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Chapter I 

 

Introduction 
 

 

 

Brain metastases are the most prevalent form of cancer in the central nervous 

system,[1] and up to 45% of cancer patients eventually develop brain metastases during 

the course of their illness,[2] wherein 60% of which are contributed from lung and breast 

cancers as primary sites [3]. Brain metastases have a poor prognosis, but modern 

treatments allow patients to live months and sometimes years after diagnosis [4-5]. In the 

past few decades, the primary cancer treatments included radiation therapy, chemotherapy 

and surgery. Radiation therapy plays a critical role in the treatment of brain metastases, 

and includes whole brain fractionated radiation therapy [4], and stereotactic radiosurgery 

[5]. Chemotherapy is rarely used for the treatment of brain metastases, as 

chemotherapeutic agents penetrate the blood brain barrier poorly. However, some cancers 

such as lymphomas, small cell lung carcinomas and breast cancer are highly chemo-

sensitive, and hence chemotherapy may be used to treat extra-cranial sites of metastatic 

disease in these cancers [2]. Brain metastases are often managed surgically, with maximum 

surgical resection followed by stereotactic radiosurgery or whole brain radiotherapy, 

leading to a superior survival rate compared to whole brain irradiation alone [2]. Detecting 

the precise number of brain metastases, their size, and early assessment of their response 

to a therapy is crucial to choose an appropriate treatment for the patient and modify the 
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course treatment if needed. Hence, this dissertation is aimed to address the current state 

and limitations of brain metastases detection and to develop physiological imaging 

biomarkers for therapy guidance and early prediction of brain metastases response to 

radiation therapy. 

  

I.A Computer-aided Detection of Brain Metastases 

The number and size of brain metastases are crucial to choose whole brain radiation 

therapy (WBRT) vs. stereotactic radiosurgery (SRS) in patients with brain metastases [4-6]. 

Usually 3 lesions or less with the sizes smaller than 3cm in diameter may lead to selection 

of SRS [6]. Failure to accurately diagnosis of the presence of small lesions can result in 

inappropriate selection of treatment. At present, radiologists diagnose brain metastases 

using contrast-enhanced MRI [7] on which the lesions are highlighted due to disrupted 

blood-tumor barriers. However, manually screening MR images for diagnosis of brain 

metastases is prone to potential errors [8], especially for small lesions, given the limitation 

of 2D screening of a large number of brain MRI slices. Hence, computer-aided automatic 

screening of MR images is of interest. In this dissertation, an assistive technology was 

developed to help radiologists detect small lesions, with diameters <5mm, in post-Gd T1-

weighted magnetic resonance imaging (MRI) data. 
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I.B Response Assessment of Brain Metastases to Radiation 

Therapy 

 A recent study [9] has shown that WBRT produces a decrease in neurocognitive 

status compared to SRS. Hence, more and more patients are receiving focal treatment for 

brain metastases.  As WBRT is being done less, more patients are developing new lesions 

after treatment of the initial lesions, and thus are being treated to new lesions over 

time. Thus, the needs for developing a tool to early assess the brain metastasis response to 

therapy will become more and more important as patients receive more and more focal 

treatment. Also, it is hypothesized that dose painting of the physiological imaging-defined 

subvolumes of the tumors could lead to a better outcome than distributing a uniform dose 

within a target volume defined by anatomic imaging. Hence, the main goal in this 

dissertation is to develop a general method to define the physiological target volumes of a 

tumor based upon multiple physiological imaging and then test their complementary roles 

for assessment of brain metastases response to radiation therapy. 

 

I.B.1 Response assessment based upon tumor vascular properties 

 As tumors grow and progress, the surrounding vascular supply is no longer 

sufficient to support the increasing metabolic demands of the rapidly proliferating tumor 

cells [10]. The regional hypoxia and hypoglycemia then precede leading to escalation of 

vasoactive endothelial growth factor (VEGF) regulation through which the process of new 

blood vessel formation from the existing vasculature, known as angiogenesis, Fig. 1(A), is 

initiated [11]-[12]. The new vessels formed in this way often lack the elegant structure of 
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the normal vasculature, hence, resulting in high permeability and leakage of the endothelial 

membrane [13]. Tumor growth can also disrupt the existing vasculature and facilitate the 

blood-brain barrier (BBB) breakdown, which ends up to a network of leaky 

microvasculature. The latter itself expedites the endothelial mitosis and new vessel 

formation, which has a direct effect on ingrowth of the new vessels into the interstitial 

stroma. Tumor vasculature map plays critical roles not only in supplying nutrients and 

oxygen to the demanding cells but also in providing a roadmap for tumor infiltration and a 

feedback with tumor hypoxia and necrosis [14]. This indicates that regulation of the 

angiogenesis process and prevention of leaky vasculature formation [15]–[16] within a 

tumor could have a major role in efficacy of the therapeutic approach used to cure the 

malignant tumors. Hence, alterations of the perfusion and vascular parameter maps within 

tumors could be a biomarker to measure the effect of the anti-angiogenic drugs on 

preventing the formation of the tumor vasculature. 

                 

Cp = concentration of contrast in plasma; 

Ct = concentration of contrast in tumor extracellular–extra-vascular space (EES); 

Ve = fractional volume of EES;  

ktrans = volume transfer constant between plasma and EES; 

kep = rate constant between EES and plasma. 
 

 

Fig. I.1. (A) Angiogenesis and (B) Factors influencing the contrast enhancement pattern. M. Zahra et 

al. Lancet Oncology, 8, pp. 63–74, 2007. 

 

http://www.gene.com/gene/research/focusareas

/oncology/angiogenesis.html 

                 (A) (B) 
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Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is a 

noninvasive imaging tool, which is extensively used in oncology for diagnosis and therapy 

assessment, [17] and also as an imaging biomarker for development of anti-angiogenic 

drugs [18]. The DCE-MRI technique is based upon rapid acquisition of a series of T1-

weighted images from tissue of interest before, during and after intravenous bolus 

injection of a gadolinium-based contrast agent (CA) [19], Fig. 1(B). As the CA perfuses into 

the tissue under investigation, T1 values of the tissue water decrease to an extent which 

depends upon the CA concentration. Hence, the characteristic signal intensity time course, 

relating to the CA concentration, in a region of interest or a voxel of the tissue can be 

subsequently analyzed by a pharmacokinetic (PK) model. By fitting the DCE-MRI data to a 

PK model, a set of volumetric maps of physiological parameters can be obtained, for 

example, tissue perfusion, microvascular permeability and extravascular extracellular 

volume [20].  Longitudinal changes in maps of the physiological parameters of tissue of 

interest from pre- to post-treatment could aid in for assessment and prediction of 

treatment response and outcome as well as for drug development [21-22]. In the chapter 

III of this dissertation, we aimed to develop an algorithm to extract the perfusion imaging-

defined “phenotype” subvolumes of a tumor and to relate them to treatment response and 

outcome. However, the physiological parameter maps derived from the PK models involve 

in a series of uncertainties [23]. Hence, the chapter IV is devoted to develop a general 

framework to derive a response-predictor from DCE-MRI data without using the PK model 

in order to have a semi-automated or fully automated tool for supporting clinic decision-

making, and to compare the subvolumes determined by this approach with the 

physiological imaging parameter defined ones.   
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I.B.2 Response assessment based upon tumor cellularity properties 

Diffusion weighted magnetic resonance imaging (DW-MRI) has been shown to be an 

imaging biomarker for assessing tumor cellularity and aggressiveness and early response 

to therapy in various cancers [24-27]. The DW-MRI acquisition is rapid, noninvasive, 

without exogenous contrast agent, and no ionizing radiation. The apparent diffusion 

coefficient (ADC), quantified from DW-MRI, measures water mobility in tissue, and is 

sensitive to cellular density, extracellular space tortuosity, and intactness of cellular 

membrane [24-25]. However, quantification of an ADC change in the tumor is still a 

challenge and affects its sensitivity and specificity for early prediction of tumor response to 

therapy, mainly because the ADCs in a tumor manifest a heterogeneous distribution [26-

27] due to spatial variation in cellular density, cell structure and water content. In a high 

cellular region, the mobility of water molecules is restricted, and thus the ADC is low; while 

in a region with necrosis or edema, water molecules move more freely or are in a high 

content, and thus the ADC is high. Animal studies have shown that the ADC is inversely 

correlated with tumor cellularity [26]. When a tumor responds to treatment, the ADC in the 

high cellular region could increase due to cell shrinkage followed by phagocytosis [27]. 

Also, the ADC in the edema region could decrease due drainage of water into cells [27]. 

Hence, the directions of changes depend upon where the ADCs are measured and what the 

original values of the ADCs are. Therefore, the heterogeneity in the tumor ADCs and the 

complex changes result in that a change in the mean ADC of a tumor is a poor indicator for 

therapy response. In this dissertation, we also aim to quantify the diffusion abnormality of 

a brain metastatic tumor as a quantitative indicator of tumor cellular properties for early 

assessment of tumor response to therapy.  
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The organization of this dissertation is as follows. In chapter II, a computer-aided 

detection system for automatic detection of brain metastases in post-Gd T1-W magnetic 

resonance imaging is explained. The chapter III is devoted to describe the general 

framework to extract the subvolumes of a tumor from the physiological imaging data and 

to show the results of the regional cerebral blood volume (rCBV) and Gd-DTAP transfer 

constant from plasma to tissue (Ktrans) for assessing brain metastases response to therapy. 

The next chapter describes the general framework to derive the similar response-predictor 

from the DCE-MRI data without using a PK model and compare the results with ones from 

chapter III.  In chapter V, we show our proposed approach to quantify the diffusion 

abnormality of tumor. In the final chapter, the future directions, combining multiple 

physiological and metabolic imaging parameters to achieve a better response-predictor, 

will be discussed, and the preliminary results of combining the perfusion and diffusion 

parameters will be described.  
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Chapter II 

 

An automated approach for computer-aided detection of 

brain metastases in post-Gadolinium T1-weighted 

magnetic resonance imaging 
 

 

 

II.A. Introduction 

As mentioned earlier, selection of WBRT versus SRS highly depends on the number 

of lesions and their size and failure to accurately diagnosis of the presence of small lesions 

can result in inappropriate selection of treatment. At present, radiologists diagnose brain 

metastases using contrast-enhanced MRI [7] on which the lesions are highlighted due to 

disrupted blood-tumor barriers. However, manually screening MR images for diagnosis of 

brain metastases is prone to potential errors [8] especially for small lesions. Hence, to 

address the limitations of the 2D screening, this chapter aims to develop a computer-aided 

detection system for automatic screening of MR images.  

So far, several computer-aided detection (CAD) systems using template matching 

[28] have been proposed for the detection of lesions, especially in the lung [29-34] and 

breast [35-36].  In template matching, a set of templates with different resolutions is 

usually cross-correlated with regions of interest to localize objects of an unknown size. The 

most crucial task in template design is to optimally determine the shape, size, number of 

templates, and a cross-correlation coefficient threshold in order to achieve high sensitivity 
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and specificity of lesion detection as well as computation speed. Currently, most CAD 

systems using template matching have been developed for CT or radiography, in which 

nodules are usually surrounded by a fairly homogeneous background. One study adopted a 

CAD system originally developed for the detection of lung nodules on CT to detect brain 

metastases from contrast-enhanced MRI [37]. This work demonstrated the suitability of 

using spherical templates to detect brain metastatic lesions, which are often observed as 

bright spherical-like solid masses on contrast-enhanced MRI. However, as a lesion grows, a 

necrotic region may develop in the center of the mass.  This previous work did not take into 

account the pattern of necrotic regions in their template design, which affected the 

performance of the CAD system.  Most importantly, this previous work did not optimize the 

template set in design with respect to the size and shape of the lesions, and noise and 

intensity variation in contrast-enhanced MRI, which resulted in a large number of false 

positives.  Also, one important clinical issue for the diagnosis of brain metastases is that 

small lesions have been missed more frequently compared to large ones, for which a CAD 

system could potentially assist a radiologist in diagnosis.  All these require a more 

comprehensive study in the design of CAD systems for brain metastatic lesions.   

  In this chapter, the newly developed CAD system for the detection of small brain 

metastases from contrast-enhanced MRI is explained1. The spherical shell templates are 

designed to simulate a tumor growth pattern. The theoretical and simulation analyses of 

effects of size and shape heterogeneity of lesions are then performed to optimize the 

number and size of the templates and the cross-correlation thresholds. It is also 

                                                           
1
 Farjam et al. An approach for computer-aided detection of brain metastases in post-Gd T1-W MRI. Magnetic 

Resonance Imaging, 30 (6): 824-836, 2012. 
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investigated how image factors, e. g., nodule-contrast to intensity variations in the nodule 

and background, affect the performance of the CAD system. Hence, a nodule enhancement 

strategy and a set of rule-based criteria to reduce false positives are proposed. To develop 

and evaluate the proposed system, nine (including 60 lesions) and twenty patients (186 

Lesions) were used in the training and testing steps, respectively. The screening results 

from two neuroradiologists are also included in this study.  

 

 

II.B. Materials and Methods 

II.B.1 Template Design 

Brain metastases, when small, are seen as sphere-like solid masses on contrast-

enhanced MRI. As a lesion grows, a necrotic region starts developing at the center of the 

lesion. Hence, we designed our templates to mimic a brain tumor growth pattern simulated 

in a model [38] in which the diameter of the necrotic region, rn, is non-linearly related to 

the diameter of the lesion as: �� � � � 	0.53��� (Fig. II.1A). We create a 3D spherical shell 

zero-mean mask as following (Fig. II.1B):   
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(Equation II.1) 

where Mr denotes a mask at resolution r, and β  normalizes the mask to have a zero mean. 

Since the necrotic region is not seen in all lesions, we set intensities in the necrotic zone to 

be zero, and thereby this area is excluded from analysis. For a given Mr, the mask volume, 

VMr is defined by the number of non-negative voxels (including zeros). 
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               (A)                                                                   (B)  

Fig. II.1. A simulated brain tumor growth pattern and a spherical shell template. (A) The brain 

tumor could have necrotic core (black), non-proliferative zone (crosshatched) and proliferative 

zone (white). (B): A spherical shell 3D template is designed based upon the simulated brain tumor 

growth pattern. Here, R, rn, δn, and δp represent the radius of the lesion, the radius of the necrotic 

core, and the lengths of the non-proliferative and proliferative zones [38], respectively.  

 

II.B.2 Selection of Template Size & Cross-Correlation Threshold 

To localize a lesion by Mr, a cross-correlation coefficient (CCC) map between Mr and 

signal intensities of MR volume (VMR) is calculated:  
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(Equation II.2) 

 

where (i,j,k) represent voxel indices, wijk(.) denotes intensity in a cubic region of VMr with a 

size of Mr centered at (i,j,k), ijkw is the mean of ijkw , ),,,( kjiVCorr MrM r  
is the CCC between 

Mr and wijk. To localize a lesion, the cross correlation map is thresholded, all connected 

voxels above the threshold are grouped where each group represents one candidate lesion.  
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To localize all lesions, however, a set of multi-resolution masks had to be chosen. To 

select an optimal set of masks, {Mri}, and a cross-correlation coefficient threshold, three 

main factors need to be considered: 1) tumor size variation, and 2) lesion shape variation, 

and 3) intensity variations within a tumors and its surrounding background. The effects of 

these factors on selecting an appropriate set of masks are quantitatively investigated and 

described in the following sub-sections. We designed {Mri} and τ in a continuous space first, 

and then extended the concepts to a digital case.  

 

II.B.2.i Design of {Mri} and τ in a Continuous Space 

To design a set of masks {Mri} and a CCC threshold, τ, we first considered lesion size 

variations, but disregarded tumor shape and intensity variations for the time being. Let us 

consider a set of spherical tumors, {Ts, [i, i+1]}, with their volumes between two consecutive 

masks of 
ir

M and
1+ir

M (Fig. II.2) as: 

11
......

+
≤<<<<≤

irnjir MTTTM VVVVV
                              

(Equation II.3) 

 

 

 

 

 

 

Fig. II.2. Cross sectional view of a set of spherical tumors (T1 < T2 <… <Tn) with radii (crosshatched) 

between two consecutive masks Mri (light gray sphere) and Mri+1 (dark gray sphere). The two 

consecutive masks, Mri and Mri+1 localize all tumors using a cross-correlation threshold determined 

by Eq. II.7. 
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where 
jTV and 

riMV are the volumes of the jth tumor and the ith mask, respectively.  The CCC 

between Tj and Mri or Mri+1 is determined by the number of mismatched voxels between the 

tumor and mask (we don’t show the proof here).Fig. II.3 shows that the CCCs between {Ts} 

and Mri (or Mri+1 ) form a right-side (or left-side) curve from the ith (or i+1th) mask.  Also, 

the CCCs have the following orders: 

)()( 1,, +> jRighttriMjRightriM TCorrTCorr                         (Equation II.4) 

)()( 1,1,1 +++ < jLeftriMjleftriM TCorrTCorr
                        

 (Equation II.5) 

If a threshold, τ, of the CCC is selected at the intercept of the two CCC curves as:  

)()(
1, kLeftrMkRightrM TCorrTCorr

ii +
==τ

                     
(Equation II.6) 

All tumors {Ts, [i, i+1]}  that have the volumes between Mri and Mri+1 are detected by either Mri 

or Mri+1, depending upon the volume of the tumor smaller or greater than Tk’s (Fig. II.3).   

Using the same strategy, the threshold for the i+2th mask should be selected as: 

...)'()'()( ,,, 211
===

+++ nLeftrMnRightrMkLeftrM TCorrTCoorTCorr
iii   

(Equation II.7) 

where Mri+1 and Mri+2 localize the next set of tumors {T’s, [i+1, i+2]} (Fig. II.3). Note that a lower 

threshold value of τ can reduce the number of required masks by increasing the radius 

increment (di,i+1 = ri+1 – ri) between the two adjacent masks of Mri and Mri+1.  
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Fig. II.3. A scheme on the design of the masks, {Mri}, and selection of the cross-correlation coefficient 

(CCC) threshold, τ, based on Eqs. II.3-7. Dashed curves represent CCCs between the masks and the 

spherical tumors with different sizes. A threshold chosen at the intercept of the CCC curves of the 1st 

and 2nd masks (at τ) is warranted to detect all tumors with the volumes between the two masks.   

 

So far, we have not considered shape heterogeneity in our analysis. In fact, the CCC 

is only sensitive to the number of mis-matched voxels between the mask and the lesion. 

This means that the shape heterogeneity of a tumor with respect to a sphere can be 

quantified by the number of mis-matched voxels, and therefore, can be modeled similar to 

size heterogeneity. A tumor with its shape deviating from a sphere can be localized by the 

masks designed by Eqs. II.6 and II.7 if the CCC between the tumor and the mask is still 

above the threshold. For example, in a simple case, two tumors have the same volume and 

are located between a pair of adjacent masks, but one is a perfect sphere and another one is 

not. Since the two tumors have the same CCC, they will have the same probability for 

localization. This puts a limit on shape deviation of a tumor from a sphere.  Since the 

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sphere Tumor Diameter

C
r

o
s

s
-C

o
r

r
e

la
ti

o
n

 C
o

e
ff

ic
ie

n
t

di+1,i+2

Threshold

di,i+1

Mri

Mri

Mri+1

Mri+1

Mri+2

Mri+2



15 

 

spherical tumor Tk (at the intercept of the two CCC curves in Fig. II.3) has the smallest CCC 

with either Mri or Mri+1, the number of mis-matched voxels of a non-spherical tumor with 

one of the masks has to be equal to or smaller than the Tk’s  in order to be detected by the 

mask. Thus, di,i+1, the radius difference between the adjacent spherical shell masks limits 

tolerance of shape variation of a tumor from a sphere. If di,i+1 is set large enough, a set of 

masks can detect tumors with large shape heterogeneity and result in a high sensitivity for 

tumor localization.  We designed our templates to be able to detect a non-spherical tumor 

that has the number of mis-matched voxels with the mask which is not greater than one of 

a sphere with the volume twice of the smallest mask. This is also the reason why we set a = 

2R in Eq. II.1 (Fig. II.1B). Note that shape deviation corresponding to the inter-shell of the 

mask can also be considered in a similar manner. 

In summary, if {Ts} is a set of tumors with various sizes and shapes, to localize {Ts}, 

the first mask is chosen as small as the smallest tumor. The second mask is determined by 

having the volume of the spherical tumor (Tk) at the intercept of the CCC curves of the two 

masks, twice as the first mask.  The intercept of the two CCC curves also determines the 

threshold, τ.  The remaining masks will be selected based on Eq. II.7.  

 

II.B.2.ii Design of {Mri} and τ in a Digital Space 

In order to find appropriate {Mri} and τ in the discrete form, a digital phantom comprised of 

different spheres with radii ranging from 1 to 6.2 mm and a step size of 0.1 is implemented 

(It will be discussed later in this chapter that we are only interested in localizing lesions 

with a diameter of < 5mm, and hence large spheres are not included in the phantom). We 

then follow the procedure described previously to find out which digital masks meet the 
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conditions given in Eqs. II.3-7. The smallest feasible digital mask M1 is r1 = 1. The radius of 

Tk is 1.26. To identify M2, we first compute the CCCs of the digital phantom with M1 and 

with all candidates (digitally resolvable) of Mr2 (∀ r2 > 1). Next, we approximate the CCCs (

(.),1 RightrCorr and (.),2 LeftrCorr ) by an exponential function to find r2 by having the radius of Tk 

close to 1.26 (Fig. II.4). As a result, we identify r2 = 1.5 with τ = 0.8 and rk = 1.25 (radius of 

Tk).  This procedure is repeated to find the remaining masks as r = {1, 1.5, 2.3, 3.2, 4.2…}. 

However, due to digitization, not all the remaining CCC thresholds were 0.8. Hencse, they 

are chosen slightly below 0.8 to retain maximum sensitivity, e.g., 0.74 for M1.5, M2.3 and M3.2.    

 
Fig. II.4. The optimal set of digital masks, {Mri} with r = {1, 1.5, 2.3, 3.2, 4.2, and 5.4 ...}, and the cross-

correlation coefficient thresholds, τ. In the digital space, the thresholds are approximately 0.74.  

Solid line: regression fitting line; Solid symbols: data points of cross correlation. 

 

II.B.2.iii Design of {Mri} and τ with Intensity Variation 

To consider effects of intensity variation and noise within a tumor and its 

surrounding background on the cross-correlation coefficients, we define a contrast to 

intensity variation ratio (CIVR) as following: 
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(Equation II.8) 

where N is the number of voxels,
 

µ and σ are the mean and the standard deviation of 

signal intensities, respectively, and subscripts t and b denote tumor and background, 

respectively.  For a zero-mean mask given in Eq. II.1, we have: 
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Using Eqs. II.8 and II.9, we rewrite Eq. II.2 as: 
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(Equation II.10) 

where σM is the standard deviation of the mask, and )(, WOIVCorr
MRr VM denotes the CCC 

between Mr and VMR without intensity variations within the tumor and in the background 

(CIVR = ∞). Eq. II.10 shows that the CCC decreases with CIVR from the value without any 

intensity variation. We further investigated the effect of intensity variation on choosing the 

threshold of CCC by simulation, in which we add Gaussian noise with different standard 

deviations (δ) to the digital phantom described in Section 2.1.2.b, and recalculate (.),Rightri
Corr

and (.), Leftri
Corr  and the thresholds for the masks. As expected, the CCC thresholds depend 

upon δ (or CIVR), which will be used to train the system.  
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II.B.3 Nodule Localization 

To localize tumors, after computing the CCCs of MRI volumes with a mask Mri at resolution 

ri, we identify all voxels above a threshold. Then, we group all connected (26-adjacency) 

voxels by growing regions [39], and pick the voxel with a maximum CCC from each 

connected group as the center of the candidate lesion at the rith resolution, Cri,k. 

To refine the definition of the candidate lesion, the k-Means method [39] is applied to 

classify the voxels within a cubic volume with a size of 2a (same size of the mask) and a 

center at Cri,k (the center of the candidate lesion) of MRI to bright and dark voxels. The 

candidate lesion is defined by all bright voxels connected to the center. The bright voxels 

disconnected from the candidate lesion center are discarded.  

 

II.B.4 False Positives Reduction 

As shown in Section 2.1.2.c, noise and intensity variations in both tumor and background 

affect the CCC values, and thereby the performance of a CAD system (causing a large 

number of false positives). In the following sections, we developed strategies to improve 

the CCCs and reduce the number of false positives. 

 

II.B.4.i Nodule Enhancement 

 The intensity variations of a nodule and its surroundings are comprised of three main 

components: 1) image noise, 2) intra-tissue inhomogeneity, and 3) intensity variation of 

different tissues in the background. For a small lesion, image noise and intra-tissue 

inhomogeneity are the dominant components. However, as the mask size increases, tissue 

heterogeneity in the background surrounding the tumor becomes a major factor. In this 
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work, we focused our attention particularly on small lesions, and hence propose a method 

to enhance the CIVR of the small lesions in order to employ a higher CCC threshold and 

reduce false positives.    

To increase the contrast of a lesion, histogram equalization [40] Eq. (11), is used to 

transform bright voxels of MR images to the upper extreme of a new gray scale as Ihe:  
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(Equation II.11) 

 

where P(i) is the occurrence frequency of the ith intensity scale in the original image,  L is 

the number of gray scales in the original volume, and M is a quantization factor and 

determines the number of gray levels in Ihe. Then, Ihe is normalized to have a value of heI ′

between 0 and Max (Ihe): 
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(Equation II.12) 

Assuming tumors are in the upper portion of heI ′ , power transformation is employed to 

further enhance the nodule and suppress the dark background:  

λ
hepthe II ′=,                                               

(Equation II.13) 

 

where Ihe,pt represents the gray scale after applying histogram equalization followed by 

power transformation, and λ is an exponent. Fig. II.5 illustrates that a large λ enhances the 

contrast of a nodule in the upper scale of I’he by increasing the intensities in the higher gray 

scales and decreasing those in the lower ones. In addition, histogram quantization (Eq 

II.11) decreases the intensity inhomogeneity within a nodule. Combining the two steps, the 

ratio of the contrast to intensity variation of the nodule is enhanced. Fig. II.5 shows that the 

intensities in the lower half of the gray scale are suppressed almost entirely by λ > 6. 
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However, a large λ also increases intensity variations within a nodule, and thereby 

decreases the CIVR. Hence, λ will be optimized in the training step to balance these two 

effects. 

 
Fig. II.5. The impact of power transform in nodule enhancement. The power transformation, λ, 

increases the contrast between high and low intensities in I’he. If a nodule is in the upper portion of 

I’he, the application of power transform enhances the nodule contrast and suppresses its dark 

surrounding. For λ > 6, all intensities lower than a half of the maximum are almost entirely 

suppressed in Ihe,pt. Here, I’he has 1024 gray scales.  

 

 

II.B.4.ii Size Criterion 

While we develop strategies to increase the sensitivity of the CAD system, we also 

need to implement methods to reduce the number of false positives.  Brain metastatic 

tumors are usually isolated lesions within the brain, while other detected nodules are 

typically  part of an extended structure, e. g., contrast-enhanced blood vessels detected by 

low resolution masks of ri = 1 and 1.5, where the size of the cross-section of the small blood 
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vessel is comparable to the mask.  Hence, we further grow the initially detected segment by 

connecting similar voxels in the volume of (25 * 2ri)3 beyond the initial VOI by using 

descriptive statistics (maximum and minimum) of the initial connected voxels.  The final 

size of the segment can differentiate an isolated lesion from an extended and non-tumor 

like structure.  Hence we reject any nodule with a volume eight times (Rn = 2R) greater 

than the volume of the applied mask.  

 

II.B.4.iii Sphere Index 

To further reduce the number of false positives, e.g., a segment of blood vessel, we compute 

a sphere index of the detected nodule as the second false positive rejection criterion, which 

is based upon the fact that metastatic lesions are usually spherical-like instead of 

cylindrical-like. To do so, we compute eigenvalues (e1, e2, and e3) of a covariance matrix of a 

matrix whose columns are comprised of x, y and z coordinates of the nodule voxels. For 

each nodule, the eigenvalues were normalized to max (e1, e2, e3) = 1. The sphere index, SI, is 

defined as the geometrical mean of the eigenvalues as following:  

�� � ��������                                             (Equation II.14) 

For a spherical object, e1=e2=e3=1 and hence SI = 1. As an object deviates from a sphere, SI 

decreases from 1. To find an appropriate threshold for SI, we use the descriptive statistics 

of the lesions in the training step, and define the threshold as: ��� � ��� � 2.5���, where  ���  
and ��� are the mean and the standard deviation of all the metastatic lesions, respectively.   
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II.B.4.iv Brightness Criterion 

As mentioned in Section 2.2.1, tumors are transferred to the upper extreme of I’he by 

the histogram equalization. This enables us to further reject the false positives using a 

brightness index. We exclude any detected nodule with a brightness index (
��� !"�#$% &) less 

than 0.5, where �'denotes the mean intensity of the nodule in I’he.   

 

II.B.5 Methods of Training and Evaluation 

II.B.5.i Human Subjects 

Thirty one patients diagnosed with brain metastases were enrolled in a prospective 

MRI study. For each patient, 3D post-Gd-DTPA volumetric T1-W MRI with a voxel size of 

0.9375 x 0.9375 x 1 (mm3) was acquired prior to radiation therapy using a Philips 3T MR 

scanner. Of the 31 patients, two were excluded from this study since the MR images were 

corrupted by motion artifact. From the remaining 29 patients, we defined the first 9 

patients as a training set and the remaining 20 patients in the testing set.  There were four 

patients, two in the training dataset and two in the testing dataset, who had more than 30 

lesions each. As a total, there were 1279 and 2753 slices in the training and testing 

datasets, respectively.  

 

II.B.5.ii Training and Optimization of the CAD System 

To train and optimize our CAD system, we identified all the lesions in the initial 

training dataset. To do so, we put together the results of the initial neuro-radiologist as well 

as a separate retrospective reading by a second highly trained neuro-radiologist. We also 

ran the proposed CAD system in an over-sensitive mode on the training dataset by using a 
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fairly low cross correlation coefficient threshold ((	0.5) at each resolution in order to 

detect as many lesions as possible. The second neuro-radiologist had two analyses:  First, 

the pre-RT MR images were analyzed without referring to the additional CAD results or 

further clinical follow ups and imaging studies; and the second analysis of the MRI images 

with all available clinical information as well as the CAD results.  The first analysis was 

used to evaluate his performance, but the second analysis was aimed to detect all the 

lesions in order to train and further optimize the CAD system.  In order to document what 

size and type of lesions that are likely missed by highly trained neuro-radiologists  and our 

CAD system, we divided the lesions into three categories: solid mass without necrosis 

(regular), lesion with necrotic core (hole), and one located near the edge or the surface of 

the brain (edge). Table II.1 summaries the number of the lesions found in each of the 

categories in the training dataset.  

 

Table II.1. Numbers and characteristics of metastatic 

lesions in the training data 

< 5mm  < 8mm  All Lesions 

Total R H E  Total R H E  All types  

60 50 3 9  78 57 7 17  106 

R, H, and E denote regular, hole and edge lesions. 

 

To obtain the statistics of the lesions likely missed by the neuro-radiologists, we put 

together the screening results of the initial diagnosis by the first neuro-radiologist as well 

as the first independent reading of the second neuro-radiologist. Since the precise location 

of each of lesions for the two patients with 30 lesions or more were not available for the 

initial diagnosis, we excluded the two patients from this analysis. In the initial diagnosis, 
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when a patient has a large number of lesions, the locations of the lesions become irrelevant 

for treatment, and are usually not reported.  Therefore, we cannot use the initial diagnosis 

of the two patients to find the sizes of the lesions likely missed in clinical screening, and 

excluded the two patients from the analysis.  

To optimize the proposed CAD system, we ran the system on the training dataset at 

resolutions of r = 1, 1.5, 2.3, and 3.2 with combinations of all thresholds/parameters 

(including varying λ from 6 to 9 and τ from 0.5 to 0.75). Then, we generated free-response 

receiver operating characteristic (FROC) [41] curves to determine the optimal set of 

parameters for the CAD system, in which a false positive rate was calculated as a ratio of 

the total of false positives to the number of slices.  

To study the effect of each of the proposed false positive rejection criteria, we 

compared the FROC curves resulted without applying any false positive rejection criteria 

with the ones by sequentially adding the criteria: (1) the nodule enhancement strategy, (2) 

the size criterion, 3) the sphere criterion, and (4) the brightness criterion.  In this chapter, 

we mainly focus on rejecting intra-cranial false positives, since the extra-cranial false 

positives can be rejected by other methods, e.g., a skull stripping technique [42], which can 

be implemented, but is currently beyond the scope of this study.  

 

II.B.5.iii Testing of the CAD system 

To evaluate the proposed system, we ran the CAD system on the testing dataset by 

using the optimal set of the parameters determined from the training dataset. Similar to 

what was done in the training step, the second neuro-radiologist read the MR images twice: 

once without and then with all available reference materials. Finally, we put together the 
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results of the initial diagnosis and the first independent reading of the second radiologist to 

obtain the statistics of the lesions likely missed by the neuro-radiologists.  The results of 

the second reading of the second neuro-radiologist were used as a reference to evaluate the 

performance of the CAD system.  Table II.2 summarizes the categories of the lesions in the 

testing dataset. 

 

Table II.2. Numbers and characteristics of metastatic 

lesions in the testing data 

< 5mm  < 8mm  All lesions 

Total R H E  Total R H E  All types 

186 157 2 28  250 199 11 44  313 

R, H, and E denote regular, hole and edge lesions. 

 

 

II.C Experimental Results 

II.C.1 Training and Optimization of the CAD system 

II.C.1.i Size of Lesions Likely Missed by Neuro-Radiologist 

Table II.3 shows the screening results of the initial diagnosis and the first reading of 

the second radiologist on the training data. Neither of the two neuro-radiologists missed 

any lesions if the diameter of the lesion was > 5mm. However, the lesion detection rates of 

the initial diagnosis decreased from 93% to 81% and to 73% for lesion diameters > 4 mm, 

> 3 mm, and to > 2 mm, respectively. The results of the first independent reading of the 

second radiologist were similar to the initial diagnosis. If only considering the lesions with 

diameters less than 5 mm (27 lesions), the two radiologists detected 60% and 66% of the 



26 

 

lesions. Based upon these observations, we trained our proposed CAD system to detect 

lesions smaller than 5 mm by using the masks with resolutions r= 1, 1.5, 2.3 and 3.2. 

 

Table II.3. Numbers of the lesions in the training data detected by radiologists 

Method > 2mm > 3mm > 4mm > 5mm > 8mm 

1st Radiologist 30/41 (73%) 22/27 (81%) 15/16 (93%) 14/14 (100%) 10/10 (100%) 

2nd Radiologist 32/41 (78%) 24/27 (88%) 15/16 (93%) 14/14 (100%) 10/10 (100%) 

No lesions with diameter greater than 5mm were missed by the radiologists. 

Considering only the lesions smaller than 5mm in diameter, 60% (16/27) and 66% 

(18/27) are detected by the two radiologists. Seven patients were included. 

 

 

II.C.1.ii Optimal Parameters of the CAD system 

To optimize the proposed CAD system, the FROC curves of the detected lesions from 

the training dataset were generated by varying the exponent of the power transformation 

of λ = 6, 6.5, 7, 7.5, 8, 8.5 and 9 and the threshold of CCC from 0.5 to 0.75 (Fig. II.6). As seen, 

for a sensitivity of 96.7% (or 90%), the lowest intra-cranial false positive rate (IC-FPR) is 

0.0211 (27/1279), or 0.006 (8/1279), which is obtained by using λ = 8.5, the CCC threshold 

corresponding to CIVR = 5.12 (or 5.85), and the sphere index (SI) > 0.24.   Other values of λ 

produced worse false positive rates when the sensitivity was set greater than 90%.  The 

areas under the FROC curves (AUC) for the FPRs ranged from 0.000 to 0.029 (the maximum 

shown in Fig. II.6) are 0.818, 0.827, 0.852, 0.850, 0.848, 0.884, and 0.877 for λ = 6, 6.5, 7, 

7.5, 8, 8.5 and 9, respectively. The AUC also indicates that λ = 8.5 performs the best.  
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Fig. II.6. FROC Curves of the lesions and false positives detected by our proposed CAD system in 

screening of the training dataset.  Each of the curves was generated with different values of λ and 

CCC thresholds.  Using λ = 8.5 yields a sensitivity of 90% and a false positive rate of 0.006 (8/1279), 

or a sensitivity of 96.7% and a false positive rate of 0.021 (27 / 1279). The CCC thresholds were set 

corresponding to the CIVR = 5.12, and sphere index (SI) was > 0.24.  

 

II.C.2 Effect of Nodule Enhancement 

Next, we compared the FROC curves obtained from the training dataset with and 

without the nodule enhancement strategy and without applying any false positive rejection 

criteria.  Fig. II.7 shows that our nodule enhancement strategy (with the optimal λ = 8.5) 

improves both sensitivity and specificity significantly. For the IC-FPR of 0.0758, the 

sensitivity improved from 81% to 98.3%. However, without using nodule enhancement, 

the FROC curve reaches a plateau in sensitivity, indicating that sensitivity cannot be 

improved more than 0.82 even when we increase the false positive rate. For the FPRs 

ranged from 0.000 to 0.029, the AUCs are 0.681, 0.784 and 0.884 for the lesion detections 

without module enhancement and any false positive rejections, with module enhancement 

but without false positive rejections, and with all false positive rejection criteria, 
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respectively, in Fig. II.7. Fig. II.8 shows examples of intensity histograms of a slice of T1-

weighted MRI, and intensity variations within and around a lesion with and without 

applying the nodule enhancement strategy. Note that the histogram equalization transfers 

gray scales of the nodule to the upper extreme of the image histogram (Figs. II.8B and 

II.8F), and thereby the nodule is bright as well as the vessel and skin are (Figs. II.8A and 

II.8E). The histogram equalization also reduces the noise (standard deviation) within the 

nodule due to quantization (Figs. II.8C and II.8G), and in the surrounding background. The 

power transformation further increases the contrast of the nodule with respect to the 

background, and suppresses the intensity variation in the background (Figs. II.8L and 

II.8H). As a result, the CIVR of the nodule is improved from 5.26 (in the original image) to 

13.2 (in the Ihe,pt with λ = 6.5), which enables the selection of a higher threshold of CCC and 

thereby to have a lower false positive rate. However, a further increase in λ increases false 

positives and deteriorates the performance of the system.  The optimal λ (=8.5) has to be 

determined from the FROC curves as previously shown in Fig. II.6.  

 

Fig. II.7. The effect of nodule enhancement on the FROC curves.   
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   (A)                                      (B)                                                   (C)                                               (D) 
 

 

                       
   (E)                                      (F)                                                  (G)                                                 (H) 
 

 

                        

     (I)                                       (J)                                                     (K)                                               (L) 

                  

 

 

Fig. II.8. An example showing the different stages of applying the nodule enhancement strategy to a 

typical contrast-enhanced lesion. The effects of the nodule enhancement on the post-Gd T1-W MRI 

(left), intensity histogram (second left), intensity variation within the lesion (second right) and 

intensity variation in the surrounding background (right) of the lesion.  Top row: the original data; 

Middle row: the data after applying the histogram equalization; Bottom row: the data after applying 

the power transformation of λ = 6.5. 

 

 

II.C.3 False Positive Rejection 

            Table II.4 shows the effects of false positive rejection criteria on improvement in 

specificity of the proposed system. For the 60 lesions with a diameter < 5 mm on 1279 
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slices in the training dataset, using the nodule enhancement only, intra-cranial false 

positives were 97, decreased to 48 after applying the size criterion, to 28 after applying the 

size and sphere criteria, and to 27 when applying the size, shape and brightness criteria.  

The size criterion and the sphere index are effective for rejecting both the intra- and extra-

cranial false positives, while brightness criterion is useful for rejecting the extra-cranial 

false positives. Note that one lesion was rejected mistakenly by the size criterion due to the 

fact that the lesion was connected to a blood vessel.   

 

Table II.4.  Effects of false positive rejection criteria in the training data 

NE NE & Size NE, Size & SI NE, Size, SI & B NE & B 

Miss TP FP Miss TP FP Miss TP FP Miss TP FP Miss TP FP 

1 59 97(610) 2 58 48(211) 2 58 28(171) 2 58 27(106) 1 59 85(320) 

NE: nodule enhancement; Size: size criterion; SI: sphere index; B: brightness criterion; TP: true 

positive; FP: false positive. The intra- and extra-cranial FPs are given outside and inside the 

parentheses, respectively. 

 

 

II.C.4 Testing of the CAD system 

II.C.4.i Size of Lesions Likely Missed by Neuro-Radiologists 

 The screening results of the testing dataset from the initial diagnosis and the first 

independent reading of the second radiologist was similar to what was observed in the 

training dataset: the lesions with a diameter < 5 mm had a higher frequency of being 

missed (Table II.5).  Again, we excluded the 2 patients with 30 lesions or more from this 

analysis due to lack of precise location of each of these lesions. Again if only considering the 

lesions with diameter less than 5 mm (30 lesions), the two neuro-radiologists detected 

70% and 80% of the lesions.   
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Table II. 5. Numbers of the lesions in the testing data detected by radiologists 

Method > 2mm > 3mm > 4mm > 5mm > 8mm 

1st Radiologist 66/75 (88%) 56/60 (93%) 48/49 (98%) 45/45 (100%) 29/29 (100%) 

2nd Radiologist 69/75 (92%) 58/60 (96%) 49/49 (100%) 45/45 (100%) 29/29 (100%) 

No lesions with diameter greater than 5mm were missed by the radiologists. 

Considering only the lesions smaller than 5mm in diameter, 70% (21/30) and 

80% (24/30) of the lesions are detected by the two radiologists. Eighteen 

patients were included. 

 

II.C.4.ii Testing of the CAD System 

   Using the optimal set of parameters obtained in the training step, a 

sensitivity of 93.5% (174/186) was achieved with an IC-FPR of 0.024 (66/2753) in the 

testing data (186 lesions with a diameter < 5 mm from 20 patients). Fig. II.9 shows 

examples of the lesions (diameters of 2.2, 3.4 and 4.5) missed by the radiologists but 

detected by the proposed CAD system.    

 

II.C.5 Sources of False Negatives 

  The lesions missed by our proposed system can be divided into three main 

categories: 1) lesions with low contrast to intensity variation, 2) lesions attached to a 

structure and rejected after applying the size criterion, and 3) lesions near the edge of the 

brain surface.  Fig. II.10 shows examples from each category.  Table II.6 shows the number 

of lesions missed in each category. Of the 186 tested lesions, six lesions having a low 

contrast to intensity variation ratio (3.8%), 5 lesions attached to a blood vessel (3.1%), and 

1 near the edge of the brain surface (3.5%) was missed by our CAD system.  Also, all of the 

five missed lesions in the second category were at the midline of the brain (see the middle 
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panel of Fig. 10), where blood vessels have a higher spatial density.  Note that no lesion 

with necrotic core was missed by our proposed approach.      

 

Table II.6. Lesions missed by our proposed system 

Dataset Regular Hole Edge Total 

 Low CIVR Attached to an Object    

Training 0 / 50 = 0% 1 / 50 = 2% 0% 1/9 = 11% 2 / 60 = 3.3% 

Testing 6 / 157 = 3.8% 5 / 157 = 3.1% 0% 1/28 = 3.5% 12 / 186 = 6.4% 

Total 6 / 207 = 2.9% 6 / 207 = 2.9% 0% 2 / 37 = 5.4% 14 / 246 = 5.6% 

 

 

 

 

     
 

     
             

Fig. II.9. Three examples of lesions missed by the radiologists and detected by our proposed CAD 

system. The lesions diameters are 2.15, 3.37, and 4.51 from left to right.  Note that the blood vessels 

are rejected as a false positive in these images. Top row: the original images; Bottom row: the 

segmentation map. 
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(A)                                                            (B)                                                      (C)  

Fig. II.10. Examples of the three types of lesions missed by our proposed CAD system: Left: a lesion 

with a low contrast to intensity variation ratio; Middle: a lesion attached to a small blood vessel in 

the midline of the brain; Left: a lesion near the edge and attaching in some parts to the brain 

surface. 

 

 

II.D Discussion  
 

In this chapter, a computer-aided detection system has been developed and evaluated 

for automatic detection and discrimination of small brain metastases in post-Gd T1-

weighted MRI, which have a higher frequency of being missed in routine radiological 

diagnosis.  In the development of the system, first we designed a set of multi-resolutions of 

3D spherical shell masks, which mimic a bright tumor with or without necrotic core and on 

a dark background, to localize metastatic lesions by cross-correlation with MR volumes. 

The analytic and simulation investigations were performed to study the effects of size and 

shape heterogeneity as well as the intensity variation within a tumor and the surrounding 

background in order to optimize the template design.  Secondly, we developed strategies to 

improve sensitivity and specificity of the CAD system by using the nodule enhancement 

strategy to increase the contrast to intensity variation ratio of the lesion and the 
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background, and by using a set of rule-based false positive rejection criteria based upon the 

size, shape and brightness of the metastatic lesions.  Overall, we achieved 93.4% sensitivity 

and 0.024 intra-cranial FPR for detecting the brain metastases with a size less than 5 mm, 

which is 10 times less than the intra-cranial FPR of a previous study [37].  This CAD system 

has the potential to improve lesion detection especially in lesions less than 5 mm and 

therefore may aid in the physician’s decision-making for selecting appropriate treatment 

strategy. 

Selecting an optimal set of mask sizes and the cross-correlation threshold depend on 

three major factors: 1) nodule size, 2) nodule shape, and 3) the intensity variation within 

the tumor and the background. We showed that two consecutive masks can localize all 

spherical tumors with volumes between the two masks if the cross-correlation coefficient 

threshold is selected at the intercept of the two cross-correlation curves. We also showed 

that the shape heterogeneity of the tumors can be modeled similar to size heterogeneity. 

Hence, a nodule can be localized if its shape deviation from a sphere does not exceed the 

maximum tolerable size variation, which is determined by the radius difference between 

the two consecutive masks. However, if the radius difference is too large, the masks could 

be over-sensitive to the nodules with a large range of shape variations, resulting in an 

increase in false positives. Furthermore, our analysis (Fig. II.4) shows that it is not 

necessary to evenly space the masks as stated in a previous study [32]. In fact, evenly 

spaced masks may not increase sensitivity significantly but definitely increase computation 

time and possibly false positives. In addition, the data in Tables II.1 and II.2 indicate that 

the majority of the small lesions have no necrotic core, and thus a solid spherical template 

seems to be a choice for detecting the small lesions. While a spherical shell template, 
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excluding the voxels in the center from analysis, can detect both solid and necrotic lesions, 

a solid template can result in some non-matching voxels in the center of a lesion with 

necrotic core. When using a solid template for detecting both solid and necrotic lesions, we 

need to low the threshold to reach the maximum sensitivity, which results in more false 

positives than using a spherical shell template (data not shown).    

In our CAD system, we implemented several strategies to reduce false positives.   

Brain metastases are often seen as isolated masses, while other detected nodules are 

typically be part of the other structures, e. g., blood vessels. Segments of small blood vessels 

have a high probability of being detected by the masks.  In the previous study [37], of the 16 

lesions having a diameter < 5 mm, fourteen lesions were detected, but the false positive 

rate is as high as 0.22, in which the majority of them are blood vessels.  The detected vessel 

segments usually belong to a large vascular tree. Therefore, we grew the detected segment 

beyond the initial VOI by connecting more similar voxels. Hypothetically, the extended 

structure is unlikely to be a tumor, and can be rejected based on size criterion.  Using the 

size criterion and the sphere index, we are able to reject 71% of the intra-cranial false 

positives and 72% of the extra-cranial false positives in the training dataset.  In the training 

processing, we learned that there are some lesions, which have a low contrast with respect 

to its surrounding background and a large intensity variation, and thus have a greater 

probability of being missed by a CAD system. Our proposed nodule enhancement strategy 

improves the low nodule contrast and reduces the intensity variation, and enables us to 

gain both sensitivity and specificity (Fig. II.7). Overall, we are able to reduce intra-cranial 

FPR to 0.024, which is a major improvement compared to the previous work. Further 

reduction of the extra-cranial false positives can be better achieved by using a skull 



36 

 

stripping technique [42], which is not the aim of this study but can be incorporated into a 

final CAD package. 

In this chapter, we analyzed what types of lesions are missed by our CAD system 

(Table II.6). The main reasons are typically due to the attachment to another structure, 

especially in the midline of the brain, or have a low contrast to intensity variation ratio 

(CIVR).  In the former case, segmenting vessels from tissues in the midline could be helpful, 

e.g., using publically-available software of SPM [43]. One easy solution for the latter 

problem is to decrease the cross-correlation threshold, but this may increase the false 

positive rate substantially. For example, the lesion shown in Fig. II.10A can be detected by 

decreasing the cross-correlation threshold at the cost of increasing the false positive rate to 

0.1 (that is 5 times greater than we have now). Although our proposed nodule 

enhancement strategy improves both sensitivity and specificity of the proposed CAD 

system, developing a technique to locally adapt the CIVR could further improve the 

performance of the CAD system.  A strategy to deal with a lesion near a vessel could also 

improve the CAD system. 

 

II.E Conclusion  

The CAD system described in this chapter is especially designed to localize small 

brain metastatic lesions, given that the small lesions have a higher probability of being 

missed by the clinicians. Our proposed CAD system has high sensitivity and fairly low FPR 

for detection of the small lesions in MRI of the brain compared to previous ones and 

neuroradiologists. Also, this work can be further extended to localize larger lesions as well. 

The technical issues as well as clinical needs for detection and segmentation of large 
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lesions, in a certain extent, differ from the small ones, which require different emphases in 

the design of the CAD system. For large lesions, segmentation is more clinically interesting 

than detection. The potential of this method to assist clinical-decision making warrants 

further evaluation and improvements. A clinical study evaluating the impact of our CAD 

system on overall diagnosis is ongoing. 
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Chapter III 

 

Physiological imaging-defined response-driven 

subvolumes of a tumor 
 

 

 

III.A Introduction 

The ability of intensity-modulated radiotherapy (IMRT) to deliver high-precision 

nonuniform dose patterns has raised a question on how to paint doses in the radiation 

target volume to improve the therapeutic ratio and outcome [44]. Conventional IMRT 

optimizes and delivers a treatment plan within a target volume primarily based upon 

anatomic images of computed tomography (CT) and/or magnetic resonance imaging (MRI). 

Geometrically conforming high doses within the target volume by IMRT can reduce dose-

spread into normal tissue and organs at risk. However, target volume delineation based 

upon anatomic information is increasingly becoming a major limitation. Also, considering 

spatially-heterogeneous biological properties of a tumor, a uniform dose distribution 

within a target volume might not lead to an optimal treatment outcome. Hence, dose 

painting/sculpting based on the biological target has the potential to improve local control 

or even outcome [45].   

The biological target can be defined by in vivo functional, metabolic and molecular 

imaging [44]. It has been suggested that a tumor biological target volume could consist of 

multiple biological target subvolumes that are imaged by multiple functional imaging 



39 

 

examinations, each having a prognostic or predictive value for radiation response and 

outcome. It has been hypothesized that dose painting of the biological target subvolumes 

defined this way could lead to a better outcome than distributing a uniform dose within a 

target volume [44-45]. However, it lacks a robust methodology to delineate the 

subvolumes of a tumor based upon physiological imaging and to relate them to tumor 

response to radiotherapy.     

In this study, the main goal is to propose an image analysis framework to integrate 

the physiological and biological information from a variety of functional imaging sources, 

to delineate the imaging-defined “phenotype” subvolumes of a tumor and to relate them to 

treatment response and outcome2. We applied the proposed strategy to delineate the 

tumor subvolumes from regional cerebral blood volume (rCBV) and Gd-DTPA transfer 

constant from blood plasma to tissue (Ktrans) in patients who had brain metastases and 

received whole brain radiotherapy (WBRT). We then examined the association of a change 

in the subvolume of the tumor from pre to during RT with post-RT treatment response.   

 

III.B Materials and Methods 

III.B.1 Patient 

Twenty patients (11 women and 9 men, ages 41-76 years) diagnosed with brain 

metastases were enrolled in an institutional review board (IRB)-approved prospective MRI 

study (Table III.1). The histology included melanoma (11), non-small cell lung cancer (6), 

renal cell carcinoma (1), breast cancer (1), and head & neck squamous cell carcinoma (1).  

                                                           

2 Farjam et al. Physiological imaging-defined, response-driven subvolumes of a tumor. International journal of 

radiation oncology, biology, physics (in press). 
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All patients received WBRT with a total dose of 30 Gy in 10 fractions or 37.5 Gy in 15 

fractions. Thirteen of the 20 patients received Bortezomib during WBRT as a radiation 

sensitizer as part of a separate IRB-approved study. If a patient had three brain metastases 

or fewer, all lesions were included in this analysis. If a patient had more than three lesions, 

only the three largest lesions were included. If a patient had more than three lesions larger 

than 1 cm3, the lesions greater than 1 cm3 were also included. As a total, 45 lesions with a 

median volume of 1.65 cm3 and a range of 0.1-17.6 cm3 were analyzed.  

 

Table III.1. Patient characteristics information 

Pt. No. Gender/Age 

(Y) 

Histology No. of  

lesions 

Volume range 

(cm3) 

Total accumulated  

dose/Fx (Gy) 

Concurrent drug  

treatment 

1 F/54 BC 3 4.23 - 11.78  37.5/2.5  None 

2 M/63 RCC 2 13.23 - 14.67  30/3 Bortezomib  

3 M/41 M 3 0.150 - 1.24  37.5/2.5 Bortezomib  

4 F/60 NSCLC 1 0.518  37.5/2.5 None 

5 F/52 M 1 2.74  37.5/2.5 Bortezomib  

6 F/45 M 1 2.07  30/3 Bortezomib  

7 M/49 M 2 0.171 - 4.09  30/3 Bortezomib  

8 F/51 NSCLC 3 0.503 - 4.55  30/3 Bortezomib  

9 M/61 M 4 6.64 - 17.67  37.5/2.5 Bortezomib  

10 M/52 NSCLC 1 0.479  30/3 None 

11 F/55 M 2 0.421 - 0.545  30/3 Bortezomib  

12 M/76 M 1 0.680  30/3 Bortezomib  

13 F/46 M 6 1.25 - 1.95  30/3 Bortezomib  

14 F/57 M 2 0.941 - 1.58  30/3 Bortezomib  

15 F/64 NSCLC 1 0.108  37.5/2.5 None 

16 M/60 M 3 0.179 - 1.31  30/3 Bortezomib  

17 F/74 M 4 0.690 - 5.81  30/3 Bortezomib  

18 M/43 H&N SCC 1 0.601  30/3 None 

19 M/58 NSCLC 3 2.38 - 10.69  30/3 None 

20 F/66 NSCLC 1 0.954  37.5/2.5 None 

Abbreviation: Pt. No. = patient number; Y = year; F = female; M = male; BC = breast cancer; 

RCC = renal cell carcinoma; M = melanoma; NSCLC = non-small cell lung cancer; and H&N SCC = 

head and neck squamous cell carcinoma. 
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III.B.2 Imaging and Data Acquisition 

All patients had MRI scans on a Philips 3T scanner prior to RT (Pre-RT), 2 weeks 

after the start of RT (2W), and 1 month after the completion of treatment (1M Post-RT). 

MRI scans included pre and post Gd-DTPA volumetric T1-weighted images, multi-slice 2D 

T2-weighted images, and 3D volumetric dynamic contrast enhanced (DCE) T1-weighted 

images. The 40 image volumes of DCE-images were acquired using a 3D gradient echo 

sequence in the sagittal plane (a field-of-view of 240 x 240 x 160 (mm), a voxel size of 2 x 2 

x 2 (mm3), a flip angle of 20°, TE/TR of 1.04/5.14 msec and a temporal resolution of 6 sec) 

with a 0.1 mM/kg Gd-DTPA in an injection rate of 2 s/cc.   

 

III.B.3 Image Analysis 

III.B.3.1 Pre-processing 

Using an in-house software package, Functional Image Analysis Tool (FIAT) [46], 

anatomical and DCE-MR images were co-registered to have a voxel size of 0.9375 x 0.9375 

x 3 (mm3). Each lesion of interest was contoured by a physician on the post-Gd T1-weighed 

images obtained pre-RT, 2W and 1M post-RT. The general Toft model was used to calculate 

the rCBV and Ktrans maps as described previously [20].  

 

III.B.3.2 Probability Density Functions of Physiological Parameters 

 To analyze the rCBV distributions in lesions and subsequent changes during 

treatment, a probability density function (PDF) of rCBV of a lesion was generated using a 

non-parametric PDF estimator. The PDF consists of 150 evenly-spaced points to cover the 
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range of rCBV values for all lesions of interest.  A value of PDF at a point x, H(rCBV = x), of a 

lesion was calculated as: 

εε +≤≤−≡= x
i

rCBVx
i

nxrCBVH :)(                       (Equation III.1) 

where ni was the number of voxels within |rCBVi-x| < ε , and ε  was a smooth factor and set 

as 
4

σε =   where σ denotes the standard deviation of rCBV distribution in the tumor. After 

calculating Pre-RT and 2W PDFs for each lesion (HPre(x) and H2W(x), respectively), H(x) was 

normalized to have an area under the PDF curve equal to one ( ∫ =1)( dxxH ), see Fig. 

III.1(A). Then, the normalized HPre(x)s of all lesions were summed to generate a pooled PDF 

(Hp) of brain metastases, in which each lesion contributes equally regardless of its size.   

 
  (A)                                                                         (B) 

Fig. III.1. Application of FCM in classification of tumor space into classes of low, intermediate and 

high rCBV. (A) The Pre-RT rCBV histogram of a typical lesion (from patient #13) with a tumor 

volume of 1.26 cm3. (B) The pooled PDF (blue) of the Pre-RT rCBV from all the lesions and the three 

probability membership functions determined by FCM clustering. The pooled PDF is partitioned 

into three classes: low (purple, dot-dashed), intermediate (red, dashed) and high (green, solid) 

rCBV classes. rCBV: regional cerebral blood volume, PDF: probability density function. 
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III.B.3.3 Probabilistic Membership Function  

 Previous studies have suggested that the rCBV distribution of a brain tumor is 

abnormal compared to normal cerebral tissue, as elevated rCBV in a subvolume of the 

tumor and low rCBV in another one [47]. A renormalization of tumor vasculature, such as 

decreasing the elevated rCBV and increasing the low one, could be an indicator of tumor 

response to treatment [48]. Our goal is to find a set of probability functions that are 

associated with high, intermediate and low rCBV classes. Hence, the pooled Hp (rCBV) pre-

RT is partitioned into three classes using fuzzy-c-means (FCM) clustering analysis by 

minimizing an objective function Jm: 

∞<≤−=∑∑
= =

mcrCBVrCBVPJ ji

m
N

i
i

C

j
jm 1,)(

2

1 1            
(Equation III.2)                                                                                                      

where  cj is a prototype vector  of the jth class, Pj(rCBVi) is a probabilistic membership of a 

rCBV value belonging to the jth class, and m is a fuzzy exponent and chosen as 2. The 

solutions of Eq. III.2 are determined iteratively by: 
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until reaching stopping criteria.  The probabilistic membership function, Pj(rCBVi), is a new 

representation of a rCBV value of a tumor voxel (mathematically transfers the data from an 

image space into a new space) see Fig. III.1(B).  Note that the FCM analysis does not classify 
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a rCBV value into a single class (no hard threshold) rather assigns a probability belonging 

to a class. A similar computation is applied to Ktrans. 

 

III.B.3.4 Physiological-parameter Defined Tumor Subvolume 

 Our primary interest is to test if a change in the subvolume of tumor defined by high, 

intermediate or low rCBV classes is related to tumor response to therapy. We define a 

subvolume (SV) of a tumor with low, intermediate or high rCBV using Pj(rCBV), and 

calculate a percentage change in SV from Pre-RT to 2W: 

,100
)()(

)()()()(
)(ˆ 22

,2 ⋅
⋅

⋅−⋅
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∫
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→
dxxHxPGTV

dxxHxPGTVdxxHxPGTV
rCBVSV

prejpre

prejprewjw

iwpre

 

 ∈j {low, intermediate, or high} (Equation III.5) 

A similar calculation is applied to Ktrans.   

 

III.B.3.5 Association of the Physiological-parameter Defined Tumor Subvolume with 

Response  

Endpoint. A percentage change in gross tumor volume (GTV) from pre to post RT 

was used as an endpoint for response assessment. Several patients did not have 3 or 6 

months post treatment imaging follow-ups. For the patients in whom 3 and 6 months post-

RT images were available, there were good correlations in the GTV changes between 1 and 

3 months post RT and between 3 and 6 months post RT (data not shown). Also, previous 

studies indicate that brain metastases exhibit little pseudo-response and pseudo-

progression one month after RT [49]. Therefore, we used a percentage change in the GTV 

from Pre-RT to 1 month post RT, RTPostMpreGTV −→∆ 1
ˆ , as a measure of response to therapy.  
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From Pre-RT to 1M Post-RT, 16 tumors had a decrease in the GTV at least 25%, defined as 

responsive, 11 tumors had an increase at least 25%, defined as progressive, and the 

remaining 18 were defined as stable. We noticed that there were heterogeneous responses 

of multiple lesions from a single patient. Thus, each lesion was considered independently. 

Statistical Analysis. First, we tested if there were any significant differences in 

changes of )(ˆ
,2 rCBVSV jwpre→∆  between responsive, stable, and progressive tumors using 

Mann-Whitney U Test. Similar tests were applied to changes in )(ˆ
,2

trans

jwpre KSV →∆ . To justify 

multiple comparisons (6 parameters), a p-value < 0.01 was considered as significance. 

Next, we performed a Receiver Operating Characteristic (ROC) analysis to evaluate 

sensitivity and specificity of the significant metrics identified in the previous test for 

predicting responsive tumors using software package ROCKIT [50]. Also, we compared 

these newly developed metrics with the conventional ones: a percentage change in the GTV 

from Pre-RT to 2W, wpreGTV 2
ˆ

→∆ , and a change in the mean rCBV (Ktrans) values of a tumor 

from pre-RT to 2W, ))((ˆ
2

trans

wpre KrCBV→∆µ , for predicting post treatment response.  The 

significant difference of the area under ROC curves (AUC) between the metrics were 

compared by t-test, for which the standard error and the difference between the two AUCs 

were calculated by the method proposed by DeLong et al. [51]. Also, the leave-one-out 

technique was used to evaluate the prediction risk of the metrics. Furthermore, we 

estimated the sample size required for validation of the results in an independent study 

with a=0.05and power of 0.8 using the data in the current study.    
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III.B.3.6 Tumor Subvolume Defined by Combined Physiological Parameters 

 Finally, we tested whether combining the physiological parameters of rCBV and 

Ktrans could improve prediction for tumor response. First, a joint histogram of rCBV and 

Ktrans of a lesion is computed, e.g. H(rCBV = x, Ktrans = y). Then, a joint probability function, 

Pj,k(rCBV, Ktrans, α), is defined as follows: 

α
α

α
+

⋅+
=

1

)()(
),,(,

trans

kjtrans

kj

KPrCBVP
KrCBVP                            

∈kj, {low, intermediate, or high}       (Equation III.6) 

where α is a weighting factor of the two parameters. Applying the joint probability function 

to Eq. III.5, a percentage change in the subvolume of a tumor defined by rCBV and Ktrans 

classes from Pre-RT to 2W is given by:  

100
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⋅⋅
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KrCBVSV
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prekjprewkjw

trans

kjwpre

α
αα

α
 

∈kj, {low, intermediate, or high}  (Equation III.7) 

We selected the weighting factor α that led to a maximum area under the ROC curve for 

predicting tumor response.   

 

III.C Experimental Results 

III.C.1 Probability Function Maps 

Examples of maps of the probability functions belonging to the high rCBV class, high 

Ktrans class and combination of two of a responsive and a stable lesion Pre-RT and at 2W are 

shown in Fig. III.2. Note that the spatial distribution of the probability function map of the 
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high rCBV class of a lesion can be different from one of the high Ktrans class, and both can 

change from Pre-RT to 2W. For the responsive lesion, the voxel probability functions 

belonging to the high rCBV class were reduced to almost zero from Pre-RT to 2W, and for 

the stable lesion the reduction was in a much smaller extent.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. III.2. Example of physiological-defined tumor subvolumes and their longitudinal changes in a 

responsive and a stable lesion. Top row: Pre-RT T1 weighted image (left), and rCBV (middle) and 

Ktrans (right) maps of a patient with two brain metastases; Middle and Bottom rows: Probability 

function maps of the high-rCBV class (Left column), high-Ktrans class (Middle column) and 

combination of the two (Right column) overlaid on T1-W images Pre-RT (middle row) and 2W 

(bottom row). The anterior lesion is responsive and posterior one is stable.  
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III.C.2 Physiological-Parameter Defined Subvolumes 

We found that the responsive tumors showed a greater decrease in the high-rCBV 

subvolume of the tumors from Pre-RT to 2W than the progressive tumors (p<0.0072) and a 

group of combining the progressive and stable lesions (p<0.0057). Also, the decrease in the 

high-rCBV sub-volume of the responsive tumors was marginally different from the stable 

ones (p=0.033) (Table III.2). Similar but much weaker trends were observed in the 

decrease of the high-Ktrans subvolumes of the tumors between the groups. The percentage 

decrease in the tumor subvolumes defined by both high-rCBV and high-Ktrans classes with 

an equal weighting (described in III.B.3.6) from Pre-RT to 2W differentiated the three 

groups with improved statistical significances, compared to using either variable alone. 

Specifically, the responsive group differed significantly from the progressive group 

(p=0.0012) and from the group of combining the progressive and stable tumors 

(p=0.0017). For the conventional metrics, a greater decrease was observed in the mean 

tumor rCBV from Pre-RT to 2W in the responsive group than in the stable tumors 

(p<0.0049) and the group of combining the stable and progressive ones (p<0.0066). Also, a 

decrease in the GTVs of the responsive tumors from Pre-RT to 2W was greater than in the 

progressive tumors significantly (p<0.0039) but marginally from the group of combining 

the progressive and stable tumors (p<0.0124). 
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Table III.2: Differences between responsive, stable and progressive tumors 

 Group of lesions 

Metric R vs. S S vs. P R vs. P R vs. {S & P} 

 p-value 

 j=low 0.1086 0.2517 0.6392 0.1803 

)(ˆ
,2 rCBVSV jwpre→∆  j=intermediate 0.2771 0.3339 0.0513 0.0900 

 j=high 0.0338* 0.3568 0.0072** 0.0057** 

)(ˆ
,2

trans

kwpre KSV →∆  
k=low 0.1012 0.8750 0.1910 0.0773 

k=intermediate 0.3088 0.2909 0.8243 0.5613 

k=high 0.6663 0.0162* 0.0406* 0.4992 

)1,,(ˆ
,,2

trans

highhighwpre KrCBVSV →∆  0.0218* 0.0758 0.0012** 0.0017** 

)6.0,,(ˆ
,,2

trans

highhighwpre KrCBVSV →∆  0.0199* 0.0687 0.0012** 0.0015** 

)(ˆ
2 rCBVwpre→∆µ  0.0049** 0.2336 0.1088 0.0066** 

)(ˆ
2

trans

wpre K→∆µ  0.5233 0.1704 0.5704 0.8775 

wpreGTV 2
ˆ

→∆  0.1086 0.0653 0.0039** 0.0124* 

Abbreviations: GTV = gross tumor volume; R = responders; S = stables; P = 

Progressive; ^ The optimum value of α is 0.6, see the results of the ROC analysis. *: P<0.05; 

**: P<0.01. 

 

III.C.3 Predictive Values of the Physiological-Parameter Defined 

Subvolumes  

In prediction of post-RT response, the areas under the ROC curves were 0.80 ± 0.07 

(+SEM), 0.70 ± 0.08, 0.67 ± 0.08 and 0.60 ± 0.08 for )(ˆ
,2 rCBVSV highwpre→∆ , )(ˆ

2 rCBVwpre→∆µ ,

wpreGTV 2
ˆ

→∆  and )(ˆ
,2

trans

highwpre KSV →∆ , respectively (Fig. III.3), indicating that the high-rCBV 

defined subvolume of the tumor performed the best in predicting the responsive tumors.  

The change in the subvolume defined by the high-rCBV and high-Ktrans classes, 

),,(ˆ
,,2 αtrans

highhighwpre KrCBVSV →∆ , resulted in the largest AUC, 0.86 ± 0.06. The pair-wise 

comparison of the ROC curves revealed that ),,(ˆ
,,2 αtrans

highhighwpre KrCBVSV →∆  was a slightly 

but not significantly better predictor than )(ˆ
,2 rCBVSV highwpre→∆  (p > 0.18), or )(ˆ

2 rCBVwpre→∆µ  
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(p > 0.05). However, both )(ˆ
,2 rCBVSV highwpre→∆  and ),,(ˆ

,,2 αtrans

highhighwpre KrCBVSV →∆  were 

significantly better predictors than wpreGTV 2
ˆ

→∆  (p = 0.02 and p = 0.01, respectively). Finally, 

)(ˆ
2 rCBVwpre→∆µ was a better predictor than wpreGTV 2

ˆ
→∆  (p > 0.4), but not significantly.  Also, 

the application of the leave-one-out technique resulted in the average AUCs of 0.857 ± 

0.062(±SEM), 0.79 ± 0.0672, and 0.68 ± 0.087 for ),,(ˆ
,,2 αtrans
highhighwpre KrCBVSV →∆ ,

)(ˆ
,2 rCBVSV highwpre→∆ , and wpreGTV 2

ˆ →∆ , respectively, suggesting no significant bias in the 

computed ROCs. Also, it requires a sample size of 110 lesions with 39 responsive ones to 

validate the results in an independent study.   

 

 

                                             (A)                                                                                             (B) 
Fig. III.3. Performance of the metrics listed in Table III.2 in prediction of responsive lesions. (A) ROC 

analysis (B), AUC vs * in Eq III.6. FPR: False Positive Rate TPR: True Positive Rate; AUC: Area Under 

Curve; 

 

 

III.D Discussion  

In this chapter, we proposed a new approach to delineate the subvolums of a tumor 

defined from physiological imaging-parameters and related their early changes to 
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treatment response in patients who had brain metastases and were treated by WBRT. Our 

proposed approach analyzes the heterogeneous distributions of physiological and/or 

biological imaging-parameters of the tumors, then assigns each tumor voxel a probabilistic 

membership function belonging to the physiological/biological classes defined in a sample 

of tumors, and then calculates the related subvolumes in each tumor. In the application of 

our approach to rCBV and Ktrans images of brain metastases, we found that a percentage 

decrease in the tumor subvolumes defined by the high-rCBV class from Pre-RT to 2 weeks 

after the start of RT predicted volumetric tumor response one month after RT. The ROC 

analysis showed that this new metric was significantly better than the decrease in the gross 

tumor volume (GTV) observed during the same time interval for predicting post-therapy 

response, suggesting that physiological imaging adds discriminatory information compared 

to the volumetric change. The framework presented in this study can be applied to other 

physiological, metabolic or molecular images, e.g., apparent diffusion coefficient and 11C-

Methinion PET, to delineate a different physiological-parameter defined subvolume of a 

tumor. A subvolume of the tumor defined in such way could be a candidate as a boost 

target.   

Our proposed approach differs from the method that generates the parametric 

response map (PRM) [52] and the one that uses hard thresholding to divide the tumor 

volume [53]. In the PRM method, after co-registration of a pair of images acquired at two 

different time points over therapy, a voxel-to-voxel comparison is applied to the images, 

and a response value is assigned to each voxel according to its change above or below a 

cutoff threshold. Although analyzing a voxelwise change in a tumor is an interesting 

approach, mis-registration of the image voxels, particularly in region where a tumor 
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shrinks or grows during the time interval, could compromise the result. In addition, the 

PRM-based analysis considers an absolute change in rCBV/Ktrans, regardless of the original 

value of the physiological parameters, whereas an increase/decrease in the low or high-

perfused voxels may have a very different implication. For example, a decrease in regions 

with high perfusion may be more related to treatment response than a decrease in low-

perfused areas. Also, while using a threshold value to segment a tumor volume is simple, 

the binary decision discards parameter continuity at the threshold value. Furthermore, 

finding an adequate threshold value is always a challenge, and often done empirically and 

sometimes arbitrarily. In contrast, our approach does not depend upon voxelwise accuracy 

of image registration or use any hard threshold to determine the subvolume of the tumor.  

It is worth to point out that our proposed method incorporates the tumor volume into 

analysis, and thus a change in the defined subvolumes represents both physiological and 

morphological changes in a tumor, which could increase the sensitivity in prediction of 

tumor response to therapy as well.  Also, although our method does not rely on accuracy of 

image registration, spatial information of the subvolume of physiological imaging 

parameters at each time point of measurement is well preserved as shown in Fig III.2. 

The previous studies have shown that a high mean or regional value of CBV or Ktrans 

in the brain tumor prior to therapy is correlated with a high tumor grade [47], and worse 

outcome [48]. A reduction in the high CBV and/or Ktrans in brain tumors during radiation 

therapy is associated with better outcome [48]. All these suggest that high-CBV and/or 

Ktrans in the brain tumor, as an imaging-defined tumor “phenotype”, and the related changes 

during therapy could be important prognostic and predictive indictors. Our results indicate 

that the early change in the high rCBV-defined subvolume of the tumor has the potential to 
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be used for selecting the lesion and defining the target for intensified treatment. To 

improve the performance of the proposed metric (from AUC=0.86), our general approach 

can be used to test whether including other physiological imaging parameters into analysis, 

e. g. apparent diffusion coefficient or 11C-MET PET, by creating a joint probability function 

and joint histogram, can improve prediction of treatment response. This type of analysis 

can help determine whether multiple physiological and metabolic imaging parameters 

provide complementary or redundant information. Also, it is interesting to further 

establish the relationship between the imaging-defined and molecular biology-defined 

“phenotypes” in the tumor and response to radiation, as it has been shown in a previous 

study that poor perfusion in head and neck squamous cell carcinoma xenografts is 

associated with less radiation-induced double-strand DNA damage [54]. Therefore, a 

poorly perfused subvolume of head and neck cancers could be a candidate for boost target 

[55].  The similar concept could also apply to Glioblastoma Multiforme.   

 

III.E Conclusion 

In this chapter, we delineated the subvolumes of a tumor for therapy assessment 

and guidance using physiological parameters such as the regional cerebral blood volume 

(rCBV) and the Gd-DTPA transfer constant (Ktrans) derived by fitting the dynamic contract 

enhanced (DCE) curves into a pharmacokinetic model. However, as mentioned in chapter I, 

using pharmacokinetic model to obtain the physiological parameter maps involve in series 

of uncertainties. Hence, we also aim to see if directly analyzing the DCE curves could 

provide similar results to what we obtained in this chapter with the goal of achieving an 

automatic and faster decision making tool for therapy assessment and guidance. The next 
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chapter is entirely devoted to this issue. Also, we are willing to consider the role of other 

physiological parameters such as apparent diffusion coefficient (ADC) and investigate if 

adding the diffusion data could improve the prediction results or not. We discuss this in the 

chapters V and VI, respectively. At last, further development and testing of the method 

proposed in this chapter using larger database and other types of tumors, such as 

glioblastoma and liver tumors, warrants its value for outcome prediction and therapy 

guidance.  
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Chapter IV 

 

DCE-MRI Defined Subvolumes of a Tumor for Therapy 

Assessment 
 

 

IV.A Introduction 

 As mentioned in chapter I, the physiological parameter maps derived from the 

pharmacokinetic (PK) models, although useful for diagnosis and therapy assessment, 

involve in a series of uncertainties [56]. Foremost, the DCE-MRI data often cannot be fitted 

to a selected PK model perfectly, and hence may be a source of errors affecting the accuracy 

of the physiological parameters. In addition, the “physiological parameters” derived from 

the PK models may not accurately reflect the underlying physiology, due to 

oversimplification in the models and lack of physiological validation of the models. For 

example, interpretation of Ktrans derived from the Toft model [20] depends upon flow 

limited, permeability limited or mixed. Also, computing the physiological parameters by 

fitting the DCE-MRI data into the PK models is time consuming, which is inadequate for 

decision making support in therapy assessment. Hence, a model free approach to analyze 

the DCE-MRI data (e.g., the methods based on factor analysis [57-58], independent 

component analysis (ICA) [59], and principal component analysis (PCA) [60-63]) could 

potentially facilitate the development of the real-time decision-making supportive tools in 

diagnosis and therapy assessment. PCA has shown the potential to be a very robust and fast 

technique in analyzing the DCE-MRI data [60-63]. However, to the best of our knowledge, 
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no standard approach has been proposed so far to incorporate PCA into an automatic 

supportive tool for decision-making in therapy assessment. Hence, the main goal in this 

work is to develop a pharmacokinetic model free framework combining PCA and a pattern 

recognition technique to facilitate the process of decision making in therapy assessment.  

As shown in chapter III, an early change in the subvolume of a brain metastatic 

tumor with high-rCBV and high-Ktrans is a better predictor for post radiation therapy 

response than a tumor volumetric change and a change in the mean tumor rCBV observed 

in the same time interval. In previous chapter, we showed that the physiological imaging-

defined tumor subvolume, as a response-predictor, is determined through a two-step 

process: 1) deriving the physiological parameters by fitting the DCE MRI data to a PK model 

and 2) delineating the subvolume by analysis of the physiological parameters in the tumor 

using a pattern recognition technique. Hence, in this chapter, the main goal is to develop a 

general framework to derive a response-predictor from DCE-MRI data without using the 

PK modeling and to have a semi-automated or fully automated tool for supporting clinic 

decision-making. We evaluated whether our model-free approach could provide a similar 

or even better metric, in defining the subvolume of a tumor, for assessment of therapy 

response, compared to the subvolume defined by the physiological parameters obtained 

from the PK model. We compared the two approaches using the same patients described in 

chapter II.    

 

IV.B Materials and Methods 

Our proposed PK model free framework consists of two phases: development phase and 

usage phase. In the development phase, a sample of the DCE data from tumors is processed 

and analyzed to develop the model and the predictive metric.  In the usage phase, we 
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determine if the predictive metric could be extracted rapidly from the DCE data of a new 

patient scan. 

 

IV.B.1 Development Phase  

 A flowchart of the development phase, shown in Fig. IV.1, includes preprocessing, 

modeling of DCE curves of a sample of tumors (including PCA and feature classification) to 

obtain a single metric, and evaluating the metric for response assessment. Each step is 

described in the following subsections in detail.   

 

Fig IV.1. The flowchart of our proposed PK model free approach to analyze the tumor DCE data for 

supporting decision-making of assessment of therapy response. cPC: Projection coefficient map; 

cPDF: Pooled histogram corresponding to a cPC. 
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IV.B.1.i Pre-processing 

DCE Curves Normalization: The dynamic curve at each voxel represents the temporal 

changes in signal intensity after the contrast injection. We calculate the signal intensity 

change ∆S from pre (baseline) to post contrast as following: 

∆�,-. ≡ �,0.1�2�2      (Equation IV.1) 

where S(t) and S0 represent signal intensities of a DCE curve at times t and 0 (the time of 

contrast injection), respectively.  Note that ∆S(t) is proportional to ∆R1, the change in the 

longitudinal relaxation rate, as long as TR x R1 << 1. To account for the individual 

hemodynamic response to contrast, we normalize ∆S at each voxel using the peak of the 

arterial input function, AIFmax, obtained during the same scan as: 

∆�3,-. � ∆�,-. ∙ �5�6789	      (Equation IV.2) 

An arterial input function can be determined from a region of interest (ROI) in a large 

artery (e.g., carotid artery for our application) manually, semi-automatically or 

automatically.  

DCE Curve Reconstruction: The DCE curves in each scan may not be acquired with 

the exactly same temporal resolutions and time durations.  Hence, we standardize the DCE 

curves in such a way that all curves have the same temporal resolution and length. We use 

the spline curve-fitting method [64] to reconstruct each DCE curve, and then resample 

them to have a same temporal resolution and total length.   

DCE Curve Alignment: The DCE curves from voxels within the tumor volumes of all 

patients need to be temporally aligned for further processing. We use the arterial input 
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function (AIF) obtained from each patient scan to align the DCE curves of voxels in the 

tumor volumes.  First, we fit the Gamma variate function [65] to each AIF as follows: 

: � ;,- � -<.=�>?1@,0102.					- A -<
0																																										- B 0  

               (Equation IV.3) C�D � :,-. E FG :,- � -́.I-́0
<  

All AIFs are then aligned at t0 that is resigned to be time 0. Using the resultant time shifts, 

the DCE curves from each scan are adjusted accordingly.  

 

IV.B.1.ii Projection Coefficient Map from Karhumen-Loeve Expansion of DCE Curves 

Our primary goal is to extract response-predictive features rapidly and directly from 

the DCE curves. Hence, we expand the DCE curves using a set of basis functions, by which 

the coefficients of the projection vectors for each DCE curve is a unique representation in a 

new space. First, in the development stage, using DCE data from a sample of tumors (e.g. 

pre-therapy DCE data), we construct matrix C (N x T) in which each row represents a DCE 

curve from one voxel in the tumors. N is the total number of voxels in all tumors and T is 

the number of time points in each curve. Next, we apply principal component analysis 

(PCA) to C to obtain a complete set of a total of T orthonormal principal components (PCi).  

Then, we perform the Karhumen-Loeve transformation of each DCE curve, ∆SN, in each 

voxel of the tumor to: 

∆�3 � 	∑ KLMNLOLP� 		→ 	∆�3 ≡ ,K�, K�… , KO.  (Equation IV.4) 

where ai is the projection coefficient (cPC) corresponding to the ith principal component. 

Hence, each DCE curve in a tumor volume is represented uniquely by {αi} in a T-
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dimensional coefficient space. However, Eq. IV.4 can be truncated at the first M principal 

components which contain 99% of energy of the original DCE curves. We will show that M 

is significantly smaller than T. Decomposing DCE curves of a new tumor to the first M PCs is 

much faster than fitting them to a PK model. We will show later that this process reduces 

the computation time and burden dramatically. 

 

IV.B.1.iii Projection Coefficient Defined Tumor Subvolumes   

 Probability Density Function of a Projection Coefficient in a Tumor: Each PC depicts a 

feature of the tumor DCE curve. Each voxel in a tumor has a unique projection coefficient 

on each PC. For each PC, the projection coefficients of the voxels in a tumor, which can be 

presented as a volumetric map of a lesion, have a distinct role in predicting the treatment 

response and outcome. The distribution of the projection coefficients in a large tumor is 

heterogeneous, similar to the physiological parameters. Hence, similar to what has been 

done previously for the physiological parameters and described in previous chapter, we 

analyze the distribution patterns of a projection coefficient,	KL , in the lesions, and 

subsequent changes during treatment. A probability density function (PDF) or histogram of 

KL  of a lesion is generated similarly. The PDF consists of 150 evenly-spaced points to cover 

the range of KL  for all the lesions of interest. A value of the PDF at a point x, H(KL  = x), of a 

lesion is calculated as: 

T,KL 	� 	>. ≡ UL:	> � W X KL 	B > E W                (Equation IV.5) 

where UL is the number of voxels within |KL  -x| < W, and W is a smooth factor of H and set as  

W � 	 YZ where � denotes a standard deviation of the KL  distribution in the tumor. For each 
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lesion, PDFs are calculated for scans at baseline (e.g., Pre-therapy as HPre(x)) and after 

starting therapy (e.g. at week-2 during therapy as H2W(x)). After HPre(x) is normalized to 

have an area under the PDF curve equal to one ([T,>.I> � 1), the HPre(x)s of all the 

lesions are summed to generate a pooled PDF (cPDF), in which each lesion has an equal 

contribution regardless of its size (Fig. IV.2(B)).  An example of HPre(x) of a lesion is shown 

in Fig. IV.2(A). 

 

                  (A)                                                                             (B) 

Fig IV.2. Application of FCM in classification of tumor space into classes of low, intermediate and 

high a1. (A): An example of the Pre-RT a1 histogram of a brain metastasis with a tumor volume of 

17.6 cm3. (B): The pooled PDF (light gray) of the Pre-RT a1 (cPDF1) from all the lesions and the three 

probability membership functions determined by FCM clustering. The cPDF1 is partitioned into 

three classes: representing low (dot-dashed black), intermediate (dashed black) and high (solid 

black) a1 classes.  a1: coefficient projection of the DCE curves on the 1st principal component.  

 

Probabilistic Membership Functions of Projection Coefficients: Previous studies have 

suggested that the rCBV (or Ktrans) distribution in a brain tumor is abnormal compared to 

normal cerebral tissue, as elevated rCBV in a subvolume of the tumor and low rCBV in 

another one [66-67]. A renormalization of tumor vasculature, such as decreasing the 

elevated rCBV and increasing the low one, could be an indicator of a tumor response to 

treatment [47-48]. The DCE-derived physiological parameters (e.g., rCBV and Ktrans) and 
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projection coefficients, ,K�, K� … , KO., are two representations of the DCE curves. Therefore, 

it is reasonable to assume that KL  in the tumor could also distribute abnormally in contrast 

to normal tissue, and changes during treatment could predict tumor response to therapy. 

Hence, similar to what has been done for rCBV and explained in previous chapter, we 

classify the pooled distribution of T�]^,KL. to three classes as high, intermediate and low KL  
classes using fuzzy-c-means (FCM) clustering by minimizing an objective function Jm:  

_̀ � ∑ ∑ Ma,KL.`bKL � cab�daP�3LP� , 1 X e B ∞                 (Equation IV.6)                                                                                                                             

where ca  is a prototype vector of the jth class, Ma,KL. is a probabilistic membership of a 

KL 	value belonging to the jth class, and m is a fuzzy exponent and chosen as 2. The solutions 

of Eq. IV.6 are determined iteratively by: 

ca � ∑ gh, i.7. ijikl∑ gh, i.7jikl 	,                                             (Equation IV.7) 

Ma,KL. � �
∑ mn8iophnb8iop�bq

�7olr�kl
.				                                   (Equation IV.8) 

until reaching stopping criteria. Note that the FCM cluster analysis does not classify a KL  
value into a single class (no hard threshold) rather generates a probabilistic function of KL  
that belongs to a class. The probabilistic membership function, Pj(KL), describes that a voxel 

having a projection coefficient ai has a probability P belonging to a class j, which is a new 

representation of a KL 	value of a tumor voxel (mathematically transfers the data from the KL  
space into a new space) see Fig. IV.2(B). 

   

Projection Coefficient Defined Tumor Subvolume: Primary interest is to test if a 

change in a subvolume of the tumor defined by high, intermediate or low KL 	values is 
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related to tumor treatment response. We define a subvolume (SV) of a tumor with low, 

intermediate or high KL 	using the probabilistic membership function Pj(KL), and calculate a 

percentage change in the SV from pre-therapy to after starting treatment (e.g., 2 weeks) as: 

∆s�tg]^→�u,a,KL. � 	 vOw�x∙[ gh, i..y�x, i.z i1vOw{|$∙[ gh, i..y{|$, i.z ivOw{|$o}~∙[ gh, i..y{|$, i.z! 	 ∙ 100, 

  																																																																			� ∈ ����, �U-��e�I�K-�, ��	��:��		      (Equation IV.9) 

We will test whether a change in each of the first M cPC defined tumor subvolumes during 

RT is associated with post-RT tumor response in a group of patients, which will be 

described in evaluation section. 

 

Tumor Subvolume Defined by Combined Projection Coefficients : We would like to test 

if combining the different cPCs could improve prediction for tumor response compared to 

using one cPC. To do so, first a joint histogram of ,K�, K�… , K�. of a lesion is computed, e. g. 

H(K�= x1, K�= x2, … K�	= xM). Then, a joint probability function, P(�KL�, ��L�), is defined as: 

M,�KL�, ��L�. � ghl, l.�∑ @ighi, i.�ik���∑ @i�ik� , �� � 1  (Equation IV.10) 

where �L  is the weighting factor of each coefficient and ji ∈ ����, �U-��e�I�K-�, ��	��:��. 
Applying the joint probability function to Eq. IV.10, a percentage change in a subvolume of 

a tumor defined by �KL� classes from Pre-therapy to after starting treatment (e.g. 2 weeks 

(2W)) is given by:  

 ∆s�tg]^→�u,�KL�, ��L�. � 

					vOw�x∙[ […[g,� i�,�@i�.y�x, l �… �.z l…z �1vOw{|$∙[ […[g,� i�,�@i�.y{|$, l �… �.z l…z �vOw{|$∙[ […[g,� i�,�@i�.y{|$, l �… �.z lz �…z � 	 ∙ 100  

(Equation IV.11) 
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The weighting factor ��L� can be selected based upon the best prediction for response from 

a developmental dataset and evaluated by an independent data set. We will demonstrate 

the principle in next section. 

 

 IV.B.2 Image Processing for a New Tumor 

For a new patient scan, first, we perform pre-processing of the DCE curves and then 

compute the projection coefficient maps of the first M or selected principal components. 

Next, we compute the histograms or a joint histogram of the selected coefficients within the 

tumor. Then, using the probability membership function obtained in the development step, 

we calculate the cPC-defined tumor subvolumes by Eqs. IV.10 or IV.11.  Finally, we 

determine a change of the subvolume from pre-therapy to during or post therapy (Fig. 

IV.3).  

 

Fig IV.3. A flowchart of the procedure required for a new patient scan 
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IV.B.3 Evaluation 

IV.B.3.i Patient 

 We have used the same patient list described in previous chapter to evaluate our 

proposed PK model free approach and compare it with other metrics. 

 

IV.B.3.ii Imaging Acquisition and Processing 

Image Acquisition. All patients had MRI scans on a Philips 3T scanner prior to 

radiation therapy (Pre-RT), 2 weeks after the start of RT (2W), and 1 month after the 

completion of treatment (1M Post-RT). MRI scans included pre and post Gd-DTPA 

volumetric T1 weighted images, multi-slice 2D T2 weighted images, and volumetric 

dynamic contrast enhanced (DCE) T1 weighted images. The 3D volumetric DCE-images 

were acquired during bolus injection of a standard dose of 2Gd-DTPA with an injection rate 

of 2 cc/s. The DCE-images were acquired in the sagittal plane with an image matrix of 128 x 

128 x 80, a field-of-view of 240 x 240 x 160 (mm), a voxel size of 2 x 2 x 2 (mm3), a flip 

angle(α) of 20°, and TE/TR of 1.04/5.14 msec and a temporal resolution of 6 sec. Using an 

in-house software package, Functional Image Analysis Tools (FIAT) [46], both anatomical 

and DCE-MR images were co-registered and resampled to have a voxel size of 0.9375 x 

0.9375 x 3 (mm3). Each lesion of interest was manually contoured by a physician on the 

post-Gd T1 weighed images obtained pre-RT, 2W and 1M post-RT. 

 Pre-processing. DCE images were pre-processed as explained above. The arterial 

input function of each patient scan was obtained by the following steps:  First, a region of 

interest containing brain and neck is contoured. Then, DCE curves within the contour are 

averaged to determine the peak enhancement, Tmax, in the tissue. Assuming that the arterial 
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input function reaches the enhancement peak prior to tissue, the first 20 voxels with the 

maximum enhancement in ∆�,�̀  ! � ∆-., one time frame before Tmax, within the contour 

are thresholded, and then the corresponding DCE curves are averaged to be considered as 

an arterial input function. Currently, this is done semi-automatically, but can be fully 

automated. Then, DCE curve in each voxel of the tumors was reconstructed to have a 

temporal resolution of 4 sec and a total length of 120 sec and re-aligned, respectively. 

 Model Development.  We pooled the DCE curves from all voxels of all 45 lesions pre-

RT together to determine the PCs, but not ones at week-2 during RT.  After obtaining the 

projection coefficient map for each tumor by projecting the DCE curves onto the PCs, the 

probability memberships of classes of each of projection coefficients were determined by 

using pre-RT data only. 

cPC defined Subvolume. A change in a tumor subvolume defined by a projection 

coefficient class from pre-RT to 2W was calculated by Eqs. IV.9 or IV.11. 

 

IV.B.3.iii Association of the cPC Defined Tumor Subvolume with Response 

Endpoint. We used the same endpoint described in chapter 3 to evaluate our 

proposed PK model free approach and compare it with other metrics. 

Statistical Analysis. First, we tested if there were any significant differences in the 

changes of ∆s�tg]^1�O→�u,L,KL.	between responsive, stable, and non-responsive tumors 

using Mann-Whitney U Test. To justify multiple comparisons, a p-value < 0.01 was 

considered as significant. Next, we performed a Receiver Operating Characteristic (ROC) 

analysis to evaluate sensitivity and specificity of the significant metrics identified in the 

previous test for predicting responsive tumors using software package ROCKIT [50].  Also, 



67 

 

we compared these newly developed metrics with the conventional metrics including a 

percentage change in the gross tumor volume (GTV) from Pre-RT to 2W, ∆s��tg]^→�u, and 

a change in the mean rCBV values of a tumor from pre-RT to 2W, ∆s�g]^→�u,�N�t., for 

predicting post treatment response. The significant difference of the area under ROC curves 

(AUC) between the metrics were compared by t-test, for which the standard error and the 

difference between the two AUCs were calculated by the method proposed by DeLong et al. 

[51]. For the tumor subvolume defined by combining more than one cPC, we used the 

maximum AUC to determine the	��L�.   
 

IV.C Experimental Results 

IV.C.1 Principal Components (PCs) 

PCA revealed that the first three principal components (PCs) comprised more than 

99% of the energy of the DCE curves of the tumors.  Fig. IV.4 shows the first three principal 

components. Our further investigation (data not shown) revealed that the first component 

was related to the area under each DCE curve, while the second and third ones were 

associated with the enhancement rate of a DCE curve and its derivative, respectively.        

Fig. IV.5 shows the heterogeneous distributions of the first three cPC maps of a tumor, 

indicating an average cPC in the tumor would not be sensitive to a heterogeneous change.  

Therefore, the analysis described in the method section was applied to the histograms of 

the first three cPCs in a tumor to determine the subvolume of the tumor with a given class. 
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Fig. IV.4. An example of a typical DCE curve for a brain metastatic lesion and the first three principal 

components (PCs) resulted after applying PCA to the DCE-Matrix. The coefficient maps achieved by 

projecting the DCE curve onto the first three components are related to the area under the DCE 

curve, enhancement rate and first derivative of the enhancement rate, respectively.   
 

 

Fig. IV.5. Distribution patterns of the first three projection coefficient maps in tumors overlaid on 

T1-weighted images pre-RT and week 2 after start of whole brain radiotherapy.  

 

IV.C.2 Association of cPC-Defined Tumor Subvolume with Response 

Associations of the changes in the first three cPC-defined tumor subvolumes with 

high, intermediate or low coefficients from pre-RT to 2W with the tumor response to 
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treatment are given in Table IV.1. We found that for the responsive group, a percentage 

decrease in the high-a1 subvolumes of the tumors from Pre-RT to 2W differed significantly 

from the progressive group (p<0.0015) and from a group combining progressive and stable 

tumors (p<0.0017), but marginally from the stable group (p<0.0199), Table IV.1. A change 

in the intermediate-a1 or low-a1 subvolumes of the tumors from pre-RT to 2W did not 

differentiate any response groups. We observed a similar but weaker trend for a2. 

Furthermore, a percentage decrease in the low-a3 subvolume of the tumor was more 

associated with tumor response than the high-a3 or intermediate-a3 subvolume. Also, a 

percentage decrease in the subvolumes defined by combining the high-a1 and low-a3 

classes from pre-RT to 2W revealed that adding a3 improved the statistical significance for 

differentiating the responsive tumor from the group of stable and progressive lesions 

compared to either coefficient alone but a2 did not add discriminatory information.  

For comparison, the results of the rCBV-Ktrans analysis that were reported in the 

previous chapter and other conventional metrics are included in Table IV.1. In summary, 

we found that the percentage decrease in the high-rCBV subvolumes of the tumors from 

Pre-RT to 2W of the responsive group differed significantly from the progressive group 

(p<0.0072) and from a group combining progressive and stable tumors (p<0.0057), but not 

from the stable group (p=0.033) (Table IV.1). The percentage decrease in the tumor 

subvolumes defined by both the high rCBV and high Ktrans classes from Pre-RT to 2W 

differentiated the three groups with improved statistical significances, compared to using 

either variable alone. Specifically, the responsive group significantly differed from the 

progressive group (p=0.0012) and from the group combining the progressive and stable 

tumors (p=0.0015). For the conventional metrics, the decrease in the mean tumor rCBV 
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from Pre-RT to 2W of the responsive group differed significantly from the stable group 

(p<0.005) and the group of combining the stable and progressive tumors (p<0.0066); and 

the percentage decrease in the GTVs from Pre-RT to 2W of the responsive group differed 

significantly from the progressive group (p<0.004) but marginally from the group of 

combining the progressive and stable tumors (p<0.012). These data show that both 

physiological-defined and cPC-defined subvolumes of a tumor achieve a similar level of 

statistical significance in differentiation of responsive, stable and progressive tumors.  

Table IV.1: Differences between responsive, stable and non-responsive tumors 

 Group of lesions 

Metric R vs. S S vs. NR R vs. NR R vs. {S & NR} 

 p-value ∆s�����→��,�,��. j=low 0.8766 0.7024 0.3878 0.5937 

 j=intermediate 0.2477 0.3339 0.0457 0.0773 

 j=high 0.0199* 0.1321 0.0015** 0.0017** ∆s�����→��,�,��. j=low 0.7431 0.7702 0.3359 0.4843 

 j=intermediate 0.8766 0.2002 0.1596 0.5774 

 j=high 0.3979 0.0561 0.0096** 0.0661 ∆s�����→��,�,��. j=low 0.0068** 0.2002 0.1323 0.0094** 

 j=intermediate 0.7693 0.2909 0.2083 0.4133 

 j=high 0.1522 0.0143 0.1088 0.8403 ∆s�����→��,����,�� ,��, ��, ¡. �.^ 0.0018 0.3568 0.0053 0.0005 ∆s�����→��,�,�£¤�. j=low 0.1086 0.2517 0.6392 0.1803 

 j=intermediate 0.2771 0.3339 0.0513 0.0900 

 j=high 0.0338* 0.3568 0.0072** 0.0057** 

 j=low 0.1012 0.8750 0.1910 0.0773 ∆s�����→��,�,¥¦��§¨. j=intermediate 0.3088 0.2909 0.8243 0.5613 

 j=high 0.6663 0.0162* 0.0406* 0.4992 ∆s�����→��,����,����,�£¤�,¥¦��§¨, ¡. ©. 0.0199* 0.0687 0.0012** 0.0015** ∆sª���→��,�£¤�. 0.0049** 0.2336 0.1088 0.0066** ∆sª���→��,¥¦��§¨. 0.5233 0.1704 0.5704 0.8775 ∆s«¬����→�� 0.1086 0.0653 0.0039** 0.0124* 

Abbreviations: GTV = gross tumor volume; R = responders; S = stables; NR = non-

responders; ^The optimum value of �� is 0.3, see the results of the ROC analysis. *: P<0.05; 

**: P<0.01. 
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IV.C.3 Predictive Values of the cPC Defined Subvolumes  

We explored the predictive value of the decrease in the subvolumes of the tumors 

defined by the cPCs from Pre-RT to 2W for predicting responsive tumors post-RT, and 

compared their performance with the decrease in subvolumes of the tumors defined by the 

high rCBV and high Ktrans and two conventional metrics. The ROC analysis showed that the 

AUCs were 0.83 ­	0.06(+SEM), 0.77­	0.07, 0.80	­	0.07, 0.70	­	0.08, 0.67 ­	0.08 and 0.56 

­	0.09 for		∆²�tg]^→�u,³L´³,K�.	, 		∆²�tg]^→�u,µ¶·,K�., 	∆s�tg]^→�u,³L´³,�N�t., 
∆s�g]^→�u,�N�t., ∆s��tg]^→�u and ∆s�tg]^→�u,³L´³,¸0] �¹., respectively (Fig. IV.6), 

indicating the high-a1 defined subvolume of the tumor had the best performance among the 

tested variables for predicting responsive tumor. The subvolumes defined by the high-a1 

and low-a3 classes with the weighting factor	� 0.3, determined by empirical evaluation of 

the AUCs (right panel of Fig. IV.6), resulted in the largest AUC, 0.88	­	0.05. The subvolumes 

defined by the high-rCBV and high-Ktrans classes with the weighting factor � 0.6 resulted in 

the AUC of 0.86	­	0.06. 

 The statistical analysis of the pair-wise ROC curves revealed that 

∆s�tg]^→�u,³L´³,³L´³,*�, *�, 0.3. was a slightly but not significantly better predictor 

than	∆s�tg]^→�u,³L´³,K�., and	∆s�tg]^→�u,³L´³,³L´³,�N�t, º0] �¹, 0.6., (p = 0.1, and p = 0.4, 

respectively). However, it was a predictor significantly better than	∆s�g]^→�u,�N�t., and 

∆s��tg]^→�u	(p = 0.0463, and p = 0.02), respectively. Finally, the predictive value of 

∆s�g]^→�u,�N�t. was slightly but not significantly better than ∆s��tg]^→�u (p < 0.4).  
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IV.C.4 Probability Membership Function Maps 

Examples of maps of the probability functions belonging to the class of high-rCBV 

and high-Ktrans and the class of high-a1 and low-a3, see Fig. IV.5, of a responsive and a stable 

lesion at Pre-RT and 2W are shown in Fig. IV.7. For the responsive lesion, the voxel 

probability functions belonging to the high rCBV-Ktrans class were reduced to almost zero 

from Pre-RT to 2W, and for the stable lesion the reduction was in a much smaller extent. A 

similar pattern was also observed for the probability functions belonging to the class of 

high-a1 and low-a3. However, as seen, the latter highlights fewer voxels to the treatment 

response representing a more specific response-related map. 

 

 

                                                   (A)                                                                                           (B) 

Fig  IV.6. Performance of the metrics listed in Table IV.2 in prediction of responsive lesions. (A): 

ROC curves of the metrics listed in Table 2 for predicting responsive tumors; (B): AUC vs �� in Eq. 

IV.11.   FPR: False Positive Rate TPR: True Positive Rate; AUC: Area Under Curve; 
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Fig. IV.7. Comparison of the physiological-defined and PCA-defined tumor subvolumes and 

their longitudinal changes in a responsive and a stable lesion. Top row: Pre-RT T1 weighted 

image (left), probability function map of the class with the high-rCBV and high Ktrans Pre-RT 

(middle) and probability function map of the class with the high-a1 and low-a3 Pre-RT (right).  

Bottom row: the similar images at 2W.  The anterior lesion is responsive and posterior one is stable. 

 

IV.D Discussion 

In this study, we proposed a general framework based on principal component 

analysis (PCA) and a pattern recognition technique for directly delineating the response-

driven subvolume of a tumor from the DCE-MRI data. We compared the predictive values of 

the PC-defined tumor subvolume with the physiological-parameter-defined one (based 

upon regional cerebral volume (rCBV) and Ktrans) in the patients who had brain metastases 

and were treated by whole brain radiation therapy. We found that the two approaches 

could predict the tumor response to therapy similarly while the PC-defined subvolume can 
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be delineated more rapidly, which is required for supporting clinical decision making.  

Overall, our findings indicate that the projection coefficient maps from the first three 

principal components (PCs) may contain almost all response-related information of the 

DCE curves. Our further investigation revealed that the first coefficient that is related to the 

area under the DCE curve is the main factor to determine the response (AUC = 0.83) while 

the third component (derivative of the enhancement rate) has complimentary information 

(AUC = 0.88).  Our approach had the potential to be an effective tool for supporting real-

time decision making.      

  Our proposed approach to analyze the DCE-MRI data has several advantages in 

compared with the other model-free techniques which are based on factor analysis [56-57], 

ICA [58] or extracting characteristic features, such as time to peak or maximum 

enhancement, from the DCE curves [68]. Foremost, for each tumor type or body site, a set 

of principal components (PCs) used in calculation of the coefficient maps can be achieved 

offline and are available before a new patient is scanned. Also, we address the 

heterogeneous distributions of the principal component coefficients within the tumor by 

using fuzzy clustering analysis to determine the probability membership functions of 

classes that the principal component coefficients belong to. Again, this relationship is 

established offline. Hence, for a new patient scan, computations for the DCE curves only 

involve in preprocessing the DCE curves, projecting them onto a couple of pre-determined 

principal components, calculating the histograms of the two projection coefficients in the 

tumor, and computing the metric given in Eq. IV.10. Computing a couple of principal 

component coefficients is a much faster process than fitting PK modeling. Our model can be 

updated when the new patients’ data are accumulated, including PCs, the probability 
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membership functions, and the predictive statistics given in Fig. IV.6(A). Also, re-aligning 

and reconstructing all DCE curves from all tumors in the DCE-Matrix to determine the PCs, 

has the potential to overcome the inter-scan variation in the DCE time series. In addition, 

the set of projection coefficients obtained for each curve is a complete representation of the 

curve in an N-dimensional feature space wherein the data reduction is performed with the 

best approximation and without significant concerns regarding the information loss. As 

shown, almost all response-related information is derived from the first three components. 

However, for the approaches based on feature extraction, there is no guarantee that the 

computed features incorporate all relevant information for therapy assessment.  

One very important note regarding the proposed methodology is that it is critical to 

use the arterial input function to normalize the DCE curves. Our investigations showed the 

enhancement peak of AIF is not linearly correlated with the enhancement peaks of the DCE 

curves of other tissues, such as normal white matter, gray matter and even veins, indicating 

intra-patient variation on the peak enhancement. Also, the enhancement peak of AIF 

manifests great inter-patient variation. It is worthwhile to point out that the projection 

coefficients (e.g. the first three components) and subsequent delineated subvolume 

determined by our approach have great tolerances on the temporal resolution and total 

acquisition time of the DCE curves, while the image acquisition parameters may affect the 

accuracy of the physiological parameters derived from the PK models [69]. Hence, we may 

be able to estimate the projection coefficient maps of a tumor accurately using a lower 

temporal resolution, by which a high spatial resolution can be achieved to delineate the 

tumor heterogeneity. Further investigation in this regard is ongoing.    
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IV.E Conclusion 

This chapter proposed a general framework for directly analyzing the DCE-MRI data 

to delineate the response-driven subvolume of a brain metastatic tumor. However, this 

approach needs to be further validated using an independent dataset. Also, it could be 

extended and recalibrated to other tumor types, e.g. glioblastoma, for early assessment of 

tumor response to therapy. 
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Chapter V 

 

Diffusion Abnormality Index: a New Imaging Biomarker 

for Early Assessment of Tumor Response to Therapy 

 

 

 

V.A Introduction 

Several methodologies have been proposed so far to quantify the ADC changes in 

tumors beyond a change in the mean ADC. The functional diffusion map (fDM)[70-74], 

probably the most common approach, measures interval changes voxel-to-voxel in a pair of 

the co-registered ADC images acquired pre and post the start of therapy. The voxels with an 

ADC change above a threshold are considered as a measure of response. Despite the 

promising results of the fDM-based approach and its modifications [75], the issue of voxel-

to-voxel misregistration, particularly in the region where a tumor volume shrinks or grows 

during the interval of measurements, is not solved yet. Also, it is important to consider the 

original ADCs to interpret subsequent changes correctly. Alternatively, analysis of the 

tumor ADC histogram has been proposed [76-87]. A bi-normal distribution mixture model 

has shown that the mean value of the low-ADC distribution can predict the therapy 

response in gliomas [76-78]. Also, changes in mean, skewness and kurtosis of the ADC 

histogram or the minimum value of the ADC in tumors have been related to survival and 

the treatment outcome [79-87]. However, these methods have not considered changes in 

the whole ADC histogram, including both regions with high cellularity and edema, in each 
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of which a change could reflect a part of the process of a tumor response to therapy.  

Therefore, it is highly desirable to develop a new methodology for quantifying the tumor 

ADCs to improve the performance of DW-MRI for therapy assessment.  

This chapter describes the development of a diffusion abnormality index (DAI), a 

new imaging biomarker, to quantify the diffusion abnormality of a brain metastatic tumor 

for early assessment of tumor response to therapy.  The new approach assigns each voxel 

of the tumor a diffusion abnormal probability according to its ADC value, and then 

computes the DAI for the tumor. We then tested if an early decrease in the DAI of a tumor 

could predict therapy response in the patients who had brain metastases and were treated 

with either whole brain radiotherapy (WBRT) alone or in combination with Bortezomib as 

a radiation sensitizer.  

 

V.B Materials and Methods 

V.B.1 ADC Image Analysis Framework 

V.B.1.i Histogram of ADCs in a Tumor 

 To analyze the ADC distribution in a tumor and a subsequent change during 

treatment, a histogram of ADCs in a lesion measured at each time point was generated 

using similar methods explained in the previous chapters. Then, the ADC histogram of each 

lesion at each scan is normalized to have an area under the histogram equal to one 

([T,>. � 1). The ADC histogram of normal tissue (HNT(ADC)) is calculated in a similar 

fashion except the peak normalized to one (Fig. V.1(A)). Compared to the normally 

distributed ADC histogram of normal tissue, the ADC histogram of a tumor is spread, 

skewed and/or shifted (Fig. V.1(A)). 
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Fig. V.1. Example of a diffusion abnormality probability function (DAProF) for a lesion. (A) ADC 

histograms in a region of normal white matter (solid), and a progressive brain metastasis prior to 

treatment (doted) and 2 weeks after starting the treatment (dashed). Peaks of all histograms are 

normalized to one for visualization. (B) DAPoF of the same tumor (solid). The DAProF is equal to 

(1-HNT) filtered by a band-pass filter and weighted by a factor α (< 1) for high ADCs.  

 

V.B.1.ii Diffusion Abnormality Probability Function 

 Next, a diffusion abnormality probability function (DAProF) is developed to 

characterize the whole tumor ADC histogram based upon the normal tissue ADC 

distribution of each patient. The HNT(ADC) divides the tumor ADC histogram into three 

segments with low, normal, and high ADCs (Fig. V.1(A)). The first and latter are related to 
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high cellular density and edema, respectively. Therefore, for each patient, a DAProF can be 

defined as 1-HNT(ADC), and filtered by a band-pass filter (BPF) centered at the peak of 

HNT(ADCNorm) to reduce noise influence in the computation at two tails where the ADC 

approaches to positive or negative infinite (or zero) as: 

»CM��D � �MD ∙ "1 � T3O,C»N.&               (Equation V.1) 

The 90% confidence interval of HNT(ADC) is used to define the band-width of BPF. 

Considering that changes in the low-ADC (high cellularity) tumor region could 

predominantly determine therapy response, a weighting factor α (<1) is used to weight low 

and high ADC contributions unequally in DAProFα as: 

»CM��D= �
¼½¾
½¿»CM��DÀ¶· � �MD ∙ "1 � T3O,C»N.&							C»N X C»N3¶]`
»CM��DyL´³ � * ∙ �MD ∙ "1 � T3O,C»N.&	C»N Á C»N3¶]`

  (Equation V.2) 

The DAProFα is normalized to one at the peak.  Note that DAProFα is patient-specific. Also, 

we investigate the role of different BPFs e.g. the Kaiser, Chebyshev, Gaussian, Trapezoidal 

and Tukey filters in constructing the DAProF.  

 

V.B.1.iii Diffusion Abnormality index 

 To quantify the extent of diffusion abnormality in a tumor at a specific scan time (τ), 

a diffusion abnormality index (DAI) is defined as:  

»C�=,�. � ��tÃ ∙ [TÃ,>. ∙ »CM��D=,>.I>                  (Equation V.3) 

where GTVÇ and TÃ,>. denote the gross tumor volume and the tumor ADC histogram at 

time τ, respectively.  A low or high ADC abnormality index can be computed by replacing 
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DAProFÎ by DAProFÏÐÑ or DAProFÒÓÔÕ in Eq. V.3.  A change in the DAI from pre-RT to 2W is 

calculated as: 

∆s»C�=,�]^→�u � Ö5�×,�u.1Ö5�×,�]^1�O.Ö5�,�]^1�O. ∙ 100.    (Equation V.4) 

In response to a therapy, the ADCs in the region with high cellularity may increase due to 

cell shrinkage or necrosis [71] and in the region of edema may decrease due drainage of 

water into tumor cells.  However, the ADC change in the region of high cellularity or edema 

may play a different role for assessment of response, which may depend upon a tumor type 

and therapeutic regime. Hence, low and high ADC contributions are weighted by α in Eqs 

V.3 and V.5 while forming a single metric for assessing tumor response to a specific 

treatment.  

 

V.B.2 Evaluation 

V.B.2.i Patient 

Twenty four patients who had brain metastases and were treated by WBRT were 

enrolled in an institutional review board (IRB)-approved prospective MRI study (12 

women and 12 men, ages 40-76 years, Table V.1). The histology included melanoma (14), 

non-small cell lung cancer (6), renal cell carcinoma (1), breast cancer (2), and head & neck 

squamous cell carcinoma (1). All patients received WBRT with a total dose of 30 Gy (16 

patients) or 37.5 Gy (8 patients).  Thirteen patients also received Bortezomib during WBRT 

as a radiation sensitizer. Each lesion was analyzed individually due to intra-patient 

heterogeneous lesion response to therapy.  If a patient had three metastases or fewer, all 

lesions were included. If a patient had more than three lesions, only the three largest 
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lesions were analyzed. If a patient had more than three lesions larger than 0.5 cm3, all 

lesions larger than 0.5 cm3 were included. In overall 67 metastatic lesions were included in 

our dataset 28 of which were treated with radiotherapy alone and the rest were treated 

with radiotherapy in combination with Bortezomib as a radiation sensitizer. 

 

Table V.1. Patient characteristics information 

Pt. Gender Age(Y) Histology 
Total accumulated  

dose/Fx (Gy) 

Concurrent 

Therapy 

No.  

of L. 

Tumor Volume 

Range (cm3) 

1 Female 54 Breast Cancer 37.5/2.5 None 6 0.5 - 11.78 

2 Female 60 NSC Lung Cancer 37.5/2.5 None 1 0.52 

3 Male 52 NSC Lung Cancer 30/3 None 1 0.479 

4 Female 64 NSC Lung Cancer 37.5/2.5 None 1 0.11 

5 Male 43 Head & Neck SCC 30/3 None 1 0.60 

6 Male 58 NSC Lung Cancer 30/3 None 3 2.38 - 10.69 

7 Female 66 NSC Lung Cancer 37.5/2.5 None 1 0.95 

8 Female 53 Breast Cancer 30/3 None 4 0.45-8.9 

9 Male 40 Melanoma 37.5/2.5 None 3 0.06-1.23 

10 Male 58 Melanoma 30/3 None 4 0.48-6.47 

11 Female 51 NSC Lung Cancer 30/3 None 3 0.50 - 4.55 

12 Male 63 Renal Cell Carcinoma 30/3 Bortezomib 2 13.23 - 14.67 

13 Male 41 Melanoma 37.5/2.5 Bortezomib 3 0.15 - 1.24 

14 Female 52 Melanoma 37.5/2.5 Bortezomib 1 2.74 

15 Female 45 Melanoma 30/3 Bortezomib 1 2.07 

16 Male 49 Melanoma 30/3 Bortezomib 2 0.17 - 4.09 

17 Male 61 Melanoma 37.5/2.5 Bortezomib 7 0.5 - 17.67 

18 Female 55 Melanoma 30/3 Bortezomib 2 0.42 - 0.55 

19 Male 76 Melanoma 30/3 Bortezomib 1 0.68 

20 Female 46 Melanoma 30/3 Bortezomib 8 0.5 - 1.95 

21 Female 57 Melanoma 30/3 Bortezomib 2 0.94 - 1.58 

22 Male 60 Melanoma 30/3 Bortezomib 3 0.18 - 1.31 

23 Female 74 Melanoma 30/3 Bortezomib 4 0.69 - 5.81 

24 Male 67 Melanoma 30/3 Bortezomib 3 0.62-11.10 

Abbreviation: Pt. = patient; Y = year; NSC = non-small cell; SCC = squamous cell carcinoma; No. of 

L. = number of lesions; and Fx=fraction size.  

 

V.B.2.ii Image Acquisition and Pre-processing 

 All patients had MRI scans on a Philips 3T scanner prior to radiotherapy (Pre-RT), 2 

weeks after the start of RT (2W), and 1 month after the completion of treatment (1M Post-
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RT). MRI scans included pre and post Gd-DTPA volumetric T1-weighted images, 2D T2-

weighted images, and diffusion-sensitive images. The diffusion weighted images were 

acquired using a spin-echo echo-planar imaging sequence (TR/TE = 2636/46 msec) with 

b0= 0, and diffusion weighting along three orthogonal directions and b1 = 1,000 sec/mm2 to 

calculate the ADC images.  

Using an in-house software package, all ADC images were co-registered to pre-RT 

post-Gd T1-weighted images by rigid transformation and mutual information to have a 

voxel size of 0.94 x 0.94 x 3 (mm3).  After each lesion of interest was contoured on the post-

Gd T1 weighed images obtained pre-RT, 2W and 1M post-RT by a physician, the tumor 

volumes were transferred onto the ADC maps obtained at the same time point. The necrotic 

regions of the lesions were also contoured, and excluded from analysis.  For each patient, a 

volume of 3-4 cc of normal white matter or cerebellum tissue, depending upon the location 

of the tumor of interest, was contoured on the pre-RT post-Gd T1-weighed images and 

transferred onto the pre-RT ADC map to obtain a distribution of normal ADCs.  

 

V.B.2.iii DAI for Prediction of Response  

Endpoint. Given that previous studies indicate that brain metastases exhibit little 

pseudo-response and pseudo-progression one month after RT [49], a percentage change in 

the gross tumor volume (GTV) from Pre-RT to 1 month post RT, ∆s��tg]^→��	�¶¹0 , was used 

as a measure of tumor response to therapy. From Pre-RT to 1M Post-RT, of the 27 lesions 

treated with radiotherapy alone, 15 had a decrease in the GTV of at least 25%, defined as 

responsive, 7 had an increase of at least 25%, defined as progressive, and the remaining 6 
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were defined as stable. For the 39 lesions treated by radiotherapy in combination with 

Bortezomib, 10 lesions were responsive, 13 lesions were progressive and 17 were stable.  

Predictive Model. First, we used the lesions in each treatment group to optimize α (< 

1) in	∆²»C�=,�]^1�O→�u by maximizing the group difference between the responsive and 

progressive lesions using Mann-Whitney U Test. Using the optimal value of α, we further 

tested if ∆s»C�=,�]^→�u could differentiate responsive from stable tumors, and stable from 

progressive tumors in both treatment groups. A p-value < 0.05 was considered as 

significance. Next, we tested sensitivity and specificity of ∆s»C�=,�]^→�u for predicting non-

responsive tumors, including both progressive and stable tumors by Receiver Operating 

Characteristic (ROC) analysis (software package ROCKIT) [50]. Also, we compared the 

performance of ∆sDAI for predicting post-treatment response with the ADC metrics 

previously published by others, such as a mean of the low ADC distribution from the bi-

normal ADC distribution mixture model [76-78] and skewness and kurtosis of tumor ADC 

distributions [80], and conventional metrics, such as a percentage change in the GTV, pre-

treatment minimum ADC, a minimum ADC change and a change in the mean of tumor ADCs 

from pre-RT to 2W.  The significant difference of the area under ROC curves (AUC) between 

the metrics were compared by t-test, for which the standard errors and the difference 

between the two AUCs were calculated by the method proposed by DeLong et al. [51].  We 

also used the leave-one-out technique to measure the prediction risk of ∆sDAI.  
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V.C Experimental Results 

V.C.1 Association of DAI with Response 

The best separation of the group difference between the responsive and progressive 

tumors resulted in α values of {0.7, 0.65, 0.65, 0.625, and 0.6} and {0.2, 0.2, 0.125, 0.15 and 

0.175} for lesions treated with radiotherapy alone and in combination with Bortezomib as 

a radiation sensitizer and for Kaiser, Gaussian, Chebyshev, Trapezoidal and Tukey band-

pass filters, respectively. The results primarily suggest that a decrease in abnormality 

associated with low-ADCs could be a predominant indicator for tumor response to therapy 

compared to a decrease in abnormality with high-ADCs. Also they reveal secondarily that a 

decrease in abnormality associated with high-ADCs (edema) may be interpreted differently 

in determining the response of a tumor to various treatments. For lesions treated with 

radiotherapy alone, from Pre-RT to 2W, DAI0.7(Kaiser) showed a significantly greater 

decrease in the responsive tumors than the stable lesions (p < 0.0045), Table V.2, and the 

progressive ones (p < 0.0002), or the non-responsive tumors (including both progressive 

and stable ones) (p < 0.00004). The results show that choosing different band-pass filters 

does not change the results significantly. Among the other metrics, the percentage decrease 

in the GTV from Pre-RT to 2W in the responsive group differed significantly from the stable 

group (p < 0.0265), the progressive group (p < 0.0004), and the group of combining the 

progressive and stable tumors (p<0.0003). The performances of the other metrics for 

differentiation of responsive, stable and progressive lesions are summarized in Table V2. 

As seen, skewness could differentiate between the responsive and progressive lesions and 

the percentage but change in GTV and DAI performed the best among all metrics for group 

differentiation in lesions treated with radiotherapy alone. For lesions treated with 
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radiotherapy combined with Bortezomib, none of the metrics except for DAI was able to 

differentiate between the responsive and progressive lesions (p < 0.02), see Table V.3. The 

DAI classifies the responsive and stable lesions similarly when Bortezomib was used as a 

radiation sensitizer. Also, Table V.3 show that the Kaiser, Gaussian and Tukey band-pass 

filters performed better than the other filters. Hence, for the rest of this chapter, we use the 

Kaiser filter to report the results. Finally, Fig V.2 shows the box plots summarizing the 

performance of the significant metrics (∆Skewness, ∆Kurtosis, ∆GTV and ∆DAI) listed in 

Tables V.2 and V.3 for differentiating responsive, stable and progressive lesions treated 

with radiotherapy alone and in combination with Bortezomib, respectively.  
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Table V.2: Association of the different diffusion metrics with response in lesions treated with whole 

brain radiotherapy alone   

 Lesion Response Group  

Metric (Pre-RT->Week2)  R vs. S S vs. P R vs. P R vs. {S & P} 

  p-value 
∆Skewness  0.2933 0.4452 0.0289 0.0382 

∆Kurtosis  0.4137 0.7308 0.0668 0.0883 

∆μ  0.2933 0.6282 0.5728 0.3109 

∆Min  0.3305 0.1375 0.2903 0.9266 

MinPreRT  0.5593 0.2343 0.7780 0.8901 

∆Low-ADC (BNGM)  0.0391 0.2343 0.6282 0.3109 

Low-ADCPreRT (BNGM)  0.0942 0.0350 0.3595 0.7125 

∆GTV  0.0265 0.0047 0.0004 0.0003 

∆DAI0.7(Kaiser)  0.0045 0.0047 0.0002 0.00004 

∆DAI0.65(Gaussian)  0.0045 0.0047 0.0002 0.00003 

∆DAI0.65(Chebyshev)  0.0057 0.0023 0.0002 0.0001 

∆DAI0.625(Trapezoid)  0.0057 0.0047 0.0002 0.0001 

∆DAI0.6(Tukey)  0.0045 0.0047 0.0002 0.00004 

The group differences between responsive, stable and progressive tumors treated with 

radiotherapy. For each metric, the absolute or percentage change from pre-RT to week 2 were 

evaluated and the best performance is reported. The black rows show significant metrics. ∆ = 

Change from Pre-RT to Week 2; μ = mean of tumor ADC; Min = minimum; Low-ADC (BNGM) = the 

mean of the low ADC distribution in the bi-normal Gaussian mixture model [76-78]; GTV = gross 

tumor volume; DAI = diffusion abnormality index; R = responsive; S = stable; P = progressive;    

 

Table V.3: Association of the different diffusion metrics with response in lesions treated with whole 

brain radiotherapy in combination with Bortezomib as a radiation sensitizer   

 Lesion Response Group  

Metric (Pre-RT->Week2)  R vs. S S vs. P R vs. P R vs. {S & P} 

  p-value 
∆Skewness  0.4768 0.9825 0.4382 0.3940 

∆Kurtosis  0.8952 0.7756 0.7330 0.7846 

∆μ  0.4768 0.8780 0.8768 0.5956 

∆Min  0.1331 0.5249 0.2778 0.1348 

MinPreRT  0.5800 0.6770 0.6869 0.5735 

∆Low-ADC (BNGM)   0.6542 0.6770 0.7802 0.6641 

Low-ADCPreRT (BNGM)   0.5800 0.9476 0.8259 0.6877 

 ∆GTV   0.9370 0.0756 0.1628 0.5096 

∆DAI0.2(Kaiser)  0.2572 0.0300 0.0101 0.0411 

∆DAI0.2(Gaussian)  0.2572 0.0239 0.0120 0.0444 

∆DAI0.125(Chebyshev)  0.3845 0.0132 0.0143 0.0692 

∆DAI0.15(Trapezoid)  0.3295 0.0168 0.0170 0.0644 

∆DAI0.175(Tukey)  0.2572 0.0149 0.0120 0.0444 

The group differences between responsive, stable and progressive tumors treated with 

radiotherapy. For each metric, the absolute or percentage change from pre-RT to week 2 were 

evaluated and the best performance is reported. The black rows show significant metrics. ∆ = 

Change from Pre-RT to Week 2; μ = mean of tumor ADC; Min = minimum; Low-ADC (BNGM) = the 

mean of the low ADC distribution in the bi-normal Gaussian mixture model [76-78]; GTV = gross 

tumor volume; DAI = diffusion abnormality index; R = responsive; S = stable; P = progressive; 
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Fig. V.2. Box plots of ∆DAI (A and E), ΔGTV (B and F), ∆Skewness (C and G) and ΔKurtosis (D and H) 

for responsive, stable and progressive lesions treated by WBRT alone (top) or in combination with 

Bortezomib as a radiation sensitizer (bottom). The top row shows that ∆GTV and ∆DAI0.7 

differentiate the responsive lesions from the stable and progressive ones treated by WBRT while 

∆DAI0.2 differentiate the responsive and stable lesions from the progressive ones when Bortezomib 

is used as a radiation sensitizer. 

 

 

V.C.2 Performance of the DAI for Prediction of Response 

We evaluated the performance of the significant or marginally significant metrics in 

Tables V.2 and V.3, such as ∆DAI, ΔGTV, ∆Skewness, and ΔKurtosis, for prediction of non-

responsive tumors post-RT for both treatments. When lesions treated with radiotherapy 

alone, the ROC analysis showed that the AUC was 0.96	­	0.04	(+SEM), 0.91	­	0.06, 

0.64	­	0.1, and 0.71	­	0.1 for ∆DAI0.7, ∆GTV, ∆Skewness, and ∆Kurtosis, respectively (Fig. 
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V.3(A)). A pair-wise comparison of the ROC curves of the two metrics revealed that ∆DAI0.7 

is a predictor significantly better than ∆GTV (p < 0.02), suggesting the physiological change 

occurs prior to the morphological change. When Bortezomib was used as a radiation 

sensitizer, the AUC was of 0.70	­	0.09	(+SEM), 0.57	­	0.08, 0.61	­	0.1, and 0.52	­	0.1 were 

achieved for ∆DAI0.2, ∆GTV, ∆Skewness, and ∆Kurtosis, respectively (Fig. V.3(B)).  Finally, 

the leave-one-out analysis resulted in * � 0.7 ­ 0.0	,�ÙÚ) and * � 0.19 ­ 0.02	 for 

radiotherapy alone and in combination with Bortezomib, respectively, indicating that there 

is no significant bias in the * value selection and also that * is a treatment-specific and even 

disease-specific parameter in the DAI.  

 

 

Fig. V.3. ROC curves of metrics ∆DAI, ∆GTV, ∆Skewness, and ∆Kurtosis for predicting non-

responsive tumors (including both stable and progressive tumors) treated with radiotherapy alone 

(A) and in combination with Bortezomib as radiation sensitizer (B). 
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Fig. V.4. Example of changes in tumor cellularity map in a responsive and a progressive lesion. Top 

rows: T1- weighted images at Pre-RT and 2W, Middle rows: ADC maps at Pre-RT and 2W, and 

Bottom rows: maps of diffusion abnormality probability functions at Pre-RT and 2W. The images of 

a responsive case (with a volume of 3.7cc) are depicted in two left columns and the images of a 

progressive one (with a volume of 4.1cc) are represented in two right columns. From Pre-RT to 2W, 

the diffusion abnormality index (DAI) decreased ~31% for the responsive lesion, and increased 

~16% for the progressive one. For the responsive lesion, treated by radiotherapy alone, α = 0.2 but 

for the progressive lesion where Bortezomib was used α = 0.7. 

 

V.C.3 DAProF Map 

Examples of maps of the ADC and the diffusion abnormality probability function, 

DAProF, for a responsive lesion, treated with radiotherapy alone, and a progressive one, 

treated with radiotherapy in combination with Bortezomib, at Pre-RT and 2W are shown in 

Fig. V.4. From Pre-RT to 2W, the DAI decreased ~31% for the responsive lesion but 
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increased ~75% for the progressive one. For the responsive lesion, the DAIs associated 

with low and high ADCs decreased approximately 65% and 21%, respectively. For the 

progressive lesion, the DAI associated with low ADCs increased 411% but the one 

associated with high ADCs decreased 20%.  

 

V.D Discussion 

 In this chapter, a diffusion abnormality index was developed based upon diffusion 

weighted magnetic resonance imaging for early assessment of tumor response to therapy. 

The development of the DAI considers underlying physiology of abnormal ADCs in a tumor, 

including both high cellularity and edema, and a patient-specific abnormal diffusion 

probability. The DAI weights the abnormal ADC contributions from high cellularity and 

edema differently for predication of therapy response. The performance of DAI was 

evaluated in patients who had brain metastases and were treated by either whole brain 

radiotherapy (WBRT) alone or in combination with Bortezomib as a radiation sensitizer. 

Comparing with other ADC metric published previously and conventional metrics, the DAI 

was the best one for predicting volumetric response of brain metastases to radiotherapy.  

Also, our results indicate that the diffusion-related physiological change in the tumor 

occurs earlier than the morphological change in response to radiotherapy. The DAI 

developed and tested in this study could be also applied to other tumor types and 

treatment regimens after recalibration, e.g., glioblastoma and head and neck cancers, and 

anti-angiogenesis therapy, and has a potential to be a robust imaging biomarker for early 

assessment of therapy response and outcome. 
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In the development of the DAI, we found that the weighting factor, α, is different for 

different treatments or tumor types. For instance, when brain metastases were treated 

with WBRT, the changes in abnormality associating with high-ADCs contributed 

substantially for response assessment. In this case, both a decrease in cellularity and a 

decrease in edema could be an indicator for treatment response. However, when 

Bortezomib was used as a radiation sensitizer with WBRT to treat melanoma metastases to 

the brain, we realized that a decrease in abnormality associating with high-ADCs is less 

important for response assessment. Also, we found that for assessment of response of 

melanoma metastases treated by WBRT with Bortezomib, the performance of all tested 

ADC metrics, including the DAI, were worse than the metastases that were not from 

melanoma and treated by WBRT alone.  This could be due to the nature of melanoma, high 

vascularity, edema and hemorrhage, and the effect of Bortezomib on the lesion [88-89].  

Since Bortezomib could alter vascular properties of the tumor, a change in vascular 

characteristics of the tumor could be an important part of tumor response to therapy, and 

hence a perfusion change could be added into the DAI to improve response assessment.  

This hypothesis will be tested in the future.  Our findings also suggest that the DAI could be 

used to assess a specific treatment effect on a specific tumor. For an anti-angiogenesis 

treatment to brain tumor, e.g., glioblastoma, a high ADC abnormality reduction indicates 

the treatment effect on the abnormal leaky vasculature but a low ADC abnormality 

decrease suggest the effect on the tumor.   

The diffusion abnormality index proposed in this study has several advantages in 

comparison with functional diffusion map [70-74. Foremost, the diffusion abnormality 

index does not rely on voxel-to-voxel image registration accuracy, which the fDM-based 
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analysis solely depends upon. Hence, anatomical alteration of a tumor after starting 

therapy, e.g., a change in edema, or surgical cavity, and/or tumor growth or shrinkage, does 

not have an adverse effect on the DAI.  In addition, we incorporate the tumor volume into 

the DAI, and thus a change in the DAI represents both physiological and morphological 

changes in a tumor, which could increase sensitivity of the DAI for tumor response to 

therapy.  Furthermore, the fDM-based analysis only considers an absolute change in the 

ADC [70], regardless of the origin of the ADC, whereas an increase or a decrease in the low 

or high ADC region has a very different underlying implication. An ADC increase in the 

region with abnormal low diffusion and a decrease in the region with abnormal high 

diffusion both are positive indications for a tumor response to therapy, thereby accounted 

for in the DAI. Also, it is important to point out that although a change in the DAI of a tumor 

does not depend upon voxel-level accuracy of registration of images acquired pre and after 

the start of therapy, spatial information of diffusion abnormality of a tumor is available at 

any given measurement (Fig. V.4), which could be used for visualization or provide 

guidance for intensified treatment. 

The DAI also has also several advantages in comparison with other histogram-based 

approaches [76-87]. In some of these techniques [76-78], only the low-ADC portion of the 

tumor histogram is used for therapy assessment. We have shown that a reduction in the 

abnormal high ADC in the edema region is also an important indicator for response 

prediction. Hence, combining the changes in both abnormal low and high ADC regions has 

the potential to produce a better predictor for assessing response to various treatments. 

The indices based upon the skewness and kurtosis of the tumor ADC histogram [80-81] 
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neglect diffusion physiology in a tumor, and may not be able to capture the complex change 

patterns in a heterogeneous tumor for response assessment.    

 

V.E Conclusion 

In this chapter, the diffusion abnormality index was demonstrated as a new imaging 

biomarker for assessment of brain metastasis response to WBRT. However, the DAI needs 

to be further validated using an independent dataset. Also, the DAI could be extended to 

other tumor types, e.g. glioblastoma, for early assessment of tumor response to therapy. 

Furthermore, the value of DAI in assessing the tumor response to therapy can be integrated 

to other metrics developed in this dissertation for providing better response-predictor. In 

the next chapter, we briefly show our initial thought and the preliminary results in how we 

plan to combine the metrics explained in this dissertation.    
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Chapter VI 

  

Conclusion and Future Works 
 

 

 

VI.A Overview 

In this dissertation, we focused our attentions on improving the detection of brain 

metastases and assessing their early response to radiation therapy (RT). We initially 

discussed the difficulties of manually screening of the post-Gd T1-weighted magnetic 

resonance images (MRI) in diagnosis of brain metastases and then described the 

drawbacks of the currently available computer-aided detection (CAD) systems for 

automatic detection of brain metastatic lesions. Next, we explained our proposed CAD 

system to overcome these limitations. In the second part of this dissertation, we briefly 

noticed that whole brain radiation therapy (WBRT), a routine treatment for brain 

metastases, could produce a decrease in neurocognitive status compared to stereotactic 

radiosurgery (SRS) and therefore, more patients are receiving focal treatment for brain 

metastases. Hence, the needs for developing a tool to early assess the brain metastasis 

response to therapy are becoming more and more important as patients receive more and 

more focal therapy. Next, we described the development of new imaging biomarkers for 

early assessment of brain metastases to radiation therapy by quantification of the changes 

in brain metastasis vascular and cellularity properties using imaging measurements related 

to dynamic contrast enhanced (DCE) and diffusion-weighted (DW)-MRI. In this chapter, we 
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primarily aim to review our achievements in each part and then specify the direction for 

the future works accordingly. 

  

VI.B CAD system for detection of brain metastatic lesion  

Our investigations revealed that neuroradiologists may miss about 20%-40% of 

brain metastases with a diameter <5mm in a routine clinical screening and therefore, the 

CAD systems could assist in locating such lesions. However, we have seen that the 

performance of the previously proposed template-matching based CAD system for 

detection of brain metastases [37] is limited mainly due to production of large number of 

false positives and its fairly low sensitivity specially in locating the small lesions. Hence, 

using a more robust template and optimizing the size and the number of the required 

templates, we aimed to increase the sensitivity of our proposed CAD system. Furthermore, 

we proposed a lesion enhancement strategy and a series of rule-based criteria to reduce 

the number of false positives. In our experiment, we achieved a sensitivity of 93.4% with an 

intra-cranial false positive (ICFPR) rate of 0.024 in compared to a sensitivity of 87% and an 

ICFPR of 0.22 obtained for the CAD system proposed in [37].  

In our investigation, we realized that the main reasons for the lesions to be missed 

by our proposed method is due to attachment to another structure, especially in the 

midline of the brain, or to have a low contrast to intensity variation ratio (CIVR). In the 

former case, we discussed that segmenting vessels from tissues in the midline could be 

helpful, e.g., using publically-available software of SPM [43]. This could be implemented in 

the future version of this work. Also, we realized that although our proposed nodule 

enhancement strategy improves both sensitivity and specificity of our proposed CAD 
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system, developing a technique to locally adapt the CIVR could further improve the 

performance of our proposed CAD system. A strategy to deal with a lesion near a vessel 

could be also helpful and can be addressed in the future. In addition, further reduction of 

the extra-cranial false positives can be achieved by using a skull stripping technique [42], 

and can be incorporated into a final CAD package in the future.  Also, the impact of the CAD 

system on the overall patients’ survival and the treatment outcome could be a subject of a 

clinical study down the road.   

 

VI.C Physiological imaging driven response assessment of         

brain metastases to radiation therapy  

 In the previous chapters, we mentioned that the assessment of tumor response to 

therapy is conventionally done by measuring the longitudinal changes in tumor volume 

which may occur several months after treatment is completed. However, we further 

described that changes in tumor physiology, which could happen earlier and even during 

the course of treatment, have the potential to provide a means to predict tumor response to 

therapy ahead of time and also may provide a tool for therapy guidance. Hence, in this 

dissertation, we focused on two important aspects of the treatment effect on the tumor 

physiology for response assessment: 1- changes in tumor vascular properties and 

angiogenesis process, and 2- changes in tumor cellularity properties and tumor cells’ death. 

In the rest of this chapter, we briefly review our achievements in each aspect and then 

discuss the direction for the future studies.  
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In chapter III of this dissertation, we described that dose painting/sculpting of a 

tumor based on the biological target volume has the potential to improve the local control 

or even outcome, [45] and then proposed an image analysis framework to delineate the 

biological target volume based upon the imaging-defined “phenotype” subvolumes of a 

tumor with high regional cerebral blood volume (rCBV) and Gd-DTPA transfer constant 

from blood plasma to tissue (Ktrans), derived by fitting a pharmacokinetic (PK) model to the 

dynamic contract enhanced (DCE) curve of each tumor voxel.  We showed that a 

percentage decrease in the tumor subvolumes with high rCBV and Ktrans from Pre-RT to 2 

weeks after the start of RT provides a metric to predict volumetric tumor response one 

month after RT significantly better than the changes in gross tumor volume (GTV) 

observed during the same time interval, and hence could be a candidate as a radiation 

boost target. However, we mentioned that to improve the performance of the proposed 

metric (from AUC=0.86), our general approach can be further used to test whether 

including other physiological imaging parameters into analysis, e.g. apparent diffusion 

coefficient (ADC), can improve the prediction of tumor response to therapy. Furthermore, 

in the chapter IV, as a complimentary part, we mentioned that deriving the physiological 

parameter maps, e.g. rCBV and Ktrans, by fitting a PK model to DCE curves is time consuming 

and may involve a series of uncertainties. Hence, we proposed a PK model-free approach 

based upon principle component analysis (PCA) to delineate the response-driven 

subvolumes of a tumor directly from the DCE curves. We found that the first three principle 

components contain almost all response-related information of the DCE curve matrix. We 

observed that while the first principle component, related to the area under of the DCE 

curve, is the main factor to determine response, the third component, related to the first 
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derivative of the DCE curve, has a complimentary role. We also observed that both 

physiological-defined and PCA-defined subvolumes of a tumor could predict the response 

to therapy similarly while the PCA-defined subvolume can be derived more quickly.  

 In chapter V, we described a diffusion abnormality index (DAI) to quantify the 

abnormality of the tumor cellularity properties in compared to normal tissue. The normal 

tissue ADC histogram (HNT,ADC) divided the tumor ADC histogram into 3 categories: low 

(high cellularity), normal, and high (edema and necrosis) ADC. A diffusion abnormality 

probability function (DAProF) of the tumor was then defined by 1-HNT,ADC and band-pass 

filtered to reduce noise influence at the two tails and a weighting factor (α) was used to 

weight the low-ADC subvolume, SVlow(ADC), related to high-ADC subvolume, SVhigh(ADC), 

differently. The DAI was finally achieved as an integral of the DAProFα-weighted tumor 

ADC histogram. The change in DAI quantified the effect of treatment on the tumor 

cellularity over time and was used to evaluate the response of brain metastases in patients 

treated by either whole brain radiation therapy (WBRT) alone or combined with 

Bortezomib as a radiation sensitizer.  In our experiments, we found that the best separation 

of group difference between responsive and progressive lesions resulted in α values of 0.7 

and 0.2 for the groups of patients treated with WBRT alone and WBRT combined with 

Bortezomib, respectively, suggesting that a decrease in SVhigh(ADC) may have a different 

role in response assessment, depending on the treatment regimen and the tumor type, and 

also the change in SVlow(ADC) could have a higher impact for determining response. In 

lesions treated with WBRT alone, we found that both a decrease in high cellularity and a 

decrease in edema could be an indicator of treatment response.  However, when WBRT was 

combined with Bortezomib to treat melanoma metastases to the brain, we realized that a 
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decrease in SVhigh(ADC) is less important for response assessment. Also, we found that in 

this case, the performance of all tested ADC metrics, including the DAI, were worse than the 

metastases that were not from melanoma and treated by WBRT alone. We mentioned that 

since Bortezomib could alter vascular properties of the tumor, a change in vascular 

characteristics of the tumor could also be an important part of tumor response to therapy, 

and hence a perfusion change could be added into the DAI to improve response 

assessment.  This hypothesis is preliminarily tested and will be extensively investigated in 

the future. The preliminary results are given in the following paragraphs.   

In chapter III, we showed that changes in the subvolumes of brain metastases with 

high rCBV and Ktrans, SVhigh(rCBV,Ktrans), could be an early indicator of tumor response to 

RT. Also, we have seen in chapter V that changes in tumor subvolume with low ADC, 

SVlow(ADC), may have a greater impact on determining tumor response to therapy. Hence, 

all these together indicate the changes in subvolumes of a tumor with either high rCBV and 

Ktrans or low ADC, Δ[SVhigh(rCBV,Ktrans) + SVlow(ADC)], could be a better response predictor. 

Therefore, using the same lesions used in chapter V, we tested this hypothesis. We found 

that in lesions treated with WBRT combined with Bortezomib, Δ[SVlow(ADC) + 

SVhigh(rCBV,Ktrans)] showed a significantly greater decrease from pre-RT to 2W in the 

responsive lesions than the stable ones (p<0.0003), the progressive tumors (p< 0.00002), 

or the non-responsive ones {responsive + stable lesions} (p<0.00004). In Fig. VI.1, the 

performance of the new metric is compared with ΔDAI and some conventional metrics such 

as changes in the gross tumor volume (GTV), and the changes in the means of the tumor 

ADC, rCBV and Ktrans within the same time interval for prediction of non-responsive lesions. 

In ROC analysis, the area under curve (AUC) of 0.96 ± 0.03 was obtained for Δ[SVlow(ADC) + 
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SVhigh(rCBV,Ktrans)] in prediction of the non-responsive lesions treated with WBRT 

combined with Bortezomib. In lesions treated with WBRT alone, ΔDAI0.7 performed well 

(AUC = 0.96 ± 0.04) and SVhigh(rCBV,Ktrans) did not add discriminatory information. This 

indicates that while the changes in tumor subvolumes with different tumor cellularity 

properties could determine response in RT alone, the change in vascular properties is also 

an important indicator for response when Bortezomib is used as a radiation sensitizer.  

 

 

Fig. VI.1. ROC analysis for prediction of non-responsive lesions treated with either whole brain 

radiation therapy alone (top) or combined with Bortezomib as a radiation sensitizer (bottom).  As 

shown, the areas under curve (AUCs) of 0.96 ± 0.04 (WBRT alone) and 0.96 ± 0.03 (WBRT + 

Bortezomib) were obtained in prediction of non-responsive lesions for ΔDAI0.7 and Δ[SVlow(ADC) + 

SVhigh(rCBV,Ktrans)], respectively. 
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Fig. VI.2 Example of changes in tumor vascular and cellular maps in a non-responsive tumor with a 

volume of 14.6 cm3. Although SVhigh(rCBV,Ktrans) decreased 24% from Pre-RT to 2W (2nd column), 

SVlow(ADC) increased 76% in the same time interval (3rd column) resulting in an overall increase of 

61% in both subvolumes. ΔGTV was changed approximately 0.2% during the same period. The 

color code denotes the probability of a voxel belonging to SVhigh(rCBV,Ktrans) or SVlow(ADC) in the 2nd 

and 3rd column, respectively.  

 
 

 As an example, Fig. VI.2 shows the changes in tumor vascular and cellularity maps in 

a non-responsive tumor, with a volume of 14.6 cm3, at pre-RT (top) and 2 weeks (bottom) 

after the start of RT. Although SVhigh(rCBV, Ktrans) decreased 24% from Pre-RT to 2W (2nd 

column), SVlow(ADC) increased 76% in the same time interval (3rd column), resulting in 

61% increase in the sum of the subvolumes. The tumor subvolumes that are associated 

with poorer response to therapy could be considered as a target volume for intensified 

treatment.  
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The results of the multi-parametric analysis suggest that tumor response to a 

therapy is a complex process and should be evaluated from different standpoints. Also, it 

indicates that response process varies depending on the treatment and the tumor type. 

Hence, although this concept is presented here for brain metastases, this could be 

generalized to other tumor types like glioblastoma, and extended to combine other 

physiological, metabolic and molecular imaging parameters.  

In summary, in this dissertation, we discussed two important aspects of tumor 

physiology in assessing response of brain metastases to radiation therapy. However, these 

results should be further validated in the future using a larger dataset and other types of 

tumor, e.g. glioblastoma or head & neck cancer. Also, including the predictive value of other 

physiological parameters such as 11C-MET PET could also add value to the predictive 

models developed in this dissertation and should be further investigated in the future. 
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