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 ABSTRACT 

Recent advances in high-throughput genome sequencing technology have paved 

the way for the field to gain a better understanding of single-nucleotide mutations in the 

human genome. Until recently, analysis of rare single-nucleotide variants in humans 

was restricted by technology that limited the expansion to larger sample sizes and 

greater numbers of loci. The three projects presented here overcome these limitations, 

using data and results from high-throughput studies to understand the innate features of 

the genome that influence how frequently different types of mutations occur and identify 

those mutations that lead to human genetic disease. 

First, I studied a rare Mendelian disorder, Martin-Probst Syndrome, which is 

characterized by sensorineural hearing loss and mental retardation. I used whole 

genome, whole exome, and X-specific exome sequencing across two affected male 

individuals from one family to identify mutations occurring in a previously identified X-

chromosome haplotype block. After stringent filtering and validation steps, I identified 

two adjacent single-nucleotide mutations in the gene RAB40AL, likely leading to Martin-

Probst Syndrome in this family. 

The second project was aimed at understanding the degree to which innate 

features of the genome influence the spontaneous single-nucleotide mutation rate in 

humans and evolutionary processes that alter fixation rates of single-nucleotide 

variants. I used rare variants (derived allele frequency < 0.0001) to analyze mutation 

patterns, and common variants and substitutions to study fixation processes. I found 
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that GC content influences the mutation rate and fixation processes differently, 

especially with regard to distinct variant subtypes. Recombination rate, on the other 

hand, more strongly influences fixation, as evidenced by the stronger effect on common 

variants and substitutions than rare variants, consistent with biased gene conversion 

influencing variant patterns in humans. 

Finally, I developed a forward genetic simulation program, SubSim, that models 

subtype-specific selection and mutation, along with base composition, recombination 

rate and biased gene conversion. Subtype-specific selection and altering the base 

compositions are two features unique to SubSim. These advances in the available 

simulation software will help the field gain a better understanding of the evolutionary 

forces that lead to patterns of single-nucleotide mutation events and fixation of variants 

in the human genome. 
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CHAPTER 1  

Introduction 

1.1 Mutation in the Human Genome 

Mutations occur throughout the human genome. Depending on the location of the 

mutation, the time at which it occurs, and the resulting effect of that specific change to 

the DNA sequence, mutations can have beneficial, harmful, or negligible effects. 

Mutations have a bad reputation. They are thought of primarily in terms of cancer and 

other debilitating diseases. This gut-instinct reaction is not entirely incorrect. While the 

majority of mutations have no effect on cell function and health, those that do have a 

biological effect are often harmful and can lead to diseases such as inherited disorders 

and cancer. However, not all mutations are bad. Some, in fact, lead to more efficient or 

new cellular functions. These beneficial mutations are what evolution can act on, 

potentially changing the way an organism interacts with its environment or even leading 

the way for the evolution of a new species. We as a species would never have evolved 

without our mutations. 

Mutations are classified into several major classes, depending on the changes 

that they make to the DNA sequence. Single-nucleotide mutations are the most 

prominent and most simplistic form of mutation. As the name suggests, they affect a 

single nucleotide in the DNA. A single-nucleotide mutation occurs when the nascent 

base pair is simply replaced by a different base pair. For example, if a DNA strand has 
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the sequence ATGTA, a single-nucleotide mutation could change the G base at the 3rd 

position to a T base, leading to the sequence ATTTA. The resulting mutation changes 

the sequence of As, Ts, Cs, and Gs, in the DNA sequence, but has no effect on the 

overall length of the DNA strand. Other mutations, however, give rise to small or quite 

drastic alterations in the length of the DNA. Small tandem repeats (STRs) are sets of 

repeated sequences in one to six nucleotide repeating units and are highly polymorphic 

in human populations (Sutherland and Richards 1995). The trinucleotide repeat subset 

of the STRs are prone to dynamic changes in their copy number due to polymerase 

slippage during replication that occurs at these repeat regions, leading to an increase in 

the number of repeats at that locus (Richards and Sutherland 1994). Small insertions 

and deletions (indels) affect 1 - 10,000 bp by removing (deletions) or adding (insertions) 

nucleotides at a specific locus (Mullaney et al. 2010). Copy number variants (CNVs) are 

similar to indels, in that they insert additional sequence or remove a specific set of base 

pairs from the genome. The difference, however, is the scale on which they act. CNVs 

affect much larger chromosomal regions, up to hundreds of millions of base pairs at 

once. The largest, and likely the most damaging forms of mutations, are large-scale 

chromosomal gains, losses, or rearrangements, known as cytogenetic abnormalities. 

These types of mutations result in an excess or lack of chromosome arms, as is seen in 

the fusion of chromosomes 9 and 22 in patients with chronic myelogenous leukemia 

(Rowley 1973), or entire chromosomes, such as an extra copy of chromosome 21 

leading to Down Syndrome.  
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1.2 Discovery of Disease Genes in Rare Mendelian Disorders 

Mendelian disorders are defined as diseases that follow Mendel’s laws of 

inheritance. Disorders such as Huntington’s disease and cystic fibrosis are both 

relatively common and therefore relatively well known. To date, there are > 21,000 

recognized Mendelian phenotypes, of which only ~4,800 have a known molecular basis 

(Online Mendelian Inheritance in Man). Some of the first efforts to identify the genes for 

these diseases used a method known as positional cloning. Positional cloning is a 

technique that maps the locus of a specific mutation to a large region of the genome 

using segregation patterns of genetic markers, historically microsatellite markers, 

observed in affected and unaffected individuals. Once a large chromosomal location is 

identified, fine-scale mapping within that locus is performed to identify the narrow region 

of the genome containing the causative gene. PCR and sequencing of coding regions in 

in the interval is then performed to identify mutations in affected individuals. These 

techniques discovered mutations in genes that were previously unknown to lead to 

disease. Cystic fibrosis (Kerem et al. 1989; Riordan et al. 1989; Rommens et al. 1989), 

Huntington disease (1993), and Duchenne Muscular Dystrophy (Monaco et al. 1986) 

are just a few examples of the successful application of positional cloning to disease 

gene discovery. 

Identification of genes that lead to Mendelian disease has several important 

implications. First, knowing what genes are affected in these disorders can help lead to 

potential treatment options. For example, the most common mutant allele in cystic 

fibrosis is a 3 bp deletion leading to an absence of the 508th amino acid, phenylalanine, 

in the CFTR protein (Kerem et al. 1989; Riordan et al. 1989; Rommens et al. 1989). A 
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recent high-throughput (HT) screen identified several small molecules that can partially 

rescue CFTR function in individuals with this specific mutation (Pedemonte et al. 2005). 

Additionally, while these types of disorders are often extremely debilitating, researching 

them leads to a better understanding of biology and potential treatment options. 

Positional cloning and other gene-mapping techniques have successfully 

identified genes causing many Mendelian disorders. However, there are still a large 

number of diseases where the underlying cause is unknown. This can be due to several 

factors. For one, not all Mendelian disorders are due to mutations in a single gene. 

These monogenic disorders are easily the most simplistic in terms of their segregation 

patterns. However, many disorders previously thought to be monogenic are in reality 

due to mutations in two or more genes. Fine-scale mapping is difficult, and many 

candidate genes are frequently identified in these regions. PCR and sequencing in large 

sample sizes or analyzing many genomic loci is difficult and time consuming. It is often 

unfeasible to apply these techniques on a large-scale. Overall, while these techniques 

have helped to significantly advance the field of human genetics, these inherent 

limitations necessitate development and application of new methodologies to further 

identify the root causes of many of these Mendelian disorders. Additional factors, 

however, can influence gene-mapping studies in Mendelian disorders. Gene-

environment interactions, gene-gene interactions, allelic and locus heterogeneity all 

influence gene identification strategies, and new techniques and strategies aimed at 

studying these complex effects are necessary. 



 5 

1.3 Quantification and Understanding the Single-Nucleotide Mutation Rate 

Mutations not only cause disease, they also provide the raw material for 

evolution. Therefore, it is important to understand the frequency with which single-

nucleotide mutations occur in the human genome. Historically, there are two main 

approaches to quantify the frequency of mutations in the human genome. The first is 

based on the frequency of dominant disorders and was pioneered by Haldane (Haldane 

1935). Haldane’s initial quantification using his method found the mutation rate to be on 

the order of 10-5 per-base pair per-generation in individuals with hemophilia (Haldane 

1935). A number of other studies used the same or similar disease-based methods to 

quantify the rate of spontaneous mutation, estimating values of 3.6 x 10-9 (Sommer 

1995), ~11 x 10-9 (Lynch 2010), and 1.8 x 10-8 per-base per-generation (Kondrashov 

2003). 

The second approach for estimating the single-nucleotide mutation rate is based 

on Kimura’s theory of neutral evolution. This theory postulates that the majority of new 

mutations will be neutral and therefore the frequency of interspecies substitutions 

represents the frequency of those neutral mutations (Kimura 1983). The rate of 

divergent bases (substitution rate) between humans and closely related species, such 

as chimpanzee, has been used for these indirect estimates of the single-nucleotide 

mutation rate: ~2.5 x 10-8 (Nachman and Crowell 2000) and ~1-2 x 10-8 per-base per-

generation (Kondrashov and Crow 1993; Drake et al. 1998). 

For many years, it was thought that single-nucleotide mutations occurred 

randomly throughout the genome. Wolfe and colleagues (1989) were the first to show 

variability in the rate of mutations across different genes. This finding was the first to 
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suggest that in addition to pressure from the environment, innate genomic features 

could influence the types and frequency with which mutations occur. Other investigators 

observed similar variability in the neutral substitution rate and intraspecies diversity over 

both the total rate of mutations and also among different subtypes of single-nucleotide 

mutation (Nachman and Crowell 2000; Sachidanandam et al. 2001; Smith and Lercher 

2002; Kondrashov 2003; Hodgkinson et al. 2009). Since these initial findings, a great 

deal of work has gone into understanding why the mutation rates appear to be variable 

from one region of the genome to another without any external stimulus. 

Variability in the mutation rate is observed from large-scale genomic regions 

exhibiting different mutation patterns to adjoining bases having different rates of 

mutation. One of the most well-studied effects on the per-base mutation rate is the 

observation that C>T transitions at CpG dinucleotides occur at 10 - 40 times the rate of 

other mutations (Sommer 1995; Nachman and Crowell 2000; Kondrashov 2003; Hwang 

and Green 2004). The cytosine base at a CpG dinucleotide (a C base followed directly 

by a G base) is prone to methylation, forming 5-methylcytosine, which undergoes 

spontaneous deamination to produce thymine, leading to C>T transitions (G>A on the 

opposite strand) (Cooper and Youssoufian 1988; Cooper and Krawczak 1993). 

Beyond the increased mutation rate at CpG sites, the nucleotides surrounding a 

base pair impact the type and frequency of mutations that occur. Hwang and Green 

found that the rate of specific single-nucleotide mutations depends on the two bases 

directly flanking a given nucleotide (Hwang and Green 2004). Beyond these 

immediately adjacent effects, the mutation rate appears to depend on the nucleotides 
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from 2 and up to 80 base pairs away (Hodgkinson et al. 2009; Hodgkinson and Eyre-

Walker 2010; Nevarez et al. 2010). 

On a larger scale, local base composition has been shown to play a significant 

role in the frequency and types of variants that exist in different regions of the genome. 

The base composition of the genome is defined as the relative proportion of A:T and 

G:C base pairs. GC content (the proportion of G:C bases) varies substantially across 

the genome (Lander et al. 2001), and there has been a large amount of work to 

understand what if any effect this has on the mutation rate. The combined results of the 

published studies, however, paint an unclear picture of what exactly is occurring in the 

genome. Many studies, though not all (Cai et al. 2009), show a positive correlation 

between GC content and both the rate of substitutions between humans and 

chimpanzee (Smith et al. 2002; Webster et al. 2003; Arndt and Hwa 2005; Duret and 

Arndt 2008) and diversity observed between humans (Sachidanandam et al. 2001; 

Hellmann et al. 2005). Individual variant subtypes, such as variants from an A base to a 

G base (A>G), show different patterns with regard to the local GC content, although 

there are major inconsistencies from one study to another (Lercher and Hurst 2002a; 

Lercher et al. 2002; Smith et al. 2002; Webster et al. 2003; Arndt and Hwa 2004; Duret 

and Arndt 2008). 

Recombination rate also appears to influence diversity and substitution rates. 

Recombination rates vary widely across the genome (Kong et al. 2002) and many 

studies show a positive correlation between nucleotide diversity and recombination rate 

in humans (Nachman et al. 1998; Nachman 2001; Lercher and Hurst 2002b; Hellmann 

et al. 2005; Spencer et al. 2006; Cai et al. 2009; Lohmueller et al. 2011). A positive 
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correlation is also observed between interspecies divergence and recombination rate 

(Hellmann et al. 2003; Hellmann et al. 2005; Duret and Arndt 2008; Cai et al. 2009). 

Three separate theories, with varying degrees of scientific support, have been proposed 

to explain these findings: mutagenic recombination (Lercher and Hurst 2002b; Hellmann 

et al. 2003; Hellmann et al. 2005; Hellmann et al. 2008), selective-dependent processes 

(Charlesworth et al. 1993; Nachman 2001; Begun et al. 2007), and biased gene 

conversion (Meunier and Duret 2004; Duret and Arndt 2008; Berglund et al. 2009; Duret 

and Galtier 2009; Galtier et al. 2009). Although selection-dependent mechanisms, such 

as background selection and selective sweep, and biased gene conversion are largely 

favored compared to the hypothesis that recombination is mutagenic, none of the 

current studies have directly assayed the response of the mutation rate to the local 

recombination rate, but rather infer their findings based on common variant and 

divergence data. 

In addition to the large-scale effects of base composition and recombination rate, 

several other genomic properties have been studied less extensively to explain the 

observed variability in the mutation rate. Several studies have shown a strand 

asymmetry in the frequency and types of mutations that occur in transcribed genes 

(Green et al. 2003; McVicker and Green 2010). Replication timing has also been 

suggested as having an impact on mutation rates in humans (Wolfe et al. 1989). 

Several recent studies report an increase in the neutral substitution rate and intra-

species diversity in later-replicating regions of the human genome 

(Stamatoyannopoulos et al. 2009; Chen et al. 2010; Koren et al. 2012).  
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1.4 Discovery and Quantification of Mutations in the Genomics Era 

The initial sequencing of the human genome in 2001 (Lander et al. 2001), 

catapulted the field of human genetics into the age of genomics, leading to HT SNP 

arrays and genome-wide association studies (GWAS) to identify loci for common traits. 

Later that same decade, advancement of DNA sequencing technologies further 

advanced the field from a focus on common polymorphic sites to an increasing wealth 

of information about rare variants, human demographic history, and disease-causing 

mutations. 

In 2009, Ng and colleagues published the first application of HT sequencing to 

discover mutations in the gene MYH3 causing the autosomal dominant disorder 

Friedman-Sheldon syndrome (Ng et al. 2009). This proof-of-concept paper established 

the use of targeted sequencing approaches to identify disease-causing mutations. In 

2010, this same group published a finding of mutations in the gene DHODH in four 

unrelated individuals with the rare autosomal recessive disorder Miller syndrome, for 

which the underlying mutation was previously unknown (Ng et al. 2010b). As of 

November 2011, exome sequencing has been used to identify genes for 30 Mendelian 

disorders (Bamshad et al. 2011). That number has grown even higher since then and 

will continue to grow as more and more diseases are studied. In addition to these rare 

disorders, sequencing in more complex traits, for which GWAS and other common 

variant techniques have been unable to identify variants with large effect sizes, has 

started to identify potentially pathogenic mutations in autism (O'Roak et al. 2011; Neale 

et al. 2012; Sanders et al. 2012) and schizophrenia (Xu et al. 2012). 
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In addition to the advances in human medical genetics through the use of HT 

sequencing, these same technological advances have also led to discoveries about 

human evolutionary history and advances in the quantification of the single-nucleotide 

mutation rate. In 2010, Coventry et al. sequenced the exons of two genes in > 10,000 

European individuals and found an excess of rare variants compared to expectations 

based on common polymorphism data (Coventry et al. 2010). Their results are 

consistent with the human population experiencing explosive growth sometime in the 

recent past, leading to an abundance of rare variants segregating in the population 

(Coventry et al. 2010). Following this initial report, two additional sequencing studies in 

large cohorts have been published: whole exome sequencing in 2,240 individuals 

(Tennessen et al. 2012) and sequencing of 202 drug target genes in > 14,000 

individuals (Nelson et al. 2012). In addition to the similar finding of a large number of 

rare variants, these two studies were also able to analyze the degree to which 

individuals carry deleterious rare variants due to the larger number of loci sequenced in 

each study. They found that the individuals in their study harbor a large number of 

deleterious rare variants, without any overt effects on their overall health (Nelson et al. 

2012; Tennessen et al. 2012). 

HT sequencing has also revolutionized the way in which we can quantify the 

number of spontaneous mutations arising in the human genome. Sequencing of parent-

offspring trios allows one to identify mutations present in the offspring that are not seen 

in either parent. These de novo mutations are important both in human disease and 

accurately measuring the human mutation rate. Recently, several groups applied this 

technique to quantify the spontaneous de novo mutation rate in humans, reporting an 
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average per-base per-generation mutation rate of 1.2 x 10-8 (Conrad et al. 2010; The 

1000 Genomes Project Consortium 2010; Campbell et al. 2012; Kong et al. 2012).  

1.5 Understanding the Factors Influencing Single-Nucleotide Mutations and 

Their Downstream Effects on Human Health using High-Throughput Sequencing 

With the increasing availability of HT sequencing, I undertook three separate 

projects to further understand the role that single-nucleotide mutations play in disease, 

as well as the innate influence of the genome on the generation and proliferation of 

single-nucleotide mutations using HT sequencing technology. The application of this 

new technology allowed me to overcome the technological barrier in disease gene 

identification and the study of the spontaneous single-nucleotide mutation. 

First, I used a combination of whole genome sequencing, whole exome 

sequencing, and X-chromosome targeted exome sequencing to identify a mutation with 

strong evidence of causation in a rare Mendelian form of mental retardation and 

deafness, Martin-Probst Syndrome (OMIM 300159). The technological details regarding 

the sequencing methodology and analysis are presented in Chapter 2, whereas a more 

thorough description of the functional analysis was previously published (Bedoyan et al. 

2012). This application of HT sequencing techniques allowed me to identify the 

causative mutation for this disorder, which previous efforts failed to identify (Martin et al. 

2000; Probst et al. 2004). The discovery that mutations in RAB40AL lead to mental 

retardation and sensorineural hearing loss (characteristics of Martin-Probst Syndrome) 

will help us to further understand the function of this gene.  
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In the next project, I used a unique data set derived from HT sequencing of a 

large cohort (Nelson et al. 2012) to understand how GC content and recombination rate 

impact single-nucleotide rare variants, common variants, and substitutions. My 

application of logistic regression on rare variants is the first study of its kind to assay 

how genomic context impacts patterns of rare variants, which are the result of recent 

mutation events and therefore more representative of the mutation rate. While previous 

studies analyzed the effect of GC content and recombination rate on common variants 

and substitutions, I observed patterns in rare variants that differed from those in 

common variants and substitutions. My results suggest that analysis of rare variants 

more accurately shows the true underlying effect of genomic context on the 

spontaneous mutation rate, not the effect of later acting evolutionary forces, such as 

selection and biased gene conversion. 

Last, I developed a forward genetic simulation tool, SubSim, to jointly analyze 

how mutation and fixation bias impact patterns of observed variants in the human 

genome. SubSim fills a gap in the current selection of simulation algorithms. It has the 

ability to manipulate mutation bias and selection bias on specific variant subtypes and 

also alter the GC content of the simulated locus. These new advances open the door for 

future work to understand how the combined neutral effects of mutation and fixation 

bias in response to the local GC content and recombination rate can produce patterns 

of variants currently observed in human populations. 
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CHAPTER 2  

High-Throughput Sequencing Identifies RAB40AL as the Gene 

Underlying Martin-Probst Syndrome 

2.1 Introduction 

Martin-Probst syndrome (MPS) (OMIM 300159) is an extremely rare genetic 

disorder. It was first described in 2000 by Martin and colleagues (Martin et al. 2000) in 

three related males. MPS is primarily characterized by congenital sensorineural hearing 

loss and mental retardation. Additional MPS phenotypes are variable and include short 

stature, congenital umbilical hernia, a variety of facial dysmorphisms, and abnormal 

teeth, among others (Martin et al. 2000). The inheritance pattern of MPS is consistent 

with an X-linked recessive form of inheritance (Figure 2.1). To date, MPS has only been 

observed in one family (Martin et al. 2000) with 3 clinically diagnosed male individuals 

(Figure 2.1). 

Initial cytogenetic analysis of two affected males from this pedigree showed 

normal 46,XY karyotypes for each individual, eliminating any large-scale chromosomal 

abnormalities (Martin et al. 2000). Finer-scale haplotype mapping identified a shared 

haplotype on the X chromosome (Martin et al. 2000), including several previously 

candidate deafness genes: POU3F4 (de Kok et al. 1995), TIMM8A (Jin et al. 1996), 

COL4A5 (Jonsson et al. 1998), and DIAPH2 (Lynch et al. 1997). Sequencing of 

POU3F4, COL4A5, and DIAPH2 did not reveal deletions or point mutations in or around 
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these genes (Martin et al. 2000). The shared haplotype region was later refined using 

linkage to a 68 Mb region spanning the microsatellite markers DXS1003 - DXS1220 

(Probst et al. 2004). This study also analyzed X-inactivation in female carriers in this 

pedigree. Typically, one X chromosome undergoes random X inactivation in females to 

compensate for the increased dosage of X chromosome genes. Instead of X-

inactivation randomly inactivating one X chromosome, all females that were suspected 

of being carriers showed complete skewing of X-inactivation to one chromosome and a 

lack of inactivation on the other (Probst et al. 2004). Skewing of X-inactivation in other 

X-linked recessive disorders has been previously reported (Belmont 1996; Puck and 

Willard 1998) and was used to identify the gene ATRX in a different mental retardation 

syndrome (Gibbons et al. 1992). Together, the haplotype and linkage analysis, along 

with the X-inactivation data, strongly support the hypothesis that MPS is an X-linked 

recessive condition and further defines the genetic interval to a specific 68 Mb 

haplotype block on the X chromosome. 

Recent advances in sequencing technology now allow for sequencing of whole 

genomes or specifically targeted genomic regions. In 2009, this technology was first put 

to use to identify a candidate locus for a Mendelian disease (Ng et al. 2009). Ng and 

colleagues developed a whole exome sequencing approach in which they specifically 

targeted the coding regions of genes in twelve individuals and then sequenced these 

targeted regions using high-throughput sequencing (Ng et al. 2009). In a subsequent 

publication, this same group was the first to utilize whole exome sequencing to identify 

the gene responsible for a rare recessive Mendelian disorder, Miller syndrome (Ng et al. 

2010b). Using stringent filtering criteria to select for high-quality and potentially 
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damaging rare variants, this group identified mutations in the gene DHODH in two 

unrelated individuals affected with Miller syndrome (Ng et al. 2010b). To validate their 

finding, this group also sequenced the gene DHODH in additional unrelated affected 

individuals and found that these patients also carry mutations in this gene (Ng et al. 

2010b). Since then, sequencing-based approaches have helped to identify candidate 

loci for a large number of Mendelian diseases, including deafness (Rehman et al. 2010; 

De Keulenaer et al. 2012; Diaz-Horta et al. 2012) and X-linked mental retardation (Hu et 

al. 2009; Tarpey et al. 2009; Jensen et al. 2011). 

Here, we used a combination of whole genome sequencing (WGS), whole 

exome sequencing (WES) and X chromosome-specific exome sequencing (XSS) to 

identify the gene responsible for MPS. The combination of these three techniques 

allowed us to increase the amount of quality data we acquired by sequencing more loci 

than a typical whole-exome approach and increasing the overall depth of sequencing 

coverage. WGS sequences all bases, including exons and introns. WES and XSS are 

both target-based approaches, covering only the coding regions of the genome and the 

X-chromosome, respectively. Due to funding and sample availability, we performed 

WGS, WES, and XSS on one affected male, whereas only XSS was performed on 

another affected male individual from the same family. Because MPS is rare and 

exhibits a clear X-linked inheritance pattern, we hypothesized that with sufficient 

coverage in the previously defined haplotype region, sequencing would be an 

appropriate approach to identify a candidate locus. 

The results from this study were published in 2012 in the Journal of Medical 

Genetics (Bedoyan et al. 2012), which focuses primarily on the functional analysis 
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performed by Dr. Jirair Bedoyan and colleagues in the laboratory of Dr. Donna Martin. 

In contrast, the work presented here provides a detailed description of the applied 

sequencing methods, analysis, and variant filtering necessary to identify mutations in 

the affected individuals. 

2.2 Materials and Methods 

2.2.1 Whole Genome Sequencing 

We performed single-end and paired-end WGS on genomic DNA extracted from 

peripheral blood leukocytes from individual III-5 (Figure 2.1) across seven lanes on the 

Illumina Genome Analyzer IIx (Illumina; San Diego, CA). The University of Michigan 

DNA Sequencing Core (Ann Arbor, MI) performed the sequencing, generating 35, 39, 

and 79 bp reads.  

The reads were aligned to the reference human genome (UCSC hg18) using 

BWA (Li and Durbin 2009). SAMTools (Li et al. 2009) was used to remove duplicate 

reads and call single nucleotide variants (SNVs) and indels. 

2.2.2 Whole Exome Sequencing 

Genomic DNA from peripheral blood leukocytes of individual III-5 (Figure 2.1) 

was extracted and used to generate a library for whole exome sequencing using the 

SureSelectTM Human All Exon Kit (Agilent; Santa Clara, CA) based on CCDS2008 for 

exome target-capture. Weiping Peng in Jun Li’s laboratory prepared the sample for 

sequencing. Paired-end sequencing was performed at Hudson Alpha Institute for 

Biotechnology (Huntsville, AL) on the Illumina Genome Analyzer II (Illumina; San Diego, 

CA), generating 75 bp reads. 



 17 

I aligned the sequence reads to the reference human genome (UCSC hg18) 

using BWA (Li and Durbin 2009) and used SAMTools (Li et al. 2009) to remove 

duplicate reads and to call SNVs.  

2.2.3 X Chromosome Targeted Resequencing 

Samples from two affected males (III-5 and IV-1, Figure 2.1) were targeted using 

a NimbleGen custom capture array (NimbleGen; Madison, WI) followed by sequencing 

on the Illumina Genome Analyzer (Illumina; San Diego, CA) by collaborators at Emory 

University (Atlanta, GA). This generated 76 bp reads for each sample. Michael E. Zwick, 

along two members of his laboratory, Kajari Mondal and Amol C. Shetty, designed the 

custom capture array using the Microarray Oligonucleotide Probe Designer (Patel et al. 

2010), prepared the samples, and generated the sequence data. 

I aligned the sequence reads from both samples to the reference human genome 

(UCSC hg18) using BWA (Li and Durbin 2009) and used PICARD to remove duplicate 

sequences (http://picard.sourceforge.net/). I then recalibrated the base call quality 

scores and called variants using GATK (McKenna et al.). 

2.2.4 Variant Filtering and Validation 

Details regarding variant filtering are presented in Figure 2.2. In order to enrich 

the data set for high quality variants, I first removed SNVs with a quality score <30 and 

<4x depth of sequencing coverage. I filtered out all common polymorphisms present in 

dbSNP130 (based on hg18) and the 1000 genomes project (March 2010 release). I 

restricted further analysis to SNVs identified in the haplotype block covering 46,419,359 

- 114,514,483 bp (Xp11.3 - Xq23) on chromosome X (Martin et al. 2000; Probst et al. 
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2004). In order to classify the functional effect of each variant, I used SeattleSeq 

(http://snp.gs.washington.edu/SeattleSeqAnnotation/) to annotate variants that met the 

filtering criteria thus far. Using these results, I included only potentially damaging 

variants, including missense, nonsense, splice site, and UTR variants. Next, I included 

only variants that were identified in both affected individuals. These individuals are first 

cousins once removed and the disease has been inherited across generations. 

Therefore, MPS is likely not caused by separate de novo mutation events in each 

individual and the two affected individuals should share the causative variant. I used a 

publically available gene expression database to include only variants identified in 

genes with known expression patterns during human fetal nervous system development 

(http://bgee.unil.ch/bgee/bgee). The final step in the variant filtering was to analyze the 

potential effect on protein function of each variant. I used prediction software to predict 

the effect of each variant on protein function, including PolyPhen (Ramensky et al. 

2002), PolyPhen2 (Adzhubei et al. 2010), MuPro (Cheng et al. 2006), SIFT (Kumar et 

al. 2009), and AlignGVGD (Mathe et al. 2006; Tavtigian et al. 2006). 

Jirair Bedoyan validated missense SNVs that passed the fetal nervous system 

expression filter. He used PCR followed by Sanger sequencing to validate these 

variants in both affected individuals. In addition, he tested additional members of this 

pedigree (Figure 2.1) to ensure that the variants segregated properly and to confirm 

carrier status of the suspected carrier females. 

http://bgee.unil.ch/bgee/bgee


 19 

2.3 Results 

In total, we sequenced two affected men from one multi-generation family. We 

performed WGS, WES, and XSS on individual III-5 (Figure 2.1) and XSS on individual 

IV-1 (Figure 2.1). Read counts, alignment scores, and duplication rates for each of the 

sequencing methods used in both individuals are presented in Table 2.1. Each 

sequencing method was of relatively high quality, as indicated by the high alignment 

rate of all reads and the low frequency of duplicate reads (Table 2.1). 

After performing the initial alignment and quality control filters on the data, SNVs 

were called using two algorithms (Figure 2.2). In total, over 2 million SNVs were 

identified in the whole genome sequencing for individual III-5 (Table 2.2). WES and XSS 

in individual III-5 identified 45,182 and 1,718 SNVs, respectively (Table 2.2). XSS in 

individual IV-1 identified 1,197 variants (Table 2.2). 

Because MPS is a rare genetic disorder, polymorphisms segregating in the 

general population are unlikely to lead to the disease. Therefore, I removed all SNVs 

identified in dbSNP130. Although dbSNP130 is a large database with 18,833,531 SNPs, 

it does not encompass all variants segregating in the population. I used variants 

identified in the 1000 Genomes Project to further enrich the data for rare variants that 

are not segregating in presumably healthy individuals (The 1000 Genomes Project 

Consortium 2010).  

Previous work on MPS restricted the genetic interval containing the causative 

mutation to a 68 Mb window spanning the microsatellite markers DSX1003-DSX1220, 

which covers 46,419,359 - 114,514,483 bp (Xp11.3-Xq23) on chromosome X (Martin et 
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al. 2000; Probst et al. 2004). Therefore, I focused all subsequent analysis on variants 

identified in this locus. 

SNV identification in high-throughput sequencing studies is often error-prone, but 

results tend to be more accurate with higher sequencing coverage (Li et al. 2011). For 

individual III-5, we obtained an average of 4.79x, 10.86x, and 86.89x depth of 

sequencing coverage in the exons for WGS, WES, and XSS, respectively, in the exons 

present in the haplotype block (Table 2.1). For individual III-5, this combined analysis 

covered 98.4% of all coding regions in the 68 Mb haplotype region with ≥ 4x average 

coverage (Figure 2.3). The average depth of coverage for individual IV-1 was 17.89x 

(Table 2.1). This extensive coverage of the haplotype region allowed me to generate 

accurate and reliable SNV calls. 

The next step in the variant filtering process is to enrich for possibly damaging 

variants that could disrupt the function of the gene or resulting protein. To do this, I first 

analyzed all missense and nonsense variants, as well as variants disrupting a splice site 

or located in the untranslated region (UTR) of a gene. Nonsense and splice site variants 

have clear implications on protein function, by prematurely truncating the protein or 

disrupting the order of exons and introns, respectively. UTR variants have the potential 

to disrupt gene expression by altering transcription factor binding sites. Missense 

variants can alter protein function by changing the amino acid sequence of the protein. I 

identified a total of 50 nonsense, splice sites, UTR, or missense variants in individual III-

5 (combining across WGS, WES, and XSS) and 18 in individual IV-1. 
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As the two sequenced individuals are affected by the same X-linked disease and 

are related on the maternal lineage (they are first cousins, once removed), they must 

have inherited the same mutation. Therefore, the next filtering step I employed was to 

only analyze variants observed in both individuals. There were a total of 15 variants 

shared across the two individuals (Table 2.3). 

MPS is a neurological developmental disorder that presents early in life. 

Therefore, we hypothesized that the causative gene must be expressed during the 

development of the fetal nervous system. Using a publically available database of gene 

expression data, I filtered all genes that met the stringent criteria to those that were 

listed as having fetal nervous system expression. This particular analysis was 

performed on genes, whereas prior-filtering steps focused on each variant 

independently, without regard for the gene. Of the eleven genes with at least one 

identified SNV, I identified six genes that showed fetal nervous system expression 

(Table 2.2). 

Although advances in alignment and base calling algorithms continue to improve 

the reliability of sequencing data, a separate validation step is required to ensure that 

the variants identified are true positives and not the result of sequencing artifacts or 

other technical issues. To validate the variants that met the previous filtering 

requirements, Jirair Bedoyan performed PCR followed by Sanger sequencing on the 

identified missense variants. Three variants identified in two genes were successfully 

validated. 
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Not all missense mutations are deleterious to protein function. Some result in 

very similar amino acid substitutions, such as by those with similar sizes, structures, or 

hydrophilic or hydrophobic properties. There are a variety of available software 

packages available that predict the effect of missense variants on protein function using 

evolutionary conservation and other amino acid properties. I used PolyPhen (Ramensky 

et al. 2002), PolyPhen2 (Adzhubei et al.), MuPro (Cheng et al. 2006), SIFT (Kumar et 

al. 2009), and AlignGVGD (Mathe et al. 2006; Tavtigian et al. 2006) to analyze the 

potential impact of each missense mutation on protein function. Variants in the genes 

ARHGEF9 and RAB40AL passed the prior filtering criteria and both contained missense 

mutations. Of these, the two variants at 102,079,078 and 102,079,079 in the gene 

RAB40AL were predicted to damage protein function. 

The two mutations identified in RAB40AL are adjacent and lie within the same 

codon. They are both relatively well conserved on the nucleotide level, according to a 

GERP score (Cooper et al. 2005) (range: -11.6 to 5.82, 5.28 most conserved) of 0.77 

and -0.99 and PhastCons scores (Siepel et al. 2005) (range: 0 to 1, 1 most conserved) 

of 0.78 and 0.46 for the 102,079,078 and 102,079,079 variants, respectively. Together, 

when both nucleotides are mutated, the resulting change to the DNA sequence is 

102,079,078 – 102,079,079 AC  GC and the protein sequence is changed from an 

aspartic acid to a glycine at amino acid 59 (pD59G). The pD59G alteration to the amino 

acid sequence was predicted to be damaging to the function of RAB40AL using all of 

the above prediction software. Additionally, this amino acid is evolutionarily conserved 

from humans to invertebrates, indicating that it is extremely important for normal protein 

function (Figure 2.4). 
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I analyzed the presence of these variants in data from the NHLBI Exome 

Sequencing Project (http://evs.gs.washington.edu/EVS/). This database contains WES 

data from 3,510 European samples, and therefore can be used to remove potential non-

disease causing polymorphisms from the analysis. Both variants that I identified in 

RAB40AL were not identified in the NHLBI database. Similarly to the 1000 Genomes 

Project analysis described above, the data for this analysis were acquired prior to 

completion of the project and a paper has recently been published describing their 

results (The 1000 Genomes Project Consortium 2010; Tennessen et al. 2012). 

2.4 Discussion 

We used a combination of WGS, WES, and XSS to identify a mutation in the 

gene RAB40AL, which is the likely cause of MPS. This unique combination of these 

three different sequencing methodologies resulted in high-quality data, covering more 

loci at a higher depth of sequencing coverage than any of them alone. In addition, the 

specific filtering criteria applied here, especially the previously identified haplotype 

block, the use of a database detailing genes expressed during fetal nervous system 

development, and the sequencing of two affected individuals, narrowed the large 

number of potential variants into a small handful. 

Depth of coverage and the number of loci sequenced are important factors in any 

sequencing study. After the sequenced reads are aligned to the reference genome, 

sites where one or more alleles do not match the reference allele are called as variants 

by the variant calling algorithm (here, GATK or SAMTools). Sequencing errors can 

disrupt the calling algorithms, appearing as variant alleles. If there is insufficient 

http://evs.gs.washington.edu/EVS/


 24 

coverage at a locus, that site may be incorrectly called as a variant due to a single 

sequencing error in a single sequencing read. However, increasing the sequencing 

coverage increases the accuracy of calling a site as variant and decreases the rate of 

false positive variant calls, especially with low sample sizes (Li et al. 2011). The high 

depth of coverage at the majority of the loci analyzed ensures that the variant calls 

made in this study are highly accurate.  

The different sequencing methods applied here target different regions of the 

genome. WGS is not a target-based sequencing approach. Instead, all bases in the 

genome are sequenced, although typically only low depth of coverage is feasible for 

WGS approaches. WES and XSS, on the other hand, are targeted sequencing 

methods. WES generates sequence of all coding regions in the genome, and the XSS 

targeted coding regions throughout the X chromosome. The WES and XSS techniques 

do not cover the exact same exons on the X chromosome. The XSS technique was 

developed to specifically target the entire X chromosome coding region and targets a 

larger proportion of the X chromosome than the WES. The use of both of these target-

based approaches enabled us to sequence a larger number of exons to relatively high 

depth. Combining these two approaches with WGS gave a small amount of coverage 

on intronic and other noncoding regions of the X chromosome, where other causative 

mutations may reside. 

RAB40AL is a member of the Rab40 family of small GTP-binding proteins. An 

inversion of the X chromosome disrupting the promoter region of RAB40AL was 

previously identified in a male individual diagnosed with Duchenne muscular dystrophy, 

who exhibited mental retardation, athetosis, nystagmus, and severe congenital 
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hypotonia (Saito-Ohara et al. 2002). Other Rab small GTPase proteins, along with 

proteins functioning in the same pathway as Rabs, have been associated with a number 

of disorders, including mental retardation, indicating that disruptions in the Rab pathway 

impact human health (Menasche et al. 2000; Seabra et al. 2002; Giannandrea et al. 

2010). 

Functional work by Jirair Bedoyan confirmed that RAB40AL is expressed in 

human brain tissue. Furthermore, he found that cells transfected with the p.D59G 

mutated form of RAB40AL showed decreased protein expression in a Western blot. 

Little is known regarding the function of RAB40AL. The Rab superfamily of proteins is 

involved in vesicular transport in the cell, trafficking organelles and intracellular vesicles 

to the extracellular membrane (Pereira-Leal and Seabra 2001). Different Rabs target 

different organelles, exhibiting specific subcellular localization patterns. RAB40AL, in 

particular, localizes to the mitochondria (Saito-Ohara et al. 2002). Dr. Bedoyan also 

demonstrated that the p.D59G mutation disrupts the subcellular localization of 

RAB40AL. While wild-type RAB40AL transfected in COS7 cells localized to the 

mitochondria, as expected, the mutated RAB40AL clustered in the nucleus, nucleolus, 

and/or perinuclear region of the cell. Together, this functional work provides additional 

evidence that the mutation we observed in the family with MPS leads to disruptions in 

the normal function of RAB40AL. 

One difficulty that arose during this study was the lack of available patient 

samples to analyze. This disorder is extremely rare; only one family has been described 

exhibiting the unique combination of phenotypes that characterize MPS. Even though 

we sequenced two affected individuals, filtering for shared variants is somewhat 
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redundant since we already know they share a large region based on previous linkage 

and haplotype analysis (Martin et al. 2000; Probst et al. 2004). Without additional 

unrelated affected individuals, it is difficult to conclusively demonstrate that mutations in 

RAB40AL lead to MPS. The absence of any mutations in RAB40AL in the 1000 

Genomes Project or the NHBLI Exome Sequencing Project, along with additional work 

performed by Jirair Bedoyan showing a lack of mutations in RAB40AL in 297 

neurologically normal individuals (obtained from the Greenwood Genetic Center), 

demonstrate that mutations in RAB40AL are extremely rare and not present in 

individuals with normal hearing and cognitive function. 

2.5 Conclusions 

In conclusion, I showed that WGS, WES, and XSS can be effectively combined 

to identify causative mutations for rare Mendelian disorders. I found two mutations in the 

gene RAB40AL that segregate with MPS in the one family diagnosed with this disorder. 

The combination of these mutations is predicted to lead to damaging effects on protein 

function. There is growing evidence that humans can tolerate a large number of what 

appear to be severely damaging mutations without any noticeable effect on their health 

(Nelson et al. 2012; Tennessen et al. 2012). However, functional studies performed 

using the mutation we identified in these patients show a clear disruption in normal 

protein function. Overall, our work identified a likely candidate gene for sensorineural 

hearing loss and mental retardation in patients with MPS. Further work examining the 

role that RAB40AL plays in normal cognition and hearing will help us understand how 

mutations in RAB40AL lead to disease and potentially identify treatment options for 

these patients.   
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2.6 Figures 

 

Figure 2.1: Pedigree for family affected with MPS 

Affected individuals are shown in black and carrier females are indicated with a small 
black circle. Individual III-5 was sequenced using whole genome, whole exome and X-
specific targeting platforms and individual IV-1 was sequenced using the X-specific 
sequencing. Verification of carrier status and validation of the p.D59G variant in 
RAB40AL was confirmed in all carrier females and affected males. The status of 
individuals IV-2, IV-3, and IV-4 was not determined. The red line through a symbol 
indicates a deceased individual. 
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Figure 2.2: Data analysis pipeline for MPS WGS, WES, and XSS sequencing on 
individuals III-5 and IV-1 
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Sequence reads for WGS, WES and XSS were aligned using BWA (Li and Durbin 
2009) and variants called using SAMTools (Li et al. 2009) or GATK . (McKenna et al.). 
Following removal of common polymorphisms identified in dbSNP or the 1000 
Genomes Project, analysis focused on variants located in the previously identified 
haplotype block on the X-chromosome. Potentially functional variants that were shared 
between the two affected men were kept and validated. After filtering, we identified 
mutations in the gene RAB40AL as likely candidates for MPS. 
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Figure 2.3: Extensive coverage of exons in the haplotype block for individual III-5 

Sequencing read coverage depth plotted for each indexed exon in the haplotype block. 
Coverage depth was calculated as the average coverage across all exonic positions 
after combining reads from whole genome, whole exome, and X-specific targeted 
sequencing. Red points indicate those exons where the average coverage was less 
than 4x, the minimum sequencing depth required in my pipeline to call variants. The 
black line indicates the combined average coverage depth across all exons in the 
combined analysis, 97.55x 
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Figure 2.4: Evolutionary conservation of the p.D59G variant 

The aspartic acid at amino acid 59 is conserved from humans through invertebrates, 
indicating that it is likely important for protein function. 
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2.7 Tables 

Individual Platform 
Total 
Reads 

Aligned 
Reads 

Percent 
Aligned 

Uniquely 
Aligned 
Reads 

Percent 
Unique 

Average 
Coverage 

III-5 

Whole 
Genome 
Sequencing 

416,420,317 342,153,138 82.17% 340,502,582 99.52% 4.79 

Whole Exome 
Sequencing 

17,612,511 17,366,720 98.60% 14,887,848 85.73% 10.86 

X-Exome 
Sequencing 

25,355,543 23,869,724 94.14% 17,846,447 74.77% 86.89 

IV-1 
X-Exome 
Sequencing 

19,944,310 17,368,317 87.08% 14,601,259 84.07% 17.89 

Table 2.1: Alignment summary for whole genome, whole exome, and X-exome sequencing. 

The total number of sequencing reads, total number of reads that aligned to one position in the genome, and the number 
of unique reads are shown here. The total number of unique reads describes the number of sequences where only one 
read mapped uniquely to a given locus. The average coverage is the average coverage of each sequencing methodology 
in the exons of the haplotype region. 
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Description of Variant Filter 

III-5  IV-1  

Intersect Whole 
Genome 

Whole 
Exome 

X 
Exome 

 
X 

Exome 
 

Total Variants 2,647,939 45,182 1,718  1,197  -- 

Novel Variants 251,039 7,869 300  192  -- 

Variants in Haplotype Block 3,599 34 137  90  -- 

NS/MS/SS/UTR 27 9 25  18  -- 

Shared Variants -- -- --  --  15 

Fetal Nervous System Expression -- -- --  --  6 

Confirmed by Sanger Sequencing -- -- --  --  2 

Predicted Damaging       1 

 

Table 2.2: Summary of variant filtering across whole genome, whole exome, and 
X-exome sequencing for individuals III-5 and IV-1. 

The number of variants identified across the two individuals and across the three 
sequencing techniques used at each of the variant filtering steps. Nonsense (NS), 
missense (MS), splice site (SS), or untranslated region (UTR). 
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Chromosome Position 
Reference 
Allele 

Alternative 
Allele 

Functional 
Annotation 

Amino Acid 
Position 

Reference 
Amino Acid 

Alternative 
Amino Acid 

Gene 

X 48128980 A G Missense 35 LYS GLU SSX4 

X 48715512 G A 3' UTR -- -- -- GRIPAP1 

X 49744485 A G 3' UTR -- -- -- CLCN5 

X 55667068 C G Missense 67 PRO ALA FOXR2 

X 55667843 C G 3' UTR -- -- -- FOXR2 

X 57036943 A C 3' UTR -- -- -- SPIN3 

X 62774487 C G 3' UTR -- -- -- ARHGEF9 

X 62810649 G C Missense 306 ASP GLU ARHGEF9 

X 63326117 G A 3' UTR -- -- -- FAM123B 

X 66681507 C A 5' UTR -- -- -- AR 

X 73873618 T G 3' UTR -- -- -- KIAA2022 

X 73873874 C T 3' UTR -- -- -- KIAA2022 

X 102079078 A G Missense 59 ASP GLY RAB40AL 

X 102079079 C A Missense 59 ASP GLU RAB40AL 

X 111211844 G A 5' UTR -- -- -- TRPC5 

 

Table 2.3: Variants identified in individual III-5 and IV-1. 

Variants identified after initial variant filtering observed in both affected sequenced individuals. I identified 15 variants in 11 
genes that could potentially impact protein function (splice site, missense, nonsense, or UTR variants). 
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CHAPTER 3  

The Influence of Genomic Context on Mutation and Fixation Patterns in 

the Human Genome Inferred from Rare Variants, Common Variants, and 

Substitutions1 

3.1 Introduction 

Mutation is one of the most fundamental processes in biology. It is the ultimate 

source of genetic variation and one of the driving forces of evolution. Mutation also 

plays a significant role in the etiology of human diseases. As such, there is considerable 

interest in understanding the underlying pattern and molecular spectrum of spontaneous 

mutations. Historically, two approaches were developed to estimate the single-

nucleotide mutation rate in humans. The first analyzes divergent sites between humans 

and an ancestral species, typically chimpanzee. According to Kimura’s neutral theory, 

the majority of substitutions are neutral and therefore the extent of between-species 

divergence can be used to estimate the neutral mutation rate (Kimura 1983). Many 

groups have applied this approach to estimate the spontaneous human mutation rate 

(Drake et al. 1998; Nachman and Crowell 2000; Kumar and Subramanian 2002; Silva 

and Kondrashov 2002). However, several forces, including natural selection, biased 

                                            

1 This work is currently under revision as: Valerie M. Schaibley, Matthew Zawistowski, 
Daniel Wegmann, Margaret G. Ehm, Matthew R. Nelson, Pamela L. St. Jean, Goncalo 
Abeçasis, John Novembre, Sebastian Zöllner, Jun Z. Li. 2013. 
Rare Variants Reveal Patterns of Mutation in the Human Genome. Genome Research 
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gene conversion, and demographic history can alter fixation probabilities and reshape 

the spectrum and genomic distribution of between-species substitution patterns. A 

second, more direct approach, pioneered by Haldane (1935), uses incidence rates of 

dominant disorders in humans to estimate the mutation rate (Sommer 1995; Sommer 

and Ketterling 1996; Kondrashov 2003; Lynch 2010), although, this approach is limited 

by the fact that only a small subset of new mutations manifest as disease variants 

(Nachman 2004). 

The mutation rates from these studies represent a genome-wide average. 

However, there is extensive variability in between-species divergence and within-

species diversity among individual genes and genomic regions (Wolfe et al. 1989; 

Nachman and Crowell 2000; Sachidanandam et al. 2001; Smith and Lercher 2002; 

Kondrashov 2003; Hodgkinson et al. 2009). This suggests that spontaneous mutation 

rates are not constant throughout the genome, although the forces leading to this 

variability are unclear. 

Local base composition has been shown to play a significant role in the 

frequency and types of variants that exist in any given region of the genome. The base 

composition is defined as the relative proportion of A/T and G/C base pairs. GC content 

(the proportion of G/C bases) varies substantially across the genome (Lander et al. 

2001). There is a positive correlation between GC content and both the rate of 

substitutions between humans and closely related species, such as chimpanzee, 

(substitution rate) (Smith et al. 2002; Webster et al. 2003; Arndt and Hwa 2005; Duret 

and Arndt 2008) and diversity observed between humans (Sachidanandam et al. 2001; 

Hellmann et al. 2005). 
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Overall, there are twelve types of single-nucleotide mutations that can occur. 

Most of these alter the base composition of the site. For, example, a mutation from an A 

to G (A>G) would slightly increase the local GC content. An A>T mutation, however, 

maintains the same relative number of A/T and G/C bases and therefore has no effect 

on the GC or AT content of that region. Studies that analyze the correlation between 

these specific variant subtypes and the surrounding base composition support the 

hypothesis that a compositional stabilizing process occurs in the genome, maintaining 

regions of high and low GC content. For example, several studies report a negative 

correlation between the GC>AT substitution rate (G>A and C>T variants) and GC 

content (Arndt and Hwa 2004; Duret and Arndt 2008). Similarly, AT>GC SNPs 

segregate at a higher frequency in regions of the genome with high GC content 

(Webster et al. 2003) and there is an increased fixation bias toward GC bases in GC-

rich regions (Lercher and Hurst 2002a; Lercher et al. 2002). Together, these studies 

would suggest that GC-rich regions maintain their higher GC content through 

decreasing the rate of mutations that lower GC content (GC>AT and GC>TA mutations, 

jointly referred to as S>W) and increase the rate of fixation of GC-increasing variants 

(AT>GC and AT>CG, jointly referred to as W>S). However, analysis by Smith (Smith et 

al. 2002) and Webster (Webster et al. 2003) show that divergence rates for GC>AT 

substitutions increase with GC content. Over time, an excess of these variants would 

decrease GC content, bringing it closer to the genome-wide average of ~41% (Lander 

et al. 2001). Yet another study reported a contradicting finding, with a negative 

correlation between GC content and both intra-species diversity and inter-species 

divergence (Cai et al. 2009). These contradictory studies suggest that GC content does 
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influence the dynamics of mutations emerging in humans and also variants segregating 

in the population. Although these contradictory results could be due in large part to 

different studies focusing on a variety of datasets with differing allele frequencies, the 

true influence of GC content on variant patterns is still unclear. 

Recombination rate has also been shown to influence diversity and substitution 

rates. Recombination rates vary widely across the genome (Kong et al. 2002) and many 

studies show a positive correlation between nucleotide diversity and recombination rate 

in humans (Nachman et al. 1998; Nachman 2001; Lercher and Hurst 2002b; Hellmann 

et al. 2005; Spencer et al. 2006; Cai et al. 2009; Lohmueller et al. 2011). A positive 

correlation is also observed between interspecies divergence and recombination rates 

(Hellmann et al. 2003; Hellmann et al. 2005; Duret and Arndt 2008; Cai et al. 2009). 

Three separate theories have been proposed to explain these findings: mutagenic 

recombination, selective-dependent processes, and biased gene conversion (BGC). 

The hypothesis that recombination is directly mutagenic, leading to increased 

mutation rate in regions of high recombination and thus higher diversity, was initially 

proposed based on mutation studies in yeast (Magni and Von Borstel 1962; Magni 

1964; Esposito and Bruschi 1993). The same conclusion was later reached in studies of 

human polymorphism, which observed a positive correlation between interspecies 

diversity and recombination rate (Lercher and Hurst 2002b; Hellmann et al. 2003; 

Hellmann et al. 2005; Hellmann et al. 2008). If recombination is inherently mutagenic, 

the same positive correlation that is seen in diversity levels should also be observed in 

intra-species divergence. However, there are conflicting reports in the literature, with 

some studies observing no correlation between recombination rate and divergence 
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(Begun and Aquadro 1992; Nachman 2001) and others reporting increased divergence 

in regions of high recombination rate (Hellmann et al. 2003; Hellmann et al. 2005; Duret 

and Arndt 2008; Hellmann et al. 2008; Cai et al. 2009). 

The second theory proposed to explain the positive correlation between 

recombination and diversity deals with how natural selection alters patterns of variation 

in the human genome. Recombination generates new haplotypes and shuffles variants 

onto different backgrounds. This means that in regions of the genome where 

recombination rate is relatively high, there will be an increased number of distinct 

haplotypes. When natural selection acts on a beneficial or deleterious variant, it does 

not simply change the frequency of that specific locus. Rather, selection has a much 

longer ranging effect, changing the frequency of the entire haplotype in which a variant 

resides. Recombination diminishes the diversity-reducing effects of background 

selection, which uses purifying selection against deleterious variants, and selective 

sweep, which involves positive selection favoring beneficial variants (Smith and Haigh 

1974; Kaplan et al. 1989; Charlesworth et al. 1993; Charlesworth et al. 1995; Hudson 

and Kaplan 1995; Nachman 2001). For example, background selection removes entire 

haplotypes containing a deleterious variant from the population. Recombination, 

however, increases the number of distinct haplotypes segregating in a population, and 

at the same time reduces the average length of the haplotypes. Therefore, if 

background selection occurs in the presence of high recombination, only haplotypes 

with the deleterious variant will be removed, while those without the deleterious variant 

would be kept. Recombination, therefore, promotes the maintenance of genetic diversity 

in the presence of selection. Studies in both humans and Drosophila have concluded 
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that background selection or genetic hitchhiking primarily drives the observed 

correlation between diversity and recombination (Begun et al. 2007; Cai et al. 2009; 

Keinan and Reich 2010; Lohmueller et al. 2011). 

The third proposed mechanism leading to the positive correlation between 

recombination rate and genetic diversity is biased gene conversion (BGC). BGC is a 

recombination-associated process that preferentially converts base pairs at GC/AT 

mismatched sites generated during recombination into GC, leading to preferential 

fixation of GC alleles (Duret and Galtier 2009). Over time, the observed effect of BGC 

can mimic that of natural selection, leading to an excess of weak (W) A or T ancestral 

bases converted to strong (S) G or C base as if the latter were under positive selection 

(Berglund et al. 2009; Galtier et al. 2009). A major difference, however, between BGC 

and selection-dependent effects is that BGC acts on one nucleotide, without an effect 

on the surrounding loci. Background selection and selective sweeps, although they are 

driven by selection on one specific locus, are effects that alter the entire haplotype 

instead of just the single nucleotide. 

These previous studies use common variants within humans and substitutions 

between humans and chimpanzees to model the effect of GC content and 

recombination rate on the mutation rate. However, these older forms of variation are 

effectively mutations accumulated over many generations. Their patterns, therefore, 

reflect the cumulative influence of many processes, including natural selection, 

population demographic history and BGC. A major challenge in the field is to elucidate 

the extent to which these forces have altered the distribution of variants over time and to 

distinguish their relative contributions. To minimize the effects of selection, many 
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studies restrict their analysis to non-coding regions of the genome. However, 

widespread signatures of recent positive selection, even within supposedly neutral 

regions (Williamson et al. 2007), suggest that even non-coding regions may also be 

influenced by selection. 

Rare variants represent a newly available and expanding resource that can 

overcome some of these limitations. Rare variants are the result of recent mutation 

events and are relatively young compared to variants segregating at higher frequencies. 

Therefore, rare variants are typically less affected by population demographic history or 

natural selection (Messer 2009). Furthermore, BGC acts only on variants after they 

have arisen in the population (Duret and Galtier 2009), and does not influence innate 

mutation rates. As such, rare variants are an appropriate resource for studying the 

spectrum and genomic distribution of mutations while minimizing these potentially 

confounding influences. 

While family-based whole-genome sequencing has begun to identify de novo 

mutations that provide more direct measures of mutation rates (Conrad et al. 2010; The 

1000 Genomes Project Consortium 2010; Campbell et al. 2012; Kong et al. 2012), the 

mutations identified sparsely cover the genome. For example, if whole genome 

sequencing of each parent-offspring trio yields ~40 de novo mutations (Conrad et al. 

2010), 500 such trios would need to be sequenced in order to accumulate roughly 

20,000 mutations. These mutations, however, would occur roughly once per 150 kb, 

and the data would lack the spatial resolution necessary to detect the effect of local 

genomic context on a finer scale. 
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For this project, I wanted to understand the effect that GC content and 

recombination rate has on the spontaneous single-nucleotide mutation rate as well as 

fixation patterns of variants in the human genome. We hypothesized that rare variants 

would more accurately represent the underlying effects of GC content and 

recombination rate on mutation patterns in humans than common variants or 

substitutions. I studied a set of rare variants discovered using targeted re-sequencing of 

202 genes in > 14,000 unrelated individuals. The 202 genes are drug targets relevant in 

12 complex diseases. The 14,002 subjects were recruited for genetic association 

studies of these diseases (Nelson et al. 2012). I analyzed both the per-gene mutation 

rate as well as the probability of each site to contain a variant of a specific subtype 

relative to local GC content, recombination rate, and distance to recombination hotspot. 

In order to compare mutation rate inferences based on rare variants to those obtained 

by within- and between-species data, I compared rare variant patterns to common 

variant data from the 1000 Genomes Project and substitution sites between humans 

and chimpanzee. These three variant classes cover different evolutionary time scales, 

and the differences between them allow me to examine the distinct influence of genomic 

context on the initial mutation process, the subsequent rise of some mutations to 

become common variants, and eventual fixation. 

3.2 Methods 

3.2.1 Ethics Statement 

All study participants in the component studies provided written informed consent 

for the use of their DNA in genetic studies. A careful review was conducted to verify that 
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the consents were consistent with the activities of this study. In selected instances 

further Institutional Review Board approval was sought and obtained where the 

appropriateness of the informed consent for the current study was not clear. 

3.2.2 Data Sources and Processing 

3.2.2.1 Rare Variants 

I utilized single-nucleotide variants previously described in Nelson et al. (Nelson 

et al. 2012), which can be accessed at 

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_viewBatch.cgi?sbid=1056695. The 

variants were discovered from a targeted resequencing study of the exons of 202 

potential drug target genes (including 50 bp flanking each exon). For this study, I 

analyzed 195 autosomal genes, and focused on variants identified in individuals of 

European descent (N = 12,515). I oriented all variants along the human ancestral 

lineage, as defined by the 1000 Genomes Project alignments 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/human_ancestor_GRCh37

_e59.tar.bz2) (date accessed: January, 3, 2012) and defined rare variants as those with 

a derived allele frequency (DAF) ≤ 10-4. To minimize the potential confounding effects 

due to coverage and to enrich for high-quality variants, I selected variant and invariant 

sites with ≥ 10x coverage using per-site coverage data from a random sample of 500 

individuals reported by Nelson et al. (2012). 

I subdivided variants into 7 distinct subtypes based on the ancestral and derived 

alleles: AT>GC, GC>AT (non CpG), CpG GC>AT, AT>CG, GC>TA, AT>TA and 

GC>CG. GC>AT transitions that occurred at a CpG site (CpG GC>AT) (based on 

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_viewBatch.cgi?sbid=1056695
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ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/human_ancestor_GRCh37_

e59.tar.bz2) were analyzed separately because hypermethylation of the cytosine base 

at CpG dinucleotides leads to spontaneous deamination, resulting in C>T and G>A 

transitions that occur with substantially higher rates than other subtypes (Nachman and 

Crowell 2000; Kondrashov 2003; Hwang and Green 2004). In addition, previous studies 

found that substitution rates at CpG dinucleotides have a much stronger negative 

correlation with GC content and recombination rate than non-CpG-induced GC>AT 

transitions, suggesting that different molecular mechanisms may be involved (Arndt et 

al. 2005; Duret and Arndt 2008). The relationship between genomic context and GC>TA 

and GC>CG variants at CpG sites (which make up the eighth and ninth variant 

subtypes) was analyzed separately from non CpG-induced GC>TA and GC>CG 

variants. They were modeled in the multinomial logistic regressions with CpG as the 

ancestral base (see Section 3.2.3: Logistic Regression Analysis). As there were 

relatively few observed variants of these subtypes in my dataset (~200 each), it is 

difficult to accurately analyze mutation patterns and, therefore, I did not report these 

results. These variants, however, are included in the GC>TA and GC>CG variant 

subtypes presented in Table 3.1, and included when analyzing all variants subtypes 

combined. 

3.2.2.2 Per-Gene Mutation Rates and Genomic Context 

I analyzed mutation rates that were calculated for 193 of the 195 autosomal 

genes (two genes were excluded due to low numbers of variants), as described 

previously (Nelson et al. 2012). For each of the 193 genes, I calculated average GC 

content and sex-averaged pedigree-based recombination rates (Kong et al. 2002) within 
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the transcribed region of each gene based on definitions in RefGene. Linear regression 

was performed in R (R Development Core Team 2008). 

3.2.2.3 Sampling of Intergenic Regions to Obtain Common Variants and 

Substitutions 

To sample common variants and substitutions from random genomic intervals 

with the least selective pressure, I first defined intergenic regions by masking all genic 

regions ± 1 kb of the transcription start and end site of any gene based on RefGene in 

hg18. I then removed all regions that were not uniquely aligned in the 4-way Enredo, 

Pecan, Ortheus (EPO) alignments between human, chimpanzee and orangutan 

(ftp://ftp.ensembl.org/pub/release-54/emf/ensembl-compara/epo_4_catarrhini/) (date 

accessed: December 7, 2011). To match the distribution of genomic features with the 

rare variant data as closely as possible, I sampled 32,279 autosomal regions from all 

possible regions according to their genomic parameters. Specifically, I matched the size 

distribution as well as the joint distribution of GC content and recombination rate (Kong 

et al. 2002) of the selected regions to those of the target regions in the exome 

sequencing of the 202 genes. I used these regions to sample common variants. 

Because there were substantially more substitutions in these regions than common 

variants, I randomly subsampled 12,034 of the 32,279 regions to obtain substitutions. 

The median (± standard deviation) of GC content across the assayed regions was 0.493 

± 0.123, 0.469 ± 0.112, and 0.471 ± 0.116 for rare variants, common variants, and 

substitutions, respectively. The median and standard deviation for recombination rate 

(log transformed, in unit of cM/Mb) was 0.292 ± 0.167, 0.291 ± 0.165, 0.291 ± 0.166 for 

rare variants, common variants, and substitutions, respectively. 

ftp://ftp.ensembl.org/pub/release-54/emf/ensembl-compara/epo_4_catarrhini/
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3.2.2.4 Common Variant Data 

Single nucleotide variants from the interim phase 1 haplotype data from the 1000 

Genomes Project were used to assemble a dataset of common variants. The frequency 

file for the European subset (N = 381) of the data was downloaded from 

(http://www.sph.umich.edu/csg/abecasis/MACH/download/1000G-PhaseI-Interim.html) 

(date accessed: December 20, 2011). All variants within the selected regions were 

oriented ancestral to derived, as described above. Successfully oriented variants with 

DAF > 0.05 were categorized into the seven variant subtypes and they form the 

common variant dataset. 

3.2.2.5 Substitution Data 

Substitutions between human and chimpanzee were obtained using the 4-way 

EPO alignments between human, chimpanzee, orangutan, and rhesus macaque 

(ftp://ftp.ensembl.org/pub/release-54/emf/ensembl-compara/epo_4_catarrhini/) (date 

accessed: December 7, 2011). To identify substitutions, only regions where there was a 

unique human, chimp, and orangutan alignment were used. Single-base human-

chimpanzee differences were sampled from the 12,034 intergenic regions as described 

above. All sites were oriented along the ancestral lineage and categorized into the 

seven variant subtypes. Variant sites where the human lineage base represents the 

ancestral allele were excluded. 

3.2.2.6 ESP Rare Variants 

Variants from the NHLBI Exome Sequencing Project (ESP) from 5,400 

individuals were downloaded from the Exome Variant Server (Exome Variant Server, 

NHLBI Exome Sequencing Project (ESP), Seattle, WA (URL: 

http://www.sph.umich.edu/csg/abecasis/MACH/download/1000G-PhaseI-Interim.html
ftp://ftp.ensembl.org/pub/release-54/emf/ensembl-compara/epo_4_catarrhini/
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http://evs.gs.washington.edu/EVS/) [date accessed: December 2, 2011]). I also utilized 

sequence coverage data downloaded from the Exome Variant Server (date accessed: 

December 2, 2011 and December 5, 2011) to restrict to sites with ≥ 10x coverage. 

Subsequent analysis focused on singleton variants (DAF = 1.4 x 10-4) identified in 

Europeans (N = 3,510). Variants were oriented along the ancestral allele, as before. 

3.2.3 Logistic Regression Analysis 

I used a logistic regression framework to model the effect of GC content, 

recombination rate, and the absolute distance to the nearest recombination hotspot 

(DTH) on the occurrence of rare variants, common variants, and substitutions. I defined 

GC content at a given site as the percentage of GC bases in a 1 kb window surrounding 

the site (500 bp upstream, 500 bp downstream) based on the human genome reference 

sequence (hg18). Sex-averaged recombination rates from the deCODE project (Kong et 

al. 2002) were averaged in the same 1 kb window. The absolute distance to the center 

of the nearest recombination hotspot was calculated for each site using recombination 

hotspot coordinates from Phase II of the HapMap Project (McVean et al. 2004; Myers et 

al. 2005). I excluded sites if they were within repeats as defined previously by 

RepeatMasker. Recombination rates and DTH were log transformed to more closely 

resemble a normal distribution. 

To examine the impact on total mutation (all subtypes combined), I regressed the 

logit of the probability of a site containing a rare variant of any subtype against GC 

content, recombination rate, or DTH using separate logistic regression models for each 

genomic context variable. Each logistic regression has the form,   (
 

   
)      , 
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where   is the probability that the site contains a rare variant and   is either GC content, 

recombination rate, or DTH at that site. I assessed the significance of the regression 

using a Wald test on the   parameter. I also fit regression models for common variants 

and substitutions. 

Next, to analyze the effect of genomic context on specific variant subtypes, I 

employed a multinomial logistic regression model that jointly analyzes the probability of 

all possible variant subtypes for a given ancestral state. The model treats the derived 

alleles at a site with a given ancestral allele state (AT, GC or CpG) as a multinomial 

random variable with four potential outcomes. Sites with an AT ancestral allele state, for 

example, can have one of four possible derived states: AT reference (invariant), GC, 

CG, or TA. I ran separate multinomial regressions for each ancestral allele state and set 

the invariant allele as the baseline outcome. From each of these regressions, I 

calculated unique slope and intercept parameters for each variant subtype. I let      

denote a nucleotide site with ancestral allele   and derived allele   . Then, the 

multinomial logistic regression for an ancestral allele state   to the derived state    has 

the form,  

   (
   (    )

  (   )
)       

      
  

3.1 

where   (    ) is the probability that a site with ancestral allele   is variant with 

derived allele   ,   (   ) is the probability that a site with ancestral allele   is 

invariant,   is the GC content, log(recombination rate), or log(DTH) at a given site, and 

∑    (    )    for each nucleotide site. I used a Wald test on the   slope parameter 

to assess significance. I fit separate multinomial logistic regression models for each 
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ancestral allele state for rare variants, common variants, and substitutions in order to 

estimate the effect of genomic context on variant subtypes in these three distinct variant 

classes. All logistic regressions were performed in R (R Development Core Team 

2008). 

3.2.4 Analysis of Logistic Regression Robustness 

I employed three strategies to assess the robustness of the logistic regression 

results on the rare variants: two to test the estimated coefficients and another to analyze 

statistical significance. First, I used a subsampling strategy in which I randomly sampled 

2,000 sites (out of ~700 kb) and ran total logistic regression on these 2,000 sites. There 

are 2,126 exons in the target regions; therefore sampling 2,000 sites will generate ~1 

site per exon, on average. This analysis was repeated 1,000 times. I also performed this 

analysis using multinomial regression separately on AT, GC, and CpG ancestral sites. 

To analyze the degree to which outliers could be driving the observed slope parameters 

from the logistic and multinomial regressions, I performed a bootstrapping analysis. I 

randomly re-sampled 195 autosomal genes with replacement, generating a dataset with 

the same number of data points to the full analysis but eliminating a random subset of 

genes in each run. I ran the bootstrapping for the logistic regression analysis on total 

rare variants and the multinomial logistic regression on AT, GC, and CpG ancestral 

sites 1,000 times. Finally, I used permutations to analyze the statistical significance of 

the observed coefficients. For the total logistic regression, I randomly distributed the 

variant and invariant sites across the entire ~700 kb target region and performed the 

regression. This analysis was repeated 1,000 times. I performed this same analysis for 

the multinomial regression separately on AT, GC, and CpG ancestral sites.  
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3.3 Results 

3.3.1 Variant Counts and Densities among Rare Variants, Common Variants, and 

Substitutions 

I obtained rare variants from a previously described sequencing study targeting 

the exons and flanking intronic regions of 202 genes in > 14,000 individuals to a median 

depth of 27x (Nelson et al. 2012). Several complimentary methods were used to assess 

the quality of rare variants in these data. Among singleton variants, the false positive 

rate was 2.0%, which was estimated by Sanger sequencing-based validation 240 out of 

245 sampled singletons (Nelson et al. 2012). The false negative rate in singletons was 

estimated to be about 2.7%, based on call rates among sequenced regions (Nelson et 

al. 2012). Lower error rates were estimated for more common variants (Nelson et al. 

2012). For this study I focused on the 195 autosomal genes, with ~700 kb targeted 

regions in ~2,000 targeted exons, which contained a total of 20,053 rare variants with a 

DAF ≤ 10-4 in the European subset (N = 12,515). Each variant was categorized into one 

of seven possible variant subtypes based on the ancestral and derived allele states: 

AT>GC, GC>AT, CpG GC>AT, AT>CG, GC>TA, AT>TA and GC>CG (Table 3.1). The 

notation of AT>GC indicates a site where the ancestral base A has a G as the derived 

allele or ancestral base T has derived allele C. 

I summarized variant counts and conditional variant proportions by subtype 

(Table 3.1). Nearly 13% of CpG sites have a rare GC>AT variant, compared to only 

1.71% of non-CpG GC bases, consistent with the known hypermutability of CpG 

dinucleotides (Nachman and Crowell 2000; Kondrashov 2003; Hwang and Green 2004). 

Among rare variants, there were nearly twice as many S>W variants (those converting a 
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G/C base pair into an A/T base pair) as the opposite W>S variants (Table 3.1). This 

mutational AT bias is consistent with previous observations (Lynch 2010), and can be 

partially explained by the relatively high frequency of GC>AT variants at CpG 

dinucleotides (Table 3.1). 

For comparison, I also analyzed common variants and substitutions. I randomly 

sampled intergenic regions from the human genome to obtain common variants and 

substitutions for analysis while matching the genomic context of the rare variant dataset 

(see Section 3.2.2.3: Sampling of Intergenic Regions to Obtain Common Variants and 

Substitutions). Sampling intergenic regions allowed me to minimize selective effects. To 

achieve comparable statistical power, I sampled a similar number of common variants 

and substitutions as the rare variants. In all, I obtained 22,566 variants from the 

European subset of the 1000 Genomes Project with a DAF > 5% and 22,179 human-

lineage-specific divergent sites between humans and chimpanzee (Table 3.1). 

The relative proportion of variant subtypes differed among the three variant 

classes. Figure 3.1 shows the total variant proportion, defined as the number of variants 

of a given subtype over the total number of variants in that variant class. The relative 

proportion of AT>GC variants increased progressively from rare variants to 

substitutions, while CpG GC>AT transitions correspondingly decreased (Figure 3.1). 

Other variant subtypes showed little change across the three variant classes. As seen in 

Table 3.1, the ratio of W>S/S>W variants increased from 0.54 in rare variants, to 0.65 in 

common variants, and further to 0.75 in substitutions, resulting in a progressive increase 

in W>S variant "load" as the average frequency of the derived allele increased. In other 
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words, W>S variants were more likely to rise to high allele frequencies and more likely 

to become fixed in the human lineage than S>W variants. 

The conditional variant proportion, defined as the number of a given variant 

subtype divided by the total number of bases that could produce the given subtype, was 

higher in all rare variant subtypes compared to common variants and substitutions 

(Table 3.1). The higher absolute conditional variant proportion in rare variants is 

expected, as the rare variants were discovered in > 14,000 individuals. Importantly, the 

relative magnitude of the rare variant subtypes is expected to more closely reflect the 

relative spontaneous mutation rate than common variants or substitutions. The results 

for rare variants in Table 3.1, therefore, provide more accurate estimates of the relative 

mutation rates among different mutation subtypes. 

3.3.2 The Per-Gene Mutation Rate Was Influenced by GC Content but Not 

Recombination Rate 

I analyzed the per-gene mutation rate for 193 genes (out of the 195 autosomal 

genes), calculated previously by Nelson et al. (2012), using the method described by 

Coventry et al. (2010) and Wakeley and Takahashi (2003). There was considerable 

fluctuation in the mutation rate across genes (Figure 3.2A). To assess the impact of 

genomic context on this variability, I calculated the average GC content and 

recombination rate within the transcribed region of each gene (Figure 3.2B and C, 

respectively). There was a weak but significant positive correlation between mutation 

rate and GC content (Pearson’s r = 0.22, p = 0.0031, Figure 3.2D dashed line). 

Recombination rate, however, was not significantly correlated with mutation rate 

(Pearson’s r = 0.039, p = 0.60, Figure 3.2E dashed line). To ensure that outliers did not 
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drive these results, I excluded genes that fell outside of two standard deviations from 

the mean GC content or mutation rate (n = 8) and for recombination rate (n = 10). There 

was a slight increase in the correlation with GC content and little in the correlation with 

recombination rate (dotted line in Figure 3.2D and E, respectively). As previously 

reported (Kong et al. 2002), GC content and recombination rate themselves are 

positively correlated (Pearson’s r = 0.18, p = 0.017). Multiple linear regression including 

both GC content and recombination rate as covariates did not change the results from 

either regression alone, and recombination rate was still not significantly correlated with 

mutation rate (GC content p-value = 0.002, recombination rate p-value = 0.658). 

3.3.3 Using Logistic Regression to Analyze Per-Site Variant Patterns 

The per-gene mutation rates analyzed above were calculated using all variant 

subtypes in aggregate. Previous studies, however, suggest that GC content and 

recombination rate may have different effects on specific variant subtypes (Lercher and 

Hurst 2002a; Arndt et al. 2005; Duret and Arndt 2008; Berglund et al. 2009). Estimating 

subtype-specific mutation rates on a per-gene or per-exon basis lacks a sufficient 

number of sites, especially for subtypes with relatively few observed variants (such as 

transversions). Therefore, I combined the ~700 K targeted sites over all 195 genes, 

using a per-site logistic regression strategy to examine the effect of local GC content 

and recombination rate on the probability of observing a variant of a given subtype (see 

Section 3.2.3: Logistic Regression Analysis). 

The dependent variable of the logistic regression was obtained by scoring each 

site as either variant or invariant. If the site was scored as variant, it was further 

categorized into one of seven variant subtypes based on the ancestral and derived 
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alleles. The log odds of a site being variant was regressed on GC content and 

recombination rate, calculated in 1 kb windows surrounding each individual site. 

3.3.4 GC Content Affected Rare Variants Differently From Common Variants and 

Substitutions 

Overall, the probability of observing any rare variant was positively influenced by 

GC content (β = 0.68, p-value < 10-16). However, individual subtypes showed negative 

or relatively small positive effects of GC content on all other variant subtypes (Figure 

3.3), including CpG GC>AT variants (β = -2.64, p-value < 10-16). The observation that 

individual subtypes could show opposite regression results to all variants combined may 

seem counter-intuitive, but is an example of Simpson’s Paradox, where trends observed 

in subsets of the data can be the opposite of what is observed in the entire dataset 

(Agresti 2002). CpG-induced GC>AT variants, one of the major variant subtypes, 

tended to lie in GC-rich regions (50-65% GC content), whereas AT>GC transitions 

tended to occur in GC-poor regions (30-45% GC content) (Figure 3.6). The unbalanced 

distribution of variant subtypes across GC content, combined with the much higher 

mutation rate at CpG dinucleotides, drove the observed positive slope for all variants 

combined (Figure 3.6). When all CpG sites (variant or invariant) were removed and the 

regression run, the relationship between total rare variants and GC content became 

negative and was no longer significant (β = -0.17, p-value = 0.028). A similar finding 

was noted previously for substitution data (Duret and Arndt 2008). These results 

highlight the importance of studying variant subtypes, as analysis of all variants in 

aggregate could miss the underlying pattern of individual variant subtypes. 
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Comparison of rare variants and common variants or substitutions revealed 

subtype-specific differences among the three variant classes (Figure 3.3). For AT>GC 

and AT>CG rare variants, there was a relatively strong negative relationship between 

variant proportions and GC content (Figure 3.3A and B). These same trends, however, 

were not observed in AT>GC and AT>CG common variants or substitutions, which were 

weaker, and sometimes positive (Figure 3.3A and B). In contrast, for the other four 

variant subtypes, there were relatively strong negative effects on common variants and 

substitutions, yet the effects on rare variants were smaller or absent (Figure 3.3C-E). 

Together, these results show that GC-rich regions tend to have fewer W>S rare variants 

and fewer S>W common variants or substitutions than GC-poor regions. 

3.3.5 Recombination Affects Patterns of Common Variants and Substitutions, 

but Not Rare Variants 

The influence of recombination rate on total rare variants (β = 0.15, p-value = 

3.58 x 10-4) and all variant subtypes, including CpG GC>AT variants (β = -0.13, p-value 

= 0.16), was relatively small compared to common variants and substitutions (Figure 

3.4). In contrast, recombination rate had a much stronger effect on total common 

variants (β = 0.95, p-value <10-16) and substitutions (β = 0.29, p-value = 2.03x10-13) and 

all variant subtypes for both common variants and substitutions than rare variants 

(Figure 3.4). There was a relatively strong positive effect on W>S common variants and 

substitutions (Figure 3.4A and B), consistent with the expected impact of BGC on 

variant patterns in the human genome. For the other four subtypes (Figure 3.4C-F), the 

effect on common variants was positive but weaker than in the case of W>S subtypes. 

In contrast, the effect on substitutions was negative (Figure 3.4C-E) or slightly positive 
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(Figure 3.4F). While BGC could explain the trends seen in W>S subtypes, the positive 

effects observed on other common variant subtypes suggests that either selective 

sweep or background selection could also be acting on these variants. Importantly, the 

lack of an effect on rare variants suggests that mutation rates are not altered by local 

recombination rate. 

3.3.6 Distance to Recombination Hotspot Negatively Influenced Common 

Variants, but Had Little Effect on Rare Variants or Substitutions 

Previous studies suggested that recombination hotspots accounted for most of 

the observed correlation between nucleotide diversity and recombination rate (Spencer 

2006; Spencer et al. 2006). To examine the effect that recombination hotspots have on 

variant patterns, I calculated the absolute distance between each site and the nearest 

recombination hotspot (DTH) as reported in the population-based estimates from the 

HapMap Project (Myers et al. 2005). Median per-site DTH was consistent across all 

variant classes (median and standard deviation of absolute log-transformed DTH for 

rare variants: 4.43 ± 0.65, common variants: 4.32 ± 0.60, and substitutions: 4.31 ± 

0.60). The results, shown in Figure 3.5, were largely consistent with those for 

recombination rate (Figure 3.4). I observed relatively weak relationships between DTH 

and rare variants for total (β = -0.042, p-value = 1.61 x 10-4) and all variant subtypes 

(Figure 3.5). The strongest of these, GC>AT rare variants, had a negative relationship 

with DTH, although, it was weaker than the relationship observed in common variants 

(Figure 3.5D). DTH had a negative effect on total common variants (β = -0.15, p-value < 

10-16) and for each of the six variant subtypes (Figure 3.5). For substitutions however, 
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the negative effects were either weaker than those observed for common variants 

(Figure 3.5A, B, D and F) or positive (Figure 3.5C and E). 

3.3.7 Validation of Rare Variant Results in an Independent Dataset 

The dataset used for rare variants involved 195 genes of pharmaceutical interest 

(Nelson et al. 2012), and therefore may not be representative of genome-wide patterns. 

To test this, I made use of a publically available dataset from the National Heart Lung 

and Blood Institute (NHLBI) Exome Sequencing Project (ESP). I applied logistic 

regression on 603,267 singletons in this dataset (DAF = 1.4 x 10-4), limiting to sites with 

≥ 10x depth of coverage. GC content and recombination rate were calculated as before 

in 1kb windows surrounding each site. The regression coefficients from the exome-wide 

rare variant data fell within the 99% confidence intervals of the coefficients estimated 

from the 195 gene data (Table 2), with the following exceptions. Recombination rate has 

a significantly larger effect on total variants in the ESP data (Table 3.2). Also, the 

proportion of CpG GC>AT transitions was positively influenced by recombination rate 

for ESP variants, but negatively for the previously described rare variants (although this 

negative influence was not statistically significant) (Table 3.2). Overall, these results 

show that for most variant subtypes, there was no significant difference in the way that 

GC content, recombination rate, or DTH influence rare variant patterns in the 195 gene 

dataset compared to a larger collection of genes. Therefore, I conclude that my analysis 

of rare variants in the 195 gene dataset is representative of a broader sampling of 

genes across the genome.  
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3.3.8 Robustness of the Logistic Regression 

3.3.8.1 Comparison of Coding and Noncoding Rare Variants 

A central premise of this study was that natural selection has limited effects on 

rare variants. The sequence data cover both targeted exons and 50 bp of flanking 

sequence, allowing me to compare between coding and intronic rare variants. Total and 

CpG GC>AT rare variants had a greater conditional variant proportion in coding 

compared to intronic regions, although the proportion for all other variant subtypes was 

greater in intronic regions (Table 3.3). While the differences in the conditional variant 

proportion between coding and noncoding sites were statistically significant for most 

subtypes, the magnitudes of the differences were small (average across subtypes: 

0.27%). Thus, while purifying selection may have slightly reduced the absolute number 

of rare variants in coding regions, the relative proportion of individual variant subtypes 

was not substantially affected. Importantly, with regard to the main conclusions of this 

study, there was no significant difference (based on 99% confidence intervals) in the 

coefficients for GC content, recombination rate, or DTH regressions performed on 

coding, intronic, or the total dataset (Table 3.4). 

3.3.8.2 No Difference in Regression Results across a Variety of Window Sizes for 

GC Content and Recombination Rate 

The analysis presented above used GC content and recombination rate 

calculated in 1kb windows. To test the dependence of my results on window size, I 

extended the analysis for windows ranging from 100 bp – 10 kb. With the exception of 

CpG sites (Figure 3.7A), I observed no significant differences between regression 
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coefficients for any other variant subtype across the range of window sizes tested 

(based on 95% confidence intervals) (Figure 3.7). 

3.3.8.3 Subsampling, Bootstrapping, and Permutation Analyses are Consistent 

with Logistic Regression Results in Rare Variants 

The rare variants I analyzed were derived from exome sequencing and are 

distributed in tight clusters, corresponding to ~2,000 targeted exons in 195 autosomal 

genes. Genomic features of nearby sites are often not strictly independent. To evaluate 

the impact of spatial dependency on the regression results, I performed a subsampling 

analysis using 2,000 random sites (out of ~700K sites) in each run (see Section 3.2.4: 

Analysis of Logistic Regression Robustness). All observed coefficients in the original 

analysis fell within the 25th-75th percentile range of the coefficients from 1,000 

subsampling runs for GC content (Figure 3.8A), recombination rate (Figure 3.8B), and 

DTH (Figure 3.8C). I also examined the potential impact of between-gene heterogeneity 

by performing a bootstrapping analysis involving random sampling of 195 genes with 

replacement. The distribution of the coefficients from 1,000 bootstrapping runs was 

symmetric around the original estimates for GC content (Figure 3.9A), recombination 

rate (Figure 3.9B), and DTH (Figure 3.9C), confirming that there was no systematic bias 

due to outlier genes driving the results of the regressions. In addition, as the p-values in 

the logistic regression were model-based, I assessed potential bias of the reported p-

values by running 1,000 rounds of permutations of the variant and invariant status 

across sites, and found that the p-values calculated in the regressions were consistent 

for GC content, recombination rate, and DTH (Table 3.5). 
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3.3.8.4 Little Difference between Univariate and Multivariate Regression Results 

GC content and recombination rate are positively correlated (Kong et al. 2002). 

To determine the extent to which the results for recombination rate and DTH could be 

driven by GC content, and vice versa, I performed multivariate logistic regression with 

two models, one using GC content and recombination rate as covariates and another 

using GC content and DTH as covariates. I did not observe a significant difference 

between the regression coefficients (based on 99% confidence intervals) estimated 

from the univariate (presented above) and the multivariate models for GC content, 

recombination rate, or DTH in rare variants (Table 3.6), common variants (Table 3.7), or 

substitutions (Table 3.8). 

3.3.8.5 Coverage Does Not Alter Logistic Regression Results 

Because GC content influences read depth in high-throughput sequencing 

studies, especially following target capture (Albert et al. 2007; Porreca et al. 2007), I 

verified that the observed influence of GC content on rare variants was not an artifact of 

sequencing depth. In addition to the 10x coverage filter imposed on all sites in the rare 

variant analysis (see Section 3.2.2.1: Rare Variants), I first performed logistic regression 

using per-base coverage as the explanatory variable. Total, AT>GC, CpG GC>AT, and 

GC>AT variants were significantly affected by coverage (Table 3.9). Including coverage 

as a covariate in the regression against GC content decreased the effect of GC content 

on CpG GC>AT transitions, but the coefficient was still negative (Table 3.9). The 

estimated coefficients for other variant subtypes were not affected by including 

coverage in the model (based on 99% confidence intervals). I concluded that coverage 

was not driving the results regarding the influence of GC content on rare variants.  
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3.4 Discussion 

In this study, I examined mutation patterns of different variant subtypes in the 

human genome, using rare variants as a model for the de novo mutation rate. I also 

used common variants and human-chimpanzee substitutions to analyze the ongoing 

biases toward fixation present in the human genome, which can include natural 

selection and neutral evolutionary processes. The results suggest that mutation rates 

and fixation biases are affected by local GC content. However, my results suggest that 

fixation, and not mutation, is affected by the local recombination rate. 

Using rare variants to analyze the spontaneous mutation rate was previously 

suggested in anticipation of the emergence of this new data type from the next-

generation sequencing studies (Messer 2009). Rare variants, such as those used here, 

arose recently in the population. For example, the rare variants I analyzed, with a DAF ≤ 

10-4, arose an average of ~10 generations in the past, assuming a current population 

size of 50,000 individuals and a population growth rate of 0.001 (Slatkin 2000). 

Furthermore, for populations undergoing recent population expansion, such as the 

growth that humans have experienced in the recent past (Coventry et al. 2010), such 

low-frequency variants will be even younger. Because these rare variants are, on 

average, very young in the population, their patterns are primarily governed by random 

genetic drift. Therefore, unless the force of selection is strong, natural selection, along 

with population demographic history, and BGC, will not alter the observed patterns of 

rare variants. 

Analysis of synonymous and nonsynonymous variants separately is a common 

approach for minimizing the effects of natural selection. However, the logistic regression 
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approach works on individual variant and invariant sites. It is difficult to analyze 

synonymous and nonsynonymous variants separately because each ancestral allele 

could mutate to three other nucleotides, and one needs to enumerate the potential 

synonymous and nonsynonymous variants that could occur at each site. Instead, I 

analyzed the effect that GC content, recombination rate, and DTH has on coding and 

noncoding rare variants in order to assess any potential confounding effect that natural 

selection may have on the results. I did not find any significant difference between these 

two functional classes of variants, consistent with theoretical analysis showing that the 

effect of selection is attenuated in rare variants (Messer 2009). 

The average per-gene mutation rate, based on variants from 193 genes, was 

1.02 x 10-8 per base pair per generation (Nelson et al. 2012), which is within the range 

of recently published estimates from family-based sequencing studies (The 1000 

Genomes Project Consortium 2010; Campbell et al. 2012; Kong et al. 2012). I observed 

considerable variability in the mutation rate from gene to gene, consistent with previous 

work (Wolfe et al. 1989; Nachman and Crowell 2000; Kondrashov 2003; Hodgkinson et 

al. 2009). 

Previous studies examining the effect of genomic context on the mutation rate 

relied on context measurements computed in fixed-length genomic windows. This 

window-based approach is difficult to implement in exome sequencing data because 

such data cover short intervals with variable length, representing targeted exons, 

separated by large gaps, representing introns. This leads to problems in defining 

window width and estimating average parameter values. In my study, most target 

regions are small (85% < 500 bp) and calculating rates for low frequency events, such 
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as transversions, in these windows could be highly inaccurate. I therefore adopted a 

logistic regression approach, using data for individual base positions and aggregating 

data across sites. This approach has several advantages. It eliminates the need to 

account for gaps in coverage from intronic and intergenic regions, and provides a 

sufficient number of sites to study the effect of genomic context on individual variant 

subtypes. 

My results suggest that recombination rate has a relatively small effect on the 

mutation rate, but a significant impact on common variants in the population. First, I did 

not observe a correlation between the per-gene mutation rate and recombination rate. 

Second, the effect of recombination rate on rare variant subtypes was small, especially 

compared to the effect observed on common variants and substitutions. AT>GC and 

AT>CG common variants and substitutions, however, were both strongly affected by 

local recombination rate. Together, these results are consistent with BGC altering 

patterns of standing variation in the human genome. BGC has no effect on mutation 

rates, but over time, is expected to lead to a fixation bias toward GC bases at AT/GC 

polymorphic sites (Duret and Galtier 2009). A recent study reported a strong bias of 

W>S substitutions in Human Accelerated Regions that increased with increasing male 

recombination rate (Berglund et al. 2009). Furthermore, BGC can drive deleterious GC 

alleles to fixation (Galtier et al. 2009) and is hypothesized to lead to the apparent 

increase in substitution rate with increasing recombination rate (Meunier and Duret 

2004; Duret and Arndt 2008; Berglund et al. 2009; Galtier et al. 2009). While my results 

cannot completely rule out a mutagenic effect due to recombination, they suggest that if 

such an effect does exist, it is relatively small in comparison to the influence of BGC. 
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Background selection and selective sweeps can also drive positive correlations 

between diversity and recombination rate (Smith and Haigh 1974; Kaplan et al. 1989; 

Charlesworth et al. 1993; Hudson and Kaplan 1995; Cai et al. 2009; Lohmueller et al. 

2011). These selection-dependent mechanisms are unlikely to affect rare variants 

because they are too young in the population to be substantially affected by selection. 

In addition to the relationship observed between recombination rate and AT>GC and 

AT>CG common variants and substitutions, I also saw relatively strong effects on other 

variant subtypes. Therefore, I cannot rule out the effect of these recombination-

associated processes on patterns of variants in my dataset. 

GC content varies throughout the genome, with long stretches of DNA exhibiting 

relatively stable GC content, known as isochores (Eyre-Walker and Hurst 2001). 

Previous studies propose that mutation bias or fixation bias toward or against GC bases 

drives the apparent regional variation in GC content and maintenance of isochores 

throughout the genome (Smith et al. 2002; Webster et al. 2003; Duret and Arndt 2008). 

My results are consistent with this hypothesis, suggesting that GC-rich regions of the 

genome may maintain base composition by simultaneously decreasing GC-enriching, 

W>S, mutations and reducing the fixation of GC-depleting, S>W, common variants. 

The effect of genomic context on CpG dinucleotides has also been widely 

studied. The CpG dinucleotide is defined as a C base followed directly by a G base: 5’-

CG-3’. The C at this specific base configuration is especially prone to methylation, and 

the resulting 5-methyl cytosine can undergo spontaneous deamination to produce T, 

generating a C>T mutation (G>A on the opposite strand) (Cooper and Youssoufian 

1988; Cooper and Krawczak 1993). Due to this process, CpG dinucleotides mutate at 
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roughly 10 - 40 times the frequency of other nucleotides (Sommer 1995; Nachman and 

Crowell 2000; Kondrashov 2003; Hwang and Green 2004). The rate of CpG-induced 

GC>AT transitions has a strong negative correlation with both GC content and 

recombination rate (Fryxell and Zuckerkandl 2000; Arndt et al. 2005; Fryxell and Moon 

2005; Duret and Arndt 2008) and it has been suggested that the increased thermal 

stability of GC-rich regions has a protective effect on the mutability of CpG dinucleotides 

(Fryxell and Zuckerkandl 2000; Fryxell and Moon 2005). My results for the effect of GC 

content and recombination rate on CpG-induced GC>AT transitions are consistent with 

previous studies. 

Understanding the relationship between local genomic context and the mutation 

rate has several practical implications. More precise estimates of de novo mutation 

rates can improve genotype calling from short sequencing reads by providing better 

prior distributions for the spectrum of expected variation. Moreover, my results can help 

to identify potentially functional de novo mutations by highlighting new variants that are 

unlikely to arise spontaneously. 

My study, however, has several limitations. I was not able to identify all potential 

mutations, as some will not be viable in humans. However, truly dominant lethal 

mutations are extremely rare and other approaches, including direct discovery of de 

novo variants via trio sequencing, will have similar limitations. Additionally, while rare 

variants are very young on the evolutionary time scale, they could still be influenced by 

the same confounding factors that affect common variants and substitutions, albeit to a 

lesser extent. At present, however, rare variants, especially the extremely rare variants I 

studied here, represent one of the most powerful datasets currently available for high-
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sensitivity analysis of the rate and molecular spectrum of new mutations. Finally, the 

dataset I used involves only 195 genes, and could generate a biased representation of 

the genome. Indeed, these genes appear to be under stronger purifying selection than 

other genes (Nelson et al. 2012). Despite this caveat, I observed strong concordance 

between the results from the 195 genes and those from an exome-wide dataset, 

indicating that any selection acting on these genes does not influence the relationship 

with genomic context and that the results presented here are representative of the 

exome. 

3.5 Conclusions 

In this study, I used a dataset of > 20,000 rare variants (DAF < 10-4) as a new 

resource for studying patterns of single-nucleotide mutation in humans. Compared to 

common variants, the effects of confounding variables, including demography, selection 

and BGC, are reduced in these rare variants. This allows me to take a new step toward 

differentiating the initial mutation processes from the subsequent forces that act more 

gradually, affecting fixation processes of segregating variants. My results reveal a 

substantial difference in the relative abundance of variant subtypes between rare 

variants, common variants, and substitutions. GC content has a strong impact on all 

variant classes, although the effect is different both between variant classes and 

different variant subtypes. Recombination rate, on the other hand, has relatively little 

effect on rare variants, but a much stronger effect on AT>GC and AT>CG common 

variants and substitutions, consistent with BGC acting on existing variants. Furthermore, 

my results reveal a drastic difference between total mutations and individual mutation 

subtypes and this advocates for the importance of future research that focuses on 
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subtype-specific patterns in order to fully understand the effect of GC content and 

recombination rate on mutation and fixation rates in the human genome. Future 

research, aided by the ever-increasing deep sequencing data covering more genomic 

targets in larger population samples, is necessary to more precisely estimate these 

fundamental parameters. 

Eventually, these studies will help unravel the relative contribution of diverse 

evolutionary forces acting over different time scales. Such an understanding will also 

provide the knowledge base necessary to study the allelic spectrum of inherited and 

somatic diseases, as well as the dynamics of human genome variation as it evolves 

under a variety of environmental and demographic conditions. 
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3.6 Figures 

 

Figure 3.1: Comparison of total variant proportions of the seven variant subtypes 
across the three variant classes. 

The total variant proportion is shown for each of the seven variant subtypes, defined as 
the number of variants of a given subtype over the total number of variants in that 
variant class, for each of the three variant classes analyzed: rare variants, common 
variants, and substitutions. 
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Figure 3.2: Variability of mutation rate across 193 genes and relationship with 
genomic context. 

(A) Per-gene mutations rates (x 10-7 per base pair per generation) for 193 genes, 
estimated previously by coalescent modeling (Nelson et al. 2012), are shown ordered 
from lowest to highest. The black line indicates the average of 193 genes (1.02 x 10-8 
per base pair per generation). (B) Per gene average GC content ordered as in A. (C) 
Per-gene average recombination rate (log10 cM/Mb) ordered as in A. (D) Relationship 
between GC content and mutation rate (x 10-7 per base pair per generation). The 
dashed line represents the linear regression fitting over all 193 genes. After removing 
outliers (grey filled points), the regression was recalculated (dotted line). (E) 
Relationship between recombination rate (log10 cM/Mb) and mutation rate (x 10-7 per 
base pair per generation). The dashed line represents the linear regression fitting over 
all 193 genes. Outliers were removed (grey filled points) and the regression was 
recalculated (dotted lines).  
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Figure 3.3: Regression results for GC content across variant subtypes for rare 
variants, common variants, and substitutions. 

The relationship between local GC content and the observed conditional variant 
proportion for 6 variant subtypes: (A) AT>GC, (B) AT>CG, (C) AT>TA, (D) GC>AT, (E) 
GC>TA, and (F) GC>CG across observed GC content. Filled points show the 
conditional variant proportions in each GC content bin, scaled by the intercept of the 

logistic regression: 
      

    
   where   is the intercept calculated in the regression,      is 

the count of the given     variant subtype, and      is the number of   ancestral 

invariant sites that could produce the given subtype in the  th GC content bin. Symbol 
size represents the proportion of the given variant subtype falling into a given GC-

content bin. The solid lines show the fitted logistic regression curve, where   is the 
slope fitted in the logistic regression and    is the GC content in the  th bin. The grey 
dashed line represents the baseline of no effect,    . Legends in each subplot show 
the regression slope calculated for each variant class and its significance. ***p-value < 
0.0001, **p-value < 0.001, *p-value < 0.01. 
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Figure 3.4: Regression results for recombination rate across variant subtype for 
rare variants, common variants, and substitutions. 

The relationship between local recombination rate (log10 cM/Mb) and the observed 
conditional variant proportion for 6 variant subtypes: (A) AT>GC, (B) AT>CG, (C) 
AT>TA, (D) GC>AT, (E) GC>TA, and (F) GC>CG across observed recombination rate 
(plotted as in Figure 3.3). Filled points show the conditional variant proportions, scaled 
by the intercept of the logistic regression. Symbol size represents the proportion of the 
given variant subtype falling into a given recombination rate bin. The solid lines show 

the fitted logistic regression curve, where   is the slope fitted in the logistic regression 
and    is the recombination rate in the  th bin. The grey dashed line represents the 
baseline of no effect,    . Legends in each subplot show the regression slope 
calculated for each variant class and its significance. ***p-value < 0.0001, **p-value < 
0.001, *p-value < 0.01. 
.  
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Figure 3.5: Regression results for DTH across variant subtypes for rare variants, 
common variants, and substitutions. 

The relationship between DTH (log10 bp) and the 6 variant subtypes: (A) AT>GC, (B) 
AT>CG, (C) AT>TA, (D) GC>AT, (E) GC>TA, and (F) GC>CG across observed DTH 
(plotted as in Figure 3.3). Filled points show the conditional variant proportions, scaled 
by the intercept of the logistic regression. Symbol size represents the proportion of the 
given variant subtype falling into a given DTH bin. The solid lines show the fitted logistic 

regression curve, where   is the slope fitted in the logistic regression and    is the DTH 
in the  th bin. The grey dashed line represents the baseline of no effect,    . Legends 
in each subplot show the regression slope calculated for each variant class and its 
significance. ***p-value < 0.0001, **p-value < 0.001, *p-value < 0.01. 
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Figure 3.6: Difference in effect of GC content on rare variants between total 
variants and individual variant subtypes. 

This plot shows the fitted logistic regression curves for a given variant subtype across 
observed GC content. The probability for total variants is shown in black. Point size 
corresponds to the proportion of the given variant subtype in each GC content bin. 
While most of the variant subtypes have a negative relationship between probability of 
occurrence and GC content, the trend between the overall probability of observing a 
rare variant and GC content is positive. This is driven by the increased mutation rate of 
CpG dinucleotides and the uneven distribution of CpG GC>AT and AT>GC variants 
across GC content. The inset shows the portion of the plot with variant probability ≤ 
0.025 for all GC content bins to provide a better view of the probability across GC 
content for non-CpG-induced variants.  
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Figure 3.7: Sensitivity analysis for rare variants with varying GC content and 
recombination rate window sizes. 

I compared regression analysis for GC content (A) and recombination rate (B) using 
window sizes of 100 bp, 200 bp, 500 bp, 2 kb, 5 kb, and 10 kb to the original 1 kb 
analysis. The barplots show the estimated regression coefficients for each of the 
window sizes including the 1kb described in the results. Error bars represent 95% 
confidence intervals for each regression coefficient.  
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Figure 3.8: Distribution of estimated regression coefficients from subsampling 
analysis. 

This plot shows the distribution of estimated regression coefficients from the 1,000 
subsampling analyses for (A) GC content, (B) recombination rate, and (C) DTH for rare 
variants. Red diamonds indicate the coefficients obtained in the original analysis.  
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Figure 3.9: Distribution of estimated regression coefficients from bootstrapping 
analysis. 

This plot shows the distribution of estimated regression coefficients over the 1,000 
bootstrapping analyses for (A) GC content, (B) recombination rate, and (C) DTH for rare 
variants. Red diamonds show the coefficients obtained in the original analysis. 
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3.7 Tables 

Counts of all variant subtypes across rare variants, common variants, and substitutions are shown. Conditional variant 
proportion for each variant subtype, defined as the number of observed variants divided by the number of bases that 
could give rise to the given variant, are shown below in parenthesis. W>S/S>W was defined as the total number of weak 
to strong (W>S) variants divided by the total number of strong to weak (S>W) variants. Ti/Tv is the ratio of transitions to 
transversions.   

Variant Type 

Transitions  Transversions 

Total Ti/Tv W>S/S>W 
AT>GC 

CpG 
GC>AT 

GC>AT  AT>CG GC>TA AT>TA GC>CG 

Rare Variants 
4,778 3,951 5,338  1,215 1,796 1,023 1,952 20,053 

2.35 0.54 
(1.28%) (12.76%) (1.71%)  (0.32%) (0.52%) (0.27%) (0.57%) (2.79%) 

1K Genomes 
6,060 3,684 5,845  1,519 2,078 1,261 2,119 22,566 

2.23 0.65 
(0.10%) (1.079%) (0.11%)  (0.025%) (0.038%) (0.021%) (0.038%) (0.19%) 

Substitutions 
6,398 2,971 5,826  1,633 1,982 1,135 2,234 22,179 

2.18 0.75 
(0.28%) (1.99%) (0.29%)  (0.071%) (0.10%) (0.049%) (0.11%) (0.50%) 

Table 3.1: Variant counts and conditional variant proportions across variant subtype for rare variants, common 
variants, and substitutions  
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Variant 
Subtypes 

GC Content 
 

Recombination Rate 
 

DTH 
 

195 Genes ESP 195 Genes ESP 195 Genes ESP 

Total 0.68 (0.069) 0.64 (0.012) 0.15 (0.043) 0.34 (0.0076) -0.042 (0.011) -0.057 (0.0020) 

AT>GC -1.05 (0.15) -0.64 (0.028) 0.014 (0.089) 0.14 (0.017) -0.025 (0.023) -0.057 (0.0044) 

AT>CG -0.56 (0.29) -0.17 (0.057) -0.014 (0.18) 0.13 (0.034) -0.060 (0.044) -0.051 (0.0091) 

AT>TA -0.98 (0.32) -0.21 (0.062) -0.065 (0.19) 0.21 (0.037) 0.023 (0.049) -0.034 (0.0099) 

CpG GC>AT -2.64 (0.17) -3.072 (0.024) -0.13 (0.10) 0.17 (0.014) -0.047 (0.025) -0.077 (0.0039) 

GC>AT 0.024 (0.14) -0.26 (0.025) 0.19 (0.081) 0.20 (0.015) -0.089 (0.021) -0.058 (0.0041) 

GC>TA -0.80 (0.25) -0.91 (0.048) 0.024 (0.15) 0.15 (0.029) -0.054 (0.039) -0.061 (0.0077) 

GC>CG -0.53 (0.24) -0.96 (0.043) 0.054 (0.14) 0.13 (0.026) 0.025 (0.037) -0.055 (0.0069) 

Table 3.2: Regression coefficients for rare variants in the 195 gene dataset compared to the ESP whole-exome 
dataset. 

β coefficients and standard error (in parenthesis) for all variant subtypes from the original rare variant analysis in 195 
genes compared to those from the ESP whole-exome sequencing data analysis. Values shown in bold indicate 
coefficients that are significantly different between the two datasets, based on 99% confidence intervals (not shown). 
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Variant Type Coding Intronic p-value 

Total 8,738 (2.85%) 4,642 (2.70%) 0.0033 * 

AT>GC 1,764 (1.19%) 1,245 (1.32%) 0.0028 * 

AT>CG 398 (0.27%) 324 (0.34%) 0.00077 ** 

AT>TA 362 (0.24%) 249 (0.26%) 0.32 
 

CpG GC>AT 2,525 (13.28%) 551 (11.98%) 0.020 
 

GC>AT 2,147 (1.55%) 1,328 (1.81%) 0.0000037 *** 

GC>TA 746 (0.47%) 451 (0.58%) 0.00062 ** 

GC>CG 796 (0.50%) 494 (0.64%) 0.000056 *** 

Table 3.3: Comparison of Rare Variant Counts in Coding and Intronic Sequences 

Counts of variants identified in coding and flanking intronic regions. Numbers in 
parenthesis show the conditional variant proportion of each variant subtype, defined as 
the number of variants of the subtype divided by the number of total sites that could 
produce the given variant. The p-values from a two-proportion t-test performed in 
conditional variant proportion are also presented. 
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Variant 
Subtype 

Model 

All Sites Coding Sites Intronic Sites 

GC Content 

Total 0.68 (0.069) *** 0.61 (0.10) *** 0.74 (0.15) *** 

AT>GC -1.05 (0.15) *** -1.14 (0.24) *** -1.14 (0.31) ** 

AT>CG -0.56 (0.29) 
 

-1.41 (0.50) * -0.19 (0.58) 
 

AT>TA -0.98 (0.32) * -0.68 (0.51) 
 

-0.82 (0.67) 
 

CpG GC>AT -2.64 (0.17) *** -2.62 (0.20) *** -1.91 (0.48) *** 

GC>AT 0.024 (0.14) 
 

0.40 (0.21) 
 

-0.39 (0.28) 
 

GC>TA -0.80 (0.25) * -0.77 (0.38) 
 

-0.22 (0.49) 
 

GC>CG -0.53 (0.24) 
 

-1.10 (0.37) * -0.45 (0.47) 
 

 
Recombination Rate 

Total 0.15 (0.043) ** 0.15 (0.063) 
 

0.29 (0.087) ** 

AT>GC 0.014 (0.089) 
 

-0.091 (0.14) 
 

0.27 (0.17) 
 

AT>CG -0.014 (0.18) 
 

-0.55 (0.30) 
 

0.15 (0.33) 
 

AT>TA -0.065 (0.19) 
 

-0.46 (0.32) 
 

0.32 (0.38) 
 

CpG GC>AT -0.13 (0.10) 
 

-0.073 (0.12) 
 

-0.12 (0.25) 
 

GC>AT 0.19 (0.081) 
 

0.33 (0.12) * 0.18 (0.16) 
 

GC>TA 0.024 (0.15) 
 

-0.14 (0.23) 
 

0.15 (0.28) 
 

GC>CG 0.054 (0.14) 
 

0.16 (0.22) 
 

0.14 (0.27) 
 

 
DTH 

Total -0.042 (0.011) ** -0.069 (0.017) *** -0.027 (0.022) 
 

AT>GC -0.025 (0.023) 
 

-0.0086 (0.038) 
 

0.014 (0.044) 
 

AT>CG -0.060 (0.044) 
 

0.0076 (0.079) 
 

-0.043 (0.086) 
 

AT>TA 0.023 (0.049) 
 

0.093 (0.084) 
 

-0.015 (0.10) 
 

CpG GC>AT -0.047 (0.025) 
 

-0.11 (0.031) ** 0.067 (0.062) 
 

GC>AT -0.089 (0.021) *** -0.085 (0.034) 
 

-0.096 (0.040) 
 

GC>TA -0.054 (0.039) 
 

-0.088 (0.061) 
 

-0.035 (0.072) 
 

GC>CG 0.025 (0.037) 
 

0.012 (0.060) 
 

0.0042 (0.068) 
 

Table 3.4: Comparison of Regression Results for Rare Variants In All Sites, 
Coding Sites, and Intronic Sites 

β coefficients, standard error (in parenthesis), and significance from the regression on 
all sites, coding sites, and intronic sites. ***p-value < 0.0001, **p-value < 0.001, *p-value 
< 0.01. 
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Variant 
Subtype 

Model 

Model-Based P-Value Empirical (One-Sided) P-Value 

GC Content 

Total <2x10
-16

 <1x10
-3

 

AT>GC 2.51x10
-12

 <1x10
-3

 

AT>CG 0.054 0.025 

AT>TA 2.28x10
-3

 0.001 

CpG GC>AT <2x10
-16

 <1x10
-3

 

GC>AT 0.86 0.46 

GC>TA 1.15x10
-3

 0.001 

GC>CG 0.024 0.009 

 
Recombination Rate 

Total 3.58x10
-4

 0.001 

AT>GC 0.87 0.47 

AT>CG 0.94 0.49 

AT>TA 0.74 0.38 

CpG GC>AT 0.16 0.082 

GC>AT 0.019 0.012 

GC>TA 0.87 0.46 

GC>CG 0.70 0.40 

 
DTH 

Total 1.61x10
-4

 <1x10
-3

 

AT>GC 0.27 0.17 

AT>CG 0.18 0.10 

AT>TA 0.65 0.33 

CpG GC>AT 0.059 0.028 

GC>AT 2.39x10
-5

 <1x10
-3

 

GC>TA 0.16 0.087 

GC>CG 0.49 0.23 

Table 3.5: Comparison of Model-Based and Empirical P-values calculated from 
1000 Permutations of Variant and Invariant Sites 
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Variant 
Subtype 

Model 

Univariate GC + Recombination GC + DTH 

GC Content 

Total 0.68 (0.069) *** 0.66 (0.070) *** 0.69 (0.069) *** 

AT>GC -1.05 (0.15) *** -1.09 (0.15) *** -1.05 (0.15) *** 

AT>CG -0.56 (0.29) 
 

-0.58 (0.30) 
 

-0.57 (0.29) 
 

AT>TA -0.98 (0.32) * -0.99 (0.33) * -0.98 (0.32) * 

CpG GC>AT -2.64 (0.17) *** -2.64 (0.17) *** -2.64 (0.17) *** 

GC>AT 0.024 (0.14) 
 

-0.014 (0.14) 
 

0.027 (0.14) 
 

GC>TA -0.80 (0.25) * -0.82 (0.25) ** -0.80 (0.25) * 

GC>CG -0.53 (0.24) 
 

-0.55 (0.24) 
 

-0.53 (0.23) 
 

 
Recombination Rate 

Total 0.15 (0.043) ** 0.094 (0.043) 
 

- - - 

AT>GC 0.014 (0.089) 
 

0.13 (0.092) 
 

- - - 

AT>CG -0.014 (0.18) 
 

0.048 (0.18) 
 

- - - 

AT>TA -0.065 (0.19) 
 

0.042 (0.20) 
 

- - - 

CpG GC>AT -0.13 (0.010) 
 

-0.044 (0.098) 
 

- - - 

GC>AT 0.19 (0.081) 
 

0.19 (0.081) 
 

- - - 

GC>TA 0.024 (0.15) 
 

0.086 (0.15) 
 

- - - 

GC>CG 0.054 (0.14) 
 

0.095 (0.14) 
 

- - - 

 
DTH 

Total -0.042 (0.011) ** - - - -0.042 (0.011) ** 

AT>GC -0.025 (0.023) 
 

- - - -0.028 (0.023) 
 

AT>CG -0.060 (0.044) 
 

- - - -0.061 (0.045) 
 

AT>TA 0.023 (0.049) 
 

- - - 0.020 (0.049) 
 

CpG GC>AT -0.047 (0.025) 
 

- - - -0.029 (0.026) 
 

GC>AT -0.089 (0.021) *** - - - -0.089 (0.021) *** 

GC>TA -0.054 (0.039) 
 

- - - -0.054 (0.039) 
 

GC>CG 0.025 (0.037) 
 

- - - 0.026 (0.037) 
 

Table 3.6: Comparison of Logistic Regression Results for Rare Variants between 
Univariate and Multivariate Models 

β coefficients, standard error (in parenthesis), and significance for GC content, 
recombination rate, and DTH. Results are shown for univariate and multivariate logistic 
regression models. ***p-value < 0.0001, **p-value < 0.001, *p-value < 0.01. 
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Variant 
Subtype 

Model 

Univariate GC + Recombination GC + DTH 

GC Content 

Total -0.18 0.06 * -0.77 0.064 *** -0.27 0.06 *** 

AT>GC -0.46 0.12 ** -1.053 0.13 *** -0.56 0.12 *** 

AT>CG 0.070 0.24 
 

-0.51 0.26 
 

-0.053 0.24 
 

AT>TA -1.63 0.28 *** -2.09 0.30 *** -1.73 0.28 *** 

CpG GC>AT -3.82 0.15 *** -4.32 0.16 *** -3.88 0.15 *** 

GC>AT -1.65 0.12 *** -2.21 0.13 *** -1.73 0.12 *** 

GC>TA -2.46 0.22 *** -2.94 0.23 *** -2.52 0.22 *** 

GC>CG -1.48 0.21 *** -2.0082 0.22 *** -1.58 0.21 *** 

 
Recombination Rate 

Total 0.95 0.039 *** 1.12 0.042 *** - - - 

AT>GC 0.78 0.076 *** 1.021 0.08 *** - - - 

AT>CG 0.90 0.15 *** 1.017 0.16 *** - - - 

AT>TA 0.28 0.17 
 

0.76 0.18 *** - - - 

CpG GC>AT 0.30 0.10 * 1.036 0.11 *** - - - 

GC>AT 0.65 0.077 *** 1.11 0.082 *** - - - 

GC>TA 0.30 0.14 
 

0.92 0.15 *** - - - 

GC>CG 0.64 0.14 *** 1.049 0.14 *** - - - 

 
DTH 

Total -0.15 0.011 *** - - - -0.16 0.011 *** 

AT>GC -0.14 0.021 *** - - - -0.15 0.021 *** 

AT>CG -0.19 0.041 *** - - - -0.19 0.041 *** 

AT>TA -0.10 0.046 
 

- - - -0.14 0.046 * 

CpG GC>AT -0.10 0.028 ** - - - -0.13 0.027 *** 

GC>AT -0.14 0.021 *** - - - -0.17 0.021 *** 

GC>TA -0.075 0.039 
 

- - - -0.11 0.039 * 

GC>CG -0.18 0.037 *** - - - -0.20 0.037 *** 

Table 3.7: Comparison of Univariate and Multivariate Logistic Regression Results 
for Common Variants 

β coefficients, standard error (in parenthesis), and significance GC content, 
recombination rate, and DTH. Results are shown for univariate and multivariate logistic 
regression models. ***p-value < 0.0001, **p-value < 0.001, *p-value < 0.01. 
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Variant 
Subtype 

Model 

Univariate GC + Recombination GC + DTH 

GC Content 

Total 0.045 0.060   -0.12 0.064   0.011 0.060   

AT>GC 0.27 0.12  0.024 0.13  0.21 0.12  

AT>CG 0.27 0.23   -0.0077 0.25   0.17 0.23   

AT>TA -1.85 0.29 *** -1.82 0.31 *** -1.86 0.29 *** 

CpG GC>AT -4.18 0.17 *** -4.42 0.18 *** -4.19 0.17 *** 

GC>AT -1.47 0.12 *** -1.50 0.13 *** -1.49 0.12 *** 

GC>TA -2.016 0.22 *** -1.97 0.23 *** -2.03 0.22 *** 

GC>CG -0.71 0.20 ** -0.85 0.22 *** -0.74 0.21 ** 

 
Recombination Rate 

Total 0.29 0.040 *** 0.32 0.042 *** - - - 

AT>GC 0.45 0.075 *** 0.44 0.080 *** - - - 

AT>CG 0.49 0.15 ** 0.49 0.16 * - - - 

AT>TA -0.48 0.18 * -0.054 0.20  - - - 

CpG GC>AT 0.0034 0.11   0.61 0.11 *** - - - 

GC>AT -0.24 0.078 * 0.067 0.082  - - - 

GC>TA -0.50 0.15 ** -0.087 0.15   - - - 

GC>CG 0.12 0.13   0.29 0.14   - - - 

 
DTH 

Total -0.068 0.011 *** - - - -0.068 0.011 *** 

AT>GC -0.10 0.021 *** - - - -0.098 0.021 *** 

AT>CG -0.16 0.040 *** - - - -0.16 0.040 ** 

AT>TA 0.029 0.050  - - - -0.0096 0.051  

CpG GC>AT -0.036 0.031   - - - -0.052 0.031   

GC>AT -0.024 0.022  - - - -0.046 0.022  

GC>TA 0.014 0.041   - - - -0.018 0.041   

GC>CG -0.066 0.037   - - - -0.076 0.037   

 
 
Table 3.8: Comparison of Univariate and Multivariate Logistic Regression Results 
for Substitutions 

β coefficients, standard error (in parenthesis), and significance for GC content, 
recombination rate, and DTH. Results are shown for univariate and multivariate logistic 
regression models. ***p-value < 0.0001, **p-value < 0.001, *p-value < 0.01. 
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Variant 
Type 

Model 

Univariate Model Multivariate Model 

GC Content 

Total 0.68 (0.069) *** 0.86 (0.072) *** 

AT>GC -1.05 (0.15) *** -1.01 (0.15) *** 

AT>CG -0.56 (0.29) 
 

-0.57 (0.29) 
 

AT>TA -0.98 (0.32) * -0.98 (0.32) * 

CpG 
GC>AT 

-2.64 (0.17) *** -1.42 (0.20) *** 

GC>AT 0.024 (0.14) 
 

0.22 (0.14) 
 

GC>TA -0.80 (0.25) * -0.81 (0.26) * 

GC>CG -0.53 (0.24) 
 

-0.44 (0.25) 
 

 
Coverage 

Total 6.39E-03 (8.32E-04) *** 8.72E-03 (8.51E-04) *** 

AT>GC 9.02E-03 (1.74E-03) *** 8.22E-03 (1.75E-03) *** 

AT>CG -2.88E-05 (3.41E-03) 
 

-6.18E-04 (3.43E-03) 
 

AT>TA 1.58E-03 (3.72E-03) 
 

6.91E-04 (3.75E-03) 
 

CpG 
GC>AT 

3.41E-02 (1.82E-03) *** 2.65E-02 (2.11E-03) *** 

GC>AT 6.31E-03 (1.58E-03) *** 7.08E-03 (1.66E-03) *** 

GC>TA 2.42E-03 (2.87E-03) 
 

-3.88E-04 (3.02E-03) 
 

GC>CG 5.07E-03 (2.74E-03) 
 

3.54E-03 (2.88E-03) 
 

Table 3.9: Comparison of Rare Variant Regression Results for Univariate and 
Multivariate GC Content and Coverage Regressions 

β coefficients, standard error (in parenthesis), and significance from the univariate 
regression models for GC content and coverage and multivariate model, using GC 
content and coverage as covariates in the regression model. ***p-value < 0.0001, **p-
value < 0.001, *p-value < 0.01. 
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CHAPTER 4  

SubSim: A Forward Genetic Simulation Program To Model Variant 

Subtype-Specific Mutation and Selection 

4.1 Introduction 

Simulations are used for a variety of purposes: to model the evolution and history 

of complex traits, to simulate populations under known conditions in order to test new 

statistical genetics methodologies, to estimate population genetic parameters, and to 

test theories relating to the complex interplay of different evolutionary forces in shaping 

patterns of genetic variation (Carvajal-Rodriguez 2008). Simulation-based approaches 

are useful for several reasons. First, it can be much more efficient to study evolution in 

simulated populations, especially in species with relatively long time spans between 

generations. Second, population-based data derived from simulations are useful for 

methodological development and testing because the conditions and parameters used 

to generate the data are known. Different simulation programs offer a variety of 

parameters that can be fine-tuned by users to suit their specific needs, with each 

offering its own unique combination of modeling capabilities. Two reviews of the 

available simulation software were recently published showing just how vast the pool of 

available tools is (Hoban et al. 2011; Yuan et al. 2012). 

The two main methods for performing population genetic simulations are 

backward- and forward-in-time simulations. Backward-in-time simulations (called 
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coalescent simulations) are based on the coalescent theory and model the ancestry of a 

population backwards in time until the most recent common ancestor (MRCA) of all 

individuals in the population is identified (Kingman 1982). Commonly used coalescent 

simulation programs include ms (Hudson 2002) and SimCoal2 (Excoffier et al. 2000). 

Forward-in-time simulations take the opposite approach, simulating an initial population 

forward in time and tracking sequence variants as they rise and fall in frequency in the 

population (Hoban et al. 2011). Coalescent simulations only track the lineage of 

individuals present in the final population, and therefore can be run quickly with 

relatively small memory requirements. Forward simulations, however, track all 

individuals in every generation and require substantially more computational resources 

than coalescent simulations. Historically, coalescent simulations were favored due to 

their efficiency, although advances in computing technology have decreased the 

limitations that previously prevented advancement of forward simulation techniques. 

Over the past decade, many different forward simulation programs have been 

developed, including SFS_CODE (Hernandez 2008), GENOMEPOP (Carvajal-

Rodriguez 2008), simuPOP (Peng and Kimmel 2005), and many more (Hoban et al. 

2011). 

Simulations can use a variety of mutation, selection, and demographic models. 

Mutation models, for example, can include the Jukes and Cantor model (Jukes and 

Cantor 1969), where all mutation types are equally likely, Kimura’s 2 parameter model 

(Kimura 1980), which distinguishes between transition and transversion mutation rates, 

and Felsenstein’s mutation model (Felsenstein 1981), which takes different base 

frequencies into account. Different simulation programs model selection acting on single 
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or multiple loci, typically modeling either deletions or beneficial variants in a population. 

Parameters can also often be adjusted, such as population growth and migration, to 

specify the demographic history of the resulting simulated population. Several forward 

simulation programs, such as FREGENE (Chadeau-Hyam et al. 2008) and GenomePop 

(Carvajal-Rodriguez 2008) use a resampling technique to improve efficiency. This 

scales the population size and the number of generations down by a specified degree, 

while scaling the mutation rate accordingly so that similar numbers of mutations are 

introduced into the population, even with reduced sample size and overall time.  

In Chapter 3, I analyzed rare variants, common variants, and substitutions to 

determine the degree to which genomic context influences both mutation and fixation 

probabilities in the human genome. My results showed that GC content impacts rare 

variants, common variants, and substitutions (Figure 3.3), although the extent to which 

individual variant subtypes were affected among these three variant classes was 

different. This suggested that local nucleotide composition affects both mutation and 

fixation biases. Recombination rate, however, only altered patterns of common variants 

and substitutions, with much smaller effects on rare variants (Figure 3.4), suggesting 

that recombination primarily alters variant fixation rates. Specifically, AT>GC (an A 

ancestral base pair converted to a G, or the reciprocal T ancestral base to a C) and 

AT>CG common variants and substitutions were more strongly affected by 

recombination rate (Figure 3.4), which is consistent with biased gene conversion (BGC) 

increasing the fixation bias of these variants in regions of the genome with high 

recombination rates (Duret and Galtier 2009). 



 89 

The effect of genomic context on patterns of variation in humans has been 

previously studied using computer simulation. Several in silico studies have shown that 

altering selection or BGC with recombination rate can mimic patterns of genetic 

variation observed in human populations (Charlesworth et al. 1995; Duret and Arndt 

2008; Lohmueller et al. 2011). These studies, however, have not jointly modeled both 

mutation and fixation bias simultaneously. I sought to understand the degree to which 

mutation rates and fixation biases fluctuate in response to the local genomic context 

using forward simulations. Although there are a large number of coalescent and forward 

simulation programs available, none of them allows the user to define the base 

composition of the starting population, or subtype-specific selection coefficients. 

Compared to the coalescent, forward simulations are better suited to model selection. 

Therefore, I developed a forward simulation program that models these specific events. 

I had three goals for developing my simulation program. First, being able to model 

selection on specific variant subtypes was necessary for analyzing subtype-specific 

fixation biases. Second, I needed to be able to alter variant-subtype specific mutation 

bias in order to further understand the degree to which mutation bias on specific 

subtypes impacts variant patterns in humans. Finally, the ability to model the base 

composition of the ancestral chromosome, as well as the recombination rate, was 

important to understanding the effects that these features of the genome have on 

mutation and fixation rates. With these goals in mind, I developed a forward genetic 

simulation program, SubSim, which allows the user to alter GC content, recombination 

rate, subtype-specific mutation rates and selection coefficients, among other available 

parameter settings (Table 4.1). An overview of the basic simulation process is 
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presented in Figure 4.1. SubSim has many potential applications, including the study of 

mutation or selection bias in favor of or against specific variant subtypes, the effect of 

BGC on genome evolution, and the different effects that these processes have as GC 

content and recombination rate varies. 

4.2 Methods and Implementation 

4.2.1 Simulation Overview 

SubSim has two basic steps: (1) generate a set of starting populations at 

mutation-drift equilibrium (the “burn-in” period) and (2) simulate populations forward-in-

time from the starting population over a specified number of generations to output the 

final populations (Figure 4.1). The program simulates a modified version of a Wright-

Fisher population, in which the number of individuals in each generation is constant, the 

individuals are diploid, and the generations are non-overlapping. Recent evidence in 

human population-based studies suggests that human populations have experienced 

exponential growth in recent history (Coventry et al. 2010). Although this is biologically 

more realistic, modeling growing populations is computationally inefficient and therefore, 

I modeled populations of constant size in order to improve efficiency. 

The first step in the simulation is to generate a starting Wright-Fisher population 

under mutation-drift equilibrium. First, an identical chromosome is simulated for all N 

individuals (2N chromosomes). The user-defined GC content and the length of the 

chromosome,  , determine the sequence content of the starting chromosome. For each 

base, a uniform random variable is used to sample one of the four nucleotides, A, T, G 

or C, weighted by the user-defined GC content. This chromosome is copied 2N times 
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(for a diploid population) to generate the initial ancestral population at generation 0. 

After the initial chromosomes are simulated, the burn-in period consists of a user-

defined number of generations to generate the staring population of chromosomes. The 

burn-in period in the simulations generates a realistic population containing genetic 

variation in a simulated chromosomal segment derived from a single original ancestral 

sequence. 

After the burn-in period, the second step of the simulation is to simulate forward-

in-time from the starting populations to generate the final population. These simulations 

are run using any user-defined changes to the simulation parameters. At the end of the 

user-specified number of generations, a final population is output, along with a file 

containing the location and the individuals with polymorphic sites, the ancestry 

information of all variant sites that existed in the population over the course of the 

simulation, and the chromosomes of each individual in the final population. 

Each generation in the simulation (both the burn-in and simulating the final 

populations) goes through three steps. First, new individuals are formed based on a 

random selection of parents from the previous generation (section 4.2.2). Then, parental 

chromosomes are recombined and a single recombinant or non-recombinant parental 

chromosome is chosen from each parent to form the new individuals (section 4.2.3). 

Finally, single base pair mutations are introduced into the new generation (section 

4.2.4). 

The user can specify several parameters in either the burn-in or the test stage of 

SubSim, including the mutation rate, recombination rate, the rate of BGC, subtype-
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specific selection coefficients, etc. For a more detailed description of the functions of the 

simulator, see below. For a list of all available parameter options, see Table 4.1. I wrote 

SubSim in a Linux/Unix environment in Python. 

In order to efficiently test the functionality of SubSim, the simulations presented 

in the results section use the specified user-defined parameters described in each 

section throughout the entire simulation. For each test of the simulation functionality, 

each simulated population was run over the specified number of generations using the 

parameters described over the entire course of the simulation. Therefore, the 

populations in the results section are the result of running the burn-in simulations using 

the specified parameter settings, not subsequent test populations.  

 

4.2.2 Parent Selection 

To create each new generation, two parents are selected from the previous 

generation to obtain the chromosomes for each individual. Therefore, 2N total parents 

are drawn (with replacement) from the previous generation to generate N individuals. 

The two parents are independently drawn for each individual in the population. Each 

individual in the parental generation has a specific probability of being chosen as a 

parent, which is determined by the relative fitness of their genotypes. If each individual 

in the parental generation has fitness equal to 1, i.e. there is no selective effect (positive 

or negative) from any variant, then each parent is equally likely to be chosen, with 

probability 
 

 
. If, however, selection is acting on the variants segregating in the 

population, then each individual has fitness,  
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4.1 

where   is the selection coefficient across all   loci on each of the simulated 

chromosomes. In these simulations, selection is multiplicative, meaning that the fitness 

of the individual is the product of the fitness across all loci. When    , the fitness of an 

individual in the population,  , is not necessarily the same as other individuals in the 

population. Sampling parents, therefore, is weighted based on their value of   . To 

perform this weighted sampling, I first calculate the relative fitness of each individual, 

defined as, 

   
  

  
∑    

 
4.2 

where   
  is the normalized fitness for individual  . The variable   

  is calculated across all 

individuals,  , in the parental generation. I use this to take a weighted random sample 

(with replacement) of the parental generation with weight   
  to sample parents for each 

individual in the offspring generation. When sampling parents for an individual, if the 

same individual is sampled for both parents, the second parent is resampled so that the 

two parents are different. 

Sampling parents for many individuals requires iterative list searching, which can 

be extremely inefficient. For example, if          ,         , and      for all 

individuals, then the program must search 9,999 entries until it identifies individual 

10,000 as the correct parent. To account for this, I applied a previously developed 

search algorithm, binary tree sampling (Gilberg and Forouzan 2001), to improve 

computational efficiency. The binary tree uses a series of if/else statements to identify 

the region of the list containing the appropriate element. In these simulations, the binary 
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tree sampling first determines whether the random variable is greater or less than a set 

number. For the first binary tree, this number is always 0.5. If      , then the location 

of the appropriate index in the cumulative fitness vector will be in the latter half of the 

list. The next binary tree determines if        or if       . Each branch of the binary 

tree essentially shrinks the indices in the cumulative fitness vector by half (Figure 4.2). 

For simulations in which      , 11 iterations of the binary tree led to the 

greatest improvement in efficiency (Table 4.2). After 11 iterations of the binary tree, the 

maximum number of list entries that need to be searched is 3. For a cumulative fitness 

vector with equally spaced entries (i.e. no selection occurring in the population), then 

the index identified by the binary tree method will be 1.5 entries away from the parental 

index, on average. To select 100,000 individuals, the starting index of the list search 

was on average 1.22 ± 0.81 entries from the appropriate individual index entry. 

There is no family structure assumed in the simulations, and parents for each 

individual are chosen independently. If      , then the probability of choosing any 

parental individual is 
 

 
. Each individual is required to have two distinct parents. 

Therefore, the probability of choosing the second parent is 
 

   
. The probability that an 

individual has parents   and   is 
 

 
 

 

   
. From this, the probability that two individuals in 

the simulation are full siblings is (
 

 
 

 

   
)
 

. When   is sufficiently large, this probability 

is low. For example, when         , the probability that any two individuals are full 

siblings is               . 
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4.2.3 Recombination 

After each set of parents is selected to generate a new individual, the parental 

chromosomes are allowed to recombine to form the gametes that will eventually give 

rise to offspring. The number of recombination events that occur in the parents of the 

given individual follows a Poisson distribution. SubSim models uniform recombination, 

as opposed to recombination focused in hotspots. The mean number of recombination 

events occurring in the parents, then, is equal to the number of base pairs where 

recombination could occur multiplied by the recombination rate:      , where   is the 

per-site per-generation recombination rate and   is the length of the simulated 

chromosome. By default,          per-base per-generation (Kong et al. 2002). The 

maximum number of recombinations that can occur is 2, one in each parent; the 

minimum is 0. 

The first step in recombination is the formation of a double-strand break (DSB). 

The two parental chromosomes are randomly assigned as the acceptor and the donor 

chromosome (Figure 4.3A). The acceptor chromosome is the chromosome that is 

damaged by the DSB and the donor chromosome is used as the template to repair the 

DSB on the acceptor chromosome (Figure 4.3B). The nucleotide position of the double 

strand break in the paternal chromosome is determined by a random variable following 

a uniform distribution across the length of the simulated chromosome. Next, two random 

variables are drawn from a geometric distribution (used in SFS_CODE (Hernandez 

2008)) to identify the length of the resection in the acceptor chromosome (Figure 4.3C). 

Following invasion of the 5’ strand of the acceptor chromosome (Figure 4.3D), the 

double Holliday Junction (DHJ) is formed (Figure 4.3E). Resolution of the DHJ can 
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occur in four ways, each of which is equally likely in the simulation (Figure 4.3F). Two of 

these resolutions result in a crossover and two result in a non-crossover event. 

Crossovers result in a more drastic alteration of the DNA sequence, as a larger amount 

of DNA is exchanged between the two chromosomes (Figure 4.3F). 

An important feature of SubSim is the ability to determine how BGC alters the 

DNA. BGC is a recombination-associated process where mismatches formed during 

recombination are preferentially repaired to GC bases versus AT bases (Duret and 

Galtier 2009). At the beginning of the simulation, the user can specify the degree of bias 

in the repair process,     . For       , the mismatch is always repaired to the GC 

base, if       , the mismatch is always repaired to the AT base, and if          

(default), repair to the GC or AT bases is equally likely. BGC occurs in either crossover 

or noncrossover events. 

In order to improve computational efficiency, recombination only occurs between 

chromosomes with heterozygous loci. At homozygous sites, any exchange of DNA will 

not result in an altered genotype. 

After recombination occurs in each of the parents, the gametes are chosen at 

random to produce the diploid offspring individual. One gamete from each parent is 

randomly chosen to make up the 2 chromosomes of the offspring individual. 

4.2.4 Mutation 

SubSim uses three different mutation models: equal mutation rates, where all 

mutation subtypes are equally likely (Table 4.3), transition-biased mutation rates, where 
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the transitions (Ti) to transversion (Tv) ratio (Ti/Tv) is 2.0 (Table 4.4), or a user-specified 

mutation rate option (Table 4.5). By default, mutation is Ti-biased. 

For the equal and Ti-biased mutation models, the probability that a mutation 

originates at any base is equal (Table 4.3, Table 4.4). A Poisson distribution is used to 

determine the overall number of mutations for equal and Ti-biased mutation in each 

generation. The expected number of mutations in any generation is simply the number 

of possible base positions multiplied by the per-base per-generation mutation rate: 

      , where   is the per-site per-generation mutation rate. By default,       

    , which has been reported in several recent publications using trio-based 

sequencing to identify de novo mutation in humans (Conrad et al. 2010; The 1000 

Genomes Project Consortium 2010; Campbell et al. 2012; Kong et al. 2012). Mutations 

occur at random in the population. The chromosome and the nucleotide where the 

mutation occurs are also randomly chosen. Once the position of the mutation is 

identified, the mutation subtype is based on the nucleotide at that position and the 

relative probabilities of each mutation subtype that could occur from that allele. 

For the user-specified mutation rate, the probability of each mutation subtype 

occurring is entered at the beginning of the simulation (Table 4.1, Table 4.5). The sum 

of these probabilities equals the total per-base per-generation mutation rate. Here, the 

probability of a mutation occurring at an AT or a GC base can be different, and therefore 

the number of AT mutations must be modeled separately from the number of GC 

mutations. The number of AT and GC mutations each follows a Poisson distribution with 

parameters,        ∑   
 
    and        ∑   

  
   , where     and     are the number 

of AT or GC bases in the selected chromosome. The individual and chromosome in 
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which each mutation occurs is identified at random. The GC or AT base in the 

chromosome that experiences the mutation event is determined by a uniform random 

variable across all GC or AT bases, depending on the type of mutation that occurs. 

4.2.5 Subtype-Specific Selection 

Natural selection on a genetic variant changes the fitness of the individual, based 

on their genotype at that site. Individuals with variable fitness are more or less likely to 

contribute offspring to the subsequent generation. When fitness,   , is >1, individuals are 

more likely to have offspring and pass on their genetic material, whereas individuals 

with      have a lower chance of contributing offspring to the next generation. If      

for all  , then every individual in the population has an equally likely chance of producing 

offspring. The variable    is calculated according to equation 3.1, where    is the 

selection coefficient ( ) for the observed variant subtype at the locus,  . When    , 

purifying selection is acting on the given variant and    will decrease. If    , then the 

variant is under positive selection and    will increase. Here, the user can specify   at 

the beginning of the simulation. The simulation program processes subtype-specific  , 

allowing the user to set specific   for AT>GC, AT>CG, AT>TA, GC>AT, GC>TA, and 

GC>CG variants separately (Table 4.1). By default,     for all variant subtypes (Table 

4.1). 

4.2.6 Testing Neutrality 

I used several different measures to test that the simulations reached mutation-

drift equilibrium. I calculated the number of observed segregating sites,  , the observed 

number of haplotypes segregating in the population,  , and the nucleotide diversity,  , 

given by the equation, 
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(Nei and Li 1979). In equation 4.3,    , is the number of sequence differences observed 

between sequences   and   and   is the total number of sequences in the sample.   and 

  both measure the amount of variation present in a population, although they are 

weighted toward variants at different allele frequencies. In a population without natural 

selection,   is driven entirely by the mutation rate and the population size, and captures 

the extent of DNA variation at all allele frequencies, although it is weighted more 

strongly toward rare variants. On the other hand,   is weighted more heavily toward 

variants present in many chromosomes in the population, which increases the number 

of pairwise sequence differences. Under mutation-drift equilibrium, the expected values 

of   and   are given by,  

  [ ]      4.4 

 and  

  [ ]   , 4.5 

 

where        and    ∑
 

 

   
   . The expected values of both   and   contain   and 

can, therefore, be compared to test the assumption of neutrality using Tajima’s D 

(Tajima 1989), 
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   . A population is at neutrality when    . 

The expected number of haplotypes,  , in a population can be estimated using 

Ewen’s Sampling Formula (Ewens 1972), given   and the number of sequences in the 

sample,  , 
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(Hartl and Clark 1997). This equation shows that the number of haplotypes segregating 

in a population is determined primarily by the mutation rate and the population size. 

Large populations or large mutation rates will increase the expected number of 

haplotypes. 

I also analyzed the observed site frequency spectrum (SFS) in the simulated 

populations.   and   are both weighted summaries of the SFS, with   being more 

heavily weighted toward rare variants and   weighted toward more common variants. 

The direct analysis of the SFS, however, describes the amount of variation in a 

population across all allele frequencies. Under neutrality, the number of alleles 

segregating on   sequences,   , is expected to be  [  ]  
 

 
 (Wakeley 2009). As  [  ] is 

influenced by   and  , higher values of   or   will lead to more variants segregating at 

each allele frequency. 
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4.3 Results 

4.3.1 Simulation Efficiency 

In order to test efficiency, I ran the simulations using a range of sample sizes and 

a range of chromosome lengths (Table 4.6). One simulation was run for each 

combination of sample size and chromosome length over 1,000 generations. All other 

parameters were set to the default values (Table 4.1). The run-time increases with 

sample size faster than an exponential function. The same increase in time is seen as 

the length of the simulated chromosome increases. 

4.3.2 Under Default Parameter Settings, the Variants Follow the Expected SFS 

and the Simulations Reach Expected Values of  ,  , and   Under Neutrality 

I ran 100 simulations with          and       under default parameter 

settings (Table 4.1) for 60,000 generations to evaluate the function of SubSim. In the 

final population (generation 60,000), the expected values of  ,  , and   fell within the 

distribution of the observed values across the 100 simulated populations (Figure 4.4A-

C). The expected values of  ,  , and   were calculated according to Equations 4.4, 4.5, 

and 4.7, respectively. The observed value of   in each generation was calculated 

according to Equation 4.3. I also analyzed the average observed SFS across the 50 

simulated populations and compared it to the expected SFS. The SFS analyzes the 

allele frequency of the derived alleles at polymorphic sites in the population. At all allele 

frequencies, there was no difference between the distribution of the observed values 

and those expected under neutrality (Figure 4.4D). After 60,000 generations, there was 

an average of 0.27 fixed derived alleles in each of the 100 simulated populations, likely 

due to the fact that these populations were simulated over 60,000 generations. On 
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average, the simulations reached expected values of  ,  ,  , and Tajima’s D at roughly 

generation 20,000 (Figure 4.5). Comparing the SFS observed in generations 20,000 

and 40,000 to the final generation (60,000) clearly shows that the number of fixed 

differences increases steadily, as expected, whereas other values in the SFS remain 

relatively unchanged (Figure 4.6). 

4.3.3 Increasing the Recombination Rate Increases the Number of Haplotypes 

Segregating in Simulated Populations 

In SubSim, recombination occurs between parental chromosomes according to 

the recombination rate,  . When recombination occurs between non-identical 

sequences, it increases the number of unique haplotypes segregating in the population. 

Ewen’s Sampling Formula (Ewens 1972) can be used to estimate the expected number 

of haplotypes segregating in a population (Equation 4.7). This equation, however, does 

not take recombination into account. When   and   are high, Equation 4.7 will 

underestimate the number of haplotypes. As there is no simple closed-form solution to 

estimate the expected number of haplotypes in a population with recombination, I 

employed a widely-used coalescent simulation program, ms (Hudson 2002), to estimate 

the number of haplotypes observed in populations with varying levels of recombination. 

I ran three sets of simulations using SubSim:      ,           , and 

           pe-base per-generation. I simulated 50 populations with 10,000 diploid 

individuals and 1 kb chromosomes for each recombination rate over 60,000 

generations. All other parameters were set to default. 1,000 populations were simulated 

in ms (Hudson 2002) for each recombination rate using the same settings for the 

mutation rate, sample size, and chromosome length. The distribution of the haplotype 
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number between the populations simulated in ms and those simulated in SubSim 

overlap at all values of   (Figure 4.7). As   increases from          (Figure 4.7B) to 

         (Figure 4.7C), the range of observed haplotypes increases in both ms and 

SubSim, as expected. 

4.3.4 Simulations with A Variety of Mutation Rates Result in Subsequent 

Changes in S,  , and   

I performed several tests to ensure that the simulation software would respond 

accurately to changes in the user-defined inputs. One of the goals in developing these 

simulations was to be able to manipulate the overall mutation rate in response to the 

local GC content and recombination rate. I ran simulations using three different mutation 

rates:             ,             , and              per-base per-generation. 

Subtype-specific mutation rates were equal in each simulation. For each of the three 

mutation rates tested, I simulated 50 populations with          and       over 

60,000 generations. All other parameters were set to the default values (Table 4.1). 

I calculated  ,  , and   as before in the final generation (60,000 generations 

total) in each of the 50 replicate populations across the three mutation rates. The 

expected values of  ,  , and   all depend on  , and therefore, their expectations will 

change with the changing mutation rate. For example, at a very low mutation rate 

(            ),  [ ]       for a 1 kb sequence in 10,000 diploid individuals. When 

the mutation rate increases to              or             ,  [ ]       or 

 [ ]      , respectively. In the simulated populations, the number of segregating sites 

increases 10-fold with the increasing mutation rate: I observed an average of 0.28 ± 

0.57 segregating sites across the 50 populations when              (Figure 4.8B), 
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4.92 ± 1.85 at              (Figure 4.9B), and 48.82 ± 8.26 when              

(Figure 4.10B). There is also a corresponding increases in   and   with the increasing 

mutation rates (Figure 4.8 - Figure 4.10 A and C). 

For each of the mutation rates, I analyzed the average of the SFS observed 

across the 50 simulations. The observed SFS for the simulations with              

and              matched the expected values (Figure 4.9D and Figure 4.10D). The 

low mutation rate simulations, however, had fewer rare variants (derived allele 

frequency (DAF) ≤ 0.05) than expected. The mutation rate in these simulations is very 

low, and each iteration is only expected to have ~0.5 variant sites. In the low mutation 

rate simulations, only 11 iterations had at least one segregating site in the final 

population. These simulations likely do not match the expected SFS because there are 

too few to data points to obtain a precise estimate. Due to the time restraints in 

generating more populations, however, I did not pursue this further. 

4.3.5 Introducing Subtype-Specific Mutation Bias Generates Expected Subtype 

SFS Patterns 

Another goal in generating this simulation software was to be able to change the 

subtype-specific mutation rates in different simulated genomic contexts to understand 

the degree to which biasing mutation rates can lead to the observed patterns of rare 

variants observed previously (Chapter 3). I tested this using two separate simulations: 

one with mutation rates biased toward AT>GC and AT>CG (W>S) mutations and 

another with mutation rates biased toward GC>AT and GC>TA (S>W) mutations. For 

the W>S biased simulations,            per-base per-generation for AT>GC and 

AT>CG mutations and             for all other mutation subtypes. The S>W biased 
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simulations had            per-base per-generation for GC>AT and GC>TA 

mutations and             for all other mutation subtypes. All other parameters were 

set to the default values (Table 4.1). I simulated 98 populations with W>S mutation bias 

and 99 populations with S>W mutation bias. Two W>S and one S>W simulation failed 

due to server error. Each set of simulated populations had         ,       and 

was simulated over 60,000 generations. 

Overall, the expected values of  ,  ,  , and the SFS fall within the observed 

distributions for both the W>S (Figure 4.11) and the S>W (Figure 4.12) mutation bias 

simulations. The mutation rate for the W>S mutations in the W>S biased simulations is 

10x higher than the S>W mutation rate. As expected,   for the W>S sites is roughly 10x 

greater than   for the S>W sites: on average, there were 4.53 (± 2.05) W>S and 0.45 (± 

0.66) S>W sites across the 98 W>S mutation bias populations. The opposite pattern 

was observed for the S>W biased simulations: there were 4.22 (± 2.15) S>W sites 

compared to 0.42 (± 0.65) W>S. For both sets of simulations, the observed SFS for both 

W>S and W>S variants roughly follows the expected SFS pattern (Figure 4.13 and 

Figure 4.14). 

4.3.6 Subtype-Specific Selection Results in Subtype-Specific Deviations from 

Neutrality 

My previous work on common variants and substitutions suggested that fixation 

patterns of variants are altered in response to the local genomic context (Chapter 3). As 

part of the simulation development, one of the major goals was to be able to alter 

subtype-specific selection coefficients in order to simulate an increase or decrease in 

fixation bias. To test the functionality of the subtype-specific selection function, I ran 2 
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sets of simulations: one used selection in favor of S>W variants and the other used 

selection in favor of W>S variants. The S>W biased selection was run with         for 

GC>AT and GC>TA variants, with     for all other variant subtypes. For W>S biased 

selection,         for AT>GC and AT>CG variants and     for all other subtypes. 

The value of         is within the range of selection values estimated in humans 

(Boyko et al. 2008). This relatively low selection coefficient allows me to see if the 

simulations elicit a response, even without a very large selective effect. I simulated 50 

populations with          and       over 60,000 generations for each scenario. 

The results from the S>W and W>S selection simulations are shown in Figure 

4.15 and Figure 4.16, respectively. The simulations with positive selection for S>W 

variants shows an excess of S>W variants across nearly all allele frequencies > 0.05 

(Figure 4.15), with a very large increase in the number of S>W fixed differences. W>S 

variants in these simulations were marginally affected, and show the pattern expected 

under neutrality (Figure 4.15). The opposite pattern was observed for W>S variants, 

with an excess of W>S variants at nearly all allele frequencies > 0.05 and the expected 

number of S>W variants under neutrality (Figure 4.16). Together, these results show 

that the simulation program responds by increases in the frequency and number of 

variants under positive selection, as expected, and will allow for modeling fixation 

biases of variant subtypes in future studies. 

4.4 Discussion 

Previously, I found that mutation and fixation bias are likely influenced by GC 

content and recombination rate, although I was unable estimate the extent of the bias 
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necessary to produce the patterns observed in rare variants, common variants, and 

substitutions (Chapter 3). As described in the introduction, forward simulation 

techniques are better suited to accurately model natural selection compared to 

coalescent methods. Therefore, I developed a flexible forward genetic simulation 

program to understand how genomic context influences mutation and fixation biases in 

the human genome. 

My results show that the simulation program I developed works as expected, 

generating populations under neutral mutation-drift equilibrium. The simulations I 

presented using the default parameter settings generated values of  ,  , and   that met 

expected values. The observed SFS matched the expected SFS for a population under 

mutation-drift equilibrium, indicating that overall, the simulations are functioning 

properly. 

To test the goal of developing a forward simulation program that can alter variant 

subtype-specific mutation rates and selection coefficients, I ran a series of simulations 

analyzing how the program responds to changes in the different parameter settings. 

SubSim was able to generate populations that met expectation with changes in changes 

in the recombination rate, overall mutation rate, and subtype-specific mutation rates. 

These populations follow expectations from neutrality both in the overall degree of 

variant sites segregating in the final populations, but also followed expected values for 

the individual subtypes when mutation was biased toward a specific variant subtype. As 

expected, introducing subtype-specific selection resulted in populations that deviated 

from neutrality, since the expected values under neutrality are based on populations in 

the absence of selection. Because I simulated only short genomic segments (1 kb), I 
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cannot analyze any effect from background selection or selective sweep. Simulation of 

longer genomic segments is necessary to analyze the ability of the simulation tool to 

model these important evolutionary processes. Together, my results show that SubSim 

capable of producing populations under mutation-drift equilibrium, as expected, and can 

be used to further understand the degree to which subtype-specific mutation and 

fixation biases are present in the human genome. 

Several recent review articles classify parameter options in available simulation 

software into distinct categories (Hoban et al. 2011; Yuan et al. 2012). Hoban and 

colleagues organized the modeling capabilities of both coalescent and forward 

simulations into 10 different groups: (1) spatially explicit considerations for population or 

individual modeling, (2) ways to model migration or dispersal, (3) mating system 

employed by the simulation tool, (4) fecundity, (5) life cycle, (6) population growth, (7) 

major events allowed to occur (colonization, extinction, population fission or fusion, 

etc.), (8) selection models used by software packages, (9) available mutation models, 

and (10) recombination models (Hoban et al. 2011). SubSim provides many of the 

capabilities, such as selection, recombination, and mutation. SubSim models individuals 

in a randomly mating isolated population. It does not model migration, dispersal, 

alternative mating strategies, fecundity, life cycle, model population growth or other 

major events. Mutation in SubSim can be user-specified, equal among all subtypes, or 

Ti-biased. While these options are available in other packages (Hoban et al. 2011), 

SubSim can model subtype-specific selection, a feature that is new to the body of 

available tools. Finally, SubSim models uniform recombination, given a user-defined 

recombination rate recombination, as opposed to recombination occurring in hotspots. 
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Although SubSim offers several options that previous programs did not, it still has 

several limitations. Because the hypotheses regarding genomic context and genome 

evolution do not deal specifically with population demography, SubSim does not model 

migration or changes in population size. Furthermore, SubSim tracks each nucleotide 

position in each diploid individual in the population over each generation, typically with 

very large sample sizes. Because of this, however, the simulations are somewhat slow, 

compared to other available forward simulation programs, such as SFS_CODE 

(Hernandez 2008) and simuPOP (Peng and Kimmel 2005). Future work to improve the 

computational efficiency would be necessary to rival the speed of other available 

programs. 

SubSim can be used in the future to test specific questions regarding mutation 

and fixation bias of variant subtypes in response to GC content and recombination rate. 

There are, however, additional questions that could be asked using SubSim. In addition 

to modeling subtype-specific mutation and selection, SubSim can also model effects 

from BGC. Few available simulation programs model gene conversion events (Yuan et 

al. 2012). SubSim therefore expands the available number of programs that can be 

used to examine the effect of BGC on genome evolution. Furthermore, BGC has been 

shown to mimic natural selection in empirical data (Berglund et al. 2009; Galtier et al. 

2009). SubSim could be used to estimate the degree to which mismatch repair in gene 

conversion events must be biased toward GC bases in order to elicit a response in 

conventional tests for natural selection. SubSim models variant subtype-specific 

selection, as opposed to single or multi-locus selection. Therefore, it can also help to 
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understand selection on specific base pairs in the human genome, as has been 

suggested previously (Bernardi et al. 1985). 

4.5 Conclusions 

I developed a simulation program that allows users to define subtype-specific 

selection and mutation coefficients, alter rates of BGC, and set the base composition of 

the simulated sequence. The ability to manipulate these parameters will allow 

researchers to understand the extent to which bias in the mutation rate and selection 

leads to correlations between rare variants, common variants, and substitutions with GC 

content and recombination rate. 
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4.6 Figures 

 

Figure 4.1: Simulation Overview 

There are three main functions that occur in each generation of the simulation. First, 
parents are selected from the previous generation to provide the genetic material for the 
individuals in the generation. Next, recombination events occur randomly to the parental 
chromosomes and the individuals in the new generation are populated. Mutations occur 
randomly throughout the new generation. This occurs for a user-specified number of 
generations until the final population is produced. 
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Figure 4.2: Binary Tree Scheme for Individual Selection 

The binary tree sampling scheme used to select individuals for parent selection when 
generating offspring and for identifying individuals for mutation and recombination 
events. (A) Generic binary tree where x is the uniform random variable. Each level of 
the tree decreases the number of indices in the list that needs to be searched by half. 
The final variable, y, is the starting index for the subsequent list search. (B) An example 

of a binary tree with     levels. For       , the starting index search point is 
       (red filled boxes). 
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Figure 4.3: Homologous Recombination 

Recombination schematic following the formation and resolution of a DHJ. (A) The 
acceptor chromosome, which is damaged by the DSB, is shown in blue and the donor 
chromosome, which is used to repair the DSB, is shown in black. (B) The position of the 
DSB is determined by a uniform random variable. (C) The length of the resection is 
determined by a Geometirc distribution. (D) The 5’ end of the acecptor chromosome 
invades the donor chromosome and base pairs with the homologous sequence. (E) The 
DHJ is formed and the DNA lost in (C) is repaired using the homologous donor 
chromosome. (F) The DHJ is resolved either via crossover or non-crossover repair, 
resulting in 4 possible chromosomal configurations. The regions in orange are where 
mismatches can occur and be repaired, with or without BGC. 
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Figure 4.4: Final Population Summary Statistics for the Default Simulations 

The distribution of   (A),   (B), and   (C) are shown for the final population across the 
50 populations simulated under default settings. Red vertical lines indicate values 
expected under neutral mutation-drift equilibrium. The average number of non-ancestral 
sites observed across all allele frequencies in the 100 populations of the default 
simulations are shown in D. Error bars represent the standard error. Numbers on the x-
axis are inclusive (i.e. 0< x ≤0.05). 
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Figure 4.5: Distribution of  ,  ,  , and Tajima's D over Simulated Generations in 
the Default Simulations 

The values of  ,  ,  , and Tajima's D were calculated every 100 generations over the 

course of the 60,000 generation default simulations. The average of   (A),   (B),   (C) 
and Tajima’s D (D) across the 100 populations at each of the 100 generations is shown. 
The grey lines indicate the observed standard error across the 100 populations. 
Horizontal red dotted lines indicate the values expected under neutral mutation-drift 
equilibrium. 
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Figure 4.6: SFS for Default Simulations at Generation 20,000, 40,000, and 60,000 

The average SFS observed at generation 20,000, 40,000, and the final 60,000th 
generation in the default simulations across the 100 populations. The inset shows the 
allele frequency subset where DAF > 0.05. Error bars represent standard error. The 
black bars indicate the number of segregating sites in each of the allele frequency bins 
expected under neutral mutation-drift equilibrium. 
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Figure 4.7: Comparison of Haplotype Number Between Simulated Populations in 
ms and SubSim 

I ran simulations using three different recombination rates:       (A),            

(B), and            (C). The distribution of the haplotype number across the 1000 
populations simulated in ms (Hudson 2002) is shown in grey. The distribution of the 
haplotype number for the 50 simulated populations using SubSim is show in in red.  
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Figure 4.8: Final Population Summary Statistics for            

The distribution of   (A),   (B), and   (C) are shown for the final populations across the 

50 populations simulated with             . Red vertical lines indicate values 
expected under neutral mutation-drift equilibrium. The average number of non-ancestral 
sites observed across all allele frequencies in the 50 populations simulations are shown 
in D. Error bars represent the standard error. Numbers on the x-axis are inclusive (i.e. 
0<x≤0.05). 
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Figure 4.9: Final Population Summary Statistics for            

The distribution of   (A),   (B), and   (C) are shown for the final populations across the 

50 populations simulated with             . Red vertical lines indicate values 
expected under neutral mutation-drift equilibrium. The average number of non-ancestral 
sites observed across all allele frequencies in the 50 populations simulations are shown 
in D. Error bars represent the standard error. Numbers on the x-axis are inclusive (i.e. 
0<x≤0.05). 
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Figure 4.10: Final Population Summary Statistics for            

The distribution of   (A),   (B), and   (C) are shown for the final populations across the 
50 populations simulated with             . Red vertical lines indicate values 
expected under neutral mutation-drift equilibrium. The average number of non-ancestral 
sites observed across all allele frequencies in the 50 populations simulations are shown 
in D. Error bars represent the standard error. Numbers on the x-axis are inclusive (i.e. 0 
< x ≤ 0.05). 
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Figure 4.11: Summary Statistics for W>S Mutation Bias Simulations 

The distribution of   (A),   (B), and   (C) are shown for the final populations across the 
50 populations simulated W>S biased mutation. Red vertical lines indicate values 
expected under neutral mutation-drift equilibrium. The average number of non-ancestral 
sites observed across all allele frequencies in the 98 populations simulations are shown 
in D. Error bars represent the standard error. Numbers on the x-axis are inclusive (i.e. 0 
< x ≤ 0.05). 
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Figure 4.12: Summary Statistics for S>W Mutation Bias Simulations 

The distribution of   (A),   (B), and   (C) are shown for the final populations across the 
50 populations simulated with S>W biased mutation. Red vertical lines indicate values 
expected under neutral mutation-drift equilibrium. The average number of non-ancestral 
sites observed across all allele frequencies in the 99 populations simulations are shown 
in D. Error bars represent the standard error. Numbers on the x-axis are inclusive (i.e. 0 
< x ≤ 0.05). 
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Figure 4.13: Comparison of S>W and W>S Variant SFS in W>S Mutation Bias 
Simulations 

The average SFS observed in the final population for S>W (A) and W>S (B) variants in 
the W>S mutation bias simulations across the 98 populations. Error bars represent 
standard error. 
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Figure 4.14: Comparison of S>W and W>S Variant SFS in S>W Mutation Bias 
Simulations 

The average SFS observed in the final population for S>W (A) and W>S (B) variants in 
the S<W mutation bias simulations across the 99 populations. Error bars represent 
standard error. 
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Figure 4.15: Final Population SFS for S>W Variant Selection Bias Simulations 

The average SFS observed in the final population across the 50 S>W selection bias 
simulations. Error bars represent standard error. The inset shows the allele frequency 
subset from 0.05 < x ≤ 0.95. 
  



 126 

 

Figure 4.16: Final Population SFS for W>S Variant Selection Bias Simulations 

The average SFS observed in the final population across the 50 W>S selection bias 
simulations. Error bars represent standard error. The inset shows the allele frequency 
subset from 0.05 < x ≤ 0.95. 
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4.7 Tables 

Parameter Shortcut Arguments Description 

Mutation Rate -m equal Equal mutation rates across 
variant subtypes 

  titv (Default) Transition-biased mutation rate 

  user x1 x2 x3 x4 x5 x6 User specified mutation rates 

Recombination Rate -r Float (Default = 1x10
-8

) Per-site per-generation 
recombination rate 

BGC -bgc Float (Default = 0.5) Degree of GC-biased repair 

Excision Mean -ex Integer (Default=100) Mean length of excision in 
recombination 

Selection -sel user x1 x2 x3 x4 x5 x6 (Default 
= 0) 

Variant subtype specific selection 
coefficients 

Ancestral 
Chromosome 

-anc File (Default = generation 0) Specify the ancestral 
chromosome in file 

 
Table 4.1 Available Parameter Options in the Simulation 

Optional parameters that can be specified by the user along with the default values for 
each parameter.  
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Number of 
Binary 
Trees 

Average Time Per 
Individual Selection 

(Seconds) 

Average Time 
per Generation 

(Seconds) 

0 0.00965 193.292 

1 0.00452 90.653 

2 0.00232 46.563 

3 0.00116 23.352 

4 0.000594 12.018 

5 0.000304 6.217 

6 0.000164 3.430 

7 9.82E-05 2.109 

8 6.07E-05 1.364 

9 4.23E-05 0.990 

10 4.39E-05 0.864 

11 3.31E-05 0.805 

12 3.29E-05 0.801 

13 3.60E-05 0.865 

 
Table 4.2: Improvements in Efficiency Using Binary Trees 

Ten generations were simulated (N=10,000) and the time to sample each individual and 
the generation time was recorded. The average time per-generation is over 10 
generations and the average time per individual selection is over 200,000 individual 
selections (10 generations x 10,000 individuals x 2 parents per individual). 
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Table 4.3: Equal Mutation Rates Across All Variant Subtypes 

Relative mutation rates used when each mutation subtype is equally likely. The sum of 
each row adds up to 1, indicating the probability of each ancestral base to be each of 
the 4 possible derived states in the next generation.  
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Table 4.4: Transition Biased Mutation Rate 

Relative mutation rates used when transition mutations are 4 times more likely than 
transversion mutations. There are 4 potential transition mutation subtypes, A>G, G>A, 
C>T and T>C. The remaining 8 mutation subtypes are transversion mutations. 
Therefore, each transition mutation must be 4 times more likely to occur than each 

transversion mutation to equal the expected Ti/Tv ratio of 2.0. The mutation rate,  , can 

be specified in the simulation or left to the default of             . 
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Table 4.5: User-Defined Mutation Rates Across All Variant Subtypes 

The user can specify mutation rates for the 12 possible mutation subtypes. The sum of 
each row adds up to 1, indicating the probability of each ancestral base to be each of 
the 4 possible derived states in the next generation. 
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N L (kb) Time 

100 1 19.21 s 

1,000 1 132.82 s 

10,000 1 24.69 m 

100,000 1 8.22 h 

10,000 0.1 21.60 m 

10,000 1 24.69 m 

10,000 10 53.34 m 

10,000 100 9.97 h 

 

Table 4.6: Simulation Efficiency 

Efficiency was tested for a variety of sample sizes and chromosome lengths. Each 
simulation was run over 1,000 generations using default parameters. The time reported 
is the time for each simulation to run over the simulations using each of the parameter 
settings over 1,000 generations. 
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CHAPTER 5  

Conclusions and Future Directions 

5.1 Technological Innovations in High-Throughput Sequencing Allow for a 

Better Understanding of Single-Nucleotide Mutation in the Human Genome 

Recent advances in high-throughput (HT) sequencing have led to incredible 

steps forward in understanding single-nucleotide mutations in the human genome. 

Before the streamlined use of HT sequencing became a fairly routine practice, 

identification of mutations and rare variants in human samples was done using PCR 

followed by Sanger sequencing. While these techniques are extremely reliable, and are 

still an important step in properly validating mutations found via HT sequencing, 

expanding these assays to efficiently study a large number of loci or a large number of 

samples is difficult. HT-sequencing technology overcomes both of these major burdens, 

allowing researchers to rapidly sequence the entire exome or even genome of an 

individual and is feasible to scale for large sample sizes. 

The three projects presented here are based on HT-sequencing data from 

human samples to understand the influence of innate genomic features on the 

frequency and types of mutations that occur in the human genome and identify those 

mutant sites to better understand disease. First, I uncovered a mutation in the gene 

RAB40AL, which likely leads to the rare Mendelian disorder, Martin-Probst Syndrome 

(MPS). Second, I leveraged rare variant data from an extremely large sequencing study 
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to understand how GC content and recombination rate influence patterns of mutations 

in humans. Finally, I developed a forward simulation program, which will pave the way 

for future work in understanding how the effects of GC content and recombination rate 

on subtype-specific mutation and fixation processes can influence variant patterns in 

humans. 

5.2 Mutations in RAB40AL in Martin-Probst Syndrome 

Martin-Probst Syndrome (MPS) is a rare X-linked recessive Mendelian disorder 

characterized by sensorineural hearing loss and mental retardation, among a 

constellation of other phenotypes (Martin et al. 2000). Previous work to identify the 

causative mutation in MPS identified a large haplotype block on the X-chromosome, 

although sequencing in this locus was unable to identify any causative mutations in 

potential candidate genes (Martin et al. 2000; Probst et al. 2004). With the increasing 

applicability of HT-sequencing techniques to find genes for these types of rare 

Mendelian disorders (Ng et al. 2009; Ng et al. 2010a), I undertook a multi-platform 

approach to find the gene underlying MPS. We applied whole-genome, whole-exome 

and X chromosome targeted exome sequencing in order to adequately cover the X-

chromosome and enrich the dataset for high quality variants. After stringent quality 

control and filtering variants through a multi-stage protocol, I identified two adjacent 

single-nucleotide mutations in the gene RAB40AL. Together, these two mutations lead 

to a missense mutation in the amino acid sequence of the RAB40AL protein, changing 

an aspartic acid to a glycine at amino acid 59 (p.D59G). This alteration is expected to 

be damaging to protein function according to several prediction algorithms (Ramensky 
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et al. 2002; Cheng et al. 2006; Mathe et al. 2006; Tavtigian et al. 2006; Kumar et al. 

2009; Adzhubei et al. 2010) and is highly conserved across the evolutionary lineage. 

These findings now point to a potential biological mechanism underlying MPS, 

although, the function of the RAB40AL gene is poorly understood. RAB40AL belongs to 

a major of class of Rab small GTP-binding proteins that are responsible for intracellular 

organelle trafficking (Pereira-Leal and Seabra 2001). In 2002, a disruption to RAB40AL 

was identified in an individual with Duchenne Muscular Dystrophy and mental 

retardation (Saito-Ohara et al. 2002). While normal RAB40AL is located on the 

mitochondria (Saito-Ohara et al. 2002), in vitro functional evidence suggests that the 

mutated form of RAB40AL identified in MPS is unable to properly localize to the 

mitochondria and instead is found in the cell nucleus (Bedoyan et al. 2012).  

Future functional analysis is necessary to fully understand the underlying etiology 

of MPS. Additional families exhibiting the same disorder would be ideal to conclusively 

demonstrate that mutations in RAB40AL can lead to this unique combination of 

phenotypes in affected individuals. Furthermore, there is a great deal to be learned 

regarding the function of RAB40AL. The preliminary functional studies by Bedoyan and 

colleagues (Bedoyan et al. 2012) show that the normal function of RAB40AL is 

disrupted by these mutations, however the exact deleterious effect that the p.D59G 

mutation has on protein function is as yet unknown. This mutation could potentially lead 

to a disruption in protein folding, signaling, transport within the cell to the mitochondria, 

or binding to the mitochondrial membrane. Further study is warranted to understand 

how these disruptions affect normal cellular functioning, leading to downstream hearing 

loss and impaired cognitive function. 
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5.3 The Influence of GC Content and Recombination Rate on Mutation and 

Fixation in the Human Genome 

Researchers have studied mutation rates in humans for decades, and the widely-

accepted estimate of the per-base per-generation mutation rate is          (The 1000 

Genomes Project Consortium 2010; Campbell et al. 2012; Kong et al. 2012). Less 

understood, however, is how the mutation rate fluctuates from one locus to another and 

what influences those fluctuations (Wolfe et al. 1989; Nachman and Crowell 2000; 

Sachidanandam et al. 2001; Smith and Lercher 2002; Kondrashov 2003; Hodgkinson et 

al. 2009). 

In this project, I used rare variants obtained from exome sequencing of 202 

genes in >14,000 individuals. This extremely large dataset allowed me to assay very 

rare variants (derived allele frequency ≤ 10-4). Because these rare variants are relatively 

young in the human lineage compared to variants with higher allele frequencies, their 

patterns are primarily governed by the spontaneous mutation rate and genetic drift, as 

opposed to other evolutionary forces. Analysis of rare variants can, therefore, be used 

to study the underlying rate of spontaneous mutation (Messer 2009). Application of rare 

variants to study mutation rate variability and the effect of GC content and 

recombination rate on the mutation rate had not previously been performed. Prior 

studies used common polymorphic sites segregating in humans or divergent sites 

between humans and chimpanzee to infer effects of genomic context on the mutation 

rate. These types of data, however, can be strongly influenced by population 

demographic history, natural selection, and biased gene conversion (BGC), and 

therefore might not be reflective of the actual underlying mutation rate. Additionally, this 
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unique application of HT-sequencing data was a creative extension of data that was 

generated for the purpose of disease gene mapping studies. These types of extraneous 

applications will be increasingly useful and important as more of these types of data are 

generated. 

I found that GC content has a distinct effect on the probability of observing a rare 

variant of a specific subtype compared to both common variants and human-chimp 

substitutions. These results suggest that both the mutation rate as well as fixation may 

vary in different regions of the genome to maintain the base composition of that specific 

region. Recombination rate, on the other hand, had a much stronger influence on both 

common variants and substitutions, specifically those that converted an A:T base pair to 

a G:C base pair. These results are consistent with BGC, in which mismatches 

generated during recombination are preferentially repaired to a G or C base pair 

compared to an A or T (Meunier and Duret 2004; Duret and Arndt 2008; Duret and 

Galtier 2009). 

The clear next step in this work is to determine if the joint effect of mutation and 

fixation bias on specific variant subtypes in response to the local genomic context can 

realistically lead to the effects observed in this study. Forward simulations are a clear 

choice for this analysis because of their effectiveness in modeling selection. Currently 

available simulation software, however, does not allow for modeling distinct selection 

coefficients on specific variant subtypes. For the final project presented here, we, 

therefore, developed a forward simulation program, which allows the user to define 

variant subtype-specific mutation and selection bias. 
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Additional genomic features have been shown to exert an effect on the 

spontaneous single-nucleotide mutation rate in humans. Strand-bias in transcribed 

genes (Green et al. 2003; McVicker and Green 2010), replication timing (Wolfe et al. 

1989; Stamatoyannopoulos et al. 2009; Chen et al. 2010; Koren et al. 2012), and other 

more cryptic effects from neighboring nucleotides (Hwang and Green 2004; Hodgkinson 

et al. 2009; Hodgkinson and Eyre-Walker 2010; Nevarez et al. 2010) have all been 

shown to influence the mutation rate. Analysis of rare variants in these contexts will help 

to shed additional light on how these, and other, innate features of the genome 

influence mutation dynamics. 

5.4 Forward Population Genetic Simulation Program 

As the final part of this work, I developed a forward genetic simulation program, 

SubSim, to pursue additional research avenues generated from the project analyzing 

the effect of GC content and recombination rate on rare variants, common variants, and 

substitutions. Currently, there is a wide assortment of forward simulation programs to 

choose from, each offering its unique combination of parameters that can be modeled 

(Hoban et al. 2011; Yuan et al. 2012). Some of these include a variety of complicated 

mutation, selection and demographic models, each of which can be fine-tuned by the 

user to generate simulated data to test new statistical methods and algorithms, or to 

analyze population genetic and evolutionary questions. My unique contribution to this 

field is to offer a new program that models selection on specific variant subtypes, as 

opposed to selection on single-locus beneficial or deleterious mutations.  
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SubSim can be applied to answer a large number of biological questions, such 

as understanding the degree to which changes in mutation and fixation bias on specific 

variant subtypes lead to variability in mutation patterns across different regions of the 

genome. Additionally, SubSim allows the user to control the base composition of the 

starting chromosome, alter recombination rates, and model BGC. By manipulating these 

parameters, SubSim can be used to study the effects of BGC on genome evolution, 

understand how GC content and recombination rate influence variant patterns, study 

selection in favor of specific variants, and other important applications.  
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