11 and V67.2, respectively) require similar

treatments. Due to these similarities, the auditing system can potentially overfit the

responsibility information.

Our observation is that if diagnoses with similar treatments are clustered, and the

access and treatment probabilities are calculated using all diagnoses in the cluster,

then the resulting responsibility information is more representative of actual clinical
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processes. More formally, we construct diagnosis clusters in the following manner:

Let the patient vector Vp be a boolean vector of length N , where N is the number

of departments. Index i is set to 1 (i.e., Vp[i] = 1) if an employee from department

i accessed patient p’s medical record, and 0 otherwise. A diagnosis vector Vc is the

average of all patient vectors where the patient has diagnosis c. The resulting values

represent the access probabilities for each department. We say two diagnoses ci and cj

are treated similarly if their vectors’ Pearson’s correlation coefficient is greater than a

provided threshold. More formally, two diagnoses are clustered if corr(Vci , Vcj) ≥ v,

where v = 1.0 implies no clustering and smaller values of v increase the number of

diagnoses clustered. As Figure 6.5 shows, chemotherapy and follow-up chemotherapy

have highly correlated treatments (Pearson’s correlation coefficient of 0.97) compared

to acne.

6.3.3 Results & Discussion

For the evaluation, we divide the patients for which we have diagnoses into two

sets: a training set and a testing set. The training set and testing set each

contain approximately 29K patients and 200K real and fake first accesses to these

patients’ medical records. The access and treatment probabilities are calculated using

only real first accesses for patients in the training set to determine the responsible

departments. We only consider diagnoses that occur at least 30 times. The reasons

for access are then evaluated on real and fake first accesses for patients in the testing

set to calculate the recall, precision and F-measure.

The first question we aim to answer is whether the auditing system produces se-

mantically correct responsibility information for a given diagnosis. Table 6.1 shows

the system’s output for selected diagnoses and departments. For example, the de-

partments that are likely to treat patients who require a kidney transplant are the
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Chemotherapy Kidney Transplant
Department APN (AP ) TPn (TP ) Department APn (AP ) TPn (TP )
Cancer Center 9.19 (0.91) 1.00 (0.12) Transplant 8.14 (0.56) 5.61 (0.20)
Pharmacy 6.52 (0.66) 1.38 (0.16) Nephrology 6.21 (0.43) 6.22 (0.23)
Central Staff. 5.54 (0.56) 0.24 (0.06) Pharmacy 2.78 (0.21) 0.20 (0.02)
Hem/Onc 5.54 (0.56) 2.07 (0.21) Dialysis 1.11 (0.10) 2.91 (0.11)
Nursing-Hem/Onc 2.98 (0.32) 2.20 (0.23) Nursing-Renal 1.02 (0.09) 2.04 (0.08)

Table 6.1: Normalized access and treatment probabilities for selected departments and diagnoses.
The probabilities are normalized to a zero mean and unit variance so that values are
comparable across diagnoses.

Strep Throat
Department APN (AP ) TPn (TP )
Pediatrics 14.04 (0.64) 6.25 (0.019)
Central Staff. 4.41 (0.21) 0.94 (0.004)
Health Cntr 3.17 (0.11) 2.69 (0.009)
Nursing-ER 1.30 (0.07) 1.75 (0.006)
Family Med. 0.99 (0.05) 0.27 (0.002)

Table 6.2: Normalized access and treatment probabilities (continued).

Nephrology Department and Transplant Center. The Cancer Center and Hem/Onc

Department are responsible for chemotherapy patients. In contrast, even though the

Central Staffing Department accesses a majority of chemotherapy patients’ records,

the normalized treatment probability is low because the department treats a wide

range of diagnoses.

Next, we analyze the impact of the access and treatment probability thresholds on

precision and recall for a few selected diagnoses. Figure 6.7 shows the results when

accesses are explained using the responsibility information for a given diagnosis, with-

out direct explanations, as the normalized treatment probability threshold is varied

and the normalized access probability threshold is held constant. For these figures,

recall for a single diagnosis is 1.0 when all accesses for patients with the diagnosis are

explained, and recall increases as more departments are determined to be responsible

for a diagnosis. As expected, higher treatment thresholds produce better precision

at the cost of lower recall. The precision drops to 60% for low treatment probability

thresholds, but plateaus because of the minimum access probability required (i.e.,

Figure 6.7). Interestingly, general diagnoses such as hypertension have few if not any
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Figure 6.6: Precision vs recall for specific diagnoses (normalized thresholds: s = 0.0 and varied t).
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Figure 6.7: Precision vs Recall for specific diagnoses (normalized thresholds: s = 1.0 and varied t).

responsible departments due to their low normalized treatment probabilities since

these diagnoses occur across every department. For example, hypertension has no

responsible departments for thresholds larger than s=1.0 and t=2.0, which produces

a recall of zero for the diagnosis (i.e., Figure 6.7). As a result, for higher thresholds,

general diagnoses are not as effective at explaining why accesses occur compared to

more specific diagnoses such as kidney transplant. Future work is needed to explain

accesses for diagnoses that are encountered throughout the hospital.

Table 6.3 shows the recall, precision and F-measure for various thresholds when

all reasons for access are aggregated (i.e., the set of accesses explained by the dis-
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Description s t v Recall Precision F-Measure

Evidence + Responsibility 1.0 1.0 1.0 0.534 0.830 0.650

Evidence + Responsibility + Clustering 1.0 1.0 0.95 0.540 0.842 0.658

Evidence + Responsibility + Clustering 1.0 1.0 0.9 0.529 0.856 0.654

Evidence + Responsibility 1.0 2.0 1.0 0.411 0.904 0.565

Evidence + Responsibility + Clustering 1.0 2.0 0.95 0.419 0.915 0.574

Evidence + Responsibility + Clustering 1.0 2.0 0.9 0.411 0.920 0.568

Evidence + Responsibility 1.0 3.0 1.0 0.344 0.945 0.504

Evidence + Responsibility + Clustering 1.0 3.0 0.95 0.353 0.953 0.515

Evidence + Responsibility + Clustering 1.0 3.0 0.9 0.353 0.957 0.515

Evidence Only - - - - - - - - - 0.229 0.997 0.372

Table 6.3: Aggregate results for all diagnoses with varying thresholds (s = Normalized access prob-
ability threshold, t = Normalized treatment probability threshold, v = Clustering thresh-
old).

junction of reasons). As shown in previous work, direct explanations have a recall

of 22% with near perfect precision [29]. The high precision is due to the sparsity of

employee-patient relationships, which makes it is unlikely that a fake access corre-

sponds to actual evidence. As responsibility information is included, two times as

many first accesses are explained at the cost of lower precision (e.g., 41% recall with

90% precision for s = 1.0 and t = 2.0). Figure 6.8 shows the trend from this table

without the clustering data (the thresholds are decreasing from left to right). In

addition to the recall, precision and F-measure, Table 6.4 further breaks down the

results by the number of real and fake accesses that are explained and unexplained,

respectively. The responsibility information introduces a drop in precision because

it is at the granularity of a department instead of an individual employee. Cluster-

ing similarly treated diagnoses focuses the auditing system on the departments that

are responsible for a diagnosis and provides a slight improvement in precision. For

example, after clustering, various nursing departments are no longer thought to be

responsible for chemotherapy. In summary, the explanation-based auditing system

filters a large subset of the first accesses and over 94% of all accesses (when repeat

accesses are filtered).

Lastly, Table 6.5 lists which departments account for the largest proportion of
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Figure 6.8: Precision vs recall for all diagnoses at various thresholds from Table 6.3 (thresholds
decrease from left to right).

Explained Unexplained

Real First Accesses 80K 115K

Fake First Accesses 8K 187K

Table 6.4: Confusion matrix (for s = 1.0, t = 2.0, v = 1.0) shows the breakdown of first accesses
explained.

unexplained first accesses, and the rate at which a department’s accesses are unex-

plained. As expected, departments that provide wide ranges of services through-

out the hospital (e.g., Radiology and Central Staffing) are often unexplained, even

though these general departments access most patient’s medical records. In contrast,

departments that provide narrow sets of services such as the Allergy, Neonatology,

Dermatology, Nephrology and Thoracic Surgery Departments have unexplained rates

that are equal to or less than 0.05. This is not to say that Central Staffing employees

are more likely to inappropriately access records. However, we cannot use diagnosis

information to explain why their accesses occur. Future work is needed to explore al-

ternative types of explanations to remedy this gap in the auditing system for general

departments.
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Department Unexplained Rate Proportion of All Unexplained Accesses

Cancer Center 0.78 0.08

Radiology 0.90 0.07

Central Staffing 0.86 0.05

Physician Services 1.00 0.04

General Medicine 0.21 0.04

Outpatient Services 0.82 0.04

Pharmacy 0.88 0.04

Health Info. Management 0.98 0.04

Table 6.5: Departments with the most unexplained first accesses (for s = 1.0, t = 2.0, v = 1.0).



CHAPTER VII

Ordering Accesses By Suspiciousness

7.1 Overview

As the previous chapters demonstrated, the explanation-based auditing system is

able to filter a large number of the appropriate accesses from the audit log. Unfortu-

nately, it is still impractical for compliance officers to review the remaining suspicious

accesses manually (e.g., 5% of 4M accesses is 200K accesses). In practice, compliance

officers allocate an auditing budget, which specifies the number of accesses (or the

amount of time) that can be reviewed in a given period of time. Ideally, the compli-

ance officers would find all inappropriate accesses by the time they have exhausted

their budget.

There are many possible strategies for selecting which access the compliance offi-

cers should review next. In the simplest case, compliance officers could be presented

with the suspicious accesses in temporal order. If an inappropriate access occurs at

the beginning, then the access will be detected. Otherwise the breach will go unde-

tected, putting personal health information at risk. Instead, of this simple approach,

we argue that the auditing system should order the suspicious accesses such that

the most suspicious access are reviewed first, resulting in the best utilization of the

auditing budget.

89
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Figure 7.1: Accesses are ordered by their suspiciousness so that compliance officers review the most
suspicious accesses first.

This chapter considers the problem of ordering suspicious accesses from the audit

log by their suspiciousness (Figure 7.1). We define what it means for an access to

be suspicious and its associated metrics. The main observation is that accesses to

medical records are not temporally independent, but rather are temporally dependent

on other events occurring in the hospital system such as medication orders, appoint-

ments or even other employees’ accesses. For example, a pharmacist is more likely to

access a patient’s record after a medication order is placed. Using this observation,

we then formulate a standard machine learning problem where the inputs are the

events occurring in the hospital and the output is the probability that an employee

should access the patient’s record at a specified time. This probability for access is

then used to order the suspicious accesses for review. Lastly, we measure the quality

of the ordering using data from the University of Michigan Health System.

7.2 Access Suspiciousness

Given a suspicious access in the audit log (that cannot be explained with a clin-

ical or operational reason), the objective is to determine its suspiciousness. The

suspiciousness of an access should satisfy the following desired properties.
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• Interpretable: The metrics associated with suspiciousness should be easily

understandable by both compliance officers and patients, and the reasons for

why the risk is high or low should be easily associated with the access.

• Comparable: Given two accesses, the auditing system should be able to de-

termine which has a higher risk of being inappropriate.

• Easily Computable: Given the large number of accesses in the audit log,

determining the suspiciousness of an access should require simple computation.

One way to think about the suspiciousness of an access is: Should the employee

access the patient’s medical record (at any time)? Previous work found the clinical

or operational reason why an employee accessed a patient’s record [27], and therefore

implicitly assumed that the employee could access that patient’s record at any time

(within a month-long time range of an appointment, for example). Unfortunately,

not all accesses can be explained with a clinical or operational reason. In particular,

broadly functional departments (e.g., pharmacy) disproportionally suffer from un-

explained accesses because there is no specific connection between pharmacists and

patients.

Instead of considering if an employee should access a patient’s record at any time,

we consider the question: Should the employee access the patient’s medical record

at a given time t? We consider this temporal aspect for two main reasons. First,

considering if an access should or should not occur at a specific time allows for a

fine-grained analysis of an employee’s accesses. Second, accesses are often temporally

dependent on other events occurring throughout the hospital, which can be leveraged

to determine when accesses are expected.
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This chapter leverages a probabilistic model to determine if an employee should

access a patient’s record at a specific time. This model is used because patient care

is complex and dynamic (meaning that it is difficult to predict when an employee

will access a patient’s medical record). For example, a pharmacist may access a pa-

tient’s record a few hours later than expected if many medication orders are placed

simultaneously. The probabilistic model is preferred over a boolean approach that

predicts if an access will occur or not at a given time because of the ambiguity in the

problem. Interestingly, this probabilistic model naturally allows for an interpretable,

comparable and easily computable metric that can be used to compute the suspi-

ciousness of an access because each access is associated with a probability. More

formally, suspiciousness is defined as follows.

Definition VII.1. The suspiciousness of an access by an employee to a patient’s

medical record at time t with respect to other events occurring in the hospital

(Events) is defined as one minus the probability of access:

Suspiciousness = 1− P (access | employee, patient, t, Events)

Suspiciousness ranges from zero to one where a value of one implies the highest

risk. Accesses are ordered by suspiciousness in descending order.

Example VII.2. Consider the patient Alice who has cancer. Alice has an appoint-

ment, where an oncologist analyzes her medical record and creates a medication

order. Later, a pharmacist accesses Alice’s medical record to fulfill the prescription.

Figure 7.2 shows a timeline of these events in the hospital as well as the expected

probability of access of the pharmacist. In this example, the pharmacist’s access

at time 11 is more suspicious than the access at time eight because of its temporal

relationship to the medication order.
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Figure 7.2: An example set of events (appointments, medications, accesses by oncologists and ac-
cesses by pharmacists) over time for a patient. Events are denoted by colored boxes.
The auditing system determines the suspiciousness of the pharmacist’s accesses for all
possible times. Ideally, actual pharmacist accesses correspond to times with the lowest
suspiciousness levels.

7.3 Method To Calculate Suspiciousness

This section presents one method to efficiently calculate the suspiciousness of an

access. Recall that the main observation of this work is that employees’ accesses

are temporally dependent on other events occurring in the hospital. Consider the

environment where all accesses and hospital events are binned by hour. In this

setting, one natural method to predict if an access should occur at hour t is to look

at the hospital events that also occur in that hour. For example, if a medication

order is placed at hour t for a given patient, then the it is likely that the pharmacist

will access the patient’s record in the hour. Such a model can be represented with

a linear logistic classifier. The inputs to the classifier are the events occurring at

hour t and the output is the probability of access, which can be used to compute an

access’s suspiciousness.

One question concerning using such a classifier is: At what granularity should the
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classifier be constructed? At one extreme, a single classifier could be constructed

per hospital employee to predict when his or her access will occur. This approach

would require the construction of thousands of classifiers, which are likely over-fitted

to the employee. In the opposite extreme, one classifier could be constructed for

all employees. However, this approach does not take into account that each em-

ployee’s accesses are best predicted by different hospital events (e.g., a pharmacist’s

accesses are predicted by medication orders, while a radiologist’s accesses are pre-

dicted by x-ray orders). Observing these extremes, this work builds one classifier

per hospital department (Pharmacy, Radiology, Central Staffing, etc.), under the

assumption that employees assigned to the same department perform similar tasks

and their accesses are dependent on similar types of events. However, it is important

to note that employees within departments may have different responsibilities and

this department-level model may miss these fine-grained differences.

The machine learning problem to calculate suspiciousness is formulated as follows.

• For each department D, a single classifier is constructed, CD. A matrix is

constructed as input to the classifier as shown in Figure 7.3.

• The columns (or features) of the matrix represent the set of hospital events:

such as employee accesses grouped by department (i.e., oncologists’ access to a

patient’s medical record), appointments, medications, and many others. Addi-

tionally, features are added to record which department is associated with an

event (e.g., an oncologist had an appointment with the patient). We initially

considered adding one feature per (event-type, department) pair, but this ap-

proach added too many features. Instead one feature is added per department,

which records which departments are involved at the given time, but not which

specific event they are associated with if multiple events occur in the same hour.
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The event corresponding to accesses by the department that is being predicted

is excluded from the input matrix.

• The rows of the matrix represent a specific hour in time for a given patient. If

there are F features, P patients and H hours to analyze (for example, one week

has 24 hours/day×7 days/week = 168 hours/week), then the matrix is of size

P × H rows by F columns. Row i in the input matrix corresponds to patient

bi/P c at hour i % H. (where % is the modulus operator).

• Each entry in the matrix stores a boolean value, where the value is one if the

event occurred at the given time for the specific patient, and zero otherwise.

• The output of the classifier is a size P ×H vector that specifies the probability

of access for any employee in the classifier’s department at the given time for

the specific patient.

It important to note that the resulting matrix is sparse (i.e., contains mostly

zeroes) and therefore optimizations allow for compressed storage of the matrix.

Given this problem formulation, standard techniques can be used to train the

classifier. The same input matrix is used as described above, but each entry in the

output vector is a boolean value depending on if an access did or did not occur at the

given time by the department for the specific patient. It is easy to extract a logistic

classifier’s significant features by analyzing each feature’s weight.

After one classifier is trained for each department (there are approximately 300

departments at the University of Michigan Health System), they are used to order

suspicious accesses. That is, for each hour t when a suspicious access occurs, the

employee’s department’s classifier is retrieved and used to determine the probability

of access (and its suspiciousness). This testing procedure is performed for all suspi-
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Figure 7.3: Overview of the machine learning problem to predict when pharmacists will access
medical records. A boolean matrix describes which events occur in the hospital such
as, but not limited to, medication orders, x-ray orders, appointments and oncology
department accesses for a given patient at a specific time (each row corresponds to one
hour in time). Given this input, the logistic classifier can predict the probability of
access at each point in time.

cious accesses, but does not need to be performed for other times (which reduces the

size of the input matrix compared to the training phase because the training phase

analyzes times when accesses do not occur).

Obviously, the above solution is limited because it only considers events that

occur at the hour t to predict if an access should also occur at that time. However,

as noted previously, clinical care is complex and therefore predicting exactly when an

access will occur is difficult. Moreover, events that predict when an access will occur

may occur earlier or later than the access. Therefore, to manage this ambiguity,

the input set of features is expanded to include those events that occur at hours

t+ 1, ..., t+W, t− 1, ..., t−W where W is a pre-specified window size. As a result,

medications at hour t − 1 can be incorporated into the classifier to increase the

probability of a pharmacist’s access at time t. Due to this feature expansion, the
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number of columns in the input matrix increases from F to F × (2W + 1).

There are several limitations of the problem formulation as it is specified. First,

the model considers boolean input features rather than the frequency in which an

event occurs at a specific time. Second, all employees are grouped by their depart-

ment, which then makes it impossible to distinguish between multiple employees’

accesses that work in the same department. However, even with these limitations,

this simple problem formulation is a natural starting point.

7.4 Selecting The Next Access To Audit

In the basic case, the auditing system would analyze all suspicious accesses, order

them by suspiciousness and then present them to compliance officers (referred to as

the all-accesses approach). However, this approach does not take into account the

relationship between an employee’s many accesses. That is, if the auditing system

knows an employee previously accessed a patient’s record appropriately, then other

accesses to the same patient are more likely to be also appropriate (relative to the

situation where there is no prior information about the employee’s access). However,

the all-accesses approach treats each access independently and does not consider

these relationships.

Instead, the auditing system can order accesses in two different ways to better

utilize the auditing budget. First, once the compliance officer determines that one

of an employee’s accesses are appropriate for a given patient, then the remaining

accesses by the employee to the patient’s record no longer need to be reviewed and

can be removed from the list (here the assumption is that if one access is appropriate,

then all accesses are appropriate). Second, given the most suspicious access, we argue

that the auditing system should not present the compliance officer with that specific
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access; rather the auditing should select the least suspicious access from the set

of accesses made by the same employee to the same patient’s record. The idea is

that this best-of-the-worst access will allow the compliance officer to more quickly

determine if the accesses is appropriate or not, because this access will be better

associated with events in the hospital than the most suspicious access.

It is important to note that this best-of-the-worst approach can be abused. For

example, if a curious employee accesses a patient’s record every hour, then it is

likely that one of the many accesses will appear to be appropriate. Therefore, the

compliance officer must be mindful of the number of accesses an employee makes

when determining if an access is appropriate or not.

7.5 Evaluation Methodology

The objective of this work is to order accesses such that the most suspicious

accesses are reviewed first. Ideally, labeled (ordered) accesses would be available to

test and evaluate the methods presented in the work. Unfortunately, ground truth

is difficult to acquire in the medical domain because of the large number of accesses

that are logged and the compliance officers’s limited time to label data. Instead,

simplifying assumptions are required to analyze the quality of the auditing system’s

ordering. Specifically, the quality of the ordering is measured by analyzing how well

the models predict when an access will occur as a proxy for ordering accesses by their

suspiciousness. (This evaluation attempts to predict when all accesses in the log

occur, but other approaches are possible that predict when an employee’s first access

to a patient’s record will occur.) The assumption here is that if an access occurs

when the system predicts one will occur, then the access is likely appropriate. In

contrast, if an access occurs when no access is predicted, then it is suspicious and
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should be reviewed first.

In this setting, one pair of metrics that can capture the quality of the ordering

system is sensitivity and specificity. Sensitivity (or recall) represents the auditing

system’s ability to predict when an access will occur. Specificity represents the

auditing system’s ability to predict when an access will not occur. Let a true positive

be an hour where an access occurs and the probability of access is greater than a

threshold τ , a false positive be an hour where an access does not occur and the

probability of access is greater than a threshold τ , a true negative be an hour where

an access does not occur and the probability of access is less than a threshold τ , and

a false negative be an hour where an access occurs and the probability of access is

less than a threshold τ .

Definition VII.3. The sensitivity and specificity of the auditing system are defined

as:

Sensitivity =
# True Positives

# True Positives + # False Negatives

Specificity =
# True Negatives

# True Negatives + # False Positives

As the threshold τ is varied, there is a trade-off between the number of accesses

that are predicted and the accuracy of the prediction, which can be measured using

ROC curves. Specifically, the plots compare the true positive rate (or sensitivity)

against the false positive rate (or one minus the specificity). The area under the

curve (AUC) allows for easy comparison between classifiers.

For this study, 40K patients were randomly selected and evenly divided into test-

ing and training sets. For each department, a classifier was trained as described in

Section 7.3 using a week of accesses to patients’ medical records from the training

set. Accesses and other hospital events were binned by hour so that each patient
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Figure 7.4: Accesses to a single patient’s medical record by central staffing employees over time
along with the probability of access at each hour.

accounted for 168 rows in each input matrix (the window size W was set to 8). Next,

the classifiers were used to determine the probability of access (and suspiciousness)

at each hour in the week for the patient’s in the testing set. These probabilities and

the actual accesses that occurred were then compared.

7.6 Results

First, we analyzed if the models described in Section 7.3 accurately predict ac-

cesses. Figure 7.4 and Figure 7.5 show the (i) history of accesses and (ii) probability

of access for a single patient by central staffing and radiology employees, respectively.

Interestingly, the probability of access is often high when accesses occur, supporting

the hypothesis that accesses are temporally dependent on hospital events. However,

false positives occur when the probability of access is high, but no access occurs (e.g.,

Figure 7.5), demonstrating the dynamics of patient care.
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Figure 7.5: Accesses to a single patient’s medical record by radiology employees over time along
with the probability of access at each hour.

Next, we analyzed how well the system predicts accesses for all patients in the

testing set. Figure 7.6 shows ROC curves for selected departments. Additionally,

we compared the results to a baseline classifier that never predicts an access will

occur. Interestingly, departments such as Pharmacy, Central Staffing and Radiology

are accurately predicted and have area under the curve values of 0.88 and above.

Table 7.1 lists the significant features of the departments’ classifiers. For example,

pharmacists’ accesses at time t are best predicted by orders that are placed at the

same, previous or later times. The Cancer Center had slightly poorer results (AUC =

0.80) because the department contains many employees with varying responsibilities.

Cancer Center employeess’ accesses are best predicted by appointments.

Lastly, we examined the quality of the predictions across all departments. To this

end, the area under the curve (AUC) was measured for all departments that had at
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Pharmacy Radiology Cancer Center

Order Entered at time t Order Entered at time t Appointment at time t

Order Entered at time t+1 Order Entered at time t-1 Appointment at time t+1

Order Entered at time t-1 Radiology Event Began at time t Appointment at time t+2

Order Entered at time t+2 Radiology Event Updated at time t Central Staffing Access at time t

Table 7.1: The highest-weighted features to predict accesses at time t for selected departments.
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Figure 7.6: Accuracy of predicting when accesses will occur for selected departments.

least 10K accesses in the log (approximately 115 of the 300 departments that account

for 86% of all accesses), which was done so the classifier had sufficient training data.

Figure 7.7 shows the number of departments with given AUC values (binned in 0.05

ranges) as well as the cumulative distribution of AUC values. Interestingly, over

50% of the departments measured had AUC values greater than 0.75. However,

some departments produced poor predictions. For example, the Physician Services

Department had an AUC of 0.64, while the Information Technology (IT) Department

had an AUC of 0.5. However, this last poor prediction is expected because IT accesses

are not associated with patient care.



103

0.0 0.2 0.4 0.6 0.8 1.0
Department AUC

0

5

10

15

20

25

30

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

AU
C 

Cu
m

ul
at

iv
e 

Di
st

rib
ut

io
n

Figure 7.7: Distribution of the area under the curve (AUC) across departments.

7.7 Discussion

The auditing system’s ability to accurately predict when accesses will occur for

many departments implies that appropriate accesses are likely to be ranked lower

than curious accesses. Therefore, compliance officers will review curious accesses

first. For example, Figure 7.6 demonstrates that pharmacy employees’ accesses are

accurately predicted 80% of the time with less than a 10% chance of false positives.

However, not all departments’ accesses can be predicted accurately.

There are many possible directions for future work to improve the ordering qual-

ity. First, this work treats all accesses from a department equally. However, often

employees within a department are responsible for different aspects of patient care

at different stages during the treatment process (for example cancer patients are

diagnosed, undergo surgery, and then are treated with chemotherapy). Moreover,



104

the set of events that predict when an access will occur can vary as the patient’s

treatment proceeds. Therefore, the prediction can be improved if smaller functional

groups can be discovered within departments that better capture these treatment

variations. Second, the approaches presented in this work assumed a simple linear

model where each hospital event is independent of each other; however, it may be

possible to utilize conditional random fields or other similar approaches that take

into account the dependency of events to determine the probability of access.

It is important to note that there are ways to abuse the auditing models presented

here. First, the auditing system assumes the threat of a curious employee that simply

accesses patient data. However, malicious employees that create fake appointments

can trick the system to believe an access is appropriate. Therefore, future versions

of the auditing should not only look at when events occur, but also who created

the event (however, this also can be abused by malicious teams). That being said,

discussions with the compliance office and recent Health and Human Services rules

confirm the importance of threats by curious or snooping employees.



CHAPTER VIII

Prototype Auditing System

8.1 Introduction

Ensuring that hospital employees’ appropriately use electronic medical records

(EMR) is increasingly important. Recent legislation such as the Affordable Care

Act, HITECH and HIPAA outlines guidelines for the appropriate use of patient data.

To provide accountability, these regulations require that hospitals record all accesses

to medical records in secure, tamper-proof audit logs, which can be retrospectively

reviewed by compliance officers. While it is the compliance officer’s responsibility to

monitor these logs, manual analyses do not scale (e.g., the University of Michigan

Health System records millions of accesses per week). Even analyzing accesses for

the smaller subset of patients that file complaints is time-consuming and requires

teams of tens of compliance officers.

One tool that can be used to improve compliance officers’ efficiency is the explanation-

based auditing system [27, 28]. The explanation-based auditing system improves

compliance officers’ efficiency by filtering appropriate accesses from the log that oc-

cur for clinical or operational reasons so compliance officers can focus their efforts

on suspicious behavior. Previous studies demonstrated that over 90% of accesses

in a hospital’s audit log could be filtered. However, because the system was a re-

105
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search tool rather than a deployable application, various questions remained about

the system’s effectiveness. First, how much time does a compliance officer save when

using the auditing tool compared to a manual analysis? Second, how accurately does

the tool classify actual inappropriate and appropriate accesses? (Previous studies

measured the accuracy of the system using randomly generated ‘curious’ accesses as

a proxy for inappropriate behavior, rather than real inappropriate accesses because

it is difficult to get labeled training data.)

To answer these questions, this chapter presents the design and development of

the explanation-based auditing system prototype, which will be evaluated by the

University of Michigan Health System’s Compliance Office. The prototype is a single-

node application that will be installed in the hospital’s data center. Compliance

officers are able to extract (de-identified) audit log data and patient information

from the medical record system (e.g., Epic [26]), upload the data into the prototype,

and then use the prototype to search for inappropriate behavior. The prototype

allows for the analysis of the auditing system’s effectiveness and accuracy using real

hospital data and known instances of inappropriate use.

8.1.1 Contributions

The explanation-based auditing system prototype makes several contributions.

• Integration With EMR Systems: One of the major initial concerns about

building the prototype was getting EMR data into the prototype. After working

with the hospital’s IT department, systems have been configured to extract

encounters (e.g., appointments, medication orders, x-rays, etc.) and accesses

for a given patient’s medical record, dump the data to a text file, and then load

the text file into the prototype.
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• Defining and Mining Explanations: Once the data are loaded, explanations

for accesses must be defined by compliance officers or mined directly from data.

The prototype provides interpretable form-based web interfaces to create and

mine clinical or operational reasons for access.

• Exploring Accesses: After explanations are defined, they can be used to filter

appropriate accesses, leaving only a smaller number of suspicious accesses for

review. A simple web interface allows compliance officers to search for accesses

based on the patient, employee, or if there is a known reason for access. In addi-

tion, for each access that is explained by a clinical or operational reason, a text

description can be attached to the access, which allows for easily interpretable

access reports for both compliance officers and patients.

8.1.2 Demonstration

To demonstrate the effectiveness of the explanation-based auditing prototype, case

studies are presented describing how compliance officers can use the auditing system.

Specifically, this work discusses how the prototype system can be used to detect

snooping employees, provide for proactive random audits of employee populations

and quickly produce access reports for a patient that files a complaint.

8.2 System Design

The explanation-based auditing system prototype allows compliance officers to

complete an end-to-end audit. That is, when a complaint is filed, compliance offi-

cers can quickly analyze the accesses in question to determine if an inappropriate

access has occurred. There are numerous challenges in designing the prototype to

allow for a complete auditing workflow such as organizing the underlying database

to cleanly presenting information to compliance officers. This section outlines the
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Figure 8.1: Overview of the prototype auditing system, which is composed of (1) a system to
extract data from the EMR database, (2) a web interface to access the auditing tool,
(3) modules to mine explanations, evaluate explanations and explore the results, and
(4) a database to store the extracted EMR data and auditing results.

various components used to build the prototype (as shown in Figure 8.1).

Integration With Epic: To perform an audit, compliance officers must learn

about a patient’s treatment (e.g., who was involved in a patient’s care). This manual

exploration often involves analyzing clinical notes and contacting department leaders

to discover which employees were assigned to treat a patient. As discussed previously,

the explanation-based auditing system automates much of this manual procedure.

However, before this automation can proceed, patient data must be made available to

the auditing system. Ideally, the EMR system would allow the auditing system to be

tightly integrated with the EMR database. Unfortunately, third-party integrations

are not easily configured. Instead, for this work, mechanisms were put place (with

the help of the hospital’s IT staff) to dump data to a text file, which could then be

uploaded into the auditing system. Now, to perform an audit, compliance officers

simply enter a list of patient IDs and a time range, and then the associated patient

data are extracted and uploaded. The current procedure works with the Epic EMR

back-end system, but this type of integration is possible with other popular EMR
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systems (e.g., Cerner [14] and PracticeFusion [66]).

After developing the extraction tools, the next question to answer is: What specific

data items should be extracted? Ideally, every piece of information describing patient

treatment would be extracted. Interestingly, the Epic database stores much of this

patient treatment information in a single encounters table. The encounters table

lists patient appointments, visits, medications and over 100 other encounter types.

Other data that are extracted include patient ICD-9 diagnosis information, the audit

log, and employee department information. Additional types of information will be

explored in the future.

Data Organization: The explanation-based auditing system’s algorithms lever-

age relational operators in their computation. Therefore, it is only natural to store

the extracted data in a relational database. In this case, a PostgreSQL database [65]

stores the extracted data and the data are presented using a Python and Django

web interface [25]. The database is organized in a few conceptual units: (i) pa-

tient encounters and accesses to medical records (i.e., hospital events), (ii) patient

characteristics (e.g., ICD-9 data), (iii) employee characteristics (e.g., department in-

formation), and (iv) auditing meta-data such as which accesses are explained and

why.

Explanations: The basic unit in the auditing system is an explanation. An

explanation is represented by a path connecting the data that are accessed (i.e., the

patient’s medical record) to the employee accessing the data, which captures the

reason why an access occurred. The prototype system allows compliance officers to

manually construct explanations using a simple web form (Figure 8.2). Paths are

formed by connecting edges, which are relationships between database attributes

such as foreign-key relationships.
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Figure 8.2: An example explanation as seen from the prototype’s web interface. Notice that the
edges create a path from the patient in the audit log to the employee (or user).

Various other properties can be specified after the explanation’s path has been

constructed. The first property is a templated text explanation (e.g., “[patient] had

an appointment with [user] on [appointment.time]”). These text explanations are

extremely useful for compliance officers to understand why accesses occur, and can

be used to quickly create access reports. Other properties include additional (edge)

constraints or the maximum amount of time between data used in an explanation

(this temporal constraint allows compliance officers to express that an appointment

can only explain accesses up to a month from the date of the appointment). Lastly,

the explanation can be either in an active or inactive state (only active explanations

are used to audit).

Explanation Miner: In the naive case, compliance officers can specify all expla-
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nations and their associated paths. However, there are hundreds of encounter types,

each of which may require its own explanation. Therefore, the prototype provides

the necessary algorithms to mine explanations from the data. Specifically, the al-

gorithm’s objective is to find all explanations that explain why at least s% of the

accesses in the audit log occur (here the number of accesses explained is the number

of accesses returned by a query evaluated on the database where the query’s selection

condition is logically equivalent to the explanation’s path). The algorithm works by

iteratively constructing paths of longer lengths. At the end of each iteration, the

system prunes those paths with insufficient support (i.e., do not explain a sufficient

number of accesses). After the frequent explanations are mined, they are presented

to the compliance officer for approval (i.e., to set the explanation as active).

In addition to mining explanations, the auditing system also is able to fill-in

missing types of data. One type of missing information is diagnosis responsibility

information. Diagnosis responsibility information refers to facts describing which

departments are responsible for treating a given diagnosis (e.g., oncologists treat

cancer). The prototype analyzes access patterns and patient diagnosis information

to learn responsibility information. The explanation mining algorithms can use this

information directly to produce new explanations.

Access Explorer: After explanation are mined, they can be tested (or evaluated)

on the data, after which compliance officers can explore the results (Figure 8.3). The

prototype provides mechanisms to search for accesses by patient, employee or if an

access occurred for a reason. For example, the compliance officer can choose to only

display those suspicious accesses that cannot be explained by an active explanation,

which can drastically reduce the number of accesses for review. In addition to simply

viewing accesses, the prototype allows compliance officers to click on an access and
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Figure 8.3: Web interface to explore accesses. The compliance officer can search for accesses by
patient, employee, or if there is a known reason for access. At the right of each row lists
the set of explanations (specifically, their IDs) that explain why the access occurred
(e.g., a patient’s visit), if one exists. If an explanation is clicked, a text explanation is
displayed.

display its associated templated text explanation.

8.3 Demonstration

There are many real-world scenarios where the explanation-based auditing system

prototype can improve compliance officer efficiency. First, consider the case where a

patient Alice files a complaint about a snooping employee. Without the prototype,

compliance officers would need to analyze each access in the audit log for the patient,

call department leaders and analyze clinical notes to find the snooper. However,

with the prototype, a large number of the accesses can be filtered so that compliance

officers have a much smaller subset to review. For example, Figure 8.3 shows four

accesses to Alice’s record, three of which can be explained and filtered by clinical or

operational reasons (e.g., appointments or visits), leaving only Dr. Evil’s access for

review. Additionally, the auditing system can produce an access report describing
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the reason for each appropriate access (e.g., “Dr. Dave had an appointment with

Alice”).

In addition to retrospective auditing, the prototype makes it possible to perform

proactive random audits of employees. Because the prototype drastically reduces

the auditing burden, compliance officers can audit accesses to a randomly selected

patient each day. Ideally, these proactive audits, and employees’ awareness that they

are occurring, will deter future inappropriate behavior.

8.4 Conclusion

The explanation-based auditing prototype allows compliance officers to quickly

detect inappropriate accesses to electronic medical records. It has functionality to

extract data from an EMR database, load them into the prototype, mine explanations

and then filter appropriate behavior. The prototype will be evaluated in hospitals

to determine its effectiveness and accuracy. In the future, various enhancements

will be added to the prototype such as improved auditing analytics and exploration

features.



CHAPTER IX

Auditing SQL Logs

9.1 Introduction

During normal use, most employees access EMR databases through restrictive user

interfaces that allow the employee to access a single patient’s record at a time. In these

cases, the EMR typically stores an application-level audit log containing (employee,

patient) pairs. However, in certain cases, both when dealing with electronic medical

records and in other domains, employees are not restricted to such an interface, and

are instead permitted to issue ad-hoc SQL queries over a backend relational DBMS.

For this reason, there has also been significant interest among the database re-

search community and industry in building support for auditing at the level of a

relational DBMS [6, 30, 31, 45, 59]. In this chapter, we move down a level in the

software stack and consider a problem arising from DBMS-level auditing. Specifically,

we consider the context where the data in the DBMS are protected by an access con-

trol policy, which designates which users can access which data. However, access

control policies are notoriously difficult to configure, and mistakes are common [67].

In this chapter, we consider a common problem: A misconfiguration is detected in

an access control policy after that policy has already been deployed for a period of

time. To comply with data breach reporting rules, it is necessary to go back in time

114
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and determine which queries may have revealed unauthorized information.

An obvious approach to this problem is to maintain a log of all SQL queries and to

retrieve those queries that explicitly accessed unauthorized data. However, if done

naively, this fails to account for the fact that unauthorized information may have

propagated (explicitly or implicitly) via updates. For example, when an insert oper-

ation copies a row from one table to another, this operation creates an explicit flow

of information; a user who reads the copied row learns the original value. Similarly,

when a row is updated based on a condition (e.g., UPDATE Patients SET Age =

’XXX’ WHERE Name = ’Bob’), the operation creates an implicit flow of informa-

tion since the value XXX implicitly reveals that Name = Bob. Thus, not only may

a misconfigured access control policy allow a user to access unauthorized parts of

the database, but the unauthorized data can be propagated to other parts of the

database that can be read by future queries. Past work on database auditing con-

sidered the task of retrieving logged SQL queries that were affected by user-specified

“sensitive” data, but did not address the challenge of updates [6].

9.1.1 Challenges

Effectively responding to database access control misconfigurations presents sev-

eral challenges:

• Updates: The solution should be able to find all past queries that revealed unau-

thorized information, either by directly accessing unauthorized data or as the result

of information propagation caused by update operations.

• Lightweight/Non-disruptive: The solution should easily integrate with exist-

ing DBMS infrastructure and introduce minimal overhead during normal database

operation.
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• Efficient Response: When a policy misconfiguration is detected, the solution

should efficiently identify past queries that may have revealed unauthorized infor-

mation.

9.1.2 Our Contributions

In response to these challenges, we propose the PolicyReplay framework, which is

highlighted by the following contributions:

• We introduce the novel idea of a declarative misconfiguration response (MR) query,

which retrieves all past database queries that may have revealed unauthorized in-

formation. Our approach is based on the following insight, which cleanly addresses

the problem of information propagation: Conceptually, the MR-query returns to

the point of the misconfiguration, and completely replays the log of operations

(updates and queries) using the new (correct) policy. If a query returns exactly

the same result under the old (incorrect) and new (correct) policies, we know that

the query has not revealed any unauthorized information. However, if the result

has changed, the query is marked as “suspicious” since unauthorized information

may have been revealed. The formal semantics are described in Section 9.3.

• Of course, the naive algorithm of returning to the point of the misconfiguration

and completely replaying all past database operations is inefficient. To improve ef-

ficiency, in Section 9.4 we introduce a set of optimizations based on static pruning,

delta tables, and partial and simultaneous re-execution. Our experiments (Sec-

tion 9.10) indicate that by replaying operations in an efficient manner we are able

to reduce the total runtime by an order of magnitude in several common cases.

• Interestingly, the approaches presented in this chapter (that can detect when a

query has revealed unauthorized information due to a policy misconfiguration)
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can also be used to transform a SQL audit log to an application-level audit log.

That is, if the old policy allows access to all data in the database and the new

policy allows access to all data but a single sensitive row, then the MR-query can

determine if the query accessed the sensitive row (if the row is accessed, an audit

log entry is created). Unfortunately, applying the MR-query to transform SQL

logs is slow because the procedure must be repeated for each sensitive row. Recent

work on SELECT triggers (completed while at Microsoft Research) addresses these

performance issues and allows for efficient SQL audit log transformations [31].

9.2 Preliminaries

The PolicyReplay framework supports a modern row-level access control model.

During normal database operation, we maintain an operation log, which records the

text of all SQL operations, as well as a transaction-time backlog database representa-

tion of historical data [44]. These structures are easily incorporated into an existing

DBMS, and past work has shown that they can be maintained with little impact on

normal database operation [6].

9.2.1 Row-Level Access Control Policies

The goal of our work is to develop methods for responding to misconfigurations in

database access control policies. While the access control model itself is not our main

contribution, we will use a modern row-level access control model (e.g., as found in

Oracle’s fine-grained access controls [60]) throughout the chapter.

Formally, we will consider an old policy Pold and a new policy Pnew. For each

database user U , policy Pold (respectively, Pnew) contains a selection of the form

σSold
(S) (respectively, σSnew(S)) for every table S in the database, where Sold (re-

spectively, Snew) is a boolean condition involving only the attributes in table S.
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A user U is given access to the subset of the database specified by the selection

conditions in the policy. When the user executes a database command (i.e., a SE-

LECT, INSERT, UPDATE, or DELETE statement), each table S referenced by the

command is transparently replaced with the view defined by the additional selection.

Example IX.1. As a simple example, consider a hospital database that contains a

single table Patients. Consider a user Dan, and suppose that under policy Pold Dan

is allowed to see the rows of the Patients table with Age < 30 (i.e., Patientsold =

(Age < 30)). If Dan issues the query SELECT * FROM PATIENTS while Pold is in effect,

then the query is automatically rewritten as SELECT * FROM PATIENTS WHERE Age

< 30.

Updates are handled similarly. Suppose that Dan issues the data modification

command UPDATE Patients SET Department = ’Pediatrics’; this is rewritten as

UPDATE Patients SET Department = ’Pediatrics’ WHERE Age < 30.

Of course, row-level access control has its shortcomings, and alternatives have

been proposed [50, 68]. Nonetheless, the row-level approach remains popular.

9.2.2 Operation Log

During normal database operation, a log is maintained, which records the text

of all DML operations (SELECT, INSERT, UPDATE, and DELETE) that are per-

formed. The operation log itself is an append-only table; each entry in the log

contains the timestamp at which the operation was executed, as well as the asso-

ciated sql (a string). It may also contain additional fields, such as usernames, etc.

Figure 9.1 shows a (pared-down) operation log.

Many existing database systems already support this kind of logging [47, 60,

79], and past work has demonstrated that the performance impact during normal
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database operation is minimal [6]. For the purposes of this work, we will assume

that log entries are written within the same transaction as the recorded operation;

this guarantees that the timestamp ordering on the log records is equivalent to the

serialization order of the operations.

9.2.3 Transaction-Time Backlog Database

In addition to the operation log, we will make use of a simplified transaction-time

backlog database [44], which supports two basic operations: insert a row and delete

a row. Each time a row is inserted or deleted, the system records the following

information: the time, the type of operation (insert or delete), and the value of the

row being inserted or deleted.1 Under this representation, rows are never modified

or deleted in place; instead, the new or updated row is appended to the end of the

table.

Formally, we will use the notation DBb to refer to a transaction-time backlog

database, and Sb to refer to a single backlog table in the database. We will use DBτ

to refer to the static snapshot database that exists at time τ and Sτ to refer to the

static snapshot of table S at time τ . Any DBτ can be constructed from DBb using

methods described in [44].

Example IX.2. Consider the backlog table Patientsb shown in Figure 9.2(a), and

suppose that Id is the primary key for Patients. Patients3, the static snapshot of

the table at time 3, is as follows:

Id Name Age Disease

1 Alice 10 Flu

2 XXX 20 Ulcer

3 Carlos 35 Broken Arm

1The effects of SQL UPDATE commands are captured as follows: If a tuple is modified, we model this as a delete
(of the old tuple), followed by an insert (of the new tuple).
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9.3 MR-Queries: Problem Definition

When a policy misconfiguration is detected, a security administrator or compli-

ance officer needs to take steps to respond to the misconfiguration (e.g., report the

incident to government regulators). In order to do this, she must determine which

queries have revealed unauthorized information. We will refer to this task as a

misconfiguration-response (MR) query. The MR-query plays a central role in breach

reporting (see Section 9.9).

The goal of the MR-query is to retrieve every logged SQL query that disclosed

unauthorized information. In the simplest case, a logged query is returned by the

MR-query if it explicitly reads unauthorized data. However, this simple approach

does not capture the propagation of information via updates. Instead, our problem

formulation is based on the observation that a query is guaranteed not to reveal

unauthorized information if its result is the same under the old (incorrect) and new

(correct) policies. In contrast, when the query results are not the same, there is no

such guarantee; we will refer to these SQL queries as suspicious queries.

Definition IX.3 (MR-Query). The MR-query takes as input the old policy Pold,

the new policy Pnew, timestamps t1 and t2 (t1 ≤ t2), the operation log, and the

transaction-time backlog database DBb. The MR-query returns the set of all entries

e in the operation log that contain SELECT queries, have timestamps between t1

and t2, and such that the results of the queries would have been different if Pold had

been replaced with Pnew, effective at time t1.

The semantics of an MR-query are easily understood in terms of a naive algo-

rithm. It begins by constructing a second backlog database D̂B
b

by creating a new

backlog table Ŝb for each table Sb in DBb, and copying into Ŝb every row in Sb with
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lid timestamp sql

L1 1 SELECT *
FROM Patients

L2 2 SELECT *
FROM Patients
WHERE Age < 12

L3 3 UPDATE Patients
SET Name = ’XXX’
WHERE Name = ’Bob’

L4 4 SELECT *
FROM Patients
WHERE Name = ’XXX’

L5 5 INSERT INTO Temp
SELECT Id, Name, Age, Disease
FROM Patients

L6 6 SELECT * FROM Temp

Figure 9.1: Sample Operation Log

Time Op Id Name Age Disease

0 Ins 1 Alice 10 Flu

0 Ins 2 Bob 20 Ulcer

0 Ins 3 Carlos 35 Broken arm

3 Del 2 Bob 20 Ulcer

3 Ins 2 XXX 20 Ulcer

(a) Patientsb

Time Op Id A B C

5 Ins 1 Alice 10 Flu

5 Ins 2 XXX 20 Ulcer

(b) Tempb

Figure 9.2: The backlog database DBb is the result of the actual execution (when Pold was in place).

timestamp ≤ t1. Starting from t1, the algorithm replays the operation log (updates

and queries) using the new policy Pnew, and applying all data modifications to D̂B
b
.

For every SELECT query in the log, it compares the result obtained using Pnew and

D̂B
b

to the result obtained using Pold and DBb. Details are provided in Algorithm 2

in Appendix 9.5.

Example IX.4. Consider a database consisting of two tables: Patients(Id,Name,Age,Disease)

and Temp(Id, A,B, C). In both tables, Id is the primary key.

Time Op Id Name Age Disease

0 Ins 1 Alice 10 Flu

0 Ins 2 Bob 20 Ulcer

0 Ins 3 Carlos 35 Broken arm

(a) ̂Patients
b

Time Op Id A B C

5 Ins 1 Alice 10 Flu

(b) T̂ emp
b

Figure 9.3: The backlog database D̂B
b

is what would have resulted if Pold were replaced with Pnew,
effective at time 1.
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Suppose that at time 1 the administrator deploys a policy allowing user Dan to

see only those rows of Patients with Age < 30 (i.e., Patientsold = (Age < 30)),

and all rows of Temp (i.e., Tempold = true). Later, at time 7, she discovers that

the policy was misconfigured, and she corrects the policy so that Dan can see only

those Patients with Age < 15 (i.e., Patientsnew = (Age < 15) and Tempnew = true).

Unfortunately, the misconfigured policy was in effect for the period between t1 = 1

and t2 = 7. In order to respond to the misconfiguration, the administrator needs to

figure out which queries, evaluated during this time, would have produced different

results if the correct policy had been in place.

Figure 9.1 shows an example operation log, and Figure 9.2 shows the backlog

database DBb. Observe that if Pold had been replaced with Pnew at time 1, some

of the resulting data modifications would have been different. The backlog database

resulting from this case (denoted D̂B
b
) is shown in Figure 9.3. For example, notice

that the update in L3 will not affect any tuples when Pnew is in effect because user

Dan does not have access to Patients with Age > 15 (i.e., Bob) in this case.

Finally, Figure 9.4 compares the results of each SELECT query when evaluated

using DBb and Pold and using D̂B
b

and Pnew. Notice that the queries in L1, L4, and

L6 return different results; thus these log entries are returned as the result of the

MR-query.

Less strict approaches may be insufficient to detect the disclosure of unauthorized

information. For example, an alternative method might attach annotations to each

row (e.g., [11]) and propagate these annotations from row to row as the log of oper-

ations is executed to track dependencies. A query would be marked suspicious if a

row in the result is dependent on a row that is only accessible due to the misconfigu-

ration. Therefore, by only executing the log under the old policy and combining the
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Id Name Age Disease

1 Alice 10 Flu

2 Bob 20 Ulcer
(a) L1 (Old)

Id Name Age Disease

1 Alice 10 Flu
(b) L1 (New)

Id Name Age Disease

1 Alice 10 Flu
(c) L2 (Old)

Id Name Age Disease

1 Alice 10 Flu
(d) L2 (New)

Id Name Age Disease

2 XXX 20 Ulcer
(e) L4 (Old)

Id Name Age Disease

(f) L4 (New)

Id A B C

1 Alice 10 Flu

2 XXX 20 Ulcer
(g) L6 (Old)

Id A B C

1 Alice 10 Flu
(h) L6 (New)

Figure 9.4: Comparing the results of logged queries to illustrate the semantics of MR-queries

query results with annotation information, this approach can detect some suspicious

activity; however, it has significant weaknesses that are managed by the MR-query.

Example IX.5. Consider the policies Patientsold = (Age < 30), Patientsnew =

(Age < 18) and Tempnew = Tempold = true and the log of operations and data in

Figure 9.5. Initially, the user learns from operation O1 that Bob has flu. Then, the

delete operation deletes those rows in Temp that have the same disease as a row in

the Patients table. In this example, Bob is deleted because Alice also has the flu;

however, Alice is only accessible due to the misconfiguration. Therefore, the user

inappropriately learns from the empty set result of operation O3 that someone in

the Patients table has the flu. Unfortunately, the annotation method cannot detect

this unauthorized access because the result of O3 on Temp is the empty set and

contains no annotations to analyze. In contrast, the MR-query will mark operation

O3 as suspicious since the result is different between the policies.

As the example shows, the absence of a row in the result can result in the dis-

closure of unauthorized information when combined with the result of other queries.



124

Time Op Id Name Age Disease Annotations

0 Ins 1 Alice 25 Flu P1

(a) Patientsb

Time Op Id Name Age Disease Annotations

0 Ins 1 Bob 10 Flu T1

2 Del 1 Bob 10 Flu P1, T1

(b) Tempb

lid time sql

O1 1 SELECT * FROM Temp

O2 2 DELETE FROM Temp t USING Patients p
WHERE t.disease = p.disease

O3 3 SELECT * FROM Temp
(c) Operation Log

Id Name Age Disease

(d) Result for O3 on Temp

Id Name Age Disease

1 Bob 10 Flu

(e) Result for O3 on T̂ emp

Figure 9.5: A backlog database and log to demonstrate the weaknesses of annotation methods.

Unfortunately, annotation approaches are not able to detect these breaches. 2

9.4 MR-Query Evaluation

The naive algorithm is useful for expressing the semantics of an MR-query, but it

would be inefficient to actually evaluate an MR-query in this way. In this section, we

describe a set of optimizations, which greatly improve the efficiency of MR-queries:

• Static Pruning: When the operation log contains only queries (SELECT state-

ments), in Section 9.4.2 we provide a static pruning condition by which we can

determine that certain queries are unsuspicious, without re-executing them.

• Delta Tables: In Section 9.4.3, we extend the static pruning condition to an oper-

ation log that also contains data modifications (INSERT, UPDATE, and DELETE

statements). The idea is to store a concise description of how the database has

changed as a result of the new policy (i.e., the difference between D̂B
b

and DBb)

using structures called delta tables. Then, we extend the pruning conditions from

2There are more subtle cases as well. For example, consider the case where the old policy is too strict (e.g., for
some table S, Sold ⊆ Snew). Operations like MINUS or EXCEPT can produce unauthorized accesses.
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the query-only case.

• Partial and Simultaneous Re-Execution: When the above pruning strategies

fail, it is necessary to re-execute certain operations. To improve performance in

this case, in Section 9.4.4, we introduce two further optimizations: The first is

based on the observation that we may be able to determine mid-execution that

an operation is unsuspicious, in which case we can stop executing the operation.

While the naive algorithm requires that we entirely re-execute each query twice

(once on D̂B using Pnew and once on DB using Pold), our second optimization is

based on the observation that these two queries actually share much computation;

thus we propose to execute the two queries simultaneously.

9.4.1 Class of Operations

For the remainder of this chapter, we will restrict our discussion to the following

classes of logged SQL operations: (i) select-project-join (SPJ) queries, (ii) insert

operations where the rows to be inserted are determined by an SPJ query, (iii)

update operations where attributes of a row are set to constant values if the row

satisfies a selection condition, and (iv) delete operations where a row is deleted if

it satisfies a selection condition. For simplicity, we will not address the larger class

of aggregate-select-project-join (ASPJ) queries, but many of our techniques can be

applied to this case.

9.4.2 Static Pruning (Queries Only)

We begin with the simplest case, where the operation log contains only queries

(i.e., SELECT statements). In this case, it is sometimes possible to determine stat-

ically that a query is not suspicious (i.e., without re-executing the query). As we

will see, this case is not particularly practical on its own, but it provides a building
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block for the general case in Section 9.4.3. This static pruning condition is formalized

through delta expressions.

Definition IX.6 (Delta Expressions). Delta expressions logically describe the dif-

ferences between the old and new policies. Specifically, for table S:

• δ−S = Sold ∧ ¬Snew is a logical description of the tuples from S that are visible to

the user under the old policy, but not under the new policy.

• δ+
S = Snew ∧ ¬Sold is a logical description of the tuples from S that are visible to

the user under the new policy, but were not visible under the old policy.

The intuition for the static pruning condition is straightforward. Each table S

can be broken down, logically, into three components: (1) tuples that were visible

under the old policy, but are no longer visible under the new policy (δ−S ), (2) tuples

that were not visible under the old policy, but are visible under the new policy (δ+
S ),

and (3) tuples whose visibility is unchanged. If we can determine that a query’s

selection condition filters out all tuples in δ+
S and δ−S (i.e., any tuples whose visibility

has changed), and no rows from S have been modified, then we know that the

result of the query was not affected by the policy misconfiguration. This intuition is

formalized by the following theorem. (The proof can be found in Section 9.6.)

Theorem IX.7. Consider a database with relations S1, ..., Sn, and suppose that the

operation log contains only queries (no updates). Let Q be a query in the log with

associated selection condition C.3 If the expression C ∧ (δ−S1
∨ δ+

S1
∨ ...∨ δ−Sn

∨ δ+
Sn

) is

not satisfiable, then Q must not be suspicious.4

3C is a standard propositional formula consisting of atoms of the form attrΘconstant and attr1Θattr2 connected
by logical operations (∧, ∨, ¬), where Θ ∈ {=, >,<,≤,≥, 6=}.

4Of course, the satisfiability problem is NP-complete [35]. However, the size of the input to the satisfiability
problem here grows with the complexity of the conditions (δ−S , δ

+
S ), not the data. Thus, we expect that in practice,

where selection conditions are usually simple, this will perform reasonably well.
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Example IX.8. To illustrate the static pruning condition, consider the first two log

records in the operation log shown in Figure 9.1, and suppose again that Patientsold =

(Age < 30) and Patientsnew = (Age < 15). Thus, δ−Patients = (15 ≤ Age < 30) and

δ+
Patients = false.

We are not able to prune L1 using Theorem IX.7. For the second query (L2),

however, we have C = (Age < 12). Notice that C ∧ (δ−Patients ∨ δ
+
Patients) = (Age <

12)∧ ((15 ≤ Age < 30)∨ false) is not satisfiable. This means that, regardless of the

underlying database instance, the query result could not have been affected by the

misconfiguration. Thus, we know that L2 is not suspicious, and we can prune it.

9.4.3 Handling Data Updates

Unfortunately, the static pruning described in the last section is only valid in the

case where there are no data modifications or updates. When there are updates, we

must also consider the possibility that the underlying database instances may have

been modified as a result of the policy misconfiguration. This challenge is illustrated

by the following example.

Example IX.9. Consider again the operation log in Figure 9.1, and suppose that

Patientsold = (Age < 30) and Patientsnew = (Age < 15). Suppose also that there

is no access control condition on the table Temp (i.e., Tempold = Tempnew = true).

Logically, the portion of Temp that is visible under both policies is unchanged.

Indeed, we have δ−Temp = δ+
Temp = false, so the static pruning condition from the

previous section is technically satisfied, for example, for L6.

Unfortunately, this does not take into account the occurrence of data modifica-

tions. In the example, notice that the rows inserted into Temp are different under

the old and new policies (i.e., Patientsold and Patientsnew). For this reason, the
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result of the query in L6 is actually different in the two cases, and L6 should be

returned by the MR-query!

To address this problem, we propose to construct delta tables, which store the

difference between backlog tables Sb and Ŝb. As we replay the operation log, rather

than applying updates to a full database copy (like the naive algorithm), our opti-

mized algorithm (Algorithm 3 in Section 9.5) will use the delta tables to capture the

difference between the updates that occurred when operating under the old policy

and the updates that would have occurred under the new policy.

Definition IX.10 (Delta Tables). Delta tables store the difference between the

backlog versions of each table when using Pold and when using Pnew. Specifically, for

table S at time t:

• ∆−S = σtime≤t(S
b− Ŝb) is the set of rows that get added to the backlog table when

operating under the old policy, but not under the new policy.

• ∆+
S = σtime≤t(Ŝ

b−Sb) is the set of rows that get added to the backlog table when

operating under the new policy, but not under the old policy.

Thus, σtime≤t(Ŝ
b) = σtime≤t(S

b) ∪∆+
S −∆−S .

Delta expressions and delta tables can be used in combination to develop a pruning

condition that is valid in the presence of updates. For simplicity, consider first a

logged operation that mentions a single table S. Suppose that the operation has

timestamp t, and let C be the selection condition associated with the operation.5 In

this case, the following conditions are sufficient to guarantee that (i) If the operation

is a query, it is not suspicious, and (ii) If the operation is a data modification, its

5Both queries (SELECT statements) and data modification operations (INSERT, UPDATE, and DELETE) can
include selection conditions. For example, in our sample operation log, log record L3 includes the selection condition
WHERE Name = “Bob.” In the case of an SQL statement that contains no explicit selection condition, let C = true.
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effects are exactly the same under the old and new policies. Thus, we can safely

ignore the operation if:

1. The expressions C ∧ δ+
S and C ∧ δ−S are not satisfiable.

2. σC(∆+
S ) = σC(∆−S ) = ∅.

The intuition is mostly analogous to the query-only case. Condition (1) allows

us to determine statically that the logged operation relies only upon the portion of

the data that is logically visible under both the old and new policies. Condition

(2) additionally guarantees that none of the data selected by the operation has been

altered (i.e., updated in a different way as a result of the old policy vs. the new

policy). Of course, unlike the condition described in the previous section, this pruning

condition is not completely static, since condition (2) depends on the specific data

in the delta tables. However, this only requires re-processing the logged selection

condition on the data that has been changed (i.e., the delta tables), rather than re-

processing the query on the full database. For small misconfigurations, we observe

that the sizes of delta tables are often small when compared to the size of the full

database.

This intuition is formalized, and generalized to operations involving multiple ta-

bles, via the following theorem. (The proof can be found in Section 9.6.)

Theorem IX.11. Consider an operation in the log with selection condition C and

that references relations S1, ..., Sn. Without loss of generality, let C be expressed

in conjunctive normal form (CNF); that is, C is a conjunction of clauses, each of

which is a disjunction of literals. The operation can be pruned if both of the following

conditions are satisfied:

1. The expression C ∧ (δ−S1
∨ δ+

S1
∨ ... ∨ δ−Sn

∨ δ+
Sn

) is not satisfiable.
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Time Op Id Name Age Disease

3 Del 2 Bob 20 Ulcer

3 Ins 2 XXX 20 Ulcer

(a) ∆−
Patients

Time Op Id Name Age Disease

(b) ∆+
Patients

Time Op Id A B C

5 Ins 2 XXX 20 Ulcer

(c) ∆−
Temp

Time Op Id A B C

(d) ∆+
Temp

Figure 9.6: Delta-Tables for Running Example

2. Let CSi
be the conjunction of clauses in C that mention only attributes in Si. (If no

such clauses exist, let CSi
= true.) For each relation Si, σCSi

(∆+
Si

) = σCSi
(∆−Si

) = ∅.

Example IX.12. To illustrate, consider the operation log shown in Figure 9.1.

Consider also the backlog table Patientsb shown in Figure 9.3. Suppose again that

Patientsold = (Age < 30), Patientsnew = (Age < 15), and Tempold = Tempnew =

true. Thus, δ−Patients = (15 ≤ Age < 30), δ+
Patients = false, δ−Temp = false, and

δ+
Temp = false.

The alternate backlog database D̂B
b
, which would be constructed if the new policy

was in place, is shown in Figure 9.3. The delta tables ∆−Patients, ∆+
Patients, ∆−Temp,

and ∆+
Temp for this example are shown in Figure 9.6. Using the above conditions, L2

can be pruned. However, the remaining operations (L1, L3, L4, L5, L6) have to be

at least partially re-executed, as we will describe in the next section.

9.4.4 Simultaneous and Partial Re-Execution

If the pruning strategies described in the previous subsections fail, it is necessary

to at least partially re-execute the remaining logged operations. In this section, we

introduce two additional optimizations. The first is based on partial re-execution;

we can sometimes determine mid-execution that an operation can be ignored. The

second is based on simultaneous re-execution; rather than executing each logged

query twice (once with the old data and policy, and once with the new data and
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policy), we can often save computation by combining the two into a single query

plan.

Partial Re-Execution

Our first optimization is based on the observation that it may not be necessary

to completely re-execute every un-pruned logged operation; in some cases, we can

determine mid-execution that the operation can be ignored / pruned.

Our basic approach is illustrated with a simple example. Consider the following

SQL query, which was logged at time t:

SELECT *

FROM R, S, T

WHERE (R.A > 10 OR S.B < 20)

AND R.ID = S.ID AND S.ID = T.ID

Two sample plans for this query (under the old and new policies) are shown in

Figure 9.7. For any time t, we can compute static snapshot St from the backlog Sb

and Ŝt from Ŝb = Sb ∪∆+
S −∆−S .

Extending the intuition from the previous section, we can safely ignore this query

if we can conclude that the two plans produce the same result. In the general case, we

can establish this by identifying a cut in the query plan such that the intermediate

results of both queries at every point in the cut are equivalent. Figure 9.8 shows

three possible cuts for the example plan.

One way to check whether a cut exists is to evaluate both queries in a “side-by-

side” manner using the backlog database and delta tables. This approach re-evaluates

both queries (old and new) from the bottom up; after evaluating each operator, it

checks whether the results are the same in both cases. If a cut is found, there is no
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!(R Old)! !(S Old)!

!(T Old)!
!(R.A > 10 v S.B < 20)!

!(R New)! !(S New)!

!(T New)!
!(R.A > 10 v S.B < 20)!

Rt! St!

Tt!

Rt! St!

Tt!

Figure 9.7: Query Plans For The Old and New Policies

T!

S!R!

T!

S!R!

T!

S!R!

Figure 9.8: Possible Query Plan Cuts

need to continue executing the queries. If no cut is found, the process continues until

both queries are completely re-executed. A discussion of implementation tradeoffs is

in Section 9.8.

Of course, the weakness of this approach is that each operation must be run twice

(once on the old data and policy, and once on the new data and policy). For this

reason, we introduce one more optimization that allows us to evaluate both queries

simultaneously.

Simultaneous Re-Execution

One way to test if a cut exists is to evaluate both queries (old and new) in a

“side-by-side” manner, using the backlog database and delta tables. However, in the

worst case, this process wastes a lot of work. Notice, for example, in Figure 9.7, if
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there is significant overlap between Rt and R̂t, and between St and Ŝt, then the two

queries are joining many of the same tuples.

As a more efficient alternative, we instead propose merging the two (old and new)

query plans to produce a single plan.6 Figure 9.9 shows the merger of the plans in

Figure 9.7. In this figure, the policy-based selection conditions (e.g., Sold and Snew)

are pushed all the way down, and shown as part of the data. For each table S,

we combine the rows from σSold
(St) and σSnew(Ŝt), and we add a flag to each row to

indicate where it came from. “New” tuples are those that are emitted only under the

new plan. “Old” tuples are emitted only under the old plan. “Unchanged” tuples

are emitted under both plans. During query re-execution, these flags are created

dynamically and propagated through the plan to ensure result correctness. More

information on creating and propagating flags through the query plan can be found

in Section 9.7.

When evaluating the combined query plan, we can conclude that the query was

unaffected by the misconfiguration if there exists a cut in the plan such that the

intermediate results along all points in the cut contain no tuples flagged as “Old” or

“New.”

9.4.5 Putting it All Together

Using the optimizations that we have described so far, we are now ready to de-

scribe our general algorithm for processing MR-queries, which addresses many of

the inefficiencies of the naive algorithm. The algorithm begins by creating, for each

table Sb in DBb, tables ∆−S and ∆+
S , which are initially empty. Then, starting from

t1, it replays the operation log forward. For each logged operation, it first checks

6In some ways, this is related to the idea of multi-query optimization [70, 84], the goal of which is to simultaneously
evaluate multiple queries, with shared sub-expressions, on a single database. In contrast, in our setting, we need to
evaluate the same query on two slightly different databases.
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Figure 9.9: Combined Query Plan. Tuples flagged “New” are shown in blue (bottom third of each
table), “Old” in yellow (top third), and “Unchanged” in white (middle third).

whether it is possible to prune the operation using the criterion in Theorem IX.11.

If the pruning condition fails, then the algorithm must (at least partially) re-execute

the logged operation. More specifically, we use the simultaneous re-execution plan

described in Section 9.4.4. During re-execution, if a cut is found (as described in Sec-

tion 9.4.4), then re-execution is aborted. Otherwise, the re-execution is carried to

completion, at which point the results are compared (in the case of logged queries),

or the delta-tables are updated (in the case of logged data modification operations).

Pseudo-code is provided in Algorithm 3 in Section 9.5.

9.5 Algorithm Details

Pseudo-code for the naive algorithm, which is used to help illustrate the semantics

of MR-queries, is provided in Algorithm 2.

Pseudo-code for the optimized algorithm, which includes static pruning, delta-

tables, simultaneous and partial re-execution, is shown in Algorithm 3. In the pseudo-

code, Prunable(C, delta tables) returns true if the condition in Theorem IX.11 is
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Algorithm 2 Naive Algorithm for Evaluating an MR-Query

Input: Pold, Pnew, t1, t2, operation log, backlog database DBb

Output: Set of suspicious queries

1: Construct a second backlog database D̂B
b

by creating a new backlog table Ŝb for each table
Sb in DBb. Copy into Ŝb every row in Sb with timestamp ≤ t1.

2: Let e be the first entry in the operation log such that e.timestamp ≥ t1
3: while e.timestamp ≤ t2 do
4: Let t = e.timestamp
5: if e.sql is a data modification operation then

6: Evaluate e.sql using policy Pnew and D̂B
t
. Any data modifications are applied to D̂B

b
.

7: else if e.sql is a SELECT statement then
8: Let Q = e.sql

9: Evaluate Q on D̂B
t

(using Pnew) and also on DBt (using Pold).

10: if Q(Pnew(D̂B
t
)) 6= Q(Pold(DBt)) then

11: Add e to the MR-query result set
12: e = next entry in the operation log

satisfied.

Algorithm 3 Optimized Algorithm for Evaluating an MR-Query

Input: Pold, Pnew, t1, t2, operation log, backlog database DBb

Output: Set of suspicious queries
1: For each table Sb in DBb, create tables ∆−S and ∆+

S , which are initially empty
2: Let e be the first entry in the operation log such that e.timestamp ≥ t1
3: while e.timestamp ≤ t2 do
4: Let t = e.timestamp
5: Let C be the selection condition associated with e.sql
6: if Prunable(C, delta tables) then
7: skip the operation e
8: else
9: For every table Sb in DBb, let view Ŝb = Sb ∪∆+

S −∆−S .

10: Simultaneously re-execute e.sql on D̂B
t

with Pnew and on DBt with Pold

11: if a cut is found then
12: skip the operation e
13: else if e.sql is a SELECT statement then
14: Add e to the MR-query result set
15: else if e.sql is a data modification operation then
16: Suppose that during the original execution, e.sql added tuple set T to Sb, but now

e.sql adds T ′ to Sb. Update the delta-tables accordingly: ∆+
S = ∆+

S ∪ (T ′ − T ); ∆−S =
∆−S ∪ (T − T ′)

17: e = next entry in the operation log

9.6 Proofs

Proof of Theorem IX.7: The proof is straightforward. Suppose that Q was logged

at t. If there are no updates, and σC(Pold(DB
t)) = σC(Pnew(DBt)) (i.e., the result
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of applying policy Pold and selection condition C is the same as applying Pnew and

C), then it is safe to prune Q.

Given the following definitions, we must show that R1 = R2.

R1 = σC(σS1new(St1)× ...× σSnnew(Stn))

R2 = σC(σS1old(St1)× ...× σSnold
(Stn))

If C ∧ (δ−S1
∨ δ+

S1
∨ ... ∨ δ−Sn

∨ δ+
Sn

) is not satisfiable, this means that none of the

following expressions is satisfiable:

(C ∧ S1old ∧ ¬S1new), (C ∧ S1new ∧ ¬S1old), ...,

(C ∧ Snold ∧ ¬Snnew), (C ∧ Snnew ∧ ¬Snold)

Using this, it is easy to show that R1 −R2 = ∅ and R2 −R1 = ∅.

Proof of Theorem IX.11: Suppose that the operation occurred at time t. If

σC(Pold(DB
t)) = σC(Pnew(D̂B

t
)), then it is safe to prune the operation.
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Given the following definitions, we must show that R1 = R2.

R1 = σC(σS1new(Ŝ1

t
)× ...× σSnnew(Ŝn

t
))

R2 = σC(σS1old(St1)× ...× σSnold
(Stn))

These can be rewritten as follows (by pushing down selection conjuncts that refer

only to a single table):

R1 = σC(σS1new(σCS1
(Ŝ1

t
))× ...× σSnnew(σCSn

(Ŝn
t
)))

R2 = σC(σS1old(σCS1
(St1))× ...× σSnold

(σCSn
(Stn)))

Condition (2) is sufficient to guarantee that, for i ∈ 1..n,

σCSi
(Ŝi

t
) = σCSi

(Sti ).

The reason for this is that no tuples satisfying the condition CSi
have been modified

differently as the result of the different policies, since σCSi
(∆+

Si
) = σCSi

(∆−Si
) = ∅.

Finally, per the same argument in the proof or Theorem IX.7, we can show that

R1 −R2 = ∅ and R2 −R1 = ∅.

9.7 Simultaneous Re-Execution

9.7.1 Combined Tables and Flags

When executing a combined query on table S, we retrieve σSold
(St) ∪ σSnew(Ŝt),

and we flag the input as follows:

• “New” Flags: σSnew(Ŝt)− σSold
(St)

• “Old” Flags: σSold
(St)− σSnew(Ŝt)

• “Unchanged” Flags: σSold
(St) ∩ σSnew(Ŝt)
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This can be explained as follows. When accessing a table S, under the old policy

and data, we would have retrieved Old(S) = σSold
(St). Under the new policy, we

retrieve New(S) = σSnew(Ŝt). This is shown, for example, in Figure 9.7.

When evaluating the combined policy, we will take all tuples from New(S) ∪

Old(S) as input. We want to flag all tuples in New(S) − Old(S) as “New”, tuples

in Old(S)−New(S) as “Old”, and tuples in New(S) ∩Old(S) as “Unchanged”.

During query re-execution, these flags are created dynamically and propagated

through the plan according to the following rules (This can be done in SQL, without

modification to the DBMS engine):

• Selection: If a selection takes a tuple as input, and the tuple passes the selection

filter, the output tuple keeps the same flag.

• Projection: Similarly, if a projection operator takes a tuple as input, the corre-

sponding output tuple has the same flag.

• Join: The challenging operator is join. If a join takes as input two tuples with the

same flag (i.e., both “New”, both “Old”, or both “Unchanged”), the emitted result

tuple maintains that same flag. If the join takes as input two tuples such that one

tuple is “Old” or “New”, and the other “Unchanged”, the resulting tuple inherits

the “Old” or “New” flag. Finally, if a join takes as input two tuples such that one

is “Old” and the other “New,” even if the two tuples satisfy the join condition, no

result tuple is produced. The reason for the final case is due to the fact that these

input tuples are actually part of different conceptual query executions.

9.7.2 Implementation

The combined tables (and flags) described above can be computed using standard

SQL. This implementation is for the class of queries described in Section 9.4.1.
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The following outlines how to create a combined table, and assigns the appropriate

flags to each row of the table (New = 1, Old = −1, Unchanged = 0). This is

accomplished with SQL by taking the union of St with Ŝt; additionally, for each row

from St, we add a flag of -1, while for each row from Ŝt, we add a flag of 1. We then

group by all attributes in the table except the dynamically generated flag. If the

sum of the flags in a group is -1, this means that the row only exists under the old

policy. If the sum of the flags in a group is 0, this means that the row exists under

the new and old policies (-1 + 1 = 0). If the sum of the flags in a group is 1, this

means that the row only exists under the new policy.

When executing the combined query, we can propagate flags according to the rules

outlined in Section 9.7.1 by adding the following constraint for all pairs of tables R

and S referenced in the from clause of the query:

((S.flag != (-1) * R.flag) OR

(S.flag = 0 AND R.flag = 0))

Finally, if a query result contains only tuples with flags = 0 (i.e., unchanged rows),

then the query is not suspicious. More generally, if the result of the query under the

new policy is the same as the result under the old policy (even if the result contains

flagged rows), then the query is not suspicious. For SPJ queries, we can check if

the results under the two policies are the same by grouping by all attributes and

summing the value of the flag; thus, if the old policy and new policy produce the

same result for a given row, the resulting sum for the row will be zero.

9.8 Partial Re-Execution

We can safely ignore a query if we can conclude that the query plans from the

old and new policy produce the same result. In the general case, we can establish
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this by identifying a cut in the query plan such that the intermediate results of both

queries at every point in the cut are equivalent. Figure 9.8 shows three possible cuts

for the example plan. The second cut, for example, would require that both of the

following conditions be satisfied:

1. σR.A>10∨S.B<20(σRNew
(R̂t) ./ σSNew

(Ŝt))

= σR.A>10∨S.B<20(σROld
(Rt) ./ σSOld

(St))

2. σTNew
(T̂ t) = σTOld

(T t)

There are several possible ways that partial re-execution can be implemented.

Our current prototype supports a rudimentary version of option (3). However, in this

section, we describe alternative implementation strategies, as well as the important

design considerations.

1. Internal Database Filters: The goal of partial re-execution is to execute

the query plan until we can guarantee that the result is not affected by the

misconfiguration. One possible implementation strategy is to add filters inside

the query processor that examine the propagation of rows through a pipelined

query plan. If information from the filters can be used to determine that old

and new flagged rows do not pass the filters across a cut in the query plan, then

the execution of the query can be stopped. This strategy has the least impact

on the query processor, and does not alter query plans. On the other hand, this

method may not be practical since the internals of the database engine must be

modified.

2. Materialize and Check Intermediate Results: For many query plans, the

query optimizer chooses to materialize, rather than pipeline, some portions of

the query plan. We can leverage these materialized intermediate results to check
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if there exits a cut in the plan that does not contain an old or new flagged row.

If there exits a cut, then the execution of the query can be stopped. If old

or new flagged rows do exist, the materialized results can be used as input to

the next part of the query plan. The extra cost of this approach is storing the

intermediate result, scanning the result for flags, and, in the cases when the

result contains old or new flags, reading the intermediate result and sending it

to the next part of the query plan. Overall, this approach appears practical only

when the optimizer is already materializing certain intermediate query results.

3. Left-Deep Query Plan Analyzer: The third implementation strategy for

partial re-execution relies on a left-deep query plan, which is commonly gen-

erated by modern query optimizers. In a left-deep plan, the input tables are

joined one at a time, according to a total order. (For example, in Figure 9.7, R

is joined with S, and then the result is joined with T . Thus, the join order is

R, S, T .)

Briefly, the partial re-execution algorithm for left-deep plans works as follows:

We begin with the last table in the join order (In Figure 9.7, this is T .), and we

check whether this table can be pruned according to Theorem IX.11. If not, we

must re-execute the entire query (i.e., the only possible cut is the rightmost cut

in Figure 9.8). If it can be pruned, then we consider the previous table in the

join order (in this case, S), and check whether S can be pruned according to

Theorem IX.11. This algorithm continues until it reaches a table that cannot

be pruned, at which point we must execute the subquery rooted at that position

of the plan. For example, if we find that we can prune T , but not S, then we

consider the second cut in Figure 9.8 by re-executing R ./ S, and checking the

flagged rows in the result. If the result contains no tuples flagged as “Old” or
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“New,” we can stop. Otherwise, we must execute the entire query.

9.9 Constructing Breach Reports

Misconfiguration-response queries are at the core of a broader framework for re-

porting data breaches. In this section, we provide a brief overview of how such

reports can be constructed, and what information they can contain.

At a high level, there are two different kinds of reporting, with somewhat different

goals and requirements:

• Organizational Reporting: In the basic setting, the organization that has ex-

perienced the breach must construct a single report summarizing the entire event.

In the case of HITECH, for example, a covered entity (e.g., hospital) needs to

compile a report to be sent to the regulatory government agency (in this case, the

office of the Secretary of Health and Human Services). Similarly, contractors do-

ing work on behalf of a covered entity must report breaches to the covered entity.

For example, if a hospital has outsourced billing to a separate company, and that

company experiences a breach, it must send a report to the hospital.

• Individual Reporting: In the second case, when an organization has experi-

enced a breach, in addition to compiling a single report summarizing the event,

it may also be necessary to notify individuals whose personal information was

compromised as part of the breach.

We will focus primarily on organizational reporting, but we will also describe our

initial ideas for extensions to individual reporting.

Throughout the main body of the chapter, for ease of exposition, we used very

simplistic operation logs as examples. In practice, the operation log contains the

timestamp and sql text, but it also contains additional attributes, including but not
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limited to: the database and/or application username of the individual who issued

the SQL command, an application identifier appID, and sometimes the purpose for

which the query was issued, or a description of an external data recipient [7].

For each suspicious query Q, we can also explain how the query was affected by the

misconfiguration. In particular, we can summarize the difference between the result

that occurred under the old policy Pold and the result that would have occurred if

Pold had been replaced with Pnew. Suppose Q was logged at time t. Let Q1 be the

result of evaluating Q on DBt using Pold, and let Q2 be the result of evaluating Q

on D̂B
t

using Pnew. The difference between the two result sets can be summarized

by two tuple sets: Qnew = Q2 −Q1 and Qold = Q1 −Q2.

Following a misconfiguration, the most detailed organizational breach report con-

tains information about every suspicious query Q in the operation log (i.e., each

record in the result of the MR-query). This information includes the attributes from

the log (e.g., timestamp, sql, username, appID, purpose, recipient), Qold, and

Qnew. Of course, we can further restrict and summarize the information in this de-

tailed report based on the requirements of the regulation. For example, HITECH

requires reports to document to whom data was disclosed (which can be explained

using username or recipient) and the type and amount of data disclosed (which

can be explained using Qnew and Qold).

Individual reports can be constructed in a similar way, but they present several

additional challenges. Specifically, we only need to send a report to a user U if her

information was involved in the breach, and the report should only explain how U ’s

information was disclosed. In the future, we plan to extend the MR-query using an

approach related to SQL GROUP BY. At a high level, the idea is to first divide the

data into buckets, based on some attribute (e.g., a separate bucket for each patient’s
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information). Then, the MR-query with GROUP BY (conceptually) processes the

MR-query once per bucket, using only the data in that bucket.

9.10 Experimental Evaluation

To evaluate our ideas, we implemented the PolicyReplay system (Figure 9.10).

Given information about a policy misconfiguration, a critical component of the sys-

tem is the efficient evaluation of MR-queries. We compare the performance of our

optimized MR-query processing algorithm (Algorithm 3) and the naive algorithm

(Algorithm 2). We utilize numerous simulated data sets and workloads that are

tuned by specific parameters (Section 9.10.2) to determine under what conditions

our optimizations improve performance.

9.10.1 Implementation and Environment

Our prototype system is implemented as a thin Java layer on top of PostgreSQL7;

it currently supports the static pruning, delta tables, and simultaneous re-execution

optimizations, as well as a rudimentary implementation of partial re-execution. We

use the Java Constraint Programming Solver (JaCoP)8 to implement static pruning.

SQL parsing is assisted by Zql, a Java SQL Parser9. The experiments were executed

on a dual core CPU with 2 GB of RAM, running Red Hat Linux.

9.10.2 Data and Workload

MR-query performance is evaluated with multiple simulated data sets and work-

loads of logged SQL operations. The underlying database contains tables T1, ...Tn

that are each composed of ten attributes a1, ..., a10. We added an indexed primary

key, timestamp attribute and operation-type attribute to each table in order to con-

7http://www.postgresql.org
8http://jacop.osolpro.com/
9http://www.gibello.com/code/zql/
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struct the backlog database. Table Ti consists of Ri rows. The values for attribute aj

are selected from a uniform distribution in the range [1, min(100×j2, Ri)]; the differ-

ent ranges are used to vary the selectivity of selection conditions on each attribute.

The simulated logged SQL workload contains INSERT, UPDATE, DELETE and

SELECT operations as described in Section 9.4.1. The logged workload is generated

by tuning the parameters in Figure 9.11.

Parameter Description

Policy Misconfiguration (PM) The selectivity of the disjunction of the delta expressions on
the underlying tables

Operation Selectivity (Sel) The selectivity of a logged operation on each table

Select to Update Ratio (Ratio, R) The proportion of all logged operations that are SELECT state-
ments (1.0 implies all SELECTs)

Predicate Attributes (P) The number of attributes that may be used to create a literal
in the selection condition, one of which is the attribute with
the policy misconfiguration (P = 1 implies the attribute with
the misconfiguration is always chosen for a literal, while P =
8 implies there is a 1

8
probability that the attribute with the

misconfiguration is chosen for a given literal.)

Database Size (Rows) Number of rows initially in the database

Number of Logged Operations
(Ops)

The total number of logged operations

Figure 9.11: Experimental SQL Workload Parameters

9.10.3 Results

Static Pruning (No Updates)

Our first set of experiments measures the effectiveness of static pruning in the

simple case, where the operation log only contains queries. Figure 9.12 compares the

runtime performance of evaluating an MR-query using the naive approach, which re-

executes all logged queries, and the static pruning method, which only re-executes

the queries that cannot be pruned. The figure shows performance across a range

of policy misconfigurations for a workload with 1% selectivity on a single table.

For small misconfigurations, static pruning is able to prune a large proportion of

queries, resulting in improved performance. As the size of the misconfiguration

grows, more operations must be re-executed. This trend is expected because, with a
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larger misconfiguration, it is more likely that a logged query’s selection condition will

intersect the delta expression. Additional pruning results can be found in Section

9.11.

Pruning (With Updates)

Next, when the logged workload also contains updates, we measure the benefits

of pruning with delta tables (Theorem IX.11). If a logged operation cannot be

pruned, it is re-executed. Consider a workload on a single table where the all the

parameters are fixed except for the size of the policy misconfiguration. When the

misconfiguration is small (1% and 10%) as shown in Figures 9.13 and 9.14, it is more

efficient to evaluate the MR-query using pruning with delta tables (Pruning + Delta

Tables) than the naive method; the MR-query is evaluated more quickly because

fewer operations must be re-executed. Another benefit of the delta tables is that

they remove the cost of copying the database prior to evaluating the MR-query; for

large databases, this cost can be large.

While pruning reduces the number of operations that must be re-executed, re-

executing an operation using delta tables is more costly than re-executing an oper-

ation without delta tables because there is an extra cost to construct the table Ŝ

from S, ∆−S , and ∆+
S . Thus, as the size of the delta tables grows, the re-execution

cost increases. We observe that there exists a tradeoff point when it is no longer

advisable to use pruning with delta tables, but is more efficient to use the naive

method. This tradeoff point is determined by the parameters in the workload such

as the size of the misconfiguration, the ratio of selects to updates, and the selectivity

of the operations. Additional experimental results are in Section 9.11.
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Figure 9.12: Static Pruning Performance(1% Sel., 250K Rows, P=1, R=1.0)
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Figure 9.13: Performance - 1% PM(1% PM, 1% Sel., 250K Rows, P=1, R=0.9)

Simultaneous Query Evaluation

Finally, we evaluate the effectiveness of simultaneous re-execution. Figures 9.13

and 9.14 show the performance of the naive, naive plus simultaneous re-execution

(Naive + Simult.), pruning with delta tables (Pruning + Delta Tables) and prun-

ing with delta tables plus simultaneous re-execution (Pruning + Delta + Simult.)

methods for different policy misconfigurations on a single table. We find that the

performance of the naive method is improved when queries are simultaneously re-

executed. The performance of the pruning with simultaneous approach improves
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Figure 9.14: Performance - 10% PM(10% PM, 1% Sel., 250K Rows, P=1, R=0.9)
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Figure 9.15: Static Pruning Statistics(1% Sel., 250K Rows, P=1)

slightly for small misconfigurations because only a few queries are re-executed; for

larger misconfigurations, the benefits of simultaneous re-execution decrease.

9.11 Additional Experiments

9.11.1 Static Pruning (No Updates)

In addition to measuring the runtime performance of evaluating the MR-query, we

also measured the effectiveness of static pruning by counting the number of logged

queries that were suspicious, unsuspicious, and pruned. (Recall that the number of

pruned queries must be ≤ the total number of unsuspicious queries.) Intuitively,
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Figure 9.16: Static Pruning Statistics(1% Sel., 250K Rows, 10% PM)
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Figure 9.17: Pruning With Updates(1% Sel., 250K Rows, P=1, R=0.9)

as more queries are pruned, performance improves, since fewer queries must be re-

executed.

Figure 9.15 shows the pruning information across a range of policy misconfigu-

rations with a workload that has 1% selectivity on a single table, where the policy

misconfiguration is on one attribute. For small misconfigurations (PM=1%), the

static pruning is able to prune a large proportion of queries (484 pruned out of 500,

in this case). As the misconfiguration gets larger (PM=50%), fewer queries can be

pruned; however, we are able to prune all operations that are unsuspicious. This

trend is expected because, with a lager misconfiguration, it is more likely that a
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Figure 9.18: Database Size(1% Sel., 250K Rows, P=1, R=0.9)
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Figure 9.19: Performance - 50% PM(50%PM, 1%Sel., 250K Rows,P=1,0.9 Ratio)

logged query’s selection condition will intersect with the delta expressions.

In order for an operation to be statically pruned, there must exist a literal in the

selection condition that contradicts the delta expressions. Thus, when the attribute

with the policy misconfiguration is not in the selection condition, it is less likely that a

contradiction exists and the operation can be pruned. Figure 9.16 shows the pruning

effectiveness as the number of predicate attributes (P) increases. As the number of

predicate attributes increases, fewer operations are pruned. It is important to note

that in some cases we are not able to prune all unsuspicious operations using the

static pruning condition. In these cases, even though the delta expressions intersect



151

0	



200	



400	



600	



800	



0.5	

 0.6	

 0.7	

 0.8	

 0.9	

 1	

Ti
m

e 
to

 E
va

lu
at

e 
M

R-
Q

ue
ry

 (s
)	



Ratio	



Naïve	

 Pruning + Delta + Simult.	



Figure 9.20: Ratio Impacts Performance(10% PM, 0.1% Sel., 250K Rows, P=1)

the selection condition (statically), there does not exist a row in the specific database

instance that is affected by the misconfiguration.

9.11.2 Pruning (With Updates)

When updates are considered, in addition to measuring the runtime performance

of evaluating the MR-query, we also counted the number of logged operations that

were suspicious, unsuspicious, and pruned. Figure 9.17 shows these statistics when

the log contains updates. As expected, for small misconfigurations, we are able to

prune a large portion of the operations. As the misconfiguration gets larger, fewer

operations are pruned.

While pruning reduces the number of operations that must be re-executed, as

mentioned in Section 9.10.3, the cost of re-executing an operation using delta tables

is larger than re-executing an operation without delta tables because there is an

extra cost to construct the table Ŝ, which is formed by removing the rows in ∆−S

from S and appending the rows from ∆+
S . Thus, as the size of the delta tables grows,

the cost of re-executing an operation increases. Figure 9.18 shows the number of

rows in the database after using the naive method, which includes the rows in S

and Ŝ, the number of rows contained in the delta tables, and the total number of
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rows when the delta tables are used, which includes S, ∆−S , ∆+
S and rows used to

store the results of update operations that cannot be pruned. As expected, for small

misconfigurations, the delta tables are small and the extra cost of constructing Ŝ is

small (see Figures 9.13 and 9.14). In contrast, for larger misconfigurations (50%),

the delta tables are large, which slows down the performance of the pruning method

(Figure 9.19); in this case, it is more efficient to evaluate the MR-query using the

naive method.

The select to update ratio can impact the performance of evaluating an MR-query.

Figure 9.20 shows the time to evaluate an MR-query for the naive method, and the

pruning with delta tables plus simultaneous re-execution method for a range of ratios.

When the log contains many updates (i.e., has a low ratio), the performance of both

methods worsens due to the higher cost of writing to the database than reading.

Additionally, a larger number of updates typically will increase the size of the delta

tables, resulting in fewer operations being pruned and increasing the time to re-

execute a query. For a ratio of 0.5, the naive method and pruning method have

similar performance for the specified set of parameters. As the ratio gets larger

(fewer updates), the pruning method outperforms the naive approach.

The challenge is to determine, before the MR-query is evaluated, which method

(naive plus simultaneous re-execution, or pruning with delta tables plus simultaneous

re-execution) is the most efficient given the workload parameters. We believe this

decision can be made by developing a cost-based optimizer. One promising approach

would use the database’s query optimizer to estimate the cost of re-executing each

logged operation using each of the two methods; given the total estimated cost, the

appropriate method can be chosen.
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9.11.3 Partial Re-Execution

We observed that pruning with delta tables as described by Theorem IX.11 cap-

tures many of the cases where partial re-execution is applicable. Intuitively, prun-

ing with delta tables is a form of partial re-execution where the query plan is cut

across the leaf selection conditions. However, we did find a few cases where par-

tial re-execution did provide additional performance benefits. Particularly, partial

re-execution is beneficial when the selection condition contains a clause that is com-

posed of a disjunction of literals that references multiple tables. In some cases, new

or old rows may not be filtered by the conjunction of clauses that only refer to a

single table, but are then filtered out by the clause that references multiple tables.

In such a case, partial re-execution can improve re-execution performance by only

re-executing a subset of the query plan.

We used the rudimentary Left-Deep Query Plan Analyzer as described in Section

9.8 to determine what cuts in the query plan should be tested. We crafted a workload

of an update operation and a query that would benefit from partial re-execution. The

query had three tables R, S and T, and a selectivity of 1% for each table. The query

plan analyzer determined that the table T could be removed so that the sub-query

of R and S only needed to be evaluated. For this example, we found that partial

re-execution reduced the run time of the query by 28%.

9.12 Related Work

While previous auditing work is related to this thesis, it does not consider the flow

of information via updates. For example, if a record r is copied from one location to

another location, say r′, the auditor does not understand this. Thus, an audit on r

would fail to retrieve SQL queries to which r′ was indispensable. This thesis addresses
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this problem cleanly through the definition of MR-queries, which conceptually replay

the entire database history, including updates, and retrieve all queries whose results

have changed.

There are other variations of the data auditing problem that have been studied in

the past. Lu and Miklau consider auditing a database under data retention restric-

tions [55]; this work is concerned only with database updates, not auditing queries

(i.e., SELECT statements). Hasan et al. analyze efficient approaches to support

term-immutable databases for compliance purposes [40]. Agrawal et al. consider

auditing disclosure by relevance ranking [3]: Given a sensitive table that has been

“leaked” from an organization, and a log of past SQL queries, determine which

queries were most likely to have been the source of the leak.

Recent work has also focused on the problem of recovering from malicious database

transactions [9, 20, 53, 54]. At a high level, if a committed transaction is discovered to

have been malicious, its effects, and the effects of those transactions that depended

on it, must be undone. One important difference between this and our approach

is the level at which we reason about data dependencies. In transaction theory, a

transaction T2 is usually said to depend on another transaction T1 if it reads a data

object (e.g., a tuple) written by T1. When defining the semantics of MR-queries, we

are operating at a higher level of abstraction; notably, a query Q may read a tuple

that was updated by some other command, but unless that tuple changes the result

of Q, it is not considered to have influenced Q. Thus, while one might suggest taking

a “transactional” approach to our problem (i.e., by tracking reads and writes), this

approach would likely lead to larger result sets for MR-queries. Further, we consider

it desirable to define the semantics on MR-queries based only on the syntax of the

logged operations, rather than the specific plans used to execute them. Notice, for
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example, that the tuples read by a query vary based on the plan (e.g., scan vs. index

lookup), which would affect the MR-query result if we were to take a transactional

approach.

9.13 Summary

In this chapter, we introduced the PolicyReplay framework for responding to

database access control misconfigurations. One of the critical components of this

framework is the misconfiguration-response (MR) query, which retrieves those queries

that may have revealed unauthorized information. The naive algorithm for evaluating

MR-queries can be expensive. Thus, we have developed and evaluated a suite of

techniques (including pruning, delta tables, partial re-execution, and simultaneous

re-execution) for improving the performance of this operation.



CHAPTER X

Conclusion and Future Work

The accountability and security of electronic medical records is increasingly impor-

tant. Recent U.S. legislation such as the Affordable Care Act, HIPAA and HITECH

outline guidelines for the appropriate use of personal health information. Unfortu-

nately, current technologies do not meet the requirements of these regulations. In

particular, because of the dynamics of patient care, employees are able to access

any patient’s medical record, even though they may not be involved in the patient’s

treatment. While audit logs record all accesses to personal health information and

compliance officers monitor the logs, there are too many accesses for compliance

officers to monitor given their limited auditing budget.

This thesis presented the explanation-based auditing system to improve the ac-

countability and security of personal health information and improve compliance

officer efficiency. The main insight was that most appropriate accesses to medical

records occur for valid clinical or operational reasons in the process of treating a

patient, while inappropriate accesses do not. Therefore, if the auditing system can

determine the reason why an access occurred, the access is likely appropriate and

does not need to be reviewed further by the compliance officer. Intuitively, the au-

diting system serves as a filter on the audit log so the compliance officers have a

156
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much smaller subset of suspicious accesses to review.

The challenge is then how to capture these clinical or operational reasons for

access. Chapter V described how explanations for access are represented as paths

connecting the patient whose record was accessed to the employee accessing the

patient’s record. Interestingly, this model is successful because medical databases

already store a large amount of patient data such as appointments, medication orders

and X-rays that describe how patients are treated, and can be used to construct

these paths. Moreover, Chapter V presented algorithms to automatically mine these

explanations directly from the data, rather than requiring the compliance officer to

manually specify them.

Unfortunately, many appropriate accesses cannot be explained using data explic-

itly stored in the database. In particular, databases are often missing data that, if

filled-in, could be used to explain additional accesses. For example, patients make

appointments with doctors, not nurses, which makes it difficult to explain why nurses

access medical records. Chapter VI presented two approaches to fill-in missing types

of data. Specifically, algorithms described how to discover collaborative working

relationships between employees, and extract which diagnoses each department is

responsible for treating. While adding these missing types of data improved the re-

sults of the auditing system, there are still opportunities to enhance the database’s

completeness.

An experimental evaluation using data from the University of Michigan Health

System demonstrated that the explanation-based auditing system is capable of fil-

tering over 94% of the accesses in the audit log. Unfortunately, a large number of

suspicious accesses remain, which is still too large for compliance officers to review.

In particular, broadly functional departments such as the Central Staffing, Phar-



158

macy and Radiology Departments account for a large proportion of the unexplained

accesses. Therefore, to best utilize compliance officers’ time, Chapter VII presented

techniques to order accessed by their suspiciousness so that the most suspicious ac-

cesses are reviewed first. The main observation here is that these broadly functional

departments’ accesses are temporally dependent on other events occurring in the

hospital. This dependency can then be used to construct a suspiciousness metric to

order accesses for review.

To close-the-loop and verify that the explanation-based auditing system accu-

rately classifies accesses and improves compliance officers’ efficiency, Chapter VIII

described the implementation of a prototype auditing system. The prototype allows

compliance officers to extract treatment information from a commercial EMR sys-

tem, load the data into the prototype, create and mine explanations and then search

for inappropriate behavior. The University of Michigan Health System’s Compliance

Office will test the prototype with previously known instances of inappropriate use

to evaluate the practical benefits of the auditing system.

Lastly, this thesis explored issues related to DBMS-level auditing. Specifically,

while employees often access data through restrictive user interfaces (that only allow

access to a single medical record at a time), they can also execute ad-hoc SQL

queries to analyze patient populations. In this case, the audit log records the SQL

query’s text rather than (employee, patient) pairs, which introduces ambiguity with

respect to which patients’ records were accessed. Chapter IX described the problem

of tracking accesses at the DBMS level, particularly in the case of access control

policy misconfigurations.

Moving forward, there are many opportunities to improve the explanation-based

auditing system. First, the auditing system has thus far relied on de-identified patient



159

data for its analysis. However, if patient privacy can be ensured, there are opportuni-

ties to incorporate clinical notes into the auditing system. Specifically, clinical notes

can provide more details about a patient’s treatment than lists of hospital events.

In particular, clinical notes describe the process of a patient’s treatment, reference

other caregivers involved in the patient’s care (e.g., consulting physicians) and note

the patient’s progress in raw text. Natural language processing techniques can be

applied to clinical notes to extract additional facts about a patient’s treatment (e.g.,

Alice was referred to Dr. Bob), which can be incorporated naturally into the auditing

system.

Second, electronic medical records usage is likely to increase as the transition from

paper to digital medical records completes. As a result, audit logs will record more

accesses and the auditing system will need to scale accordingly. The explanation-

based auditing system relies on a relational database for much of its computation,

which has the potential to scale. However, there are opportunities to explore if

distributed, parallel processing architectures such as Hadoop MapReduce [38] can

more efficiently process the audit log.
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