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ABSTRACT 

In complex eukaryotes, cell, tissue, and organismal homeostasis requires 

proper sensing of growth factors and nutrients. The mechanistic target of 

rapamycin (mTOR) functions as a central integrator of diverse cellular stimuli to 

regulate fundamental cellular processes. mTOR, a serine/threonine protein 

kinase, forms the catalytic core of at least two distinct signaling complexes, the 

raptor-associated mTOR complex 1 (mTORC1) and the rictor-associated mTOR 

complex 2 (mTORC2). Growth factors and nutrients activate mTORC1 to 

promote anabolic processes including protein and lipid biosynthesis, cell growth, 

and cell proliferation. mTORC1 dysregulation contributes to insulin resistance, 

type 2 diabetes, tumorigenesis, and neurodegenerative disorders. mTORC2 

responds to insulin signaling and is important for glucose homeostasis, cell 

survival, and actin cytoskeleton organization. The regulation and function of 

mTORC2 remains poorly understood. Our group previously identified a novel 

phosphorylation site on mTOR (S1261). To identify the mTOR S1261 kinase we 

performed an in vitro kinome screen. My analysis identified the AMP-activated 

protein kinase (AMPK) as a bona fide mTOR S1261 kinase in intact cells. The 

discovery of AMPK as an mTOR kinase was paradoxical, as AMPK is best 

known as an energy sensor that suppresses anabolic pathways, including 

mTORC1 signaling, during energy stress, yet our published work demonstrated 

that mTOR S1261 phosphorylation promotes mTORC1 signaling. As expected, 
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AMPK suppressed mTORC1 signaling. I therefore investigated a role for AMPK 

in regulation of mTORC2 function. I found that AMPK phosphorylated mTOR 

S1261 within mTORC2 and promoted mTORC2 signaling, even in the absence 

of serum growth factors. Pharmacological activation of AMPK increased 

mTORC2-associated mTOR autophosphorylation, an indicator of mTORC2 

activity in intact cells. Furthermore, AMPK and mTORC2 cooperatively protected 

cells from energy stress-induced apoptosis. Taken together, these data identify 

AMPK as a novel mTOR kinase and mTORC2 activator. This novel connection 

between AMPK and mTORC2 has two significant implications. First, healthy 

tissues may depend on mTORC2 signaling in the absence of insulin signaling to 

manage glucose metabolism and cell survival during energy stress. Second, this 

model provides insight into the poorly understood mechanism of clinically 

prescribed anti-diabetic compounds, such as metformin and rosiglitazone, which 

activate AMPK to restore insulin sensitivity and glucose homeostasis. AMPK may 

therefore bypass defects in signaling caused by insulin resistance through the 

direct activation of mTORC2. 
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CHAPTER 1 

Introduction 

Homeostasis, a term derived from the Greek meaning “staying the same”, 

implies unmoving or unchanging objects. In biology, however, this literal 

definition belies the fact that homeostasis is about continual change. Multicellular 

eukaryotes inherited the ability to sense nutrients from their unicellular ancestors, 

but have also evolved mechanisms to tightly regulate growth, proliferation, death, 

and differentiation of cells at both near and far distances through the secretion of 

signaling molecules, or hormones. The mechanistic target of rapamycin (mTOR) 

integrates nutrient and hormonal signals to regulate diverse cellular processes 

and it critical for proper cellular and organismal homeostasis. 

Imbalances in homeostasis lead to numerous human pathologies, ranging 

from cancer to type 2 diabetes. Risk of these diseases increases with age as the 

body’s capacity to maintain homeostasis naturally deteriorates1–3. Type 2 

diabetes in turn increases the risk for neuropathic, cardiovascular, and hepatic 

diseases1,4,5. Morbidity and mortality associated with diabetes is largely a result 

of such complications. Furthermore, both genetic and environmental factors 

contribute to pathologies of homeostasis and thus the etiology of these diseases 

is complex 6. Therapeutic strategies depend on the understanding of regulation 

of metabolism by nutrients and hormones within individual cells, yet the 



 

2 

molecular mechanisms underlying these regulatory systems remain poorly 

understood.  

Research in recent years has indicated that two signal transducers, mTOR 

and the AMP-activated protein kinase (AMPK), are critical regulators of cellular 

metabolism. mTOR functions within two multiprotein complexes, mTOR Complex 

1 (mTORC1) and mTOR Complex 2 (mTORC2). mTORC1 responds to growth 

factors and nutrients to promote protein synthesis, lipid synthesis, and cell growth 

and is suppressed by cellular stresses7,8. mTORC1 hyperactivation contributes to 

insulin resistance, tumorigenesis, and neurodegeneration. The regulation and 

function of mTORC2 remains poorly understood, however recent studies have 

demonstrated its importance in maintaining glucose homeostasis and insulin 

sensitivity, as well as survival pathways required by some cancers9–11. The AMP-

activated protein kinase (AMPK) downregulates energy-costly processes in 

response to energy stress and has garnered considerable attention in recent 

years after it was discovered to be a key player in the mechanism of some anti-

diabetic drugs, including the widely prescribed metformin and rosiglitazone, 

which increase insulin sensitivity12.  

AMPK and mTORC2 signaling both promote glucose metabolism and 

insulin sensitivity, but whether they act together or independently remains 

unclear. In this dissertation, I propose and test the hypothesis that AMPK 

functions as a novel, direct upstream activator of mTORC2, thus placing these 

two important signaling kinases within a linear pathway. The implication of such a 

relationship is that cellular response to stress, through AMPK, promotes 
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mTORC2 signaling, which could explain how AMPK activation enhances insulin 

sensitivity in diabetic patients, as mTORC2 is an important component of insulin 

signaling. This mechanistic insight would help explain the action of current anti-

diabetic drugs that activate AMPK, as well as rationalize the targeting of both 

AMPK and mTORC2 in future treatment strategies.  

1-1. The mechanistic target of rapamycin 

The mechanistic target of rapamycin (mTOR) is a conserved and 

ubiquitously-expressed serine/threonine protein kinase that receives input from a 

variety of cellular stimuli and regulates numerous cellular processes7,8. Through 

the use of its namesake drug rapamycin, a naturally occurring macrolide 

antibiotic, much has been learned about mTOR regulation and function in 

unicellular fungi, invertebrates, and mammals, including the original identification 

of TOR1/2 in S. cerevisiae 13,14 In fact, rapamycin has found therapeutic use due 

to its immunosuppressive and antiproliferative properties15–18. We have only 

begun to understand mTORC2, which was only discovered in 2002 primarily 

because it is resistant to acute rapamycin treatment19–21. The Fingar laboratory 

has demonstrated that novel phosphorylation of mTOR augments mTORC1 

signaling 22,23. To better understand how phosphorylation regulates mTOR, we 

have been engaged in identifying the kinases for these mTOR phosphorylation 

sites and characterizing mTOR phosphorylation within mTORC1 and mTORC2. 

This dissertation describes the identification of AMPK as an mTOR S1261 kinase 

and tests the hypothesis that AMPK represents a novel upstream activator of 

mTORC2 (see Chapter 2).   
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mTOR domain features and structure 

mTOR is a member of the phosphatidylinositol 3’-kinase (PI3K)-like kinase 

(PIKK) family, a group of large, atypical kinases24. The domain structure of these 

proteins is similar, comprised of a kinase domain situated between two co-

conserved domains called FAT and FAT C-terminal (FATC), all of which reside 

near the C-terminus (illustrated in Figure 1-1). The FAT/FATC domains were 

named after three PIKK family members FKBP12-rapamycin associated protein 

(FRAP; also known as mTOR), ataxia telangiectasia mutated (ATM), and 

transformation/transcription domain-associated protein (TRRAP). The precise 

function of the FAT and FATC domains remains unclear, but they may regulate 

kinase activity through direct interactions with the kinase domain25,26. Throughout 

the N-terminal region of mTOR, including the FAT domain, are tandem HEAT 

repeats. The HEAT motif (named after the HEAT repeat proteins huntingtin, 

elongation factor 3, PP2A A-subunit, and TOR1) is a sequence of 30-50 amino 

acids which form short units of two α-helices, which stack together, forming an α-

superhelix. The less-conserved N-terminal region of PIKKs, including mTOR, 

contain numerous HEAT repeats, which are fairly diverse in sequence and length 

and this region likely plays a key role in binding partner specificity27. A unique 

domain in mTOR, called the FKBP12-rapamycin-binding (FRB) domain, lies 

between the FAT and kinase domains. Rapamycin interacts with mTOR in a 

bimolecular fashion, first binding to FKBP12, forming a complex that then binds 

to the mTOR FRB domain. The mechanism of mTORC1 inhibition by rapamycin 

remains incompletely understood, but may be through allosteric reduction of 
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mTOR kinase activity and/or destabilization of protein-protein interactions within 

mTORC120,28. 

The mTOR kinase forms the catalytic core of mTORC1 and mTORC2, 

each composed of several protein subunits (see Figure 1-2). mTOR depends on 

its binding partners for regulation by upstream factors as well as for recognition 

of downstream substrates. The unique protein composition of mTORC1 and 

mTORC2 is the basis for the functional differences between these complexes. 

mTORC1 and mTORC2 share a number of subunits. mTOR interacts with the 

scaffolding protein mammalian lethal with SEC13 8 (mLst8)21,29. DEP domain-

containing mTOR-interacting protein (deptor) binds to the mTOR FAT domain 

and inhibits both mTORC1 and mTORC230. Tti1 and Tel2 form a scaffolding 

structure that was reported to be important for mTORC1 and mTORC2 complex 

stability31. The mTOR complexes are distinguished primarily through two 

proteins: regulatory-associated protein of mTOR (raptor), specific to mTORC1, 

and rapamycin-insensitive companion of mTOR (rictor) specific to 

mTORC220,21,29. Raptor and rictor association with mTOR is mutually exclusive, a 

property utilized to biochemically isolate mTORC1 and mTORC2. Raptor 

interacts with the N-terminal HEAT-repeat region of mTOR and is required for the 

recruitment of mTORC1 targets such as ribosomal protein S6 kinase 1 (S6K1) 

and eukaryotic initiation factor 4E (eIF4E)-binding protein (4EBP) via the TOR-

signaling (TOS) motif located on these substrates 32,33. The proline-rich Akt 

substrate of 40 kDa (PRAS40) interacts with raptor and inhibits mTORC1 

function34–38. Rictor is classified as a scaffold with no known catalytic function 
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and is essential for mTORC2 function, though it does play mTOR-independent 

roles in the cell39. Sin1 is a protein that interacts primarily with rictor and is both 

exclusive to mTORC2 and essential for mTORC2 function 40,41. Genetic ablation 

of either rictor or Sin1 is sufficient to inhibit mTORC2 function through disruption 

of mTORC2 assembly and/or stability40–42. A third mTORC2-specific component 

has been described, protein observed with rictor 1 and 2 (protor1/2; also called 

proline rich protein 5-like [PRR5L]), but its role in mTORC2 function is 

unclear37,43,44.  

An x-ray crystal structure of mTOR currently does not exist, due to the 

large size of mTOR (~300 kDa), which make it difficult to purify and crystallize28. 

What little we know of its secondary structure derives from three sources: the 

structure of the FRB domain, homology modeling studies of the kinase domain, 

and a cryo-electron microscopic structure of mTORC1. The binding of rapamycin 

to the FRB domain is greatly enhanced by its interaction with FKBP12, and this 

ternary complex was crystallized in 199628,45–47. More recently, it was 

demonstrated that FKBP12 and the FRB domain do not interact appreciably in 

the absence of rapamycin, and that FKBP12-rapamycin bound to the FRB 

domain with 2000-fold greater affinity than rapamycin alone, which agrees with 

previous theories48,49. The FKBP12-rapamycin-FRB structure has been utilized 

for rational design of rapamycin analogs which are used both clinically and as 

research tools50. The FRB domain is only about 100 amino acids in length, 

however, and thus its structure reveals very little about the overall secondary 

structure of mTOR. Homology modeling techniques have been used to generate 
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a structural model of the mTOR kinase domain based on the PI3K structure45. 

PI3K and mTOR kinase domains share ancestry (the PIKK kinase family was, 

after all, named for its homology to PI3K), however, sequence alignment alone is 

insufficient for making conclusions about structural similarities (PI3K and mTOR 

kinase domains share only 17% identity and 40% similarity)45. The crystal 

structures of PI3Kα and PI3Kγ have been solved, however, justifying the use of 

structural homology modeling51–53.  

Based on structural studies of other HEAT domain-containing proteins, 

mTOR is probably highly flexible54 . Flexibility and size of mTOR (~280 kDa) 

contribute to the difficulty of purification and crystallization required for high-

resolution structural analysis. In lieu of a crystal structure, a low-resolution 

structure of mTORC1 was obtained by cryoelectron microscopy, revealing 

interesting features of the complex28. First, the mTOR binding sites of raptor and 

mLst8 were determined to be N-terminal and C-terminal, respectively. mLst8 

distinctly protrudes from mTOR, and the mLst8-mTOR interface is relatively 

small. Second, purified mTORC1 complexes were found to interact with each 

other with two-fold symmetry, supporting previous reports that mTORC1 

dimerizes55–58. Third, FKBP12-rapamycin was found to disrupt the mTORC1 

complex, as fewer identifiable mTORC1 structures were found after adding 

FKBP12 and rapamycin in vitro, thus clarifying the inhibitory mechanism of 

rapamycin28. Interestingly, this structure study may indirectly support the 

hypothesis that chronic rapamycin inhibits mTORC2 by interfering with mTORC2 

assembly59–61. It is currently unclear whether mTORC2 dimerizes39. 
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Rapamycin and its analogs are used clinically to prevent renal transplant 

rejection, restenosis (a complication of angioplasty), and to treat late-stage renal 

cell carcinoma 15,16,62. The recent advent of ATP-competitive (catalytic site) 

mTOR inhibitors (e.g. Torin1, PP242, Ku-0063794, and WAY600) inhibit both 

mTORC1 and mTORC2, and have been critical in understanding rapamycin-

resistant mTORC1 functions as well as mTORC2 functions, as there are 

currently no mTORC2-specific inhibitors17. 

Regulation of mTORC1 

Growth factors. Growth factor-mediated PI3K signaling activates mTORC1 

(see Figure 1-3)7,63. Insulin and insulin-like growth factor (IGF) initiate signaling at 

the cell surface through their cognate receptor tyrosine kinases (RTKs), insulin 

receptor (IR) and IGF receptor (IGFR). Activated receptors phosphorylate insulin 

receptor substrate (IRS), which recruits PI3K to the plasma membrane. PI3K, a 

lipid kinase, generates phosphatidylinositol-3,4,5-triphosphate (PI-3,4,5-P3), 

which recruits pleckstrin homology (PH) domain-containing proteins to the 

plasma membrane64. These include 3'-phosphoinositide-dependent protein 

kinase 1(PDK1) and Akt (also known as protein kinase B [PKB]). Activation of Akt 

is achieved through phosphorylation of its activation loop at T308 (H. sapiens) by 

PDK165 and phosphorylation of its hydrophobic motif (HM) at S473 (H. sapiens) 

by mTORC261. Other AKT HM kinases have been proposed, including integrin-

linked kinase (ILK), mitogen-activated protein kinase-activated protein kinase 2 

(MAPKAP kinase 2), DNA-dependent protein kinase (DNA-PK), and, more 

recently, IκB kinase ε (IKKε) and TANK-binding kinase 1 (TBK1) 66–69. It is 
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currently believed that mTORC2 is the predominant Akt HM kinase during growth 

factor stimulation; the fact that other kinases can compensate for loss of 

mTORC2, however, demonstrates that the Akt HM kinase remains a 

controversial topic.  

Akt phosphorylates many cellular targets, including tuberous sclerosis 

complex 2 (Tsc2) and PRAS40, which both negatively regulate mTORC1. 

Hereditary mutations causing loss of Tsc1 or Tsc2 leads to tuberous sclerosis 

complex, a hamartoma syndrome70. Tsc2 is a GTPase-activating protein (GAP) 

that inhibits the small GTPase Ras-homolog enriched in brain (Rheb) 71,72. Akt-

mediated Tsc2 phosphorylation may inhibit Tsc1/2 function by suppressing Tsc2 

GAP activity, disrupting the Tsc1-Tsc2 interaction, altering Tsc2 sub-cellular 

localization, or targeting Tsc1 and/or Tsc2 for degradation. Hence, the exact 

mechanism of Tsc1/2 inhibition by Akt-mediated phosphorylation remains 

controversial73,74. Hypophosphorylated PRAS40 binds to raptor and suppresses 

mTORC1 signaling. Phosphorylation of PRAS40 by Akt induces its dissociation 

from mTORC134,35 . Thus, through Tsc2 and PRAS40, Akt activates mTORC1 by 

inhibiting negative regulators of mTORC1. Rheb putatively binds to the mTOR 

kinase domain to enhance substrate recruitment in a GTP-dependent 

manner75,76. Phospholipase D (PLD) is a serum-activated lipase, whose product, 

phosphatidic acid (PA), binds to mTORC1 and is important for its activation77. 

GTP-Rheb is also required for PLD1 signaling to mTORC1, representing another 

role for Rheb in activating mTORC178,79. No guanine nucleotide exchange factor 
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(GEF) for Rheb has yet been identified and this missing detail could shed light on 

the mechanism of Rheb-mediated activation of mTORC1.  

In addition to PI3K/Akt signaling, the Ras/ERK pathway also activates 

mTORC180. Epidermal growth factor (EGF) and phorbol esters stimulate 

mTORC1 through several mechanisms involving the Ras/Raf/MEK/ERK 

cascade. Both ERK and its substrate RSK phosphorylate and inhibit Tsc2, thus 

activating mTORC181,82. ERK and RSK also phosphorylate raptor in a manner 

that promotes mTORC1 signaling83,84. This two-pronged mechanism is 

reminiscent of the action of Akt, which targets both Tsc2 and mTORC1 (via 

PRAS40). mTORC1, therefore, is cross-activated by non-insulin/IGF growth 

factor pathways. 

Nutrients: amino acids and energy. Amino acids are fundamental cellular 

nutrients that regulate mTORC1 function. Monitoring of amino acids is crucial in 

balancing metabolic demand with nutrient availability and sufficient amino acid 

levels are required for mTORC1 activation by growth factors in multicellular 

eukaryotes63. mTORC1 signaling is highly sensitive to branched-chain amino 

acids—leucine, valine, and isoleucine— and (to a lesser degree) glutamine. It is 

unclear how amino acids trigger a given signaling pathway, as the direct sensing 

mechanism is not well understood. Two recent studies suggest that leucyl-tRNA 

synthetase (LRS) acts as an amino acid sensor that leads to mTORC1 

activation85,86, though the role for tRNAs or tRNA-charging enzymes as amino 

acid signaling “receptors” remains controversial. Tight control of leucine import is 

a rate-limiting step in mTORC1 activation, conferred through cooperation 
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between the amino acid transporter SLC1A5, which imports glutamine, and the 

SLC7A5/SLC3A2 transporter, which couples glutamine export with leucine 

import87. Amino acid signaling to mTORC1 depends on the Class III PI3K Vps34, 

which is involved in membrane trafficking88,89. MAPK kinase kinase kinase 3 

(MAP4K3) and RalA have both been implicated in amino acid signaling to 

mTORC1, though the mechanisms linking them to mTORC1 are unclear90,91. 

The Rag family GTPases (RagA, B, C, and D) have recently been studied 

extensively as activators of mTORC1 in response to amino acids. Rags 

associate with MP1, p14, and p18 (a complex called Ragulator) which localizes 

to endolysosomal membranes and recruits mTORC1 to these membranes92,93. 

Ragulator was recently found to have guanine nucleotide exchange factor (GEF) 

activity towards RagA and RagB, thus in addition to tethering Rags to the 

membrane, it also regulates their GTPase activity94. GTP-bound RagA or B 

heterodimerizes with GDP-bound RagC or D and binds to raptor upon amino acid 

stimulation, causing translocation of mTORC1 to endolysosomal membranes92,93. 

A recent study found that the vacuolar ATPase (v-ATPase), a lysosomal proton 

pump, interacts with Ragulator and is necessary for transmitting amino acid 

signaling to mTORC1 via the Rags, revealing that the amino acid signal may 

originate in the lysosome95. Leucyl-tRNA synthetase, however is a cytosolic 

enzyme, suggesting the signal is of cytosolic origin. Thus further investigation is 

needed to resolve this discrepancy96. 

Homeostasis is a corrective and adaptive mechanism, adjusting cellular 

activities to changing metabolic demand of the cell or external influences. The 
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onset of stress is often rapid and requires an effective triggering mechanism in 

order to protect cells from necrosis or programmed cell death. Stress-activated 

suppression of mTORC1 has been studied in great detail in recent years. 

Stresses that inhibit mTORC1 signaling include energy depletion, hypoxia, DNA 

damage, reactive oxygen species (ROS), endoplasmic reticulum (ER) stress, 

hyperosmolarity, mechanical strain, injury, and inflammation63,97–99. We 

understand less about the regulation of mTORC2 in stress response pathways, 

though recent studies have suggested that ER stress, redox status, and hypoxia 

may regulate mTORC2 signaling100–102.   

Energy stress induced by glucose-withdrawal, glycolysis inhibitors, and 

inhibitors of mitochondrial energy production suppress mTORC1 signaling. 

Suppression of mTORC1 is mediated by AMPK in response to cellular ATP 

depletion (and the concomitant rise in AMP and ADP levels). AMPK suppresses 

mTORC1 signaling by two known mechanisms. First, AMPK phosphorylates 

Tsc2 on S1345, which activates the Tsc1/2 complex, an upstream negative 

regulator of mTORC1103. Second, AMPK phosphorylates raptor on S792, which 

conveys Tsc1/2-independent energy stress directly to mTORC1104. AMPK also 

promotes autophagy by phosphorylating and activating ULK1 in direct opposition 

of mTORC1, which phosphorylates and suppresses ULK1105. Autophagy is an 

important survival mechanism during cellular stress and the fact that AMPK 

activates this process by several pathways, including inhibition of mTORC1, 

underscores the importance of AMPK in metabolic rebalancing during energy 

stress106. The role of energy stress in regulating mTORC2 is poorly understood. 
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The study presented in Chapter 2 tests the hypothesis that energy stress 

signaling through AMPK, already known to inhibit mTORC1 signaling, actually 

promotes mTORC2 signaling and that this may be part of a survival mechanism 

to cope with acute stress conditions.    

Regulation of mTORC2 

While much is known about the upstream signals that regulate mTORC1, 

surprisingly little is known of the upstream regulation of mTORC2. In vitro kinase 

assays have demonstrated that mTORC2 phosphorylates Akt on S473 and 

mTORC2 kinase activity is enhanced by treatment of cells with insulin and 

inhibited by PI3K inhibitors, such as wortmannin 40,42,61,74. Furthermore, the 

addition of PI-3,4,5-P3 enhances mTORC2 activity in vitro107. The Fingar 

laboratory has also shown that insulin-PI3K signaling enhances mTORC2-

associated mTOR S2481 autophosphorylation, which correlates to mTORC2 

kinase activity in intact cells108. In addition to insulin-PI3K signaling, the Tsc1-

Tsc2 complex has been shown to interact with and promote mTORC2 activity 

and signaling—an interesting observation, given that Tsc1 and Tsc2 are critical 

negative regulators of mTORC174.   

Regulation of mTOR by phosphorylation 

Reversible phosphorylation regulates many signaling molecules, both 

positively and negatively, and kinase-mediated regulation of downstream kinases 

enables signal amplification. Recent work from the Fingar laboratory and others 

has shown that phosphorylation of mTOR and its binding partners, raptor and 

rictor, regulates mTORC1 and mTORC2 function.  
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Raptor phosphorylation at S863 is mediated by mTORC1 itself, promotes 

mTORC1 kinase activity in vitro, and is required for phosphorylation of S859 and 

S855109,110. Raptor S8, S696, and S863 were also found to be phosphorylated by 

ERK in response to Ras signaling and upon mutation of all three sites to alanine, 

mTORC1 signaling was impaired84. Raptor is also phosphorylated by cdc2 during 

mitosis on S696 and T706, promoting mTORC1 signaling during this phase of 

the cell cycle111,112. Recently, c-Jun N-terminal kinase (JNK) was found to 

phosphorylate raptor on three sites (S696, T706, and S863) in response to 

osmotic stress and promoted mTORC1 signaling113. Another recent study 

reported a novel phosphorylation site on raptor (T908), which was found to be 

phosphorylated by intestinal cell kinase (ICK) and promoted mTORC1 

signaling114. Together, these reports suggest that different kinases can utilize 

similar sites on raptor to activate the mTORC1 pathway. Raptor phosphorylation 

events also suppress mTORC1 signaling. AMPK inhibits mTORC1 signaling 

through raptor S792 phosphorylation in response to energy stress104. ULK1 was 

reported to phosphorylate raptor on multiple sites, including S855, S859, S863, 

and S792, though phosphorylation was strongest at S855 and S859115. 

Very little is known about the regulation of mTORC2 by phosphorylation of 

its component proteins. Rictor is highly phosphorylated in the presence of serum 

and most of these sites lie in the C-terminal half of the protein116,117. Rictor T1135 

is phosphorylated by S6K1 in a rapamycin-sensitive manner. Two studies on 

rictor T1135 phosphorylation found that mutation of this site has no discernible 

phenotype118,119, but two other studies reported that a rictor T1135A mutant 
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slightly increases Akt S473 phosphorylation116,117. Thus the role of this site in 

regulation of mTORC2 remains controversial. Glycogen synthase kinase 3 β 

(GSK3β) was found to phosphorylate rictor on S1235, inhibiting mTORC2 

signaling to Akt during endoplasmic reticulum stress100. Sin1 is also 

phosphorylated in intact cells and phosphorylation is sensitive to chronic 

rapamycin treatment, which reduces its ability to bind to mTOR42. However, 

these sites on Sin1 have neither been characterized nor demonstrated to 

regulate mTORC2 function. 

mTOR is highly phosphorylated in vivo and indeed undergoes 

autophosphorylation120,121. S2481 autophosphorylation and S2448 

phosphorylation (which is mediated by S6K1) have been used extensively as 

markers of mTORC1 activation, and S2481 phosphorylation reflects on mTORC1 

and mTORC2 catalytic activity in intact cells108,122,123. Despite their usefulness as 

analytic biomarkers, no known function has been attributed to these 

phosphorylation sites (see Figure 1-1).  

The Fingar laboratory recently identified three novel mTOR 

phosphorylation sites—S1261, S2159, and T2164—all of which promote 

mTORC1 signaling (see Figure 1-1)22,23. mTOR S1261 is conserved among 

animals, but not in fungi or plants. S1261 phosphorylation in both mTORC1 and 

mTORC2 was found to be regulated by insulin in 3T3-L1 adipocytes, but not in 

HEK293 cells. mTORC1-associated mTOR S1261 phosphorylation is elevated in 

Tsc1-/- mouse embryonic fibroblasts (MEFs) compared to wild-type MEFs. 

Furthermore, mTOR S1261 phosphorylation within mTORC1 was inhibited in 
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Tsc1-/- MEFs upon knockdown of Rheb. Expression of an mTOR S1261 alanine 

(S1261A) mutant reduced mTORC1-associated S2481 autophosphorylation and 

reduced signaling towards the mTORC1 substrates S6K1 and 4EBP1. 

Importantly, a rapamycin-resistance version of this mutant failed to rescue 

rapamycin-induced reduction of cell size as well as rapamycin-resistant wild-type 

mTOR, thus suggesting S1261 phosphorylation promotes cell growth. 

Expression of an mTOR S1261D mutant did not increase S6K1 phosphorylation, 

thus this mutant may not behave phosphomimetically22. As described in Chapter 

2, mTOR S1261 phosphorylation may also promote mTORC2 function, as AMPK 

phosphorylates S1261, increases mTORC2 autophosphorylation, and promotes 

mTORC2 downstream signaling.  

mTOR S2159 and T2164 lie at the extreme N-terminus of the conserved 

mTOR kinase domain23,124. Sequence alignments reveal S/T conservation of 

S2164 in yeast TOR1 and TOR2 as well as mammalian PI3K (no such 

conservation is evident at S2159)23,45. According to the structure homology 

model proposed by Sturgill et al., mTOR S2165 lies between two beta sheets, 

kβ3/kβ4, and is in close proximity to ATP in the kinase active site124. The putative 

phosphorylation sites S2159 and T2164 are both located on kβ3 and thus 

phosphorylation of these residues could directly affect kinase activity124. The 

Fingar laboratory found that S2159 and T2164 phosphorylation weakens the 

interaction of raptor with mTOR and PRAS40, promoting mTORC1 

autophosphorylation and signaling to S6K1 and 4EBP1. Utilizing mTOR 

S2159A/S2164A (“mTOR-AA”) phosphodefective and mTOR S2159D/T2164E 
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(“mTOR-DE”) phosphomimetic mutants, the Fingar laboratory found that 

expression of mTOR-AA reduces mTORC1 signaling to S6K1 and 4EBP, while 

expression of mTOR-DE increases mTORC1 signaling. S2159/T2164 

phosphorylation also promoted cell growth and cell cycle progression23. 

mTORC1 substrates and functions 

S6 kinase 1. Perhaps the best-studied mTORC1 target is S6K1, which 

promotes anabolic processes including protein synthesis, lipid synthesis, and cell 

growth125,126. Global knockout of S6K in D. melanogaster and loss of S6K1 in M. 

musculus caused developmental delay characterized by smaller cell and body 

size127–129. The ribosomal protein S6, a subunit of the 40S ribosome, is the best-

studied target of S6K1. Its phosphorylation is important for maintenance of cell 

size, though, strangely, cells derived from phosphodefective knockin mice (S6P-/-) 

proliferate more rapidly than their wild-type counterparts, suggesting that S6 

phosphorylation may be important for balancing growth and proliferation in the 

presence of mitogens130. S6K1 has been reported to positively regulate protein 

translation initiation through phosphorylation of eukaryotic initiation factor 4B 

(eIF4B)131,132 and programmed cell death protein 4 (PDCD4)133. S6K1 also 

promotes lipid synthesis by activating sterol regulatory element binding proteins 1 

and 2 (SREBP1/2), which are transcription factors134,135. S6K1 participates in a 

negative feedback loop that represses insulin-PI3K signaling through 

phosphorylation of IRS1 on S636/639, which leads to subsequent degradation of 

IRS1 by the proteasome. This negative feedback loop is important in maintaining 

cellular sensitively to insulin/IGF, however pathological mTORC1 hyperactivation 
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leads to insulin resistance (at least in part) through this mechanism. S6K1 also 

targets other cellular processes including transcription, mRNA processing, 

protein folding, and cell survival125. 

mTORC1 directly phosphorylates S6K1 on its hydrophobic motif site, 

T389, which is critical for S6K1 activity136,137. S6K1 is a member of the AGC 

kinase family (named after three of its members: protein kinase A [PKA], PKG, 

and PKC). A common theme among AGC kinases is that phosphorylation of the 

HM, the activation loop, and in some cases the turn motif (TM) coordinate to 

activate the kinase. S6K1 is activated in a stepwise fashion by phosphorylation 

on its TM, HM, activation loop, and C-terminal autoinhibitory domain125. The 

activation loop site, T229, is phosphorylated by PDK1, which is also the primary 

activation loop kinase for other AGC kinases and often regarded as the “master 

regulator” of AGC kinases138,139. mTORC1 signaling to S6K1 depends on the 

TOS motif, which is a conserved N-terminal sequence (FDIDL) in S6K1140. The 

TOS motif is critical for substrate docking to mTORC1 facilitated by raptor and is 

also found in other mTORC1 substrates, including 4EBP32,33.  

4EBP. 4EBP is phosphorylated by mTORC1 on T37 and T46136,141. In the 

absence of mTORC1 signaling, 4EBP binds to eIF4E, a translation initiation 

factor that binds directly to the 7-methylguanosine (m7-GTP) cap structure 

located at the 5’ end of mRNA transcripts. 4EBP-eIF4E binding prevents 

assembly of the pre-initiation complex, blocking translation at this step. 

mTORC1-dependent phosphorylation of 4EBP induces its dissociation from 

eIF4E, leading to pre-initiation complex formation and ultimately recruitment of 
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the 40S ribosome. Loss of 4EBP1/2 in mouse cells increases cell proliferation 

and cell cycle progression, but not cell growth142. Because S6K1-deficiency 

impairs cell growth, but not proliferation, it is believed that in mammals, 

mTORC1-mediated cell growth and cell proliferation are separable functions. 

Indeed, the Fingar laboratory found that mTOR S2159/T2164 phosphorylation 

differentially regulates a 4EBP/cell cycle progression axis and a S6K1/ cell 

growth axis, supporting this hypothesis23.   

ULK and other mTORC1 targets. In mammals, mTORC1 suppresses 

autophagy, a process of recycling old and damaged proteins and organelles that 

provides nutrients and energy to the cell143,144. mTORC1 inhibits autophagy 

through a complex containing Unc-51-like kinase 1 or 2 (ULK1/2), hAtg13, and 

focal adhesion kinase family-interacting protein of 200 kDa (FIP200), which is 

analogous to the complex found in S. cerevisiae composed of Atg1, Atg13, and 

Atg17145,146. mTORC1 phosphorylates both ULK1/2 and hAtg13, preventing 

phosphorylation of FIP200 (the Atg17 homolog) by ULK1/2, which would 

otherwise initiate autophagy. Two recent, independent screens for mTOR 

substrates revealed a novel mTORC1 target, growth factor receptor-bound 

protein 10 (Grb10). Grb10 is phosphorylated by mTORC1 on S501 and S503 and 

mediates the inhibition of IRS1 (along with S6K1), thus contributing to the 

mTORC1 negative feedback loop147,148. The remaining mTOR substrates 

identified in these screens require further study, as our current set of bona fide 

mTORC1 and mTORC2 substrates are likely insufficient to mediate the 

numerous cellular functions controlled by these mTOR complexes.  
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mTORC2 substrates and functions 

Cellular functions attributed to mTORC2 remain poorly understood, but we 

have learned that mTORC2 plays a role in survival and growth signaling through 

its known cellular targets, Akt, serum- and glucocorticoid-induced protein kinase 

1 (SGK1), and conventional protein kinase C (PKC)39. Like S6K1, these three 

proteins are AGC kinase family members. PDK1 is not only critical for mTORC1 

signaling but also for mTORC2 signaling, for it phosphorylates the activation 

loops of these kinases: T308 in Akt, T256 in SGK1, and T500 in PKC 65,149–151. 

PKC1, a PKC homolog in S. cerevisiae, was the first TORC2 effector identified19. 

At that time, PKCα was hypothesized to be an mTORC2 substrate in H. 

sapiens21, but the first mTORC2 target to be demonstrated was Akt, 

phosphorylated on its hydrophobic motif at S47361,152. mTORC2 is also important 

for Akt turn motif (TM; T450) phosphorylation. While mTORC2 phosphorylates 

Akt T450 in vitro, it is unclear whether mTORC2 directly phosphorylates this site 

in intact cells153,154. Akt TM phosphorylation promotes protein stability and is 

believed to occur co-translationally153,154. PKCα HM (S657) and TM (T638) 

phosphorylation are also mTORC2-regulated. Although direct PKCα TM 

phosphorylation was not reported in vitro, PKCα instability was readily evident in 

mTORC2-deficient cells (mLst8-/-, rictor-/-, and Sin1-/- MEFs)21,153–155. Presumably, 

stability is mediated through TM site phosphorylation, as the TM 

phosphodefective mutant (T631A/T638A) is highly unstable, associates with 

insoluble fractions, and co-localizes with the aggresome153. SGK1 represents the 
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third known mTORC2 substrate. This protein is phosphorylated on its HM (S422) 

by mTORC2156.  

mTORC2 functions include regulation of the actin cytoskeleton. A pathway 

involving mTORC2 and PKC1 regulates yeast actin polarization, identified by 

lack of actin patches accumulating in the bud19. mTORC2 in mammals was also 

identified as a factor in cytoskeletal function, which was important for cell 

spreading in cultured cells21,29. Rictor knockdown inhibits neutrophil chemotaxis 

through loss of actin polarization in a PKC-dependent manner157. The 

physiological role of mTORC2-mediated cytoskeletal regulation remains poorly 

understood 39.  

Akt functions as an oncogenic kinase that promotes cell survival and 

antagonizes apoptosis; nearly 100 Akt targets have been identified158,159. Akt 

phosphorylates several pro-apoptotic proteins, including Bcl2-family proteins, 

such as Bad, and forkhead box O (FoxO) transcription factors. Akt 

phosphorylation inhibits these proteins by creating a docking site for 14-3-3 

proteins, leading to their sequestration and proteasomal degradation. Akt also 

promotes glucose transporter type 4 (GLUT4)-dependent glucose uptake through 

phosphorylation and inhibition of Akt substrate of 160 kDa (AS160) and TBC1D1, 

an AS160 paralog 160,161. Despite the apparent upstream location of mTORC2 

relative to mTORC1, loss of mTORC2 components do not significantly impair 

activation of mTORC1 and Akt T308 phosphorylation correlates more with Akt-

mediated Tsc2 and PRAS40 phosphorylation than does Akt S473 
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phosphorylation162. The differential contribution of T308 and S473 

phosphorylation to Akt activities remains controversial.  

The significance of SGK signaling is not well understood as knockout of 

SGK1, SGK3, or both does not lead to any severe phenotype163–165. SGK1 

regulates ion channels166, phosphorylation of proteins involved in transcriptional 

regulation and antiapoptotic functions167,168. SGK1 shares a phosphorylation 

consensus motif with Akt and indeed they share some substrates, including 

FoxO transcription factors167,169. SGK1 phosphorylates N-myc downregulated 

genes 1 and 2 (NDRG1/2), which are currently the only known exclusive SGK1 

substrates. The cellular function of NDRG1/2 remains unclear170. 

1-2. The AMP-activated protein kinase 

Energy usage in tissues and individual cells changes continually as they 

alter metabolic activity to suit their needs and adapt to stimuli. The majority of 

available energy in eukaryotic cells is stored in the form of adenosine 

triphosphosphate (ATP), and the relative amounts of ATP and its hydrolyzed 

forms, adenosine di- and mono-phosphate (ADP and AMP), are closely 

monitored and controlled. Tight regulation of energy usage shields cells from 

potentially harmful metabolic strain brought on by energy starvation (e.g. 

ischemia) or high demand (e.g. muscle contraction). The AMP-activated protein 

kinase (AMPK) is central to this sensory/response program, directly sensing 

cellular energy levels through adenine nucleotide binding. When energy is 

depleted, AMPK phosphorylates metabolic enzymes, signal transducers, and 

transcription factors to restore energy balance within the cell171,172.   
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AMPK was described as early as 1973 as a cellular activity that senses 

energy status and maintains ATP levels through regulation of fatty acid synthesis 

enzymes173–175. Following its molecular characterization in the early 1990s, 

AMPK was quickly billed as a master regulator of energy status through 

carbohydrate and lipid metabolism. The discoveries that AMPK activity correlates 

with exercise-induced glucose uptake and that pharmacological AMPK activation 

was sufficient to induce glucose uptake lead to the hypothesis that impaired 

AMPK signaling may contribute to type 2 diabetes176–178. Soon it was discovered 

that the widely prescribed anti-diabetic, metformin, activates AMPK, giving teeth 

to this theory179.    

Structure and regulation of AMPK 

For a graphical representation of AMPK and its major upstream and 

downstream components, see Figure 1-4. AMPK is a heterotrimeric 

serine/threonine protein kinase, consisting of one catalytic α subunit and two 

regulatory subunits (β and γ) and is highly conserved across Eukaryota172. In the 

brewer’s yeast S. cerevisiae, the sucrose non-fermenting 1 (SNF1) was first 

identified via a mutant yeast strain incapable of adapting to glucose deprivation 

180. SNF1 is composed of one α-subunit (Snf1), one γ-subunit (Snf4), and one of 

three possible β-type subunits (Gal83, Sip1, and Sip2). The SNF1 holoenzyme, 

therefore, has three distinct isoforms. Mammalian AMPK genes encode two α-

subunits (AMPKα1/2), two β-subunits (AMPKβ1/2), and three γ-subunits 

(AMPKγ1/2/3), of which any α/β/γ combination is theoretically possible, implying 

the existence of 12 distinct AMPK heterotrimers171. Expression of the mammalian 
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AMPK component genes across tissues may shed light on isoform-specific 

functions, though at this time little is known on this topic171,181. AMPKα1, β1, and 

γ1 are more ubiquitously expressed than AMPKα2, β2, and γ2, which are more 

highly expressed in skeletal muscle, heart, and brain. AMPKγ3 has the most 

specific expression profile with preferential expression in fast-twitch muscle fibers 

(white and red muscle), preferring white muscle, which are more glycolytic than 

red muscle fibers182. Overall, expression studies suggest that AMPKα1/β1/γ1 

represents the most common AMPK isoform and probably best represents 

AMPK’s most generic “housekeeping” role in cells. 

AMPK is activated by processes that consume ATP (e.g. muscle 

contraction) or prevent ATP production, such as glucose and oxygen starvation 

and compounds that inhibit glycolysis or mitochondrial metabolism. AMPK 

directly senses rises in AMP and ADP levels through adenine nucleotide binding 

on its γ-subunit183. Exchange of ATP with AMP or ADP at the nucleotide-binding 

sites directly controls access to the activation loop site (T172 in mammalian 

AMPKα) by upstream kinases and phosphatases. AMP and ADP binding 

promotes phosphorylation of T172 and ATP-binding promotes 

dephosphorylation, though nucleotide binding is not strictly required for T172 

phosphorylation184. Allosteric nucleotide-binding is competitive and achieved via 

four conserved cystathione-β-synthase (CBS) domains located on the γ-

subunit185,186. AMP has a binding affinity four-fold higher than ATP, and binding is 

positively cooperative between at least two of the CBS domains. These facts 

provide the molecular basis for the exquisite sensitivity of AMPK to changes in 
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cellular AMP levels. Recent work demonstrated that ADP also competes with 

ATP for binding and promotes AMPKα T172 phosphorylation187, suggesting that 

AMPK senses relative amounts of all three adenine nucleotides. Interestingly, 

these recent studies provide direct evidence for an older concept known as the 

“adenylate charge hypothesis,” in which ATP, ADP, and AMP are all implicit 

charge carriers that couple with metabolic pathways188–190. This system implies 

the ability to sense the levels of both ATP hydrolysis products (AMP and ADP) in 

order to appropriately regulate recharging (ATP production) and AMPK serves 

this purpose187.  

Primary control of AMPK activity lies in activation loop phosphorylation of 

the α-subunit. In S. cerevisiae, PAK1, ELM1, and TOS3 are thought to 

phosphorylate this site191; in mammals the AMPK T172 kinases are liver kinase 

B1 (LKB1) and calcium/calmodulin-activated kinase kinase β (CaMKKβ)192–197. 

LKB1 is a “master kinase” for numerous AMPK-related kinases in addition to 

AMPK itself, phosphorylating the conserved activation loop sites on these 

kinases192,198. AMPK can be stimulated by changes in calcium flux, demonstrated 

by using A23187, a calcium ionophore, and STO-609, a drug that inhibits 

CaMKKβ but not LKB1195,196. LKB1 is likely the predominant AMPKα T172 

kinase, at least in peripheral tissues, however physiological roles for CaMKKβ in 

AMPK regulation have recently been described in adipocytes199,200.  

AMPK is regulated by three other mechanisms: autoregulation via the β-

subunit, glycogen binding, and acetylation. AMPKβ is myristoylated on its N-

terminal glycine201. When AMPK is inactive (sufficient energy levels), this myristic 
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acid restricts AMPKα T172 phosphorylation. During energy stress, however, this 

same moiety is required for maximum AMPK activation, thus AMPKβ may 

function as an AMPK switch202. The β-subunit also includes a putative glycogen-

binding domain (called the carbohydrate-binding module [CBM]). Glycogen-

binding to the CBM allosterically inhibits AMPK activity in vitro though the 

physiological significance remains unclear203. Acetylation of AMPKα was recently 

reported (residues K31,K33, and K71 on H. sapiens AMPKα) and is regulated by 

HDAC1 (a deacetylase) and p300 (an acetyltransferase). Deacetylation 

correlated with increased T172 phosphorylation and hence the role of acetylation 

is inhibitory204.  

A partial x-ray crystal structure of the AMPK αβγ heterotrimer has been 

solved205–207. An interesting fact drawn from these studies is that the overall 

secondary structure of the complex is relatively unchanged between ATP and 

AMP binding, suggesting that allosteric conformational alterations are 

conservative. The four nucleotide-binding sites (CBS domains) exhibit variable 

occupancy: CBS4 is always occupied by AMP, CBS2 is almost always empty, 

and CBS1 and 3 are the most dynamically occupied183,205. CBS1 binding by AMP 

has the greatest allosteric effect, while AMP or ADP binding of CBS3 promotes 

T172 phosphorylation207. The linker region between the N-terminal domain and 

the C-terminal domain of the α-subunit is far away from CBS1 (the allosteric site) 

but is adjacent to CBS3 (the T172 phosphorylation regulating site), which may 

explain why CBS3 regulates tT172 phosphorylation207. AMPKα T172 is 

sandwiched between the C-terminal domain and the N-terminal lobe of the 
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kinase domain, dynamically poised for a pro-kinase or pro-phosphatase 

conformational change207.  

A number of compounds have been shown to activate AMPK in vivo: 

antidiabetics (e.g. metformin and rosiglitazone), several plant-derived 

compounds (e.g. resveratrol, capsaicin, and berberine), the AMP analog AICAR, 

and the unique, small molecule activator A769662171. Biguanine anti-diabetics 

(metformin and phenformin) accumulate in mitochondria and inhibit Complex I of 

the electron transport chain, impairing ATP production and thus activating AMPK 

208,209. Thiazolidinediones (TZDs; i.e. rosiglitazone) stimulate AMPK, coincident 

with rises in cellular AMP levels210–214. AICAR, a purine biosynthetic metabolite, 

is converted in the cell to the AMP analog ZMP and is the most commonly used 

AMPK activator215. ZMP binds directly to and activates AMPK, but also 

modulates other AMP-sensitive proteins, such as fructose-1,6-bisphosphatase, 

and induces a state of energy stress independent of the AMPK pathway215,216. 

A769662 is a direct activator of AMPK whose mechanism of action, which is 

incompletely understood, may involve binding to the β-subunit217–221, though 

AMPK-independent effects of this drug have been reported220,222. When 

administered to a mouse model for obesity, A769662 caused weight loss, 

enhanced glucose and triglyceride clearance, reduced expression of 

gluconeogenic enzymes, and reduced expression of fatty acid synthetase, all 

hallmarks of improved metabolic physiology217. It is uncertain whether this drug 

will provide clinical benefit (early reports suggest poor oral availability), however 

there is no doubt that it is an important research tool217. The best characterized 
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inhibitor of AMPK is a pyrrazolopyrimidine called Compound C, which reversibly 

competes with ATP in the catalytic domain, but may not inhibit AMPK in all 

conditions and off-target effects of this drug have been reported223.  

AMPK substrates and functions 

AMPK was first described as a protein kinase activity responsible for 

phosphorylating and inhibiting two metabolic enzymes: acetyl-CoA carboxylase 1 

(Acc1)173, a critical (rate-limiting) fatty acid synthetic enzyme, and HMG-CoA 

reductase (HMGR)174, a rate-limiting cholesterol synthetic enzyme. AMPK 

phosphorylates Acc1 on S79 and HMGR on S871224,225. Glycogen synthase was 

also identified early on as an AMPK substrate, phosphorylated on S7 to inhibit 

glycogen production226. Since its molecular characterization in the early 1990s, a 

number of other direct substrates have been reported, the majority of which are 

inhibited by AMPK because they promote ATP-consuming processes such as 

protein, lipid, and carbohydrate biosynthesis. Other substrates are activated by 

AMPK because they promote ATP-generating processes including glucose 

uptake/metabolism, fatty acid oxidation, and autophagy171.  

Glucose transport. AMPK promotes glucose uptake in peripheral tissues 

227. AMPK phosphorylates AS160, on S588, S341, and T642 and TBC1D1 on 

S237. AS160 and TBC1D1, which are Rab GAPs, inhibit vesicular translocation 

of glucose transporters to the plasma membrane. AMPK-mediated 

phosphorylation of AS160 and TBC1D1 inhibit their function through enhanced 

14-3-3 binding and thus AMPK promotes glucose transport through this 



 

29 

mechanism227–229. Additionally, AMPK promotes GLUT4 expression through 

phosphorylation of histone deacetylase 5 (HDAC5)227,230.  

Gluconeogenesis. AMPK regulates the expression of a number of proteins 

that regulate hepatic glucose generation and mitochondrial biogenesis (an 

important organelle in this process) by phosphorylation and inactivation of at 

least three mammalian transcription factors/coactivators: PGC-1α (T177 and 

S538)231, HNF4α (S304)232, CREB-regulated transcription coactivator 2 

(CRTC2)233, and p300 (S89)234. Through these transcription factors, AMPK 

suppresses the expression of gluconeogenic enzymes including L-type pyruvate 

kinase (L-PK), phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-

phosphatase (G-6-Pase)235–237.  

Protein synthesis. Protein synthesis is one of the most energy-costly 

processes in a cell. In order for AMPK to effectively regulate energy homeostasis 

during low-energy states, it regulates protein synthesis primary through two 

mechanisms: suppression of translation elongation via eukaryotic elongation 

factor 2 kinase (eEF2K) and suppression of translation initiation via mTORC1. 

AMPK phosphorylates and activates eEF2K (S398), leading to phosphorylation 

and inhibition of eEF2. eEF2 is responsible for translocation of mRNA-engaged 

ribosomes to the next codon during protein elongation, and phosphorylation on 

T56 by eEF2K causes its dissociation from ribosomes238–241. AMPK inhibits 

mTORC1 signaling in two distinct ways. First, It phosphorylates and activates 

Tsc2 (S1345), which promotes energy stress-induced suppression of 

mTORC1103, a process that may partially depend on GSK3, which also 
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phosphorylates Tsc2242. AMPK also inhibits mTORC1 signaling independent of 

Tsc1/2 through direct phosphorylation of the complex itself (raptor S792)104. 

Attenuation of protein synthesis is conferred through subsequent 

dephosphorylation of mTORC1 effectors, including S6K1 and 4EBP.  

Autophagy. AMPK promotes autophagy, a process of recycling cytosolic 

contents and organelles. Autophagy is a catabolic process that correlates highly 

with cell survival during energy stress and nutrient starvation106. Recently AMPK 

was found to phosphorylate and activate ULK1, the mammalian homolog of yeast 

Atg1, and activate autophagy. Both AMPK and ULK1 were necessary for 

maintaining normal autophagic flux in mammalian cells and C. elegans 

hypodermal seam cells and AMPK was found to interact with and phosphorylate 

ULK1243,244. S317 and S777 on ULK1 (H. sapiens) were minimally required for 

AMPK to promote ULK1 activity and autophagy. As mentioned previously, 

mTORC1 inhibits autophagy through phosphorylation and inactivation of ULK1 

and therefore AMPK promotes autophagy in part through its suppression of 

mTORC1145,146. Furthermore, phosphorylation of ULK1 on S757 by activated 

mTORC1 disrupts the AMPK-ULK1 interaction and reduces phosphorylation of 

ULK1 on AMPK target sites, illustrating the opposing roles of mTORC1 and 

AMPK in regulating autophagy244.  

Cell proliferation, survival, and longevity. While AMPK has been implicated 

in the regulation of apoptosis and tissue growth, few direct mechanisms have 

been described. AMPK inhibits lipogenic enzymes, such as Acc1 and fatty acid 

synthase, which are critical for cancer cell proliferation245. AMPK also 
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phosphorylates p53 on S15, stabilizing this tumor suppressor, and 

phosphorylates the cyclin dependent kinase inhibitor p27246,247, though the 

physiological significance of these phosphorylation events is still debated183. 

AMPK phosphorylates several novels sites on mammalian FoxO3 and DAF-

16/FoxO in C. elegans, promoting expression of a subset of its target 

genes248,249. Recent evidence suggests, however, that AMPK signaling also 

inhibits FoxO3, through activation of Akt following expression of sestrins250. 

Another recent study found that AMPK promotes cell survival by maintain 

NADPH levels during energy stress251. Thus AMPK may both prevent cell 

proliferation and promote cell survival. Genetic studies in invertebrate models 

have provided insight into the role of AMPK in regulating lifespan. Knockout of 

the AMPKα homolog in D. melanogaster is lethal due do developmental defects, 

akin to AMPKα1/2 double knockout in mice252,253. Overexpression of Lkb1 (the 

AMPK upstream kinase) promoted D. melanogaster longevity254. In C. elegans, 

overexpression of AAK-2 (an AMPKα homolog) in low energy conditions 

increased longevity255.  

1-3. mTOR and AMPK in health and disease 

A large body of research indicates that mTOR (primarily in the form of 

mTORC1) plays important roles in pathological conditions, including metabolic 

disease, age-related pathologies, cancer and tumor syndromes, neurological 

disorders, and cardiovascular disease256–258. Dysregulation of mTOR has broad 

effects on cell growth and proliferation, metabolism, and both cellular and whole-
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body homeostasis. It has recently emerged that the less-understood mTORC2 is 

important for regulating glucose homeostasis, insulin signaling, and may promote 

tumorigenesis, but our understanding of the mechanistic aspects of mTORC2 in 

the context of metabolic disease and cancer remains in its infancy. AMPK activity 

is critical for both cellular and whole-body maintenance of energy homeostasis. 

Not only does AMPK play a role in metabolic pathologies (where its activity is 

beneficial), but it may also be important in neurodegenerative diseases (such as 

Huntington’s disease) and cancer183. 

Cancer 

mTOR. Some hereditary cancer syndromes are caused by mutations in 

upstream negative regulators of mTORC1, including tuberous sclerosis complex 

(Tsc1/2 mutated), Peutz-Jegher syndrome (LKB1 mutated) and Cowden 

syndrome (PTEN mutated)259. Though these tumor syndromes are relatively rare, 

mutations of the above tumor suppressors are found in many sporadic cancers 

and broadly deregulate mTORC1. Additionally, loss of p53 enhances mTORC1 

signaling260. mTORC1 contributes to tumorigenesis by promoting cell 

proliferation, de novo lipid biogenesis, and defective autophagy8. The mTORC2 

substrate Akt has been studied extensively as a protooncogene, however the 

role of mTORC2 itself in cancer development has not been studied extensively. 

The mTORC2 component rictor is overexpressed in gliomas and is required for 

tumor formation in PTEN-deficient prostate cancer, suggesting that mTORC2 is 

critical for Akt signaling in cancer9,261. Rapamycin and its analogs have limited 

efficacy in treating cancer, however ATP-competitive mTOR inhibitors as well as 
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dual mTOR/PI3K inhibitors (e.g. PI-103 and NVP-BEZ235) are promising 

alternatives and some have entered clinical trials17,262,263. 

AMPK. The AMPK kinase LKB1 is a tumor suppressor that is mutated in 

Peutz-Jeghers syndrome, an autosomal dominant heritable disorder noted for 

development of hamartomas in the gastrointestinal (GI) tract and predisposing 

patients to G!-related cancer as they age. Somatic LKB1 inactivation has been 

reported in lung and endometrial cancers264–267. AMPK mediates at least some of 

LKB1-dependent tumor suppressor functions, as metformin reduces cancer risk 

in diabetic patients more than other therapies, suggesting the intriguing 

possibility of treating two diseases via one target268. Fatty acid synthesis plays a 

significant role in cancer pathogenesis and AMPK inhibits lipogenic enzymes 

such as fatty acid synthase and Acc1245. The breast cancer type 1 susceptibility 

protein (BRCA1), which is associated with breast and ovarian cancers, binds to 

Acc1 and prevents its dephosphorylation, thus synergizing with AMPK269,270. 

Recent evidence suggests that AMPK promotes cell survival in both normal and 

tumor cells, thus whether AMPK opposes or promotes cancer remains 

controversial183,250,251.  

Type 2 diabetes 

The metabolic syndrome is essentially a cluster of clinical disorders, 

including insulin resistance, impaired glucose regulation, obesity, hypertension, 

and dyslipidemia that predispose patients to develop type 2 diabetes271,272. In 

addition to environment factors, such as high-calorie/high-fat diets and sedentary 

lifestyle, poorly understood genetic components also drive the emergence of type 
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2 diabetes6. Untreated type 2 diabetes leads to cardiovascular and liver diseases 

as well as blindness and peripheral neuropathy4,256. 

mTORC1. mTORC1 is a critical component of normal insulin signaling, as 

its loss can contribute to hypoinsulinemia, glucose intolerance, and reduced 

pancreatic β cell size128,256. Chronically activated mTORC1, on the other hand, 

causes insulin resistance through the S6K1-mediated negative feedback loop, 

which suppresses insulin signaling273–275. Furthermore, lipid overproduction 

contributes to type 2 diabetes and mTORC1 promotes lipid synthesis in adipose, 

liver, and muscle tissues through the peroxisome proliferator-activated receptor γ 

(PPARγ) and SREBP transcription factors134,245,276. In the liver, insulin resistance 

promotes hyperglycemia through increased gluconeogenesis277. The mechanism 

by which chronic mTORC1 signaling is maintained during insulin resistance 

remains unclear. A recent study profiling blood metabolites in obese and lean 

human subjects, discovered that obese subjects carried significantly higher levels 

of branched chain amino acids (BCAAs)278. mTORC1 signaling depends on 

amino acids (particularly BCAAs) and thus overnutrition may support chronic 

mTORC1 signaling. Insulin resistance may also be the product of chronic 

inflammation, as inflammatory cytokines, such as tumor necrosis factor α 

(TNFα), activate mTORC1 independent of insulin signaling 279.  

mTORC2. The role of mTORC2 in glucose homeostasis has largely been 

determined through tissue-specific rictor knockout studies. Deletion of rictor in 

muscle caused mild glucose intolerance due to defective glucose uptake280. In 

pancreatic β cells, mTORC2 signaling is important for β cell proliferation and 
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survival and β cell-specific rictor loss leads to hyperglycemia, glucose 

intolerance, and insulin secretion defects281. Additionally, chronic rapamycin 

treatment (which interferes with mTORC2 assembly) and liver-specific rictor 

knockout caused insulin resistance characterized by deregulated hepatic 

gluconeogenesis10,60. mTORC2 ostensibly promotes glucose metabolism through 

Akt, which suppresses gluconeogenesis in the liver through FoxO 

phosphorylation5,282. Sirtuin 1 (Sirt1) has also been implicated in regulation of 

glucose metabolism and insulin sensitivity283. Recently, Sirt1 was found to 

promote the expression of rictor and inhibit gluconeogenesis through 

mTORC2/Akt284. Loss of Sirt1 was found to lead to insulin resistance284. 

AMPK. AMPK activity counteracts metabolic disorders by increasing 

insulin sensitivity and glucose uptake/utilization while reducing gluconeogenesis 

and fatty acid synthesis. Genetic models for obesity exhibit reduced AMPK 

activity in peripheral tissues. AMPK signaling defects are most apparent in 

advanced metabolic conditions, such as insulin resistance and frank type 2 

diabetes171. AMPK responds to muscle contraction/exercise and increases 

glucose clearance in peripheral ttissues285, two physiological processes critical 

for prevention and treatment of type 2 diabetes. AMPK activity prevents 

hyperglycemia by improving glucose uptake but also through inhibition of 

gluconeogenesis in the liver. Dyslipidemia is also a hallmark of type 2 diabetes 

and AMPK activity prevents this condition by inhibiting lipogenic enzymes and by 

promoting lipid oxidation, ultimately reducing triglyceride storage12. 
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The AMPKα2 global knockout mouse has a mild insulin-resistance 

phenotype, whereas the AMPKα1 global knockout exhibits little to no metabolic 

phenotype286. AMPKα2 loss results in compensatory increase in protein levels 

and overall activity of AMPKα1 in skeletal muscle during exercise, which may 

explain why the metabolic phenotype in this animal is mild287. Germ line 

AMPKα1/2 double-knockout (DKO) is embryonic lethal (e10.5), precluding its 

physiological study. Liver-specific AMPKα1/2 DKO mice were found to have 

reduced mitochondrial biosynthesis and overall lower hepatic ATP levels288. 

AMPKα2 knockout mice on a high-fat diet exhibit increased lipid 

storage/adiposity and body weight compared to control mice289. Similarly, loss of 

AMPKα1 exacerbates high fat diet-induced obesity, insulin resistance, and 

inflammation290. 

AMPK plays a special role in regulating food intake from within the brain. 

AMPK is regulated hormonally; for example, leptin and adiponectin, secreted 

from adipose tissue, promote AMPK activity in muscle and liver tissue291–295. 

AMPK activation in the hypothalamus correlates with increased feeding behavior. 

The gut hormone ghrelin activates AMPK in the hypothalamus and both ghrelin-

mediated and pharmacological AMPK activation induced feeding and weight 

gain296,297. Contrary to its effect in liver and muscle, leptin inhibits AMPK 

signaling in the hypothalamus, demonstrating that AMPK regulation by hormones 

is tissue- and organ-specific296,297. Furthermore, the anti-diabetic drug metformin, 

which activates AMPK in other tissues, inhibits AMPK in the hypothalamus298. 

Further work is required to understand the molecular basis for this hormone-
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derived control of AMPK and how the same hormone can have opposite effects 

in different tissues.  

1-4. Regulation of Akt phosphorylation by AMPK: is mTORC2 the missing link? 

An important aspect of AMPK signaling in the context of glucose 

homeostasis is that it enhances insulin sensitivity. While the underlying 

mechanism is not fully understood, a logical assumption is that AMPK converges 

at some point upon the insulin signaling pathway and activates it. While 

mTORC2 is similarly important for insulin sensitivity and glucose homeostasis, it 

has been unclear whether these two signal transducers are dependent on one 

another, however studies have indicated that AMPK-activating proteins and 

drugs act upstream of Akt and promote its phosphorylation and downstream 

function. AMPK activators, such as AICAR and metformin, promote Akt S473 

phosphorylation299–301. Signaling by the AMPK kinase LKB1 promotes Akt S473 

phosphorylation and anti-apoptotic functions mediated in part by Akt300,302,303. 

Recently, expression of sestrin2, which promotes AMPK signaling, was found to 

promote Akt S473 phosphorylation and Akt-related cell survival in an AMPK-

dependent fashion250. Shaw et al. found that energy stress induced by AICAR 

caused apoptosis in LKB1-/- cells, relative to wild-type cells, and noted (but did 

not explain) an LKB1-dependent increase in Akt S473 phosphorylation following 

AICAR treatment 300. Lee et al. proposed that AMPK inhibits mTORC1 signaling, 

enhancing Akt phosphorylation through relief of the mTORC1 negative feedback 

loop, though they did not prove this point250. Together these studies indicate that 

AMPK converges on the insulin pathway upstream of Akt. The signaling 
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intermediates have not been identified, however. mTORC2, an Akt S473 kinase, 

represents a previously-untested link between AMPK and Akt.  

The study presented in Chapter 2 demonstrated that AMPK 

phosphorylates mTOR on S1261. This was a surprising result, given that the 

Fingar laboratory previously showed that phosphorylation of this site promotes 

mTORC1 signaling yet it is widely accepted that mTORC1 signaling is inhibited 

by AMPK. Though this paradox has not yet been resolved, it prompted me to test 

the idea that AMPK regulates mTORC2 to promote signaling to Akt. Such a 

mechanism would reveal novel regulation of the mTORC2-Akt axis by a growth 

factor-independent pathway. This work not only sheds light on the poorly 

understood regulation of mTORC2 but defines it as an effector of AMPK, the 

significance of which is a better understanding of how AMPK potentiates insulin 

signaling during cellular stress and pathological insulin resistance. 
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1-5. Figures 

 
Figure 1-1. mTOR domain structure and phosphorylation sites 

mTOR contains a tandem series of HEAT-repeats thought to mediate protein-
protein interactions that extends from the N-terminus through the FAT domain. 
The conserved FAT and FATC domains flank the kinase domain. The rapamycin-
FKBP12 complex binds the FKBP12-rapamycin binding (FRB) domain. Upon 
activation, mTOR autophosphorylates on S2481. Upon activation by mTORC1, 
S6K1 phosphorylates mTOR S2448. mTOR S1261, S2159, and T2164 are novel 
phosphorylation sites identified by the Fingar laboratory that promote mTORC1 
signaling. Abbreviations: mTOR: mechanistic target of rapamycin; mTORC1: 
mTOR Complex 1; HEAT: huntingtin, elongation factor 3, PP2A A-subunit, and 
TOR1; FAT: FRAP, ATM, TTRAP domain; FATC: FAT C-terminal domain; 
FKBP12: FK506-binding protein 12; FRB: FKBP12-rapamycin-binding domain; 
S6K1: ribosomal protein S6 kinase 1.
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Figure 1-2. mTOR complex components and downstream substrates  

mTOR Complex 1 (mTORC1) contains mTOR, raptor, PRAS40, mLst8, deptor, 
Tel2, and Tti1. Its substrates include 4EBP1, S6K1, Grb10, Ulk1 and hAtg13. 
4EBP1 inhibits translation initiation and cell cycle progression and 
phosphorylation by mTORC1 inhibits 4EBP1. S6K1 is phosphorylated and 
activated by mTORC1, promoting cell growth, lipid synthesis, and ribosome 
function. Grb10 phosphorylation suppresses insulin signaling. mTORC1 inhibits 
autophagy through Ulk1 and hAtg13 phosphorylation. mTOR Complex 2 
(mTORC2) contains mTOR, rictor, mSin1, protor, mLst8, deptor, Tel2, and Tti1. 
mTORC1 phosphorylates Akt, SGK1, and PKCα, which promote cell survival, 
growth, ion channel activation, and calcium signaling. Rapamycin acutely inhibits 
mTORC1 functions. Ku-0063794, Torin1, and PP-242 are ATP-competitive 
mTOR kinase inhibitors which inhibit both mTORC1 and mTORC2. 
Abbreviations: mTOR: mechanistic target of rapamycin; mTORC: mTOR 
Complex; raptor: regulatory associated protein of mTOR; PRAS40: proline-rich 
Akt substrate of 40 kDa; mLst8: mammalian homolog of lethal with SEC13 8; 
rictor: rapamycin-insensitive companion to mTOR; protor: protein observed with 
rictor; deptor: DEP-domain containing mTOR-interacting protein; Tel2: telomere 
maintenance 2; Tti1: Tel2 interacting protein 1; 4EBP1: eIF4E binding protein 1; 
S6K1: ribosomal protein S6 kinase 1; Grb10: growth factor receptor-bound 
protein 10; Ulk1: Unc-51-like kinase 1; hAtg13: human homolog of autophagy 
related 13; PKCα: protein kinase Cα; SGK1: Serum- and glucocorticoid-activated 
kinase 1.  
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Figure 1-3. Upstream signaling to mTORC1 and mTORC2 

mTORC1 is stimulated by insulin or IGF through cognate receptors. Receptor 
tyrosine kinase activity recruits and activates IRS1. IRS1 recruits the lipid kinase 
PI3K to the plasma membrane where it produces the lipid signaling molecule PI-
3,4,5-P3. PI-3,4,5-P3 recruits PH-domain containing proteins PDK1 and Akt to the 
plasma membrane nad may be important in regulating mTORC2. PDK1 and 
mTORC2 cooperatively phosphorylate and activate Akt. Akt phosphorylates and 
inhibits Tsc2. Tsc1 and Tsc2 form a complex that inhibits Rheb via Tsc2 GAP 
activity. mTORC1 is activated by Rheb. Amino acid signaling activates mTORC1 
through Ragulator and Rag GTPases which bind to raptor and recruit mTORC1 
to endolysosomal membranes. hVps34, RalA, and MAP4K3 also regulate amino 
acid signaling to mTORC1. Abbreviations. mTORC: mTOR Complex; IGF: 
insulin-like growth factor; IRS1: insulin receptor substrate 1; PI3K: PI-3’OH-
kinase; PI: phosphatidylinsolitol; PDK1: 3’-phosphoinositide-dependent kinase 1; 
Tsc: tuberous sclerosis complex; Rheb: Ras homolog enriched in brain; GAP: 
GTPase-activating protein; MAP4K3: MAPK kinase kinase 3.  
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Figure 1-4. AMPK upstream and downstream 

AMPK is a heterotrimer consisiting of α, β, and γ subunits. AMPKα, the catalytic 
subunit, is phosphorylated on T172 by LKB1 or CaMKKβ. AMPKγ senses AMP, 
ADP, and ATP allosterically. Compound C inhibits AMPK. Several drugs activate 
AMPK, including: AICAR, which is metabolized into ZMP, an AMP-mimetic; 
A769662, a small molecule inhibitor of AMPK; 2-deoxyglucose, a glycolytic 
poison; oligomycin, a mitochondrial poison; metformin and rosiglitazone, used to 
treat type 2 diabetes; resveratrol, a plant phenol derived from grape skins. AMPK 
inhibits protein synthesis through eEF2K, Tsc2 and raptor phosphorylation. 
AMPK inhibits lipid synthesis through phosphorylation of numerous substrates, 
including Acc1 and HMGR. AMPK also phosphorylates several transcription 
factors to promote mitochondrial biogenesis, suppress gluconeogensis, and 
suppress lipid synthesis. See Chapter 1-2 for more details. Abbreviations: 
AMPK: AMP-activated protein kinase; LKB1: liver kinase B1; AICAR: 5-
aminoimidazole-4-carboxamide ribotide; Acc1: acetyl-CoA carboxylase 1; 
HMGR: HMG-CoA reductase; GS: glycogen synthase. 
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CHAPTER 2 

Novel regulation of mTOR Complex 2 by AMPK 

2-1. Introduction 

Cell, tissue, and whole-body health requires proper maintenance of 

energy homeostasis. Two key signal transducers, the mechanistic target of 

rapamycin (mTOR) and the AMP-activated protein kinase (AMPK), coordinately 

regulate cellular metabolism in response to changing endocrine, nutrient, and 

energy status97,295. AMPK suppresses gluconeogenesis and lipid synthesis, and 

promotes insulin sensitivity and glucose uptake304. Certain anti-diabetic drugs, 

such as metformin and rosiglitazone, depend on AMPK signaling for their clinical 

benefits, though the underlying mechanisms remain poorly understood183. 

Understanding the molecular basis of type 2 diabetes is a major un-met need in 

developing therapies for this modern health epidemic. 

mTOR is a conserved serine/threonine protein kinase that functions as the 

catalytic core of two multiprotein complexes, mTORC1 and mTORC2, which 

have distinct composition and cellular functions. mTORC1 (composed of mTOR, 

raptor, PRAS40, mLst8, and deptor) promotes protein and lipid synthesis, cell 

growth, and cell proliferation8. Chronic activation of mTORC1 contributes to 

insulin resistance. The regulation and function of mTORC2 (composed of mTOR, 

rictor, Sin1, protor, mLst8, and deptor) remains poorly understood. Recent work 
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suggests that it is important in maintaining proper glucose homeostasis and 

insulin sensitivity10,60,280,281.  

Insulin-stimulated Akt promotes mTORC1 signaling by phosphorylating 

and inhibiting Tsc2 (an upstream inhibitor of mTORC1) and PRAS40 (an 

mTORC1 component)34–38,305. Sufficient levels of amino acids are required for 

growth factor stimulation of mTORC1, and amino acid-sensing is facilitated by 

hVps34 and Rag GTPases88,89,92,93. mTORC1 promotes lipid synthesis and Cap-

dependent protein translation through phosphorylation of its substrates S6K1 and 

4EBP. In response to insulin signaling, S6K1 phosphorylates S636/639 on IRS1, 

inducing its degradation and uncoupling insulin/IGF receptors from PI3K, a 

pathway known as the mTORC1 negative feedback loop273,274,306. PI3K activity 

suppressed by this negative feedback loop leads to reduced Akt phosphorylation 

and activity.  

 Upstream regulation of mTORC2, in contrast to mTORC1, is poorly 

understood39. mTORC2 is regulated by insulin-PI3K signaling, as insulin 

treatment increases mTORC2 in vitro kinase activity and mTORC2-assiciated 

mTOR S2481 autophosphorylation61,107,108. Consistent with regulation by the 

insulin signaling pathway, mTORC2 kinase activity is sensitive to PI3K inhibitors, 

such as wortmannin61. The Tsc1-Tsc2 complex was reported to interact with and 

promotes mTORC2-mediated substrate phosphorylation, in opposition to the role 

of Tsc1/2 as negative regulators of mTORC174. The mTORC2 substrates Akt, 

PKCα, and SGK1 are all members of the AGC kinase family, phosphorylated by 

mTORC2 on their hydrophobic motifs (S473, S657, and S422, respectively) 



 

 46 

21,153,154. mTORC2 also regulates co-translational phosphorylation of Akt and 

PKCα on their turn motifs (T450 and T638, respectively), which stabilizes the 

nascent polypeptides153,154. By phosphorylating numerous proteins, such as 

FoxO transcription factors, Akt promotes cell survival and antagonizes apoptotic 

pathways307. 

AMPK is an evolutionarily conserved, heterotrimeric serine/threonine 

protein kinase composed of a catalytic α-subunit and regulatory β- and γ-

subunits183,295. AMPK functions as an energy sensor through binding of ATP, 

AMP, and ADP to its γ-subunit183. AMP and ADP binding promote allosteric 

activation of AMPK and α-subunit activation loop phosphorylation (T172), which 

is mediated by LKB1 and CaMKKβ192,193,195,196,308. Activated by energy stress, 

AMPK inhibits ATP-consuming processes—protein, lipid, and carbohydrate 

synthesis—and promotes ATP-generating processes—glucose uptake/utilization, 

fatty acid oxidation, and autophagy295. AMPK suppresses protein synthesis 

through phosphorylation of eEF2K, which inhibits translation elongation240,241 and 

through inhibition of mTORC1. Upstream of mTORC1, AMPK phosphorylates 

Tsc2, activating the Tsc1/2 complex103. At the level of mTORC1, AMPK 

phosphorylates the mTOR-binding partner raptor on S792, reducing mTORC1 

signaling104. AMPK promotes autophagy through phosphorylation and activation 

of ULK1243,244 and through suppression of mTORC1, which phosphorylates and 

inhibits ULK1145,146. AMPK has been implicated in the regulation of Akt. AMPK 

activators LKB1 and sestrin2 have been shown to promote Akt phosphorylation 
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and anti-apoptotic signaling250,300, however the role of mTORC2 in AMPK-

dependent regulation of these pathways has not been defined.  

The Fingar laboratory previously identified mTOR S1261 as a 

phosphorylation site that promotes mTORC1 function, though its role within 

mTORC2 was unclear22. Our collaborator Steve Riddle (Life Technologies, 

Madison, WI) conducted an in vitro screen the human kinome to identify 

candidate mTOR S1261 kinases. AMPKα1 and AMPKα2 were identified by this 

screen. I subsequently demonstrated that AMPK promotes mTOR S1261 in 

intact cells and regulates this site within both mTORC1 and mTORC2. The fact 

that AMPK both inhibits mTORC1 signaling and phosphorylates mTOR S1261 

(this study), yet mTOR S1261 phosphorylation promotes mTORC1 signaling22, 

remains an unresolved conundrum. AMPK promoted Akt S473 phosphorylation 

in the absence of growth factors in an mTOR- and PI3K-dependent manner. This 

AMPK-mediated Akt phosphorylation occurred independently of the mTORC1-

S6K1 negative feedback loop and thus AMPK promotes mTORC2 signaling 

directly, rather than indirectly through this negative feedback loop. Furthermore, 

pharmacological activation of AMPK promotes mTORC2-associated mTOR 

S2481 autophosphorylation, suggesting that AMPK promotes mTORC2 activity in 

intact cells in addition to phosphorylation of Akt. Finally, I found that AMPKα1/2 

double-knockout MEFs were more sensitive to energy stress-induced apoptosis 

than wild-type MEFs. Taken together, this data suggests a model whereby AMPK 

functions as a novel, positive regulator of mTORC2. AMPK signaling promotes 
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mTORC2-associated mTOR autophosphorylation, mTORC2 signaling to 

downstream substrates, and cell survival during acute energy stress.   

2-2. Materials and Methods 

Materials 

Protein A-Sepharose CL4B (#17-0780-01), protein G-Sepharose Fast Flow (#17-

0618-01), and glutathione-Sepharose 4B (#17-0756-01) beads were from GE 

Healthcare. 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate 

(CHAPS) was from Pierce. Polyvinylidene difluoride (PVDF) membrane (0.45 

µm) was from EMD Millipore (Immobilon-P). Enhanced chemiluminescense 

(ECL) reagents were from EMD Millipore (Immobilon Western). All chemicals 

were from either Fisher Scientific or Sigma-Aldrich, unless otherwise specified. 

Antibodies 

The following rabbit polyclonal antibodies were custom generated as described 

previously22: mTOR (used for IB only), P-mTOR S1261, raptor (used for IP in all 

cells and IB in HEK293 and U2OS cells), rictor, and S6K1. Mouse monoclonal 

HA (HA.11, #MMS-101P) and Myc (9E10, #MMS-150P) epitope tag antibodies 

(used for IP and IB) were from Covance. Rabbit AMPKα1 (used for IP) was from 

Abcam (#ab32047). The following antibodies were from Cell Signaling 

Technology: GST (#2622), mTOR (#2972; used for IP only), P-mTOR S2481 

(#2974), raptor (#2280; used for IB in MEFs), P-raptor S792 (#2083), AMPKα 

(#2532), AMPKα1 (#2795; used for IB only), AMPKα2 (#2757; used for IP and 

IB), P-AMPKα T172 (#4188), Acc1 (#3676), P-Acc1 S79 (#3661), Akt (#9272), P-
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Akt S473 (#4060), P-Akt T308 (#9275), P-Akt T450 (#9267), P-S6K1 T389 

(#9234), P-S6 S240/244 (#2215), S6 (#2217), P-FoxO1/3a (T24/T32, # 9464), 

FoxO3a (#2497), IRS1 (#2382), P-IRS1 S636/639 (#2388), PKCα (#2056), 

cleaved-Caspase 3 (#9664), cleaved-PARP (#5625). Abbreviations - IB: 

immunoblotting; IP: immunoprecipitation. 

Plasmid DNA 

HA-AMPKα, myc-AMPKβ, and myc-AMPKγ expression plasmids were from K. 

Inoki (University of Michigan, Ann Arbor, MI). pRK5/Myc-mTOR was from D. 

Sabatini (MIT, Cambridge, MA) via Addgene (#1861). pcDNA3 (empty vector) 

was used as control DNA in transfections. Plasmid cDNA details: 

pcDNA3/3xHA-AMPKα1 (H. sapiens PRKAA1, NCBI RefSeq: NM_006251.5) 

pcDNA3/3xHA-AMPKα2 (H. sapiens PRKAA2, NCBI RefSeq: NM_006252.3) 

pRK5/myc-mTOR (R. Norvegicus MTOR [formerly FRAP1,RAFT1], NCBI 

RefSeq: NM_019906.1) 

Plasmid Mutagenesis 

Kinase dead mutants were generated from pcDNA3/3xHA-AMPKα1 (K56R) and 

α2 (K45R) using QuikChange II XL (Stratagene) and fully sequenced. The 

following primer pairs were used for mutagenesis (capital letters indicate 

mismatch, relevant codons are underlined):  

AMPKα1 K56R Primer 1:  

5’-cataaagtagctgtgaGgatactcaatcgacag-3’ 
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AMPKα1 K56R Primer 2:  

5’-ctgtcgattgagtatcCt

AMPKα2 K45R Primer 1:  

5’-ggccataaagtggcagtt

cacagctactttatg-3’ 

aGa

AMPKα2 K45R Primer 2:  

5’-ctgtctatttaagat

atcttaaatagacag-3’ 

tCt

Generation of GST-mTOR 1223-1271 

aactgccactttatggcc-3’ 

A DNA fragment was amplified from pcDNA3/AU1-mTOR (R. norvegicus) using 

the following primers (underlined nucleotides represent the annealing region, 

capitalized nucleotides indicate restriction sites for subcloning) : 

Primer 1: 5’-gacgGGATCCgctgatgaagaagaagacccttt

Primer 2: 5’-gattGAATTC

-3’ 

gacccttctggcagctcc

This amplification product was digested with BamHI/EcoRI and subcloned into 

the pGEX-20T vector, which encodes glutathione S-transferase (GST) and a 

flexible linker 5’ of the insert. Protein production was induced in transformed, log-

growth phase E. coli (BL21) with IPTG (1mM; Invitrogen) for 4 h at 25°C in a 

shaker incubator. Bacteria were pelleted at 4200rpm in a Beckman J6-MC 

centrifuge at 4°C for 15’ and resuspended in TEN buffer (50mM Tris pH 7.5, 

0.5mM EDTA, 0.3M NaCl) at 1/20th of the original culture volume. Cells were 

lysed on ice in 1mg/mL lysozyme (Invitrogen), 4mM DTT, and 0.2% NP-40 with 

protease inhibitors. 1.5 volumes of NaCl-Mg (1.5M NaCl, 12mM MgCl2) and 

4µg/mL of DNAseI were then added, followed by incubation on a nutator for 1-2 h 

at 4°C. Lysates were homogenized by sonication (3x 10 sec bursts at 60% 

-3’ 
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amplitude), then cleared of insoluble material by centrifugation at 15,000 x g in a 

Sorvall centrifuge with an SS-34 rotor for 20 min at 4°C. Supernatants were 

mixed with 0.5 mL of a glutathione-Sepharose bead slurry containing PBS and 

incubated on a nutator for 1 h at 4°C. The bead-lysate mixture was then added to 

a disposable, fritted column. Gravity flow-through was discarded and beads were 

washed once with 10mL ice-cold 1% Triton X-100 in PBS and a second time with 

10mL ice-cold PBS. Protein was eluted with elution buffer (50mM Tris pH 8.0, 

2mM EDTA, 10mM reduced glutathione [Sigma-Aldrich #G4251]) and 0.5mL 

fractions were collected. Following dot-blot analysis (Ponceau-S or imido black 

on nitrocellulose membrane), fractions of similar concentrations were pooled, 

placed in 7000 MWCO dialysis tubing (Pierce Snakeskin), and dialyzed overnight 

at 4°C in 2L dialysis buffer (10mM Tris pH 7.4, 100mM NaCl, 1mM EDTA, 5% 

glycerol, 154mg/L dithiothreitol [DTT]). Dialyzed protein was diluted in dialysis 

buffer as needed and stored at -80°C. 

In vitro kinome screen 

Small-scale reactions (10µL) were performed in 96-well plates for 1 h at room 

temperature. Each well contained 1mM ATP, 25 nM kinase, and 0.25 mg/mL 

GST-mTOR 1223-1271 (substrate) in kinase buffer A (50 mM HEPES pH 7.5, 10 

mM MgCl2, 1mM EGTA, 0.01% Brij-35). Samples were analyzed by dot blot, 

using a phospho-specific P-mTOR S1261antibody and an Alexa Fluor 488 

labeled anti-rabbit -secondary antibody. Phospho-signal intensity was compared 

to a positive control (HEK293 cell lysates) and positive results determined 

qualitatively.   
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In vitro kinase assays 

Recombinant AMPKα1/β1/γ1 (“AMPKα1”) and AMPKα2/β1/γ1 (“AMPKα2") were 

obtained from Life Technologies (#PV4672 and #PV4674). 10 ng AMPKα1/β1/γ1 

or 30 ng AMPKα2/β1/γ1 were used per reaction. These quantities 

(approximately) normalize the kinase activity units per µL as reported in the lot 

analysis for each kinase. In vitro kinase (IVK) reactions using GST-mTOR 1223-

1271 as substrate were performed in 30µL volumes containing 1µL diluted 

kinase, 100 ng substrate, and 250 µM ATP (Roche) in kinase buffer B (10 mM 

MgCl2, 10 mM Tris pH 7.4, 100 mM NaCl, 1 mM DTT). AMPK IVK reactions 

using mTOR immunoprecipitates were performed in 60 µL volumes (excluding 

bead volumes) containing 1 µL diluted kinase per reaction. ATP and MgCl2 

concentrations and reaction conditions were as above, resuspending beads 

every 5-10 min during incubation by lightly flicking the tubes. AMPK IVK 

reactions using HEK293 cell lysates were performed by adding 20 µL 3x kinase 

buffer containing 1 µL diluted kinase, 750 mM ATP, and 30 mM MgCl2 to 40 µL 

lysate (60 µL total volume). All AMPK IVK reactions were incubated for 30 min at 

30°C and the reaction was quenched by placing test tubes on ice, adding one 

reaction volume of 2x sample loading buffer, and heating at 95°C for 5 min.   

Tissue culture, transfection, and drug treatment 

All cell lines were cultured in Dulbecco’s Modified Eagle Medium (DMEM; Gibco 

#11995) containing glutamine (584 mg/L), sodium pyruvate (110 mg/L) and high 

glucose (4.5 g/L) and supplemented with 10% fetal bovine serum (FBS) from 
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HyClone (#10437). TSC2-/- (+EV) MEFs and TSC2-/- (+TSC2) MEFs were 

maintained in DMEM/FBS with 100µg/L hygromycin B (Invitrogen #10687010). 

To serum-starve cells, they were first grown to 75-80% confluency, washed once 

with starve media (DMEM plus sterile-filtered 20mM HEPES pH 7.2), then 

incubated in starve media for 20 h prior to any drug treatments. For transfection 

experiments, HEK293 cells were grown on 10 cm plates to 50-60% confluency 

and transfected with 8 µg total plasmid DNA using TransIT-LT1 (Mirus). Plasmid 

quantities for specific experiments are indicated in the figure legends. 16-20 h 

post-transfection, cells were put in serum-free media for 20 h prior to drug 

treatments. 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR; 

Tocris #2840) was prepared fresh on treatment day (200mM in starve media or 

PBS) and added to cells at a 2.5mM final concentration. 2-deoxyglucose (2-DG; 

Sigma #D6134) was also prepared fresh on treatment day (500mM in DMEM) 

and used at a 50mM final concentration. A769662 (Tocris #3336) was added to 

cells at 100 nM. Rapamycin (Calbiochem #553210) was used at 20 ng/mL. 

Wortmannin (EMD Millipore #681675) was used at 100 nM. Compound C (EMD 

Millipore #171261) was used at 25 µM. Ku-0063794 (Tocris #3725) was used at 

(1 µM). AMPKα1/2 DKO MEFs were from B. Viollet (Inserm, Paris, France). 

AMPKα1 and AMPKα2 SKO MEFs were from Reuben Shaw (Salk Institute, San 

Diego, CA). Tsc1+/+ and Tsc1-/- MEFs were from D. Kwiatkowski (Brigham and 

Women's Hospital, Boston, MA). Tsc2-/- MEFs stably expressing Tsc2 or empty 

vector were from B. Manning (Harvard School of Public Health, Boston, MA). 
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Stable cell lines 

AMPKα1/2 DKO MEFs stably expressing HA-AMPKα1 were generated by 

retroviral infection. To generate virus, the pQCXIH/HA-AMPKα1 was transfected 

into Phoenix retroviral packaging HEK293P cells and culture media containing 

virus was harvested after 48 h. AMPKα1/2 DKO MEFs were infected with this 

virus in the presence of polybrene (8 µg/mL) and selected with hygromycin (100 

µg/mL) 24 h post-infection. This cell line was maintained in DMEM +10% FBS 

with hygromycin (100 µg/mL). The AMPKα1/2 DKO MEFs used for stable 

expression were from S. Morrison (University of Michigan, Ann Arbor, MI)309. 

Cell lysis, immunoprecipitation, and immunoblotting 

Cells were washed once with ice-cold PBS and scraped into ice-cold lysis buffer 

(10 mM KPO4, pH 7.2, 1 mM EDTA, 5 mM EGTA, 10 mM MgCl2, 50 mM β-

glycerophosphate, 1 mM sodium orthovanadate [Na3VO4], 5 µg/ml pepstatin A, 

10 µg/mL leupeptin, 40 µg/mL phenylmethylsulfonyl fluoride [PMSF]) containing 

0.5% NP-40 and 0.1% Brij35. CHAPS (0.3%) is substituted for NP40 and Brij35 

where indicated, to preserve protein interactions during immunoprecipitation. 

Lysates were cleared by centrifugation at 13,200 rpm for 5 min at 4°C. 

Supernatants were then collected and immediate placed on ice. In all 

experiments, protein levels were normalized by the Bradford protein assay using 

a BioRad iMark microplate absorbance reader. For immunoprecipitation, whole-

cell lysates (WCL) at 1-3 mg/mL protein concentrations were incubated end-over-

end with 1-2µg antibodies for 1-1.5 h at 4°C, then incubated end-over-end with 
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Protein A or G sepharose beads (10µL of a 1:1 slurry per 100µL of WCL) for 1-

1.5 h at 4°C. Beads were pelleted by centrifugation at 3000rpm for 1 min at 4°C, 

the supernatant aspirated, and in this fashion washed three times in ice-cold lysis 

buffer. Beads were resuspended in 1x sample loading buffer (50 mM Tris-HCl, 

pH 6.8, 10% glycerol, 2% SDS, 2% β-mercaptoethanol, 0.02% bromophenol 

blue) and heated at 95°C for 5 min. For in vitro kinase reactions, beads were 

washed one additional time in kinase buffer (described in more detail below) prior 

to the reaction. Samples were resolved by SDS-PAGE and transferred to 

methanol-activated polyvinylidene difluoride (PVDF) membranes in transfer 

buffer (25 mM Tris, 192 mM glycine, 10% methanol, 0.02% SDS). 

Immunoblotting was performed by blocking PVDF membranes in Tris-buffered 

saline with Tween 20 (TBST; 40 mM Tris-HCl, pH 7.5, 0.9% NaCl, 0.1% Tween 

20) containing 3% nonfat dry milk and incubating the membranes in TBST with 

2% bovine serum albumin (BSA) containing primary antibodies overnight at 4°C. 

Blots were washed 3 times in TBST, incubated in HRP-conjugated secondary 

antibodies for 30-60 min, followed by 3 more washes (all at room temperatures). 

Blots were developed by ECL using HyBlot CL autoradiography film (Denville) or 

imaged after ECL using the Chemi-DocIt HR 410 system (UVP). 

Densitometry, statistical analyses, and image production 

Immunoblot bands were quantified in some experiments by densitometry using 

VisionWorks LS (UVP). A 2-tailed, paired t test was used to determine 

significance; P values were calculated using Microsoft Excel and P < 0.05 was 

considered significant. Immunoblot images not acquired by the Chemi-DocIt 
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system were scanned from autoradiography film at 300dpi. Immunoblot images 

were levels-adjusted in Adobe Photoshop by setting white and black points only. 

Irrelevant lanes were removed from images of some immunoblots and indicated 

by a vertical, dashed line in the figure.  

2-3. Results 

AMPK phosphorylates mTOR S1261 

The Fingar laboratory found previously that mTOR S1261 phosphorylation 

promotes mTORC1 signaling22. To identify the unknown mTOR S1261 kinase, 

our collaborator Steve Riddle (Life Technologies, Madison, WI) employed an in 

vitro screen of the human kinome that covered ~280 purified, active kinases. For 

substrate, I generated a small mTOR fragment in which amino acids 1223-1271 

were fused to GST and expressed in E. coli. This fragment consists of mTOR 

HEAT domain 25T, which contains S1261 flanked by at least 14 residues on 

either side (see illustration in Figure 2-1A). In vitro phosphorylation was 

determined using a phospho-specific antibody against P-S1261 that we 

generated and described previously22. The results of this screen reveal three 

distinct classes of candidate kinases: the calcium/calmodulin-regulated kinase 

(CaMK)/AMPK-like kinase family, the NimA-related kinase (NEK) family, and the 

interleukin-1 receptor associated kinase (IRAK) family. Among these candidates, 

AMPKα1 and α2 (gene names PRKAA1 PRKAA2) were of particular interest, as 

mTOR S1261 fits the AMPK consensus phosphorylation motif (Figure 2-1A). As 

previously shown, mTOR S1261 is conserved in vertebrates22. Multiple sequence 
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alignment also showed that the residues within the AMPK consensus motif are 

also 100% conserved in vertebrates. 

I first confirmed that AMPK phosphorylates the GST-mTOR 1223-1271 in 

vitro. Recombinant AMPKα1/β1/γ1 and AMPKα2/β1/γ1 holoenzymes both 

phosphorylated S1261 compared to the bovine serum albumin (BSA) control 

(Figure 2-1A). To determine whether AMPK promotes mTOR S1261 

phosphorylation in intact cells, I examined mTOR phosphorylation status in 

AMPK-deficient cells. I found that AMPKα1/2 double-knockout (DKO) mouse 

embryonic fibroblasts (MEFs), cultured in full-serum conditions (DMEM +10% 

FBS) exhibited strongly reduced mTOR S1261 phosphorylation, compared to 

wild-type (WT) MEFs (Figure 2-1B). As expected, AMPKα1/2 DKO MEFs lacked 

AMPKα activation loop (T172) phosphorylation as well as S79 phosphorylation of 

acetyl-CoA carboxylase 1 (Acc1), a direct substrate of AMPK, together 

confirming the lack of AMPK signaling in these cells. I next confirmed that, in 

addition to the GST-mTOR fragment, AMPK phosphorylated full-length mTOR in 

vitro. Because mTOR S1261 phosphorylation was very low in AMPKα1/2 DKO 

MEFs, we immunoprecipitated mTOR from these cells to use as a substrate in an 

in vitro kinase assay. Compared to the control (BSA), both AMPKα1/β1/γ1 and 

AMPKα2/β1/γ1 phosphorylated full-length mTOR (Figure 2-1C, compare lane 1 

to lanes 2 and 3). Pre-incubation of AMPKα1/β1/γ1 or AMPKα2/β1/γ1 with 

Compound C, a small molecule which has been shown previously to inhibit 

AMPK in kinase assays179, blocked its ability to phosphorylation mTOR (Figure 

2-1C, compare lanes 2 and 3 to lanes 4 and 5). 
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I then asked whether an AMPK inhibitor was sufficient to reduce mTOR 

S1261 phosphorylation in intact cells. Compound C added to the culture medium 

inhibited mTOR S1261 phosphorylation in both WT MEFs (Figure 2-1D) and 

HEK293 cells (Figure 2-1F). AMPKα T172 phosphorylation is also reduced by 

Compound C, consistent with published work. Because Compound C has been 

reported to have AMPK-independent effects and does not inhibit activation of 

AMPK in all contexts223, I did not rely upon its use in subsequent signaling 

experiments.  

The in vitro kinase assays indicated that both AMPKα1 and AMPKα2 

phosphorylate mTOR S1261. I asked whether depletion of AMPK from a cell 

extract also reduced lysate-mediated mTOR S1261 phosphorylation in vitro. 

Control (non-depleted) HEK293 whole cell lysate phosphorylated the GST-mTOR 

fragment, while BSA alone did not (Figure 2-1E, compare IVK lanes 1 and 2). 

Immunodepletion of AMPKα1, but not AMPKα2, reduced the capacity of cell 

lysates to phosphorylate the GST-mTOR fragment (Figure 2-1E, compare IVK 

lane 1 to lanes 5 and 6). Some activity still remained in the AMPKα1-depleted 

lysate, which could be explained by the incomplete depletion of AMPKα1. This 

experiment suggests that AMPKα1 may predominantly phosphorylate mTOR 

S1261 kinase in these cells, as AMPKα2 depletion did not alter the lysate 

activity, though the expression and activity of AMPKα1 versus AMPKα2 in these 

cells was not determined. Together, the in vitro phosphorylation of mTOR and 

both the inhibition and the genetic ablation of AMPKα1 and AMPKα2 support the 

hypothesis that AMPK is a direct and cell-physiological mTOR S1261 kinase. 
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mTOR S1261 is phosphorylated within both mTORC1 and mTORC2 

I next determined whether AMPK phosphorylates mTOR S1261 in 

mTORC1, mTORC2, or both, as differential phosphorylation could define mTOR 

complex-specific functions. To address the question of mTOR S1261 complex 

specificity, I isolated mTORC1 and mTORC2 by raptor and rictor IP, respectively, 

from WT and AMPKα1/2 DKO MEFs, as well as AMPKα1 and AMPKα2 single-

knockout (SKO) MEFs. In full-serum conditions (“steady-state”; Figure 2-2A) or 

after serum-deprivation for 24 h (Figure 2-2B), S1261 was phosphorylated in 

both mTORC1 and mTORC2 isolated from WT MEFs, but not AMPKα1/2 DKO 

MEFs. Similar to AMPKα1/2 DKO MEFs, AMPKα1 SKO MEFs lacked mTOR 

S1261 phosphorylation in both mTORC1 and mTORC2, however AMPKα2 SKO 

MEFs did not exhibit defective S1261 phosphorylation in either mTORC1 or 

mTORC2. Both AMPKα1/2 DKO and AMPKα1 SKO MEFs showed dramatic 

reduction in AMPK signaling, as evidenced by phosphorylation of two substrates, 

Acc1 S79 and raptor S792. AMPKα1 may function as the predominant AMPK 

catalytic subunit in these MEFs, given that Acc1 and raptor phosphorylation 

appear normal in AMPKα2 SKO MEFs. This may explain why mTOR S1261 

phosphorylation is not defective in this cell line.  

To corroborate the effects of AMPK loss and mTOR complex specificity in 

a different cell line, mTOR S1261 phosphorylation was assayed by Hugo Acosta-

Jaquez (Fingar laboratory) in HEK293 cells treated with three pharmacological 

AMPK activators (2-deoxyglucose [2DG], AICAR, and A769662) and one AMPK 

inhibitor (Compound C). 2DG inhibits ATP production through inhibition of 



 

 60 

glycolysis 310. AICAR, a compound metabolized within the cell into ZMP, an AMP 

mimetic, is a commonly used AMPK agonist. Though AICAR activates AMPK by 

direct binding, it also elicits cellular energy stress and thus has AMPK-

independent effects311. A769662 is a unique small molecule activator of AMPK 

that acts directly without altering cellular AMP or ADP levels217–219. mTORC1 and 

mTORC2 were isolated from serum-deprived HEK293 cells by raptor and rictor 

IP, respectively. Both 2DG and A769662 enhanced mTOR S1261 

phosphorylation in whole cell lysates as well as in both mTOR complexes (Figure 

2-2C). The AMPK inhibitor Compound C slightly inhibited mTOR P-S1261 in both 

mTORC1 and mTORC2 (Figure 2-2C lane 6). AICAR only weakly increased 

mTOR P-S1261 and AMPK signaling readouts Acc1 P-S79 and raptor P-S792 

(Figure 2C lane 4) in this cell line. Taken together, the MEF and HEK293 cell 

data demonstrate that both pharmacological AMPK activation and genetic 

ablation of AMPK affects mTOR S1261 phosphorylation in both mTORC1 and 

mTORC2, consistent with AMPK signaling towards its known downstream 

substrates. 

AMPK promotes mTORC2 signaling 

AMPK phosphorylates Tsc2 and raptor, inhibiting mTORC1 signaling in 

response to energy stress103,104. While this mechanism is well-established, 

whether AMPK contributes to the regulation of mTORC2 remains unclear. I 

postulated that AMPK may promote mTORC2 signaling because LKB1 (an 

AMPK activation loop kinase) and sestrin2 (which activates AMPK through an 

unknown mechanism) have been shown to promote phosphorylation of Akt on 
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S473250,300. To test the hypothesis that AMPK promotes mTORC2 signaling, I 

first compared WT MEFs to AMPKα1/2 DKO MEFs cultured in steady-state 

conditions and found that both Akt S473 phosphorylation and PKCα protein 

levels were reduced in DKO MEFs (Figure 2-3A). PKCα is stabilized by mTORC2 

and its levels thus serve as a marker for mTORC2 signaling41,42,312. The bar 

graph shows total PKCα levels relative to a control protein (Akt) in WT vs. 

AMPKα1/2 DKO MEFs, indicating a 32% reduction in PKCα levels in AMPK-

deficient MEFs. In contrast to mTORC2 signaling, basal mTORC1 signaling to 

S6K1 (P-T389) and S6 (P-S240/244) was unchanged in AMPKα1/2 DKO MEFs, 

indicating that mTORC1 signaling is not affected by loss of AMPK and that 

reduced basal mTORC2 signaling is likely not due to altered mTORC1 signaling. 

AMPK suppression of mTORC1 signaling to S6K1 was not observed in this 

experiment, likely due to lack of energy stress or AMPK activation; S6K1 P-T389 

reduction was indeed observed in MEFs after AMPK activation (e.g. Figure 2-3C, 

compare lanes 1 and 2). These data suggest that basal AMPK signaling 

promotes Akt P-S473 and PKCα expression and, because mTORC2 is an Akt 

S473 kinase, they also suggest that AMPK activity promotes basal mTORC2 

signaling.  

To perform the converse experiment, to ask whether AMPK activation 

increases Akt P-S473 in MEFs, I treated WT and AMPKα1/2 DKO MEFs for 2 h 

with AICAR (2.5 mM). The cells were cultured in serum-free media for 20 h prior 

to AICAR treatment, because I found that AMPK signaling was slightly higher in 

this condition, but also so I could analyze AMPK-mediated phosphorylation of Akt 
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independent of serum growth factors. AICAR stimulates both mTOR S1261 and 

Akt S473 phosphorylation in WT MEFs (Figure 2-3B). In AMPKα1/2 DKO MEFs, 

mTOR P-S1261 was not stimulated by AICAR and Akt P-S473 was weakly 

stimulated. As indicated by the bar graph, AICAR increased Akt P-S473 in WT 

MEFs more than twofold, whereas, in AMPK DKO MEFs, AICAR induced a much 

smaller increase in Akt P-S473 (~60%). It is important to note that AMPK induces 

a state of energy stress and affects cellular processes other than AMPK 

signaling, which could explain this small rise in Akt phosphorylation in AMPK-

deficient cells215. A PCR analysis of the AMPKα1/2 DKO MEFs did not detect the 

presence of WT AMPKα1 or AMPKα2 alleles in these MEFs, suggesting that this 

effect is not due to cross-contamination of the cell lines (data not shown). 

Although mTORC2 is considered the major Akt S473 kinase, other 

kinases have been reported to phosphorylate this site, including DNA-PK, ILK, 

MAPKAP kinase 2, IKKε, and TBK166–69 66,69. Therefore, I asked whether AICAR-

induced Akt phosphorylation was sensitive to the mTOR ATP-competitive 

inhibitor Ku-0063794 (Ku), which blocks mTOR catalytic activity in both mTORC1 

and mTORC2313,314. Indeed, AICAR-induced Akt P-S473 was inhibited by Ku 

(Figure 2-3C, compare lanes 2 and 3). Consistent with global mTOR inhibition, 

the mTORC1 substrate S6K1 P-T389 was also inhibited by Ku (Figure 2-3C, 

compare lanes 1 and 3). The generation of PI-3,4,5-P3 by PI3K is critical for 

localizing Akt to the plasma membrane, the putative location where it is 

phosphorylated by PDK1 (T308) and mTORC2 (S473). As mTORC2 activity has 

also been shown to depend on PI3K activity107, we asked whether AICAR-
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induced P-Akt was sensitive to the PI3K inhibitor wortmannin (Wm). Indeed, I 

found that Wm blocked AICAR-induced Akt P-S473 (Figure 2-3C, compare lanes 

2 and 4). S6K1 P-T389 was reduced by AICAR, consistent with AMPK-mediated 

mTORC1 suppression. Wortmannin also induced dephosphorylation of S6K1 

T389, consistent with the dependence of basal mTORC1 signaling on PI3K. 

These data show that AMPK activation promotes Akt S473 phosphorylation in an 

mTOR- and PI3K-dependent manner. 

If AMPK activation mediates both mTOR S1261 and Akt S473 

phosphorylation then AICAR should induce these phosphorylation events in a 

manner temporally similar to AMPK signaling. To test this hypothesis, I serum-

deprived WT and AMPK DKO MEFs and treated them with 2.5mM AICAR for 15’, 

30’, 1 h, 2 h, and 4 h (Figure 2-3D). Indeed, both Akt P-S473 and mTOR P-

S1261 increased with a similar time course, as did AMPK T172 and Acc1 S79 

phosphorylation, in WT but not AMPKα1/2 DKO MEFs. Also, as expected, 

AICAR-induced AMPK activation suppresses mTORC1 signaling (S6K1 P-T389) 

in WT but not AMPKα1/2 DKO MEFs. 

The data presented thus far indicate that AMPK activation increases Akt 

P-S473 in the absence of serum. As serum growth factors such as insulin acutely 

activate Akt, I tested the idea that insulin and AICAR act synergistically. Serum-

starved WT and AMPK DKO MEFs were treated with 100nM insulin for 30 

minutes in the absence or presence of AICAR (Figure 2-3E). In WT MEFs, insulin 

induced both Akt S473 and S6K1 T389 phosphorylation (Figure 2-3E, compare 

lanes 1 and 2) in a wortmannin- and Ku-sensitive manner (lanes 3 and 6). 
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Double treatment with both AICAR and insulin was additive for Akt S473 

phosphorylation (Figure 2-3E, compare lanes 2 and 4). In AMPKα1/2 DKO 

MEFs, insulin-activated Akt S473 phosphorylation is lower overall, though AICAR 

slightly increases it. These results show that insulin action does not dominate or 

oppose the ability of AICAR to induce Akt S473 phosphorylation in MEFs. 

Interestingly, insulin-activated S6K1 T389 phosphorylation was unaffected by 

AICAR treatment, suggesting that insulin-mediated mTORC1 signaling is 

resistant to AMPK activation (Figure 2-3E, compare lanes 2 and 4). Together, 

these data demonstrate that pharmacological AMPK activation strongly promotes 

mTOR S1261 and Akt S473 phosphorylation in WT MEFs but not AMPK-

deficient MEFs in a manner dependent on mTOR and PI3K.  

To show that these observations hold true in different cell lines, Hugo 

Acosta-Jaquez asked whether AMPK activation promotes Akt S473 and mTOR 

S1261 phosphorylation in cell lines other than MEFs. In human osteosarcoma 

U20S cells, AICAR indeed stimulated mTOR S1261 and Akt S473 

phosphorylation in both serum-starved and steady-state cells (Figure 2-4A). 

AICAR activated AMPK in these cells, as indicated by increased raptor P-S792, 

AMPKα P-T172, and upward mobility shifting of AMPKα. As I observed in MEFs, 

AMPK activation in U2OS cells increased Akt P-S473 in a Ku- and wortmannin-

sensitive manner, indicating the requirement for mTORC2 and PI3K (Figure 

2-4A, lanes 1-4). AICAR also increased Akt on its activation loop site (P-T308) 

and turn motif (TM) site (P-T450) in serum-starved U2OS cells, though 

phosphorylation of these sites is not clearly regulated by AMPK activation in 
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steady-state conditions (Figure 2-4A, lanes 5-8). In serum-starved HEK293 cells, 

the AMPK agonist A769662 increased Akt S473 and mTOR S1261 

phosphorylation in a Ku- and wortmannin-sensitive manner (Figure 2-4B, lanes 

1-4). Consistent with promotion of Akt P-S473, Hugo Acosta-Jaquez observed 

that AMPK activation promoted phosphorylation of the Akt substrate FoxO3a on 

T32 in HEK293 cells. FoxO3a phosphorylation was not detected in U2OS cells 

(data not shown). In HEK293 cells cultured in steady-state conditions, A769662 

did not noticeably regulate AMPK signaling, mTOR P-S1261, Akt P-S473, or 

FoxO3a P-T32 (Figure 2-4B, compare changes in lanes 1 and 2 to lanes 5 and 

6). In HEK293 cells, A769662 promoted AMPKα T172 phosphorylation and 

signaling to raptor S792 better in serum-starved cells than in steady-state 

conditions. As noted earlier, AICAR does little to activate AMPK in our HEK293 

cells (Figure 2-2C compare lanes 1 and 4). Taken together, these experiments 

demonstrate that pharmacological activation of AMPK in U2OS and HEK293 

cells promotes mTOR S1261 and Akt S473 phosphorylation in a manner that 

depends on mTOR and PI3K activity, consistent with our results in MEFs. 

AMPK activation mediates Akt phosphorylation independently of the 
mTORC1 negative feedback loop 

Because AICAR suppresses mTORC1 signaling to S6K1 (e.g. Figure 

2-3D) and increases both S473 and T308 phosphorylation in a wortmannin-

sensitive manner, I tested the possibility that AICAR indirectly promotes Akt 

phosphorylation through suppression of mTORC1 and found that it does not. 

mTORC1 negatively regulates the insulin/PI3K signaling pathway (and Akt 
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phosphorylation), through a mechanism known as the mTORC1 negative 

feedback loop (NFL)273,274,306. NFL activation is caused by mTORC1-activated 

S6K1, which phosphorylates insulin receptor substrate 1 (IRS1) on S636 and 

S639, leading to IRS1 degradation by the proteasome and reduced PI3K 

signaling flux273,274. Grb10 was also recently reported as an mTORC1 effector 

that promotes the NFL147,148 and both S6K1 and Grb10 promote the NFL in a 

rapamycin-sensitive manner. Because we observed that AMPK activation 

promoted both Akt S473 and T308 phosphorylation, both of which depend on 

PI3K signaling, the root cause of AMPK-mediated Akt phosphorylation could be 

through inhibition of mTORC1. In the scenario whereby the NFL is suppressed 

by AMPK-activation, we would expect rapamycin, which inhibits mTORC1 (and 

the NFL), to boost Akt T308 and S473 phosphorylation without any further 

increase following AMPK stimulation. To test this, I pretreated MEFs with 

rapamycin to completely block the mTORC1 NFL. I serum-starved MEFs as per 

my previous experiments and treated them with or without AICAR for 2 h and 

with or without a 30’ rapamycin pre-treatment (Figure 2-5A). AICAR and 

rapamycin both reduced S6K1 T389 phosphorylation, as expected (rapamycin 

more so than AICAR, also as expected). Rapamycin did not induce Akt P-S473 

or P-T308 in either WT or AMPK DKO MEFs (Figure 2-5A, compare lane 1 to 

lane 5 and lane 3 to lane 7). This suggests either that mTORC1 signaling (and 

NFL activity) is already quite low in serum-starved MEFs or that the effect of 

inhibiting the NFL on Akt phosphorylation requires a substantially longer time 

course, consistent with previous reports 273,274. Hugo Acosta-Jaquez also tested 
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the effect of rapamycin pre-treatment on AMPK-mediated Akt phosphorylation in 

serum-starved U2OS and HEK203 cells (Figure 2-5B and C). In agreement with 

my data in MEFs, Akt S473 and T308 phosphorylation were induced by AICAR 

but not rapamycin in U2OS cells (Figure 2-5B). Akt T308 phosphorylation was 

difficult to detect in serum-starved HEK293 cells, however rapamycin did not 

boost Akt S473 phosphorylation in these cells, consistent with MEFs and U2OS 

cells (Figure 2-5C). Importantly, AMPK activation in these cell lines does not 

correlate with reduced mTORC1 signaling to S6K1. In U20S cells, AICAR did not 

inhibit S6K1 P-T389 (Figure 2-5B), and phosphorylation of this site was difficult to 

detect in serum-starved HEK293 cells (Figure 2-5C). Thus these data 

demonstrate that AMPK-mediated Akt phosphorylation is not explained through 

mTORC1-dependent feedback inhibition.  

In addition to these rapamycin experiments, I observed that in AMPKα1/2 

DKO MEFs cultured in steady-state (full-serum) conditions, S6K1 and S6 are 

unchanged compared to WT MEFs (Figure 2-3A). Furthermore, IRS1 S636/S639 

phosphorylation and IRS1 protein levels remained unchanged with AMPK 

activation and rapamycin treatments, indicating no detectable changes in the 

NFL. Taken together, the MEF, U2OS, and HEK293 data strongly suggest a 

novel role for AMPK in mTORC2-mediated Akt S473 phosphorylation that occurs 

independently of the mTORC1 NFL.     
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Expression of AMPKα1 in AMPKα1/2 double-knockout cells rescues mTOR 
S1261 and Akt S473 phosphorylation 

As it is a possibility in cultured cells derived from knockout animals, 

chronic loss of AMPK activity may have unknown effects on mTORC2/Akt 

signaling through permanent, compensatory adaptations or mutations. To 

address this concern, we asked whether expression of exogenous HA-AMPKα1 

was sufficient to restore AMPK signaling, including mTOR S1261 and Akt S473 

phosphorylation, in AMPKα1/2 DKO MEFs. HA-tagged AMPKα1 was stably 

expressed in AMPKα1/2 DKO MEFs via retroviral transduction by Tsukasa 

Suzuki (Ken Inoki laboratory, University of Michigan, Ann Arbor, MI). Indeed, HA-

AMPKα1 rescued AICAR-stimulated raptor S792 and mTOR S1261 

phosphorylation to levels similar to WT, when compared to the parental 

AMPKα1/2 DKO MEFs (Figure 2-6, compare lanes 2, 4, and 6). The defect in 

AICAR-stimulated Akt 473 phosphorylation in AMPKα1/2 DKO MEFs was 

partially rescued upon HA-AMPKα1expression. These experiments demonstrate 

that the phenotypes exhibited by AMPKα1/2 DKO MEFs in this study are due to 

lack of AMPK activity and not an unrelated artifact caused by AMPK deletion.    

AMPK activation promotes mTOR autophosphorylation within mTORC2 but 
not mTORC1 

The Fingar laboratory has previously shown that the mTOR 

autophosphorylation site S2481 can be used to mTORC1 and mTORC2 activity 

within intact cells108. I reasoned that if AMPK promotes mTORC2 signaling to 

Akt, it could also increase mTORC2-assiciated mTOR S2481 
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autophosphorylation. Because AMPK inhibits mTORC1, it is reasonable to 

predict that AMPK activation would also inhibit mTORC1-associated S2481 

autophosphorylation. To test these ideas, Hugo Acosta-Jaquez serum-starved 

MEFs, treated them with AICAR to activate AMPK, then immunoprecipitated 

endogenous rictor and raptor to isolate mTORC2 and mTORC1, respectively. He 

found that in Tsc1+/+ MEFs and Tsc2-/- MEFs stably expressing Tsc2 (Tsc2-/- 

+Tsc2) mTOR S2481 phosphorylation within mTORC2 increased upon AICAR 

treatment in a Ku-sensitive manner (Figure 2-7A and B, lanes 1-3). Under the 

same conditions, mTOR S2481 phosphorylation within mTORC1 decreased, 

consistent with AMPK suppressing mTORC1. Interestingly, mTOR S2481 

autophosphorylation in the whole cell lysate was unchanged by AICAR 

treatment, which could the result of combined reduction in mTORC1 

autophosphorylation with increased mTORC2 autophosphorylation. In agreement 

with our previous results (Figure 2-2), AMPK activation promoted mTOR S1261 

phosphorylation in both mTORC1 and mTORC2. In whole cell lysates, AICAR 

increased Akt S473 phosphorylation and inhibited S6K1 T389 phosphorylation, 

consistent with its activation of mTORC2 and inhibition of mTORC1. Neither 

IRS1 S636/639 phosphorylation nor total IRS1 levels were affected by AICAR 

treatment in WT MEFs, consistent with the observations in HEK293 and U2OS 

cells (Figure 2-5B and C).  

A previous study reported that Tsc1/2 function is required for growth 

factor-mediated activation of mTORC2 kinase activity, as measured by mTORC2 

in vitro kinase assay using Akt as a substrate74. To test whether loss of Tsc1 or 
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Tsc2 affected AMPK-mediated mTOR S2481autophosphorylation within 

mTORC2, Hugo Acosta-Jaquez examined phosphorylation status of this site in 

Tsc1-/- MEFs and Tsc2-/- MEFs stably expressing an empty vector (Tsc2-/- +V). 

He found that Tsc1 is not required for AICAR treatment to induce mTOR S2481 

autophosphorylation within mTORC2 (Figure 2-7B, compare lanes 1 and 2 to 

lanes 4 and 5). Tsc2-/- (+V) MEFs exhibited a higher basal level of mTOR S2481 

phosphorylation within mTORC2 than Tsc2-/- (+Tsc2) MEFs (Figure 2-7A, 

compare lanes 1 and 4). AICAR was still able to further stimulate mTORC2-

associated S2481 autophosphorylation in Tsc2-/- (+V) MEFs by 58% (mean of 

two experiments), indicating that Tsc2 is not absolutely necessary for this effect 

(Figure 2-7A, compare lanes 4 and 5). As expected, mTORC1-associated S2481 

autophosphorylation is not sensitive to AICAR in the absence of Tsc1or Tsc2, 

consistent with the necessity of Tsc1/2 in AMPK suppression of mTORC1. Tsc1 

and Tsc2 are required for AMPK to promote Akt S473 phosphorylation in serum-

starved MEFs, supporting the previous finding that Tsc1/2 is necessary for 

mTORC2 to phosphorylate Akt 74. AICAR induces mTOR S1261 in both WT and 

Tsc1- or Tsc2-deficient MEFs, suggesting that Tsc1/2 is not required for AMPK to 

phosphorylate mTOR. It should be noted that the total amounts of some proteins 

(including raptor and mTOR) are slightly lower in WT MEFs than in Tsc1-/- or 

Tsc2-/- MEFs and that this is most evident in raptor immunoprecipitates. Though 

the reason for these differences is unclear, they are consistent with previous 

observations of the Fingar laboratory22. Taken together, these data demonstrate 
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that AMPK activates cellular mTORC2 (as indicated by S2481 

autophosphorylation) in addition to promoting downstream signaling to Akt. 

I next considered the possibility that AMPK-activating compounds could 

promote mTORC2-associated mTOR autophosphorylation independent of 

AMPK, as AMPK-independent effects have been reported for both AICAR and 

A769662 215. To test this idea, I asked whether AMPK catalytic activity was 

required for A769662 to promote mTOR S2481 autophosphorylation in HEK293 

cells. I expressed exogenous AMPK (HA-AMPKα, myc-AMPKβ1, and myc-

AMPKγ1) along with myc-mTOR and compared HA-AMPKα1 and α2 with their 

kinase-dead (KD) counterparts AMPKα1 K56R and AMPKα2 K45R. A 

After transfection, these HEK293 cells were serum-starved and then 

treated with A769662 for 2 hours to activate AMPK. I found that A769662 

increased myc-mTOR S2481 autophosphorylation in cells co-expressing 

AMPKα1-WT or AMPKα2-WT (Figure 2-8, compares lanes 2 to 3 and 5 to 6). In 

the presence of AMPKα1-KD and AMPKα2-KD, however, A769662 did not 

increase myc-mTOR S2481 autophosphorylation (Figure 2-8, compares lanes 2 

to 4 and 5 to 7). These data show that AMPK kinase activity is required for 

A769662 to promote mTOR S2481 autophosphorylation. 

Loss of AMPK correlates with increased AICAR-induced apoptosis 

The LKB1 tumor suppressor, a critical AMPK T172 kinase, was reported 

to protect cells from energy stress-induced apoptosis300. In that study, AICAR 

treatment induced Caspase 3 and PARP cleavage (two common readouts of 

apoptosis) more in cells lacking LKB1 than in wild-type cells300. Although AICAR 
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activates AMPK, it also has pleiotropic effects, including reduction of cellular ATP 

levels and apoptosis, thus causing a state of stress independent of AMPK 

215,216,315. Considering that LKB1 activates AMPK through phosphorylating 

AMPKα T172, I reasoned that the loss of AMPK in MEFs may increase sensitivity 

to energy stress-induced apoptosis in a manner similar to the loss of LKB1. I 

therefore examined the apoptotic status of WT and AMPKα1/2 DKO MEFs after 

treatment with AICAR and found that AICAR treatment for 2 h increased PARP 

cleavage in AMPKα1/2 DKO MEFs but not WT MEFs (Figure 2-9A, compare 

lanes 1 and 2 to lanes 4 and 5). 

I then asked whether mTOR inhibition exacerbates the apoptotic 

phenotype in AMPK-deficient cells. The addition of Ku enhanced PARP cleavage 

and this increase was substantially greater in AMPKα1/2 DKO MEFs than in WT 

MEFs, where the increase was very slight (Figure 2-9A, compare lanes 2 and 3 

to lanes 5 and 6). This result suggests that combined loss of AMPK and inhibition 

of mTOR promotes apoptosis more than inhibition of mTOR alone. Because 

mTORC2 promotes anti-apoptotic functions through Akt, the possibility that 

AMPK promotes cell survival through an mTORC2-Akt is intriguing. AICAR 

increased Akt S473 phosphorylation and phosphorylation of the Akt substrate 

FoxO3a (T32) in WT but not AMPK-deficient MEFs, consistent with AMPK-

dependent activation of mTORC2 and Akt signaling (Figure 2-9A, compare lanes 

1 and 2 to lanes 4 and 5). Because inhibition of mTORC2 during AICAR 

treatment in WT MEFs did not induce apoptosis to the same degree as in 



 

 73 

AMPKα1/2 DKO MEFs, AMPK likely has mTORC2-independent pathways that 

suppress apoptosis. 

Thus I found that the loss of AMPK promotes energy stress-induced 

apoptosis, akin to the loss of LKB1, which was reported previously300. 

Furthermore, I found that the apoptotic sensitivity of AMPKα1/2 DKO MEFs can 

be reversed by expression of HA-AMPKα1 (Figure 2-9B). AICAR treatment of 

serum-starved AMPKα1/2 DKO MEFs induced both PARP cleavage and 

Caspase 3 (Casp3) cleavage (Figure 2-9B, lanes 3 and 4). Stable expression of 

HA-AMPKα1 was sufficient to reverse the apoptotic sensitivity of AMPKα1/2 

DKO MEFs to AICAR, such that they behave like WT MEFs (Figure 2-9B, 

compare lanes 1 and 2 to lanes 5 and 6). Taken together, these data support a 

model whereby LKB1-AMPK signaling protects cells against energy stress-

induced apoptosis and that may depend, in part, on mTORC2 signaling.  

2-4. Discussion 

mTOR and its binding partners raptor and rictor are phosphorylated on 

many sites in intact cells. Recent studies by the Fingar laboratory and others 

have demonstrated that phosphorylation contributes to the regulation of mTOR 

complexes 22,23,104,109,117,316. The Fingar laboratory previously characterized the 

phosphorylation of mTOR S1261, an event that promotes mTORC1 signaling22. 

An in vitro kinome screen was employed to identify the unknown mTOR S1261 

kinase. Here I report the identification of AMPKα1 and AMPKα2 as mTOR S1261 

kinases. The finding that AMPK phosphorylates mTOR S1261 presents a 
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conundrum, as AMPK inhibits mTORC1 signaling by phosphorylating Tsc2 and 

raptor 103,104 yet our previous data indicate that mTOR S1261 phosphorylation 

promotes mTORC1 signaling 22. To explain this paradox, I first postulated that 

AMPK phosphorylates mTOR S1261 in mTORC2 but not mTORC1. The data, 

however, indicate that AMPK phosphorylates mTOR in both complexes (Figure 

2-2). Though AMPK seems to be a major mTOR S1261 kinase in MEFs, it is 

possible that another kinase phosphorylates mTORC1-associated S1261 to 

promote mTORC1 signaling in the absence of energy stress or in a different 

cellular context. Indeed, our kinome screen revealed other kinases in the 

CaMK/AMPK-like kinase family that could function as physiologically relevant 

mTOR S1261 kinases. Further studies will be required to determine whether 

another kinase mediates mTORC1-associated mTOR S1261 phosphorylation to 

promote mTORC1 signaling. 

AMPK activation via AICAR, metformin, and other drugs has been widely 

reported to enhance insulin sensitivity in tissues that have succumbed to insulin 

resistance. The molecular mechanisms underlying this response, however, 

remain poorly understood183. Identifying AMPK as the mTOR S1261 kinase led 

us to ask whether AMPK plays a role in mTORC2 signaling, as mTORC2 is 

gaining acceptance as an important regulator of glucose homeostasis and insulin 

sensitivity10,11,60,281. In this study, AMPK activation promoted the phosphorylation 

of Akt on the mTORC2 target site (S473) in serum-deprived conditions through a 

mechanism that does not rely on suppression of the mTORC1 negative feedback 

loop (NFL). The evidence against NFL involvement is threefold. First, AMPKα1/2 
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DKO MEFs cultured under full-serum conditions exhibit similar mTORC1 

signaling as WT MEFs yet show reduced Akt P-473 (Figure 2-3A). In addition, 

AICAR in U2OS cells and A769662 in HEK293 cells failed to suppress S6K1 P-

T389 yet these drugs induced Akt S473 phosphorylation (Figure 2-4 and Figure 

2-5B and C). Second, rapamycin treatment in serum-starved MEFs, U20S cells, 

or HEK293 cells affected neither Akt P-S473 nor the ability of AMPK activators to 

increase Akt P-S473 (Figure 2-5). Third, IRS1 S636/636 phosphorylation and 

total IRS1 protein levels were unchanged by AMPK activation in serum-starved 

U2OS or HEK293 cells (Figure 2-5B and C). Therefore I propose that AMPK 

positively controls mTORC2-mediated substrate phosphorylation in a novel way. 

mTORC2-regulated pathways (such as Akt) that are otherwise repressed due to 

lack of growth factors in cultured cells or due to pathological conditions, such as 

insulin resistance, could in this way be activated through AMPK. 

As AMPK phosphorylates mTOR (S1261) and promotes mTORC2 

signaling, I hypothesized that AMPK activates mTORC2 through a direct 

mechanism. mTOR S2481 autophosphorylation is a practical measure of 

mTORC1- and mTORC2-specific activity in intact cells that does not depend on 

analysis of a downstream substrate108. In the context of mTORC2, this is 

important because Akt S473 phosphorylation, which is often used as a readout 

for mTORC2 signaling, can be phosphorylated on this site by other kinases66–69. 

Because AMPK promoted mTORC2-associated mTOR S2481 

autophosphorylation and AMPK-mediated Akt phosphorylation was Ku-sensitive, 

I conclude that AMPK activates mTORC2. Tsc1- and Tsc2-deficient cells were 
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defective in AMPK-mediated Akt S473 phosphorylation, consistent with mTORC2 

requiring Tsc1/2 for phosphorylation of downstream substrates74. In contrast, 

AMPK does not require Tsc1/2 to induce mTORC2-associated 

S2481autophosphorylation. Tsc1/2, known to co-immunoprecipitate with 

mTORC274, is probably important for some aspect of extrinsic substrate 

phosphorylation (e.g. docking, recruitment, or positioning) but may not be critical 

for mTORC2-associated mTOR autophosphorylation, a readout that may reflect 

on mTOR intrinsic catalytic activity108. Though mTOR S1261 phosphorylation 

closely coincides with AMPK activity and AMPK-mediated mTORC2 signaling, 

the contribution of mTOR S1261 phosphorylation to the activation of mTORC2 

remains unclear and requires further exploration. It is also unknown whether 

AMPK and mTORC2 can be co-immunoprecipitated, a fact that could shed light 

on the precise mechanism of mTORC2 activation by AMPK. Notwithstanding 

these points, our data suggest a novel mechanism of mTORC2 activation by 

AMPK and that in addition to promoting mTORC2 signaling to Akt, AMPK 

activation also promotes mTORC2-specific autophosphorylation. 

Many studies have suggested that AMPK potentiates insulin signaling in 

part through cross activation of Akt-dependent pathways293,299,301,317. Signaling by 

LKB1, an AMPK activation loop kinase, was reported to promote Akt S473 

phosphorylation and promotes anti-apoptotic functions thought to be mediated by 

Akt 302,303. Indeed, Shaw et al. found that LKB1-/- MEFs were highly sensitive to 

energy stress-induced apoptosis300. We found that AMPK-deficient MEFs are 

similarly sensitive, thus supporting a cytoprotective role for the LKB1-AMPK 
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signaling axis during energy stress. Sestrin1 and 2 are DNA damage-induced 

proteins that activate AMPK through an unclear mechanism318,319. Recently, 

sestrin2 was found to promote Akt-related cell survival in an AMPK-dependent 

fashion250. These reports along with my observations that AMPK promotes both 

mTORC2-Akt signaling and cell survival during energy stress, suggests that 

AMPK may promote cell survival through mTORC2, an intriguing possibility that 

requires further study.   

In addition to promoting Akt HM (S473) phosphorylation, we found that 

AMPK activation also promoted phosphorylation of the Akt activation loop (T308) 

and that these phosphorylation events are both inhibited by the mTOR inhibitor 

Ku. It is believed that mTORC2 functions as the major Akt HM kinase in 

response to growth factors and that PDK1 is the major Akt activation loop kinase. 

Combined Akt S473 and T308 phosphorylation maximally activates Akt138. The 

question of interdependence between these two sites, however, remains 

controversial. Akt T308 phosphorylation should be mTORC2-independent, yet 

Hug Acosta-Jaquez and I found that Akt T308 phosphorylation induced by AMPK 

is mTOR-dependent (Ku-sensitive) in MEFs and U2OS cells. Initial 

characterization of Ku showed that this drug inhibits Akt P-T308 but does not 

alter PI-3,4,5-P3 levels or inhibit PDK1314. Torin1 and PP-242, two other mTOR 

catalytic inhibitors that inarguably inhibit Akt S473 phosphorylation were also 

found to inhibit Akt T308 phosphorylation. PP-242 reduced Akt P-T308, but 

phosphorylation was insensitive to this drug upon disruption of mTORC2 

assembly or mutation of Akt S473 to alanine (S473A)320. Torin1 inhibits Akt P-
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T308 but at concentrations that also inhibited PI3K321. It has also been reported 

that mutation of Akt S473 to alanine inhibits Akt T308 phosphorylation322. In 

rictor-, Sin1-, and mLst8-null cells, S473 phosphorylation is reduced, yet T308 

phosphorylation remains intact40,41,155. On the other hand, RNAi-mediated 

knockdown of rictor impairs both Akt S473 and T308 phosphorylation61,152. 

Furthermore, it has been hypothesized that Akt S473 phosphorylation exposes 

T308 or creates a docking site for the T308 kinase, PDK1, implying that Akt T308 

depends on S473 phosphorylation138. From all of this conflicting data I conclude 

that phosphorylation of Akt S473 and T308 occur both independently and inter-

dependently. Further work is necessary to determine how AMPK promotes Akt 

T308 phosphorylation in an mTOR-dependent manner.  

In conclusion, I propose a model whereby AMPK coordinates mTORC1 

and mTORC2 signaling to manage periods of acute energy stress. AMPK 

suppresses mTORC1 as part of a cellular transition from anabolism to catabolism 

in order to generate ATP. AMPK promotes mTORC2 signaling to enhance 

insulin/IGF-dependent pathways, such as Akt, and to promote cell survival during 

stress recovery. I propose that AMPK activates mTORC2 directly in a manner 

independent of mTORC1 negative feedback signaling. Figure 2-10 illustrates 

how AMPK as a novel, direct activator of mTORC2 could stimulate growth factor-

dependent signaling, which may be a role for AMPK during energy stress and 

represent the mechanism whereby AMPK facilitates the anti-diabetic benefits of 

certain drugs, such as metformin and rosiglitazone. Recent studies have 

implicated mTORC2 in glucose/energy homeostasis, as loss of the mTORC2 
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component rictor in adipose, liver, and pancreatic tissue caused metabolic 

pathologies reminiscent of type 2 diabetes10,11,60,281. AMPK action potentiates 

insulin sensitivity, counteracting metabolic disorders through increased glucose 

uptake, reduced gluconeogenesis, and reduced fatty acid synthesis. Therapeutic 

approaches that activate AMPK could therefore bypass chronically defective 

signaling pathways, such as PI3K-Akt, which is suppressed in tissues 

experiencing insulin resistance. AMPK activity is also up-regulated by hormones 

such as leptin, adiponectin, and ghrelin, which utilize AMPK signaling to promote 

fatty acid oxidation in adipose tissue, suppress gluconeogenesis in the liver, and 

regulate appetite in the hypothalamus291–293,296,297,323. If these hormones activate 

pathways downstream of mTORC2, my model could provide a molecular 

explanation for these observations. Thus, future work should explore signaling 

downstream of mTORC2 in the context of AMPK activation by both 

pharmacological compounds as well as endocrine signals.  
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2-5. Figures 

 

Figure 2-1. AMPK phosphorylates mTOR on S1261 

(A) AMPK phosphorylates GST-mTOR fragment containing S1261 in vitro. GST-
mTOR (1223-1271) was subject to in vitro kinase assay with recombinant 
AMPKα1/β1/γ1 or AMPKα2/β1/γ1 for 30 min at 37°C. mTOR phosphorylation was 
monitored with a phospho-mTOR S1261 antibody. BSA was used as a control. 
The GST-mTOR fragment is depicted below the IVK data. S1261 is highlighted in 
red. 25T – mTOR HEAT repeat 25T. Below GST-mTOR is the AMPK 
phosphorylation consensus motif (Φ: hydrophobic residue, β: basic residue, S/T: 
serine or threonine; x: any residue). (B) AMPK-deficient cells have reduced 
mTOR S1261 phosphorylation. Mouse embryonic fibroblasts (MEFs) from WT or 
AMPKα1/2 double-knockout (DKO) mice were analyzed by immunoblot for P-
mTOR S1261, AMPK signaling (P-AMPKα T172 and P-Acc1 S79) and AMPK 
levels (pan-AMPKα, AMPKα1, and AMPKα2). (C) AMPK phosphorylates full-
length mTOR in vitro. mTOR immunoprecipitates from AMPKα1/2 DKO MEFs 
were incubated with AMPKα1/β1/β2 or AMPKα2/β1/γ1 as in (A). Where 
indicated, Compound C (Cpd C; 30µM) was incubated with AMPK for 30 min at 
37°C prior to IVK with mTOR immunoprecipitates. (D and E) P-mTOR S1261 is 
inhibited by Compound C. (D) WT MEFs (F) HEK293 cells were treated with or 
without Compound C (10µm, 2 h) and analyzed as indicated. (F) 
Immunodepletion of AMPKα1 reduces mTOR S1261 phosphorylation by cell 
lysates in vitro. HEK293 lysates were subject to immunodepletion using no 
antibody, an unreactive antibody, an AMPKα1 antibody, or an AMPKα2 antibody. 
GST-mTOR (1223-1271) was added to Immunodepleted lysates and incubated 
for 30 min at 37°C. Phosphorylation of GST-mTOR (1223-1271) was monitored 
using a P-mTOR S1261 antibody, and immunodepletion was verified by 
immunoblot of AMPKα1 and AMPKα2 in the depleted lysate. BSA was used 
instead of lysate as a control in the IVK.  
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Figure 2-2. mTOR S1261 is phosphorylated in both mTORC1 and mTORC2. 

(A) mTOR S1261 is phosphorylated in WT and AMPKα2 single knockout (SKO) 
MEFs, but not AMPKα1/2 DKO or AMPKα1 SKO MEFs. MEFs were cultured in 
DMEM +10% FBS (“steady-state”) and lysed in lysis buffer containing 0.3% 
CHAPS. mTORC2 and mTORC1 were isolated by immunoprecipitation with anti-
rictor or anti-raptor antibodies, respectively. Rictor IPs, raptor IPs, and whole cell 
lysates (WCL) were analyzed by immunoblot using the indicated antibodies. (B) 
as in (A), except cells were cultured in serum-free media (DMEM + 20mM 
HEPES pH 7.2) for 24 h prior to lysis. (C) HEK293 cells were serum-starved as in 
(B) followed by treatment with 2-deoxyglucose (2DG; 50mM, 30 min), AICAR 
(2.5mM, 2 h), A769662 (10µM, 2 h), or Compound C (Cpd C; 10uM, 2 h). Cells 
were lysed and rictor and raptor IPs were performed as in (A) and (B). The 
experiment in (C) was performed by Hugo Acosta-Jaquez.
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Figure 2-3. AMPK promotes mTORC2 signaling and mTOR S1261 
phosphorylation in MEFs 

(A) AMPK-deficient MEFs have reduced mTORC2 signaling. WT or AMPKα1/2 
double-knockout (DKO) MEFs were cultured in DMEM +10% FBS, lysed and 
analyzed by immunoblot using the indicated antibodies. mTORC2 signaling was 
determined by Akt S473 phosphorylation and PKCα protein levels. The bar graph 
below represents total PKCα levels relative to a loading control (Akt) from 6 
replicates and normalized to the mean WT value. AMPKα1/2 DKO MEFs show a 
32% decrease in PKCα levels relative to WT. (B) Activation of AMPK with AICAR 
promotes mTOR S1261 and Akt S473 phosphorylation in WT but not AMPK-
deficient MEFs. WT or AMPKα1/2 DKO MEFs were serum-starved for 20 h, then 
treated with or without AICAR (2.5mM, 2 h). P-mTOR S1261 and P-Akt S473 
were analyzed by immunoblot. The bar graph below represents P-Akt S473/Akt 
ratios for 9 replicates, normalized to the mean WT (untreated) value. (C) AMPK 
activation of Akt S473 phosphorylation is mTOR- and PI3K-dependent. WT or 
AMPKα1/2 DKO MEFs were serum-starved for 20 h then treated with AICAR 
(2.5mM), Ku (1µM), and/or Wm (100nM) for 2 h where indicated. (D) Time course 
of AMPK activation. WT and AMPKα1/2 DKO MEFs were serum-starved for 20 h 
and treated with AICAR (2.5mM) for the indicated times or a 1 h pre-treatment 
with Ku (1µM) followed by 1 h AICAR treatment. (E) AMPK activation enhances 
insulin-mediated Akt S473 phosphorylation. WT and AMPKα1/2 DKO MEFs were 
serum-starved for 20 h and treated as indicated. MEFs were treated for 2 h (total 
time) with Wm (100nM), AICAR (2.5mM), Cpd C (10µM), or Ku (1µM) and insulin 
was added (where indicated) for the final 30 min. Error bars are standard 
deviation. * p <0.05 (two-tailed, paired t test); ** - p<0.005 (two-tailed, paired t 
test). Abbreviations: Ku: Ku-0063794; Wm: wortmannin; Cpd C: Compound C.     
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Figure 2-4. AMPK activation promotes mTORC2 signaling to Akt in U2OS 
and HEK293 cells 

(A) AMPK activation with AICAR promotes Akt S473 and T308 phosphorylation 
in U2OS cells. U2OS cells were serum-starved for 20 h (left panel) or grown in 
full-serum conditions (“steady-state”; right panel) and treated with AICAR 
(2.5mM, 2 h), Ku (1mM, 2h), or Wm (100nM, 2h) as indicated. (B) AMPK 
activation with A769662 promotes Akt S473 phosphorylation in serum-starved 
HEK293 cells. HEK293 cells were serum-starved for 24 h (left panel) or cultured 
in steady-state conditions (right panel), and treated with A769662 (10µM, 2 h), 
Ku (1mM, 2h), or Wm (100nM, 2h) as indicated. Abbreviations: Ku: Ku-0063794; 
WM: wortmannin. The experiments in (A) and (B) were performed by Hugo 
Acosta-Jaquez. 
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Figure 2-5. AMPK activation mediates Akt phosphorylation independently 
of the mTORC1 negative feedback loop 

Rapamycin (Rapa) does not induce Akt S473 or T308 phosphorylation in serum-
starved MEFs, U2OS cells, or HEK293 cells and does not alter AMPK-activated 
Akt phosphorylation. (A) WT or AMPKα1/2 DKO MEFs were serum-starved for 
20 h and pretreated with rapamycin (20ng/mL) for 30 min where indicated 
followed by AICAR (2.5mM) for 2 h. (B) U2OS cells were treated and analyzed 
as in (A). (C) HEK293 cells were serum-starved for 20 h and pretreated with 
rapamycin for 30 min where indicated followed by A769662 (10µM) for 2 h. The 
experiment in (A) was performed by me and the experiments in (B) and (C) were 
performed by Hugo Acosta-Jaquez. 
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Figure 2-6. Expression of AMPKα1 in AMPKα1/2 double-knockout cells 
rescues mTOR S1261 and Akt S473 phosphorylation 

AMPKα1 rescues mTOR S1261 and Akt S473 phosphorylation in AMPKα1/2 
DKO MEFs. HA-AMPKα1 was stably expressed in AMPKα1/2 DKO MEFs. WT 
AMPKα1/2 DKO, or AMPKα1/2 DKO (+HA-AMPKα1) MEFs were serum-starved 
for 20 h and treated with or without AICAR (2.5mM) for 2 h. Cells were lysed and 
analyzed by immunoblot with the indicated antibodies. The AMPKα1/2 DKO 
MEFs and DKO MEFs expressing HA-AMPKα1 were from Tsukasa Suzuki (Ken 
Inoki laboratory, University of Michigan, Ann Arbor, MI) and the experiment was 
performed by me. 
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Figure 2-7. AMPK promotes mTOR S2481 autophosphorylation within 
mTORC2 but not mTORC1 

For both (A) and (B), cells were serum-starved for 20 h followed by treatment 
with AICAR (2.5 mM) and Ku (1 µM) where indicated. Cells were lysed with a 
buffer containing 0.3% CHAPS and mTORC2 and mTORC1 were isolated by 
anti-rictor or anti-raptor immunoprecipitation, respectively. mTOR 
autophosphorylation was analyzed using an mTOR P-S2481 antibody. (A) Rictor 
and raptor immunoprecipitates and whole cell lysates (WCL) from Tsc2-/- MEFs 
stably expressing Tsc2 (+Tsc2) and Tsc2-/- MEFs expressing an empty vector 
(+v) were analyzed by immunoblot with the indicated antibodies. (B) As in (A), 
but with Tsc1-/- and Tsc1+/+ MEFs. SE: short exposure; LE: long exposure. The 
experiments in (A) and (B) were performed by Hugo Acosta-Jaquez. 
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Figure 2-8. Activation of exogenous AMPK promotes mTOR S2481 
autophosphorylation 

HEK293 cells grown in 10 cm dishes were transfected with HA-AMPKα (α1-wt, 
α1-KD, α2-wt, or α2-KD), myc-AMPKβ1, myc-AMPKγ1, and myc-mTOR where 
indicated. 24 h post-transfection, cells were serum-starved for an additional 20 h 
and treated with A769662 (10µM) for 2 h. Cells were lysed in a buffer containing 
0.3% CHAPS, and myc-mTOR was immunoprecipitated with an anti-myc 
antibody. Autophosphorylation of myc-mTOR was assayed using a P-S2481 
antibody in the myc IP. mTOR S2481 autophosphorylation was also monitored in 
whole cell lysate (WCL). Activation of AMPK was monitored by HA-AMPKα 
upward mobility shift.   
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Figure 2-9. Loss of AMPK correlates with increased AICAR-induced 
apoptosis 

(A) Acute AICAR treatment induces apoptosis in AMPKα1/2 DKO MEFs, but not 
WT MEFs. WT or AMPKα1/2 DKO MEFs were serum-starved for 20 h and 
treated with AICAR (2.5mM, 2 h), Ku (10µM, 2 h), and Cpd C (10µM, 2 h) where 
indicated. Apoptosis was monitored by PARP cleavage (c-PARP). Akt signaling 
was monitored by Akt S473 and FoxO3a T32 phosphorylation. (B) HA-AMPKα1 
rescues resistance to AICAR-induced apoptosis in AMPKα1/2 DKO MEFs. WT, 
AMPKα1/2 DKO, or AMPKα1/2 DKO MEFs stably expressing HA-AMPKα1 
where serum-starved for 20 h and treated with or without AICAR (2.5mM) for 2 h. 
Apoptosis was monitored by PARP cleavage (c-PARP) and Caspase 3 cleavage 
(c-Casp3). mTOR was used as a loading control. AMPKa1/2 DKO MEFs 
expressing HA-AMPKa1 were from Tsukasa Suzuki (Ken Inoki laboratory, 
University of Michigan, Ann Arbor, MI) and the experiment was performed by me.  
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Figure 2-10. Model for how AMPK promotes mTORC2 signaling 

(A) In the presence of growth factors, such as insulin and IGF, PI3K signaling 
leads to phosphorylation and activation of Akt. Akt S473 phosphorylation is 
mediated by mTORC2, which may depend on PI3K for its activity. (B) Energy 
stress or AMPK-activating drugs promote AMPK signaling. AMPK 
phosphorylates mTOR on S1261 and activates mTORC2, (C) promoting 
mTORC2-associated mTOR S2481 autophosphorylation and (D) Akt S473 
phosphorylation. mTORC2-Akt signaling, which promotes metabolic and survival 
processes, is active in the presence of growth factors, but through AMPK can 
also be activated in absence of growth factors. During insulin resistance, the 
insulin-PI3K pathway is depressed. Drugs used to treat diabetes, such as 
metformin and rosiglitazone, activate AMPK which may enhance insulin signaling 
by activating mTORC2, ultimately restoring metabolic homeostasis.   
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CHAPTER 3 

Conclusions 

3-1. Discussion 

 
The mTOR S1261 kinase: unfinished business 

The identification of AMPK as an mTOR kinase was the window through 

which I viewed AMPK as a regulator of mTORC2. The original screen for mTOR 

S1261 kinases, which revealed AMPKα1 and AMPKα2 as likely candidates, is an 

unbiased discovery approach for signal transduction that is gaining popularity. 

Although the kinome coverage was reasonable (~300 kinases), it depended on 

the availability of purified, active kinases, thus leaving out predicted, poorly-

characterized, or otherwise difficult to prepare kinases, which includes more than 

200 kinases. Nevertheless, this screen had other positive hits that have not been 

thoroughly analyzed. These included several CaMK/AMPK-like kinases and NEK 

family kinases. The AMPK-like kinases include the MAP/microtubule-affinity 

protein kinases (MARKs), which are phosphorylated by LKB1198. Although my 

data suggest that AMPK is the dominant mTOR S1261 kinase in mouse 

fibroblasts, they do not preclude the possibility that one or more other kinases 

also contribute to mTOR S1261 phosphorylation in other cell types or contexts. I 

attempted an initial shRNA-based screen in three cell lines using lentiviral 
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vectors, however several issues prevented a complete analysis of these 

knockdowns including lack of knockdown confirmation and a lack of a reporter 

(e.g. bi-cistronic GFP) to confirm shRNA expression (which was merely assumed 

if cells survived selection). Thus, preliminary knockdown experiments may have 

resulted in false-negative results. This attempt at analyzing the kinome screen 

with shRNAs was not without positive results, however. Both AMPKα1and 

AMPKα2 shRNAs, as well as the AMPK-related MARK4, reduced mTOR S1261 

phosphorylation. We know very little about MARK4, which was cloned less than 

10 years ago324, but a recent study found that global MARK4 knockout in mice 

lead to insulin hypersensitivity, a phenotype similar to S6K1 knockout and 

suggested a role in metabolic homeostasis306,325. Preliminary data from Hugo 

Acosta-Jaquez and I showed that knockdown of MARK4 reduced S1261 

phosphorylation. Hugo also observed reduced S6K1 T389 phosphorylation, 

suggesting that MARK4 promotes mTORC1 signaling. This is consistent with 

previous findings from the Fingar laboratory indicating that mTOR S1261 

phosphorylation promotes mTORC1 signaling22. MARK4 could, therefore, be a 

kinase that mediates mTORC1-associated mTOR S1261 phosphorylation, a 

hypothesis that requires further investigation. 

The fact that many of the NEK kinases regulate mitotic processes is 

curious, because mTORC1 is reportedly hyperactive during mitosis, promoting 

IRES-dependent translation during this cell cycle phase111. The mTORC1 

component raptor is also phosphorylated by cdc2 and GSK3 during mitosis111,112. 

While one could test the NEK kinases directly, simply asking whether mTOR 



 

 99 

S1261 phosphorylation changes during the cell cycle would be a reasonable first 

step. This could be accomplished by inducing cell cycle arrest and synchronizing 

cells pharmacologically or isolate cells in difference phases by cell-sorting 

techniques. 

In general, the mTOR S1261 kinome screen candidates should be more 

carefully analyzed by knockdown-based screening, but with a few improvements: 

1) using a viral vector with a reporter (GFP) to assess infection efficiency, 2) a 

quantitative PCR approach to verify knockdown and uncover false-negatives, 

followed by immunoblot analysis of actual positives and 3) considering 

replacement of the viral vector shRNA approach with siRNA transfection, which 

is both time-efficient and requires no selection scheme. The use of AMPK 

knockout MEFs in my studies has proved invaluable and while not all of the 

mTOR S1261 candidate kinases have been knocked out in mice, any available 

MEFs from knockouts that have been generated would nicely complement RNAi-

based screening. While the remaining candidate kinases may not prove to be 

physiologically relevant mTOR kinases, in the course of screening one could 

analyze mTORC1 and mTORC2 signaling readouts for serendipitous discovery 

of novel, indirect mTOR regulators. 

mTORC2 regulation: AMPK and beyond 

AMPK is an energy-sensing kinase that regulates both metabolism and 

cell survival. Some of its upstream regulators, such as LKB1 and sestrin1/2, 

promote Akt signaling250,300. While it has not been described previously, it is not 

surprising that mTORC2, the principal Akt hydrophobic motif kinase, is involved 
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in this process. The significance of my work and future studies that build off of my 

work may therefore lie in how AMPK regulates mTORC2. AMPK phosphorylates 

mTOR within mTORC2 and that it promoted mTORC2-associated 

autophosphorylation. While autophosphorylation does not technically measure 

mTOR intrinsic catalytic activity, it does represent a practical, correlative readout 

of mTORC1 or mTORC2 activity in intact cells108, an advantage over in vitro 

kinase reactions (which are necessarily cell-free). 

In Chapter 2, I proposed a model whereby AMPK promotes mTORC2 

signaling to Akt, independent of growth factors. In normal, healthy tissues, growth 

signals are not constantly engaging cells and therefore hormone-dependent 

survival signals are often suppressed. I hypothesize that AMPK is mobilized by 

routine metabolic stresses, such as exercise (muscle contraction), to utilize these 

survival pathways in the absence of growth signals. In pathological states, this 

suppression may be chronic, as in insulin resistance, and re-activation of these 

pathways by AMPK may be due to this AMPK-mTORC2 signaling mechanism. 

Importantly, the action of anti-diabetics such as metformin and rosiglitazone, 

which activate AMPK, may be explained mechanistically by this AMPK-mTORC2 

model. 

I found that AMPK phosphorylates mTOR on S1261 and increases 

mTORC2 -associated S2481 autophosphorylation. Further investigation is 

necessary to clarify how this works. First, does AMPK promote mTORC2 activity 

towards its substrate in vitro? We expect kinase activity of mTORC2 toward its 

downstream substrate to reflect on its ability to autophosphorylate, however it 
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should be verified through in vitro kinase assay. AMPK could enhance kinase 

activity through direct binding, thus one could test whether AMPK is sufficient to 

promote mTORC2 activity by adding active, recombinant AMPKα/β/γ to an 

mTORC2 in vitro kinase reaction. Is AMPK interaction with mTORC2 more than 

just transient? My attempts to see if endogenous AMPKα co-precipitated with 

raptor, rictor, or mTOR were negative and hence inconclusive. A more rigorous 

approach is warranted to co-immunoprecipitate AMPK subunits with mTORC2 

subunits (both endogenous and exogenous) to find whether AMPK binding is 

transient, constitutive, or, perhaps, regulated.    

A second approach to help understand the activation of mTORC2 by 

AMPK is to clarify the role of mTOR S1261 phosphorylation. To demonstrate the 

importance of S1261 in mTORC2 signaling, I have attempted overexpressing 

both mTOR S1261A and S1261D mutants, however neither affected Akt S473 

phosphorylation. Suppressing or enhancing Akt phosphorylation in this manner 

could require the mTOR S1261A mutant to act dominantly, which it may not. The 

experiment most likely requires knockdown of endogenous mTOR in addition to 

expression of mTOR S1261A. Unfortunately, I have been unable to knock down 

mTOR sufficiently to inhibit mTORC2 signaling to Akt. This issue must be 

resolved before it can be determined whether AMPK promotes mTORC2 

signaling through phosphorylation of mTOR S1261. I have not studied the effect 

of mTOR S1261A mutant expression on mTORC2 substrates other than Akt. 

Analysis of mTORC2 signaling to SGK1 and PKCα may prove to be more 

sensitive to mTOR knockdown than Akt, as other kinases have been shown to 
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phosphorylate Akt, compensating for chronic loss of mTORC2 within the cell66,69. 

The Fingar laboratory previously reported that mutation of mTOR S1261 to 

alanine reduced mTORC1-associated mTOR S2481 autophosphorylation but we 

do not know whether it has a similar effect in mTORC222. We also do not know 

whether this mutant reduces mTORC1 or mTORC2 phosphorylation of 

downstream substrates in in vitro kinase reactions. Such experiments would 

support the hypothesis that AMPK regulates mTORC2 through S1261 

phosphorylation. 

Experiments should also be designed to test the possibility that AMPK 

does not actually activate mTORC2 through a direct interaction. One possibility is 

that AMPK activates mTORC2 through Tsc1/2. AMPK phosphorylates and 

activates Tsc2 (S1345) to suppress mTORC1 signaling and co-

immunoprecipitates with Tsc2103. Tsc1/2 was recently found to activate 

mTORC2, despite the fact that it inhibits mTORC1, and Tsc1/2 also co-

immunoprecipitated with mTORC2, but not mTORC174. These two studies 

suggest the possibility that AMPK, Tsc2, and mTORC2 may form a complex that 

facilitates AMPK-mediated mTOR phosphorylation and activation of mTORC2. 

Consistent with Huang et al., Tsc1/2 function is necessary for the ability of 

mTORC2 to phosphorylate Akt, however Tsc1/2 function is not absolutely 

required for AMPK to activate mTORC2 intrinsic catalytic activity. Therefore, 

while Tsc1/2 does not play a role in kinase activation by AMPK per se, Tsc1/2 

may be necessary to promote substrate recruitment, docking, or positioning 

relative to the kinase. Identifying and characterizing an AMPK-Tsc2-mTORC2 
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signaling complex would greatly broaden our understanding of mTORC2 

regulation.  

I found that in growth factor-deprived cells, mTORC1 signaling, already 

very low, was not responsible for AMPK-mediated Akt phosphorylation. 

Rapamycin, which inhibits mTORC1 negative feedback signaling to the PI3K/Akt 

pathway, did not increase Akt phosphorylation nor did it enhance AMPK-

mediated Akt phosphorylation. This suggests that AMPK does not act on 

mTORC2 indirectly through mTORC1 but rather through a novel mechanism. It 

would be interesting, however, to see if rapamycin treatment inhibited AMPK-

induced Akt phosphorylation during insulin treatment. The reasoning is that in the 

presence of growth factors, AMPK could promote Akt phosphorylation in part 

through suppression of the mTORC1 negative feedback loop. AMPK could 

employ two mechanisms of promoting mTORC2/Akt signaling, depending on 

growth factor status: first, direct activation of mTORC2 under growth factor-

deprived conditions (which I have demonstrated), and second, a combined direct 

and indirect activation during growth factor stimulation. Under this second 

scenario, rapamycin treatment would inhibit the ability of AMPK to promote Akt 

phosphorylation. Another negative feedback pathway, recently discovered, 

involves S6K1 phosphorylation of rictor at T1135 in the presence of growth 

factors, which may inhibit mTORC2 signaling, though its exact role is 

controversial116–119. Perhaps AMPK inhibits mTORC1 in part to suppress this 

feedback pathway, ensuring maximum activation of mTORC2. The rictor T1135A 

mutant, which was reported to resist Akt dephosphorylation following insulin 
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treatment, could sensitize mTORC2 to AMPK signaling. While these alternative 

pathways should be explored, the significance of our work is that AMPK activates 

mTORC2 in a novel way, independent of serum growth factors and independent 

of mTORC1 feedback signaling.  

AMPK and mTORC2 both promote survival and metabolic signaling 

through various targets, many of which regulate transcription. If AMPK directly 

regulates mTORC2, the sets of target genes would overlap. Literature mining 

reveals both parallel and paradoxical pathways. For example, AMPK promotes 

Akt (and possibly SGK1) functions, which included the phosphorylation and 

inhibition of FoxO transcription factors250, however AMPK phosphorylates 

FoxO3a on unique sites in mammals and C. elegans, promoting transcription of a 

subset of its targets248. The nature of this apparent opposition is unclear, so in 

lieu of analyzing the intermediate signaling pathways one could ask: what genes 

are regulated by both AMPK and mTORC2? Using modern approaches for 

analyzing genome-wide gene expression (i.e. RNA-Seq), one could easily obtain 

gene regulation data after activating AMPK with and without mTORC2 (rictor or 

Sin1 knockdown of the same cell line, or compare cells from wild-type or 

knockout mice). Many of the target genes can be inferred by comparing 

expression analyses already published for AMPK and Akt activation, though 

selectively probing mTORC2 would additionally yield Akt-independent results. 

Importantly, this could indirectly reveal novel mTORC2 effectors, ultimately 

broadening our knowledge of mTORC2 functions.   
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AMPK-mTORC2 in vivo 

Animal studies are the next logical step in determining the physiological 

role for both AMPK-mediated mTOR S1261 phosphorylation (S1261) and AMPK-

mTORC2 signaling. To begin with, one should examine various healthy, 

mammalian tissues for mTOR S1261 phosphorylation to formulate a baseline 

survey of its tissue specificity. Given a strong correlation between AMPK and 

mTORC2 in glucose homeostasis, some important tissues to examine first would 

be liver, pancreas, skeletal muscle, adipose tissue, the gut, and the brain 

(hypothalamus). In addition, examining these primary tissues could also uncover 

a correlation between S1261 phosphorylation and mTORC2 signaling readouts 

(e.g. Akt, SGK1, and PKCα phosphorylation and/or stability). Because mTOR 

S1261 is regulated by AMPK, we would ask whether exercise, which elevates 

AMPK signaling in some tissues, or treatment of these animals with AMPK 

activating drugs, such as metformin or AICAR, also increases mTOR S1261 

phosphorylation. Next, I would move from healthy animals into models of 

acquired metabolic syndrome, such as ob/ob mice or Zucker rats fed high-

calorie/high-fat diets. As treatment with AMPK-activating drugs enhances insulin 

sensitivity and restores metabolic homeostasis in these animals, perhaps this 

coincides with a rise in mTOR S1261 phosphorylation. In all of these 

experiments, mTORC2-associated mTOR S2481 autophosphorylation status 

could be monitored to make the case that mTORC2 catalytic state also correlates 

with AMPK activation in vivo.  
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Though these proposed studies could demonstrate that AMPK-mediated 

mTOR S1261 phosphorylation and AMPK-mTORC2 signaling occurs in vivo, 

what physiological function does it serve? A transgenic mouse (mTOR S1261A 

knock-in, for example), could be generated to test its role in AMPK and mTOR 

signaling in mammalian physiology. Without first demonstrating in cultured cells 

that mTOR S1261 phosphorylation contributes to mTORC2 activity and signaling 

by AMPK, it would be difficult to justify this in vivo approach. Given that the 

mTOR sequence surrounding S1261 is reasonably conserved in invertebrates 

(though not conserved in fungi or plants), it may prove valuable to first find if it is 

phosphorylated and physiologically relevant in genetic model systems such as D. 

melanogaster. The position of mTOR S1261 in the fruit fly (TOR T1232) is 

conserved as a threonine and the AMPK consensus motif is reasonably 

conserved as well, supporting the possibility that it is phosphorylated. The lack of 

serine or threonine at the equivalent site in C. elegans mTOR (LET-363) 

suggests that this phosphorylation event is not conserved in all invertebrates. 

LKB1-AMPK signaling has been implicated in extending lifespan in both C. 

elegans and D. melanogaster 255 and Akt signaling correlates with decreased 

lifespan326,327. While it is possible that activation of mTORC2/Akt by AMPK is not 

a conserved pathway between invertebrates and mammals, it would be 

interesting to see if AMPK was capable of cross-activating Akt in invertebrate 

systems. 

Does loss of mTORC2 components exacerbate loss of AMPK components 

in vivo? Global knockouts of rictor and Sin1 are embryonic lethal, thus tissue-
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specific or conditional knockout approaches have been implemented to study 

mTORC2, and metabolic defects have been reported for rictor loss in adipose, 

skeletal muscle, pancreas, and liver39. These mice should be revisited in the 

context of AMPK signaling. Perhaps they respond more poorly to AMPK 

activating drugs when they develop insulin resistance or hyperglycemia. 

AMPKα1/2 double knockout mice are embryonic lethal, however AMPKα1 and 

α2 single knockout mice have very mild metabolic phenotypes. AMPKα1 is 

ubiquitously expressed, but AMPKα2, which is expressed highest in skeletal 

muscle. Crossing one of these with a tissue-specific rictor knockout mouse would 

allow us to test whether the loss of AMPK results in a more severe phenotype. 

Both Akt and AMPK control glucose uptake, a critical function in skeletal muscle, 

so global knockout of AMPKα2, which is highly expressed in normal muscle, 

combined with skeletal muscle-specific knockout of rictor could, in comparison 

with the parental mice, have a severe glucose uptake defect leading to 

hyperglycemia and hyperinsulinemia.  

Closing Remarks 

  The studies presented here have shed light on how specific cellular 

stresses regulate mTORC1 and mTORC2 in mammalian cells. The model for 

upstream regulation of mTORC2, which is currently not well understood, is now 

expanded to include direct modification and activation by AMPK. Further work is 

necessary to determine what consequences AMPK regulation of mTORC2 has in 

downstream signaling in vitro, as how this mechanism translates to primary 

tissue, organ, and whole-body homeostasis. Pathological consequences of 
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defects in both mTORC2 and AMPK include poor glucose and lipid metabolism, 

insulin resistance, and hyperglycemia, all hallmarks of type 2 diabetes, a 

growing, modern epidemic60,281,328,329 . As we gain insight into how mTORC2 and 

AMPK interact at both the molecular and organismal levels, not only will we 

better understand the mechanism underlying current approaches for treating 

human metabolic disorders that activate AMPK, but we can also design new 

therapeutics based on targeting both AMPK and mTORC2. The balancing of 

metabolic and survival pathways is both complex and still very much a mystery, 

and I hope the researchers who continue this work meet these challenges with 

profound thoughtfulness and eagerness.  
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