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2.10 Plots of ÃUC and four factors of the data generating model with
different β and measurement error in three situations of mean and
standard deviation of the distribution of the elements in Σx. Left
plot is the situation when µ = 0.2, σ = 0.1; middle plot is the
situation when µ = 0.5, σ = 0.1; right plot is the situation when
µ = 0.7, σ = 0.1. First row is for factor Var(S2), second row is for
factor Var(S1), third row is for factor E(S1), fourth row is for factor
Cov(S1, D). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.11 Scatterplots of these four factors in the simulation study when µ =
0.5, σ = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.12 First row is the plots of R̃2 and measurement error SD magnitude

with different β; second row is the plots of R̃2 and factor Var(S2);

third row is the plots of Plots of R̃2 and factor Var(S1); fourth row is
the scatterplots of Var(S2) and Var(S1). There are three situations
of mean and standard deviation of the distribution of the elements in
Σx. Left plot is the situation when µ = 0.2, σ = 0.1; middle plot is
the situation when µ = 0.5, σ = 0.1; right plot is the situation when
µ = 0.7, σ = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

vii



2.13 First two Plots are the scatterplots of True and estimated proper-
ties in linear case; last two Plots are the scatterplots of True and
estimated properties in binary case when µ = 0.5, σ = 0.1. . . . . . 36

3.1 Schematic example showing positive bias (a) and negative bias (b)
between the observed and true proportions of association statistics
in a region of interest. The distribution of true statistics is shown in
the darker color, and the distribution of observed statistics is shown
in the lighter color. The region of interest is (x, y : min(x, y) ≥ t). . 45

3.2 Left is the scatterplot of the estimated standardized parameters θAi ,
θBi for disease subgroups MCD, LD; right is the scatterplot of the
standardized statistics ZA

i , Z
B
i for disease subgroups MCD, LD. . . 46

3.3 Left is the scatterplot of the estimated standardized parameters θAi ,
θBi for disease subgroups IgA, Pima; right is the scatterplot of the
standardized statistics ZA

i , Z
B
i for disease subgroups IgA, Pima. . . 46

3.4 Plots of the true R1(t) and the average of the estimate of R1(t) for
each parametric and nonparametric methods when the true marginal
distribution is N(0, 1) and the grey area is the approximate 95%
confidence intervals for the estimate of R1(t). . . . . . . . . . . . . . 61

3.5 Plots of the true R1(t) and the average of the estimate of R1(t) for
each parametric and nonparametric methods when the true marginal
distribution is t(3) and the grey area is the approximate 95% confi-
dence intervals for the estimate of R1(t). . . . . . . . . . . . . . . . 62

3.6 Plots of the true R1(t) and the average of the estimate of R1(t) for
each parametric and nonparametric methods when the true marginal
distribution is generalized normal distribution with ξ = −0.5, α =
2, κ = −0.5 and the grey area is the approximate 95% confidence
intervals for the estimate of R1(t). . . . . . . . . . . . . . . . . . . . 62

3.7 Plots compare the true standardized parameters θAi , θ
B
i magnitude

both greater than a sequence of thresholds T, R2(T, T ) to the esti-
mates of R2(T, T ) for moments, mle, rescaling, copula and plug-in
methods when the true standardized parameters θAi , θ

B
i follow a bi-

variate normal distribution with mean 0 and std 1.0 and correlation
0. The lower right plot compare the true function tA (red) with the
estimated function t̂A (orange) for copula method. Grey area is the
approximate 95% confidence intervals for the estimators of R2(T, T ),
x axis is the true standardized parameter θA, y axis is the transformed
standard normal vector XA = tA(θA). . . . . . . . . . . . . . . . . . 68

viii



3.8 Plots compare the true standardized parameters θAi , θ
B
i magnitude

both greater than a sequence of thresholds T, R2(T, T ) to the esti-
mates of R2(T, T ) for moments, mle, rescaling, copula and plug-in
methods when the true standardized parameters θAi , θ

B
i follow a bi-

variate normal distribution with mean 0 and std 1.0 and correlation
0.5. The lower right plot compare the true function tA (red) with the
estimated function t̂A (orange) for copula method. Grey area is the
approximate 95% confidence intervals for the estimators of R2(T, T ),
x axis is the true standardized parameter θA, y axis is the transformed
standard normal vector XA = tA(θA). . . . . . . . . . . . . . . . . . 69

3.9 Plots compare the true standardized parameters θAi , θ
B
i magnitude

both greater than a sequence of thresholds T, R2(T, T ) to the es-
timates of R2(T, T ) for moments, mle, rescaling, copula and plug-
in methods when the true standardized parameters θAi , θ

B
i follow a

marginal generalized normal distribution with parameters ξ = −0.5, α =
2, κ = −0.5 with correlation 0.0. The lower right plot compare the
true function tA (red) with the estimated function t̂A (orange) for cop-
ula method. Grey area is the approximate 95% confidence intervals
for the estimators of R2(T, T ), x axis is the true standardized param-
eter θA, y axis is the transformed standard normal vector XA = tA(θA). 70

3.10 Plots compare the true standardized parameters θAi , θ
B
i magnitude

both greater than a sequence of thresholds T, R2(T, T ) to the es-
timates of R2(T, T ) for moments, mle, rescaling, copula and plug-
in methods when the true standardized parameters θAi , θ

B
i follow a

marginal generalized normal distribution with parameters ξ = −0.5, α =
2, κ = −0.5 with correlation 0.5. The lower right plot compare the
true function tA (red) with the estimated function t̂A (orange) for cop-
ula method. Grey area is the approximate 95% confidence intervals
for the estimators of R2(T, T ),x axis is the true standardized param-
eter θA, y axis is the transformed standard normal vector XA = tA(θA). 71

3.11 Plots compare the true standardized parameters θAi , θ
B
i magnitude

both greater than a sequence of thresholds T, R2(T, T ) to the es-
timates of R2(T, T ) for moments, mle, rescaling, copula and plug-
in methods when the true standardized parameters θAi , θ

B
i follow a

marginal t distribution with df = 3 with correlation 0.0. The lower
right plot compare the true function tA (red) with the estimated func-
tion t̂A (orange) for copula method. Grey area is the approximate
95% confidence intervals for the estimators of R2(T, T ), x axis is the
true standardized parameter θA, y axis is the transformed standard
normal vector XA = tA(θA). . . . . . . . . . . . . . . . . . . . . . . 72

ix



3.12 Plots compare the true standardized parameters θAi , θ
B
i magnitude

both greater than a sequence of thresholds T, R2(T, T ) to the es-
timates of R2(T, T ) for moments, mle, rescaling, copula and plug-
in methods when the true standardized parameters θAi , θ

B
i follow a

marginal t distribution with df = 3 with correlation 0.5. The lower
right plot compare the true function tA (red) with the estimated func-
tion t̂A (orange) for copula method. Grey area is the approximate
95% confidence intervals for the estimators of R2(T, T ),x axis is the
true standardized parameter θA, y axis is the transformed standard
normal vector XA = tA(θA). . . . . . . . . . . . . . . . . . . . . . . 73

3.13 Right plot is a bar graph comparing results of false discovery rate
analysis and standard deviation of the effect sizes for disease sub-
groups in CKD dataset; Middle plot is the bar graph of the number
of subjects in disease subgroups in CKD data; Left plot is the box-
plots of the outcome GFR in disease subgroups in CKD data. . . . 76

3.14 Plots of the estimated CDF of true parameters θ of mle, copula and
plug-in method for disease subgroups and pooled together. . . . . . 77

4.1 Scatterplots of GFR and gene expression for two specific genes with
high and low variance. . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 Distributions of mean expression levels of genes in CKD, Skeletal,
Psoriasis and Cigarette datasets. . . . . . . . . . . . . . . . . . . . . 87

4.3 Distributions of IQR of genes in CKD, Skeletal, Psoriasis and Cigarette
datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4 Distributions of outlier measures of genes in CKD, Skeletal, Psoriasis
and Cigarette datasets. . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5 Distributions of skewness of genes in CKD, Skeletal, Psoriasis and
Cigarette datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.6 Distributions of connectivity of genes in CKD, Skeletal, Psoriasis and
Cigarette datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

x



4.7 Plots of standard error of θ̂ and standard deviation of fisher trans-
formation of marker/outcome association with different level of stan-
dard deviation of mean property. In the left plot, θ̂ is the correlation
between marker/outcome association and mean property ; In the
middle plot, θ̂ is the correlation between marker/outcome associa-
tion and SD property; in the right plot, θ̂ is the correlation between
marker/outcome association and skewness property. n=100, p=1000,
a=0, µ1 = 0, µ2 = 1, σ2 = 0, µ3 = 0, σ3 = 0. . . . . . . . . . . . . . 106

4.8 Plots of standard error of θ̂ and standard deviation of fisher transfor-
mation of marker/outcome association with different level of mean of
SD property.In the left plot, θ̂ is the correlation between marker/outcome
association and mean property; in the middle plot, θ̂ is the correlation
between marker/outcome association and SD property; in the right
plot, θ̂ is the correlation between marker/outcome association and
skewness property. n=100, p=1000, a=0, µ1 = 0, σ1 = 0.5, σ2 = 0,
µ3 = 0, σ3 = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.9 Plots of standard error of θ̂ and standard deviation of fisher transfor-
mation of marker/outcome association with different level of within/between
variance. In the left plot, θ̂ is the correlation between marker/outcome
association and mean property; in the middle plot θ̂ is the correlation
between marker/outcome association and SD property; in the right
plot, θ̂ is the correlation between marker/outcome association and
skewness property. n=100, p=1000, a=0, µ1 = 0, σ2 = 0, µ3 = 0,
σ3 = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.10 Plots of standard error of θ̂ and standard deviation of fisher transfor-
mation of marker/outcome association with different level of within
correlation of covariate X. θ̂ is the correlation between marker/outcome
association and mean property, number of diagonal blocks k=1 in the
left plot and k=2 in the right plot. n=100, p=1000, µ1 = 0, σ1 = 0.5,
µ2 = 1, σ2 = 0, µ3 = 0, σ3 = 0. . . . . . . . . . . . . . . . . . . . . . 109

4.11 Plots of standard error of θ̂ and standard deviation of fisher transfor-
mation of marker/outcome association with different number of sub-
jects n. In the left plot, θ̂ is the correlation between marker/outcome
association and mean property; in the middle plot, θ̂ is the correla-
tion between marker/outcome association and SD property; in the
right plot, θ̂ is the correlation between marker/outcome association
and skewness property. p=1000, a=0, µ1 = 0, σ1 = 0.5, µ2 = 1,
σ2 = 0, µ3 = 0, σ3 = 0. . . . . . . . . . . . . . . . . . . . . . . . . . 111

xi



4.12 Plots of standard error of θ̂ and standard deviation of fisher transfor-
mation of marker/outcome association with different number of vari-
ables p. In the left plot, θ̂ is the correlation between marker/outcome
association and mean property; in the middle plot, θ̂ is the correlation
between marker/outcome association and SD property; in the right
plot, θ̂ is the correlation between marker/outcome association and
skewness property. n=100, a=0, µ1 = 0, σ1 = 0.5, µ2 = 1, σ2 = 0,
µ3 = 0, σ3 = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.13 Plots of standard error of θ̂ and standard deviation of fisher transfor-
mation of marker/outcome association with different levels of the ab-
solute value of the real θ̂ in permutation analysis. In the left plot, θ̂ is
the correlation between marker/outcome association and mean prop-
erty; in the middle plot, θ̂ is the correlation between marker/outcome
association and SD property; in the right plot, θ̂ is the correlation
between marker/outcome association and skewness property. n=100,
p=1000, a=0, µ1 = 0, σ1 = 0.5, µ2 = 1, σ2 = 0, µ3 = 0, σ3 = 0. . . . 115

4.14 Plots of standard error of θ̂ and standard deviation of fisher transfor-
mation of marker/outcome association with different levels of real θ
in both simulation and permutation analysis for three marginal prop-
erties. All the factors of the simulated data are matched to the CKD
data and the average squared correlation of gene pairs Xi, Xj is used
to represent the covariance structure of X. . . . . . . . . . . . . . . 117

4.15 Plots of standard error of θ̂ and standard deviation of fisher transfor-
mation of marker/outcome association with different levels of real θ
in both simulation and permutation analysis for three marginal prop-
erties. All the factors of the simulated data are matched to the CKD
data and the covariance matrix of the residuals ofXj|Y is used to rep-
resent the covariance structure of X. The red line is for permutation
analysis, the blue line is for simulation analysis. . . . . . . . . . . . 118

4.16 Histogram of distribution of GFR in CKD data. . . . . . . . . . . . 119

4.17 Plot of predicted quantiles from 0.05 to 0.95 of external correlations
and skewness of gene expression in CKD data. . . . . . . . . . . . . 122

4.18 Plot of predicted quantiles from 0.05 to 0.95 of external correlations
and IQR of gene expression in CKD data . . . . . . . . . . . . . . . 123

4.19 Plot of predicted quantiles from 0.05 to 0.95 of external correlations
and mean of gene expression in CKD data . . . . . . . . . . . . . . 123

xii



4.20 Plot of predicted quantiles from 0.05 to 0.95 of external correlations
and connectivity of gene expression in CKD data . . . . . . . . . . 124

4.21 Plot of predicted quantiles from 0.05 to 0.95 of external correlations
and outlier of gene expression in CKD data . . . . . . . . . . . . . . 124

4.22 Examples of genes in CKD data that are highly skewed and have
strong linear relationship with GFR. . . . . . . . . . . . . . . . . . 125

4.23 Left plot is an example of genes in CKD data that are symmetric and
have strong linear relationship with GFR. Right plot is an example of
genes in CKD data that are symmetric and have symmetric convex
relationship with GFR. . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.24 Left plot is R1 for quantile regression of external correlations and
each feature; Right plot is partial R1 for multiple quantile regression,
comparing full model and full model without one feature at each time.131

4.25 Plot of predicted quantiles of external correlations and skewness of
gene expression for three gene sets with different level of IQR. . . . 133

4.26 Plot of predicted quantiles of external correlations and skewness of
gene expression for three gene sets with different level of mean. . . . 134

4.27 Plot of predicted quantiles of external correlations and skewness of
gene expression for three gene sets with different level of outlier. . . 135

4.28 Plot of predicted quantiles of external correlations and skewness of
gene expression for three gene sets with different level of connectivity. 136

4.29 Plot of partial R2 of linear term and partial R2 of quadratic term. . 138

xiii



ABSTRACT

Statistical analysis for genomic studies involving measurement error, multiple
populations, and limited sample size

by

Juan Zhang

Advisor: Kerby Shedden

Genomic studies involve various types of high-dimensional data. Study designs are

often complex, and data are difficult to collect. For example, the subjects may belong

to distinct populations, the number of subjects is often small, and substantial mea-

surement error is usually present. In this thesis, we consider three important issues

that arise in this research setting. The impact of measurement error on parameter

estimation has been extensively studied, but its effects on predictive performance

have not been. In part 1 of the thesis, we partially characterize the data generating

models that are most adversely impacted by measurement error. These results may

help researchers judge whether improving data collection procedures, or identifying

more informative markers would have a greater impact on predictive performance.

In part 2 of the thesis, we present a new approach for identifying the common and

unique marker/outcome associations that are present in a genomic dataset consisting

of several subpopulations. We show that the natural plug-in style estimates of overlap

are biased, and we demonstrate a copula-based approach to reducing the bias. Part

3 of the thesis considers situations in which power for attributing effects to specific
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markers is low, but meaningful relationships between marker/outcome associations

and other statistical properties of the markers can be identified.
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CHAPTER I

Introduction

1.1 Overview

This thesis considers several challenging issues that arise when analyzing genomic

data. Difficulties that arise in this area commonly result from the effects of covari-

ate measurement error, complicated dependence structure, and data sets with high

dimension and small sample size. In this thesis, we are interested in how covariate

measurement error affects predictive accuracy for outcome prediction under different

data-generating models (chapter 2), the identification of common and unique effects

in multiple subpopulations (chapter 3) and the relationship between effect sizes and

properties of the marginal distributions of the markers (chapter 4).

1.1.1 Impact of covariate measurement error on prediction

Many genomic quantities are not measured with high accuracy. There exist many

sources of measurement errors. In terms of the laboratory measurements, genomic

assays such as microarrays attempt to quantify the abundances of many molecular

types that are present in small amounts in a complex mixture. Such assays are known

to exhibit only partial concordance, even between technical replicates. Moreover, in

research involving human subjects, there may be transient variation within individuals

that is irrelevant for many research goals. Transient qualities of the individuals include
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mood, motivation, degree of alertness, boredom, and fatigue, and situational factors

involving the physical setting such as noise level, lighting and time.

There are many researchers focusing on estimating the reproducibility of microar-

ray data (Larkin et al. (2005), Draghici et al. (2005)) and the signal to noise ratio for

microarray analysis (He and Zhou (2008)). In chapter 2 we use a triplicated expres-

sion array experiment on a panel of 59 cell lines to estimate the signal-to-noise ratio

(SNR) ranges from 3:1 to 8:1. The main statistical focus in this area has been the im-

pact of measurement error on estimation and inference for unknown parameters such

as means and regression coefficients (Fuller (1987), Carroll et al. (2006)). However,

issues resulting from measurement error also arise in predictive analysis. The effect

of measurement error on predictive accuracy has received much less attention.

Chapter 2 considers the effects of covariate measurement error on predictive ac-

curacy. Predictivity declines with increasing measurement error magnitude. But at

a more detailed level, it is unclear whether the absolute or relative amount of decline

in predictivity will differ according to the structure of the outcome generating distri-

bution P (Y |X). Our main focus in this chapter is to consider what attributes of the

distribution P(Y,X) affect the degree to which covariate measurement error adversely

impacts predictive accuracy for binary outcomes.

As an application, we will focus on gene expression used as a quantitative predic-

tor of disease outcomes. Gene expression measurements are made with substantial

measurement error, so it is important to know how this measurement error affects

predictive performance, and whether or not measurement error plays a major role

in limiting prediction accuracy. Doing this would allow researchers to focus on ei-

ther improving measurement technology, or alternatively, on discovering new types

of markers, based on whichever of these two strategies is likely to give the greatest

improvement in predictive performance.
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1.1.2 Common and unique associations in multiple subpopulations

Graphical displays of effect sizes across many tested variables are often included in

scientific reports, for example, in genetic association studies (Ioannidis et al. (2005),

So and Sham (2010)). But methods for formal analysis of effect size distributions

have only recently been considered. For example, Efron (2007) used the empirical

distribution of effect sizes to calculate false discovery rates. There are many oppor-

tunities to more deeply explore effect sizes in large, complex data sets. For example,

clinical genomic studies often involve populations that can be subdivided into several

distinct subpopulations. Associations between gene expression markers and patient

outcome can be common or unique across such subpopulations.

In chapter 3, we consider the proportion of markers having large marker/outcome

associations in two subpopulations as a measure of the overlap of effect sizes. However,

the simple empirical measure of this overlap can be quite biased. We propose a new

copula-based method to estimate this quantity, and show that it substantially reduces

the bias.

1.1.3 Relationships between marginal properties of variables and their

external correlations

In chapter 4, we consider another aspect of effect size distributions in complex data

sets. Our goal is to consider whether markers that are correlated with an outcome

have different marginal statistical properties than those that are not correlated with

the outcome. We call this a property/marker/outcome association. We present a

method for identifying distributions of genomic markers that are statistically related

to the strengths of the marker/outcome associations.

This leads to a type of integrated correlation measure, for which it is difficult to

assess the statistical properties. Therefore we propose a simulation-based approach to

assess the bias and variability of the estimated property/marker/outcome association.
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Another issue is that there may be not only monotone associations between genomic

markers and the outcome. The non-monotone associations like u-shape association

are not detected by the Pearson correlation coefficient. We develop a way that decom-

poses an association into a monotone component and a symmetric concave/convex

component (plus a residual function) to see which association is dominant.

1.2 The Chronic Kidney Disease dataset

Much of the work described in this thesis was motivated by a genomic dataset

that we call the “Chronic Kidney Disease” (CKD) dataset. Here we give a brief

overview of this dataset. Chronic kidney disease, also known as chronic renal disease,

is a progressive loss of renal function that takes place over a period of months or

years. Chronic kidney disease is identified by a blood test for serum creatinine, with

higher levels of creatinine indicating a falling glomerular filtration rate (GFR) and

as a result a decreased capability of the kidneys to excrete waste products. The

CKD dataset is a collection of clinical and genomic data for subjects with one of

several diseases that give rise to CKD. The diseases in the CKD dataset include

Focal segmental glomerulosclerosis (FSGS), Systemic lupus erythematosus (SLE),

and Minimal Change Disease (MCD).

The genomic data in the CKD dataset consist of microarray measurements of gene

expression on specific cell types obtained from kidney tissue biopsy specimens taken

early in the disease course. The main clinical parameter of interest is the GFR taken at

the biopsy time. GFR is a widely used overall index of kidney function. Specifically,

it estimates how much blood passes through the tiny filters in the kidneys, called

glomeruli, each minute. Normal GFR results range from 90-120 mL/min, GFR below

60 mL/min implies moderate loss of renal function, and GFR below 30 mL/min

is considered to be severe. The dataset includes genomic and clinical data for 195

subjects, and the gene expression data quantify gene expression for 12,023 distinct
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genes or transcripts. While the relatively small number of genes whose function

is specific to the kidneys are of particular interest, CKD is associated with many

physiological processes such as inflammation. Therefore exploratory analyses continue

to play a major role in this area.

A major long-term goal for research in this area is to identify genomic markers

that predict a rapidly declining GFR trend, and to clarify the molecular processes

involved in CKD progression. Much of this work involves correlative analyses in data

sets such as the CKD dataset. The issues discussed in this thesis all address significant

challenges to progress in this field.
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CHAPTER II

Differential effects of covariate measurement error

in outcome prediction

2.1 Introduction

Regression models are often defined in terms of independent variables (covariates)

that are not measured perfectly, or for some reason are not directly observable. In such

situations, error-prone measurements or surrogate covariates, Xobs, are used instead

of the true covariates X. The substitution of Xobs for X usually biases the coefficient

estimates, and much research has been done on methods to correct and adjust for

this bias (Fuller (1987), Carroll et al. (2006)). A related but distinct question is to

consider how prediction methods are impacted by the presence of covariates that are

measured with error. Predictivity must decline with increasing measurement error

magnitude. But at a more detailed level, is the amount of decline strongly dependent

on the structure of the outcome generating distribution P (Y |X)? Our main focus in

this chapter is to consider what attributes of the distribution P(Y,X) might affect the

rate at which covariate measurement error adversely impacts predictive accuracy for

binary outcomes.

As an application, we will focus on gene expression used as a quantitative predic-

tor of disease outcomes. Gene expression measurements are made with substantial
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measurement error, so it is important to know how this measurement error affects

predictive performance, and whether or not measurement error plays a major role

in limiting predictive accuracy. Doing this would allow researchers to focus on ei-

ther improving measurement technology, or alternatively, on discovering new types

of markers, based on whichever of these two strategies is likely to give the greatest

improvement in predictive performance.

We next consider examples of potentially important factors of data generating

models and how they affect the amount of decline in predictive accuracy due to

measurement error. The potential factors are the structure of the covariance matrix

of measurement error Ση, the structure of the covariance matrix of covariates ΣX and

the true regression coefficients β.

First, we generate (X1, X2) ∈ R2 following a centered bivariate normal distribution

with standard deviations 0.5 and correlation r. The binary outcome is generated by

P (Y = 1) = 1/(1+exp (−c(X1 +X2))), where c is a constant which is chosen to make

the Bayes’ rule predictive accuracy with no measurement error equal to 0.9. Then

measurement errors (η1, η2) ∈ R2 which follow independent centered bivariate normal

distribution with standard deviations s are added to the covariates. The Bayes’ rule

predictive accuracy with measurement error magnitude s is calculated and plotted

on figure 2.1 with different values of correlation r (r=0.8, -0.8, and 0). Figure 2.1

focuses on the impact of ΣX on the predictive accuracy while holding other factors

fixed. We see that highly positively correlated covariates exhibit a greater decline of

predictive accuracy than negatively correlated covariates.

Second, we repeat the example above using r = 0 and the binary outcome is

generated by P (Y = 1) = 1/(1 + exp (−c(β1X1 + β2X2))). Define β = (β1, β2).

With the same procedure, the Bayes’ rule predictive accuracy with measurement

error magnitude s is calculated and plotted on figure 2.2 with different structure

of β (β = (1, 1), (1,−1), and (0, 1)). Figure 2.2 focuses on the impact of regression
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coefficients β on the predictive accuracy while holding other factors fixed. We see that

different structure of β will not change the amount of decline of predictive accuracy

very much.

Third, we also repeat the example above using r = 0.8 and the binary outcome

is generated by P (Y = 1) = 1/(1 + exp (−c(X1 +X2))). Here the measurement

errors (η1, η2) are not always independent, they have correlation r̃. With the same

procedure, the Bayes’ rule predictive accuracy with measurement error magnitude s

is calculated and plotted on figure 2.3 with different value of r̃ (r̃ = 0.8,−0.8, and 0).

Figure 2.3 focuses on the impact of Ση on the predictive accuracy while holding other

factors fixed. We see that highly negatively correlated measurement error exhibits

a greater decline of the predictive accuracy than positively correlated measurement

error.

Our overall strategy is to first identify factors that may impact the drop of perfor-

mance in predictive modeling due to measurement error. These factors are identified

from the theoretical derivation of predictive accuracy and from analogies to the linear

case where the issues are much more straightforward. Following our analytic studies,

we then use simulation to assess how the factors we have identified impact the drop

of performance in predictive modeling for binary outcomes, and to assess the rela-

tionships between these factors. Results are given for both linear and binary cases to

see if there is any interpretable difference. To put this to practical use, we will con-

sider how to estimate the key attributes from the data and to estimate the amount of

decline of predictivity in a real data analysis. Another important goal is to estimate

the predictive accuracy that would be obtained if no measurement error were present

from data observed with measurement error.

8



Figure 2.1: Example of the impact of the covariance structure of the covariates, Σx

on the decline of predictive accuracy due to measurement error. Upper
Left plot shows the data when the true covariates are highly positively
correlated with r = 0.8; upper right plot shows the data when the true
covariates are highly negatively correlated with r = −0.8; lower left shows
the data when the two true covariates are independent; lower right plot

shows the relationship between Bayes’ rule predictive accuracy ÃUC and
the magnitude of measurement error for three structures of Σx.
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Figure 2.2: Example of the impact of the true regression coefficients β on the decline
of predictive accuracy due to measurement error. Upper Left plot shows
the data when β = c1(1,−1); upper right plot shows the data when
β = c2(1, 1); lower left shows the data when β = c3(0, 1); c1, c2 and
c3 are constants that make the Bayes’ rule predictive accuracy with no
measurement error euqal to 0.9. Lower right plot shows the relationships

between the Bayes’ rule predictive accuracy ÃUC and the magnitude of
measurement error for three structures of β.
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Figure 2.3: Example of the impact of the covariance structure of measurement error,
Ση on the decline of predictive accuracy due to measurement error. Left
plot shows the data without measurement error and right plot shows the

relationships between the Bayes’ rule predictive accuracy ÃUC and the
magnitude of measurement error for three structures of Ση.

2.2 Impact of covariate measurement error on AUC for linear

risk scores

2.2.1 Errors in predictive models

In predictive analysis, the decline of predictive accuracy may be caused by a

misspecified working model, inadequate covariates, sampling error, and/or covariate

measurement error, among other possible factors. Error caused by a misspecified

working model could be reduced by using modern flexible regression and model se-

lection methods. Errors caused by inadequate covariates could be reduced by adding

more covariates. Sampling error could be reduced by increasing the sample size. Our

goal here is to focus on the effects of covariate measurement error. Therefore for com-

parison reasons, we want the other factors remain the same throughout our study.

Thus we use a fixed training set size (p = 10, n = 400) and a fixed outcome-generating

model (e.g. logistic regression). We also hold fixed the Bayes’ rule predictive accuracy

for the model with no measurement error.
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When every configuration has the same Bayes’ rule predictive performance, the

same outcome-generating model and the same regression technique, the decline of

predictive accuracy is solely due to sampling error and measurement error. Then we

can look at the relationship between measurement error and the decline of predictive

accuracy without considering other factors.

2.2.2 Predictive model

We focus on logistic regression model as a predictive model, and we use AUC (area

under the ROC) to quantify the predictive accuracy. The logistic regression model is

given by:

log(
p

1− p
) = β′X; p = E[Y |X]

where y ∈ {0, 1} is a binary response variable, X is a vector of observed covariates, β

is a vector of regression coefficients. We use β̂′X as a risk score.

2.2.3 Predictive accuracy AUC

When a predictive model for a dichotomous outcomes produces a continuous “risk

score”, a standard procedure for measuring its predictive accuracy is to apply the

model to a test set of subjects whose true responses are known, allowing us to ob-

tain unbiased estimates of sensitivity and specificity for various risk score thresholds.

Sensitivity is defined as the probability that a truly “positive” subject is predicted as

positive, and specificity is the probability that a truly negative subject is predicted as

negative. As the risk score threshold is varied, a non-decreasing relationship between

sensitivity and 1-specificity results. This curve is called the receiver operating char-

acteristic (ROC) curve. The area under ROC curve (AUC) (Dodd and Pepe (2003),

Hanley and McNeil (1982)) is a standard index for diagnostic accuracy, ranging from

0 to 1, with greater values indicating greater accuracy, and AUC = 0.5 indicates

predictive equivalent to random assignment.
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An alternative interpretation of the AUC is that it represents the probability

that a randomly chosen positive example is correctly rated (ranked) with greater

suspicion than a randomly chosen negative example. In logistic regression, we use R1

to represent the risk score for subjects in group Y = 1, and R2 to represent the risk

score for subjects in group Y = 0. Then, we can write

AUC = P (R1 > R2)

Since AUC is an average measure of predictive performance, so is not dependent on

a decision threshold. In addition it is invariant to the marginal class probabilities.

2.2.4 Predictive performance under no measurement error

Define AUC⋆ as the population AUC for a given linear risk score β′X with no

measurement or sampling error. We then define ÃUC as the realized AUC under

measurement error, and when estimating coefficients β from training data as β̂. The

difference between ÃUC and AUC⋆ is the decline of predictive accuracy is our main

interest.

In order to find the the attibutes of the data generating model that have influence

on the decline of predictive accuracy, more insight into AUC is needed.

2.2.5 Analysis of AUC under measurement error

In binary classification, we have two groups of subjects. Suppose in the group

where Y = 1, we have the true covariate X1 and the risk score R1 = β′X1; in the

group where Y = 0, we have the true covariate X2 and the risk score R2 = β′X2. The

risk scores are related to a monotone single-index model (Xia (2006)):

P (Y = 1|X) = F (β′X) = p, (2.1)
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where 0 ≤ F (·) ≤ 1, so that 0 ≤ p ≤ 1, and F is a monotone increasing function on

β′X. For example, F (z) = ez

1+ez
for logit model. The predictive performance for the

limiting risk score β′X under no measurement error is given by

AUC⋆ = P (R1 > R2) = P (β′X1 > β′X2).

If X is observed with measurement error η, then in the groups where Y = 1 and

Y = 0, the observed covariate has the form

Xobs
1 = X1 + η1, Xobs

2 = X2 + η2, (2.2)

where ηj|Xj are random measurement error with mean 0 and covariance matrix Σηj ,

j = 1, 2. Let β̂ be the estimated regression coefficient of Y on Xobs and β̂ ∼ N(β̃,Σβ̃),

where β̃ is the limiting estimated regression coefficient of Y on Xobs. Our focus in

this chapter is ÃUC with no sampling error or the limiting β̂, β̃. When measurement

error exists, the estimated risk score is defined as

R̃1 = β̃′Xobs
1 = (β̃ − β)′X1 + β̃′η1 +R1,

R̃2 = β̃′Xobs
2 = (β̃ − β)′X2 + β̃′η2 +R2.

The realized predictive performance

ÃUC = P (R̃1 > R̃2)

= P ((β̃ − β)′X1 + β̃′η1 +R1 > (β̃ − β)′X2 + β̃′η2 +R2)

= P (R1 −R2 + (β̃ − β)′(X1 −X2) + β̃′(η1 − η2) > 0)

= P (D + S1 + S2 > 0), (2.3)
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where D = R1 − R2, S1 = (β̃ − β)′(X1 − X2), S2 = β̃′(η1 − η2) are constructed by

random vectors (X1, X2, η1, η2).

To learn how ÃUC is influenced by the factors D, S1 and S2 from the above equa-

tion, the moment structures of D, S1, S2 might be related from our initial intuition

and we could see that the first and second moments of D, S1 and S2 will influence

ÃUC if the following two assumptions hold.

(A1) D + S1 + S2 is from a location scale family that

D + S1 + S2 = σu+ θ,

where σ2 = Var(D+S1+S2), θ = E(D+S1+S2), u is also from location scale

family with mean 0 and variance 1.

(A2) E(R̃1) > E(R̃2) or θ = E(D + S1 + S2) > 0.

From (A1),

ÃUC = P (D + S1 + S2 > 0) = P (σu+ θ > 0) = 1− Fu(−
θ

σ
),

where Fu is the cdf of u and a monotone increasing function. Therefore ÃUC will

increase when θ increases. If θ < 0, ÃUC will increase when σ increases; If θ > 0,

ÃUC will increase when σ decreases. From (A2), we know that θ is always greater

than 0, then ÃUC will increase when σ decreases. (A2) is always true since in

our model, P (Y = 1) is a monotone increasing function of the risk score β′X from

equation 2.1, then the group where Y = 1 always has a higher risk score than the

group where Y = 0 on average. AUC > 0.5 is reasonable since the performance of

the classification will always be better than random assignment where AUC = 0.5.

Therefore E(R̃1) > E(R̃2) or θ = E(D+S1+S2) > 0. As a conclusion, we imply ÃUC

will increase when E(D+S1+S2) increases, and will decrease when Var(D+S1+S2)
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increases.

Expand the mean and variance of D+ S1 + S2 to nine terms, which are the mean

of D, S1, S2, the variance of D, S1, S2, and the covariance between D, S1, S2. They

are listed below:

(1) E(D) = E(R1 −R2) = E(β′(X1 −X2)),

(2) E(S1) = E((β̃ − β)′(X1 −X2)),

(3) E(S2) = E(β̃′(η1 − η2)),

(4) Var(D) = β′ΣX1β + β′ΣX2β,

(5) Var(S1) = (β̃ − β)′ΣX1(β̃ − β) + (β̃ − β)′ΣX2(β̃ − β),

(6) Var(S2) = β̃′Ση1 β̃ + β̃′Ση2 β̃,

(7) Cov(S1, D) = (β̃ − β)′ΣX1β + (β̃ − β)′ΣX2β,

(8) Cov(S2, D) = β̃′Cov(η1 − η2, X1 −X2)β,

(9) Cov(S1, S2) = (β̃ − β)Cov(η1 − η2, X1 −X2)β̃.

Here we only focus on the effect of measurement error on the decline of ÃUC from

AUC⋆ while holding the model fixed. Then factors (1) and (4) which are not func-

tions of measurement error will not impact the decline of ÃUC from AUC⋆, so will

be removed from the list. While S2 is a direct function of measurement error and S1

is also impacted by measurement error through β̃ which is the estimated regression

coefficient of Y on Xobs with measurement error. With the assumptions from Equa-

tion 2.2, the measurement error η1, η2 have zero means and are independent with our

true covariates X1, X2, then Cov(η1 − η2, X1 −X2) = 0, so S2 is independent with S1

and D. Factors (8) and (9) are approximately zero and will be removed from the list.

Also E(S2) = 0 since the measurement error has zero mean, then factor (3) will be
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removed from the list. At last, there are four factors remaining here that influence

the decline of ÃUC from AUC⋆ due to measurement error, they are

(1) E(S1) = E((β̃ − β)′(X1 −X2)),

(2) Var(S1) = (β̃ − β)′ΣX1(β̃ − β) + (β̃ − β)′ΣX2(β̃ − β),

(3) Var(S2) = β̃′Ση1 β̃ + β̃′Ση2 β̃,

(4) Cov(S1, D) = (β̃ − β)′ΣX1β + (β̃ − β)′ΣX2β.

The relationships of these four factors and ÃUC are that ÃUC will increase when

E(S1) increase, ÃUC will increase when Var(S1), Var(S2) and Cov(S1, D) decrease.

Also these relationships could be seen from the lower bound of ÃUC using Chebyshev

inequality and Vysochanskii-Petunin inequality.

Chebyshev inequality: Let M be a random variable with expected value µ and

finite variance σ2. Then for any real number k > 0,

P (|M − µ| ≥ Kσ) ≤ 1

K2

Equality holds when:

M =


-1 1

2K2

0 1− 1
K2

1 1
2K2
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Apply Chebyshev inequality to the equation of ÃUC ( 2.3):

ÃUC = P (R̃1 > R̃2)

= P (R̃1 − R̃2 − E(R̃1 − R̃2) > −E(R̃1 − R̃2))

= 1− P (R̃2 − R̃1 − E(R̃2 − R̃1) > E(R̃1 − R̃2))

= 1− P (R̃2 − R̃1 − E(R̃2 − R̃1) >
E(R̃1 − R̃2)

SD(R̃1 − R̃2)
SD(R̃1 − R̃2))

= 1− P (M > Kσ)

≥ 1− 1

K2
.

Where

M = R̃2 − R̃1 − E(R̃2 − R̃1),

σ = SD(R̃1 − R̃2),

K = E(R̃1−R̃2)

SD(R̃1−R̃2)
,

E(R̃1 − R̃2) = E(R1 −R2) + E(S1),

SD(R̃1 − R̃2) =
√

Var(S1) + Var(S2) + Cov(S1, R1 −R2) + Var(R1 −R2).

The lower bound of ÃUC is an increasing function of K, and then is an increasing

function of E(S1) and a decreasing function of Var(S2), Var(S1), Cov(S1, R1 − R2).

Since the lower bound of ÃUC using chebyshev’s inequality is not tight enough,

we could use Vysochanskii-Petunin inequality which assume unimodality of random

variable X instead. But the relationships of our four properties and ÃUC do not

change.

Vysochanskii-Petunin inequality: Let M be a random variable with expected value
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µ and finite variance σ2. Then for any real number k > 0,

P (|M − µ| ≥ Kσ) ≤ 4

9K2
.

From the theoretical derivation of AUC, we know that there are four properties

of the data generating model influence the decline of AUC caused by measurement

error. We imply the relationship of these four properties and ÃUC under the assump-

tion of the location-scale family and from the lower bound of ÃUC. Next, we will

confirm these relationships by simulation studies and explore more about the rela-

tionships between these four properties themselves, then decide the miminum number

of properties which influence the amount of decline of ÃUC.

2.3 Simulation approach

2.3.1 Gene expression data

Since we want the data generating model in our simulation study to be close

enough to the real data, many parameters or attributes in my simulation study is

chosen by calibrating them from the real data.

We use the data set for Microarray Innovations in Leukemia (MILE) study pro-

gram with n=2096 sample sizes devided into 18 classes and over thousands of genes.

We focus on the two classes “CLL” and “AML with normal karyotype + other ab-

normalities” which have the largest sample sizes which are 448 and 351. We split

the data evenly into two subgroups, one for identifying the significant genes used as

covariates from some criterions, (e.g. who have their gene expression values most

different comparing these two classes using t statistics), the other subgroup is used

to estimate the distribution of β̂ which is the estimated coefficient of the logistic

regression of the observed two classes on the gene covariates we just selected.

Here we use three methods to select the genes to be used in our simulation study.

19



One is choose 10 genes having the highest t values comparing the two classes, and

we could also choose the next 10 genes having the highest t values except the first

10 genes and so on. The limitation of this method is the genes we choose are highly

positive or negative correlated with each other (e.g. ρ̄ = 0.75 which is the average

pairwise correlation of the first 10 genes having the highest t values in MILE data),

the high multicollinearty will lead to opposite sign of estimated coefficients β̂ and

larger covariance matrix of β̂, which will lead to more unstable result.

The second method is that we choose 10 genes whose pairwise correlation less than

some fixed value (e.g. ρ < 0.7) and have higher t values also. In more details, we

order our genes with their t values from high to low and we could choose the first gene

having the highest t value. Then search the genes by the order until its correlation

with the first gene is less than 0.7. Then search the third gene until its correlation

with the first and the second are both less than 0.7 and go on. This method controls

the multicollearity of the genes and the 10th gene still has t value greater than 2 in

MILE data.

The third method is that we choose 10 genes randomly from all the genes and

they are expected to be independent with each other. From these three methods,

we could generate three structures of ΣX in which the distribution of the pairwise

correlations between covariates are approximately normal with mean µ and standard

deviation σ. In MILE data, µ = 0.7, σ = 0.1 for the first method; µ = 0.5, σ = 0.1

for the second method; µ = 0.2, σ = 0.1 for the third method.

2.3.2 Simulation steps

1. We construct the true covariates X without measurement error, having covari-

ance matrix Σx. Figure 2.4 are the examples of pattern of elements in co-

variance matrix of X using gene expression data from MILE study by three

different methods illustrated above. From these examples, we could see that
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Figure 2.4: Left plot is the histogram of the correlations of pairs of genes selected from
method 1; middle plot is the histogram of the correlations of pairs of genes
selected from method 2; third plot is the histogram of the correlations of
pairs of genes selected from method 3.

the elements in covariance matrix of predictors are approximately normally dis-

tributed with different mean and standard deviation. We need the elements in

Σx in my simulation study has the same distribution with that in MILE study.

Let Σx = I + FF ′, where F = (f1, · · · , fp)T . The elements of corresponding

Σx are ρij =
fifj√

(1+f2
i )(1+f2

j )
, i ̸= j. We used a numerical optimization scheme

to optimize the fit of elements in Σx = I + FF ′ to a normal distribution over

F. The Kolmogorov-Smirnov distance was used to assess the fit. The normal

distribution of the elements in ΣX has three different sets of mean and standard

deviation: (µ = 0.7, σ = 0.1); (µ = 0.5, σ = 0.1); (µ = 0.2, σ = 0.1).

2. Generate true coefficients β with known structure.

We have two ways to generate β:

(1) Use βj = ±c × 2(1−j)d, j = 0, 1, · · · to define a family of true coefficient

vectors with different patterns. Figure 2.5 is an example of this kind of β.

(2) Generate a set of population β vectors by sampling from the distribution

N(β0,Σ0), where β0 is the estimated logistic regression coefficient for the

observed two classes and selected gene expression data set in MILE study.

3. Control AUC⋆ = 0.9 and set balance of outcome to be 0.6 with known struc-
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Figure 2.5: left plot is examples of different structure of true coefficient β has struc-
ture βj = ±c × 2(1−j)d, j = 0, 1, · · · with c = 1 and different value of
parameter d; Right plot is examples of scaling constant c with different
AUC⋆ and β.

ture of X and β by setting the scaling constant c of β using bisection numerical

method. AUC⋆ is the predictive performance with no measurement and sam-

pling error. Since we are only interested in the effect of measurement error on

predictive performance, for comparison reason, we need every data generating

model in my simulation study have the same AUC⋆. From figure 2.5, we know

the scaling constant c increases with the increase of AUC⋆. Different pattern

of β has different scaling constant c.

4. Calibrating the magnitude of measurement error.

In measurement error analysis, it is almost always necessary to have an internal

or external measure of the level of measurement error. For gene expression

analysis, internal replication is uncommon. Therefore, to estimate the level

of measurement error among gene expression predictors, we use a triplicated

expression array experiment on a panel of 59 cell lines. Specifically, given three

replicates X1, X2, X3,
1
2

∑3
i=1(xi − x̄)2 unbiasedly estimates the measurement

error for a particular gene in a particular cell line. We then average over the

cell lines and consider the relationship between measurement error standard

deviation and overall standard deviation in Figure 2.6. Focusing on the trend
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Figure 2.6: Plot of measurement error standard deviation and overall standard devi-
ation in a triplicated expression array data.

line in the left panel, we see that measurement error standard deviation increases

linearly at first, then becomes independent of the overall standard deviation.

This suggests a fixed additive variance due to measurement error, except for

the genes that are nearly constant. Many of these nearly constant genes are

non-responsive probes, where measurement error would not be expected to be

detectable. Taking the middle of the range as a nominal value, we arrive at

signal-to-noise ratio (SNR) estimates from 3:1 to 8:1.

5. Simulate binary response Y with linear predictor β′X by

P (Y = 1) =
exp(β′X)

1 + exp(β′X)
,

then add independent measurement error with different magnitude probably

between 0 to 1 to standardized X to create Xobs, then calculate ÃUC by using

estimated risk score β̂′X, where β̂ is the estimated coefficient of logistic regres-

sion of Y on Xobs. Repeat step 5 100 times to estimate β̃ by averaging the values

of β̂ in each repetition and then since the covariance matrix of measurement

error Ση, covariance matrix of the true covariates ΣX , true coefficient β are all

known, we could estimate the value of these four factors of the data generating

model
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(1) E(S1) = E((β̃ − β)′(X1 −X2)),

(2) Var(S1) = (β̃ − β)′ΣX1(β̃ − β) + (β̃ − β)′ΣX2(β̃ − β),

(3) Var(S2) = β̃′Ση1 β̃ + β̃′Ση2 β̃,

(4) Cov(S1, D) = (β̃ − β)′ΣX1β + (β̃ − β)′ΣX2β.

and make graphs of each of the four factors and ÃUC.

In simulation step 5, we add independent measurement errors to the true covariate

X. But in real data, the measurement errors could be dependent with each other and

the covariance matrix of measurement error does not equal to identity matrix, Ση ̸= I.

But we could guarantee that with some matrix transformations, we could assume that

Ση = I without lose of generality of the data generating models. If we have the logistic

regression model

log(
p

1− p
) = β′X; p = E[Y |X],

with true regression coefficient β, true covariate X, and the measurement error added

to the covariate η, with E(η|X) = 0, and covariance matrix Ση. Then the risk score

with measurement error is β′(X + η). By Cholesky decomposition, Ση = RR′, where

R is a lower triangular matrix. Let

η̃ = R′−1η, X̃ = R′−1X, β̃ = Rβ,

Then the risk score with measurement error is β̃′(X̃ + η̃) = β′(X + η) will not change

with Ση̃ = I.
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Figure 2.7: Plot of ÃUC and measurement error SD magnitude with different level
of AUC⋆.

2.4 Simulation results for logistic regression

2.4.1 Question 1: Will the effect of covariate measurement error on pre-

dictive performance be different with different level of AUC⋆?

Since we only interest in the decline of predictive accuracy, AUC⋆ − ÃUC due to

measurement error, whether or not to fix AUC⋆ is a question. With different level of

AUC⋆, if AUC⋆ − ÃUC is not effected by AUC⋆, then we do not need to fix AUC⋆.

From intuition, 0 ≤ ÃUC ≤ AUC⋆ due to measurement error. If AUC⋆ ≈ 0.5,

then ÃUC also ≈ 0.5. We expect AUC⋆− ÃUC to be greater when AUC⋆ is greater.

We could also use simple simulation to check this.

Choose Σx with µ = 0.2, σ = 0.1, β = (1,−1, · · · , 1,−1), Ση = s2I with s ranging

from 0.0 to 0.7. Vary AUC⋆ from 0.5 to 0.9, from figure 2.7, we could see that the

decline of predictive accuracy is different with different level of AUC⋆ due to the

same amount of measurement error. In our following simulation study, we always use

AUC⋆ = 0.9.

25



Figure 2.8: Left Plot is the plot of ÃUC and measurement error SD magnitude with

different β when Σx = Ση = I; right Plot is the plot of ÃUC and mea-
surement error SD magnitude with different β when the elements in Σx

has normal distribution with µ = 0.2, σ = 0.1 and Ση = I.

2.4.2 Question 2: For fixed AUC⋆, does the relationship between ÃUC

and measurement error variance depend on β,Σx,Ση?

From the example we show at the beginning of this paper, we know that some

attributes of data generating model, like β,Σx,Ση will influence the decline of pre-

dictive accuracy due to measurement error and in some situations, the influence is

small, in other situations, the influence is dramatic.

From figure 2.8, when Σx = Ση = I, no matter how we choose β, the decline of

ÃUC is same. But when Σx ̸= Ση, different structure of β has different ÃUC with

the same amount of measurement error.

From the simulation study we know that some attributes of data generating model,

like β,Σx,Ση will influence the decline of predictive accuracy due to measurement er-

ror in most case, but we do not know exactly how these attributes influence predictive

accuracy while question 3 does.
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2.4.3 Question 3: What is the relationship of the four factors we find

through theoretical derivation of AUC and how them effect the

decline of ÃUC ?

From the theoretical derivation of AUC, we know there are four factors that will

influence the decline of ÃUC when fixing AUC⋆. They are

(1) E(S1) = E((β̃ − β)′(X1 −X2)),

(2) Var(S1) = (β̃ − β)′ΣX1(β̃ − β) + (β̃ − β)′ΣX2(β̃ − β),

(3) Var(S2) = β̃′Ση1 β̃ + β̃′Ση2 β̃,

(4) Cov(S1, D) = (β̃ − β)′ΣX1β + (β̃ − β)′ΣX2β.

We also imply how they effect the decline of ÃUC that greater E(S1) lead to

higher ÃUC, greater Var(S2), Var(S1), Cov(S1, R1−R2) will lead to lower ÃUC from

the theoretical derivation of the definition of AUC. Then we will check if we have the

similar relationships in our simulation study.

In our simulation study, we generate covariate X with covariance matrix Σx, whose

off-diagonal element has approximately normal distribution with three sets of mean

and standard deviation, (1) µ = 0.7, σ = 0.1; (2) µ = 0.5, σ = 0.1; (3) µ = 0.2,

σ = 0.1. True coefficient β is generate with distribution N(β0,Σ0), where β0 is the

estimated logistic regression coefficient for the observed two classes and selected gene

expression data set in MILE study from three different methods. Control AUC⋆ = 0.9

by multiplying a constant c to β and then the true binary outcome Y is generated

with the linear predictor cβ′X. Add independent measurement error with magnitude

from 0 to 1 to the covariates X, then the estimated predictive accuracy ÃUC and the

estimates of the four factors are calculated.

Figure 2.9 is the plots of the relationships between ÃUC and the magnitude

of measurement error with the three sets of mean and standard deviation of the
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distribution of the elements in Σx. The plot shows that overall ÃUC decline with the

increasing magnitude of measurement error and the variation of ÃUC due to different

structure of true coefficient β increase with increasing magnitude of measurement

error. When the distribution of the elements in Σx has lower mean, the decline of

ÃUC due to measurement error is smaller.

Figure 2.10 shows the relationship between ÃUC and the four factors of the data

generating model with the three sets of mean and standard deviation of the distri-

bution of the elements in Σx. We could see that E(S1) has a positive relationship

with ÃUC, while Var(S2), Var(S1), Cov(S1, X1−X2) have negative relationships with

ÃUC.

Figure 2.11 shows the relationships of these four factors themselves and we could

see that E(S1), Var(S1) and Cov(S1, X1 −X2) are highly dependent with each other,

while Var(S2) is independent of them. We choose Var(S1) and Var(S2) as the main

factors that influence the decline of ÃUC.

As a conclusion, in binary outcome predictive, predictive performance is negatively

affected by the increase of magnitude of measurement error. Moreover, the effect

is influenced by other attributes of data generating model. From the theoretical

derivation of predictive accuracy AUC, we find that there are four factors might

influence the decline of predictive accuracy ÃUC when controlling AUC⋆ and find

similar results in the simulation study that E(S1) has a negative relationship with the

decline of ÃUC, while Var(S2), Var(S1), Cov(S1, X1−X2) have positive relationships

with the decline of ÃUC. From these four factors, we find two independent factors

Var(S2) = β̃′Ση1 β̃ + β̃′Ση2 β̃,

Var(S1) = (β̃ − β)′ΣX1(β̃ − β) + (β̃ − β)′ΣX2(β̃ − β),
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Figure 2.9: Plots of ÃUC and measurement error SD magnitude with different β
generated from N(β0,Σ0) with three situations of mean and standard de-
viation of the distribution of the elements in Σx. Left plot is the situation
when µ = 0.2, σ = 0.1; middle plot is the situation when µ = 0.5, σ = 0.1;
right plot is the situation when µ = 0.7, σ = 0.1.

could be representative of these four factors and both of them have linearly positive

relationships with the decline of AUC. But there is not enough theoretical proof for

these relationships since there is no close form of the estimated regression coefficient

β̂, then we could not get a close form of the predictive accuracy AUC. However,

this could be done in linear regression. We are interested in whether we could find

similar properties and relationships between these properties and predictive accuracy

in linear case?

2.5 Similar finding in linear case

2.5.1 linear model and predictive accuracy

Linear Model:

Y = β′X + ϵ

E(ϵ|X) = 0,Var(ϵ|X) = σ2
ϵ

Define β̃ as the estimated linear regression coefficient when regressing continuous
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Figure 2.10: Plots of ÃUC and four factors of the data generating model with differ-
ent β and measurement error in three situations of mean and standard
deviation of the distribution of the elements in Σx. Left plot is the situ-
ation when µ = 0.2, σ = 0.1; middle plot is the situation when µ = 0.5,
σ = 0.1; right plot is the situation when µ = 0.7, σ = 0.1. First row
is for factor Var(S2), second row is for factor Var(S1), third row is for
factor E(S1), fourth row is for factor Cov(S1, D).
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Figure 2.11: Scatterplots of these four factors in the simulation study when µ = 0.5,
σ = 0.1.

outcome Y on covariates X, and the sample size goes to infinity, then

β̃ = E(β̂) = (ΣX + Ση)
−1ΣXβ,

where β̂ is the estimated linear regression coefficient when regressing Y on X and

β̃ = β when no measurement error exists. Predictive accuracy in linear model without

sampling error:

R2 = 1− ∥Ŷ − Y ||2

||Y − Ȳ ∥
= 1− ∥β̃′Xobs − β′X − ϵ∥2

β′ΣXβ + σ2
ϵ

Predictive accuracy without sampling and measurement error:

R2
ideal = 1− ∥β̃′X − β′X − ϵ∥2

β′ΣXβ + σ2
ϵ

= 1− ∥σ∥2

β′ΣXβ + σ2
ϵ

=
β′Σxβ

β′Σxβ + σ2
ϵ

.
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Predictive accuracy with measurement error:

R̃2 = 1− ∥(β̃ − β)′X + β̃′η − ϵ∥2

β′ΣXβ + σ2
ϵ

Since ϵ, η, X are independent with each other, then (β̃−β)′X, β̃′η, ϵ are independent.

Therefore,

R̃2 = 1− (β̃ − β)′ΣX(β̃ − β) + β̃′Σηβ̃ + σ2
ϵ

β′ΣXβ + σ2
ϵ

.

Let

S1 = (β̃ − β)′X, S2 = β̃′η,

R̃2 = 1− Var(S1) + Var(S2) + σ2
ϵ

β′ΣXβ + σ2
ϵ

To make each outcome-generating model has the same best predictive performance,

we need to fix R2
ideal, and σ2

ϵ is known, then β′ΣXβ is fixed. R̃2 is affected by only

two properties:

(1) Var(S2) = β̃′Σηβ̃,

(2) Var(S1) = (β̃ − β)′ΣX(β̃ − β).

These two factors have negative relationships with R̃2. Then we use the simulation

study to show that we could find similar relationships between R̃2 and the two factors

Var(S1), Var(S2) of the linear model. The simulation steps are quite similar with those

for binary case. We first generate covariate X with covariance matrix Σx, whose off-

diagonal element has approximately normal distribution with three sets of mean and

standard deviation, (1) µ = 0.7, σ = 0.1; (2) µ = 0.5, σ = 0.1; (3) µ = 0.2,

σ = 0.1. True coefficient β is generate with distribution N(β0,Σ0), where β0 is the

estimated logistic regression coefficient for the observed two classes and selected gene

expression data set in MILE study from three different methods. Control R2
ideal = 0.9

by multiplying a constant c to β, and then the true continuous outcome Y is generated

32



with the linear predictor cβ′X by

Y = cβ′X + ϵ,

where E(ϵ|X) = 0,Var(ϵ|X) = 1. Then add independent measurement error with

magnitude from 0 to 1 to the covariates X, then the estimated predictive accuracy R̃2

and the estimate of the two factors are calculated. The relationship between each of

the two factors and R̃2 and the relationship between the two factors themselves are

shown in figure 2.12. It indicates that larger amount of the values of the two factors

will lead to larger amount of the decline of the predictive accuracy R2
ideal − R̃2 and

this finding is consistent with the finding in binary case.

2.6 Estimation of these attributes from real data

To put our finding to practical use, we need to estimate these two factors Var(S2) =

β̃′Σηβ̃ and Var(S1) = (β̃ − β)′ΣX(β̃ − β) correctly from real data. In real data,

we observe outcome Y and covariates Xobs with measurement error and covariance

matrix of measurement error Ση, then we could estimate the true covariance matrix

of X using the equation Σ̂X = ΣXobs
− Ση and calculate β̂ which is the mle of β. In

linear regression, we have

β̃ = E(β̂) = (ΣX + Ση)
−1ΣXβ,

then

β = (ΣX + Ση)Σ
−1
X β̃.

Thus the two key factors can be wrote as:

(1) Var(S2) = β̃′Σηβ̃,
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Figure 2.12: First row is the plots of R̃2 and measurement error SD magnitude with

different β; second row is the plots of R̃2 and factor Var(S2); third row is

the plots of Plots of R̃2 and factor Var(S1); fourth row is the scatterplots
of Var(S2) and Var(S1). There are three situations of mean and standard
deviation of the distribution of the elements in Σx. Left plot is the
situation when µ = 0.2, σ = 0.1; middle plot is the situation when
µ = 0.5, σ = 0.1; right plot is the situation when µ = 0.7, σ = 0.1.
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(2) Var(S1) = β̃′Mβ̃,

M = (I − (ΣX + Ση)Σ
−1
X )′ΣX(I − (ΣX + Ση)Σ

−1
X ).

By using the equation,

β̂′Σηβ̂ = tr(ΣηE(β̂β̂′))

= tr(ΣηΣβ̂) + β̃′Σηβ̃

= σ̂2tr(Ση(X
′
obsXobs)

−1) + β̃′Σηβ̃.

the first factor Var(S2) could be estimated by

Var(S2) = β̂′Σηβ̂ − σ̂2tr(Ση(X
′
obsXobs)

−1),

where σ̂2 = ∥Y−Ŷ ∥2
n−p−1

. With the same procedure, Var(S1) could be estimated by

Var(S1) = β̂′Mβ̂ − σ̂2tr(M(X ′
obsXobs)

−1).

In binary case, the estimation for property Var(S2) = β̃′Σηβ̃ is the same as in

linear case. But since there is no exact equation of β̃ and β, so we could not transform

Var(S1) to the format β̃′Mβ̃. Alternatively, we use a simex procedure to estimate

β̃−β. We calculate β̂1 by regressing Y onX+η, and β̂2 by regressing Y onX+2η, then

β̃−β ≈ β̂2− β̂1. Though we could calculate Σx by using equation Σ̂x = Σxobs
−Ση, we

are not able to calculate ΣX1 or ΣX2 in binary case, since the distribution of covariates

in each group is unknown. Then in binary case, we use Var(S1) = (β̂2−β̂1)
′Σ̂x(β̂2−β̂1)

instead.

Figure 2.13 is the plot of estimated and true factors in simulation study and it

shows that the estimation is very precise in linear case, but the estimation of Var(S1)

by simex procedure is not very precise in binary case. The simulation steps are the
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Figure 2.13: First two Plots are the scatterplots of True and estimated properties in
linear case; last two Plots are the scatterplots of True and estimated
properties in binary case when µ = 0.5, σ = 0.1.

same with the simulation we used to get the relationships between ÃUC and the four

factors in section 2.3.2.

In linear case, since we could estimate Var(S1), Var(S2), β′ΣXβ, σ2 from ob-

served data, we could calculate R2
ideal and R̃2 and the decline of predictive accuracy

R2
ideal − R̃2. We could use a ratio of predictive accuracy due to measurement error

and overall decline of predictive accuracy from 1,
R2

ideal−R̃2

1−R̃2
to see how much decline

of predictive accuracy is due to measurement error. If the ratio is large, which means

the effect of measurement error is dominate, we should pay more attention on im-

proving measurement technique. If the ratio is small, then we could focus on use

more advanced regression techniques or find more variables or collect more samples

to reduce other errors causing the decline of predictive accuracy.

2.7 conclusion and future direction

This chapter focuses on the statistical assessment of predictive performance due

to covariate measurement error. Overall, the predictive performance is negatively af-

fected by the increase of magnitude of measurement error. The effect is also influenced

by other attributes of data generating model related to the true regression coefficient

β, the covariance matrix of true covariates X, Σx, and the covariance matrix of the

measurement error, Ση. From the theoretical derivation of predictive accuracy AUC,
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we find that there are four factors might influence the decline of predictive accuracy

ÃUC when controlling AUC⋆ and similar findings is shown for the linear case. Then

in the simulation study, we find that E(S1) has a negative relationship with the de-

cline of ÃUC, while Var(S2), Var(S1), Cov(S1, X1 − X2) have positive relationships

with the decline of ÃUC. From these four factors, we find two independent factors,

Var(S2), Var(S1) could be representative of these four factors and both of them have

linearly positive relationship with the decline of AUC.

To apply this to practical use, we propose a SIMEX procedure to estimate these

two factors from real data, though the estimate is not very accurate. Then we define

a ratio of the decline of predictive accuracy due to measurement error compare to the

overall decline of predictive accuracy. If the ratio is large, the effect of measurement

error dominate the decline of predictive accuracy, otherwise, we do not need to worry

much about the measurement error. This could help researchers to decide whether to

improve technologies to measure the data more accurately or to use more advanced

regression techniques, find more relevant covariates or collect more samples to reduce

other errors causing the decline of predictive accuracy.
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CHAPTER III

Common and unique associations in screening

analyses with multiple subpopulations

3.1 Introduction

Many genomic studies involve the analysis of large numbers of association pa-

rameters. One such example would be a biomarker screening study in which a large

number of candidate markers are assessed for potential use as predictors of an outcome

of interest. The association parameter may be calculated between a single outcome

and each of thousands of potential molecular markers. Such studies often involve

populations that can be subdivided into several distinct subpopulations. Then it is

of interest to ask whether the marker/outcome associations are similar or different

among the subpopulations and to estimate the proportion of markers having large

effect in both subpopulations.

To set notations, let Xij, where i = 1, · · · ,m denote a set of markers, and let

j = 1, · · · , n denote independent research subjects. The Xij may represent gene

expression, genotype, DNA copy number, protein expression, DNA methylation, or

any of a number of other molecular assays. The molecular marker data are typically

then compared to a phenotype or outcome Yj (j = 1, · · · , n) to identify markers

that may be used to predict the outcome, or that may mechanistically influence
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the outcome. For univariate analysis, common association statistics are the Pearson

correlation coefficient ρ̂i calculated between the ith marker and the outcomes, or the

standardized two-group difference of mean marker levels (if the Yj indicate group

membership). To be concrete, we will use correlation coefficients in our presentation

here, but our results would apply to many other statistics.

The ultimate aim underlying most “screening studies” is to identify the largest

effects, and attribute them to specific markers or sets of markers. However screening

studies tend to be modestly powered, and strict control for multiple testing may

result in most of the dataset “uninteresting”. For example, the familywise error rate

(FWER) procedures (such as the Bonferroni correction) controls the probability of

making even one false positives in the multiple testings at level α. Then only a small

list of markers having the strongest effects are identified though the probability of

false positives is really low. An alternative approach, False Discovery Rate controlling

procedures are designed to control the expected proportion of false positives in a set of

findings (i.e. markers for which the null hypothesis could be rejected). Then a larger

list of markers are identified than the the familywise error rate procedures at the cost

of a given proportion of the markers in the list are false positives. If we increase the

number of markers in the list to be identified as interesting, then the proportion of

the markers in the list to be false positives is also increasing. Finally if we choose the

whole set of markers, then the proportion of the markers to be false positives equals

one minus the proportion of markers having large effects (true positive). Therefore

estimating the proportion of markers having large effects in one or two subpopulations

without attributing them to specific markers is our main interest. In this paper, we

use correlation coefficients ρi as the effect sizes, we will estimate the distribution of

the effect sizes F and the proportion of the magnitude of the effect sizes ρi greater

than some threshold t.

An effect size is a measure of the strength of the relationship between two vari-
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ables in a statistical population, or a sample-based estimate of that quantity. it is

commonly used in genome-wide association studies, and there are different types of

effect sizes used by researchers, like Pearson r correlation, effect sizes based on means

(Cohen’s d, Glass’s ∆) and odds ratios (Hedges and Olkin (1985)). Effect sizes often

refer to a statistic calculated from a sample of data, and are usually estimated with

error and may be biased. If many researchers are carrying out studies under low sta-

tistical power, the reported effect sizes are biased to be stronger than the true effects

(A et al. (2008)). Many researchers report the estimates of effect sizes in genome-wide

association studies and the empirical distributions of the significant effect sizes (Nak-

agawa and Cuthill (2007), Park et al. (2011)), but fewer of them focus on reducing

the bias of the estimate and the true effect sizes and the distribution of the true effect

sizes and even fewer of them focus on the overlap of the true effect sizes in multiple

subpopulations.

Here we focus on a situation that commonly arises in practice, where the units of

analysis are not homogeneous, and are structured into groups derived from different

subpopulations. Specifically, we have a sample of subjects with chronic kidney disease,

each subjects has one of nine underlying diseases that resulted in the kidney disease.

In this situation, it is often of interest to consider the fraction of markers having

large effect sizes in any given subpopulation and the fraction of markers having large

effect sizes in specific pairs of two subpopulations. That is, we ask whether the

number and strength of marker/outcome relationships are similar in the different

subpopulatons, and whether the strongest predictors are common or unique across

different subpopulations.

This task is made more challenging by the fact that statistical power is uneven

among the subpopulatons. Thus, even if the number of relationships of a given effect

size in two subpopulations are similar under FWER or FDR procedures, the better

powered subpopulation will show a greater number of associations. However effect
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size ρi is invariant to statistical power, then it is used in this chapter to represent the

marker/outcome relationship.

3.2 Measures of strength and overlap of effects

Here we view the effect sizes ρi = Cor(Y,Xi), the Pearson correlation coefficients

between the outcome and ith marker, to be a random variable having a univariate

distribution function F . Based on F , we can define a measure for a given threshold

t > 0 as the fraction of markers with effect size magnitude (e.g. true correlation

coefficient) equal to or exceeding t in one population:

N1(t) = P (|ρ| > t) = 1− F (t) + F (−t).

This measure N1(t) represents the strength of marker/outcome relationships, as larger

values of N1(t) represent stronger relationships.

If we have two subpopulations A and B, let ρAi and ρBi denote the population

associations for the ith marker and the outcome in subpopulations A and B. Then the

set of paired values (ρAi , ρ
B
i ) can be described with a bivariate distribution function

FAB. Based on FAB, we can define an overlap measure for a given threshold t > 0

as the fraction of markers with effect size magnitude equal to or exceeding t in both

subpopulations:

N2(t) = P (|ρA| > t, |ρB| > t)

= FAB(−t,−t) + 1− (FAB(t,∞) + FAB(∞, t)− FAB(t, t)). (3.1)

Similar with N1(t), N2(t) represents the strength of marker/outcome relationships in

both subpopulations.

Since we cannot observe the true effect sizes ρi, we work with the observed ef-

41



fect sizes ρ̂i = Ĉor(Y,Xi), where Xi = (Xi1, · · · , Xin). There is a estimation error

ϵ between ρ and ρ̂, where ϵ approximately has a normal distribution with standard

deviation 1
n
. This is motivated by the fact that over a large class of data generat-

ing distributions for the underlying independent paired data,
√
nρ̂ is asymptotically

standard normal. Here is the sampling error model:

ρ̂i = ρi + ϵi, (3.2)

where ϵi ∼ N(0, 1
n
).

Usually we will transform the correlation coefficient ρ to a variance stablized

standardized statistic Z , by using the Fisher transformation

Zi =

√
n− 3

2
log

1 + ρ̂i
1− ρ̂i

,

and vary approximately with a normal distribution around their cental value. We

can write

Zi = θi + ηi,

where ηi is approximately normal and

θi ≈
√
n− 3

2
log

1 + ρi
1− ρi

,

is an approximate relationship between θi and our true effect sizes ρi. Now we focus

on the standardized parameter θi and the standardized statistic Zi instead of the true

effect size ρi and the estimated effect size ρ̂i, since θi and Zi are standardized and have

invariant variances with different ni, which is the number of subjects in subgroup i.

Then it is more convenient to estimate the distribution of the standardized parameter

θi than the distribution of the true effect sizes ρi. Also it is sufficient to measure

R1(t) = P (|θ| > t) instead of N1(t̃) = P (|ρ| > t̃), where t =
√
n−3
2

log 1+t̃
1−t̃

.
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For two subpopulations A and B, (ρA, ρB) are the population correlation coeffi-

cients between markers and outcome in subpopulaton A and B. The variance stablized

standardized fisher transformed statistics

ZA
i =

√
nA − 3

2
log

1 + ρ̂Ai
1− ρ̂Ai

,

ZB
i =

√
nB − 3

2
log

1 + ρ̂Bi
1− ρ̂Bi

.

We can write

ZA
i = θAi + ηAi , ZB

i = θBi + ηBi ,

where (ηAi , η
B
i ) follow independent standard normal distributions. Then

θAi ≈
√
nA − 3

2
log

1 + ρAi
1− ρAi

,

θBi ≈
√
nB − 3

2
log

1 + ρBi
1− ρBi

,

are the approximate relationships between θAi and ρAi , θ
B
i and ρBi . (θAi , θ

B
i ) are the

variance stablized standardized parameters in two subpopulations A and B, and it

is more convenient to estimate the bivariate distribution of the pairs of parameters

(θAi , θ
B
i ). Then it is sufficient to estimate R2(t1, t2) = P (|θA| > t1, |θB| > t2) instead

of N2(t) = P (|ρA| > t, |ρB| > t), where t1 =
√
nA−3
2

log 1+t
1−t

, t2 =
√
nB−3
2

log 1+t
1−t

.

3.2.1 Plug-in estimation of effect size summaries

The most common and direct way to estimate R1(t) is just to use the standardized

statistic Zi. We can get the empirical distribution function F̂ :

F̂ (t) =
∑
i

I(Zi < t)/m
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to substitute F when plugging into R1(t). This is R̂1(t) called the plug-in estimate

of R1(t), which can be substantially biased.

From the sampling error model, we know the distribution of Zi is the convolution

of the distribution of θi and a standard normal distribution. The bias of R̂1(t) is

easily seen to be related to the shape of F . The bias is small when F is diffuse.

For example, if F is a uniform distribution, there is no bias since f ⋆ ϕ ≈ f when

f ∼ Unif(−a, a) for large a. The bias is large when F is concentrated near zero. For

example, if f is a point mass at zero, then f ⋆ ϕ is a normal distribution whose tail

probabilities differ strongly from those of f .

For two subpopulations A and B, the plug-in estimator R̂2(t1, t2) is calculated by

plugging in the empirical distribution of the pairs of standardized statistics (ZA, ZB),

F̂AB(t1, t2) =
∑
ij

I(ZA
i < t1 & ZB

i < t2)/m

to R2(t1, t2). The direction of bias in R̂2(t1, t2) is difficult to anticipate. The standard-

ized statistics (ZA, ZB) are more dispersed than their true standardized parameters

(θA, θB). This will bias R2(t1, t2) upward. But (ZA, ZB) will be less dependent than

(θA, θB). This will bias R2(t1, t2) downward.

3.2.2 Illustration of bias in plug-in estimates

We present some examples to highlight how the bias in the plug-in estimate of

R2(t1, t2) occur. Figure 3.1a depicts one extreme situation, where the true (ρA, ρB)

values cluster just below the threshold value t, as depicted in the darker grey color.

The lighter grey color depicts the observed distribution of (ρ̂A, ρ̂B) values. In this

extreme case, all the true parameters fall just outside the region of interest (the set

of points x,y such that min(x, y) ≥ t), while up to half of these estimated points are

extended to fall inside the region of interest. Figure 3.1b shows a contrasting extreme
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Figure 3.1: Schematic example showing positive bias (a) and negative bias (b) be-
tween the observed and true proportions of association statistics in a re-
gion of interest. The distribution of true statistics is shown in the darker
color, and the distribution of observed statistics is shown in the lighter
color. The region of interest is (x, y : min(x, y) ≥ t).

situation, where all the true parameters lie inside the region of interest, but up to

three quarters of the estimated parameters are expected to lie outside it.

Figure 3.2 and 3.3 are two realistic examples from the CKD data described in

section 1.2 of the thesis. The standardized statistic Zi is the fisher transformation

of the sample correlation coefficient ρ̂i between each marker and the outcome GFR

for different disease subgroups. The right plots of figure 3.2 and 3.3 are the scatter-

plots of the standardized statistics (ZA
i , Z

B
i ) for disease subgroups (MCD, LD) and

(IgA, Pima). Though we do not know the true standardized parameter θi for disease

subgroups, we could estimate them using the methods I will discuss later. Assume

the estimate of the true standardized parameter θ̂i is known, the left plots of figure

3.2 and 3.3 are the scatterplots of the estimate of the true standardized parameters

(θ̂Ai , θ̂
B
i ) for disease subgroups (MCD, LD) and (IgA, Pima).

We could estimate R2(t1, t2) using the standardize statistics ZA
i , Z

B
i by

R̂2(t1, t2) =
m∑
i=1

I{|ZA
i |>t1 & |ZB

i |>t2}/m.

Also we could estimate R2(t1, t2) using the estimate of the true standardized param-
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Figure 3.2: Left is the scatterplot of the estimated standardized parameters θAi , θ
B
i for

disease subgroups MCD, LD; right is the scatterplot of the standardized
statistics ZA

i , Z
B
i for disease subgroups MCD, LD.

Figure 3.3: Left is the scatterplot of the estimated standardized parameters θAi , θ
B
i for

disease subgroups IgA, Pima; right is the scatterplot of the standardized
statistics ZA

i , Z
B
i for disease subgroups IgA, Pima.

eters θ̂Ai , θ̂
B
i by

R̃2(t1, t2) =
m∑
i=1

I{|θ̂Ai |>t1 & |θ̂Bi |>t2}/m.

Figure 3.2 shows R̃2(1, 1) = 0.15 and R̂2(1, 1) = 0.17. There is not much differ-

ence between R̃2(1, 1) and R̂2(1, 1) in this situation, because the estimate of the true

standardized parameters (θAi , θ
B
i ) in disease subgroups IgA and Pima are highly cor-

related with r = 0.7, then the standardized statistics (ZA
i , Z

B
i ) are less dependent

than (θAi , θ
B
i ) which will bias the measure down and at the same time (ZA

i , Z
B
i ) are

more dispersed than (θAi , θ
B
i ) which will bias the measure up.

Figure 3.3 shows R̃2(1, 1) = 0.0 and R̂2(1, 1) = 0.06. It appears that there is little
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correlation of the estimate of the true standardized parameters (θAi , θ
B
i ) between MCD

and LD disease subgroups, since LD is the control group of people who do not have

kidney disease which is irrelevant to other disease subgroups in CKD data. The

measure of R2(1, 1) will always bias upwards since (ZA
i , Z

B
i ) will be more dispersed

than (θAi , θ
B
i ) but the dependencies will remain the same.

3.3 Approaches to bias reduction of the estimation of the

effect size summaries

In order to estimate R1(t) and R2(t1, t2) without much bias, we need to first

estimate univariate distribution function F (or FAB for two subgroups) by considering

the effects of the sampling error ηi on standardized sample statistics Zi. Estimating F

based on noisy observations with known error distribution is the well-studied “density

deconvolution” problem.

We have two general ways to estimate the distribution of the true standardized

parameters (θAi , θ
B
i ). One is parametric way if we know the statistical model of the

distribution, like normal distribution, t distribution and here we will also introduce

two ways to estimate the unknown parameters of the distribution, which are moment

estimates and maximum likelihood estimates. The other way to estimate the dis-

tribution is nonparametric way if we have no idea about how the distribution looks

like. Here we also introduce two ways, rescaling method and copula method. In the

following paper, we will discuss the advantages and disadvantages of all these meth-

ods provided with different distributions of the true standardized parameters θ both

in univariate and multivariate cases and simulation results are given. Then we will

apply these methods to real data set (CKD).
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3.3.1 Parametric approaches

3.3.1.1 Moment estimate

If the framework of the distribution F is known with parameter αj, j = 1, · · · , k,

k is the number of parameters need to be estimated. Then the first k moments of θ

would be:

µ1 = E[θ1] = g1(α1, · · · , αk),

µ2 = E[θ2] = g2(α1, · · · , αk),

...

µk = E[θk] = gk(α1, · · · , αk),

where g1, · · · , gk is known for the known distribution F . Let µ̂j = (
∑n

i=1 θ
j
i )/m be

the jth sample moment corresponding to the population moment µj, the method of

moments estimator for α1, · · · , αk denoted by α̂1, · · · , α̂k is defined by the solution to

the equations:

µ̂1 = g1(α̂1, · · · , α̂k),

µ̂2 = g2(α̂1, · · · , α̂k),

...

µ̂k = gk(α̂1, · · · , α̂k). (3.3)

Since g1, · · · , gk is known, to get the moment estimates α̂1, · · · , α̂k of α1, · · · , αk, we

need to estimate the sample moments µ̂1, · · · , µ̂k. From the sampling error model,

we know θi = Zi − ηi and η̄i = 0, V̂ ar(ηi) = 1, ηi is independent with θi. Then the

sample moments µ̂1, · · · , µ̂k could be easily calculated from the sample standardized
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statistic {Zi} by

µ̂1 =
∑m

i=1 θi/m =
∑m

i=1 Zi/m,

µ̂2 =
∑m

i=1 θ
2
i /m =

∑m
i=1 Z

2
i /m− 1,

µ̂3 =
∑m

i=1 θ
3
i /m =

∑m
i=1 Z

3
i /m− 3

∑m
i=1 Zi/m,

· · · . (3.4)

Then by plugging into the value of µ̂1, · · · , µ̂k to equations 3.3, α̂1, · · · , α̂k could be

solved.

Here we will introduce generalized normal distribution as an example of the dis-

tribution F . Generalized normal distribution is a family of continuous probability

distribution in which the shape parameter can be used to introduce skew. When

the shape parameter is zero, the normal distribution results. Positive values of the

shape paramter yield left-skewed distribution bounded to the right, and negative val-

ues of the shape parameter yield right-skewed distributions bounded to the left. Its

probability density function is

f(x) =
ϕ(y)

α− κ(x− ξ)
,

where

y = −1

κ
log[1− κ(x− ξ)

α
] if κ ̸= 0.

ϕ is the standard normal pdf, x ∈ (−∞, ξ + α/κ) if κ > 0; x ∈ (−∞,∞) if κ = 0;

x ∈ (ξ + α/κ,∞) if κ < 0. The functions g1, · · · , g3 are

g1(α, κ, ξ) = ξ − α

κ
(eκ

2/2 − 1),

g2(α, κ, ξ) =
α2

κ2
eκ

2

(eκ
2 − 1) + g21,
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g3(α, κ, ξ) =
α3eκ

3
(3eκ

2 − e3κ
2 − 2)

κ3
sign(κ) + 3g1g2 − 2g31.

Then if we could calculate the values of µ̂1, · · · , µ̂3 using the sample standardized

statistics Zi by equations 3.4 and use the functions g1, · · · , g3 above, α̂, κ̂, ξ̂ could be

estimated using equations 3.3.

3.3.1.2 Maximum Likelihood estimate

As we all know maximum-likelihood estimation (MLE) is a method of estimating

the parameters of a given statistical model. In general, for a fixed set of data and

underlying statistical model, the method of maximum likelihood selects values of

the model parameters that produce a distribution that gives the observed data the

greatest probability (i.e. parameters that maximum the likelihood function). Here we

have observed statistic {Zi}, and if we know the density function of true parameter

{θi} is f(θ, α), α = (α1, · · · , αk), using sampling error model, we know the density

function for {Zi} is g(Z, α) = f(θ, α)∗ϕ, the convolution of f and a standard normal

density. The likelihood function is

L(α;Z1, · · · , Zm) =
m∏
i=1

g(Zi, α).

In normal and many other cases, if the statistical model is known, the method of

moments and MLE method would be the most simple and quick way to estimate the

parameters of the distribution function F of our true parameters θ and then estimate

the measure of the fraction of the markers with effect size magnitude greater than

some threshold in one population R1(t).

For two subpopulations A and B, if the bivariate distribution FAB of the true pa-

rameters θA, θB is known with parameter (α, β, r), α = (α1, · · · , αk), β = (β1, · · · , βk).

We could still use moments method and MLE method to estimate the parameters of

the bivariate distribution FAB and then estimate the overlap measure of the fraction
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of the markers with effect size magnitude both greater than some threshold t in two

subpopulations R2(t1, t2). Here we use bivariate normal distribution as an example

of FAB in two subpopulations A, B. Then the probability density function for true

standardized parameters (θAi , θ
B
i ) is:

f i
AB(θ

A
i , θ

B
i ;µA, µB, σA, σB, r)

= 1
2πσAσB

√
1−r2

exp(− 1
2(1−r2)

[
(θAi −µA)2

σ2
A

+
(θBi −µB)2

σ2
B

− 2r(θAi −µA)(θBi −µB)

σAσB
]), (3.5)

where r is the correlation between θA and θB and σA > 0, σB > 0. Then the

probability density function for the sample standardized statistics (ZA
i , Z

B
i ) is:

f i
AB(Z

A
i , Z

B
i ;µA, µB, σA, σB, r)

= 1
2πσ̃Aσ̃B

√
1−r2

exp(− 1
2(1−r2)

[
(ZA

i −µA)2

σ̃2
A

+
(ZB

i −µB)2

σ̃2
B

− 2r(ZA
i −µA)(ZB

i −µB)

σ̃Aσ̃B
]). (3.6)

where σ̃A =
√

σ2
A + 1, σ̃B =

√
σ2
B + 1. Then the likelihood function for the observed

standardized statistics (ZA, ZB) is

L(ZA, ZB;µA, µB, σA, σB, r) =
m∏
i=1

f i
AB(Z

A
i , Z

B
i ;µA, µB, σA, σB, r). (3.7)

The parameters µA, µB, σA, σB and r of the bivariate normal distribution FAB could

be estimated by maximizing the likelihood function L(ZA, ZB;µA, µB, σA, σB, r).

For moment estimators of µA, µB, σA, σB and r of the bivariate normal distribution

FAB based on the observed standardized statistics (ZA
i , Z

B
i ). First we know the

relationships between the parameters µA, µB, σA, σB, r and the first and second
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moments of FAB:

µA = E[θA], µB = E[θB],

µ2
A + σ2

A = E[θ2A], µ2
B + σ2

B = E[θ2B],

r = cor(θA, θB) = cov(θA, θB)/(sd(θA) ∗ sd(θB)). (3.8)

Second we could estimate the sample moments of FAB using the observed standard-

ized statistics ZA
i , Z

B
i . Since we have the equations ηAi = ZA

i − θAi , η
B
i = ZB

i − θBi ,

i = 1, · · · ,m. As noted above, basic asymptotic theory suggests treating ηA|θA as

following a standard normal distribution. If we view θA as random, ηA is uncondition-

ally standard normal. We also assume that ηA and θA are independent. A parallel

set of statements holds for ηB and θB. Under these assumptions, we get the identity

that

η̄A =
∑m

i=1 η
A
i /m = 0, η̄B =

∑m
i=1 η

B
i /m = 0.

var(ηA) =
∑m

i=1(η
A
i )

2/m = 1, var(ηB) =
∑m

i=1(η
B
i )

2/m = 1.

Cov(θA, ηA) =
∑m

i=1 θ
A
i η

A
i /m = 0, Cov(θB, ηB)

∑m
i=1 θ

B
i η

B
i /m = 0. (3.9)

Using these identities, we have

∑m
i=1 θ

A
i /m =

∑m
i=1 Z

A
i /m−

∑m
i=1 η

A
i /m =

∑m
i=1 Z

A
i /m,∑m

i=1 θ
B
i /m =

∑m
i=1 Z

B
i /m−

∑m
i=1 η

B
i /m =

∑m
i=1 Z

B
i /m,∑m

i=1(Z
A
i )

2/m =
∑m

i=1(θ
A
i )

2/m+ 2
∑m

i=1 θ
A
i η

A
i /m+

∑m
i=1(η

A
i )

2/m =
∑m

i=1(θ
A
i )

2/m+ 1.∑m
i=1(Z

B
i )

2/m =
∑m

i=1(θ
B
i )

2/m+ 2
∑m

i=1 θ
B
i η

B
i /m+

∑m
i=1(η

B
i )

2/m =
∑m

i=1(θ
B
i )

2/m+ 1.

ˆCov(ZA, ZB) = ˆCov(θA + ηA, θB + ηB) = ˆCov(θA, θB). (3.10)

Then we could estimate the parameters µA, µB, σA, σB and r by solving the following
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equations:

µ̂A =
∑m

i=1 θ
A
i /m =

∑m
i=1 Z

A
i /m,

µ̂B =
∑m

i=1 θ
B
i /m =

∑m
i=1 Z

B
i /m,

µ̂2
A + σ̂2

A =
∑m

i=1(θ
A
i )

2/m =
∑m

i=1(Z
A
i )

2/m− 1,

µ̂2
B + σ̂2

B =
∑m

i=1(θ
B
i )

2/m =
∑m

i=1(Z
B
i )

2/m− 1,

r̂ = ˆcor(θAi , θ
B
i ) = ˆCov(ZA

i , Z
B
i )/(σ̂Aσ̂B), (3.11)

3.3.2 Nonparametric approaches

3.3.2.1 Rescaling estimator

If we do not know the statistical model of the true standardized parameters

(θA, θB), there is a method called “Rescaling method” may help estimate R1(t) and

R2(t1, t2). The basic idea of rescaling method is to produce two sets of points whose

sample variance, and sample mean are the same with true parameters (θA, θB) and

the correlation of these two sets of points is the same with the correlation between

true parameters (θA, θB). This will give us two sets of points whose dispersion and

degree of association are comparable to the true standardized parameters θA and θB

values. The empirical distribution function of these points, denoted as F̃AB will be

plugged into R1(t) and R2(t1, t2).

We could calculated the sample variance σ̂2
A, σ̂

2
B, sample mean µ̂A, µ̂B and sample
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correlation r̂ from equations 3.11:

µ̂A =
∑m

i=1 θ
A
i /m =

∑m
i=1 Z

A
i /m,

µ̂B =
∑m

i=1 θ
B
i /m =

∑m
i=1 Z

B
i /m,

µ̂2
A + σ̂2

A =
∑m

i=1(θ
A
i )

2/m =
∑m

i=1(Z
A
i )

2/m− 1,

µ̂2
B + σ̂2

B =
∑m

i=1(θ
B
i )

2/m =
∑m

i=1(Z
B
i )

2/m− 1,

r̂ = ˆcor(θAi , θ
B
i ) = ˆCov(ZA

i , Z
B
i )/(σ̂Aσ̂B),

For univariate case, we have the transformed statistics

Z̃ = λ1Z + λ2, (3.12)

where λ1 ranges from -1 to 1 is set to meet the desired variance σ̂2 and then choose

λ2 which will not effect the variance of Z̃ to meet the desired mean value µ̂. Once Z̃

is generated, the rescaling estimate of R1(t) = P (|Z̃| > t).

For bivariate case, we have the transformed statistics

Z̃A = λA1(ZA + λrZB) + λA2 ,

Z̃B = λB1(ZA + λrZB) + λB2 . (3.13)

Note that as λr ranges from -1 to 1, the correlation coefficient between Z̃A and Z̃B

ranges from -1 to 1 monotonically. Thus there is always a unique value of λr such

that the correlation between Z̃A and Z̃B equals r̂. This value can easily be found

numerically using bisection computing method. Once this value, λr̂, is found, the

correlation will not change when λA1 , λB1 are set to give the desired variance σ̂2
A, σ̂

2
B

and λA2 , λB2 are set to give the desired mean µ̂A, µ̂B. Once Z̃A, Z̃B are generated,

the rescaling estimate of R2(t1, t2) = P (|Z̃A| > t1, |Z̃B| > t2).

We note that this approach is exact for large samples if FAB is approximately
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Gaussian. If the exact values of r, σA, σB are used rather than the estimates, the

(ZA
i , Z

B
i ) pairs can be linearly transformed to the exact joint distribution of (θA, θB).

If FAB is not Gaussian, the linearly transformed (Z̃i
A
, Z̃i

B
) values will in general not

be exactly distributed according to FAB, even if r, σA, σB are estimated exactly.

3.3.2.2 Copula method

If we specify a parametric statistical model FAB for the joint distribution of the

true standardized parameters (θAi , θ
B
i ), we could use the MLE or method of moments

to estimate the parameters of FAB. As a more general approach, we can follow the

idea used in a Gaussian Copula to describe the FAB. Specifically, we model (θAi , θ
B
i ) as

(tA(X
A
i ), tB(X

B
i )), where (XA

i , X
B
i ) are centered bivariate normal random variables,

with SD(XA
i ) = SD(XB

i ) = 1, and cor(XA
i , X

B
i ) = r, and tA, tB are non-decreasing

real-valued functions of a real variable.

To review, the basic idea of a copula is that we consider a random vector (Y1, · · · , Yd).

Suppose its marginal CDFs F1, · · · , Fd are continuous functions. By applying the

probability integral transform to each component, the random vector

(U1, · · · , Ud) = (F1(Y1), · · · , Fd(Yd))

has uniform margins. The copula of (Y1, · · · , Yd) is defined as the joint cumulative

distribution function of (U1, · · · , Ud),

C(u1, · · · , ud) = P [U1 ≤ u1, · · · , Ud ≤ ud].

The copula C contains all information on the dependence structure between the com-

ponents of (Y1, Y2, · · · , Yd) whereas the marginal cumulative distribution functions Fi

contain all information on the marginal distributions. The importance of the above

is that the reverse of these steps can be used to generate random samples from gen-
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eral classes of multivariate probability distributions. That is, given a procedure to

generate a sample (U1, U2, · · · , Ud) from the copula distribution, the required sample

can be constructed as

(Y1, Y2, · · · , Yd) = (F−1
1 (U1), F

−1
2 (U2), · · · , F−1

d (Ud)).

The inverses F−1
i are unproblematic as the Fi were assumed to be continuous. The

above formula for the copula function can be rewritten to correspond to this as:

C(u1, · · · , ud) = P [Y1 < F−1
1 (u1), · · · , Yd < F−1

d (ud)]

Here we use the Gaussian copula by projecting a multivariate normal distribution

on Rd by means of the probability integral transform to the unit cube [0, 1]d. For a

given correlation matrix Σ, the Gaussian copula is

CGauss
Σ (u) = ΦΣ(Φ

−1(u1), · · · ,Φ−1(ud)),

where Φ−1 is the inverse cumulative distribution function of a standard normal distri-

bution and ΦΣ is the joint cumulative distribution function of a multivariate normal

distribution with mean vector zero and covariance matrix equal to the correlation

matrix Σ. Let

X1 = Φ−1(u1) = Φ−1F (Y1), · · · , Xd = Φ−1(ud) = Φ−1F (Yd), (3.14)

then X1, · · · , Xd follows a joint multivariate normal distribution with mean vector

zero and covariance matrix equal to the correlation matrix Σ.

In this paper, we focus on estimating the joint distribution of the true standardized

parameters (θAi , θ
B
i ) for two subgroups A, B. Let
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XA
i = Φ−1FA(θ

A
i ), XB

i = Φ−1FB(θ
B
i ),

then (XA
i , X

B
i ) follows a bivariate normal distribution with E(XA

i ) = E(XB
i ) = 0,

SD(XA
i ) = SD(XB

i ) = 1, and correlation matrix Σ =

1 r

r 1

, −1 < r < 1, having

density function fΣ(X
A
i , X

B
i ).

Also in our analysis, we cannot use the standard copula, because we are seeking

to model the joint distribution of (θAi , θ
B
i ), which are not observed. Therefore, we

extend the basic copula idea as follows. Since we do not observe θAi and θBi , we

cannot simply compute their empirical distribution functions FA, FB and quantile

functions. We therefore model tA = Φ−1FA and tB = Φ−1FB as continuous linear

splines and tA, tB map θAi to XA
i , θ

B
i to XB

i . Then the joint density function for

(θAi , θ
B
i ),

f(θAi , θ
B
i ) = fΣ(tA(θ

A
i ), tB(θ

B
i ))|

d(tA(θ
A
i ))

dθAi
||d(tB(θ

B
i ))

dθBi
|, (3.15)

and the joint density function for the observed standardized statistics (ZA
i , Z

B
i ),

f(ZA
i , Z

B
i ) = f(θAi , θ

B
i ) ⋆ ϕ, (3.16)

where ϕ represent a standard bivariate normal distribution with correlation matrix

I, can be easily computed numerically. We then optimize the joint log likelihood

function of the standardized sample statistics ZA, ZB,

L(tA, tB, r;ZA, ZB) =
m∑
i=1

log f(ZA
i , Z

B
i ) =

m∑
i=1

log[f(θAi , θ
B
i ) ⋆ ϕ]. (3.17)

over tA, tB and the correlation parameter r.

our approach for optimizing 3.17 is heuristic, and employs a greedy stochastic op-

timization. We first define a grid Gr on [−1, 1], and for each r ∈ Gr, we optimize 3.17
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over (tA, tB). The optimization over (tA, tB) are conducted by generating random

non-decreasing sequences D, and first setting

t
(i+1)
A = (1− λ)t

(i)
A + λD,

and fix t
(i)
B , where λ initially is set at λ = 0.5, and is successively halved until a higher

log likelihood value of 3.17 is reached,

L(t
(i+1)
A , t

(i)
B , r;ZA, ZB) > L(t

(i)
A , t

(i)
B , r;ZA, ZB).

If no such value is reached, the function of tA at the (i + 1)th step will not change,

t
(i+1)
A = t

(i)
A . Second set

t
(i+1)
B = (1− λ)t

(i)
B + λD,

and fix t
(i+1)
A , where λ initially is set at λ = 0.5, and is successively halved until a

higher log likelihood value of 3.17 is reached,

L(t
(i+1)
A , t

(i+1)
B , r;ZA, ZB) > L(t

(i+1)
A , t

(i)
B , r;ZA, ZB).

If no such value is reached, the function of tB at the (i + 1)th step will not change,

t
(i+1)
B = t

(i)
B . A random non-decreasing sequences D is generated in each iteration and

after k iterations, the final t
(k)
A and t

(k)
B is estimated from initial t

(0)
A = t

(0)
B = I. Then

we compare the log likelihood value of 3.17, L(t
(k)
A , t

(k)
B , r;ZA, ZB) for each correlation

parameter r ∈ Gr and report the value of r that optimize the log likelihood value

of 3.17 and their corresponding t
(k)
A and t

(k)
B .

The sequence D is generated by first simulate k i.i.d. values {U1i} uniformly on

[−mx1,mx2], where mx1,mx2 are values uniformly distributed on [−10, 10] and k is

the number of values in {U1i}, which is a random integer from 3 to 20. Then simulate

k i.i.d. values {U2i} uniformly on [mx3,mx4], where mx3,mx4 are the minimum and
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maximum values of observed standardized statistic Zi and k is a random integer from

3 to 20. Then sequences {U1i} and {U2i} are sorted from low to high and there is

a function Fu mapping {U2i} to {U1i} and any two adjacent values (U1i, U1,i+1) are

connected linearly. We construct a grid G on [mx3,mx4] with 200 knots, then the

sequence D = Fu(G).

3.4 Simulation study for univariate analysis

First, we focus on the univariate analysis. We will estimate the marginal dis-

tribution of the standardized parameter θ, and then estimate R1(t) when the true

marginal distribution of θ has three situations. We will compare the results of the

plug-in estimates, moment estimates, mle estimates, rescaling estimates and copula

estimates of R1(t) with the true value of R1(t). The following are the simulation

steps:

1. Generate true standardized parameter θi, i = 1, · · · ,m, m = 10000 from a

given distribution F , F has three situations illustrated above, i): N(0, 1),

(ii): t distribution with df = 3 (iii): generalized normal distribution with

ξ = −0.5, α = 2, κ = −0.5. Then generate a sequence of theresholds T vary from

0 to 4 by 0.2 and the true value of R1(T ) is calculated by R1(t) =
∑m

i=1 I|θi|>t/m

for every t in T .

2. The observed standardized statistic Zi is estimated by adding standard normal

errors to θi, Zi = θi + ηi, ηi follows standard normal distribution. Then the

plug-in estimator of R1(T ) is calculated by R1(t) =
∑m

i=1 I|Zi|>t/m for every t

in T .

3. If we assume that F is a normal distribution with mean µ and standard deviation

σ, no matter what the true distribution F is. The moment estimator of R1(T )

is calculated by estimating the parameters of the distribution F by matching
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the first 2 moments of the distribution F to the first 2 sample moments of θ.

From equation 3.11, we know that

µ̂ =
∑m

i=1 Zi/m,

σ̂ =
√∑m

i=1 Z
2
i /m− (

∑m
i=1 Zi/m)2 − 1.

Then the moment estimator of R1(T ) is calculated by R1(t) = 1 − Φ( t−µ̂
σ̂
) +

Φ(−t−µ̂
σ̂

).

4. The mle estimator of R1(T ) is calculated by estimating the parameters of the

distribution F by maximizing the likelihood density function of the observed

standardized statistic Z,

L(Z;µ, σ) =
∏m

i=1 f(Zi;µ, σ),

f(Zi;µ, σ) =
1√
2πσ2

exp− Z2
i

2∗σ2 ⋆ ϕ,

which is the convolution of the density function of θ and a standard normal

density function. Then the mle estimator of R1(T ) is calculated by R1(t) =

1− Φ( t−µ̂
σ̂
) + Φ(−t−µ̂

σ̂
).

5. The rescaling estimator of R1(T ) is calculated by transforming the observed

statistic Z to a new vector X which has the same mean and variance with the

true parameter θ by using equation 3.12, then R1(T ) is calculated by R1(t) =∑n
i=1 I|Xi| > t/n for every t in T .

6. The copula estimator of R1(T ) for univariate analysis is just focusing on how to

estimate the monotone increasing functions t that maps the true parameters θ

to a random variable X which follows a standard normal distribution using the

linear spline method we introduced in section 3.2.2. Once t̂ is the estimated,

we could construct a sample of values X with sample size n = 10000 from a
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Figure 3.4: Plots of the true R1(t) and the average of the estimate of R1(t) for each
parametric and nonparametric methods when the true marginal distri-
bution is N(0, 1) and the grey area is the approximate 95% confidence
intervals for the estimate of R1(t).

standard normal distribution, and then construct a sample of estimated param-

eters θ by θ̃ = t−1(X). Then the copula estimator of R1(T ) is calculated by

R1(t) =
∑m

i=1 I|θ̃i|>t/n for every t in T .

7. The procedure was repeated 100 times to get the average value and the standard

deviation of the estimate of R1(T ) for each method. The plots comparing the

true R1(t) and the average of the estimate of R1(T ) and the approximate 95%

confidence intervals for the estimate of R1(t) for each method is constructed.

Figure 3.4 shows the situation when the true parameters θ follows a standard

normal distribution, all the methods except the plug-in method perform the same,

all the estimates of the R1(T ) are very close to the true value of R1(T ) and have

very small variation. Since the parametric model of the marginal distribution of θ

for moments and mle method is the same with the true marginal distribution of θ

and the variance of the true parameters θ is fairly large, then the moment and mle
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Figure 3.5: Plots of the true R1(t) and the average of the estimate of R1(t) for each
parametric and nonparametric methods when the true marginal distribu-
tion is t(3) and the grey area is the approximate 95% confidence intervals
for the estimate of R1(t).

Figure 3.6: Plots of the true R1(t) and the average of the estimate of R1(t) for each
parametric and nonparametric methods when the true marginal distribu-
tion is generalized normal distribution with ξ = −0.5, α = 2, κ = −0.5
and the grey area is the approximate 95% confidence intervals for the
estimate of R1(t).
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method perform well. So do the rescaling and copula method.

Figure 3.5 shows the situation when the true parameters θ follows t distribution

with df = 3, then the parametric estimates of R1(T ) which assume the normal model

of the distribution of θ are biased. While the copula method give a more accurate

estimate than the other methods but with more variabilities.

Figure 3.6 shows the situation when the true parameters θ follows a generalized

normal distribution with ξ = −0.5, α = 2, κ = −0.5, now the distribution of θ is not

symmetric, then the parametric estimates of R1(T ) which assume the normal model

of the distribution of θ show much deviation from the true R1(T ), and perform even

worse than the plug-in estimates, while the copula method perform the best.

As a conclusion, the copula method for univariate analysis performs the better

than the other method if the distributions of the true standardized parameter θ is

not normal. Then we will look at whether this conclusion is also true for bivariate

analysis.

3.5 Simulation study for bivariate analysis

Now, we focus on the bivariate analysis. We will estimate the bivariate distribu-

tion FAB of the standardized parameters (θA, θB) for two subgroups A, B, and then

estimate R2(t, t) when the true bivariate distribution is known. We will compare the

results of the plug-in estimates, moment estimates, mle estimates, rescaling estimates

and copula estimates of R2(t, t) with the true value of R2(t, t). The following are the

simulation steps:

1. Generate scores XA
i , X

B
i , i = 1, · · · ,m, m = 10000 from a bivariate normal

distribution with mean vectors 0 and correlation matrix Σ =

1 r

r 1

, r = 0 or
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0.5. Generate true standardized parameters (θAi , θ
B
i ) by

θAi = t−1
A (XA

i ), θBi = t−1
B (XB

i ).

tA, tB has three situations, (i): tA(x) = tB(x) = x, then (θAi , θ
B
i ) follows stan-

dard bivariate normal distribution with correlation r. (ii): tA(x) = tB(x) =

Φ−1t3(x), then θAi , θ
B
i follows marginal t distribution with df = 3 and when they

are transformed back to XA
i , X

B
i using function tA, tB, they have correlation

r. (iii): tA(x) = tB(x) = 2 log (1 + (x+ 0.5)/4), then θAi , θ
B
i follows marginal

generalized normal distribution with ξ = −0.5, α = 2, κ = −0.5 and when they

are transformed back to XA
i , X

B
i using function tA, tB, they have correlation r.

Then generate a sequence of theresholds T vary from 0 to 4 by 0.2 and the true

value of R2(T, T ) is calculated by R2(t, t) =
∑m

i=1 I{|θAi |>t & |θBi |>t}/m for every

t in T .

2. The observed standardized statistics (ZA
i , Z

B
i ) are estimated by adding standard

normal errors to (θAi , θ
B
i ).

ZA
i = θAi + ηAi , ZB

i = θBi + ηBi ,

where (ηAi , η
B
i ) follows independent standard normal distribution. Then the

plug-in estimator ofR2(T, T ) is calculated byR2(t, t) =
∑m

i=1 I{|ZA
i |>t & |ZB

i |>t}/m

for every t in T .

3. If we assume that the joint distribution FAB of (θAi , θ
B
i ) is bivariate normal with

parameters µA, µB, σA, σB, r, the moment estimator of R2(T, T ) is calculated

by estimating the parameters of the distribution FAB by matching the first 2

moments of the distribution FAB to the first 2 sample moments of θAi , θ
B
i and
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the sample correlation between θAi and θBi . From equation 3.11, we know that

µ̂A =
∑m

i=1 Z
A
i /m,

µ̂B =
∑m

i=1 Z
B
i /m,

σ̂2
A =

∑m
i=1(Z

A
i )

2/m− (
∑m

i=1 Z
A
i /m)2 − 1,

σ̂2
B =

∑m
i=1(Z

B
i )

2/m− (
∑m

i=1 Z
B
i /m)2 − 1,

r̂ = ˆCov(ZA
i , Z

B
i )/(σ̂Aσ̂B).

Then we could generate samples (X̃A, X̃B) from this bivariate normal distribu-

tion with parameters µ̂A, µ̂B, σ̂A, σ̂B, r̂. Then the moment estimator of R2(T, T )

is calculated by R2(t, t) =
∑m

i=1 I{|X̃A
i |>t & |X̃B

i |>t}/m for every t in T .

4. With the same assumption of step 3, The mle estimator of R2(T, T ) is calculated

by estimating the parameters of the distribution FAB by maximizing the like-

lihood density function of the observed standardized statistic (ZA
i , Z

B
i ), which

is the convolution of the density function of (θAi , θ
B
i ) and a standard normal

density function from equations 3.7. Once the parameters µ̂A, µ̂B, σ̂A, σ̂B, r̂ are

estimated using the mle method, we could generate samples (X̃A, X̃B) from this

bivariate normal distribution with parameters µ̂A, µ̂B, σ̂A, σ̂B, r̂. Then the mle

estimator of R2(T, T ) is calculated by R2(t, t) =
∑m

i=1 I{|X̃A
i |>t & |X̃B

i |>t}/m for

every t in T .

5. The rescaling estimator of R2(T, T ) is calculated by transforming the observed

statistic (ZA, ZB) to a new vector (XA, XB) which has the same mean and

variance with the true parameter (θA, θB) and the correlation between (XA, XB)

should equal to the correlation between (θA, θB) by using equation 3.13, then

R2(T, T ) is calculated by R2(t, t) =
∑n

i=1 I{|XA
i |>t & |XB

i |>t}/n for every t in T .

6. The copula estimator of R2(T, T ) is calculated by estimating the functions tA,
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tB, which maps the true standardized parameters (θA, θB) to (XA, XB), and

(XA, XB) follows a standard bivariate normal distribution with correlation r.

The functions tA, tB could be constructed using the method in section 3.2.2 if

we do not know the model of the joint distribution of (θA, θB). Once t̂A, t̂B, r

are estimated, generate large samples (XA
i , X

B
i ), i = 1, · · · , n, n > m from a

standard bivariate normal distribution with correlation r̂. Then the samples of

the true standardized parameters (θAi , θ
B
i ) are

θ̃Ai = t̂−1
A (XA), θ̃i

B
= t̂−1

B (XB).

The copula estimate ofR2(T, T ) is calculated byR2(t, t) =
∑n

i=1 I{|θ̃Ai |>t & |θ̃Bi |>t}/n

for every t in T .

7. The procedure was repeated 100 times to get the average value and the standard

deviation of the estimate of R2(T, T ) for each method. The plots comparing

the true R2(T, T ) and the average of the estimate of R2(T, T ) and the approxi-

mate 95% confidence intervals for the estimate of R2(T, T ) for each method are

constructed.

From figure 3.7 and 3.8, we know that when the true parameters (θAi , θ
B
i ) follow

a bivariate normal distribution, the moment, mle and rescaling method perform the

best with unbiased estimates of R2(T, T ) and smaller standard deviations of the

estimates. This is because the parametric model we use for the joint distribution

of (θAi , θ
B
i ) for moments and mle method is the same with the true model. Also we

know that rescaling method performs well for Guassion cases. Copula method which

does not depend on the structure of the joint distribution performs a little worse with

a little more bias of the estimate of R2(T, T ) and more standard deviations of the

estimates. The plug-in estimator performs the worst.

66



From figure 3.9-3.12, we know that when the true parameters θAi , θ
B
i follows a

marginal t distribution with df = 3 or the true parameters θAi , θ
B
i follows a marginal

generalized normal distribution, the copula method gives the smallest bias of the

estimate of the R2(T, T ) to the true values of R2(T, T ) than the other estimators,

especially on the tail (when the true proportion is less than 0.1). Since the true joint

distribution of (θAi , θ
B
i ) is not bivariate normal anymore, then the moment estimator,

mle estimator and rescaling estimator perform bad. As a conclusion, If the joint

distribution of the true standardized parameter (θAi , θ
B
i ) is much deviated from bi-

variate normal distribution, the copula method performs much better than the other

parametric or nonparametric methods we illustrated in this paper.

3.6 Real data analysis

Here we propose our new copula-based method to estimate the common and

unique associations in CKD data set which was introduced in section 1.2. The ge-

nomic data in the CKD dataset consist of microarray measurements of gene expression

on specific cell types obtained from kidney tissue biopsy specimens taken early in the

disease course. The main clinical parameter of interest is the GFR taken at the biopsy

time. GFR is a widely used overall index of kidney function. Specifically, it estimates

how much blood passes through the tiny filters in the kidneys, called glomeruli, each

minute. Normal GFR results range from 90-120 mL/min, GFR below 60 mL/min im-

plies moderate loss of renal function, and GFR below 30 mL/min is considered to be

severe. The dataset includes genomic and clinical data for 195 subjects, and the gene

expression data quantify gene expression for 12,023 distinct genes or transcripts. The

subjects have one of several diseases that give rise to CKD. The diseases in the CKD

dataset include DN, LD, MCD, HT, RPGN, IgA, PIMA, SLE, FSGS, here LD is a

control group of people who are healthy. Our interest is to identify marker/outcome

associations both within and across disease subgroups.

67



Figure 3.7: Plots compare the true standardized parameters θAi , θ
B
i magnitude both

greater than a sequence of thresholds T, R2(T, T ) to the estimates of
R2(T, T ) for moments, mle, rescaling, copula and plug-in methods when
the true standardized parameters θAi , θ

B
i follow a bivariate normal distri-

bution with mean 0 and std 1.0 and correlation 0. The lower right plot
compare the true function tA (red) with the estimated function t̂A (orange)
for copula method. Grey area is the approximate 95% confidence intervals
for the estimators of R2(T, T ), x axis is the true standardized parameter
θA, y axis is the transformed standard normal vector XA = tA(θA).
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Figure 3.8: Plots compare the true standardized parameters θAi , θ
B
i magnitude both

greater than a sequence of thresholds T, R2(T, T ) to the estimates of
R2(T, T ) for moments, mle, rescaling, copula and plug-in methods when
the true standardized parameters θAi , θ

B
i follow a bivariate normal distri-

bution with mean 0 and std 1.0 and correlation 0.5. The lower right plot
compare the true function tA (red) with the estimated function t̂A (orange)
for copula method. Grey area is the approximate 95% confidence intervals
for the estimators of R2(T, T ), x axis is the true standardized parameter
θA, y axis is the transformed standard normal vector XA = tA(θA).
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Figure 3.9: Plots compare the true standardized parameters θAi , θ
B
i magnitude both

greater than a sequence of thresholds T, R2(T, T ) to the estimates of
R2(T, T ) for moments, mle, rescaling, copula and plug-in methods when
the true standardized parameters θAi , θ

B
i follow a marginal generalized

normal distribution with parameters ξ = −0.5, α = 2, κ = −0.5 with
correlation 0.0. The lower right plot compare the true function tA (red)
with the estimated function t̂A (orange) for copula method. Grey area is
the approximate 95% confidence intervals for the estimators of R2(T, T ),
x axis is the true standardized parameter θA, y axis is the transformed
standard normal vector XA = tA(θA).
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Figure 3.10: Plots compare the true standardized parameters θAi , θ
B
i magnitude both

greater than a sequence of thresholds T, R2(T, T ) to the estimates of
R2(T, T ) for moments, mle, rescaling, copula and plug-in methods when
the true standardized parameters θAi , θ

B
i follow a marginal generalized

normal distribution with parameters ξ = −0.5, α = 2, κ = −0.5 with cor-
relation 0.5. The lower right plot compare the true function tA (red) with
the estimated function t̂A (orange) for copula method. Grey area is the
approximate 95% confidence intervals for the estimators of R2(T, T ),x
axis is the true standardized parameter θA, y axis is the transformed
standard normal vector XA = tA(θA).
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Figure 3.11: Plots compare the true standardized parameters θAi , θ
B
i magnitude both

greater than a sequence of thresholds T, R2(T, T ) to the estimates of
R2(T, T ) for moments, mle, rescaling, copula and plug-in methods when
the true standardized parameters θAi , θ

B
i follow a marginal t distribution

with df = 3 with correlation 0.0. The lower right plot compare the true
function tA (red) with the estimated function t̂A (orange) for copula
method. Grey area is the approximate 95% confidence intervals for the
estimators of R2(T, T ), x axis is the true standardized parameter θA, y
axis is the transformed standard normal vector XA = tA(θA).
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Figure 3.12: Plots compare the true standardized parameters θAi , θ
B
i magnitude both

greater than a sequence of thresholds T, R2(T, T ) to the estimates of
R2(T, T ) for moments, mle, rescaling, copula and plug-in methods when
the true standardized parameters θAi , θ

B
i follow a marginal t distribution

with df = 3 with correlation 0.5. The lower right plot compare the true
function tA (red) with the estimated function t̂A (orange) for copula
method. Grey area is the approximate 95% confidence intervals for the
estimators of R2(T, T ),x axis is the true standardized parameter θA, y
axis is the transformed standard normal vector XA = tA(θA).
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A direct way to investigate this is to estimate Pearson correlation coefficients ρ̂i

between the ith marker and the outcome GFR based on available data, however, it

is very hard to detect any interesting markers due to the small sample size from

figure 3.13. Except for the subjects pooled together, we have 195 subjects which is

fairly large and powerful to detect many interesting markers, the sample sizes for

the disease subgroups individually are small. PIMA group has the largest number of

subjects, which is 45 and LD group has the smallest number of subjects, which is only

10. From the right panel of figure 3.13, we could see that there are many markers

detected from the false discovery rate analysis for the pooled group due to the large

sample size, but the standard deviation of the effect sizes ρi for the pooled group is

not the largest. However, RPGN disease subgroup has the highest standard deviation

of the effect sizes but not much information from false discovery rate analysis. LD

and DN disease subgroups have some effects while get nothing from false discovery

rate analysis.

Since effect sizes ρi is invariant with different sample sizes, we will focus on the

estimated correlation coefficient ρ̂Ai of subgroup A to a variance stablized standardized

statistic ZA
i , by using the Fisher transformation

ZA
i =

√
nA − 3

2
log

1 + ρ̂Ai
1− ρ̂Ai

.

Then

Zi = θi + ηi,

θAi ≈
√
nA−3
2

log
1+ρAi
1−ρAi

,

where ηAi is approximately normal and θAi is the true variance stablized standard-

ized parameter. Now we are interested in estimating measure R1(t) = P (|θAi | > t)

and R2(t1, t2) = P (|θAi | > t1, |θBi | > t2). Once the fisher transformed standardized
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statistic ZA
i for subgroup A is estimated from the real data set, we could use the

same procedure as the simulation steps in univariate analysis to calculate the mle

estimator, plug-in estimator and copula estimator of R1(T ) for a sequence of thresh-

olds T and the estimated marginal distribution of the true standardized parameter

θAi . For plug-in method, we just use the empirical distribution of the standardized

statistic ZA
i as the marginal distribution of θAi . For mle method, we could estimate

the parameters µA, σA of the estimated marginal distribution of θAi , if we assume the

distribution is normal. For copula method, we could first estimate the nonparametric

function tA that maps θAi to XA
i which follows standard normal distributions, then

since tA = Φ−1F , where F is the marginal distribution of θAi , then F̂ = Φ(tA) is the

estimate of the marginal distribution of θAi .

Figure 3.14 is the plots of the plug-in estimate, mle estimate and copula estimate

of the CDF of true parameter θAi for all the disease subgroups A and the subgroups

pooled together. We could see that except for the pooled group, the mle estimate

and the copula estimate of the CDF of θAi are quite similar, implying that the true

marginal distribution of θAi is close to a normal distribution. Table 3.1 is the estimates

of R1(2) of the three methods for all the disease subgroups and the subgroups pooled

together. MLE estimator and copula estimator give similar result for most of the

disease subgroups except for the pooled group while the plug-in estimator always

bias up the true value of R1(2) since the sample statistic Z are always more dispersed

than the true parameter θ which will lead to higher proportion of markers having

effect sizes magnitude greater than some threshold t. Except for the pooled group,

disease subgroups IgA, PIMA have the highest proportion (above 0.2) of markers

having large effects, on the other side disease subgroups DN, MCD almost have no

markers having effect size magnitude greater than 2.

Now we estimate the overlap measure R2(T, T ). Once the fisher transformed

standardized statistic (ZA
i , Z

B
i ) for each pair of disease subgroups A,B are estimated
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Figure 3.13: Right plot is a bar graph comparing results of false discovery rate analysis
and standard deviation of the effect sizes for disease subgroups in CKD
dataset; Middle plot is the bar graph of the number of subjects in disease
subgroups in CKD data; Left plot is the boxplots of the outcome GFR
in disease subgroups in CKD data.

Table 3.1: MLE, copula, plug-in estimate of R1(2) for different disease subgroups.
Disease subgroup MLE estimate Copula estimate Plug-in estimate

Pooled 0.620 0.446 0.651
LD 0.087 0.07 0.218
DN 0 0 0.059
MCD 0.005 0.004 0.118
HT 0.042 0.050 0.167

RPGN 0.142 0.096 0.268
IgA 0.210 0.202 0.274

PIMA 0.021 0.015 0.146
SLE 0.130 0.128 0.244
FSGS 0.172 0.229 0.295
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Figure 3.14: Plots of the estimated CDF of true parameters θ of mle, copula and
plug-in method for disease subgroups and pooled together.
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from the real data set, we could use the same procedure as the simulation steps

in bivariate analysis to calculate the mle estimator, plug-in estimator and copula

estimator of R2(T, T ) for a sequence of thresholds T . Table 3.2 is the estimate of

R2(2, 2) from copula-based method for each pair of disease subgroups and table 3.3,

3.4 is the estimate of R2(2, 2) from mle and plug-in method for each pair of disease

subgroups.

From the copula estimates in table 3.1 we see that there are 9.6% of the markers

having effect size magnitude greater than 2 in RPGN, 20.2% in IgA, 12.8% in SLE,

and 22.9% in FSGS. From table 3.2, we see that 9.1% of the markers both having

effect size magnitude greater than 2 in RPGN and IgA. Compare to the result in table

3.1, almost all the markers having effect size magnitude greater than 2 in RPGN also

have effect size magnitude greater than 2 in IgA. From table 3.2, we also see that

10.9% of the markers both having effect size magnitude greater than 2 in RPGN

and SLE. Compare to the result in table 3.1, almost all the markers having effect

size magnitude greater than 2 in RPGN also have effect size magnitude greater than

2 in SLE. From table 3.2, we see that 6.9% of the markers both having effect size

magnitude greater than 2 in RPGN and FSGS. Compare to the result in table 3.1, a

large proportion of the markers having effect size magnitude greater than 2 in RPGN

also have effect size magnitude greater than 2 in FSGS, but the proportion is lower

than IgA and SLE.

For SLE, 10.5% of the markers both having effect size magnitude greater than 2

in SLE and IgA, and 8.2% of the markers both having effect size magnitude greater

than 2 in SLE and FSGS. Then there is a larger proportion of markers having effect

size magnitude greater than 2 in SLE have effect size magnitude greater than 2 in

IgA than FSGS. In other words, there are more common associations in SLE and IgA

than those in SLE and FSGS. At last, 11.2% of the markers both having effect size

magnitude greater than 2 in FSGS and IgA, while 22.9% and 20.2% in each disease
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Table 3.2: Copula estimate of R2(2, 2) for different pairs of disease subgroups.

Copula estimate DN LD MCD HT RPGN IgA PIMA SLE FSGS
Pooled 0.084 0.005 0.017 0.023 0.163 0.197 0.017 0.142 0.152
DN 0.0 0.0003 0.019 0.031 0.034 0.003 0.011 0.046
LD 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MCD 0.0 0.0 0.001 0.001 0.005 0.0
HT 0.035 0.052 0.001 0.046 0.044

RPGN 0.091 0.0 0.109 0.069
IgA 0.005 0.105 0.114

PIMA 0.004 0.001
SLE 0.082

Table 3.3: MLE estimate of R2(2, 2) for different pairs of disease subgroups.

MLE estimate DN LD MCD HT RPGN IgA PIMA SLE FSGS
Pooled 0.075 0.0 0.003 0.034 0.116 0.191 0.013 0.106 0.149
DN 0.0 0.001 0.027 0.043 0.052 0.01 0.042 0.045
LD 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MCD 0.003 0.003 0.004 0.001 0.005 0.002
HT 0.032 0.029 0.004 0.032 0.034

RPGN 0.110 0.005 0.103 0.111
IgA 0.008 0.104 0.132

PIMA 0.006 0.009
SLE 0.104

subgroup. This means that only a half of the markers have large effects in both FSGS

and IgA.

3.7 conclusion and future direction

Many genomic studies involves large number of markers with small number of

subjects, then it is powerless to detect any single effect. Such studies often involve

populations that can be subdivided into several distinct subpopulations. Then we

focus on the effect sizes of the marker/outcome associations which is invariant to

the sample size and propose parametric and nonparametric methods to estimate the

79



Table 3.4: Plug-in estimate of R2(2, 2) for different pairs of disease subgroups.

Plug-in estimate DN LD MCD HT RPGN IgA PIMA SLE FSGS
Pooled 0.147 0.019 0.065 0.125 0.219 0.228 0.069 0.197 0.237
DN 0.005 0.012 0.044 0.06 0.075 0.024 0.064 0.069
LD 0.002 0.005 0.007 0.009 0.002 0.009 0.010
MCD 0.012 0.023 0.024 0.012 0.024 0.03
HT 0.061 0.08 0.016 0.061 0.074

RPGN 0.106 0.021 0.094 0.119
IgA 0.029 0.113 0.121

PIMA 0.022 0.027
SLE 0.115

overall distribution of the effect sizes and the magnitude of effect sizes greater than

some thresholds both in univariate and bivariate populations. Especially, we pro-

posed a copula-based nonparametric method to estimate the overlap measure of the

magnitude of effect sizes both greater than some thresholds in two subpopulations.

In simulation study, we compare the accuracy of the estimate of the overlap mea-

sures through mle, moment, rescaling, copula and plug-in methods and find out that

if the joint distribution of the true standardized parameter (θAi , θ
B
i ) is much deviated

from bivariate normal distribution, the copula method performs better than the other

parametric or nonparametric methods. Then we apply copula-based, mle and plug-in

method to estimate the overlap measure of the common associations in each pairs of

disease subgroups in CKD data. MLE estimator and copula estimator give similar

result for most of the pairs disease subgroups, implying that the joint distribution of

the effect sizes in any two disease subgroups is close to bivariate normal distribution.
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CHAPTER IV

Statistical assessment of relationships between

marginal properties of variables and their external

correlations

4.1 Introduction

Modern medical studies often aim to identify genomic markers of individuals

in a population that are associated with an external (i.e. non-genomic) trait. In

hypothesis-generating research, these genomic markers must be identified from a large

pool of candidate markers, most of which are irrelevant. For example, researchers in

nephrology may be interested in identifying genes whose expression correlates with a

measure of renal performance, such as the glomerular filtration rate (GFR). Simple

statistics such as Pearson correlation coefficients or standardized group-wise mean

differences are often used in this setting to identify potentially interesting markers.

Screening analysis arise in many application areas, such as fraud detection (Chen

et al. (2004)), astronomy (Schreiber et al. (2002)), and biomarker research, but here

we will focus on applications in personalized medicine involving genomic markers.

Our setting is a screening study with n independent subjects, each of whom

is assessed for a quantitative outcome yi ∈ R (i = 1, · · · , n). In addition, each

subject is assessed for gene expression on a large number of genes, we will write
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Xij for the measured expression of gene j in subject i. For each gene j, we can

assess the association Aj between the expression levels of the gene and the out-

comes. For a given measure Assoc of association, e.g. Pearson correlation, we have

Âj = Assoc(y1, · · · , yn;X1j, · · · , Xnj). In a traditional “screening analysis”, the aim is

typically to identify a subset of markers that meet some level of statistical confidence

such as a family-wise error rate or false discovery rate.

In many research settings, statistical power is low due to sample size limitations.

Thus, while a few interesting markers may be found in a single study, there is often a

sense that the data have much more to reveal. In this chapter, we focus on approaches

for identifying global trends in the data that help us to understand what types of

associations may be present. We illustrate that this can be accomplished even when

the power is too low to attribute associations to specific variables.

Our main goal here is to ask whether properties of the marginal distributions

of genomic markers can be identified that are statistically related to the strengths

of their associations with the external trait. For our purposes, a property M is a

function of the marginal distribution of one or more genes. For example, Mj could

be the population mean of the jth marker. A property/marker/outcome association

is then any relationships between Mj and Aj.

Such relationships are completely empirical since association as measured by Pear-

son’s correlation is location and scale invariant, there is no mathematical reason that

a trend must exist between the marker/outcome correlations and the marginal prop-

erties of the markers. However, in genomic datasets, these trends often exist.

Some researchers have some related findings that genes with unique gene expres-

sion pattern may contain some useful information and of great interest. For example,

gene pairs that have a large number of mutually exclusive outlier cancer samples are

shown to be more likely involved in chromosomal translocations which are common

in cancer and may be causal in the progression of the disease using COPA (Cancer
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Outlier Profile Analysis) by MacDonald and Ghosh (2006). And Genes which have

high connectivity (i.e. ‘hub’ genes) within a weighted co-expression network are sig-

nificantly more likely to be essential for yeast viability demonstrated by Zhang and

Horvath (2005).

Since the property/marker/outcome associations can be explicitly computed, it

seems straightforward to assess whether these are somehow related. However, to

fully understand this relationship, several challenges must be overcome. First, since

the markers are highly correlated with each other and they all associate with the

same outcome, then the marker/outcome correlations are highly dependent. This

has the potential to bias the property/marker/outcome associations. We proposed

a simulation-based approach to detect the bias and variability of this estimated as-

sociation. A Second challenge is that there exist both monotone and non-monotone

associations between genomic markers and the outcome. The monotone associations

are largely captured by the Pearson correlation which has favorable statistical proper-

ties. However the non-monotone associations like u-shape association are not detected

by the Pearson correlation coefficient. We develop a way that decomposes an associ-

ation into a monotone component and a symmetric concave/convex component (plus

a residual function) to see which association is dominant.

The chapter is organized as follows. In section 4.2, we will introduce the five

marginal properties of the distribution of markers we are interested in including the

definitions of the statistical measures of them. In section 4.3, we will introduce the

quantile regression method we use to model the property/marker/outcome associa-

tions with the L1 goodness of fit. Then we will talk about the statistical properties

of the property/marker/outcome associations. At last, we will illustrate the method

that decomposing the associations into monotone components and symmetric con-

cave/convex components plus a residual function. In section 4.4, we show the sim-

ulation results for the properties of the property/marker/outcome associations. In
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section 4.5, we use an example of CKD dataset to show the quantile regression re-

sults of the property/marker/outcome associations and find out that skewness is the

most dominant property. And also we notice that monotone trends between GFR and

symmetric genes are more likely to happen than symmetric concave trends by decom-

posing the association into monotone and symmetric concave components. Section

4.5 is the conclusion and future challenges for this chapter.

4.2 Marginal properties of variables involved in external as-

sociations

Our overall goal is to relate the marker/outcome associations Aj to the properties

of the marginal distribution of markers Mj. This motivation builds on some standard

practices used when analyzing large-scale genomic data. For example, filtering meth-

ods (Hackstadt and Hess (2009)) are usually used to reduce the number of hypothesis

tests and therefore increase the power to detect associations among the non-filtered

candidates. Common filtering methods include excluding genes with low variance

or low mean (abundance) without referring to any non-genomic data. The rationale

for filtering by variance is that small changes in absolute levels are less likely to be

driving factors for changes in the phenotype. Moreover, such small changes are diffi-

cult to distinguish from measurement noise. For example, in the CKD data, we will

show that genes with low variance tend to have weaker associations with GFR. Figure

4.1 shows the scatterplots of GFR and gene expression for genes with high and low

variance. Similarly, one may argue that genes with very low absolute abundance are

less likely to drive variation in the phenotype, and it is also a challenge to accurately

measure the abundance of such genes with low expression.

The filtering method indicates that mean and variance of the distribution of the

markers may relate to the marker/outcome associations. So mean and variance and
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Figure 4.1: Scatterplots of GFR and gene expression for two specific genes with high
and low variance.
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other familiar statistics like the ordered moments in a distribution will be included in

our marginal properties, so do some statistics specific to the genomic study. Also the

properties could be some function of the observed values of each individual marker,

denoted as M(X1j, · · · , Xnj) or some function of the observed values of one marker

and the other markers, denoted as M(X1j, · · · , Xnj;X). But all of them are using

the empirical distributions of the markers without any information of the outcome.

To be concrete, we only focus on the gene expression data which measures the

information from a gene which is used in the synthesis of a functional gene product.

These products are often proteins or a functional RNA. In genetics, gene expression

is the most fundamental level at which the genotype gives rise to the phenotype. So

it is of essential importance for comparative investigations aiming at discovery of new

genes, functional classification of genes, discovery of relationships between genes and

their products.

4.2.1 Mean level of gene expression data

In microarray experiment, lowly expressed genes should be less important than

highly expressed genes providing a simple and common explanation for the general

relationship observed between gene expression and the different facets of gene evolu-

tion (Gout et al. (2010)). And also reliable measurement is more achievable for highly

expressed genes in a target sample than for those expressed at low levels. Thus, most

of the studies have focussed on high-expressing genes that have high signal intensities

on microarrays. However, this approval may bias the conclusions. Some genes with

low gene expression levels have been detected as important too. For example, low

expression levels of soluble CD1d gene in patients with rheumatoid arthritis had been

shown by Kojo et al. (2003). So the first marginal feature of gene expression data we

are interested in is mean of expression levels for each gene across subjects. Figure 4.2

gives the distribution of mean expression levels of genes in some genomic data after
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Figure 4.2: Distributions of mean expression levels of genes in CKD, Skeletal, Psori-
asis and Cigarette datasets.

the log2 transformation of expression levels. From figure 4.2, we could see that the

distributions of the mean property could be slightly skewed to the right or skewed to

the left in different datasets. Whether genes with high mean expression levels tends

to have more strong relations with the outcome is our question.

4.2.2 Variance of gene expression data

Much of our understanding of biological system is based on interpreting average

behavior, variance has been largely ignored because it has been considered solely in

the context of experimental reproducibility. Now, there is evidence that biological

sources of variance may play an important role in determining cellular and organis-

mal phenotypes, as well as in helping to explain a wide range of biological phenomena

ranging from reduced penetrance to evolutionary fitness (Mar et al. (2011)). If the
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genes have very low variance, a natural interpretation is that those genes are them-

selves highly constrained, and then are less likely to be a driven factor for the changes

in the phenotype. We will check if this is always true.

Here we define our measure of variance of each gene to be:

IQR(p) = pth Quantile− (1− p)th Quantile

which is robust to outliers, and when p = 0.75, this measure is IQR and when p = 0.9,

this measure is IDR.

We may identify the parameter p that has the largest marginal association between

IQR(p) and their external correlations or just choose p = 0.75 as usual. Figure 4.3

is the distribution of IQR of genes in some genomic data. From figure 4.3, we could

see that the distribution of IQR have a very long right tail, most of the IQRs of

genes are around 0-1, with a few genes with very high IQR. Then whether genes with

higher IQR tend to have stronger signals and whether variance is the most important

properties associates with external correlations of all the properties we considered is

our main interest.

4.2.3 Outliers of gene expression data

We should mention that while the term “outlier” has a pejorative meaning in

statistics, it is a very meaningful concept in a biological sense. As noted by Lyons et al.

(2004) and subsequently by Tomlins et al. (2005), the biology of oncogenesis permits

that unique sets of genes may be involved in tumor development across patients.

While statistical outliers refer to measurements that exceed the expected variation

in a set of data, the oncogenetic outliers we seek to find will be putatively related to

cancer processes.
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Figure 4.3: Distributions of IQR of genes in CKD, Skeletal, Psoriasis and Cigarette
datasets.
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The measure to quantify how many and how strong the outliers is:

Outlier =
n∑

j=1

(|Xij − X̄i

SD(Xi)
| − k)I{(|Xij − X̄i

SD(Xi)
| − k) > 0}, i = 1, · · · ,m,

here we standardized our gene expression data and compare it with some threshold

k (k = 2 in this paper), and to make it robust to outliers, we use IQR/1.349 instead

of SD(X). Since if we have many outliers, the SD(X) tends to be large, this will

make the standardized value to be small, then have small outlier measure, which

kind of cancel each other. Some researcher might want to know if more outliers will

lead to higher correlations between outcome and gene markers. Figure 4.4 shows

the distribution of outlier measures of genes in some genomic data. From figure

4.4, we could see that the distribution of outlier measures is strongly skewed to the

right, with most of the outlier measures around 0-20, while the others have very large

outlier measures. Outlier measures equals 20 means that 20 subjects in this genes

have absolute standardized gene expression value to be 3 with threshold k = 2.

4.2.4 Skewness of gene expression data

Gene expression data tend to have a large proportion of skew and heavy tailed

genes, so we usually take log transformation of the gene expression data to obtain

normality. But there are still some genes are highly skewed after log transformation.

The measure to quantify skewness is:

Skew =
n∑

i=1

(Xi − X̄i)
3/SD(Xi)

3.

Here we also use IQR/1.349 instead of SD(X) to make it robust to outliers. Variance,

outlier and skewness are three measures of the variation of gene expression data set.

They measure different aspects but have some relationships, like high skewness will

lead to high variance and outlier measure, but high outlier may not lead to high
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Figure 4.4: Distributions of outlier measures of genes in CKD, Skeletal, Psoriasis and
Cigarette datasets.
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Figure 4.5: Distributions of skewness of genes in CKD, Skeletal, Psoriasis and
Cigarette datasets.

skewness. Controlling the marginal association between these three measures to be

not so strong is necessary before include them into regression model.

Figure 4.5 is the distribution of skewness of genes in some genomic data. The

distribution of skewness is almost symmetric around 0 and most of the genes have

skewness around -0.2 to 0.2, which means that most of the genes are symmetric

with only a few genes have very strong positive or negative skewness. Then we

are interested in whether genes with high absolute skewness tend to have stronger

association with the external trait, and within these genes, whether subjects who have

expression levels in the tail of the skewed distribution are in bad or good condition.
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4.2.5 Gene connectivity

Genes and their protein products carry out cellular processes in the context of

functional modules and are related to each other through a complex network of inter-

actions. Correlation of gene expression across a wide variety of experimental pertur-

bations has been shown to cluster genes of similar function. A gene which is highly

correlated with many other genes based on gene expression level is called highly con-

nected nodes in Network and has been found to be relatively more important. For

example, Genes which have high connectivity (i.e. ‘hub’ genes) within a weighted

co-expression network are significantly more likely to be essential for yeast viability

demonstrated by Mar et al. (2011).

In gene co-expression networks, each gene corresponds to a node. The neighbors

of a node i are the nodes that are connected to the node i. Two genes are connected

by an edge with a weight indicating the connection strength. A gene co-expression

network can be represented by an adjacency matrix A = [aij], where aij is the weight

of a connection between two nodes i and j. The connectivity equals the sum of

connection weights substract some threshold.

The choice of the adjacency function determines whether the resulting network

will be weighted (soft thresholding) or unweighted (hard thresholding). A widely

used adjacency function is the signum function which implements ‘hard’ thresholding

involving the threshold parameter τ . Specifically,

aij = I(|cor(xi, xj)| > τ).

Zhang and Horvath (2005) proposed a ‘soft’ power adjacency function:

aij = |cor(xi, xj)|β
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Figure 4.6: Distributions of connectivity of genes in CKD, Skeletal, Psoriasis and
Cigarette datasets.

with the single parameter β. To choose the parameters of an adjacency function:

Only those parameter values that lead to a network satisfying scale-free topology at

least approximately were considered (e.g. signed R2 > 0.80).

Here we choose

aij = (|cor(xi, xj)| − τ)I(|cor(xi, xj)| − τ > 0)

Then our connectivity measure is:

Connectivity =
n∑

j=1

aij =
n∑

j=1

(|cor(xi, xj)| − τ)I(|cor(xi, xj)| − τ > 0),

similar with hard thresholding function with parameter τ = 0.6.

Figure 4.6 shows the distribution of measures of connectivity of genes in some
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genomic data. The distribution is strongly skewed to the right, with most of genes

have connectivity measures equal 0, which means that they are not highly connected

with other genes. Connectivity measure equals 1 means that this gene is highly

correlated with other 10 genes with absolute correlation 0.7 with threshold τ = 0.6.

Then genes with high connectivity are more interesting to us.

4.3 Methodology

4.3.1 Introduction

The project presented in this chapter contributed three novel methodological

ideas. The first contribution is a new framework for understanding marginal marker/outcome

associations in large datasets. This framework involves familiar summary statistics

such as the Pearson correlation coefficients, but applies it in a non-standard way to

derived quantities, rather than directly to the observations. The second contribution

addresses the challenge of assessing the uncertainty in statistics that are aggregated

over large data sets within complex and poorly understand dependencies. We show

that commonly used randomization approaches, while intuitive, can give misleading

results, and we provide a simulation based alternative approach that appears to per-

form well in a variety of situations. The third contribution addresses the issue of

marker/outcome relationships that are strongly non-monotonic. We propose a de-

composition of such relationships into monotonic and “u-shaped” components. This

decomposition allows us to assess the prevalence of these two types of dependency in

large datasets.
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4.3.2 Statistical property of the property/marker/outcome associations

If we use Pearson correlation to represent the marker/outcome association, then

the sample association between gene j and the outcome is

Âj = Ĉor(Xj, Y ) =
n∑

i=1

(yi − ȳ)(Xij − X̄j)

σ̂y ˆσXj

, j = 1, · · · ,m,

where m is the number of genes and n is the number of subjects. The marginal

property of the distribution of gene j isMj. Then we are interested in the relationship

between the sample marker/outcome association Â and marginal property M(X).

The most obvious way is to look at the Pearson correlation between marker/outcome

association and marginal property, which is

θ = Cor(Â,M(X)),

then the estimated correlation is

θ̂ = Ĉor(Â,M(X)).

Since the markers Xj are highly correlated with each other and they all associate

with the same outcome Y, then the marker/outcome associations Aj are highly de-

pendent with each other. If we look at the correlation between marker/outcome asso-

ciations and marginal properties, there might be some “build-in effect” that E(θ̂) ̸= θ

and the stability of the θ̂ is of concern.

If marker/outcome association is zero, or X and Y are independent, the population

correlation θ is:
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θ = Cor(
n∑

i=1

(yi − ȳ)(Xi − X̄)

σ̂yσ̂X

,M(X)))

= E(
n∑

i=1

(yi − ȳ)(Xi − X̄)

σ̂yσ̂X

M(X))− E(
n∑

i=1

(yi − ȳ)(Xi − X̄)

σ̂yσ̂X

)E(M(X))

=
n∑

i=1

E(
yi − ȳ

σ̂y

)E(
(Xi − X̄)M(X)

σ̂X

)− (
n∑

i=1

E(
yi − ȳ

σ̂y

)E(
Xi − X̄

σ̂X

))E(M(X))

= 0

The expected sample correlation θ̂ is:

E(θ̂) = E(Ĉor(
n∑

i=1

(yi − ȳ)(Xi − X̄)

σ̂yσ̂X

,M(X)))

= E(
m∑
j=1

n∑
i=1

(yi − ȳ)(Xij − X̄j)

σ̂y ˆσXj

M(Xj))

=
m∑
j=1

n∑
i=1

E(
(yi − ȳ)(Xij − X̄j)

σ̂y ˆσXj

M(Xj))

=
m∑
j=1

n∑
i=1

ExE(
(yi − ȳ)(Xij − X̄j)

σ̂y ˆσXj

M(Xj)|X)

=
m∑
j=1

n∑
i=1

Ex(
(Xij − X̄j)M(Xj)

σ̂y ˆσXj

E(yi − ȳ|X))

= 0

Then we know that there is no bias of θ̂ when X and Y are independent. Further

to check the variability of θ̂, we will propose both a simulation-based approach and

a data-based approach.

Usually people will do a permutation test (also called a randomization test) to

97



obtain the distribution of the test statistic under the null hypothesis by calculating

all possible values of the test statistic under the rearrangement of the labels on the

observed data points. Here the test statistic is the sample correlation θ̂ and the null

hypothesis is that there is no marker/outcome association and therefore no prop-

erty/marker/outcome association, θ = 0. But this will always mislead the result that

the standard error for θ̂ is always much smaller than the real one. So in this chapter,

we will use simulation-based approach to detect the sampling distribution of θ̂ when

θ = 0.

4.3.3 Function decomposition

Since monotone trend is just one type of marker/outcome relationships which

could be represented by Pearson correlation, in our studies, there exists at least one

other type of marker/outcome relationships, which is called “u-shaped” or symmetric

convex relationship. Then both the lower value and the higher value of marker X

will lead to high/low outcome Y, while the middle values of X will not. These types

of non-monotone associations could not be represented by Pearson correlation, re-

searchers proposed other measures like R2 from fitting natural cubic spline models to

the marker/outcome relationships (Lin et al. (2008)) to represent the non-monotonic

associations. Here we focus on detecting the “u-shaped” associations from the lin-

ear/monotone association and assess the prevalence of these two types of associations

by using a decomposition method.

We will decompose Y into a monotone function and a symmetric convex function

of X (plus a residual term). Then,

E(Y |X) = fsc + fm

where fsc is a symmetric convex function which is a combination of many symmetric
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convex basis functions. fm is a monotone function which is also a combination of

many monotone basis functions. In our situations, we will use the general form

sign(X − X̄)|X − X̄|p

as the monotone basis function and

|X − X̄|p

as the symmetric convex basis function. Here we choose p = 0.5, 1, 2, 3 for mono-

tone basis and add anther basis arctan (X − X̄) for monotone function and choose

p = 0.5, 1, 1.5, 2 for non-monotone basis and add another basis log(X − X̄ − 1) for

non-monotone function. Also we need a constraint for the regression model that the

coefficients for monotone basis functions have the same sign and also the coefficients

for the symmetric convex basis functions have the same sign since the linear combina-

tion of monotone functions are not always a monotone function unless the scalars are

all non-negative or non-positive. We use the nnls package in R program which make

the signs of all the coefficients in the model to be non-negative. By changing the sign

of the predictors in the model, we could regress the model in four situations, when

the sign of the coefficients of the monotone function is positive/negative and the sign

of the coefficients of the symmetric convex function is positive/negative. Then choose

the situation of the highest R2.

Partial R2 for each combination of basis functions is used to quantify the preva-

lence of monotone and non-monotone associations.

4.3.4 Quantile regression model and B-spline basis

In genomic studies, it is known that the distribution of the correlations between

gene expression and traits is heavy-tailed due to the exist of genes have strong effects.
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Also the high positive and high negative correlations are more important than the

average correlation, so the conditional mean model can then become an inappropriate

measure just focusing on central tendencies but fail to capture informative trends in

the response distribution. It is quite natural to go beyond location and scale effects

of predictor variables on the response and ask how changes in the predictor variables

affect the underlying shape of the distribution of the response.

Quantile regression, which models conditional quantiles as function of predictors,

specifies changes in the conditional quantile of the dependent variable associated with

a change in the covariates. Since multiple quantiles can be modeled, it is possible

to achieve a more complete understanding of how the marker/outcome correlations

are affected by marginal properties of the markers, including information about shape

change. As in linear regression, the methodology we present is easily adapted to more

complex model specifications, including interaction terms and polynomial or spline

functions of covariates.

The quantile regression model can be expressed as:

QY (τ |X) = α(τ) + β(τ)X,

where τ is the possible quantiles of the outcome we are interested in. We may estimate

the coefficients directly by minimizing the weighted sum of absolute residuals:

V (τ) =
n∑

i=1

ρτ (yi − α− βXi),

where ρτ (u) = u(τ − I(u < 0)). Compared to linear regression that the coefficients

are estimated by minimizing the sum of squared residuals

S =
n∑

i=1

(yi − α− βXi)
2.
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Since the goodness of fit R2 for linear model is defined by using 1 substract the sum of

squared residuals of the full model Ŝ over the sum of squared residuals of the model

with no covariate S̃ :

R2 = 1− Ŝ/S̃ = 1− ||Y − Ŷ ||2/||Y − Ȳ ||2.

We may proceed in the same manner for quantile regression, we define R1(τ) as

the goodness of fit for quantile regression with quantile τ which is defined by using

1 substract the weighted sum of absolute residuals of the full model V̂ (τ) over the

weighted sum of absolute residuals of the model with no covariate Ṽ (τ),:

R1(τ) = 1− V̂ (τ)/Ṽ (τ),

where V̂ (τ) =
∑n

i=1 ρτ (yi − α̂ − β̂Xi), Ṽ (τ) =
∑n

i=1 ρτ (yi − a), constant a is the τ ’s

quantile of y. The partial R1(τ) is defined by

partial R1(τ) =
R1

2(τ)−R1
1(τ)

1−R1
1(τ)

,

where R1
1(τ) is the goodness of fit R

1 of a quantile regression model without including

the variables you are interested in for a particular quantile τ , andR1
2(τ) is the goodness

of fit R1 of a full quantile regression model for a particular quantile τ .

Like R2, it is immediately apparent that V̂ (τ) ≤ Ṽ (τ), and this R1(τ) lies be-

tween 0 and 1. Unlike R2, which measures the relative success of two models for the

conditional mean function in terms of residual variance. R1(τ) measures the relative

success of the corresponding quantile regression models at a specific quantile in terms

of an appropriately weighted sum of absolute residuals. Thus R1(τ) constitutes a

local measure of goodness of fit for a particular quantile rather than a global measure

of goodness of fit over the entire conditional distribution, like R2.
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4.4 Simulation approaches

4.4.1 Simulation steps

To estimate the sampling distribution of θ̂, the sample correlation between marker/outcome

association A and marginal properties M under the null hypothesis that θ = 0, we

could provide a simulation-based approach to see if there is any bias of θ̂ to θ and

the variability of θ̂. The following are the simulation steps.

1. Generate outcome Yi, i = 1, · · · , n from standard normal distribution and Fisher

transformation of marker/outcome association Zj, j = 1, · · · , p from a normal

distribution with mean µz and standard deviation σz, and

Zj =

√
n− 3

2
log(

1 + Aj

1− Aj

).

Then the marker/outcome association

Aj =
exp 2Zj/

√
n− 3− 1

exp 2Zj/
√
n− 3 + 1

.

2. Generate covariate Xj which has Pearson correlation Aj with Y by using

Xj = Aj × Y +
√

1− A2
jϵj, (4.1)

where ϵ has mean 0 and variance 1. To make covariates X to be correlated with

each other, the covariance matrix of ϵ, Σϵ has the form that it has k diagonal

blocks with equal size p/k and it is compound symmetric structure in each block

with parameter a. Then

ϵij = a× Ui +
√
1− a2ηij, i = 1, · · · , k, j = 1, · · · , p/k,
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where Ui ∼ N(0, 1), ηij ∼ N(0, I). Then cor(ϵij, ϵil) = a2, cor(ϵij, ϵql) =

0, i ̸= q. Then the correlation of each Xi, Xj pair would be ρij = AiAj +√
1− A2

i

√
1− A2

ja
2 if i, j in the diagonal blocks and ρij = AiAj otherwise. if

a = 0, ϵ ∼ N(0, I).

3. Generate marginal mean propertyM1 ∼ N(µ1, σ1), SD propertyM2 ∼ N(µ2, σ2),

and skew propertyM3 ∼ N(µ3, σ3). To make the covariate X to have these prop-

erties, first we need ηij which is used to construct ϵij to be skewed and standard-

ized, let ηij follows Gamma distribution with shape s and scale 1, then the skew-

ness of ηij equals 2/
√
s and the skewness of Xj equals 2(

√
1− A2

j

√
1− a2)3/

√
s

which should equals M3
j . Then s = 4(1 − A2

j)
3(1 − a2)3/(M3

j )
2. After Xj is

constructed using formula

Xj = Aj × Y +
√
1− A2

jϵj

ϵij = a× Ui +
√
1− a2ηij, i = 1, · · · , k, j = 1, · · · , p/k,

scale Xj by M2
j and linear transform Xj by M1

j , then covariate Xj will have

desired marginal properties M1,M2,M3.

4. Sample marker/outcome association Âj = Ĉor(Y,Xj) is calculated and M̂j

which is the sample marginal property of Xj is calculated too. Then the sam-

ple correlation θ̂ between Âj and M̂j is calculated. We are interested in the

change of mean and standard error of θ̂ with different standard deviation of

fisher transformation of marker/outcome correlation σz. Also other aspects

that could affect the amount of change of standard error of θ̂ caused by σz, like

number of subjects n, number of variables p, correlations within covariate X

and parameters of marginal properties.

5. Also we would like to compare this simulation result with permutation re-
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sult. There are only two steps different with simulation. One is that the

marker/outcome associations Aj and the marginal properties Mj has some cor-

relations, so the Fisher transform Z-score is generated by using

Z = r0M+
√

1− r20λ,

where M is the marginal property, λ follows a standard normal distribution and

is independent with M, r0 is the correlation between Z and M. The other step

is that when X and Y are generated, permute Y with replacement while make

X fixed, which give the assumption that population property/marker/outcome

correlation θ = 0. Then the sample correlation θ̂ between sample marker/outcome

association Âj and marginal mean M̂j is calculated, and also we are interested

in change of mean and standard error of θ̂ with different standard deviation of

fisher transformation of marker/outcome correlation σz.

4.4.2 Simulation results for SD(θ̂)

Overall the expectation of θ̂ always equals to θ when θ = 0 which is consistent

with the theoretical derivation of E(θ̂). The standard error of θ̂ will increase

when the standard deviation of marker/outcome association, σz increase. Fur-

thermore, the amount of increase of standard error of θ̂ caused by σz is affected

by some other attributes.

First we look at the standard deviation of mean property, σ1 when holding

other attributes fixed. From figure 4.7, we know that the amount of increase

of standard error of θ̂ between Âj and mean property M1 caused by σz will

decrease with increasing σ1, and the amount of increase of standard error of

θ̂ between Âj and skew property M3 caused by σz will become constant with

increasing σ1, while the standard error of θ̂ between Âj and SD property M2
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will not change with different σz and σ1.

Secondly, we look at the mean of SD property, µ2 when holding the other

attributes fixed. From figure 4.8, we know that the amount of increase of

standard error of θ̂ between Âj and mean propertyM1 caused by σz will increase

with increasing µ2, and the amount of increase of standard error of θ̂ between

Âj and skew property M3 caused by σz will become constant with increasing µ2,

while the standard error of θ̂ between Âj and SD property M2 will not change

with different σz and µ2.

Actually we could see that the SD of mean property and the mean of SD prop-

erty is just the between variance and within variance of covariate X. So we

combine these two attributes to one attribute called “within/between variance

V ”, defined as the mean of the variance of Xj over the variance of mean of Xj.

From figure 4.9, we know that the amount of increase of standard error of θ̂

between Âj and mean property M1 caused by σz will increase with increasing

within/between variance, and the amount of increase of standard error of θ̂

between Âj and skew property M3 caused by σz will become constant with in-

creasing within/between variance, while the standard error of θ̂ between Âj and

SD property M2 will not change with different σz and within/between variance.

Next, we look at the correlation within covariate X, the average ρ2ij, where ρij

represent the Pearson correlation between Xi and Xj, will be determined by the

number of diagonal blocks k and the parameter a. From figure 4.10, we could

see that the value of the correlation between Xi, Xj pairs will not change the

amount of increase of standard error of θ̂ caused by σz.

Then, we look at how number of subjects n and number of variables p influence

the amount of increase of standard deviation of θ̂. From figure 4.11, we know
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Figure 4.7: Plots of standard error of θ̂ and standard deviation of fisher transfor-
mation of marker/outcome association with different level of standard
deviation of mean property. In the left plot, θ̂ is the correlation between
marker/outcome association and mean property ; In the middle plot, θ̂ is
the correlation between marker/outcome association and SD property; in
the right plot, θ̂ is the correlation between marker/outcome association
and skewness property. n=100, p=1000, a=0, µ1 = 0, µ2 = 1, σ2 = 0,
µ3 = 0, σ3 = 0.
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Figure 4.8: Plots of standard error of θ̂ and standard deviation of fisher transforma-
tion of marker/outcome association with different level of mean of SD
property.In the left plot, θ̂ is the correlation between marker/outcome
association and mean property; in the middle plot, θ̂ is the correlation
between marker/outcome association and SD property; in the right plot,
θ̂ is the correlation between marker/outcome association and skewness
property. n=100, p=1000, a=0, µ1 = 0, σ1 = 0.5, σ2 = 0, µ3 = 0, σ3 = 0.
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Figure 4.9: Plots of standard error of θ̂ and standard deviation of fisher transforma-
tion of marker/outcome association with different level of within/between
variance. In the left plot, θ̂ is the correlation between marker/outcome
association and mean property; in the middle plot θ̂ is the correlation
between marker/outcome association and SD property; in the right plot,
θ̂ is the correlation between marker/outcome association and skewness
property. n=100, p=1000, a=0, µ1 = 0, σ2 = 0, µ3 = 0, σ3 = 0.

108



Figure 4.10: Plots of standard error of θ̂ and standard deviation of fisher transfor-
mation of marker/outcome association with different level of within cor-
relation of covariate X. θ̂ is the correlation between marker/outcome
association and mean property, number of diagonal blocks k=1 in the
left plot and k=2 in the right plot. n=100, p=1000, µ1 = 0, σ1 = 0.5,
µ2 = 1, σ2 = 0, µ3 = 0, σ3 = 0.
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that the amount of increase of standard error of θ̂ between Âj and mean property

M1 caused by σz will decrease with increasing number of subjects n, so does

skew property M3, while the standard error of θ̂ between Âj and SD property

M2 will not change with different σz and number of subjects n.

From figure 4.11, we know that the sampling errors of the correlation between

marker/outcome association and marginal property follows a normal distribu-

tion with mean 0 and standard deviations 1/
√
p, so the standard deviation of

θ̂ will always increase with decreasing number of variables p. So the standard

error of θ̂ between Âj and SD property M2 is just due to the sampling error

while the the standard error of θ̂ between Âj and mean property M1 is not just

caused by the sampling error, it is also caused by the standard deviation of

marker/outcome association σz. When σz is small, the standard deviation of θ̂

is mainly due to the sampling error. Eith increasing σz, the standard deviation

of θ̂ will increase, and the amount of increase will increase when p increase. In

the end, when σz is extremely large, the standard deviation of (̂θ) will converge

no matter the number of p is. And the property of the standard deviation of

θ̂ between Âj and Skew property M3 is somewhere between SD property and

Mean property.

Overall in the simulation study, the standard deviation of θ̂ between marker/outcome

association A and Mean property M1 will increase when the standard deviation

of marker/outcome association, σz increase. The amount of increase will be

enhanced when the number of subjects n decrease, the number of variables p

increase and the within/between variance V of covariate X increase. The stan-

dard deviation of θ̂ between marker/outcome association Âj and Skew property

M3 will increase when the standard deviation of marker/outcome association, σz

increase. But the amount of increase will be not affected by the within/between

variance V of covariate X, the other patten is the same with Mean property. At
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Figure 4.11: Plots of standard error of θ̂ and standard deviation of fisher transforma-
tion of marker/outcome association with different number of subjects n.
In the left plot, θ̂ is the correlation between marker/outcome associa-
tion and mean property; in the middle plot, θ̂ is the correlation between
marker/outcome association and SD property; in the right plot, θ̂ is the
correlation between marker/outcome association and skewness property.
p=1000, a=0, µ1 = 0, σ1 = 0.5, µ2 = 1, σ2 = 0, µ3 = 0, σ3 = 0.
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Figure 4.12: Plots of standard error of θ̂ and standard deviation of fisher transforma-
tion of marker/outcome association with different number of variables
p. In the left plot, θ̂ is the correlation between marker/outcome associa-
tion and mean property; in the middle plot, θ̂ is the correlation between
marker/outcome association and SD property; in the right plot, θ̂ is the
correlation between marker/outcome association and skewness property.
n=100, a=0, µ1 = 0, σ1 = 0.5, µ2 = 1, σ2 = 0, µ3 = 0, σ3 = 0.
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last, the standard deviation of θ̂ between marker/outcome association Âj and

SD property M2 will be not affected by σz, it is only due to the sampling error

of the correlation of two vectors.

4.4.3 Simulation results for SD(θ̂) under permutation analysis

In permutation analysis of the simulated data set, we permute Y while keeping

covariate X fixed, then the marker/outcome association has mean 0 and stan-

dard deviation σz = 0 and also the population correlation between marker/outcome

association and marginal property θ equals 0. This is just the case in simulation

study when σz = 0, known that the standard error of θ̂ will increase when σz

increase, then the standard error of θ̂ calculated by permutation is smaller than

the case when σz is not zero, which is always true in real case. Then we will

be more likely to reject the null hypothesis that θ = 0 and conclude that the

marginal property has some association with the marker/outcome association.

But we should realize that in real data set, there is always some sample corre-

lation θ̂ could be detected between marker/outcome association and marginal

property, which is not 0, or we don’t need to do the permutation analysis to con-

struct the standard error of θ̂ under null hypothesis and test for significance. So

we need to add one step before simulation step 1 that the marker/outcome asso-

ciation Aj should be correlated with the marginal property Mj at first. Though

by permutation analysis, the expected correlation E(θ̂) between Aj and Mj is

forced to be 0, there is always more standard errors of θ̂ when the correlation

between Âj and M̂j is large in real case.

From figure 4.13, we see that the the amount of increase of the standard error

of θ̂ between marker/outcome association Âj and marginal property M̂ caused

by σz will increase when the absolute value of the real correlation between
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marker/outcome association Âj and marginal property M̂ is increased.

4.4.4 Simulation results of SD(θ̂) using the property of the CKD data

As shown above, the standard deviation of the estimated property/marker/outcome

associations θ̂ is affected by many factors of the data generating models, like the stan-

dard deviation of the marker/outcome associations σz, the within/between variance

of covariate V , the correlation structure of the gene pairs and so on. So it is hard

to decide whether the standard deviation of the estimated property/marker/outcome

associations θ̂ is underestimated or overestimated under the permutation technique

that researchers usually use to detect the significance of the property/marker/outcome

associations.

Here we tried to match the factors of the simulated data to the real CKD data

and then compare the standard deviation of θ̂ under permutation analysis with the

true simulation analysis. The procedure is similar with the simulation steps in 4.4.1.

We use n = 195, p = 12000, the marginal mean property, SD property and skew

property is calculated from the CKD data. For a grid of τ from -1 to 1, assume that

the marker/outcome associations Aj is correlated with marginal mean property with

correlation τ and follows a normal distribution with mean 0 and standard deviation

0.2. The covariance matrix Σx has 5 diagonal blocks with equal sample size 2400, and

in each block there is a compound symmetric structure with correlation parameter

a = 0.7 to make the the average squared correlation of gene pairs Xi, Xj equals 0.04

which is consistent with the CKD data. Then using the approaches in simulation

steps 3, we make the covariate Xj has the same marginal properties.

Now the simulated data (X,Y ) is generated, we could calculate the sample marker/outcome

association Âj, the sample marginal properties M̂ , and then the estimated prop-

erty/marker/outcome association θ̂ is calculated. For permutation analysis, we need

to permute our outcome Y while holding covaraites X fixed, then calculate the esti-
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Figure 4.13: Plots of standard error of θ̂ and standard deviation of fisher transforma-
tion of marker/outcome association with different levels of the absolute
value of the real θ̂ in permutation analysis. In the left plot, θ̂ is the
correlation between marker/outcome association and mean property; in
the middle plot, θ̂ is the correlation between marker/outcome associ-
ation and SD property; in the right plot, θ̂ is the correlation between
marker/outcome association and skewness property. n=100, p=1000,
a=0, µ1 = 0, σ1 = 0.5, µ2 = 1, σ2 = 0, µ3 = 0, σ3 = 0.
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mated property/marker/outcome association θ̂. Figure 4.14 compares the standard

deviation of θ̂ for simulation and permutation analysis, and shows that the permuta-

tion technique will overestimate the standard deviation of θ̂ in CKD data set, then

lead to unsignificant result while it is more likely to be significant in truth.

In the approaches above, we try to match the average squared correlation of gene

pairs Xi, Xj in simulated data to the real data, and assume that it is good measure

of the dependency between covariates X. But it may not capture the most property

of the dependence structure of covariates X. Then we illustrate another method to

capture the dependence structure of covariates X. We calculate the residuals of Xj|Y

by regressing Y on each gene marker Xj, then calculate the covariance matrix of

the residuals, Σr. Let ϵj in equation 4.1 has the same covariance structure Σr. The

remaining procedures are the same with the procedures above. Figure 4.15 compares

the standard deviation of θ̂ for simulation and permutation analysis, and shows that

the permutation technique will still overestimate the standard deviation of θ̂ in CKD

data set. The difference between these two procedures is that the magnitude of

overestimate for permutation technique is different and we believe that the second

procedure is more close to the real case.

4.5 CKD data Example

In CKD dataset, 12023 genes and 195 subjects are involved and the glomerular

filtration rate (GFR) is used as external trait Y. Glomerular filtration rate (GFR)

is a test used to check how well the kidneys are working. Specifically, it estimates

how much blood passes through the tiny filters in the kidneys, called glomeruli, each

minute. Lower GFR means kidney is not working very well represents patients with

severer kidney disease. So it is reasonable that GFR is left skewed since there are few

people with very bad GFR and the other people with normal GFR which is consistent

with the distribution of GFR in figure 4.16.
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Figure 4.14: Plots of standard error of θ̂ and standard deviation of fisher transforma-
tion of marker/outcome association with different levels of real θ in both
simulation and permutation analysis for three marginal properties. All
the factors of the simulated data are matched to the CKD data and the
average squared correlation of gene pairs Xi, Xj is used to represent the
covariance structure of X.
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Figure 4.15: Plots of standard error of θ̂ and standard deviation of fisher transfor-
mation of marker/outcome association with different levels of real θ in
both simulation and permutation analysis for three marginal properties.
All the factors of the simulated data are matched to the CKD data and
the covariance matrix of the residuals of Xj|Y is used to represent the
covariance structure of X. The red line is for permutation analysis, the
blue line is for simulation analysis.
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Figure 4.16: Histogram of distribution of GFR in CKD data.

The five marginal features of gene expression across subjects in CKD data are

calculated based on the definition on section 4.2. Here we choose p = 0.75 for the

measure of variance, which is IQR. After each marginal feature is calculated, we

construct cubic B-spine with (k=3, df=3) for each measurement and then use them

as the covariates and the sample pearson correlations r̂ between gene expression and

GFR as the outcome in the quantile regression model with quantiles vary from 0.05

to 0.95.

4.5.1 Relations between external correlations and each feature

First, marginal quantile regression of r̂ and B-spine of each marginal feature is

made and figures 4.17-4.21 are the plots of predicted quantiles vary from 0.05 to 0.95

and each marginal feature and the goodness of fit R1 is calculated for each regression.

Figure 4.17 shows that skewness has a negative relationship with the quantiles

of correlations between gene expression and GFR. The predicted quantiles are par-

allel, then we could use the center of the predicted quantiles, the median quantile

to represent the whole pattern. The average external correlations for genes decrease

119



linearly when the skewness of the genes increase and the external correlations are

usually negative when their corresponding skewness are positive and the external

correlations are usually positive when their corresponding skewness are negative. If a

gene with expression value skew to the right, it has positive skewness and then leads

to negative correlation between GFR and gene expression. Since lower GFR is bad,

which means higher gene expression level is bad for this particular gene, then people

have higher expression level on this gene or have expression level in the right tail are

in poor situation. On the other hand, if a gene with expression value skew to the

left, it has negative skewness and then leads to positive correlation between GFR and

gene expression. Then people have lower expression level on this gene or in the left

tail are in poor situation.

Figure 4.22 give examples of genes in CKD data that are highly skewed and

have high correlation between gene expression and GFR. The left scatterplot is for

gene which is positively skewed and then have high negative external correlation. The

subjects on the right tail have lower GFR, then in bad situation. The right scatterplot

is for gene which is negatively skewed and then have high positive external correlation.

The subjects on the left tail have lower GFR, then in bad situation. In summary, for

genes with non-symmetric distribution across subjects, people have gene expression

value in the tail of the distribution are in poor situation. Does the conclusion still

true that for genes with symmetric distribution, people have gene expression value

in the tail are also in poor situation? We will discuss it later. Also in this CKD

dataset, genes are more likely to be right skewed, which is the same with what people

expect that there may be more right skewed genes since there is low boundary for

gene expression level that gene expression values are always greater than 0. If we

choose 0.4 as the threshold, then there are 841 genes have skewness greater than 0.4,

while only 218 genes have skewness smaller than −0.4.

Then we look at figure 4.18, the plot of predicted quantiles of external correlations
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and IQR, there is a fan pattern of the predicted quantiles, that the tail distribution

of external correlations is more spread with the larger IQR. Then genes with larger

IQR tend to be more correlated with GFR, either negative or positive but the tend

is weaken when gene’s IQR are relatively large. If one gene is positively correlated

with GFR, then people have low expression level on this gene tends to have low GFR,

then in poor situation, on the other hand, if one gene is negatively correlated with

GFR, then people have high expression level on this gene are in poor situation. But

if one gene does not have much linear relationship with GFR (low correlation with

GFR), it could still be interesting, since there could be a symmetric concave/convex

relationship between this gene and GFR, then people have high expression level and

low expression level are both in poor or good situation.

Figure 4.23 gives examples of genes in CKD data that are symmetric distributed

across subjects and have strong linear relationship with GFR and also examples of

genes in CKD data that have symmetric concave/convex relationship with GFR. Then

the question is, for genes with symmetric distribution, people have gene expression

level in the tail are more likely to be both in poor situation or just one tail is bad,

the other is good. In other words, are genes more likely to have strong linear trend

with GFR or strong symmetric convex/concave relation with GFR?

From figure 4.19, the overall pattern of mean and external correlation is that

for genes with lower expression levels, genes are more likely to be highly negatively

correlated with the GFR than highly positively correlated, but when expression level

goes up, the pattern disappears, there are equally highly positively correlated genes

and highly negatively correlated genes and overall, genes with high mean expression

level are more likely to be highly correlated with GFR. Then not only the genes with

high mean expression level are of interest, genes with low mean expression level could

still be interesting due to our finding. The overall pattern of connectivity and external

correlation from figure 4.20 is that genes with higher connectivity measure are more
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Figure 4.17: Plot of predicted quantiles from 0.05 to 0.95 of external correlations and
skewness of gene expression in CKD data.

likely to be highly correlated with GFR and the number of highly positively correlated

genes is much higher than the number of highly negatively correlated genes.

At last, we look at the overall pattern of outlier features and external correlations

from figure 4.21. There are slightly decreasing trend of external correlations with the

increasing of outlier measure, which means for gene with more outliers, it is more

likely that the gene is highly negatively correlated with GFR. Since there are more

positively skewed genes than negatively skewed, outliers are more likely to be on the

right side of the gene, then subjects who are the outliers of one gene are more likely

to have high gene expression levels and then in poor situation. The conclusion for

outlier measure is quite similar with skewness, and the pearson correlation between

outlier and skewness are 0.63 in CKD data. Here comes our next question, will the

effect of outlier on the external correlations mainly due to the effect of skewness or

in the opposite way that the effect of outlier is dominant? Of all the five marginal

features, which is the most dominant feature?
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Figure 4.18: Plot of predicted quantiles from 0.05 to 0.95 of external correlations and
IQR of gene expression in CKD data
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Figure 4.19: Plot of predicted quantiles from 0.05 to 0.95 of external correlations and
mean of gene expression in CKD data
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Figure 4.20: Plot of predicted quantiles from 0.05 to 0.95 of external correlations and
connectivity of gene expression in CKD data
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Figure 4.21: Plot of predicted quantiles from 0.05 to 0.95 of external correlations and
outlier of gene expression in CKD data
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Figure 4.22: Examples of genes in CKD data that are highly skewed and have strong
linear relationship with GFR.
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Figure 4.23: Left plot is an example of genes in CKD data that are symmetric and
have strong linear relationship with GFR. Right plot is an example of
genes in CKD data that are symmetric and have symmetric convex re-
lationship with GFR.
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4.5.2 Relations between marginal features

Though the five marginal features of genes are mathematically uncorrelated. For

example, genes with high mean could have low variance, genes with high variance

could be symmetric or skewed to the left or right. But in real case, there always be

some correlations between these five marginal features. Table 4.1 shows the pearson

correlation between any two of the marginal features, and the tolerance score which

gives the strength of multicollinearity. Tolerance is calculated by using 1−R2
j , where

R2
j is the coefficient of determination of a regression of explanator j on all the other

explanators. A tolerance of less than 0.2 or 0.1 indicates a multicollinearity problem.

Except the CKD data set, we use other three data sets, the skeletal muscle data,

psoriasis data and cigarette data. The skeletal muscle data is used to analysis of vas-

tus lateralis muscle biopsies from insulin-sensitive subjects, insulin-resistant subjects

and diabetic patients following insulin treatment with 12626 genes and 110 samples

where 60 samples are measured before Insulin treatment and 50 samples after Insulin

treatment. Then this data could be used as two datasets before and after Insulin treat-

ment. Psoriasis data is used to analyze lesional and non-lsional skins from patients

with psoriasis with 54675 genes and 82 samples. We just use 61 samples excluding 21

control samples. Cigarette data analyze the cigarette smoke effect on the oral mucosa

with 54675 genes and 79 samples divided into 39 smokers and 40 non-smokers. Then

we could still use this data as two datasets with smokers and non-smokers.

From table 4.1, we see that in CKD dataset, there is some positive relationship

between mean and variance, and outlier and skewness has the highest correlation 0.63

since higher skewness will lead to higher outlier measure, and also the outliers are

more likely to on the right side, not on both sides. We could still see that variance and

connectivity have some relationship because if one gene has very low variance, which

means that every subject has very similar gene expression value then it should have

no correlations with other genes. Since there is no high multicollinearity between our
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Table 4.1: Relations among marginal features of gene expression data sets

CKD IQR Skewness Outlier Connectivity Tolerance
n=195 0.28 -0.16 -0.2 0.26 0.84 Mean

-0.09 0.09 0.34 0.79 IQR
0.63 0.06 0.58 Skewness

0.01 0.56 Outlier
0.84 Connectivity

Skeletal muscle IQR Skewness Outlier Connectivity Tolerance
before treatment -0.04 0.17 0.25 -0.26 0.85 Mean

n=60 0.07 -0.30 -0.15 0.85 IQR
-0.72 -0.2 0.35 Skewness

0.57 0.24 Outlier
0.52 Connectivity

Skeletal muscle IQR Skewness Outlier Connectivity Tolerance
after treatment -0.21 -0.19 0.21 0.24 0.84 Mean

n=50 -0.08 -0.12 0.12 0.85 IQR
0.16 0.01 0.90 Skewness

0.69 0.46 Outlier
0.46 Connectivity

Psoriasis IQR Skewness Outlier Connectivity Tolerance
n=61 0.49 -0.06 -0.25 0.34 0.81 Mean

-0.05 -0.24 0.32 0.85 IQR
0.63 -0.08 0.70 Skewness

-0.12 0.79 Outlier
0.73 Connectivity

Cigarette smokers IQR Skewness Outlier Connectivity Tolerance
n=40 0.25 -0.02 -0.04 0.08 0.99 Mean

-0.01 -0.13 0.53 0.69 IQR
0.64 -0.03 0.72 Skewness

-0.10 0.69 Outlier
0.71 Connectivity

Cigarette non-smokers IQR Skewness Outlier Connectivity Tolerance
n=39 0.25 -0.02 -0.05 0.10 0.99 Mean

-0.01 -0.14 0.44 0.78 IQR
0.48 -0.002 0.78 Skewness

-0.10 0.76 Outlier
0.80 Connectivity
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5 marginal properties, we could include all of them in the multiple regression model.

The finding is similar in psoriasis data and cigarette data. There is some positive

correlation between mean and variance, and outlier and skewness has the highest

positive correlation. In cigarette data, there is also some positive relationship between

variance and connectivity, which means genes have higher variance are more likely to

be highly connected with other genes.

While in skeletal muscle data, the relationships between marginal features might

be different. First, mean and variance has some negative relationship, this may cause

some problem when you filter the genes with low mean and low variance, then some

genes with high mean expression level are also removed, which will lead to losing

some important information. Also the high positive correlation between outlier and

connectivity which is 0.69 for skeletal muscle data after treatment and 0.57 before

treatment means that genes with more outliers tend to be more correlated with other

genes. There is high negative correlation between skewness and outliers which is -0.72

for skeletal muscle data before treatment which is just opposite with the relationship

we found in CKD dataset, which means genes are more likely to have outliers on the

left side or genes are more likely to skewed to the left, then there are some genes have

very low expression values.

When we do simple regression, we must be cautious in looking at the effect of

one predictor to the outcome. It is commonly accepted that effect of factor A to the

outcome is weaken if there is an alternative factor that is related to factor A as well

as the outcome. For example, in CKD dataset, there may be trends between external

correlations and both variability and skewness. But variability and skewness are also

correlated. Then it is not acceptable if we just do marginal simple regression of

external correlations on variability or skewness and conclude that genes with certain

level of variability or skewness tend to show high external correlations. Statistical

control of “confounding” is to include it as a covariate in a quantitative model. So if
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all the five marginal features are correlated and each of them has relationship with

the outcome, we should include all of the five marginal properties in one multiple

regression model and then we could look at the partial R2 which quantify how much

unique information about outcome in one covariate is not captured by the other

covariates, then predictor with the largest partial R2 is considered to be the most

important predictor. Another way is controlling for one factor, then look at the

relationship between the other factor and outcome. For example, we could control

for the effect of skewness by dividing the genes into several groups with different

value of absolute skewness, then see if the relationship between variance and external

correlations still exists.

4.5.3 The most dominant feature

First, we include all the marginal features in one quantile regression model, the

partial R1 is calculated by using the formula

partialR1 = (R1,total −R⋆
1)/(1−R⋆

1)

where R1,total is the total R1 when all the features are included in the model and

R⋆
1 is the R1 when one specific feature is not included in the model while others

are. Then it quantifies how unique information of one specific feature to the external

correlations. Figure 4.24 shows the marginal R1 and partialR1 for our five features,

we could see that the average partialR1 across all the quantiles for mean is 0.007, IQR

is 0.008, Outlier is 0.015, Skewness is 0.05 and Connectivity is 0.012. The importance

of skewness is 3-4 times more than the other marginal features on average of the

multiple quantile regression. So the most important predictor in quantile regression

is skewness and the second important predictor is outlier, the third is connectivity.

Second, we do the marginal regression of one feature while controlling the value of
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Figure 4.24: Left plot is R1 for quantile regression of external correlations and each
feature; Right plot is partial R1 for multiple quantile regression, com-
paring full model and full model without one feature at each time.
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another feature. It is well known that if feature A has strong relation with outcome

and also feature A and feature B are highly correlated with each other, then feature B

will also have some relation with the outcome, though in fact, feature B is independent

with the outcome. Then if we control for the value of feature B, though the domain

and density of feature A will change, the effect of feature A to the outcome will not

change. On the other hand, if we control for the value of feature A, the effect of

feature B to the outcome will disappear due to the true relationship between feature

B and outcome is independent. From the results of multiple quantile regression, we

know that skewness is the most dominant feature. To check that, let’s control for the

other features to see if the relationship between skewness and external correlations

changes.

We first control for the effect of IQR to see how the relationship between skewness

and external correlations changes due to different levels of IQR. We order genes with

their IQR values and divide genes into three groups based on their IQR values and

then the low IQR group contain the lowest 1/3 genes with IQR smaller than 0.25.

Middle IQR group contains the middle 1/3 genes with IQR between 0.25 and 0.38 and

high IQR group contains the top 1/3 genes with IQR greater than 0.38. Within each

IQR group, we will do the marginal quantile regression on skewness feature. Figure

4.25 shows that the relationship between skewness and external correlations does not

change when controlling for the effect of IQR. Then we also control for the effect of

mean, outlier and connectivity with the same procedure, from figure 4.26-4.28, we

know that the relationship between skewness and external correlations remains the

same. These results are consistent with what we find using partialR1.

4.5.4 Function deconvolution result

The second topic for this section is for symmetric genes, are they more likely to be

linearly correlated with GFR or have a symmetric concave/convex relationship with
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Figure 4.25: Plot of predicted quantiles of external correlations and skewness of gene
expression for three gene sets with different level of IQR.
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Figure 4.26: Plot of predicted quantiles of external correlations and skewness of gene
expression for three gene sets with different level of mean.
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Figure 4.27: Plot of predicted quantiles of external correlations and skewness of gene
expression for three gene sets with different level of outlier.
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Figure 4.28: Plot of predicted quantiles of external correlations and skewness of gene
expression for three gene sets with different level of connectivity.
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GFR? Here we deconvolve the function of E(Y |X) into a monotone function and a

symmetric convex function and a residual term. Then,

E(Y |X) = fsc + fm + r

In our situation, outcome Y is GFR and X is gene expression value for each

gene and we use X − X̄, (X − X̄)3, sign(X − X̄)(X − X̄)2, sign(X − X̄)
√
X − X̄,

arctan(X − X̄) as the basis monotone functions and
√

|X − X̄|, |X − X̄|, |X −

X̄|1.5, |X − X̄|2, log (X − X̄ − 1) as the basis symmetric convex function. Then our

regression model becomes:

Y = β0 + β1(X − X̄) + β2(X − X̄)3 + β3 arctan(X − X̄)

+β4sign(X − X̄)(X − X̄)2 + β5sign(X − X̄)
√
X − X̄ + β6|X − X̄|+ β7|X − X̄|1.5

+β8|X − X̄|2 + β9

√
|X − X̄|+ β10 logX − X̄ − 1 + ϵ

where E(ϵ|X) = 0, V ar(ϵ|X) = σ2. And we need sign(β1) = sign(β2) = sign(β3) =

sign(β4) = sign(β5) and sign(β6) = sign(β7) = sign(β8) = sign(β9) = sign(β10).

We use the nnls package in R program and regress the model in four situations, when

the sign of the coefficients of the monotone function is positive/negative and the sign

of the coefficients of the symmetric convex function is positive/negative. Then choose

the situation of the highest R2 for each symmetric gene (in the low skewness group).

Then partial R2 for monotone function and partial R2 for symmetric convex function

are calculated for each gene and they are plotted in figure 4.29. Using threshold 0.1,

then about 4% of the symmetric genes are demonstrated to be linearly correlated

with GFR, while 0.2% genes show strong symmetric convex/concave relation with

GFR.
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Figure 4.29: Plot of partial R2 of linear term and partial R2 of quadratic term.

4.6 Challenge and conclusion

We focus on a new question that relate the effect sizes (marker/outcome associa-

tions) to the properties of marginal distribution of the markers. This new framework

for understanding marginal marker/outcome associations in large datasets involves

familiar summary statistics such as the Pearson correlation coefficients, but applies it

in a non-standard way to derived quantities, rather than directly to the observations.

We use the quantile regression with spline basis technique to model the relationships

between the marker/outcome associations and the five marginal properties with a L1

goodness of fit R1 in real data analysis. We figure out that the skewness property

has the strongest association with the marker/outcome association and dominate the

other marginal properties.

Then we addresses the challenge of assessing the uncertainty in statistics that

are aggregated over large data sets within complex and poorly understand depen-

dencies. We show that commonly used randomization approaches, while intuitive,

can give misleading results, and we provide a simulation based alternative approach
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that appears to perform well in a variety of situations. Also applied this approaches

to the real data, we compare the standard deviation of the statistic of simulation

based approach to the randomization approach and find out that the randomization

approach overestimates the standard deviation of the statistic and tends to make the

property/marker/outcome association unsignificant.

Then we addresses the issue of marker/outcome relationships that are strongly

non-monotonic. We propose a decomposition of such relationships into monotonic

and “u-shaped” components. We find out that the monotone marker/outcome asso-

ciations are more likely to exist in CKD data than the “u-shaped” associations, then

use Pearson correlation coefficients to represent the marker/outcome associations is

reasonable.

There is also a challenge for the regression model, that the external correlations

between GFR and gene expression data are themselves correlated since we calcu-

lated the correlations with the same outcome GFR, then the dependent variable in

regression model is correlated or the error term in the regression model is correlated

which violate the assumption for quantile regression that the quantiles of the error

terms given covariates are independent. Therefore the estimated coefficients of the

regression will be biased.
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CHAPTER V

Conclusions

In this thesis, we consider several challenging issues that arise when analyzing

genomic data. Difficulties that arise in this area commonly result from the effects

of covariate measurement error, complicated dependence structure, and data sets

with high dimension and small sample size. Chapter 2 focuses on the statistical

assessment of predictive performance due to covariate measurement error. Chapter

3 focuses on proposing a new method to measure the overlap effect sizes in two

subpopulations in genomic study. Chapter 4 focuses on a new question that relate the

effect sizes (marker/outcome associations) to the properties of marginal distribution

of the markers.

In chapter 2, we first demonstrate that the predictive performance is negatively af-

fected by the increase of magnitude of measurement error. The effect is also influenced

by other factors of data generating model related to the true regression coefficient β,

the covariance matrix of true covariates X, Σx, and the covariance matrix of the mea-

surement error, Ση. Then we identify these factors from the theoretical derivation

of predictive accuracy AUC, we find that there are four factors might influence the

decline of predictive accuracy and similar findings is shown for the linear case. Also in

the simulation study, we find that E(S1) has a negative relationship with the decline

of ÃUC, while Var(S2), Var(S1), Cov(S1, X1 − X2) have positive relationships with

140



the decline of ÃUC.

To apply this to practical use, we propose a SIMEX procedure to estimate these

two factors from real data, though the estimate is not very accurate. Then we define

a ratio of the decline of predictive accuracy due to measurement error compare to the

overall decline of predictive accuracy. If the ratio is large, the effect of measurement

error dominate the decline of predictive accuracy, otherwise, we do not need to worry

much about the measurement error. This could help researchers to decide whether to

improve technologies to measure the data more accurately or to use more advanced

regression techniques, find more relevant covariates or collect more samples to reduce

other errors causing the decline of predictive accuracy.

In chapter 3, we first define the overlap measure of the effect sizes of the marker/outcome

associations in two subpopulations, and then propose parametric and nonparametric

methods to estimate it. In simulation study, we compare the accuracy of the estimate

of the overlap measures through mle, moment, rescaling, copula and plug-in methods

and find out that if the joint distribution of the true standardized parameter (θAi ,

θBi ) is much deviated from bivariate normal distribution, the copula method per-

forms better than the other parametric or nonparametric methods. Then we apply

copula-based, mle and plug-in method to estimate the overlap measure of the com-

mon associations in each pairs of disease subgroups in CKD data. MLE estimator

and copula estimator give similar result for most of the pairs of disease subgroups,

implying that the joint distribution of the effect sizes in any two disease subgroups is

close to bivariate normal distribution.

In chapter 4, we address four issues. First, we assess the uncertainty of the prop-

erty/marker/outcome associations that are aggregated over large data sets within

complex and poorly understand dependencies. We show that commonly used ran-

domization approaches, while intuitive, can give misleading results, and we provide

a simulation based alternative approach that appears to perform well in a variety of
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situations. Second, we address the issue of marker/outcome relationships that are

strongly non-monotonic. We propose a function decomposition method and find out

that the monotone marker/outcome associations are more likely to exist in CKD data

than the “u-shaped” associations. Third, We use the quantile regression with spline

basis technique to model the relationships between the marker/outcome associations

and the five marginal properties with a L1 goodness of fit R1 in real data analy-

sis. We figure out that the skewness property has the strongest association with the

marker/outcome association and dominate the other marginal properties. At last,

the scientific meaning of the property/marker/outcome association is considered. We

conclude that for the highly skewed genes, people have gene expression level on the

tail distribution of these genes are more likely to be a poor condition of the disease.
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