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Abstract 

 

Miniature inertial measurement units (IMUs) have become popular in the field of 

biomechanics as an alternative to expensive and cumbersome video-based motion capture 

(MOCAP).  IMUs provide three-axis sensing of angular velocity and linear acceleration 

in lieu of position data provided by MOCAP.  The research presented herein further 

explores the use of IMUs in five applications for sports training and clinical 

biomechanics. 

The first study focuses on the sports of baseball and softball and yields estimates 

of the release velocity of a pitched ball within 4.6% of MOCAP measurements.  The ball 

angular velocity further distinguishes and quantifies different types of pitches.  The 

second study enables estimates of angular velocity during free-flight based solely on data 

from an embedded tri-axial accelerometer. Doing so eliminates angular rate gyros, which 

are often range limited, yet yields angular velocity estimates accurate to within 2%.   We 

further exploit this technique to reveal the rotational stability of rigid bodies in free-flight.  

The third study extends the use of IMUs to assess the speed of an athlete estimated from 

a torso-mounted IMU. The speed estimates remain highly correlated with those obtained 

by MOCAP (r=0.96, slope=0.99) for motions characteristic of explosive sports (e.g., 

basketball). Moreover, the accurate speed estimation algorithm (mean RMSE=0.35 m/s) 

does not require data from GPS or magnetometers rendering it valuable and usable in any 

environment (indoor or outdoor).  

The remaining studies advance the use of IMU arrays to estimate joint reactions 

in multibody systems. The fourth study establishes the accuracy of this method using 

experiments on an instrumented double pendulum.  Estimated reaction forces and 

moments remain within 5.0% and 5.9% RMS respectively of values measured via load 

cells. The final study addresses the companion need to measure the location of joint 

centers.  A method employing a single IMU yields the center of rotation (CoR) of a 

spherical joint to within 3 mm as established by a coordinate measuring machine.  The 
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simplicity and accuracy of this method may render it attractive for broad use in field, 

laboratory or clinical applications requiring non-invasive, rapid estimates of joint CoR.    
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Chapter 1: Introduction 

 

 

 

1.1. Motivation 

Research questions regarding human movement, especially those probing ways to 

prevent injury or to improve athletic performance, have been explored for decades [1–4].  

While most of this research is motivated by clinical applications, the techniques used to 

collect the requisite kinematic data are largely restricted to the laboratory [1–6].  While 

there is no debating the value of laboratory studies in understanding human motion, 

injury mechanisms, and athletic performance, the space constraints and contrived nature 

of testing may diminish the conclusions that are drawn and hamper the translation of 

results into practice [5,7].  Fortunately, rapid development in MEMS sensors and wireless 

technology combine to yield new approaches for measuring human motion which provide 

a potential solution to these limitations.  In particular, the combination of MEMS inertial 

sensors and low power RF chipsets enable the development of highly miniaturized, 

wireless inertial measurement units (IMUs) for human motion tracking.  This technology, 

which enables human motion analysis outside the laboratory, is still in its infancy and 

fundamental studies are needed to fully exploit its potential in far-reaching applications.    

 

 

1.2. Methods for Quantifying Human Motion 

The state of the art for quantifying human motion is video-based motion capture 

(MOCAP).  MOCAP is essentially a lab-based method for tracking human motion which, 

unfortunately, is difficult to utilize in the clinic or on the field of play.  MOCAP is also an 

expensive technology that employs an array of high-speed cameras arranged around the 

perimeter of a measurement volume. The cameras are calibrated to yield the three-
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dimensional position coordinates of a set of markers which are often reflective targets or 

infrared LEDs, see for example [1,8–10].  In human biomechanics studies, markers are 

often attached to the skin via adhesive tape in locations that define bony anatomical 

landmarks [11]. They can also be attached to form fitting suits, combined to form clusters 

strapped to the body, or in rare instances, screwed directly to bone [12].  Measurements 

are often performed in a dedicated motion-capture laboratory, are restricted to a limited 

capture volume, and require an operator skilled in marker placement, calibration, and the 

collection and analysis of marker position data.  

Human biomechanical analyses seek to understand the underlying kinematics 

and/or kinetics governing human motion. MOCAP provides position data for both 

purposes. In particular, MOCAP provides the marker position data that defines the three-

dimensional kinematics of the major body segments.  The same marker position data can 

also be employed to estimate joint reactions via inverse dynamics, often with the 

companion use of force plates to measure ground reactions.  Doing so requires 

knowledge of the angular velocity and angular acceleration of each segment, segmental 

mass center acceleration, and segmental geometric and inertial properties [13].  

Computation of velocity and acceleration from marker position data requires a sequence 

of differencing operations. In particular, differencing position data yields segment 

orientation and subsequent numerical differentiations yield angular velocity and angular 

acceleration.  Successive numerical differentiations are also required to compute 

segmental mass center velocity and acceleration.  It is well established that numerical 

differentiations may significantly amplify errors in the sampled position data (due to 

measurement error, marker occlusion, skin motion, etc.), resulting in potentially large 

errors in the very kinematic quantities required for the inverse dynamic estimates of joint 

reactions [3,14]. 

In an effort to minimize the effect of skin motion in particular, researchers have 

proposed optimized marker positions to limit the number of markers over large areas of 

soft tissue (e.g. muscle and/or body fat) [8].  Methods that avoid the use of markers 

completely include stereo radiography [4] and real-time MRIs [15] which both yield 

accurate descriptions of bone movement. However, they also expose subjects to radiation 

(radiography) and confine motion to highly constrained volumes (radiography and 
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MRIs).  As an alternative, “markerless” video motion capture methods have also been 

developed [12,16–18].  These methods employ one or more high-speed video cameras to 

record a subject’s motion and fit a model of the human form to the recorded 

images/frames.  While similar to tracking marker positions, markerless motion capture is 

computationally intensive and requires significant assumptions for estimating bone 

position and orientation.  It also suffers from the same constraints on measurement 

volume of all video-based techniques. 

The shortcomings imposed by accuracy, cost, portability and measurement 

volume prevent widespread adoption of MOCAP as a clinically viable method for 

quantifying human motion.  However, some or all of these shortcomings may be 

addressable by advancing an alternative technology, namely miniaturized inertial 

measurement units (IMUs). Miniature IMUs, which incorporate MEMS accelerometers 

and angular rate gyros, measure the angular velocity and linear acceleration of any rigid 

body to which they are attached. When deployed as a body worn sensor array, miniature 

IMUs directly provide the angular velocity and linear acceleration of body segments 

needed for many biomechanical analyses.  For the purpose of inverse dynamics, only a 

single derivative operation and a single integral operation are required to yield the 

angular acceleration and orientation data, respectively that are also required. Thus, 

miniature IMUs have the potential to provide far more accurate kinematic data than 

(position-based) MOCAP for inverse dynamics. Perhaps even more attractive, miniature 

IMUs remain highly portable and can be deployed in the clinic, in the workplace, or on 

field of play and for a very small fraction of the cost of MOCAP [19,20].  These 

advantages provide substantial motivation for advancing this promising technology for 

applications in sports training and clinical biomechanics.  

 

 

1.3. Research Objective and Scope 

The overall objective of this dissertation research is to advance the use of 

miniature IMUs for novel applications in sports training and clinical biomechanics.  

Doing so requires advances both in algorithms and experimental procedures to yield 

accurate estimates of kinematical variables. In concert, we validate the accuracy of IMU-
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derived kinematical variables through carefully designed benchmark experiments.  We 

bring this approach to bear on five applications that span: 1) the motion of pitched 

baseballs and softballs, 2) the rotational dynamics and stability of rigid bodies in free-

flight, 3) the velocity of a running athlete, 4) the joint reactions deduced from IMU data, 

and 5) the accurate estimation of joint centers.  The motivation, background, methods and 

results for each of these applications is described in a separate chapter which also 

represent independent publications.  A synopsis of all five chapters is provided below 

which further highlights the principal contributions of each study.  

 

 

1.3.1. Chapter 2: Dynamics of Pitched Baseballs and Softballs Revealed via Ball-

Embedded IMU. 

The first study advances the use of IMUs to understand the dynamics of human 

throwing in the sports of baseball and softball. In particular, we examine the dynamics of 

pitched baseballs and softballs using a highly miniaturized, ball-embedded, wireless 

IMU.  

The aerodynamic forces responsible for the “break” (or curve) in the path of a 

pitched ball trace to the release conditions of the ball from the pitcher’s hand including 

the orientation, spin, and velocity of the ball [21,22].  These release conditions ultimately 

differentiate one pitch type from another.  For example, the fastball and changeup are 

released with substantial backspin in relation to the ball center velocity. By contrast, the 

curveball largely spins in the opposite direction; that is, it has substantial topspin. The 

slider has a combination of topspin and sidespin [23,24].   

 The majority of studies on the biomechanics of pitching utilize video-based 

motion capture to quantify the athlete’s pitching motion or standard high-speed video to 

quantify the dynamics of the pitched ball [21,24–26].  As noted above, these techniques 

are limited by constrained capture volumes, special lighting conditions, and, in the case 

of MOCAP, the significant amount of time to apply/adjust markers. Two recent studies 

explore the use of wireless IMUs for baseball pitcher training [27,28] where the IMUs are 

mounted to the throwing arm. Unfortunately, the size and mass of these selected IMU 
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designs [27,28] preclude their use for directly measuring the motion of the pitched 

baseball or softball.  

 To address these physical shortcomings, we introduce a highly miniaturized IMU 

that is directly embedded within the small confines of a baseball/softball. This design 

yields a low cost, highly portable and minimally intrusive technology for measuring the 

kinematics of a pitched ball right on the field of play. In particular, this technology yields 

a quantitative means for characterizing pitch type and consistency by resolving both the 

ball velocity and angular velocity at release, as well as throughout the pitching motion 

(for pitches that remain within the measurement range of the associated angular rate 

gyros).  The computational methods described in this chapter estimate and correct for 

sensor drift errors in arriving at superior estimates of the ball center velocity.  Results are 

validated by benchmarking IMU-derived ball velocity against that obtained using a 

Vicon
TM

 (Los Angeles, CA, USA) motion capture system.  IMU-based estimates of the 

release velocity of the ball remain within 4.6% of the MOCAP measurements. Promising 

ways that this technology can support pitcher training are also emphasized. 

 

 

1.3.2. Chapter 3: Rotational Dynamics and Stability of Rigid Bodies in Free-Flight  

A major limitation noted in the previous study is that highly skilled pitchers 

release the ball at spin rates that may fall outside the measurement range of most angular 

rate gyros.  In answer to this challenge, Chapter 3 presents a novel method for identifying 

the free-flight angular velocity of a rigid body using data solely from a tri-axial 

accelerometer.  The chapter opens by reviewing the theory governing the torque-free 

motion of a rigid body, which is a classical topic in rigid body dynamics; see, for 

example, [29–31].  An elegant experimental method reveals the free-flight dynamics of a 

rigid body.  At the heart of the method is a highly miniaturized wireless IMU which is 

used to directly measure acceleration and angular velocity during free-flight for direct 

comparison with theory.  The precession of the angular velocity vector in a body fixed 

frame is observed through the construction of experimental polhodes.  Rotations initiated 

close to the major, minor and intermediate principal axes closely obey predictions from 

classical theory.  This experimental verification of classical free-flight dynamics further 
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enables the reconstruction of the angular velocity vector from measurements made with a 

single, tri-axial accelerometer. Doing so leads to angular velocity predictions that remain 

within 2% of the angular rates directly measured by the rate gyro.  This simplification, 

which has practical use in resolving the spin of a pitched baseball or softball, provides an 

inexpensive alternative to using angular rate gyros. Moreover, the angular velocity 

reconstruction method herein runs counter to prior claims that a minimum of six 

independent accelerometer outputs are required for this purpose [32,33].  

 

 

1.3.3. Chapter 4: The Velocity of a Running Athlete 

Chapter 4 extends the algorithms for estimating ball velocity presented in Chapter 

2 to estimating the velocity of an athlete directly and non-invasively on the field of play.  

Doing so complements the growing interest in employing MEMS inertial sensors and 

GPS technology to monitor and assess athletic performance [34–37].  Several products 

have recently come to market which exploit these technologies to identify performance 

metrics (e.g., speed, acceleration, load, etc.) useful for training and coaching [34,38–41].  

Two designs in particular incorporate sensor modules into clothing, holding them tightly 

against the athlete’s torso and removed from the extremities (hands and feet) used for 

play [38,40].  Both of these designs specifically target outdoor sports, like soccer, rugby 

and Australian football, where the fusion of IMU and GPS data is used to estimate athlete 

speed [40].  However, the lack of GPS signals in indoor arenas renders these sensor 

fusion methods useless for sports such as basketball [42]. Moreover, existing GPS-free 

techniques require subject-specific calibration, lower-limb mounted IMUs, or even an 

array of IMUs to provide accurate speed estimates [43–48]. 

 We address these limitations by introducing a new method for estimating athlete 

speed which utilizes a single, torso-mounted IMU, and does not require subject-specific 

calibration.  The key to this method is correcting velocity drift errors by exploiting 

identified periods of time when the athlete is momentarily at rest. The resulting estimates 

of instantaneous and average speed are compared to those determined from a Vicon
TM

 

motion capture system for numerous trials representative of athlete motion in explosive 

sports like basketball.  These comparisons demonstrate that this technique predicts 
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instantaneous athlete speed that is accurate (mean RMSE = 0.35 m/s) and highly 

correlated with MOCAP speed estimates (r = 0.96, slope = 0.99).  Moreover, we show 

that the method predicts average speed to within an absolute mean error of 0.03 m/s, and 

an RMS error of 0.18 m/s which is 4.3% of the average MOCAP speed.   

 

 

1.3.4. Chapter 5: Joint Reactions Deduced from IMU Data 

The studies presented in Chapters 2 through 4 explore one major category of uses 

for IMUs in sports training where the focus is the accurate determination of kinematical 

variables that define athletic performance. Doing so opens the door to real-time and on-

the-field assessment of athletes.  Another major category of uses for IMUs is to estimate 

kinetic variables for human motion, and particularly the reactions at the major skeletal 

joints by combining the kinematic data offered by IMUs with inverse dynamic modeling 

of the major body segments.  Motivation for doing so extends well beyond sports and 

sports injury applications.  Consider, for example, the aging US population and the 

predicted enormous increases in musculoskeletal injuries.  For example, the annual 

number of total hip and knee replacement surgeries are predicted to increase by over 

170% (to 572,000) and 670% (to 3.48 million) respectively by the year 2030 [49].  This 

alarming increase in joint replacements supports the need for non-invasive, clinically 

viable methods to identify pathological lower extremity motion before joint injuries 

occur.  One of these potential methods, inverse dynamic modeling, begins by 

approximating the human body as a collection of rigid segments connected by joints.  

Knowledge of the segmental kinematics, namely the angular velocity and angular 

acceleration of each segment and the linear acceleration of the segment’s mass center, 

enables a solution for the reactions (i.e. forces and moments) acting at the joints provided 

segmental inertial properties (e.g. mass center location, mass, inertia, etc.) are also known 

[13]. 

Typically, MOCAP is used to provide the segmental kinematic information 

necessary for inverse dynamic modeling, but this approach is not possible in clinical 

settings due to the many limitations described above (e.g., accuracy, cost, portability and 

measurement volume) [5,6,19,20].  In contrast, IMUs enable accurate measurement and 
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calculation of the kinematic quantities necessary for inverse dynamic modeling without 

the constraints of MOCAP.  Before IMUs can be employed as a clinically viable tool, the 

accuracy of joint reactions estimated by IMU data needs to be verified against precise 

gold standards.  To this end, Chapter 5 presents a benchmarking study where the reaction 

forces and moments acting at the joints of a well characterized mechanical system are 

estimated from IMU kinematic data and compared to reactions directly measured by 

highly precise six degree-of-freedom force and torque sensors.  Doing so reveals that 

predicted reaction forces and moments remain within 5.0% and 5.9% RMS, respectively, 

of load cell measurements and with correlation coefficients greater than 0.95 and 0.88, 

respectively.  

 

 

1.3.5. Chapter 6: Accurate Estimation of Joint Centers 

The inverse dynamic modeling technique of Chapter 5 requires knowledge of 

both mass and joint center (defined as the joint center of rotation, CoR) location to form 

the Newton and Euler equations of motion.  Specifically, mass center location is required 

to calculate mass center acceleration for Newton’s second law, while both mass and joint 

center locations are required for Euler’s second law.  Marker positions and 

anthropometric data are used to define these locations when MOCAP is used to estimate 

body-segment kinematics.  However, when deploying a segment-mounted IMU, this 

marker position information is no longer available.  Moreover, a segment-fixed IMU 

measures the acceleration at the location of the accelerometer (not necessarily the mass 

center) and the angular velocity of the segment.  One can use this data to calculate the 

mass center acceleration needed for Newton’s second law (the solution of which is 

required for the Euler equations of motion) provided the location of the mass center is 

known relative to the accelerometer.  This position, while generally unknown and 

inaccessible, can be deduced from anthropometric data if the location of a joint CoR is 

known relative to the accelerometer. 

Existing (non-IMU) methods for determining joint CoR either estimate CoR 

position based on the location of bony anatomical landmarks [50–53] or by the relative 3-

D position of adjacent body segments [54–59].  One method that exploits a segment-
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mounted IMU computes CoR position using algorithms similar to those presented in [54–

58]. However, the algorithms all rely on IMU-derived velocity and position estimates 

[60]. These estimates, obtained by successive integrations of the IMU-measured 

acceleration, are subject to error due to sensor drift [61] leading to potentially inaccurate 

estimates of joint CoR. 

The final study presented in Chapter 6, introduces a new IMU-based algorithm for 

estimating the CoR of a spherical joint that avoids the need for (error-prone) velocity and 

position estimates. This method utilizes solely the acceleration and angular velocity data 

directly measured by the IMU.  The CoR location for a mechanical device approximating 

the human hip joint is predicted by the proposed algorithm and is then benchmarked 

against the CoR location measured directly via a precise digital coordinate measuring 

machine.  The results confirm that this new method resolves the position of the CoR to 

within a 3 mm sphere of the true CoR. 
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Chapter 2: Dynamics of Pitched Baseballs and Softballs Revealed via Ball-

Embedded IMU 

 

 

 

2.1. Introduction 

Baseball and softball pitching demand highly dynamic full body movements with 

precise neuromuscular control. This control begins with the way the pitcher grips the ball, 

continues through the windup and delivery, and culminates in the ball’s release. This 

instant in the sequence of the pitching motion is integral for the execution of different 

types of pitches; for instance, a fastball versus a breaking ball in baseball, or a rise ball 

versus a drop ball in fast pitch softball. Considerable research has addressed the flight 

path of the pitched ball after release and the governing aerodynamic forces [21,22,62]. 

Despite these advances, pitching coaches largely rely on qualitative assessments of 

pitching mechanics and outcomes in the form of visual inspection of the throwing 

motion, radar gun measurements, ball and strike counts, and ERA (earned run average) 

for training and skill assessment [7]. 

An important subset of studies focuses on “breaking” ball pitches, including the 

curveball [21,22,62]. The aerodynamic forces responsible for the “break” (or curve) in 

the flight path trace to the release conditions from the pitcher’s hand including the 

orientation, spin, and velocity of the ball. In particular, experiments reveal that the total 

break of the flight path (1) is proportional to the ball’s aerodynamic lift coefficient [21], 

(2) is dependent on the seam orientation [21], and (3) is a function of the magnitude and 

direction of the ball’s angular velocity with respect to the velocity of its mass center [22].  

The release conditions ultimately differentiate one pitch type from another. The fastball 

and changeup are released with substantial backspin in relation to the ball center velocity. 

By contrast, the curveball largely spins in the opposite direction; that is, it has substantial 

topspin. The slider has a combination of topspin and sidespin [23,63]. 
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Studies of pitching mechanics largely rely on positional data obtained via high-

speed cameras [1,7,10,23,25,63–65]. However, video-based motion capture is expensive, 

time consuming, and often requires measurements in the lab made by an operator skilled 

in both the collection and analysis of the data. Furthermore, baseball and softball angular 

velocity is very difficult to resolve using video based systems due to marker occlusion 

while the ball is in the pitcher’s hand, and the high angular rates. Nevertheless, the 

angular velocity of the ball at release has an overriding influence on the subsequent ball 

flight path as noted above. For these reasons, it is quite challenging to use high speed 

motion capture to support pitcher training on the field of play.  

The advent of MEMS inertial sensors and MEMS-scale wireless transceivers 

provide an attractive alternative to video-based motion capture for this application. 

Recent studies explore the use of wireless inertial measurement units (IMUs) for baseball 

pitcher training [27,28] among other sports training applications [66–70]. However, the 

size and mass of the IMUs employed in [27,28](and those commercially available from 

companies like Xsens
TM

, Culver City, CA, USA) preclude their use in measuring the 

motion of a baseball or softball.  

To address these physical shortcomings, we introduce a highly miniaturized IMU 

that is directly embedded within the small confines of a baseball/softball. Doing so 

provides a low cost, highly portable and minimally intrusive technology for measuring 

the kinematics of a pitched ball right on the field of play. In particular, this technology 

provides a quantitative means for characterizing pitch type and consistency by resolving 

both the ball velocity and angular velocity at release, as well as throughout the pitching 

motion. We open this paper below with a description of the IMU hardware and the 

computational methods used to deduce ball-center velocity. We validate this method by 

benchmarking IMU-derived results with those obtained using a VICON (Los Angeles, 

CA, USA) motion capture system. In the process, we emphasize the probable ways that 

IMU-derived kinematical results can support pitcher training.  
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2.2. Sensor Design and Experimental Methods 

Figure 2.1 illustrates the IMU hardware employed in this study. This design was 

developed at the University of Michigan following a lineage of other multi- and single-

board designs used for sports training, biomechanics, and rigid-body dynamics 

applications [66,67,69–71].  

 

 
Figure 2.1: Highly miniaturized wireless IMU design used in this study was 

approximately the size of a quarter. The IMU provides three-axis sensing of acceleration 

and angular velocity with wireless data transmission to a host computer. 

 

The design includes two sensing components. One is a digital tri-axial angular 

rate gyro, which performs internal 16-bit A/D conversion, with a measurement range of 

2,000 deg/s, noise magnitude of 0.38 deg/s-rms for each axis (at 100 Hz output), and 

sampling frequency of 512 Hz. The other is a digital tri-axial accelerometer, which 

performs internal 13-bit A/D conversion, with a measurement range of 16 g, noise 

magnitude of 0.004 g-rms for each axis (at 100 Hz output), and sampling frequency of 

800 Hz. Data from the IMU is low-pass filtered, with a cutoff frequency of 100 Hz before 

use. The IMU includes 8 Mbytes of onboard flash memory enabling operation in a data 

logging mode during trials after which the data can be downloaded to a host computer 

over a standard Wi-Fi network. The board measures a mere 30.1 × 23.7 × 5.1 mm and, 

when packaged with a switch and small lithium-ion battery, has a total mass of 12 g.  

Prior to use, the IMU is calibrated following the procedure detailed in [68]. This 

procedure, which consists of two rotations about each of the three orthogonal sense axes, 
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ultimately determines 24 calibration parameters (including scale factors, cross-axis 

sensitivity scale factors, and biases) for the IMU components. Doing so ensures that the 

acceleration and angular rate measurements are accurately resolved along a common 

orthogonal triad of sensor-fixed unit vectors. Bias values for the rate gyro are updated 

during each trial to ensure that changes due to temperature, battery voltage, or other 

external factors are captured. 

The IMU, battery, and switch are embedded in regulation softballs and baseballs 

enabling the measurement of ball dynamics during the throw. Figure 2.2 provides a 

“before” and “after” image of the instrumented baseball.  

 

 

Figure 2.2: (a) The miniaturized IMU shown as it would be embedded in a baseball. (b) 

Final version of the ball including a small jack (switch/recharging) which is removed 

prior to the throw. 

 

For both baseballs and softballs, the miniaturized IMU, battery, and switch are 

embedded in the ball (Figure 2.2(a)). Installation begins by unstitching half of the cover, 

after which the cork and rubber core is cut into two halves. Two small pockets are 

machined in the core, one to accommodate the battery and IMU and another for a switch 

which is accessible from the exterior via a hole in the cover large enough to 
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accommodate a 2.5 mm phone plug. The IMU, battery, and switch are captured in these 

pockets with epoxy, and the two halves of the core are glued together prior to re-stitching 

the cover. The result is an instrumented baseball (Figure 2.2(b)) or softball. The mass of 

the instrumented baseball is within 0.1 g of its original (uninstrumented) mass (the 

softball is within 1.3 g). For either, this represents less than a 0.7% perturbation to the 

mass of the ball. For comparison, the official rules of baseball and softball dictate that the 

mass of a baseball may vary by as much as 7.1 g and the mass of a softball by as much as 

20.4 g. It is important to mention that while the instrumented ball is able to survive 

repeated impacts with a catcher’s mitt, it would not withstand an impact with a bat. 

As emphasized above, a major use of this technology is to measure the release 

conditions of the ball, that is, the velocity of the ball center and the angular velocity of 

the ball at release from the pitcher’s hand. The angular velocity is measured directly from 

the angular rate gyro for pitches that remain within its measurement range. Unfortunately, 

the average MLB fastball rotates at about 15,000 deg/s which is considerably outside the 

range of the gyro used in this IMU [72]. Until recently, the best solution would be to 

estimate the angular velocity during free flight based on data from the tri-axial 

accelerometer following the methods discussed in [71]. However, subsequent to our 

study, MEMS device manufacturers (e.g., Analog Devices), released angular rate gyros 

capable of measuring angular rates up to 20,000 deg/s thus enabling application of the 

methods presented herein to potentially all baseball and softball pitches. In contrast, the 

velocity of the ball center must be computed (using data from both the gyro and the 

accelerometer) following the steps outlined in Figure 2.3(b) and as summarized below.  

The following testing protocol was used. Each pitcher was instructed to pick the 

ball off of a tee, come to their natural “set” position, and then pitch the ball to the catcher. 

In addition, the subjects threw each pitch in a way to keep the ball angular velocity within 

the present measurement range of the gyro (2,000 deg/s). In this study data was collected 

from five pitches thrown by one baseball and one softball pitcher, both between 21 and 

23 years of age. Both pitchers had previously competed at the high school level. Each 

pitcher was instructed to warm-up for as long as they determined was sufficient. They 

then threw 10 pitches to a catcher yielding five pitches with sufficient data from motion 

capture to enable benchmarking with this alternative measurement method. The vector 
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magnitude of the measured acceleration for a representative softball pitch is reported in 

Figure 2.3(a), which also illustrates the major phases of the throwing motion.  

 

 

Figure 2.3: (a) Magnitude of acceleration as measured by the embedded IMU during a 

representative softball pitch. Major phases of the throwing motion are labeled 1–5. (b) 

Flow chart of major steps to calculate ball-center velocity during the throw. 

 

 Phase 1 corresponds to the time where the ball is in the tee prior to the throw. 

Phase 2 extends from the time where the pitcher picks the ball off of the tee to the instant 

she begins her windup (end of “set position”). Phase 3 begins at the start of the windup 

and extends to the instant when the pitcher’s hand is furthest away from the catcher prior 

to release. Phase 4 extends from the end of Phase 3 to release. Finally, Phase 5 is the free-

flight phase of the ball en-route to the catcher. The measured acceleration shown in 

Figure 2.3(a), combined with the measured angular velocity enable the calculation of 

ball-center velocity according to the steps outlined in Figure 2.3(b) and summarized next.  

The acceleration and angular velocity data, measured in the non-inertial or “ball-

fixed” frame, are transmitted to and stored on the host computer. This data must 

ultimately be resolved into components associated with an inertial (field-fixed) frame; 

refer to Step 2 in Figure 2.3(b) and to Figure 2.4. The ball-fixed reference frame is 

denoted by the mutually orthogonal triad of unit vectors ( ) with origin p at the ˆ ˆ ˆ, ,x y z
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center of the accelerometer; refer to Figure 2.4(a). The inertial, or “field-fixed” frame is 

denoted by the triad of unit vectors ( ) with origin located at the ball center when 

placed in the tee (point O; Figure 2.4(b)).  

 

 

Figure 2.4: (a) Ball-fixed reference frame with origin at the center of the accelerometer 

(P). (b) Field-fixed reference frame with origin at location of the ball center in tee (O) at 

the start of the trial. 

 

The transformation (direction cosine matrix) that relates these two frames and the 

differential equation which governs its evolution over time are: 

 (2.1)  

 (2.2)  

where Λ is the standard definition of a direction cosine matrix (DCM) [73],  

denotes the components of a vector  resolved in the ball-fixed frame, and  

denotes the components of the same vector resolved in the field-fixed frame. During the 

throwing motion, the ball-fixed frame is both translating and rotating with respect to the 

field-fixed frame. As described below, the DCM is a function of the angular velocity of 

the ball, and is computed upon integrating (2.2) following an adaptation of the algorithm 

in [74]. The adapted algorithm employs a numerical approximation to (2.2) in which  

ˆ ˆ ˆ, ,X Y Z
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denotes the time derivative of the DCM and  denotes the ball-fixed angular velocity 

vector in skew-symmetric form. The midpoint approximation to the solution of (2.2) 

yields the DCM at time step n+1 in terms of its value at time step n per: 

 (2.3)  

In Equation (2.3),  denotes the midpoint approximation of the change in 

orientation from time step n to n+1 in skew-symmetric form defined by:  

 (2.4)  

where  and  are the (measured) ball-fixed angular velocities at time steps n+1 and 

n respectively in skew-symmetric form, and Δ(t) is the time interval between time steps n 

and n+1. Thus, the IMU provides the ball-fixed angular velocity needed to solve for the 

time-varying DCM, Λ(t), via Equation (2.3) provided an initial value, Λ(0), is also 

known. This initial value is determined by employing the accelerometer as an 

inclinometer during Phase 1 while the ball remains at rest in the tee following the 

procedure detailed in [67]. Thus, the acceleration vector can now be resolved in the field-

fixed reference frame completing Step 2 in Figure 2.3(b). 

Since the accelerometer measures signals down to 0 Hz, the resulting 

measurement also includes the acceleration due to gravity which must now be subtracted. 

Removal of gravity and computation of the ball-center acceleration (Steps 3 and 4 in 

Figure 2.3(b)) follows from:  

 (2.5)  

in which  is the ball-center acceleration resolved in the field-fixed frame,  is the 

measured acceleration in the ball-fixed frame,  and  are the measured angular 

velocity and calculated angular acceleration (finite difference method), respectively, and 

 is a position vector which locates the ball center relative to the center of the 

accelerometer. Direct integration of the ball-center acceleration (numerically using the 

trapezoidal method) yields the ball-center velocity per Step 5 of Figure 2.3(b) subject to 

the initial condition that this velocity starts from zero as the ball is held still in the tee. 
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It is well established that integration of the IMU-measured acceleration introduces 

significant error in the velocity due to drift [61,75]. This drift error is approximately 

identified and removed per Step 6 of Figure 2.3(b). We do so by splitting the throw into 

three parts: Part 1 spans Phases 1 and 2, Part 2 spans Phases 3 and 4, and Part 3 

corresponds to Phase 5. Each Part is characterized by qualitatively distinct ball dynamics 

and thus distinct error correction. To this end, we introduce polynomial approximations 

to the drift error for each field-fixed component of velocity during each Part per: 

 (2.6)  

where  and  are the corrected and uncorrected j-components of velocity 

respectively. The right-hand side of (2.6) contains the j-component of the polynomial 

drift error function with constant coefficients  defined separately for Parts 1, 2 and 

3. In some sections the coefficients of the higher order terms (i.e.,  and/or ) are 

identically zero resulting in a lower-order drift error polynomial. Specifically, all three 

components have cubic drift error functions during Part 1. During Parts 2 and 3 the 

 is linear while the and  are quadratic in time. The 

zeroth order term in (2.6) enforces continuity of the corrected velocity component across 

the parts. The remaining coefficients are found by simultaneous solution of known 

velocity and position constraints on the ball as summarized in Table 2.1 where the phases 

noted refer to those defined in Figure 2.3(a). The positions reported in Table 2.1 are the 

measured (or estimated) height of the ball center ( ) at the pitcher’s set position (end of 

Phase 2), the height of the center of the strike zone (end of Phase 5), and the horizontal 

distance ( ) the pitch is thrown. Also required are the acceleration due to gravity  

( ), the acceleration due to air drag ( , estimated according to [22]) and the time 

duration of Phase 5 ( ). These latter quantities are used to estimate the change in each 

of the three velocity components during Phase 5 ( , , ).  
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Table 2.1: Summary of velocity (V) and position (P) constraints used to determine drift 

correction polynomials in each of the three field-fixed directions. 

 

The accuracy of the IMU-derived ball velocity is established by comparing it to 

that measured using a 10-camera high speed motion analysis system (VICON). The 

baseball/softball, with embedded IMU, was coated in reflective tape and its 3-D positions 

were measured by the VICON system at a frequency of 100 Hz and with calibrated 

position errors less than 0.25 mm. The ball’s position data was low-pass filtered with a 

cutoff of 8.33 Hz and then numerically differentiated to determine the ball-center velocity 

as reported next.  

 

 

2.3. Results and Discussion 

We illustrate the promise of this sensor technology in this application by 

comparing ball-center velocities determined from IMU and motion capture (VICON) 

data. For experiments conducted on both baseball and softball pitching, we examine 

pitches thrown so that the angular rates do not exceed the measurement range of the IMU 

(2,000 deg/s). We open with an example that exposes the velocity drift error that is then 

corrected by the algorithm described above.  

Figure 2.5(a) shows the ball-center velocity components in the field-fixed 

reference frame where the three field-fixed directions are distinguished as  

 and . The thick lines designate the three uncorrected velocity 

components calculated from IMU data while the thin lines designate the same quantities 

calculated using motion capture data. Comparison of these two data sets reveals obvious 

drift error resulting from the integration of Equation (2.5). Figure 2.5(b) reports the same 
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quantities but following the application of the drift error correction algorithm for the IMU 

data as described above. Inspection of this result shows excellent qualitative agreement 

between the IMU- and motion capture-derived results and in all major phases of the ball 

motion.  

 

 
Figure 2.5: (a) Uncorrected and (b) Corrected ball-center velocity (m/s) components as 

determined by IMU (thick) and motion capture (thin) data for a representative softball 

pitch. 

 

To now quantify this agreement, we introduce two metrics of the remaining small 

differences between the (drift corrected) velocity components based on the IMU data 

versus those measured using the motion capture data. The first metric is the normalized 

RMS difference between IMU-derived and motion capture-derived velocity components 

for the entire throwing motion: 

 

(2.7)  

where  is the motion capture-derived j-component of velocity,  is the IMU-derived 

j-component of velocity, and N is the number of data samples. The numerator of Equation 

(2.7) is the RMS difference between the j-velocity components, while the denominator 

normalizes this difference based on the maximum value of the motion capture j-velocity 

component while the ball is in the pitcher’s hand. The second error metric is the percent 

difference in the components of the release velocity with the motion capture-derived 

velocity components taken as the “truth data”: 

  2

, ,1
1/ ( )

, for ,  ,  ,
( )

N

cj i cj ii

cj

cj release

N V V
j x y z

MAX V i i
 


 

  



cjV
cjV



21 

 

 (2.8)  

This second metric directly measures the accuracy of this sensor technology for 

determining the velocity of a pitched baseball/softball at release based on motion capture 

as the standard. A summary of these metrics for each velocity component, including 

mean and standard deviations, is reported in Table 2.2 for a sample of five baseball and 

five softball pitches.  

The results of Table 2.2 for the first metric εc demonstrate that the ball-center 

velocity obtained using the sensor technology recreates that obtained by standard motion 

capture to within 10% for baseball and 6% for softball over the entire range of the 

throwing motion. Considering the velocity of the ball-center at release, results for the 

second metric εc,rel demonstrate agreement to within 4% for baseball and 4.6% for 

softball. 

 

 Baseball Softball 

Error       

 2.5 (0.3) 10.0 (1.6) 7.7 (2.0) 2.2 (0.6) 5.9 (1.3) 3.3 (0.6) 

 3.5 (2.4) 1.9 (2.1) 4.0 (3.6) 4.6 (2.3) 1.0 (0.5) 3.6 (1.3) 

Table 2.2: Summary of differences, mean (standard deviation), between IMU- and 

motion capture-derived velocity components during the throwing motion and at the 

instant of release. All values are reported as a percentage. 

 

This latter result is particularly important given the overall influence of the release 

velocity (and angular velocity) in determining pitch type and quality. In understanding 

these comparisons, it is important to mention that the motion capture system, treated as 

yielding “truth data” here, is also susceptible to measurement errors. These errors in 

position largely arise from replacing data points lost due to marker occlusion and are then 

magnified when that position data is differentiated to determine velocity. Thus, the 

reported differences include contributions due to errors in the motion capture method as 

well. 

As emphasized above, the sensor technology provides the data essential to 

resolving the release conditions of the ball including the ball orientation, ball center 

2

, ,

, 2

,

( )
, where ,  ,  

cj rel cj rel

cj rel

cj rel

V V
j x y z

V



 

ˆ  (%)X ˆ  (%)Y ˆ  (%)Z ˆ  (%)X ˆ  (%)Y ˆ  (%)Z

c

,c rel



22 

 

velocity (vector), and ball angular velocity (vector). These variables distinguish the types 

of pitches and they also provide a quantitative means for assessing the quality of each 

pitch type. By way of example, these potential uses are highlighted by the images of 

Figure 2.6 which illustrate the distinct release conditions for four common baseball 

pitches as measured by an embedded IMU (similar results were also obtained for the 

various types of softball pitches). 

The images of baseball release conditions reported in Figure 2.6, for pitches 

thrown with modest linear and angular speed, confirm trends presented in [23,63]. Figure 

2.6(a,b) illustrates the release conditions for a fastball and changeup, respectively. These 

two pitches are thrown largely with backspin which contributes to positive aerodynamic 

lift. This large backspin manifests as a large component of the angular velocity vector 

along the direction. Additionally, a small amount of lateral break develops due to the 

small but noticeable side spin component of the angular velocity; i.e., the small 

component of  along the  direction. By contrast, Figure 2.6(c) shows that a curveball 

is released largely with top spin (note large component of  about ) which contributes 

to negative aerodynamic lift. Like the fastball and changeup, the small but readily visible 

side-spin component creates additional but small lateral break. Finally, Figure 2.6(d) 

shows the release conditions for a slider which is dominated by side spin (note large 

component of  about ) but also includes a small top spin component. The side spin 

induces a large lateral break, while the topspin induces a small drop. The position of the 

spin axis of the ball relative to the velocity of the ball center at release provides the 

essential information needed to evaluate whether the desired type of pitch is thrown 

correctly, to what degree the pitcher achieves that type of pitch, and (with multiple trials 

and measurements) how consistently it is being thrown. These measurement capabilities 

provide powerful information for evaluating pitching performance. 

Ŷ

 Ẑ

 Ŷ

 Ẑ
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Figure 2.6: Linear (blue arrow denoted V) and angular (green arrow denoted W) velocity 

directions, and ball orientation at release for four typical baseball pitches: (a) fastball 

(four seam), (b) changeup, (c) curveball, and (d) slider. 

 

These results demonstrate the potential of a promising new sensor technology for 

use in baseball and softball pitcher training applications. However, it is important to 

emphasize the fact that most baseball and softball pitchers will generate ball angular 

velocities that exceed the measurement range of the MEMS angular rate gyros used in 

this study. Luckily MEMS sensor manufacturers have recently recognized the need for 

gyros with extended measurement ranges (20,000 deg/s) and these devices are now 

available (e.g., Analog Devices ADXRS649, Norwood, MA, USA) thus enabling the 

methods presented herein to be used for pitcher training at all levels of baseball and 

softball.  
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2.4. Conclusions/Outlook 

The miniaturized wireless IMU technology presented herein has the potential to 

provide a low cost, highly portable measurement system to support pitcher training right 

on the field of play. The IMU-embedded baseball and softball faithfully reproduce the 

release velocity of the ball compared to measurements made by motion capture methods 

for the speed ranges considered. In particular, the difference between the IMU-derived 

release velocity and the motion capture-derived velocity remains less than 5%. Moreover, 

the IMU directly measures the angular velocity of the ball at release for pitches that 

remain within the measurement range of the angular rate sensors. Finally, subsequent to 

completion of this study, high range angular rate gyros have now entered the marketplace 

(e.g., Analog Devices ADXRS649). The velocity and angular velocity at release enable 

one to easily distinguish pitch types and the degree to which that pitch type is thrown. 

This quick visual and quantitative feedback will allow pitching coaches to accurately 

measure, and thereby improve, pitching performance. 
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Chapter 3: Rotational Dynamics and Stability of Rigid Bodies in Free-Flight 

 

 

 

3.1. Introduction 

As noted in Chapter 2, the major obstacle preventing the use of inertial sensors for 

baseball and softball pitcher training is that highly skilled pitchers are able to spin the ball 

at rates outside the range measurable by most angular rate gyroscopes.  With this as 

motivation, this chapter presents a method for identifying the free-flight angular velocity 

of a rigid body using just data from a tri-axial accelerometer.  We begin by considering 

the theory governing the torque-free motion of a rigid body, which is a classical topic in 

rigid body dynamics; see, for example, [29–31].  Under torque-free conditions, the 

solution to Euler’s equations for the angular velocity, expressible by Jacobi elliptic 

functions, satisfies two first integrals; namely constant rotational kinetic energy and 

constant magnitude of angular momentum. Rotations initiated close to the major or the 

minor principal axis generates a stable periodic precession about that axis. By contrast, 

unstable precession results from rotations initiated close to the intermediate axis. These 

results are elegantly revealed using the geometrical construction due to Poinsot [29–

31,73], which considers the rolling without slipping of the inertia ellipsoid on the 

invariable plane.  The path traced on the inertia ellipsoid by its contact point on the 

invariable plane, referred to as the polhode, describes the precession of the angular 

velocity vector in a body-fixed frame.  The polhode may also be constructed from the 

intersection of the rotational kinetic energy ellipsoid and the angular momentum ellipsoid 

in angular velocity space [76]. This latter method will be demonstrated experimentally 

later in this paper.  

In contrast to the well-established theory, direct experimental measurements of 

the dynamics of rigid bodies during torque-free or “free-flight” motion remain scarce.



26 

 

This is not surprising given the significant experimental challenges in measuring free-

flight dynamics in the laboratory in a non-invasive manner.  One means to accomplish 

this is through camera-based motion analysis as used, for example, in optical motion 

tracking; see [77–84].  Bhat et al. [83] deduce the motion of a rigid body using single-

camera optical motion tracking paired with global optimization techniques to minimize 

the error between video- and simulation-derived silhouettes.  The algorithm, designed to 

converge to optimum values for initial position, orientation, velocity, and angular 

velocity, is especially sensitive to initial guesses due to many local minima in the error 

space.  A variant of camera-based measurement introduced by Masutani et al. [84] 

estimates the free rotational motion of a rigid body from a sequence of gray-scale or 

distance images.  This method, which relies heavily on the aforementioned closed-form 

solutions to Euler’s equations, was evaluated using simulated motions in lieu of 

experiments.  Fundamentally, camera-based motion analysis begins with noisy position 

data that must be differentiated numerous times to yield velocity, angular velocity, 

acceleration and angular acceleration data for the purpose of comparing with the 

equations of rigid body motion. The successive differentiation of real (i.e. noisy) position 

data leads to noise amplification and yields potentially error-prone comparisons with 

theory.  Additionally, to avoid problems with aliasing, a camera must also capture images 

(and without occlusions) at frame rates well in excess of the angular velocity of the rigid 

body. These challenges fundamentally limit the utility of camera-based methods for 

analyzing the dynamics of a rigid body. 

The use of MEMS inertial sensors to directly measure rigid body dynamics 

presents an attractive alternative to camera-based motion detection.  Inertial sensors, 

consisting of accelerometers and angular rate gyros, directly measure the kinematic 

quantities governed by the Newton-Euler differential equations of motion.  As one 

example, Lorenz [85] investigated the flight and attitude dynamics of a Frisbee ™ using a 

body-fixed instrumentation package containing two dual-axis MEMS accelerometers 

(among other sensors) to deduce the aerodynamic coefficients of the disk. Of keen 

interest in free-flight dynamics is the rotation of the rigid body as manifested in the 

angular velocity. Extending the measurement design in [85] to include three-axis angular 

rate sensing as well as three-axis acceleration sensing requires a complete inertial 
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measurement unit (IMU) for measuring the six degrees of freedom (6 dof) of a rigid 

body; see, for example, [75].  However, the added cost and the limited dynamic range 

and resolution of MEMS rate gyros have motivated numerous alternative “gyro free” 

IMU’s for deducing the 6 dof [32,33,86–89]. The consensus is that twelve uni-axial 

accelerometers are required to form an over-determined set of acceleration data for the 

robust reconstruction of the angular velocity of a rigid body [86,87].  Special 

configurations of nine [88,89] and even six [32,33] uni-axial accelerometers can also 

succeed. Following [87] and [33], the optimal configuration of the six, nine, and twelve 

uni-axial accelerometers places them on the faces and/or the corners of a cube. The 

accuracy of the reconstructed angular velocity increases with cube dimension leading to 

dimensionally large, and thereby potentially invasive, sensor arrays.  A significantly more 

compact solution follows from collocating angular rate gyros and accelerometers as 

achieved in the highly miniaturized IMU described herein. 

In this paper, we contribute an elegant experimental method that reveals the free-

flight dynamics of a rigid body.  At the heart of our method is a highly miniaturized 

wireless IMU that incorporates three-axis sensing of acceleration and three axis sensing 

of angular velocity with a microcontroller and a low-power RF transceiver for wireless 

data transmission to a host computer. This IMU is used to directly measure acceleration 

and angular velocity during free-flight of a rigid body for comparison with theory. We 

directly observe the precession of the angular velocity vector in a body fixed frame 

through the construction of experimental polhodes.  Rotations initiated close to the major, 

minor and intermediate principal axes closely obey predictions from classical theory.  

This experimental verification of classical free-flight dynamics enables us to demonstrate 

that the angular velocity vector of a body in force- and torque-free flight can be 

reconstructed via measurements from a single, tri-axial accelerometer. This 

simplification, which provides an inexpensive alternative to using angular rate gyros, 

runs counter to prior claims that a minimum of six independent accelerometer outputs are 

required for this purpose [32,33]. We open next with a description of the wireless IMU 

and the experimental procedure. 
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3.2. Methods 

 

3.2.1. Wireless IMU and Experimental Procedure 

Figure 3.1 illustrates what is believed to be the world’s smallest wireless IMU 

enabling peer-to-peer communication to a host computer. This single-board design 

follows a lineage of larger, multi-board IMU designs [68,69,90,91] developed recently 

for novel sports training systems [92]. 

 

 

Figure 3.1: Photographs of highly miniaturized, wireless IMU. (a) analog circuit side 

with MEMS angular rate gyros and accelerometer, (b) digital circuit side with 

microprocessor, wireless transceiver, surface mount antenna, and connectors for battery 

power and firmware programming. 

 

The two faces of the design separate analog and digital circuits. The MEMS 

inertial sensors, mounted on the analog circuit side (Fig. 3.1a), include a three-axis 

accelerometer, one dual-axis and one single-axis angular rate gyro, op-amps for signal 

conditioning, and off-chip components for filtering. The digital circuit side (Fig. 3.1b) 

includes a microprocessor for AD conversion, a low power RF transceiver, and a small 

surface mount antenna.  Also visible are two small connectors (white, lower right) that 
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provide battery connection and the (one-time) connection to a host computer for 

uploading the firmware program to the microprocessor. 

The minimized footprint (0.019 X 0.024 m) is achieved using a six-layer board 

containing two internal planes for interconnects and separate planes for power and 

ground. The assembled IMU board has a mass of 0.003 kg and the associated miniature 

lithium-ion battery adds a mere 0.0015 kg. The power draw remains below 25 mW and 

the battery tank yields four hours of uninterrupted use between recharging. The 

microprocessor performs 12-bit A/D conversion and, with the current firmware, provides 

1 kHz sampling of all sensor channels. The low power RF transceiver (Nordic 

nRF24LE1) uses a proprietary RF protocol to transmit over a typical open-air range of 5 

m with up to 18 m being achieved in low ambient RF environments. A USB-enabled 

receiver (not shown) enables data collection on a host (laptop) computer via custom data 

collection software.  The device measurement range (and noise floor) includes 

accelerations up to 18 g (0.1 m g Hz ) and angular rates up to 2000 deg/s (0.06 

deg s Hz ) with an overall measurement bandwidth of 400 Hz.  The calibration 

procedure detailed in [68] is used to determine 24 calibration parameters (including scale 

factors, cross-axis sensitivity scale factors, and biases) for the IMU.  This process ensures 

that the acceleration and angular rate measurements are resolved along a common set of 

orthogonal sense axes. 

This miniaturized IMU, which currently supports a wide-range of human 

movement studies at the University of Michigan (e.g., athlete training, gait analysis, 

vestibular ocular reflex, knee and elbow injury detection, and surgeon training), is used 

herein to experimentally analyze the dynamics of a rigid body during free-flight.  This 

class of motions is especially meaningful in the context of sports equipment (e.g. 

basketballs, baseballs, footballs, soccer balls, softballs, and the like) as well as aircraft, 

spacecraft and smart munitions, among other applications. The IMU above enables the 

direct measurement of rigid-body dynamics in a non-invasive (wireless) mode in 

laboratory or even classroom settings. 

In our experiments, we seek to measure the rotational dynamics of the example 

rigid body illustrated in Fig. 3.2.  This body is a uniform block of plastic (Delrin™) 

having dimensions 0.201 x 0.147 x 0.102 m and a mass of 4.36 kg.  The block has readily 
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computed (non-degenerate) principal moments of inertia.  The miniature IMU is fastened 

to the surface of the block in a corner position as shown. The mass of the IMU, when 

enclosed in a protective plastic casing, is approximately 0.014 kg, which represents a 

mere 0.3% perturbation to the mass of the block.   Within this casing, the MEMS 

accelerometer is positioned at point P which is located by the known position vector 
/p cr  

relative to the mass center C of the block.  The illustrated body fixed frame ( 1 2 3
ˆ ˆ ˆ, ,e e e ), 

located at C, is aligned with the principal axes of the block as well as the sense axes of 

the accelerometer and angular rate gyros of the IMU. In particular, the 1̂e  axis (or 1x  

axis), the 2ê  axis (or 2x  axis), and the 3ê  axis (or 3x  axis) is aligned with the minor, 

intermediate, and major principal axes, respectively. 

b

 

Figure 3.2: Photograph of example rigid body employed in experiments. 
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A simple experimental procedure is used to record the rigid body dynamics of the 

block during free flight.  We first select the data sampling time (typically 5 seconds) via a 

custom data collection application.  Next, we initiate data collection and then launch the 

block into free-flight by hand. In particular, we spin the block largely about a pre-selected 

axis prior to releasing it into free-flight. The IMU wirelessly transmits the acceleration 

data (for point P) and the block angular velocity data before release, during free-flight, 

and shortly after free-flight when the block is subsequently caught by hand.  

 

 

3.2.2. Classical Analysis of Rigid Body Rotation during Free-Flight 

As our interest lies in measuring rigid body rotation during free-flight, it is 

instructive to quickly review the classical behaviors predicted by theory.  Assuming 

negligible aerodynamic moments, the angular momentum of the block about its center of 

mass remains constant as governed by Euler’s equations under torque-free conditions 

[73]: 

0 C CI I      (3.1) 

Here, CI  denotes the inertia tensor of the block about principal axes through its center of 

mass, and   denotes the angular velocity of the block resolved into components along 

the same (body-fixed) axes. Two constants of the motion arise (under the assumed 

torque-free conditions), namely the rotational kinetic energy (T) and the magnitude of the 

angular momentum ( H ) [73] as given by 

2 2 2

1 1 2 2 3 32 .T H I I I const          (3.2) 

     
2 2 2 22

1 1 2 2 3 3 .H H I I I const        (3.3) 

where iI and i  (for i=1,2,3) denote the principal moments of inertia and the angular 

velocity components, respectively.  

The form of the solution to eq. (3.1), as summarized in Table 3.1, depends on the 

intermediate principal moment of inertia 2I  and  the constants of the motion T and H; see, 

for example [93] or [94].  In Table 3.1, additional constants are defined by 
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   sign (0)i is   

and cn, sn, and dn denote Jacobi elliptic functions. The constant 0t  is evaluated by 

satisfying the initial conditions for  0 .   

In general, the rigid body will precess during free-flight and the precession is 

stable for rotations initiated close to the major and minor axes and unstable for rotations 

initiated close to the intermediate axis.  The precession and stability can also be observed 

geometrically using Poinsot’s construction; see, for example, [29–31].  Following the 

development in [76], re-casting the constants of the motion defined in eqs. (3.2) and (3.3)  

     

2 2 2

3 2 1

3 2 1

1
2 2 2T I T I T I

  
    (3.5) 

     

2 2 2

3 2 1

2 2 2

3 2 1

1
H I H I H I

  
    (3.6) 

yields two ellipsoidal surfaces on which the solution evolves in the space of the angular 

velocity components.  The curve defined by their intersection is the path traced by the 

angular velocity vector in this space.  As mentioned earlier, this curve is the polhode and 

it can be readily constructed directly from the IMU data as demonstrated in the following 

results.  
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Table 3.1: Closed-form solution to Euler’s equation (3.1) as determined by the constants 

of the motion H  and T . 

 

3.3. Results and Discussion 

We open our discussion with a quantitative comparison of predicted versus 

measured free-flight dynamics. We compare experimental and theoretical time-histories 

of the angular velocity components as well as their companion polhodes. We then turn 

attention to a much simplified design employing solely a single, tri-axial accelerometer in 

lieu of a complete IMU. In so doing, we demonstrate a new and accurate method to 

reconstruct the angular velocity of a rigid body in free-flight. We accomplish this by first 

presenting the measurement theory and then by comparing experimental predictions of 

angular velocity from the accelerometer to those obtained via the complete IMU. 
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3.3.1. Comparison of Experimental versus Predicted Rigid Body Rotation 

As introduced in Section 3.2, the miniature wireless IMU enables the direct 

sensing of rigid body rotation and thereby the direct confirmation of classical rigid body 

behaviors. Figure 3.3 illustrates typical experimental data recorded for one trial.  Figures 

3.3(a) and 3.3(b) illustrate the magnitude of the acceleration of point P and the magnitude 

of the angular velocity, respectively as functions of time.  Three distinct phases of the 

motion are clearly identifiable and they are referred to as the throw, free-flight, and catch 

phases.  The block is spun up from rest during the throw, released into free-flight at the 

transition between the throw and free-flight, and brought back to rest during the catch. At 

the start of the throw, the angular velocity is zero and the magnitude of the acceleration 

remains 1g
1
 confirming that the block is at rest.  Following a substantial spin up near the 

end of the throw,  the magnitude of the angular velocity remains near-constant 

(approximately 1570 deg/s) during the short (0.5 second) free-flight phase. This example 

trial illustrates stable rotation close to the minor axis and therefore the block exhibits a 

stable precession about that axis as discussed later in the context of Figs. 3.4 and 3.5. 

Also shown are the rotational kinetic energy T and the magnitude of the angular 

momentum about the center of mass H  in Figs. 3.3(c) and 3.3(d), respectively. Note 

that during free-flight, T decreases by only 1.2 % and H  decreases by a mere 0.5 % 

confirming the negligible influence of aerodynamic moments in the experiment.  

 

                                                 
1
 Note that the MEMS accelerometer detects acceleration down to DC and thus it also 

measures gravity. 
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Figure 3.3: Example time histories of the measured (a) magnitude of the acceleration of 

point P, (b) magnitude of the angular velocity, (c) the rotational kinetic energy, and (d) 

magnitude of angular momentum about center of mass. The throw, free-flight and catch 

phases are noted.  Example trial for rotation initiated nearly about minor axis. 

 

We now turn attention to a detailed comparison of experimental and theoretical 

results for free-flight dynamics. Figure 3.4 illustrates results for rotation initiated close to 

the major axis (Fig. 3.4a), the intermediate axis (Fig. 3.4b), and the minor axis (Fig. 
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3.4c). In each case, experimental (solid) and theoretical (dashed) time histories are 

plotted for the three angular velocity components as well as their vector magnitude 

(black).  Recall that the components 1  (blue), 2  (green) and 3  (red) are aligned with 

the major, intermediate and minor axes, respectively. The illustrated experimental data is 

low-pass filtered using a 100 Hz cut-off frequency to remove modest measurement noise. 

The theoretical results are computed from the solutions reported in Table 3.1 upon using 

the measured angular velocity at the start of free-flight as the initial condition for the 

remainder of the free-flight phase. 
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Figure 3.4: Measured (solid) and calculated (dashed) angular velocity vector magnitude 

(black) and components for rotations initiated about the major (a), intermediate (b), and 

minor (c) axes.  The blue, green, and red curves correspond to components about the 

major ( 1 ),
 
intermediate ( 2 ), and minor axes ( 3 ), respectively. 

 

The results of Fig. 3.4 clearly confirm expected free-flight behaviors.  For rotation 

initiated near the major (minor) axis as illustrated in Fig. 3.4a (Fig. 3.4c), the block 

rotates in a stable manner with a large, near-steady angular velocity component about the 
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major (minor) axis.  Moreover, the two “off-axis” components of angular velocity remain 

small and exhibit small periodic oscillations. The oscillation frequencies match those 

predicted by linear theory2 to within 0.8% (8.3%) for the illustrated case of rotation about 

the major (minor) axis.  In contrast, for rotation initiated near the intermediate axis as 

illustrated in Fig. 3.4b, the block experiences unstable rotation as evidenced by the large, 

diverging precession.  

 

                                                 
2 For example, refer to [73].  This classical analysis reveals that the “off-axis” 

components of angular velocity will oscillate with frequency 

   231231 IIIIIIn   or    212331 IIIIIIn 
 
for rotations about 

the major and minor axes respectively, where   is the magnitude of angular velocity 

component about the major or minor axis. 
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Figure 3.5: Experimental demonstration of the polhode for rotations initiated close to the 

major (a), intermediate (b), and minor (c) principal axes.  The measured angular velocity 

during the entire free-flight phase (black, scale in deg/s), closely follows the polhode 

defined by the intersection of the ellipsoids. 

 

The stable and unstable rotations are elegantly described geometrically upon 

construction of the associated polhodes as illustrated in Fig. 3.5. Shown in this figure are 
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the ellipsoids of constant rotational kinetic energy (dark gray surface) and constant 

angular momentum magnitude (light gray surface) for the case of rotation initiated near 

the major axis (Fig. 3.5a), the intermediate axis (Fig. 3.5b), and the minor axis (Fig. 

3.5c). These ellipsoids follow from eqs. (3.5) and (3.6) upon using the measured angular 

velocity at the start of free-flight as the initial conditions. Following [76], the intersection 

of the two ellipsoids defines the curve in angular velocity space on which the free-flight 

dynamics evolve. This fact is confirmed upon superimposing the measured angular 

velocity from the wireless IMU (black curves) over the duration of the free-flight phase.  

For rotations initiated close to either the major or the minor axis, small-amplitude 

periodic precession arises and the angular velocity vector correspondingly generates a 

stable orbit centered about the associated principal axis; refer to Figs. 3.5a and 3.5c.  In 

contrast, for rotation initiated near the intermediate axis, the precession describes a large 

and diverging (unstable) response.  These results provide clear and direct support of the 

classical theory reviewed above. 

We now establish the quantitative agreement between theory and experiment. To 

this end, we introduce a relative error measure for each angular velocity component 
j  
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 (3.7) 

This relative error represents the root mean square error between the measured (
j ) and 

theoretical (
j ) angular velocity components normalized by the theoretical root mean 

square angular velocity magnitude (  ) for all ( N ) samples during the free-flight phase.  

The theoretical angular velocity was again computed using the solutions of Table 1 upon 

first introducing the initial angular velocity measured by the IMU at the start of the free-

flight phase.  This error analysis was conducted for a total of 16 trials. The trials included 

two clockwise and two counter-clockwise rotations about each of the three principal axis 

and four additional rotations about arbitrarily selected axes. The relative error, defined in 

eq. (3.7), was calculated for each angular velocity component for each trial, and the 

average for all 16 trials is reported in Table 3.2 as a percentage.  
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j 1 2 3 

 , %rms j  3.0 5.8 4.6 

Table 3.2: Quantitative comparison of theoretical and experimental angular velocity 

components. Relative root-means-square error for each angular velocity component 

averaged over all 16 trials. The error measure is given by eq. (7) and reported in this table 

as a percentage. 

 

Reflecting on the results of Table 2 and the three example trials of Fig. 3.4, we 

now understand that the wireless IMU replicates the expected theoretical angular velocity 

components to within 6% on average for all 16 trials. This good quantitative agreement 

confirms that any experimental errors introduced in the measured block inertia (i.e. m,

1 2 3, ,I I I ), in the IMU measurements (e.g., gyro bias, noise, calibration errors, and 

misalignment between sense axes and the block’s principal axes), and in the assumption 

of torque-free motion (i.e. negligible aerodynamic moments) are reasonably small. 

 

 

3.3.2. Angular Velocity Reconstructed from a Single Tri-axial Accelerometer 

 The data reported above was obtained using the complete IMU including the 

angular rate gyros. While the angular rate gyros yield highly accurate measurements of 

angular velocity, they are relatively expensive compared to the embedded tri-axial 

accelerometer. The addition of angular rate gyros obviously creates a larger volume 

design. Moreover, commercial MEMS rate gyros have limited range (e.g., typical ranges 

today are 6000 deg/s and less).  Thus, the restrictions incurred by rate gyro cost, size and 

measurement range may preclude their use in high-volume commercial applications such 

as instrumented basketballs, soccer balls, baseballs, golf balls, footballs, softballs, and the 

like.  This realization naturally leads to the question of whether it is possible to arrive at 

the same accurate measurements of angular velocity without the use of angular rate gyros 

for free-flight dynamics. We present below an answer to this question beginning with the 

measurement theory and then proceeding to the experimental evidence. 

In reference to Fig. 3.2, the acceleration of point P (the center of the tri-axial 

accelerometer) on the rigid body, can be written in terms of the acceleration of the mass 

center C through 
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 / /p c p c p ca a r r         (3.8) 

where ca
 
denotes the acceleration of the mass center, 

/p cr  is again the position of P 

relative to C, and   and   are, respectively, the angular velocity and angular 

acceleration of the rigid body.  The acceleration measured by the MEMS accelerometer is 

the vector sum of the acceleration of point P minus the acceleration due to gravity [32] as 

given by 

ˆ
s pa a gK   (3.9) 

where g denotes gravity and K̂  is a unit vector directed upwards.  For the case of a rigid 

body in free-flight, the acceleration of the mass center is simply 

ˆ
ca gK   (3.10) 

assuming negligible aerodynamic drag.  Substitution of eqs. (3.9) and (3.10) into eq. (3.8) 

yields 

 / /s p c p ca r r        (3.11) 

where it is obvious that the accelerometer output depends on the rotational dynamics of 

the rigid body as governed by the torque-free form of Euler’s equations.  Solving eq. 

(3.1) for   and substituting this result into eq. (3.11) yields 

   1

/ /s c c p c p ca I I r r             (3.12) 

which explicitly demonstrates that the output of the accelerometer alone can be used to 

deduce the angular velocity. Introducing the components  1 2 3

T

s s s sa a a a  and 

 / 1 2 3

T

p cr r r r  into eq. (3.12) yields the component equivalent 
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 (3.13a) 

or   /s p ca B r  (3.13b) 

in which  2 3 1aI I I I  ,  3 1 2bI I I I  , and  1 2 3cI I I I  .  Equation (3.13) 

provides three quadratic equations for solution of the three unknown angular velocity 

components from the measured acceleration components of point P. 
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Moreover, the solution for   must satisfy the two constants of the motion given 

by eqs. (3.2) and (3.3). These additional equations, though not independent of the above 

result that embeds Euler’s equations, are advantageous in the computation of  . In 

particular, eq. (3.13) with eqs. (3.2) and (3.3) yield an over-determined set of five 

equations in the three unknowns ( 1 2 3, ,   )
 
enabling a robust least squares solution, 

provided the values of the constants of the motion are known a priori.   

To compute these constants, we first seek the initial conditions for the angular 

velocity and the two constants of the motion as represented by the set (

      2

1 2 3 0 00 , 0 , 0 ,2 ,T H   ).  To this end, we numerically solve eq. (3.13) with eqs. 

(3.2) and (3.3) as a set of five equations in these five unknowns using the measured 

values of (      1 2 30 , 0 , 0s s sa a a ) at the start of the free-flight phase. This set of nonlinear 

equations admits multiple solutions which is a well documented issue; see, for example 

[32,86,89,95,96].  The problem, illustrated by eq. (3.11), is that the expression for sa  is 

quadratic in   which renders the sign of the angular velocity vector (though not the 

direction) ambiguous.  The sign can be readily determined by simple observation during 

the experiment.  

For any other time t during the free-flight phase, we compute the least-squares 

solution for  t  from the five equations (3.13) with (3.2) and (3.3).  For each sample i , 

we seek the solution for   that minimizes the cost function  
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 (3.14) 

where 
,s ia  is the sampled accelerometer output, and N  is the total number of samples.  

The solution is found numerically using the lsqnonlin function in MATLAB™ and 

angular velocity components from the last time step as an initial guess.  The lsqnonlin 

function employs a trust-region method for numerical, unconstrained, nonlinear, 

minimization problems [97].    

The components of angular velocity, as reconstructed from a single tri-axial 

accelerometer, reliably predict those measured by the angular rate gyros.  Evidence for 

this claim is presented in Fig. 3.6 which directly compares the reconstructed versus 
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measured angular velocity. Results are presented for three example trials where rotation 

is initiated nearly about the major (Fig. 3.6a), the intermediate (Fig. 3.6b), and the minor 

(Fig. 3.6c) axes.  Both the angular velocity components as well as the magnitude of the 

angular velocity vector are illustrated. Inspection of these results reveals excellent 

agreement thereby demonstrating that a single, tri-axial accelerometer can be employed 

to accurately reconstruct the angular velocity during free-flight. The accuracy is 

summarized quantitatively in Table 3.3 which reports the average relative rms error
3
 for 

the 16 trials previously considered.  The errors, which remain less than 2% for all three 

angular velocity components, provide convincing evidence in support of our claim. 

 

                                                 
3
 The error measure is again given by (3.7) where the angular velocity measured by the 

angular rate gyros is now used as the “truth” data. 
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Figure 3.6: Measured (solid) and reconstructed (dashed) angular velocity magnitude 

(black) and components for rotations initiated nearly about the major (a), intermediate 

(b), and minor (c) axes. The blue, green, and red curves correspond to components about 

the major ( 1 ),
 
intermediate ( 2 ), and minor axes ( 3 ), respectively. 
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j 1 2 3 

 , %rms j  1.2 1.2 1.3 

Table 3.3: Relative root-mean-square error for angular velocity components reconstructed 

using a single, tri-axial accelerometer as compared to those measured directly from the 

angular rate gyros. 

 

3.4. Summary and Conclusions 

The novel, miniature wireless MEMS IMU presented herein provides a non-

invasive and highly portable means to measure the dynamics of a rigid body. The IMU 

incorporates three-axis sensing of acceleration and three-axis sensing of angular velocity 

with a microcontroller and an RF transceiver for wireless data transmission to a host 

computer.  The small sensor footprint (0.019 X 0.024 m) and mass (0.005 kg including 

battery) enables its use in rather broad applications including, for example, human motion 

analysis, sports training systems, and education/learning of rigid body dynamics. Specific 

to this paper, we demonstrate how this novel sensor can be used in laboratory or 

classroom settings to accurately measure the dynamics of a rigid body in free-flight.  

The experiments consider an example rigid body that is spun up by hand and then 

released into free-flight. The resulting rotational dynamics measured by the angular rate 

gyros are carefully benchmarked against theoretical results from Euler’s equations.  This 

comparison reveals that differences between measurement and theory remain less than 

6%. Moreover, experimentally constructed polhodes elegantly illustrate the expected 

stable precession for rotations initiated close to the major or minor principal axes and the 

unstable precession for rotations initiated close to the intermediate axis.  

Finally, we present a single, tri-axial accelerometer as an alternative to using a 

full IMU for deducing the angular velocity of a rigid body during free-flight. This simpler 

alternative, which addresses restrictions incurred by rate gyro cost, size and measurement 

range, may enable high-volume commercial applications such as instrumented 

basketballs, soccer balls, baseballs, golf balls, footballs, softballs, and the like. A 

measurement theory is presented for reconstructing the angular velocity of the body 

during free-flight from acceleration signals which is then validated experimentally.  The 

experimental results confirm that the angular velocity can be reconstructed with small 
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errors (less than 2%) when benchmarked against direct measurements using angular rate 

gyros.  
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Chapter 4: The Velocity of a Running Athlete 

 

 

4.1. Introduction 

 This chapter extends the method for predicting ball velocity presented in Chapter 

2 to predicting athlete speed non-invasively on the field of play.  The presented technique 

complements a growing interest in employing miniaturized inertial sensors and GPS 

technology to monitor athlete performance [34–37].  Recent products exploit these 

technologies to track  performance metrics (e.g. speed, acceleration, load, etc.) on the 

field of play [34,39,41].  Two such designs incorporate sensor modules in clothing, 

holding the modules tightly against the athlete’s torso and away from the extremities 

(hands and feet) used for play. These designs specifically target outdoor sports, like 

soccer, rugby, and Australian and American football, where a fusion of IMU and GPS 

data is used to estimate athlete speed [38,41].  However, the lack of GPS signals in 

indoor arenas renders these sensor fusion methods useless for sports such as basketball 

[42]. 

 An alternative to sensor-fusion techniques is to estimate running speed based 

solely on data from inertial sensors, namely accelerometers and angular rate gyros.  One 

approach  employs acceleration data alone [43–46].  For example, [43] and [46] develop 

a linear model to identify athlete speed from the stride frequency detected with a torso 

mounted accelerometer.  However, doing so requires a subject specific calibration that 

relates stride frequency to speed.  Alternatively, the studies [44] and [45] utilize neural 

networks to establish the relationship between running speed and torso acceleration.  

However, neural networks require training, and the network presented in [44] also 

requires subject height and weight as input while that in [45] requires a heel mounted 

accelerometer.
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 A second method for determining running speed employs direct integration of 

measured acceleration [47,48].  For example, a method for determining running speed 

based on integration of the acceleration measurements from a shank-mounted IMU is 

presented in [47].  The resulting velocity estimate is subject to what is referred to as drift 

error [61,75] caused by integrating small, time varying errors in the acceleration and 

angular velocity data.  In [47,48] this drift is estimated by assuming the shank behaves 

like a one degree-of-freedom inverted pendulum pivoting about the ankle joint during the 

stance phase.  Assuming that the location of the IMU relative to the ankle is known, this 

allows for an independent estimate of velocity and therefore a correction for drift.  

However, this method requires accurate knowledge of the IMU’s location relative to the 

center of rotation of the ankle and it further assumes planar shank motion.       

This study improves upon the methods above by yielding estimates of athlete 

speed from a single torso-mounted IMU without subject-specific calibration or additional 

positional data (GPS).  Doing so enables accurate and non-invasive speed predictions on 

the field of play, whether outdoors or indoors. The speed estimates from this new method 

are compared to those determined from video based motion capture (MOCAP).  We open 

with a description of the experiment.    

 

 

4.2. Methods 

This study presents IMU- and MOCAP-based speed predictions for 40 trials of a 

single subject.  The data set is composed of 10 trials each of straight-line walking, 

jogging, and running and 10 trials of running a predefined zig-zag course.  For each trial, 

the subject begins at rest, completes a specified course, stands still momentarily, repeats 

the course, and finishes the trial at rest.  For the straight-line walking (“Walk”), jogging 

(“Jog”), and running (“Run”) trials, the course is defined as a straight path between two 

cones, 5 m apart (Fig. 4.1A).  For the zig-zag running trials (“Zig-zag”), the course is 

defined by a zig-zag path connecting 6 cones within the 5m by 5m MOCAP capture 

volume (Fig. 4.1B).  Example paths for each type of trial are illustrated in Fig. 4.1 as 

revealed by the position of a torso-mounted marker; refer to Fig. 4.2A.  
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Figure 4.1: MOCAP marker trajectory during a straight-line running trial (A) and a zig-

zag running trial (B). 

 

The inertial measurement unit (IMU) selected for this study is a YEI 3-space 

sensor (Yost Engineering, Portsmouth, Ohio), shown in Fig. 4.2A, that provides three-

axis sensing of angular velocity and linear acceleration.  The device measures angular 

rates up to 2000 deg/s, with 16-bit resolution, and a 0.03 deg/sec/√Hz noise floor and 

accelerations up to 12 g, with 14-bit resolution, and a 650 µg/√Hz noise floor. Data is 

written to flash memory on the device and subsequently downloaded to a computer via 

USB upon completion of all 40 trials.  The accelerometer and rate gyro data are sampled 

at approximately 700 Hz.  This IMU provides highly accurate orientation data and, as a 

requirement, employs well-calibrated scale factors for each axis of the rate gyro. The dc 

offset values for each rate gyro axis are identified at the start of each trial when the IMU 

is at rest. Doing so reduces the adverse effects of temperature changes on gyro output. 

The accelerometer is calibrated following the procedure detailed in [98] which provides 

both scale factor and offset values for each of the three sense axes.  This combination of 

calibration techniques ensures that the IMU provides accurate measurements of 

acceleration and angular velocity resolved along the three sense axes designated by the 

orthonormal triad ( 1 2 3
ˆ ˆ ˆ,  , e e e ) shown in Fig. 4.2A.  In keeping with [45,47], the sampled 

IMU data is low-pass filtered with a cut-off frequency of 15 Hz prior to use.  The filtered 
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components of (calibrated) acceleration for an example “Run” trial are shown in Fig. 

4.2B. 

 

 

Figure 4.2: (A) The IMU (YEI 3-space) is held against the lumbar portion of the subject’s 

spine by a tension strap.  A maker mounted to the IMU casing is simultaneously 

employed for MOCAP measurements. (B) The filtered components of acceleration 

measured by the IMU over two periods of motion during an example “Run” trial. 

Components: 1̂e =blue, 2ê =green, and 3ê =red.           

 

As illustrated in Fig. 4.2A, the IMU is held in place using an elastic strap which 

wraps around the lower abdomen of the athlete, indexing the device against the lumbar 

portion of the spine.  The acceleration components, shown in Fig. 4.2B, illustrate two 

sequential motion periods (highlighted in blue) during each of which the athlete ran from 

the first cone to the second cone and back.  The short resting time intervals before, 

between and after the two motion periods are readily observable. The resting time 

intervals are defined by any time when the vector magnitude of the IMU measured 

acceleration and angular velocity depart from their values when the IMU is stationary by 

more than prescribed thresholds. The thresholds are further defined by the noise 

magnitude in the magnitude of the acceleration and angular velocity while the subject 

remains at rest at the start of the trial (e.g. 3.4 deg/s, 0.08 g for the example trial of Fig. 

4.2B).   
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Note that the IMU acceleration output, ma , includes both the physical acceleration 

at the center of the accelerometer, a , plus the acceleration due to gravity, g (i.e. 9.81 

m/s
2
). Thus, a  is recovered from  

ma a g   (4.1) 

 which further requires the orientation of the IMU-fixed frame ( 1 2 3
ˆ ˆ ˆ,  , e e e ) relative to an 

inertial frame defined by the orthonormal triad ( 1 2 3
ˆ ˆ ˆ,  , E E E , Fig. 4.2A), where 1Ê  and 2Ê  

define the horizontal plane, and 3Ê  is aligned with gravity. 

The orientation of ( 1 2 3
ˆ ˆ ˆ,  , e e e ) relative to ( 1 2 3

ˆ ˆ ˆ,  , E E E ) is determined in two steps.  

The first step establishes the initial orientation of ( 1 2 3
ˆ ˆ ˆ,  , e e e ) relative to ( 1 2 3

ˆ ˆ ˆ,  , E E E ) 

while the athlete is at rest prior to a motion period.  During this (albeit short) rest interval, 

the accelerometer measures solely the acceleration due to gravity thus establishing the 

initial direction of 3Ê  in the IMU-fixed frame.  Next, one unit vector in the horizontal 

plane 2Ê , follows from 2 3 1 3 1
ˆ ˆ ˆˆ ˆE E e E e   .  Finally, 1 2 3

ˆ ˆ ˆE E E   yields a second unit 

vector in the horizontal plane.  These three computations establish the initial direction 

cosine matrix that defines the orientation of the IMU-fixed frame (
1 2 3
ˆ ˆ ˆ,  ,  e e e ) relative to 

an inertial frame ( 1 2 3
ˆ ˆ ˆ,  , E E E ) which remains fixed during the subsequent motion period.  

The components of the direction cosine matrix R  also establish the initial values of the 

Euler parameters (
1 2 3 4, , ,     ) per 
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 (4.2) 

for subsequent use in the second step [93].   

The evolution of the Euler parameters are determined in the second step by 

employing the initial condition above and then integrating the Euler parameter state 

equations  
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 (4.3) 

forward in time. Here, 1( )t , 2( )t , and 3( )t  are the three components of the measured 

angular velocity in the IMU frame.  This ordinary differential equation is integrated 

forward in time using standard numerical integration techniques subject to the Euler 

parameter normalization constraint 2 2 2 2

1 2 3 4 1        at each time step. Doing so 

provides the Euler parameters at any time, hence the direction cosine matrix  R t at any 

time via Eq. (4.2).   

Returning to Eq. (4.1), one can now deduce the desired acceleration of the torso 

mounted accelerometer a  with respect to the inertial frame ( 1 2 3
ˆ ˆ ˆ,  , E E E ) per  

  3
ˆ

ma R t a gE   (4.4) 

Subsequent integration of a  (e.g., via  trapezoidal rule) during each of the motion periods 

yields the  velocity of the torso-mounted IMU subject to the initial condition that the 

athlete is at rest at the beginning of the motion period.  

It is well established that integration of IMU-measured acceleration introduces 

error in the resulting velocity due to sensor drift [61,75].  This drift error is approximately 

identified and removed per  

 cv v f t   (4.5) 

where v  is the uncorrected athlete velocity as determined by direct integration of (4.4), 

cv  is the drift-corrected velocity of the athlete, and  f t  is a vector-valued function of 

time approximating the drift error.  We identify this function by considering times when 

the motion of the athlete is known.  For example, the athlete is stationary at the starting 

time ( st ) and ending time ( et ) of any motion period yielding  

   s sf t v t  (4.6a) 

   e ef t v t  (4.6b) 
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In addition, there may be instants during the motion period ( s et t t  ) when the 

measured acceleration and angular velocity return to their stationary values (or within 

prescribed thresholds of those values), suggesting the athlete’s velocity returns to zero (or 

approximately zero). These zero velocity states are expected during the “burst” walking 

and running tasks considered herein since the torso velocity returns to zero (or 

approximately zero) sometime during the short time interval when the athlete reaches a 

cone, changes direction, and proceeds to the next cone.  Let the index q  denote the 

number of such “zero velocity updates” within a motion period. Thus,  

     for 1, ,j jf t v t j q   (4.7) 

holds approximately where ( , )j s et t t  denotes the time of the j
th

 zero velocity update.  

Moreover, the athlete remains at rest for finite (though potentially short) time intervals 

prior to and following the motion period. The acceleration of the torso must therefore 

vanish during these finite time intervals. The acceleration, which must remain 

continuous, further requires that  

     s sf t v t  (4.8a) 

   e ef t v t  (4.8b) 

where  f t  is the derivative of the drift-error function, and  v t  is the uncorrected 

acceleration.  

 

Case 1: 0 1q   

For cases when there is at most one velocity update identified within a motion 

period, we approximate the drift error by the quadratic function 

  2

0 1 2f t c c t c t    (4.9) 

which introduces three unknown (vector-valued) coefficients ( 0 1 2, ,c c c ). The three 

unknowns are found by solving Eq. (4.6) and then by minimizing the sum of the squared 

error in Eqs. (4.7) and (4.8) recognizing that these two latter conditions may only hold 

approximately.  Herein, minimization is accomplished using the method of Lagrange 
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multipliers (the Lagrangian is detailed in the Appendix, Section 4.5), but any constrained 

optimization method can also be used.   

 

Case 2: 1q    

For cases where there are two or more zero velocity updates identified within a 

motion period, exactly satisfying the zero velocity conditions would require 

approximating the drift error as a higher order polynomial.  This approach could 

potentially suffer from oscillations at the boundaries of the motion period known as 

Runge’s phenomenon.  To avoid this issue, we minimize the velocity at the zero velocity 

updates by considering a piecewise-linear approximation to the drift error   
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 (4.10) 

where the 1q   linear functions introduce  2 1q   unknown coefficients.  The drift-error 

function is continuous in time (enforcing continuity in velocity) which yields q equations, 

one for each zero velocity update per  

,0 ,1 1,0 1,1  for 1, ,j j j j j jc c t c c t j q      (4.11) 

Finally, we require that  

,1 1,1  for 1, ,j jc c j q   (4.12) 

be satisfied at least approximately to minimize jerk. The minimization of jerk is a 

recognized feature of smooth human motion [99].  The  2 1q  unknown coefficients 

appearing in (4.10) are determined by satisfying Eqs. (4.6) and (4.11) and minimizing the 

sum of the squared error in Eqs. (4.7), (4.8), and (4.12).  The minimization is again 

achieved using the method of Lagrange multipliers as detailed in the Appendix (Section 

4.5).  

 

Following identification of the drift error function ( )f t   (for either Case 1 or 

Case 2), the corrected estimate of the athlete velocity ( )cv t  follows from (4.5).  The 

horizontal speed of the athlete follows immediately from the vector sum of the two 
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horizontal velocity components. This horizontal speed is ultimately compared with 

independent measurements from MOCAP.   

MOCAP data is collected simultaneously with the IMU data.  A 16-camera 

Vicon
TM

 MOCAP system is used to record the three-dimensional position of the 

reflective marker attached to the IMU shown in Fig. 4.2A.  This position data is sampled 

at 240 Hz and low-pass filtered at 15 Hz prior to numerical differentiation to obtain the 

velocity of the marker. The marker velocity vector is further decomposed into a 

component in the vertical ( 3
ˆ )E direction and the residual that lies in the horizontal ( 1 2

ˆ ˆ,E E

) plane. This decomposition follows from careful a priori calibration of the camera 

system including calibration of the vertical ( 3
ˆ )E  direction. The magnitude of the 

horizontal residual yields the MOCAP-measured horizontal speed of the torso for direct 

comparison with the IMU-estimated horizontal speed above.   

          

 

4.3. Results and Discussion 

 The computational algorithm above estimates the speed of an athlete using a 

single torso-mounted IMU.  Doing so provides a non-invasive means to assess athlete 

performance right on the field of play and without requiring GPS data or a priori subject-

specific calibration.  In this section we present results from this algorithm, critically 

compare them to results obtained by MOCAP, discuss potential limitations of the 

algorithm, and further compare and contrast results from alternative algorithms 

[44,45,47].   We open with an example that highlights the performance of the drift 

estimation algorithm.  
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Figure 4.3: (A) Uncorrected velocity components ( 1Ê =blue, 2Ê =green, 3Ê =red) 

determined from IMU data (solid curves) and  their respective drift error correction 

functions (dotted curves) for an example “Walk” trial with four identified velocity 

updates ( 4q  ).  (B) Corrected velocity components ( 1Ê =blue, 2Ê =green, 3Ê =red) 

determined from IMU data.  The start and end times of the motion period are labeled st  

and et , respectively.  The four intervening times when the torso velocity is close to zero (

4q  ) are labeled 1 2 3, ,t t t  and 4t .  

 

 Figure 4.3A illustrates three components of the uncorrected athlete velocity v  

(solid curves: 1Ê =blue, 2Ê =green, 3Ê =red) plotted against time for one motion period 

during an example “Walk” trial. Also shown are the piecewise-linear drift corrections for 

each component (dashed curves: 1Ê =blue, 2Ê =green, 3Ê =red) using the drift error 

estimation algorithm above.  Inspection of the uncorrected velocity components reveals 

appreciable one-sided (drift) errors that increase with time despite the fact that the 

velocity must return to zero at the end of the motion period ( et ).  The drift error estimates 

drive all velocity components to zero at et  while minimizing the velocity and jerk at each 

of four ( 4q  ) identified zero velocity update times (see times 1 2 3, ,t t t  and 4t ). The 

corrected velocity components are illustrated in Fig. 4.3B.  The instantaneous horizontal 

speed of the athlete is constructed from the corrected horizontal velocity and this is 

further compared to the horizontal speed measured from MOCAP in Figure 4.4.   
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Figure 4.4: (A) IMU (blue) and MOCAP (red) horizontal speed as functions of time 

during the example walking trial over two motion periods.  The correlation plot (B) also 

includes a best fit line to the data (red) and a line with unit slope (black).  

 

 The IMU (blue) and MOCAP (red) speed estimates are plotted against time for 

the same example “Walk” trial in Fig. 4.4A which includes two motion periods.  The 

qualitative and quantitative agreement between the two estimates remains excellent 

throughout the trial.  Specifically, the root mean square error (RMSE) in the IMU-

predicted speed compared to MOCAP is 0.15 m/s.  For reference, this RMSE represents a 

mere 7.1% of the peak walking speed estimated by MOCAP during this trial.  The 

agreement between the two estimates is further revealed in Fig. 4.4b which plots the 

IMU-predicted speed versus MOCAP-predicted speed for the entire duration of the 

example “Walk” trial; refer to blue curve. If the agreement were perfect, this data would 

collapse to the unit line; that is the line having unit slope and zero intercept (black line). 

The computed best fit line to the data (red line) lies nearly on top of the unit line. As 

illustrated in Fig. 4.4B, the IMU and MOCAP estimated speeds remain highly correlated 

(r = 0.98) with the best fit line having near unit slope (Slope = 1.01).   
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Motion Type RMSE m/s % RMSE r Slope 

Walk 0.35 (0.22) 16.7 (10.8) 0.89 (0.11) 0.98 (0.07) 

Jog 0.35 (0.16) 10.0 (4.4) 0.96 (0.05) 1.01 (0.06) 

Run 0.38 (0.16) 7.6 (3.0) 0.97 (0.02) 0.99 (0.04) 

Zig-zag 0.79 (0.44) 17.3 (9.8) 0.85 (0.13) 0.90 (0.09) 

Table 4.1: Mean (and standard deviation) of RMS error (RMSE), RMSE relative to peak 

speed estimated by MOCAP (% RMSE), correlation coefficient (r), and slope of IMU-

predicted speed compared to MOCAP for 10 trials of each of the four motion types.  

 

The analysis above illustrated for one “Walk” trial was repeated for 10 trials of 

each of the four motion types (total of 40 trials). The results are summarized in Table 4.1 

which reports for each motion type the mean (and standard deviation) of the RMS error 

(RMSE), the RMSE as a percentage of peak speed, the correlation (r), and the slope of 

IMU-predicted speed compared to the MOCAP predicted speed. The results presented in 

Table 4.1 confirm the overall strong agreement between IMU versus MOCAP estimated 

speeds.  Among the motion types, this agreement is highest for the “Run” and “Jog” trials 

which have mean (SD) RMSE of 0.38 (0.16) and 0.35 (0.16) m/s, correlation coefficients 

of 0.97 (0.02) and 0.96 (0.05), and slopes of 0.99 (0.04) and 1.01 (0.06), respectively. 

The agreement lessens somewhat for the “Walk” trials as evidenced by the slightly lower 

mean correlation coefficient (0.89), and more so for the “Zig-zag” trials which exhibit the 

largest RMSE (0.79 m/s), the lowest  correlation coefficient (0.85), and slope (0.90) 

furthest from one.   

The level of agreement between IMU and MOCAP estimated speeds reported in 

Table 4.1 however has little to do with the motion type. Instead, it depends on the 

integration time ( e st t ) and it improves as this time decreases.  Note that the Run, Jog, 

Walk, and Zig-zag motions required increasingly larger integration time as revealed by 

the mean (SD) integration times of 5.8 (0.4), 7.3 (1.0), 10.3 (0.5), and 12.8 (0.8) seconds, 

respectively.   
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Figure 4.5: (A) RMSE and (B) correlation coefficient (r) between IMU and MOCAP 

estimated speed versus integration time.  RMSE increases and r decreases with 

integration time. 

 

The results of Fig. 4.5 convincingly demonstrate the degradation in accuracy of 

the IMU-derived speed estimates with integration time.  Specifically, as integration time 

increases, the RMSE relative to MOCAP increases (Fig. 4.5A), the correlation coefficient 

decreases (Fig. 4.5B), and the variability in each increases (Fig. 4.5A and B).  

Fortunately, athlete motion in many sports, especially explosive sports like basketball, is 

often limited to very short periods of running or sprinting (less than 10s) separated by 

(often very short) periods of rest [42,100].  Motivated by this fact, we report in Table 4.2 

the mean (standard deviation) of the above error metrics for all motion periods with 

integration times less than 10 s versus motion periods with integration times exceeding 

10 s.  The mean (SD) RMSE in the estimated speed is 0.35 (0.20) m/s for all motion 

periods less than 10 s.  Likewise, the IMU-derived speeds are well correlated with 

MOCAP-derived speeds as evidenced by the mean (SD) correlation coefficient of 0.96 

(0.05) and slope of 0.99 (0.07).  This level of accuracy is quite promising for highly 

dynamic sports, like basketball, where athletes are quickly alternating between standing 

and sprinting. 
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Error Metric 10e st t s   10e st t s   

RMSE (m/s) 0.35 (0.20) 0.62 (0.48) 

r 0.96 (0.05) 0.85 (0.16) 

Slope 0.99 (0.07) 0.89 (0.14) 

n 46 34 

Table 4.2: Mean (standard deviation) of RMSE correlation coefficient (r), and slope of 

IMU-estimated speed compared to MOCAP-estimated speed for all 40 trials (80 motion 

periods total, where n is the number included in each group). Separately considered are 

motion periods with integration times less than versus greater than 10 seconds.   

   

Finally, we compare the above findings to those of existing algorithms that also 

estimate athlete speed using shank-, foot-, or torso-mounted IMUs [44,45,47].  These 

studies report average speed and so we follow suit by comparing the average speeds for 

each of the motion periods.  For all motion periods less than 10s, the mean (SD) error in 

estimated average speed is 0.03 (0.18) m/s, and the RMSE is 0.18 m/s, or 4.3% relative to 

average speed reported by MOCAP.  These results compare favorably to those presented 

in [47], where a shank mounted IMU estimates average running speed with mean (SD) 

error of 0.11 (0.03) m/s and RMSE of 5.9% relative to treadmill speeds similar to those 

considered herein.  They also compare favorably to the results presented in [44,45] where 

neural-network techniques estimate average speed to within 0.12 m/s RMSE compared to 

that determined via stop-watch defined time over a known course [45] or to within 0.15 

m/s RMSE as compared to treadmill speed [44].  Recall, however that two of these 

alternative methods [44,45] require a priori training of a neural network.  Additionally, 

one of these studies [44] requires subject height and weight as input to the trained neural 

network, while the other [45] requires a heel mounted accelerometer.  Similarly, the 

method presented in [47] requires both subject specific calibration and a shank-mounted 

IMU (which remains vulnerable to damage and may also promote athlete injury).                

 

                  

4.4. Conclusions 

 This work presents a new algorithm for estimating athlete speed using data from a 

single torso-mounted inertial measurement unit that includes a three-axis accelerometer 

and a three-axis angular rate gyro. Experiments are conducted for 40 trials and for four 
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types of motion including straight-line walking, jogging and running and zig-zag running. 

The accuracy of the speed estimates are benchmarked to those estimated by video based 

motion capture (MOCAP).  The algorithm predicts instantaneous athlete speed that 

correlates well with MOCAP (mean RMSE = 0.35 m/s, r = 0.96, slope = 0.99) for short 

duration (less than 10 s) “burst” motions characteristic of explosive sports such as 

basketball.  The method predicts average speed to within an absolute mean error of 0.03 

m/s, and a RMSE of 0.18 m/s, or 4.3% relative to average MOCAP speed.  These results 

compare favorably to existing methods which, by contrast, require shank- or foot- 

mounted IMUs and further require a priori subject-specific calibration.      

     

 

4.5. Appendix 

 As discussed in the body of this manuscript, the drift-error in velocity is 

approximated as a vector function  f t  which is defined as a quadratic in time [Eq. 

(4.9)] for cases where 0 1q  , and as a piecewise-linear function in time [Eq. (4.10)] 

for cases where 1q  .  The unknown, constant coefficients of these functions are defined 

according to the method of Lagrange multipliers where the Lagrangian for each case is 

defined as follows. 
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Case 2: q>1 
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where dv  is a normalizing factor for the speed terms of the Lagrangian, defined as the 

absolute velocity error due to drift over the whole motion period, or more explicitly,  

   e sdv v t v t   (4.15) 

The normalizing factor for the acceleration terms of the Lagrangian, dv , is defined as the 

absolute mean acceleration of the velocity drift error during the motion period, or  

   e s

e s

v t v t

t t
dv




  (4.16) 

These non-dimensional Lagrangian functions (4.13-4.14) are written in scalar form here, 

and can be applied equally for each of the three components of uncorrected athlete 

velocity.  In this case, the method of Lagrange multipliers provides a determined set of 

linear equations in terms of the unknown coefficients ( c ) and Lagrange multipliers ( ) 

by setting the partial derivative of the Lagrangian with respect to each unknown equal to 

zero.    
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Chapter 5: Joint Reactions Deduced from IMU Data 

 

 

 

5.1. Introduction 

The studies presented in Chapters 2-4 detail novel IMU-based techniques to 

support applications in sports training.  In this Chapter we depart from this theme and 

instead advance the use of IMU arrays to estimate joint reactions in multibody systems.  

This application is motivated by the fact that the annual number of total hip and knee 

replacement surgeries are predicted to increase by over 170% (to 572,000) and 670% (to 

3.48 million) respectively by the year 2030 [49].  This alarming increase in joint 

replacements requires the development of non-invasive, clinically viable methods to 

identify pathological lower extremity motion before joint injuries occur.  One of these 

potential methods, inverse dynamic modeling, begins by approximating the human body 

as a multibody system of rigid segments connected by joints.  Knowledge of the 

segmental kinematics, namely the angular velocity and angular acceleration of each 

segment and the linear acceleration of the segment’s mass center, enables a solution for 

the reaction kinetics (i.e. forces and moments) acting at the joints provided segmental 

inertial properties (e.g. mass center location, mass, inertia tensor) are known [13]. 

The current standard for quantifying segmental kinematics is video-based motion 

capture (MOCAP).  MOCAP is an expensive technology that employs an array of high-

speed cameras calibrated to provide three-dimensional positions of a set of reflective 

markers attached to a subject.  Markers are typically attached to a subject’s skin via 

adhesive tape in specific locations to define bony anatomical landmarks [11].  This 

method is often constrained to a dedicated motion-capture laboratory and requires an 

operator skilled in the placement of the reflective markers as well as the collection and 

analysis of the resulting marker position data. 
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As mentioned previously, inverse dynamic modeling requires knowledge of the 

angular velocity and angular acceleration of each body segment in addition to the 

segment’s mass center acceleration.  Computation of these quantities from marker 

position data requires a differencing operation to compute segment angles and then 

successive numerical differentiations to compute angular velocity and angular 

acceleration.  Two successive differentiations are also required to compute segmental 

mass center acceleration.  It is well established that these numerical differentiations 

significantly amplify small errors in the initial position data (due to measurement error, 

marker occlusion, skin motion, etc.), resulting in potentially large errors in the very 

kinematic quantities required for inverse dynamics [3,14]. 

The above limitations (accuracy, cost, and laboratory infrastructure) prevent 

widespread adoption of MOCAP as a clinically viable tool for estimating joint reactions.  

However, these shortcomings may be addressed by advancing an alternative technology, 

namely miniaturized inertial measurement units (IMUs). Miniature IMUs, which 

incorporate MEMS accelerometers and angular rate gyros,   measure the angular velocity 

and linear acceleration of any rigid body to which they are attached. When deployed as a 

body worn sensor array, miniature IMUs directly provide the angular velocity and linear 

acceleration of body segments needed for inverse dynamics and require just a single 

derivative operation to yield the requisite angular acceleration. Thus, miniature IMU 

arrays have the potential to yield far more accurate kinematic data for the inverse 

dynamic estimates of joint reactions than (position-based) MOCAP. In addition, 

miniature IMU arrays are a highly portable technology that can be deployed in the clinic, 

workplace, or field of play and for a very small fraction of the cost of MOCAP. 

Several recent studies explore the use of IMUs for inverse dynamic modeling and 

in (non-laboratory) environments previously inaccessible using MOCAP [101–104].  One 

study employs IMUs as part of the inverse dynamic analysis of the human knee joint for 

patients with knee osteoarthritis [101].  Estimates of the knee adduction moment during 

ambulatory gait are obtained using kinematic data from a shank-mounted IMU with 

ground reactions measured from a wearable, instrumented shoe.  Moreover, this study 

benchmarks the adduction moment estimated using the portable technology (IMU plus 

instrumented shoe) with that estimated using a laboratory-based optoelectronic marker 
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system and a floor-mounted force plate.  While it is important to benchmark the accuracy 

of the joint reactions estimated using data from inertial sensors, the  study [101] employs 

a gold standard (optoelectronic cameras) which inherits the inaccuracies of  MOCAP in 

measuring the requisite segmental kinematics. 

The objective of this paper is to use a precise gold standard to explore the 

accuracy of joint reactions estimated using miniature IMU arrays. To this end, we 

conduct a careful benchmarking study where the reaction forces and moments acting at 

the joints of a well characterized mechanical system are directly measured from 

embedded six degree-of-freedom force and torque sensors. The mechanical system, an 

instrumented double-pendulum introduced in the companion paper [105], incorporates a 

two-node array of miniature wireless IMU’s that provide the kinematic data for inverse 

dynamic estimates of the joint reactions.  We open with a brief description of the double 

pendulum from [105] and the additional instrumentation needed for this study.   

 

 

5.2. Methods 

We return to the instrumented double pendulum introduced in the companion 

paper [105] that provides benchmark measurements of both kinematic and kinetic data. 

Recall that the benchmark kinematic data is provided by two high resolution (0.07 deg.) 

rotary optical encoders that measure the rotations across both joints. The benchmark 

kinetic data is provided by two high resolution load cells embedded in the two links 

immediately adjacent to each joint (red cylinders, Fig. 5.1A). In addition, the double 

pendulum is instrumented with two (6 dof) IMUs, one per link (blue rectangles, Fig. 

5.1A).  The instrumentation is illustrated in the schematic of Fig. 5.1 and also visible in 

the photograph of Fig. 1 of [105]. A description of the load cells is provided below and 

descriptions of the IMUs and encoders are provided in the companion paper [105].  

Analysis of the data from these instruments requires definition of the frames of reference 

illustrated in Fig. 5.1 B-D. 
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Figure 5.1: Schematic of the instrumented double pendulum with definitions of reference 

frames defined. Refer also to photograph shown in Fig. 1 of [105]. 

 

We define three reference frames to describe the dynamics of the double 

pendulum: frame B is fixed to the bottom link and is composed of the orthogonal unit 

vectors ( 1 2 3
ˆ ˆ ˆ,  ,  B B BE E E , Fig. 5.1D); frame T is fixed to the top link and is composed of the 

orthogonal unit vectors ( 1 2 3
ˆ ˆ ˆ,  ,  T T TE E E , Fig. 5.1B); and frame G is an inertial frame 

composed of the unit vectors ( 1 2 3
ˆ ˆ ˆ,  ,  G G GE E E , Fig. 5.1C).  The reference frames are defined 

such that 1
ˆ TE , 1

ˆ BE , and 1
ˆ GE  are parallel to the rotation axes of the links, 3

ˆ BE  and 3
ˆ TE  are 

aligned with the long axis of their respective links, and 3
ˆ GE  is aligned with gravity.  The 

link-fixed reference frames (B and T), are assumed to be aligned with the principal axes 
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of the links.  We must also consider two additional reference frames defined by the sense 

axes of the two attached IMUs.  The bottom link IMU reports measurements along (

1 1 1

1 2 3
ˆ ˆ ˆ,  ,  e e e , Fig. 1D), while the top link IMU reports measurements along ( 2 2 2

1 2 3
ˆ ˆ ˆ,  ,  e e e , Fig. 

5.1B). 

The two load cells noted in Fig. 5.1A are Nano17
TM

 force/torque sensors which 

provide three-axis measurement of both force and moment.  They resolve forces up to 70 

N along the length of the pendulum links and 50 N in the two transverse directions, and 

all with a resolution of 0.0125 N. They resolve moments up to 500 N-mm about all three 

axes with a resolution of 0.0625 N-mm.  The load cell mounted to the top link at 1j  

measures reactions at this joint and with components resolved in frame T.  The load cell 

mounted to the support at 2j measures reactions at this joint and with components 

resolved in frame G.  The reaction forces (
1 2,  F F ) and moments (

1 2,  M M ) measured by 

each load cell are shown in the free body diagrams of the bottom and top links in Fig. 

5.2A and B, respectively.    
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Figure 5.2: Free body diagrams for the bottom (A) and top (B) link of the double 

pendulum. 

 

Starting from the free body diagrams in Fig. 5.2, systematic use of the Newton-

Euler equations for each body yields expressions for the reactions.  Specifically, 

Newton’s second law for both links yields the reaction forces  

 1 1 1cF m a g   (5.1) 

 2 1 2 2cF F m a g    (5.2) 

where 1m  and 2m is the mass of the bottom and top link, respectively, 1ca  and 2ca is the 

acceleration of the mass center of the bottom and top link, respectively, and g  denotes 

gravity.  Similarly, Euler’s second law for both links yields the reaction moments   

 1 1 1 1 1 1 1/ 1 1c c c jM I I r F        (5.3) 
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   2 2 2 2 2 2 2/ 2 2 1 2/ 1 1c c c j c jM I I r F M r F           (5.4) 

 where  1cI  and 2cI  is the inertia tensor (principal axes through centroid) for the bottom 

and top links, respectively, 1/ 1c jr  is a position vector locating the (bottom link) mass 

center 1c   relative to 1j , 2/ 1c jr  and 2/ 2c jr  are position vectors locating the (top link) mass 

center 2c relative to 1j  and 2j , respectively, and 1 , 
1 , 2 , and 

2  denote  the angular 

velocity and angular acceleration of the bottom and top link, respectively.   

Solving (5.1)-(5.4) in sequence yields solutions for the joint reactions assuming 

knowledge (measurement) of all kinematical quantities, the link geometry and inertia 

properties. Table 1 reports the dimensions, mass, and principal moments of inertia for 

each link.   

 

Parameter Bottom Top 

Length (m) 0.305 0.356 

Width (m) 0.051 0.051 

Height (m) 0.019 0.019 

Mass (kg) 0.834 0.908 

2

1  (kg-m )I  0.007 0.007 

2

2  (kg-m )I  0.007 0.010 

2

3  (kg-m )I  <0.001 <0.001 

Table 5.1: Summary of dimensions, mass and principal moments of inertia for each link.  

 

The kinematical quantities are measured or estimated from IMU data for the freely 

decaying pendular motion described in [105]. The IMU provides direct measurement of 

link angular velocity ( 1 2,    ) and thus link angular acceleration (
1 2,    ) following 

numerical differentiation.  The IMU also measures the acceleration at the center of the 

accelerometer polluted by gravity
 4

.  Conveniently, gravitational pollution in the 

measured acceleration is canceled in (5.1) and (5.2).  However, solution of (5.2) and 

                                                 
4
 The MEMS accelerometers measure acceleration down to zero Hertz and therefore measure gravity in 

addition to the superimposed acceleration due to movement. 



71 

 

(5.4), and direct comparison of the calculated reactions to load cell measurements 

requires knowledge of the orientation of each link relative to frame G. 

The orientation of each link is found from the orientation of the attached IMU and 

in two steps. The first step establishes the initial orientation of the IMU sense axes when 

the pendulum is in equilibrium. The second step determines the change in orientation 

upon integrating the link angular velocity during the subsequent oscillations.  During the 

first step, the pendulum hangs at rest. The accelerometers measure solely the acceleration 

due to gravity thus establishing the initial direction of 3
ˆ GE  in each IMU frame of 

reference.  Next, the pendulum is displaced from equilibrium, released and oscillates 

freely with decaying amplitude. The angular velocity measured by the angular rate gyros 

establishes the orientation of the axis of rotation 1
ˆ GE  which remains approximately fixed 

relative to the IMU frames. The average direction of the angular velocity is used to 

deduce the direction of 1
ˆ GE with respect to both IMU frames. Finally, the initial 

orientation of 2
ˆ GE  resolved in the IMU frames follows from 2 3 1

ˆ ˆ ˆG G GE E E  .  The initial 

direction cosine matrices that define the orientation of the IMU frames, ( 1 1 1

1 2 3
ˆ ˆ ˆ,  ,  e e e ) and (

2 2 2

1 2 3
ˆ ˆ ˆ,  ,  e e e ), relative to frame G ( 1 2 3

ˆ ˆ ˆ,  ,  G G GE E E ) follow immediately from the components 

of 1 2
ˆ ˆ,  G GE E and 3

ˆ GE  established by this procedure. The components of each direction 

cosine matrix also establishes the initial values of the Euler parameters per 
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 (5.5) 

for subsequent use in the second step.   

During the second step, the evolution of the Euler parameters from the initial 

condition above is governed by the differential equation 

3 2 11 1

3 1 22 2

2 1 33 3

1 2 34 4

0 ( ) ( ) ( )

( ) 0 ( ) ( )1

( ) ( ) 0 ( )2
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 (5.6) 
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where 
1 , 

2 , and 
3  are the three components of the measured angular velocity.  This 

ordinary differential equation is integrated forward in time using standard numerical 

integration techniques subject to the Euler parameter normalization constraint 

2 2 2 2

1 2 3 4 1        at each time step.  Doing so provides the Euler parameters as 

functions of time during the subsequent oscillations of the pendulum and therefore the 

orientation of the upper and lower links. 

 Small errors in rate gyro calibration and sensitivity to temperature subject the 

Euler parameters to an accumulation of error over time known as drift [61,75].  One can 

correct for drift by fusing accelerometer and rate gyro derived estimates of orientation via 

a Kalman or complementary filter [61,75].  In this study, we instead exploit the constraint 

that the pendulum oscillates about its equilibrium position to correct for drift.  In 

particular, the Euler parameters must also oscillate about their initial (equilibrium) 

values.    

 The direction cosine matrix  1R t  defines a rotation, at every instant in time, 

from the bottom link IMU measurement frame to the G frame according to 

  1 1 1
1 2 3

1 ˆ ˆ ˆ, ,G e e e
v R t v  (5.7) 

where 
G

v  is a generic vector resolved in the G frame and 1 1 1
1 2 3ˆ ˆ ˆ, ,e e e

v  is the same generic 

vector resolved in the bottom link IMU measurement frame.  A similar rotation,  2R t , 

can be developed for the top link.  It is important to note that  1 0R  and  2 0R  provide 

the fixed rotation from the bottom link IMU measurement frame to frame B and from the 

top link IMU measurement frame to frame T respectively.   

Having defined the orientations of each IMU relative to gravity, we then use IMU 

derived data to define the mass center acceleration of each link, polluted by gravity, 

according to  

 1 1 1 1/ 1 1 1 1/ 1c m c a c aa a r r         (5.8a) 

 2 2 2 2/ 2 2 2 2/ 2c m c a c aa a r r         (5.8b) 

where 1ma  and 2ma is the acceleration measured by the bottom and top link 

accelerometers, respectively, and 1/ 1c ar  and 2/ 2c ar  are position vectors locating the mass 
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center of the bottom and top links relative to their respective accelerometers.  These 

position vectors are unknown and, in principal, difficult to determine.  However, each of 

the unknown position vectors can be written as the sum of two more accessible vectors.  

Considering the position vector associated with the bottom link for example,   

1/ 1 1/ 1 1/ 1c a j a c jr r r   (5.9) 

where 1/ 1j ar  is the position of 1j  relative to the accelerometer, and 1/ 1c jr  is the position of 

the link mass center relative to the joint.  In human subject-based studies 1/ 1c jr  is assumed 

from anthropometric data (or an alternative approach [106]) and 1/ 1j ar  is estimated based 

on methods like those presented in [107].  In this study a coordinate measuring machine 

(MicroScribe G2x, positional accuracy/resolution of 0.23/0.13 mm) is used to measure 

1/ 1j ar , and 1/ 1c jr  is initially defined such that the mass center is coincident with the 

geometric center of the link. 

The definition of link mass center location provides the final piece of information 

needed to solve (5.1)-(5.4) in sequence for the reaction forces and moments acting at each 

joint of the pendulum.  To compare these reaction estimates to the load cell-measured 

values, we first need to resolve the two quantities in the same frames of reference.  The 

equations detailing the specific use of IMU measured acceleration and angular velocity 

for estimating the reaction forces and moments resolved in frames of reference consistent 

with the load cell data are presented in their entirety in the Appendix (Section 5.5).   

 

 

5.3. Results and Discussion   

The experiment and methods described above and in the companion paper [105] 

provide a means for benchmarking the accuracy of inertial measurements for estimating 

reactions acting at the joints of a multibody system.  This section aims to provide 

intermediate results which build to a careful benchmark of this technology for inverse 

dynamic modeling of a double pendulum.  We open with an example of the IMU data 

collected during one of the trials considered in our analysis.  From there we demonstrate 

the accuracy of the calculated link orientation as compared to optical encoder-measured 

link angles.  Having established this accuracy, we then present calculated reactions at 1j  
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and 2j  assuming collocated link geometric and mass centers.  We go on to demonstrate 

that small changes in mass center location can improve the accuracy of the predicted joint 

reactions considerably.  We open now with the IMU-measured acceleration and angular 

velocity for one of the trials considered. 

 

 

5.3.1. IMU Data and Link Orientation 

As described in [105], IMU data is sampled during  the freely decaying oscillation 

of the double pendulum.  Figure 5.3 illustrates an example of this IMU data for the 

bottom link during one of the ten trials considered.  Three components of acceleration 

(Fig. 5.3A) and angular velocity (Fig. 5.3B) are plotted as functions of time, where the 

blue, green, and red curves correspond to data resolved along the 1

1̂e , 1

2ê , and 1

3ê  sense 

axes, respectively.   

  

 
Figure 5.3:  IMU acceleration (A) and angular velocity (B) history for an example trial 

sampled from the bottom link IMU.  The pendulum begins at rest in its stable equilibrium 

position (t < t1), is perturbed from this position by hand (t1 < t < t2) and then released (t = 

t3). 

 

The behavior of the pendulum during this trial is immediately discernible in Fig. 

5.3. Specifically, the pendulum remains at rest in its stable equilibrium position (t < t1), is 

perturbed from this position by hand and held stationary (t2 < t < t3), and released (t = t3) 

and allowed to oscillate freely about equilibrium (t > t3).  Note that the accelerometer 
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measures the acceleration due to gravity at the start of the trial while the pendulum is at 

rest.  As described above, we exploit this fact to determine the initial orientation of the 

IMU frames prior to subsequent integration of (5.6).  This integration provides the (drift-

polluted) estimate of the orientation of each link throughout the remainder of the trial.  

Figure 5.4 illustrates the uncorrected (drift-polluted) estimates of the four Euler 

parameters for the bottom link (gray curves) as well as their drift corrected values 

(colored curves) from the start of the example trial until 10 seconds after t3. 

 

 
Figure 5.4: Drift polluted (gray) and corrected (colored) Euler parameters defining the 

orientation of the bottom link up until 10 seconds after t3 during the example trial.  

 

 While the difference between the corrected and drift polluted Euler parameters 

during the first 10 seconds of oscillation is quite modest, the drift correction ensures that 

each Euler parameter oscillates about its initial value as required by the constrained 

motion of the pendulum.  We confirm the accuracy of the corrected Euler parameters by 

using them to construct the angle formed by the major axis of each link ( 3
ˆ BE  and 3

ˆ TE ) and 

gravity ( 3
ˆ GE ).   As described in [105], these angles are also measured by the optical 

encoders which provide the truth data for comparison with the estimates based on IMU 

data.  The mean and standard deviation of the root mean squared error (RMSE) and the 

correlation coefficient (r) between the encoder-measured and IMU-calculated angles for 

all ten trials are reported in Table 5.2.  A similar analysis, assuming planar motion, is 

presented in [105].  The results confirm that link orientation based on integrating IMU 
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data remains an excellent estimate of the true orientation as directly measured by the 

encoders (RMSE   1.6 deg. and r   0.998). 

 

 Bottom
 

Top
 

Parameter RMSE (deg) r
 

RMSE (deg) r
 

Mean (SD)  1.54 (0.24) 1.00 (<0.001) 0.87 (0.22) 1.00 (<0.001) 

Table 5.2: Mean and standard deviation of root mean square error (RMSE) and 

correlation coefficient (r) between IMU-calculated link angles and encoder-measured link 

angles for all ten trials.   

 

 

5.3.2. IMU-Derived Estimates of Joint Reactions 

 Having established the accuracy of the IMU-derived orientation estimates, we 

turn to the focus of this paper which is to evaluate the accuracy of IMU-derived estimates 

of joint reactions. We open with a presentation of the calculated reactions at 2j  which 

result from link mass center locations that are collocated with the geometric center of 

each link.  For an example trial, the three components of load cell measured force (Fig. 

5.5A) and moment (Fig. 5.5B) at 2j  are shown as dashed curves while the IMU derived 

force and moment are shown as the solid curves in Figure 5.5.  The blue, green, and red 

curves correspond to reactions resolved along the 1
ˆ GE , 2

ˆ GE , and 3
ˆ GE  directions 

respectively.    
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Figure 5.5: Reaction force (A) and moment (B) at 2j as measured by the load cells 

(dashed) and   estimated using IMU data (solid).  The three colors distinguish 

components resolved in frame G: blue= 1
ˆ GE , green= 2

ˆ GE , and red= 3
ˆ GE . 

 

As noted above, Figure 5.5 provides a comparison between the load cell measured 

components of the force and moment acting at 2j  and those predicted from inverse 

dynamic modeling.  The agreement in the three components of force is outstanding and it 

is difficult to discern the difference between the solid (IMU) and dashed (load cell) 

curves. For this trial, the 2
ˆ GE  component (green curve) of the predicted reaction force has 

the maximum root mean squared error (RMSE) of 3.3% relative to the weight of the top 

link.  By contrast, there are clearly discernible differences between the IMU predicted 

moment components and those measured by the load cell.  The difference is particularly 

observable for the moment acting about the vertical axis ( 3
ˆ GE , red curve in Fig 5.5B, see 

Time = 10-14s for example) which has an RMSE of 3.0% relative to the restoring 

moment acting on the top link at the start of the trial.  This restoring moment is defined as 

the moment acting at 2j  due to the top link’s weight and orientation at the instant before 

the pendulum is released from its perturbed position (t = t3).  To provide a comparison in 

agreement between IMU and load cell derived force and moment we normalize the force 

components by the weight of each link and the moment components by the initial 

restoring moment due to the weight of each link.  After normalization, the non-

dimensional force and moment components predicted by the IMU can be plotted against 

those measured by the load cell to visualize the level of agreement between the measured 
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and predicted reactions.  The resulting plots, after subtracting the mean of each 

component, are included in Figure 5.6.  The blue, green and red curves again distinguish 

components along the 1
ˆ GE , 2

ˆ GE , and 3
ˆ GE  directions, respectively.  

 

 
Figure 5.6: Three components of normalized force (A) and moment (B) acting at 2j  as 

predicted by IMU-enabled inverse dynamic modeling plotted against those measured 

directly by the load cell.  The three colors distinguish components resolved in frame G: 

blue= 1
ˆ GE , green= 2

ˆ GE , and red= 3
ˆ GE . 

 

Figure 5.6A shows the three components of normalized force as determined from 

IMU data plotted against those measured by the load cell at 2j , while Fig. 5.6B shows 

the three normalized moment components plotted against each other.  In Fig. 5.6A and B, 

the black line has zero intercept and unit slope.  These results reinforce the excellent 

agreement between reaction force prediction and measurement with a minimum 

correlation coefficient of 0.90 ( 1
ˆ GE  direction).  As suggested in Fig. 5.5B, these results 

also illustrate the limited agreement between the measured and predicted reaction 

moments, which have a minimum correlation coefficient of 0.21 ( 3
ˆ GE  direction) for this 

trial.  To provide a summary for the ten trials considered in this analysis we present the 

mean (standard deviation) of the correlation coefficient (r) and the RMS error (RMSE, 
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percentage of normalizing factor) between the IMU estimates of force and moment and 

those measured by the load cells at 1j  and 2j  in Table 5.3.   

 

Joint 1j  

 1F  1M  

Direction 
1

ˆ TE  2
ˆ TE  3

ˆ TE  1
ˆ TE  2

ˆ TE  3
ˆ TE  

RMSE (%) 0.51 (0.09) 1.92 (0.39) 0.60 (0.16) 1.12 (0.19) 0.81 (0.19) 0.17 (0.02) 

r 0.96 (0.03) 0.99 (0.01) 1.00 (<0.01) 0.96 (0.01) 0.98 (0.01) 0.87 (0.07) 

Joint 2j  

 2F  2M  

Direction 
1

ˆ GE  2
ˆ GE  3

ˆ GE  1
ˆ GE  2

ˆ GE  3
ˆ GE  

RMSE (%) 0.76 (0.13) 4.61 (0.84) 1.16 (0.37) 6.38 (1.37) 3.61 (0.74) 3.19 (0.14) 

r 0.95 (0.03) 1.00 (<0.01) 1.00 (<0.01) 0.88 (0.04) 0.97 (0.02) 0.58 (0.25) 

Table 5.3: Mean (standard deviation) of RMS difference (RMSE) and correlation 

coefficient (r)
 
for IMU-derived force and moment components compared to those 

measured by the load cells at 1j  and 2j  for the 10 trials of pendulum data considered and 

collocated link geometric and mass centers.  

 

The results in Table 5.3 demonstrate that IMU-based inverse dynamic modeling is 

able to predict force components to within 4.7% RMS of their measured values on 

average as compared to the weight of each pendulum link and have correlation 

coefficients greater than 0.95 on average.  In contrast, IMU-based inverse dynamic 

modeling is only able to predict moment components to within 6.4% RMS of their 

measured values on average as compared to the initial restoring moment acting on each 

link and have correlation coefficients greater than only 0.58. Possible causes for the error 

in the predicted force and moment include small errors in the assumed physical properties 

of each link (mass, moment of inertia, etc.), small misalignments between the measured 

and IMU derived force and moment components, and small errors in the calibration of 

the IMUs.   
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5.3.3. Sensitivity of Joint Reactions to Mass Center Location 

Another potential cause for the discrepancy between the measured and predicted 

moment components is the sensitivity of the technique to small errors in mass center 

position [11,108].  To investigate this possible source of error, the mass center position is 

altered slightly from its assumed location coincident with the geometric center of each 

link.  To determine the new mass center location, we begin with the analysis presented in 

[105] which assumes that each mass center lies along the major axis of the link and 

determines its location along that axis by observing the frequency of oscillation of the 

pendulum.  We extend this estimate by allowing the mass center location to have 

components along the minor and intermediate principal axes as well.  These two 

transverse components of the center of mass location are estimated by considering the 

relationship between the measured reaction force at each joint and the kinematics of each 

link defined in (5.1) and (5.2).  We rewrite (5.1) and (5.2) in terms of the absolute link 

angular velocities and accelerations (
1 2 1 2,  ,  ,      ) determined from successive 

differentiations of the encoder angle measurements, arriving at  

   1 1 2 1/ 2 2 2 1/ 2 1 1/ 1 1 1 1/ 1j j j j c j c jF m r r r r g                
 

 (5.10) 

 2 1 2 2 2/ 2 2 2 2/ 2c j c jF F m r r g         
   (5.11) 

where 1F  and 
2F  are the reaction forces measured by the load cells, and 1/ 2j jr  is the 

location of 1j  relative to 2j  as measured using the coordinate measuring machine.  

Equations (5.10) and (5.11) can be written for each data point during free oscillation of 

the pendulum and the resulting system of equations is solved for the remaining unknown 

mass center positions, 1/ 1c jr  and 2/ 2c jr , using standard least squares.  From this analysis, 

the new mass center locations are  1/ 1 0.001,  0.0027,  0.1522c jr     and 

 2/ 2 0.0233,  0.0111,  0.1891c jr     .  This represents a 0.9% and 7.9% change from the 

geometric center of the bottom and top link, respectively, relative to the length of each 

link.  This small change in mass center location produces a significant change in the 

reaction moment predicted via inverse dynamic modeling as evidenced by Figure 5.7, 
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where the predicted and measured force and moment components at 1j  (Fig. 5.7A/B)  

and 2j  (Fig. 5.7C/D) are plotted against time for the same trial considered above. 

 

 
Figure 5.7: Force (A) and moment (B) components at 1j  and force (C) and moment (D) 

components at 2j  
for updated mass center positions.  Solid curves correspond to IMU-

predicted reactions while dashed curves correspond to load cell measurements. 

 

The three components of load cell measured force (Fig. 5.7A/C) and moment 

(Fig. 5.7B/D) are shown as dashed curves while the IMU derived force and moment are 

shown as solid curves.  The reactions at 1j  are presented in Fig. 5.7A/B, where the blue, 

green, and red curves correspond to reactions resolved along the 1
ˆ TE , 2

ˆ TE , and 3
ˆ TE  

directions respectively.  The reactions at 2j  are presented in Fig. 5.7C/D and can be 

compared directly to the results presented in Figure 5.5.  Qualitatively the agreement 

between predicted and measured reaction force is similar, and reaction moment is 
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improved with the new mass center location.  The maximum RMSE in the predicted 

force components at 2j  for this trial decreases to 2.1% ( 2
ˆ GE  direction, 3.3% initially) of 

the weight of the top link.  Similarly, the RMS error in the 3
ˆ TE  component of the reaction 

moment decreases to 1.4% (red curve, 3.0% initially).  To explore the updated results 

further, we again present normalized predicted force and moment components plotted 

against their measured values, subtracting the mean from each component, in Figure 5.8.   

  

 
Figure 5.8: Force (A) and moment (B) at 1j  and force (C) and moment (D) at 2j  

for 

updated mass center positions. 
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As presented in Fig. 5.6, the three components of normalized predicted force (Fig. 

5.8A/C) and moment (Fig. 5.8B/D) are plotted against those measured by the load cell at 

1j  (Fig. 5.8A/B) and 2j  (Fig. 5.8C/D).  Direct comparison of the measured and predicted 

reaction moments at 2j  for the two mass center locations considered (i.e. comparison of 

Fig. 5.8C/D to Fig. 5.6A/B) reveals a qualitative improvement in agreement between 

moment components during this trial.  Specifically, the minimum correlation between the 

predicted and measured components of reaction moment at 2j  increases to 0.75 (0.22 

initially).  In contrast, the minimum correlation between the predicted and measured 

reaction force components at 2j  stays nearly constant at 0.88 (0.90 initially) with the 

altered mass center location.  To investigate the effect of mass center location on the 

entire dataset, the mean (SD) RMS error and correlation coefficient for the 10 trials 

considered are reported in Table 5.4.  

 

Joint 1j  

 1F  1M  

Direction 
1

ˆ TE  2
ˆ TE  3

ˆ TE  1
ˆ TE  2

ˆ TE  3
ˆ TE  

RMSE (%) 0.51 (0.09) 1.92 (0.40) 0.61 (0.19) 1.18 (0.21) 0.81 (0.19) 0.19 (0.03) 

r 0.96 (0.03) 0.99 (0.01) 1.00 (<0.01) 0.95 (0.02) 0.98 (0.01) 0.84 (0.07) 

Joint 2j  

 2F  2M  

Direction 
1

ˆ GE  2
ˆ GE  3

ˆ GE  1
ˆ GE  2

ˆ GE  3
ˆ GE  

RMSE (%) 0.77 (0.14) 4.99 (0.85) 1.23 (0.37) 5.83 (1.22) 3.25 (0.69) 0.99 (0.21) 

r 0.95 (0.023) 1.00 (<0.01) 1.00 (<0.01) 0.88 (0.04) 0.98 (0.02) 0.97 (0.01) 

Table 5.4: Mean (standard deviation) of RMS difference (RMSE) and correlation 

coefficient (r)
 
for IMU-derived force and moment components compared to those 

measured by the load cells at 1j  and 2j  for the 10 trials of pendulum data considered and 

updated mass center location.  

 

As reported in Table 5.4, the updated mass center locations enable IMU-based 

inverse dynamic modeling to predict force components to within 5.0% RMS of their 

measured values as compared to the weight of each pendulum link and which have 

correlation coefficients greater than 0.95 on average.  Moreover, the moment components 



84 

 

are predicted to within 5.8% RMS of their measured values (6.4% initially) as compared 

to the restoring moment acting on each link and have correlation coefficients greater than 

0.84 (0.58 initially).  This represents a substantial improvement in the average agreement 

between IMU-predicted reactions at each joint and their actual measured values for a 

minor change (less than 8% of the length of the link) in mass center location.   

These results demonstrate the significant effect that small changes in mass center 

location can have on the accuracy of IMU-enabled inverse dynamic modeling-predicted 

reaction moments.  This finding supports previous analyses based on human motion and 

MOCAP-enabled inverse dynamic modeling [11,14,108,109], where the effect of mass 

center location on predicted reaction moment was also demonstrated.  In this experiment, 

we demonstrate this sensitivity as compared to a precise gold standard for an experiment 

constrained such that each segment is guaranteed to be rigid and rotating about a fixed 

axis.  In human motion studies, these constraints no longer exist.  Often, mass center 

location is estimated from anthropometric data, which can be inaccurate [110], and 

human body segments are more flexible than rigid resulting in a variable mass center 

location and center/axis of rotation during motion [111,112].  As a result, we believe that 

the agreement between load cell-measured and inverse dynamic modeling-predicted 

reaction moments presented here is a limiting case demonstrating the best possible 

accuracy achievable using this technique.  In practice, we believe that one would 

experience larger errors.     

 

 

5.4. Conclusion 

 In this work we provide results from an experiment benchmarking the use of 

inertial measurement units to provide the kinematic data necessary for predicting reaction 

forces and moments acting at the joints of a double pendulum.  These predicted reactions 

are compared to reactions directly measured by highly precise miniature force and torque 

sensors.  We demonstrate that for 10 trials, IMU-enabled inverse dynamic modeling is 

able to predict three components of reaction force to within 5.0% RMS of their measured 

values relative to the weight of each link of the pendulum with correlation coefficients 

greater than 0.95 on average.  Similarly, IMU-enabled inverse dynamic modeling is able 
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to predict three components of reaction moment to within 5.9% RMS of their measured 

values relative to the restoring moment due to the weight of each link of the pendulum 

with correlation coefficients greater than 0.84 on average.  We also highlight the 

sensitivity of the predicted moments to errors in mass center location demonstrating that 

a 0.9% and 7.9% change in the estimated location of the mass center for the bottom and 

top links respectively (relative to the length of each link) cause the maximum average 

RMS error in moment to rise to 6.4% and the minimum average correlation coefficient to 

drop to 0.58.     

 

 

5.5. Appendix 

In this appendix we present the equations used to calculate the reaction force and 

moment acting at each joint of the double pendulum from IMU data for comparison to 

load cell measurements.  The reactions at 1j , resolved in frame T, are defined as         

    1 1 2 1 1 1 1/ 1 1 1 1/ 11 10 0
T

m c a c aT

T T
F m R R a R r R r           (5.12) 

            1 2 1 1 1 1 1 1 1 1 1 1/ 11 1 2 10 0 00T

c c c jT

T T

T
M R R R I R R I R r R R F       

   (5.13) 

where 
T
 refers to a vector resolved in frame T,  1

0R  is the fixed rotation from the 

bottom link IMU measurement frame to frame B, and the other variables are as defined in 

the body of the chapter.  The reaction force and moment at 2j , resolved in frame G, are 

defined as 

       2 2 1 2 2 2 2 / 2 2 2 2 / 22 2 20 0 0
m c a c aG T

T T T
F R R F m a R r R r         

   (5.14) 

        2 2 2 2 2 2 2 2 2 2 2/ 2 2 1 2/ 1 1
0 0 0

c c c j c jG T T T
M R I R R I R r F M r F             (5.15) 

where 
G

 refers to a vector resolved in frame G,  2
0R  is the fixed rotation from the top 

link IMU measurement frame to frame T, and the other variables are as defined in the 

body of the chapter.  The reaction force and moment defined in (5.12)-(5.15) are 

compared directly to the measured force and moment at each joint in the Results and 

Discussion section included above. 
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Chapter 6: Accurate Estimation of Joint Centers 

 

 

 

6.1. Introduction 

 As noted in Chapter 5, the annual number of total hip and knee replacement 

surgeries are predicted to increase by over 170% (to 572,000) and 670% (to 3.48 million) 

respectively by the year 2030 [49].  An important contributor to the success of these 

surgeries is the accurate identification of the center-of-rotation (CoR) of the hip joint 

[50–53,113].  In total hip arthroplasty, expensive surgical navigation technologies or 

invasive manual techniques guide the location and orientation of the prosthesis [53].  For 

total knee arthroplasty, surgical navigation technologies provide an estimate of the 

location of the hip joint CoR to guide the placement and orientation of the implant [52].  

Small errors in hip joint location may induce large errors in the orientation and location 

of joint prostheses which negatively impact both short- and long-term surgical success 

[51–53].   

The alarming increase in joint replacements further motivates the need for non-

invasive methods to identify pathological lower extremity motion before joint injuries 

occur.  These methods also commonly require accurate location of the hip joint CoR for 

accurate estimation of segmental kinematics and kinetics [114–117].  For example, 

application of the inverse dynamic modeling technique presented in Chapter 5 to the hip,  

requires kinematic, inertial and geometric data for the femur and pelvis, including the 

location of the hip joint CoR, prior to estimating hip reactions [13].  The kinematic 

variables (segmental angular velocity, angular acceleration and centroidal acceleration) 

are typically measured using video-based motion capture, inertia properties are estimated 

from anthropometric data, and the position of segmental mass center relative to the CoR 

of the hip joint center is estimated using video-based methods. 
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 Methods for determining joint CoR employ either anatomical or functional 

techniques.  Anatomical techniques, common in joint replacement procedures, rely on 

imaging and computer-assisted surgical tools or palpation to define the location of bony 

landmarks from which the position of the joint CoR can be estimated [50–53].  

Anatomical techniques can be expensive (requiring imaging and/or surgery), invasive, 

and error prone.  Functional techniques, commonly employed in human biomechanics 

research, rely on motion capture to track the 3-D position of the body segments on either 

side of the joint during some prescribed motion.  The relative motion of the segments 

provides the data needed to estimate the joint CoR [54–59].   

Video-based functional techniques successfully identify the location of the CoR 

of a spherical joint to within 2.2 mm [57,58].   However, the required motion capture 

equipment and data processing requirements tend to be expensive and time consuming, 

thereby constraining use largely to research laboratory settings. Data lost by marker 

occlusion further undermines accuracy.  Segment-mounted inertial measurement units 

(IMUs), which directly measure angular velocity and linear acceleration, may pose an 

attractive alternative to video-based motion capture for determining joint CoR. The 

advantages of IMUs derive from their low cost, portability (potential use outside the 

laboratory and in clinical settings), and high data fidelity. 

For instance, the OrthAlign
TM

 knee align system uses a femur-mounted IMU to 

estimate the location of the CoR of the hip joint for total knee arthroplasty. This system 

computes CoR position using algorithms similar to those presented in [54–58] which rely 

on IMU-derived femur velocity and position estimates [60]. These estimates, obtained by 

successive integrations of the IMU-measured acceleration, are subject to error due to 

sensor drift [61].  

To improve upon the IMU approach, we propose a new algorithm for estimating 

the CoR of a spherical joint that avoids any need for (error-prone) velocity and position 

estimates. This method utilizes solely the acceleration and angular velocity data directly 

measured by the IMU.  The objective of this paper is to introduce this new algorithm and 

to demonstrate its accuracy via experimental benchmarking.  We open by describing the 

experimental methods. 
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6.2. Methods 

This study employs a highly miniaturized wireless IMU illustrated in Figure 6.1 

which represents the latest in a series of designs developed for sports training and 

biomechanics studies; refer, for example, to  [66,67,71,118]. 

 

 

Figure 6.1: Two faces of the miniaturized, wireless IMU used in this study. Major 

components are labeled.  

 

The IMU is equipped with a low-power Wi-Fi module which enables wireless data 

transmission over a standard Wi-Fi network broadcast by a Windows 7 computer.  The 

design includes two sensing components. One is a digital tri-axial angular rate gyro, 

which performs internal 16-bit A/D conversion, with a measurement range of 2,000 

deg/s, noise magnitude of 0.38 deg/s-rms for each axis (at 100 Hz output), and maximum 

sampling frequency of 512 Hz. The other is a digital tri-axial accelerometer, which 
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performs internal 13-bit A/D conversion, with a measurement range of 16 g, noise 

magnitude of 0.004 g-rms for each axis (at 100 Hz output), and maximum sampling 

frequency of 800 Hz.  Data is logged in 8 Mbytes of onboard flash memory during each 

trial and is then transmitted and downloaded to the host computer upon trial completion. 

Before use, the IMU is calibrated according to the procedure detailed in [68].  The 

calibration, which consists of rotations about each of three orthogonal axes, determines 

24 calibration parameters (including scale factors, cross-axis sensitivity scale factors, and 

biases) for the IMU.  This process ensures that the acceleration and angular rate 

measurements are accurately resolved along a common orthogonal triad of unit vectors 

that define the sensor frame of reference (see below).  Additionally, bias values for the 

angular rate gyro are updated at the start of every trial to ensure that any alterations due 

to environmental variations are determined. 

The IMU above is attached to the experimental apparatus illustrated in Fig. 6.2 

which serves as a mechanical approximation of a human hip joint (spherical joint). The 

joint is formed by a ball bearing (38 mm dia.) that seats in shallow spherical cavities 

machined into the proximal (black) and distal (white) halves of the joint; refer to Fig. 

6.2A.  A pair of tensioned o-rings provides joint pre-loading.  The proximal (black) half 

is fastened to a table support while the distal half (white) forms a long appendage that 

may be freely manipulated; refer to Fig. 6.2B.  The IMU (located at yellow frame of 

reference) is embedded in a calibration jig (black) at the end of this assembly. The 

calibration jig serves as a convenient means to attach the IMU with arbitrarily selected 

yet measurable position and orientation relative to the center of the bearing (i.e., the joint 

CoR). The reader could imagine the illustrated spherical joint as a coarse approximation 

of the human hip joint, where the proximal (black) and distal (white and ball bearing) 

sides of the joint correspond to the acetabular cup and femoral stem/head, respectively.  
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Figure 6.2: A mechanical approximation of a human “hip joint” (A) composed of a ball 

bearing (38 mm dia.) seated between two shallow spherical cavities. One cavity is 

machined in the proximal side of the joint (black) and the other is machined into the 

distal side (white). Stretched o-rings provide joint pre-loading. The extension of the distal 

side (B) supports a machined calibration jig (black) with the embedded wireless IMU.  

 

The experimental procedure requires recording IMU-transmitted acceleration and 

angular velocity data while manipulating the “femur” as follows.  Starting from rest, the 

femur is subject to two motions: a circumduction (Cir) motion and a rotation (Rot) 

motion with a pause in between; refer to Fig. 6.2B  During circumduction, the end of the 

femur follows the illustrated (near circular) orbit which, in human subjects, would induce 

(near equal) extension-flexion and ab-adduction.  During rotation, the femur is rotated 

about its long axis, which would induce (near pure) internal-external rotation in human 

subjects.  

Following this motion sequence, the IMU acceleration and angular velocity data 

is transmitted to a host computer for subsequent data analysis. The analysis begins by 

removing the (constant) 1 g acceleration due to gravity that is detected by the 

accelerometer in addition to the superimposed acceleration due to motion.  To this end, 

we introduce two frames of reference: an “IMU-fixed” frame denoted by the orthogonal 

triad of unit vectors ( ˆ ˆ ˆ, ,x y z ), and an inertial, “lab-fixed” frame denoted by the orthogonal 

triad of unit vectors ( ˆ ˆ ˆ, ,X Y Z ); refer to Fig. 6.2B.  The acceleration and angular velocity 
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are measured in the IMU-fixed reference frame, while gravity is naturally defined in the 

lab-fixed frame by ˆ g Z .  The acceleration imparted at the location of the accelerometer 

( aa ) is recovered from the acceleration measured by the accelerometer ( ma ) per 

ˆ
a ma a gZ   (6.1) 

which further requires knowledge of the components of ma
 
in the lab-fixed frame. These 

components are deduced by first computing the direction cosine matrix that defines the 

orientation of the IMU-frame relative to the lab-fixed frame. The transformation 

(direction cosine matrix) that relates these two frames ( )  and the differential equation 

that governs its evolution over time are 

ˆ ˆ ˆ ˆ ˆ ˆ, ,, ,
| |x y zX Y Z

v v   (6.2) 

ˆd

dt



   (6.3) 

where Λ follows the standard definition of a direction cosine matrix (DCM) [73], ˆ ˆ ˆ, ,|x y zv  

denotes the components of a vector v resolved in the IMU-fixed frame, and  ˆ ˆ ˆ, ,
|
X Y Z

v

denotes the components of the same vector resolved in the lab-fixed frame. The DCM is a 

function of the femoral angular velocity, and is computed upon integrating (6.3) 

following an adaptation of the algorithm in [74]. The adapted algorithm employs a 

numerical approximation to (6.3) in which d dt  denotes the time derivative of the 

DCM and  denotes the IMU-fixed angular velocity vector in skew-symmetric form. 

The midpoint approximation to the solution of (6.3) yields the DCM at time step n+1 in 

terms of its value at time step n per 

1 1
2 2

1

1 1
1 2 2

ˆ ˆ
I I -n n n n

 


  
        
      

 (6.4) 

In Equation (6.4), 1
2

ˆ
n




  denotes the midpoint approximation of the change in 

orientation from time step n to n+1 in skew-symmetric form defined by 

 1
2

1
12

ˆ ˆ ˆ
n nn

t  
     (6.5) 

where  and  are the (measured) IMU-fixed angular velocities at time steps n+1 

and n respectively in skew-symmetric form, and Δt is the time interval between time 

̂

1
ˆ

n 
ˆ

n
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steps n and n+1. Note that the IMU provides the IMU-fixed angular velocity needed to 

solve for Λ(t), via Equations (6.4)-(6.5) provided an initial value, Λ(0), is also known. 

This initial value is determined by holding the femur still at the start of a trial and then 

employing the accelerometer as an inclinometer following the procedure detailed in [67].  

Following these steps ultimately allows one to compute aa from Equation (6.1) and to 

also resolve aa  in the IMU-fixed frame of reference for use in the following acceleration 

analysis.  

 Assuming a rigid femur, the acceleration of the femur-mounted accelerometer aa  

is related to that of the center of the spherical joint ca through  

/ /( )a c a c a c

d
a a r r

dt


        (6.6) 

where   is the measured femoral angular velocity, d dt
 
is the computed femoral 

angular acceleration (via numerical differentiation of  ), and /a cr  is the desired but 

unknown position of the accelerometer relative to the center of the spherical joint.  If one 

assumes that the spherical joint forms the pivot of a spherical pendulum, then 0ca   and 

eq. (6.6) is linear in the remaining unknown /a cr .   Moreover, if one writes eq. (6.6) for 

each of n  samples of IMU data, then a solution for /a cr  can be found using standard least 

squares.    

 To demonstrate the accuracy of the proposed algorithm for determining /a cr , we 

present results from benchmarking CoR estimates from 28 trials using IMU data with 

CoR estimates from 14 trials using a digital coordinate measuring machine (CMM - 

MicroScribe G2X).  This CMM, which has positional accuracy of 0.23 mm and 

resolution of 0.13 mm, is used to digitize the location of the center of the accelerometer 

and 40 points on the surface of the ball bearing (serving as the analog for the femoral 

head).  Points on the calibration jig shown in Fig. 6.2B are also digitized to define the 

orientation (direction cosine matrix) of the IMU-fixed reference frame relative to the 

measurement frame of the CMM.  This collection of 3-D positions recorded by the CMM 

are used as input to a surface fitting algorithm that calculates the surface of the bearing 

and, from this,  the true position of the center of the spherical joint relative to the center 
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of the accelerometer (and relative to the IMU-fixed reference frame) /c ar .  The results 

from this careful benchmarking experiment are described next. 

 

 

6.3. Results & Discussion 

 

6.3.1. Ideal Joint Behavior 

The experiment and methods above consider an ideal spherical joint defined by an 

IMU rigidly attached to a rigid femur. This establishes an important limiting case for 

assessing the accuracy of the new IMU-based method for determining joint CoR. 

Moreover, this also establishes a direct comparison to a benchmarking study for video-

based methods [58] which employs a similar mechanical joint. 

 

Figure 6.3: Three components of angular velocity (A) and three components of 

acceleration (B) data for an example 60-second trial.  Trial consists of two phases of 

circumduction motion (“Cir” annotation, gray box) followed by two phases of rotation 

motion (“Rot” annotation, yellow box). Components of angular velocity and acceleration 

resolved along the IMU-fixed frame are distinguished by the following colors: x axis = 

blue, y axis = green, z axis = red 
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Figure 6.3 illustrates the IMU data from a representative 60-second trial 

composed of twice-repeated circumduction and rotation phases. The calibrated angular 

velocity and acceleration appear in Fig. 6.3A and B, respectively.  The circumduction 

motions are highlighted by gray boxes and annotated with “Cir” while the rotation 

motions are highlighted by yellow boxes and annotated with “Rot”.  Between these 

motions, the femur is momentarily at rest; observe phases where the angular velocity 

remains zero and the acceleration remains -1 g.  This data is subsequently used to predict 

the location of the joint CoR following the methods above. 

 

Method   (mm)x   (mm)y   (mm)z  
Vector sum of 

x, y, z (mm) 

CMM  -342.5 (0.4) 288.9 (0.4) 27.9 (0.2) 449.0 (0.3) 

IMU  -340.5 (4.4) 290.9 (2.9) 29.1 (1.4) 448.8 (4.8) 

Avg. Error 

(CMM-IMU) 
-2.1 -2.0 -1.2 3.1 

Table 6.1: Summary of benchmarking experiment, mean (standard deviation) of each 

component of the joint center position /c ar  (in mm) for 14 trials of CMM data and 28 

trials of IMU data. Third row reports difference in the averages (in mm).  Fourth column 

reports vector sum of the components (in mm). 

 

Table 6.1 summarizes the results from the benchmarking experiment.  Reported is 

the average (standard deviation) for each of the three components of the position vector 

/c ar (the center of the spherical joint relative to the center of the accelerometer in the 

IMU-fixed reference frame) as independently derived from measurements from the 

coordinate measuring machine and the IMU. Also reported is the difference between the 

average components which further yields an overall error of 3.1 mm (vector sum) for the 

IMU-derived position relative to the CMM-derived position.  This overall positional error 

is comparable to the results of [58] where four video capture methods yield average 

positional errors between 1 to 6 mm. That study employs a similar mechanical spherical 

joint with rigid marker attachments.  
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6.3.2. Simulated Soft-Tissue Effects 

In this experiment, the IMU mounts rigidly to a mock femur; whereas in clinical 

settings, the IMU would mount to soft-tissue which introduces relative movement. 

During walking, for example, the motion of the soft-tissue relative to the femur induces a 

mean acceleration on the order of 10 m/s
2
 at a frequency of approximately 20 Hz [119].  

To explore these soft-tissue effects, we follow an approach similar to [57] where 

measured position data from the femoral side of a mechanical hip joint is polluted with 

random displacements within a specified range.  Herein, we pollute the IMU-measured 

acceleration ( )aa  with random acceleration to model soft tissue motion. In particular, we 

add to the measured acceleration ( )aa
 
a sinusoidal acceleration  

   sin 2sa t A f t d   (6.7) 

having random amplitude A , random direction d , and frequency f .  Both A  and d  are 

assumed constant over one period ( 1
f ) before being assigned updated random values.  

The selected acceleration range 0 11A  m/s
2
 and the frequency f=22 Hz replicate those 

of a skin-mounted accelerometer relative to the femur during walking [119].  Note that 

the “Rot” and “Cir” motions for this method are smooth and devoid of impact events.  By 

contrast, the random soft tissue acceleration during walking (6.7) is induced by impacts 

due to heel-strikes. Nevertheless, we test our method using (6.7) as an overestimate of the 

random accelerations expected in clinical setting due to smooth “Rot” and Cir” motions. 

The polluted acceleration ( a sa a ) is used in the method above to re-compute the CoR 

location using standard least squares as reported in Table 6.2.  Figure 6.4 illustrates the 

magnitude of polluted acceleration during the circumduction and rotation motions (red) 

which is significantly different than the original smooth acceleration (blue) for the sample 

trial previously shown including gravity in Fig. 6.3B (11 m/s
2
 is over 75% of the 

maximum acceleration experienced by the accelerometer during this trial). 
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Figure 6.4: The magnitude of the measured acceleration (blue) from Fig. 6.3B once 

gravity is removed and the magnitude after adding the simulated noise due to soft-tissue 

motion (red).   

 

 

Method   (mm)x   (mm)y   (mm)z  
Vector Sum of x, 

y, z (mm) 

CMM -342.5 (0.4) 288.9 (0.4) 27.9 (0.2) 449.0 (0.3) 

IMU+P -340.5 (4.6) 291.2 (3.0) 29.2 (1.4) 448.4 (4.4) 

Average Error 

(CMM-IMU+P) 
-2.0 -2.2 -1.3 3.2 

Table 6.2: Summary of benchmarking experiment, mean (standard deviation) of each 

component of the joint center position for 14 trials of CMM data and 28 trials of IMU 

data in mm.  Least-squares estimate employing the fully polluted set of data is denoted 

method “IMU+P.” 
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Following the format of Table 6.1, Table 6.2 reports the computed average 

(standard deviation) of the three components of the position vector /c ar  using the polluted 

IMU data (Method IMU+P).   Note that the position of the CoR determined by the 

benchmark CMM data differs from that predicted by the fully-polluted IMU data by 3.2 

mm. This error represents only a minor 5% increase in the error (3.1 mm) for the ideal 

rigid joint case.  To examine the change in predicted CoR position further, we present in 

Fig. 6.5 correlation and Bland-Altman plots for the three components of the position 

vector /c ar .  
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Figure 6.5: The effect of soft-tissue acceleration on the predicted components of the 

position vector /c ar . Correlations (A, C, E) plot components predicted from randomly 

polluted data versus original values for each trial and relative to a line having unit slope.  

Bland-Altman plots (B, D, F) further illustrate difference in results.  

 

Figure 6.5 illustrates the change in the predicted components of /c ar  due to the 

introduction of soft-tissue acceleration.  The three components, as predicted from the 
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polluted acceleration data, are plotted against their original values in Figs. 6.5 A, C, and 

E, where the superimposed line has unit slope and zero intercept. The Bland-Altman plots 

for each component in Figs. 6.5 B, D, and F reveal very modest effects of soft-tissue 

acceleration on the predicted location of the CoR.  In particular, the mean (standard 

deviation) of the difference in the x , y , and z  components of /c ar
 
due to the polluted 

acceleration are 0.1 (1.1), -0.2 (0.6), and -0.1 (0.5) mm, respectively suggesting that both 

the magnitude and direction of this vector are essentially unchanged. The small effect of 

the random acceleration perturbations can likely be ascribed to the cancellation of the 

random errors in the least squares solution which considers more than 20,000 samples.  

By contrast, when random positional noise due to soft-tissue motion was added to data 

from the video-based method presented in [57], the mean error in hip center location 

increased by 60% (from 2.2 mm to 3.5 mm) but remained overall quite similar to the 

values reported here.   

Thus, even under exaggerated but simulated soft-tissue effects, the IMU-derived 

CoR estimates remain accurate relative to those obtained by video-based methods. In 

particular, the IMU-derived joint CoR remains within a 3mm sphere surrounding the true 

position measured independently from a precision coordinate measuring machine. 

Importantly, the IMU-method  addresses major shortcomings of video-based methods 

including their high cost, restricted use to motion capture laboratories, long set-up time 

(attaching and calibrating reflective markers), and long data reduction time. By contrast, 

the IMU-method requires a single (and  inexpensive) segment-mounted IMU, enables use 

in clinical, field or laboratory settings, and requires only short duration (30-60 second) 

testing with rapid reporting of results (5 seconds).   These advantages combine to yield a 

promising non-invasive and accurate tool for estimating joint CoR. These same 

advantages may further promote advances in total hip and knee arthroplasty as well as 

new biomechanical tools for the early assessment and prevention of joint injuries. 
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Chapter 7: Contributions, Conclusions and Future Directions 

 

 

 

7.1. Contributions and Conclusions 

The use of MEMS inertial sensors (IMUs) in biomechanical and sports training 

applications has become popular in recent years.  This new technology enables direct 

measurement of each of the three rotational and translational degrees of freedom of a 

rigid body by providing three-axis sensing of angular velocity and linear acceleration.  

This wealth of kinematic data, when combined with the low cost and small size of many 

IMU designs, will fuel the translation of laboratory-based research methods into the 

clinic and onto the field of play.  This dissertation presents five such studies which 

pioneer the use of IMUs in novel applications in sports training and biomechanics.  The 

major contributions following from each study are summarized below.  

The first study, presented in Chapter 2, focuses on an application from sports 

training, where a miniaturized, ball-embedded IMU is used to quantify the kinematics of 

baseball and softball pitching.  Experimental results demonstrate that the developed 

computational algorithms deduce the magnitude and direction of the ball’s velocity at 

release to within 4.6% of measurements made using standard MOCAP. In addition, the 

IMU directly measures the angular velocity of the ball needed to distinguish and analyze 

different pitch types. 

  The application to pitcher training is hindered by the limited measurement range 

of most angular rate gyros.  A potential answer to this limitation is presented in Chapter 

3, where a method is developed that employs a single, tri-axial accelerometer to 

reconstruct the angular velocity of a rigid body during free-flight.  The measurement 

theory is presented and validated experimentally.  Results confirm that the angular 

velocity can be reconstructed with exceedingly small errors (less than 2%) when 
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benchmarked against direct measurements using angular rate gyros.  The rotational 

stability of objects in free flight is also explored experimentally. 

The third study (Chapter 4) extends the computational algorithms presented in 

Chapter 2, contributing a new method for deducing athlete speed non-invasively, on the 

field of play, using data from a torso-mounted IMU.  The method predicts instantaneous 

athlete speed that correlates well with MOCAP [mean (SD) RMSE = 0.35 m/s (0.20), r = 

0.96 (0.05), slope = 0.99 (0.07)] for periods of motion characteristic of explosive sports 

(e.g. basketball).  The method is able to predict the average speed to within an absolute 

mean (SD) error of 0.03 (0.18) m/s, and RMS error of 0.18 m/s, or 4.3% relative to the 

average speed by MOCAP.  These results compare favorably to existing methods which 

utilize shank- or foot-mounted IMUs and require subject-specific calibrations.  However, 

the advantage of using a torso-mounted IMU is significant for athlete training and 

performance since it removes the sensor instrumentation from the lower or upper 

extremities used for play.     

The fourth study departs from applications specific to sports training by exploring 

the use of an array of IMUs to estimate joint reactions (forces and moments) in multibody 

systems via inverse dynamic modeling. In particular, this study reports a benchmark 

experiment on a double-pendulum that reveals the accuracy of IMU-informed estimates 

of joint reactions compared to those measured by high precision miniature (6-dof) load 

cells.  Results demonstrate that IMU-informed estimates of the three-dimensional 

reaction forces remain within 5.0% RMS of the load cell measurements and with 

correlation coefficients greater than 0.95 on average.  Similarly, the IMU-informed 

estimates of the three-dimensional reaction moments remain within 5.9% RMS of the 

load cell measurements and with correlation coefficients greater than 0.88 on average.  

The sensitivity of these estimates to mass center location is also discussed.   

An important step in the IMU-informed inverse dynamic modeling presented in 

Chapter 5 is determining the location of the body-fixed IMUs relative to the joints of the 

multibody system.  The final study includes the development and validation of an 

algorithm for deducing the location of the center of rotation (CoR) of a spherical joint 

relative to a body-fixed IMU.  Results demonstrate that this new method resolves the 

position of the CoR to within a 3 mm sphere of the true CoR determined by a precision 
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coordinate measuring machine.  Such accuracy may render this method attractive for 

broad use in field, laboratory and clinical settings requiring non-invasive and rapid 

estimates of joint CoR.   

 

 

7.2. Limitations and Future Directions 

As summarized above, this dissertation contributes novel methods for advancing 

the use of IMUs for applications in sports training and human biomechanics.  Doing so 

enables the analysis of human motion outside of the motion capture laboratory.  

However, since the studies herein all focus on benchmarking the accuracy of new 

algorithms, a limitation is that all data was necessarily collected in a laboratory 

environment.  Therefore, an obvious future direction for this work is the successful 

translation of the new algorithms to studies outside the laboratory and in the clinic or on 

the field of play. Specific limitations and possible future directions for each study are 

reported below.   

 The major limitations of the baseball and softball pitching study presented in 

Chapter 2 are two-fold.  First, only two pitchers, one baseball and one softball, are 

considered in the analysis.  While this was sufficient to develop the algorithm for 

computing ball linear and angular velocity, a study with a large group of subjects and 

with considerable input from pitching coaches is recommended to fully map out the 

potential of this technology for pitcher training, skill assessment, injury prevention and 

rehabilitation.  Second, as mentioned in Chapters 2 and 3, there was a technological 

limitation in the IMU hardware.  Both baseballs and softballs are pitched with angular 

rates that far exceed the measurement range of the angular rate gyros used in the study.  

To avoid this limitation, we instructed pitchers to throw sub-maximal versions of their 

pitches. However, the algorithms presented will still succeed for maximal pitching 

motions provided at least one of two changes are made: (1) revise the IMU hardware to Z 

recently developed high range rate gyros (i.e., Analog Devices ™ now offers single axis 

gyros with a range of 20,000 deg/s), or (2) implement an extension to the algorithm in 

Chapter 3 for reconstructing angular velocity from accelerometer data by also modeling 

the aerodynamic forces acting on the ball.    
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The primary limitation of the study investigating athlete speed (Chapter 4) is that 

only a single subject was considered for the benchmarking experiment.  The 

measurements were also constrained to a 25 m
2
 area which limited the speed and duration 

of the motions considered.  While the data collected demonstrate the potential accuracy 

of the speed estimation algorithm, further benchmarking using data recorded during 

actual competition and in larger capture volumes would reinforce confidence in the 

algorithm.  Following this second benchmarking experiment, the algorithm could readily 

support athlete training, assessment, and rehabilitation in environments previously 

impossible due to limitations imposed by GPS and MOCAP. 

 The IMU-based estimates of joint reactions in Chapter 5 were ultimately limited 

by the pendulum hardware and the measurement range of the miniaturized load cells.  

The instrumentation added to the pendulum made it challenging to identify the mass 

center which became the limiting factor affecting the accuracy of estimated reactions.  

The generated reaction forces and torques were also an order of magnitude smaller than 

those characteristic of human motion due to the range limitations imposed by the load 

cells. Despite these limitations, the results from this benchmarking study yielded 

excellent agreement between the IMU-estimated and the load cell-measured reactions.  

One potential future study could replicate this benchmarking experiment for MOCAP-

enabled inverse dynamic estimated reactions providing a direct comparison between the 

accuracy of IMU and MOCAP enabled inverse dynamics.  Following this second 

benchmark, this study supports the promising and broad use of IMU technology for 

estimating joint reactions in human motion applications. 

 Finally, the algorithm for deducing the center of rotation of spherical joints 

(Chapter 6) is limited by the use of a mechanical model to the human hip joint.  This is a 

logical starting point since the center of rotation of the mechanical model is well 

characterized through measurements from a coordinate measuring machine. The effects 

of soft tissue motion however are only approximated through simulated random soft 

tissue acceleration superimposed on the measured acceleration.  As the next step, we 

recommend a follow-up study on  human hip joints that incorporates the challenges of 

soft tissue motion and, possibly, joint translation/laxity. In particular, we recommend a 

second benchmarking study where the CoR of cadaveric hips are accurately established 
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through imaging and compared to the IMU-predicted locations with IMU’s affixed to soft 

tissue and also directly to bone.  Doing so will isolate the influence of soft tissue motion 

and ultimately define the accuracy of the algorithm.  Additionally, the algorithm 

developed for spherical joints should be extended to identify the axis of rotation for hinge 

joints.  Downstream of these studies, this algorithm may find broad use in both clinical 

and laboratory settings for any application requiring quick, non-invasive and accurate 

identification of joint CoR. 
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