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ABSTRACT

Compressed Sensing in Multi-Signal Environments

by

Jae Young Park

Technological advances and the ability to build cheap high performance sensors make it possible

to deploy tens or even hundreds of sensors to acquire information about a common phenomenon of

interest. The increasing number of sensors allows us to acquire ever more detailed information about

the underlying scene that was not possible before. This, however, directly translates to increasing

amounts of data that needs to be acquired, transmitted, and processed. Compressed sensing (CS)

is a novel acquisition and reconstruction scheme that is particularly useful in scenarios when high

resolution signals are difficult or expensive to encode. When applying CS in a multi-signal scenario,

there are several aspects that need to be considered such as the sensing matrix, the joint signal

model, and the reconstruction algorithm. The purpose of this dissertation is to provide a complete

treatment of these aspects in various multi-signal environments.

In the application of CS in video, based on the observation that many videos should have limited

temporal bandwidth, we propose an algorithm that only involves reconstructing a low rate stream

of anchor frames. Together with motion compensated temporal transform we propose a multiscale,

iterative algorithm to successfully reconstruct video signals from streaming compressive measure-

ments.

In the application of CS in multi-view imaging, we propose a manifold lifting algorithm for recov-

ering an ensemble of images that describe a common scene. To model the joint signal correlations,

we employ a geometric modeling framework in which the image ensemble is treated as a sampling

of points from a low-dimensional manifold in the ambient signal space. We propose a multiscale

manifold lifting algorithm to simultaneously recover the signal ensemble as well as the unknown

camera positions.

In the application of CS in Structural Health Monitoring (SHM) systems, our proposed method ex-

xii



ploits the joint signal structure of vibration data that can be observed through equations describing

a simplified Multiple-Degree-Of-Freedom (MDOF) system. Our method is as simple as computing

the SVD of the signal matrix, and we evaluate the performance of this method for both uniform and

random sampling methods. For each sampling method, we give sufficient conditions on the required

sampling rate, the total sampling time span, and the total number of measurements for the accurate

recovery of mode shape vectors.

Finally, we study the characteristics of measurement matrices that appear frequently in multi-signal

environments. We prove Concentration of Measure (CoM) results for block diagonal matrices and

discuss applications of our results to various signal processing tasks. We also show that when each

signal in a signal ensemble is measured with the same random matrix, the singular values and the

right singular vectors of the underlying signal matrix can be well-preserved in the relative sense.
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CHAPTER 1

Introduction

1.1 Multi-Signal Environments

Technological advances and the ability to build cheap high performance sensors make it possible

to deploy tens or even hundreds of sensors to acquire information about a common phenomenon

of interest. The increasing number of sensors allows us to acquire ever more detailed information

about the underlying scene that was not possible before. It is incontrovertible that such multi-sensor

environments have already become a ubiquitous part of our lives, and this trend will continue for

the years to come.

There are countless applications where multiple sensors or multiple signals of the underlying

phenomenon are beneficial or desired. For example, in televised sporting events multiple video

cameras filming the game at various viewpoints and angles gives the viewer a dynamic experience.

The videos acquired at different viewpoints can also be jointly processed to interpolate between

neighboring viewpoints, which allows the viewer to follow the game in more detail. Or, in structural

health monitoring systems [121, 49, 92, 98, 148] where the goal is to detect damage in a structure,

increasing the number of sensors allows one to extract more detailed and accurate information about

the structure. The list goes on with seismic imaging, medical imaging, radar, cognitive radio, and

many more applications.

The increasing number of sensors, however, directly translates to increasing amounts of data

that needs to be acquired, transmitted, and processed. The amount of data can be overwhelming,

especially in applications that involve high-resolution signals such as images or videos. Fortunately,

as the signals all describe a common phenomenon or scene there likely exists vast amount of redun-

dancies and/or high correlation among the signals. In order to make the acquisition and processing

as efficient and accurate as possible it will be crucial to both remove the redundancies and to exploit
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the joint signal correlation in the signal ensemble.

In a typical multi-signal environment, the sensor first acquires data about the underlying phe-

nomenon and then processes, e.g., compresses, the signal locally to reduce the number of measure-

ments that are subsequently transmitted to the central node. For the purpose of encoding the data,

there are two types of encoding strategies that one can think of in a multi-signal environment: joint

encoding or disjoint encoding strategy. For example, for the sake of maximizing the data compres-

sion rate, it may be best to jointly collaborate with other sensors in the network and remove all

intra- as well as inter-signal correlations. We refer to such an encoding strategy as a joint encoding

scheme. However, at the expense of minimizing the number of bits of the data stream, this scheme

will require significant resources for the additional communication and processing overhead. On the

other hand, encoding techniques that encode their information in a completely disjoint fashion, thus

referred to as disjoint encoding schemes, will require relatively much less resources but will generally

result in a lower compression rate.

After the data have been compressed or processed, it is frequently the case that they are sent

to a central node for further, more intense, processing. The user at the central node is then tasked

with jointly processing the received signals to further infer any desired information through post-

processing, such as estimation, detection, reconstruction, and so on. The main challenge at the

decoder is to fully exploit the joint structure among the signals and to maximize the performance

of the desired task with the given amount of information. The appropriate model for capturing the

joint structure will vary drastically from one application to another and one must choose the model

with care.

1.2 Compressed Sensing in Multi-Signal Environment

Compressed sensing (CS) [52, 26] is a novel acquisition and reconstruction scheme that has been

a prevalent research topic in the signal processing and computational harmonic analysis communities

over the past decade. The theory proposes to directly acquire a compressed version of the underlying

signal, bypassing the need for any additional compression schemes. The measurement process is very

simple and can be represented by a simple matrix-vector product such as y = Φx, where x ∈ RN is

the underlying signal, Φ an M×N measurement matrix with M < N , and y ∈ RM the “compressed”

measurements that we obtain. The compression comes from the fact that Φ has fewer rows than

columns.

CS is particularly useful in two scenarios. The first is when a high-resolution signal is difficult to
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measure directly. For example, conventional infrared cameras require expensive sensors, and with

increasing resolution such cameras can become extremely costly. A compressive imaging camera has

been proposed [55] that can acquire a digital image using far fewer (random) measurements than

the number of pixels in the image. Such a camera is simple and inexpensive and can be used not

only for imaging at visible wavelengths, but also for imaging at nonvisible wavelengths.

A second scenario where CS is useful is when one or more high-resolution signals are difficult or

expensive to encode. Such scenarios arise, for example, in sensor networks and multi-view imaging,

where it may be feasible to measure the raw data at each sensor, but joint, collaborative com-

pression of that data among the sensors would require costly communication. As an alternative to

conventional Distributed Source Coding (DSC) methods [120], a disjoint encoding scheme known as

Distributed CS (DCS) [18] has been proposed that extends the idea of single-signal CS. In DCS, each

sensor encodes only a random set of linear projections of its own observed signal. These projections

could be obtained either by using CS hardware as described above (or below), or by using a random,

compressive encoding of the data collected from a conventional sensor.

There are various aspects that need to be considered when applying CS in a multi-signal scenario.

The first is the sensing aspect where we need to think about how we can physically acquire the CS

measurements or random measurements. Over the past decade numerous CS acquisition devices

have been proposed in a wide spectrum of applications. The hardware designs were proposed in

applications that include image processing [55, 66, 11, 62, 78], medical imaging [90, 110], seismic

imaging [95], cognitive radios [147], and biology [82], to name a few. The main difference between a

CS acquisition device and a conventional one is that the former typically needs to blend in a source

of randomness in the acquisition process. Additionally, for successful recovery, one also needs to

consider whether or not the corresponding measurement matrix is favorable for CS reconstruction,

e.g., whether or not the matrix satisfies the Restricted Isometry Property (see Definition 2.3).

Once we know what kind of measurement device to use to obtain CS measurements, the second

aspect that we need consider is the choice of a joint signal model. The model of sparsity has been

by far the prevalent model for signals in the CS community. To extend this notion of sparsity to

multiple signals, researchers have proposed various models such as the joint sparsity model [56], the

block-sparse model [58], or the union of subspaces model [59]. Depending on the application these

models may be a natural fit but for other applications one needs to design an accurate model for the

application at hand. Although CS has initially been proposed with the model of sparsity in mind,

we would like to point out that CS can also be applied to non-sparsity based models. As long as the

model conveys a notion of conciseness one may be able to adapt CS to the model for reconstruction.
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For example, another notion of conciseness of signal ensembles is the broad class of low-dimensional

manifolds. A successful application of manifold models has been considered in [135, 136, 105, 33],

where [105] is discussed in Chapter 4 of this dissertation.

Once we choose the appropriate model for the joint signal structure, we need to tailor the

algorithm that successfully incorporates this model in the reconstruction. There are numerous

algorithms that have been proposed in the literature [13, 58, 56, 59, 136, 105] that adapt to the

proposed model of inter- and/or intra-signal structure. Again, depending on the application it could

be that one can modify an off-the-shelf reconstruction algorithm [26, 52, 102, 129, 21], or it may be

that one needs to start from scratch and develop an application specific algorithm.

1.3 Outline and Contributions

In this dissertation, we consider various multi-signal applications. In each application we are

interested in the case where there are limited resources available at the encoder and thus we require

an efficient, energy saving acquisition scheme. As a suitable encoding strategy we advocate the use

of a disjoint encoding scheme via a CS encoding protocol. More specifically, in all applications,

representing the signals from J sensors as x1, x2, . . . , xJ ∈ RN , we propose that each sensor obtains

yi = Φixi ∈ RM . The following gives an outline of the dissertation and briefly highlights our

contributions in more detail. We begin with a general background of concise signals models and

more detailed coverage of the theory of CS in Chapter 2. Then, starting from Chapter 3 we look

into specific multi-signal applications where we apply CS.

In Chapter 3, we consider the application of CS to video signals, where each frame xi is inde-

pendently encoded, i.e., yi = Φixi. Our work could apply to the single-pixel camera [55] or any

type of device that is able to acquire streaming CS measurements. We propose a multiscale, it-

erative algorithm for reconstructing video signals from streaming compressive measurements. Our

algorithm is based on the observation that, at the imaging sensor, many videos should have limited

temporal bandwidth due to the spatial lowpass filtering that is inherent in typical imaging systems.

Under modest assumptions about the motion of objects in the scene, this spatial filtering prevents

the temporal complexity of the video from being arbitrarily high. Thus, even though streaming

measurement systems may measure a video thousands of times per second, we propose an algorithm

that only involves reconstructing a much lower rate stream of anchor frames. Our analysis of the

temporal complexity of videos reveals an interesting tradeoff between the spatial resolution of the

camera, the speed of any moving objects, and the temporal bandwidth of the video. We lever-
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age this tradeoff in proposing a multiscale reconstruction algorithm that alternates between video

reconstruction and motion estimation as it produces finer resolution estimates of the video.

In Chapter 4, we consider general multi-view imaging problems in which an ensemble of cameras

collect images describing a common scene. Depending on the application, the CS measurements may

be acquired via one of the CS cameras discussed above or any other camera that is able to take CS

measurements. To capture the joint signal correlations, we propose a geometric modeling framework

in which the image ensemble is treated as a sampling of points from a low-dimensional manifold in

the ambient signal space. Building on results that guarantee stable embeddings of manifolds under

random measurements, we propose a manifold lifting algorithm for recovering the ensemble that

can operate even without knowledge of the camera positions. We divide our discussion into two

scenarios, the near-field and far- field cases, and describe how the manifold lifting algorithm could

be applied to these scenarios. At the end of this chapter, we present an in-depth case study of a

far-field imaging scenario, where the aim is to reconstruct an ensemble of satellite images taken from

different positions with limited but overlapping fields of view. In this case study, we demonstrate

the impressive power of random measurements to capture single- and multi-image structure without

explicitly searching for it, as the randomized measurement encoding in conjunction with the proposed

manifold lifting algorithm can even outperform image-by-image transform coding.

The main contribution of Chapter 5 is the proof of the concentration of measure (CoM) [87]

property of block diagonal (BD) measurement matrices. In the existing CS literature, for certain

classes of measurement matrices Φ, the CoM property is an important result that is used to prove

stable embedding results such as the Johnson-Lindenstrauss Lemma [81] and the RIP of random

matrices. Block diagonal matrices arise frequently in multi-signal scenarios, where the overall system

of equations can be written in terms of a BD measurement matrix. In particular, by concatenating

all the measurements in one vector [yT1 , . . . , y
T
J ]T , the overall system of equations can be written as



y1

y2

...

yJ


=



Φ1

Φ2

. . .

ΦJ





x1

x2

...

xJ


.

We show that the CoM behavior of BD matrices depends on the characteristics of the signals in the

ensemble x1, . . . , xJ . This is in contrast to conventional results of fully populated random matrices,

e.g., subgaussian random matrices, that exhibit uniform concentration behavior, independent of the
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underlying signal. Our CoM results show that BD matrices with distinct subgaussian blocks, i.e.,

Φi 6= Φj , behave exactly the same as a fully populated subgaussian matrix when ‖x1‖22 = · · · =

‖xJ‖22. We also show analogous results for BD matrices that have blocks that are all equal to each

other, i.e., Φi = Φj . The rest of the chapter discusses applications of our CoM results in ensuring

stable embeddings for various signal families and in establishing performance guarantees for solving

various signal processing tasks (such as detection and classification) directly in the compressed

domain.

In Chapter 6, we consider a streaming data model in which n sensors observe individual streams

of data, presented in a turnstile model. Our goal is to analyze the Singular Value Decomposition

(SVD) of the matrix of data defined implicitly by the stream of updates. Each column i of the data

matrix is given by the stream of updates seen at sensor i. Our approach is to sketch each column

of the matrix, forming a “sketch matrix” Y , and then to compute the SVD of the sketch matrix.

We show that the singular values and right singular vectors of Y are close to those of X, with small

relative error.

In Chapter 7, we consider the application of CS in Structural Health Monitoring (SHM) systems.

The goal of SHM systems is to detect damage in structures that commonly arises due to natural

disasters or continuous use. In SHM, wireless sensors are deployed on structures to measure real-time

acceleration data when the structures vibrate. Our goal at the central repository is to infer modal

parameters such as modal frequencies, mode shapes, and modal damping ratios from the acquired

measurements; these can be used in damage detection algorithms. Our proposed method exploits

the joint signal structure of the vibration data that can be observed through equations describing

a simplified Multiple-Degree-Of-Freedom (MDOF) system. Our method is as simple as computing

the SVD of the signal matrix obtained by stacking each vibration signal into a matrix. We evaluate

the performance of this method for both uniform and random sampling methods. For each sampling

method, we give sufficient conditions on the required sampling rate, the total sampling time span,

and the total number of measurements for the accurate recovery of mode shape vectors.
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CHAPTER 2

Background on Signal Models and Compressed Sensing

2.1 Concise Signal Models

Real-world signals typically contain some degree of structure that can be exploited to simplify

their processing and recovery. Sparsity is one model of conciseness in which the signal of interest

can be represented as a linear combination of only a few basis vectors from some dictionary. To

provide a more formal statement, let us consider a signal x ∈ RN . (If the signal is a 2D image,

we reshape it into a length-N vector.) We let Ψ ∈ RN×N denote an orthonormal basis1 for RN ,

with its columns acting as basis vectors, and we write x = Ψα, where α := ΨTx ∈ RN denotes the

expansion coefficients of x in the basis Ψ. We say that x is K-sparse in the basis Ψ if α contains

only K nonzero entries. Sparse representations with K � N provide exact or approximate models

for wide varieties of signal classes, as long as the basis Ψ is chosen to match the structure in x. In

the case of images, the 2D Discrete Wavelet Transform (DWT) and 2D Discrete Cosine Transform

(DCT) are reasonable candidates for Ψ [94].

As an alternative to sparsity, manifolds have also been used to capture the concise structure

of multi-signal ensembles [124, 53, 138, 15, 137]. Simply put, we can view a manifold as a low-

dimensional nonlinear surface within RN . Manifold models arise, for example, in settings where

a low-dimensional parameter controls the generation of the signal (see Figure 2.1). Assume, for

instance, that x = xθ ∈ RN depends on some parameter θ, which belongs to a p-dimensional

parameter space that we call Θ.2 One might imagine photographing some static scene and letting θ

correspond to the position of the camera: for every value of θ, there is some N -pixel image xθ that the

camera will see. Supposing that the mapping θ → xθ is well-behaved, then if we consider all possible

1It is also possible to consider other more general non-orthonormal dictionaries.
2Depending on the scenario, the parameter space Θ could be a subset of Rp, or it could be some more general

topological manifold such as SO(3), e.g., if θ corresponds to the orientation of some object in 3D space.
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RN

RM

xθ1 xθ2

θ1 θ2 Θ

Φθ → xθ

Φxθ1 Φxθ2

Manifold Lifting

M

ΦM

Figure 2.1: A manifold M can be viewed as a nonlinear surface in RN . When the mapping between θ
and xθ is well-behaved, as we trace out a path in the parameter space Θ, we trace out a similar path on
M. A random projection Φ from RN to a lower dimensional space RM can provide a stable embedding of
M, preserving all pairwise distances, and therefore preserving the structure within an ensemble of images.
The goal of a manifold lifting algorithm is to recover an ensemble of images from their low-dimensional
measurements.

signals that can be generated by all possible values of θ, the resulting set M := {xθ : θ ∈ Θ} ⊂ RN

will in general correspond to a nonlinear p-dimensional surface within RN .

When the underlying signal x is an image, the resulting manifoldM is called an Image Appearance

Manifold (IAM). Recently, several important properties of IAMs have been revealed. For example,

if the images xθ contain sharp edges that move as a function of θ, the IAM is nowhere differentiable

with respect to θ [53]. This poses difficulties for gradient-based parameter estimation techniques

such as Newton’s method because the tangent planes on the manifold (onto which one may wish

to project) do not exist. However, it has also been shown that IAMs have a multiscale tangent

structure [53, 138] that is accessible through a sequence of regularizations of the image, as shown in

Figure 2.2. In particular, suppose we define a spatial blurring kernel (such as a lowpass filter) denoted

by hs, where s > 0 indicates the scale (e.g., the bandwidth or the cutoff frequency) of the filter.

Then, althoughM = {xθ : θ ∈ Θ} will not be differentiable, the manifoldMs = {hs ∗xθ : θ ∈ Θ} of

regularized images will be differentiable, where ∗ denotes 2D convolution. Tangent planes do exist

on these regularized manifolds Ms, and as s → 0, the orientation of these tangent planes along a

given Ms changes more slowly as a function of θ. In the past, we have used this multiscale tangent

structure to implement a coarse-to-fine Newton method for parameter estimation on IAMs [138].

The rich geometrical information that rests within an IAM makes it an excellent candidate for

modeling in multi-view imaging. Letting θ represent camera position, all of the images in a multi-

view ensemble will live along a common IAM, and as we will later discuss, image reconstruction in

the IAM framework can ensure global consistency of the reconstructed images.
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RN

Θ

Figure 2.2: The multiscale structure of manifolds. The top manifold in this figure corresponds to the
collection of images of a teapot that could be acquired from different camera positions θ. While manifolds
like this containing images with sharp edges are not differentiable, manifolds of images containing smooth
images are differentiable, and the more one smoothes the images, the smoother the manifold becomes.

2.2 Compressed Sensing

In conventional signal acquisition devices such as digital cameras and camcorders, we first acquire

a full N -dimensional signal x and then apply a compression technique such as JPEG or MPEG [94].

These and other transform coding techniques essentially involve computing the expansion coefficients

α describing the signal in some basis Ψ, keeping only the K-largest entries of α, and setting the rest

to zero. While this can be a very effective way of consolidating the signal information, one could

argue that this procedure of “first sample, then compress” is somewhat wasteful because we must

measure N pieces of information only to retain K < N coefficients. For certain sensing modalities

(such as infrared), it may be difficult or expensive to acquire so many high-resolution samples of the

signal.

The recently emerged theory of CS suggests an alternative acquisition scheme. CS utilizes an

efficient encoding framework in which we directly acquire a compressed representation of the under-

lying signal by computing simple linear inner products with a small set of randomly generated test

functions. Let us denote the full-resolution discrete signal as x ∈ RN and suppose that we generate

a collection of M random vectors, φi ∈ RN , i = 1, 2, . . . ,M . We stack these vectors into an M ×N

matrix Φ = [φ1 φ2 · · · φM ]T , which we refer to as a measurement matrix. A CS encoder or sensor

produces the measurements y = Φx ∈ RM , possibly without ever sampling or storing x itself.

At the decoder, given the random measurements y and the measurement matrix Φ, one must

attempt to recover x. The canonical approach in CS is to assume that x is sparse in a known basis

Ψ and solve an optimization problem of the form [52, 26]

(2.1) min
α
‖α‖1 s.t. y = ΦΨα,
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which can be recast as a linear program. When there is bounded noise or uncertainty in the mea-

surements, i.e., y = Φx+ n with ‖n‖2 ≤ ε, it is common to solve a similar problem [27]:

(2.2) min
α
‖α‖1 s.t. ‖y − ΦΨα‖2 ≤ ε,

which is again convex and can be solved efficiently.

Depending on the measurement matrix Φ, recovery of sparse signals can be provably accurate,

even in noise. One condition on Φ that has been used to establish recovery bounds is known as

the Restricted Isometry Property (RIP) [30], which requires that pairwise distances between sparse

signals be approximately preserved in the measurement space. The following gives a formal definition

of the RIP.

Definition 2.1. An m × N matrix Φ satisfies the restricted isometry property of order 2K when

there exists a constant δ2K > 0 such that the following holds for all K-sparse signals x1 and x2:

(2.3) (1− δ2K)‖x1 − x2‖22 ≤ ‖Φ(x1 − x2)‖22 ≤ (1 + δ2K)‖x1 − x2‖22.

If Φ satisfies the RIP of order 2K with δ2K sufficiently small, it is known that (2.1) will perfectly

recover any K-sparse signal in the basis Ψ, and that (2.2) will incur a recovery error at worst

proportional to ε [27]. The performance of both recovery techniques also degrades gracefully if x is

not exactly K-sparse but rather is well approximated by a K-sparse signal.

It has been shown that we can obtain an RIP matrix Φ with high probability simply by taking

M = O(K log(N/K)) and populating the matrix with i.i.d. Gaussian, Bernoulli, or more gen-

eral subgaussian entries [14]. Thus, one of the hallmarks of CS is that this requisite number of

measurements M is essentially proportional to the sparsity level K of the signal to be recovered.

In addition to families of K-sparse signals, random matrices can also provide stable embeddings

for manifolds (see Figure 2.1). Letting M denote a smooth3 p-dimensional manifold, if we take

M = O(p log(N)) and generate Φ randomly from one of the distributions above, we will obtain an

embedding ΦM := {Φx : x ∈ M} ∈ RM such that all pairwise distances between points on the

manifold are approximately preserved [15], i.e., such that (2.3) holds for all xθ1 , xθ2 ∈M. Geodesic

distances are also approximately preserved. Again, the requisite number of measurements is merely

proportional to the information level of the signal, which in this case equals p (the dimension of the

manifold), rather than the sparsity level of the signal in any particular dictionary. All of this suggests

3Although an IAM M may not itself be smooth, a regularized manifold Ms will be smooth, and later in this
chapter we discuss image reconstruction strategies based on random projections of Ms at a sequence of scales s.
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that manifolds may be viable models to use in CS recovery; see [136] for additional discussion on

the topic of using manifold models to recover individual signals.

We see from the above that random measurements have a remarkable “universal” ability to

capture the key information in a signal, and this occurs with a number of measurements just pro-

portional to the number of degrees of freedom in the signal. Only the decoder attempts to exploit

the signal structure, and it can do so by positing any number of possible signal models.

In summary, in settings where a high-resolution signal x is difficult or expensive to measure

directly, CS allows us to replace the “first sample, then compress” paradigm with a technique

for directly acquiring compressive measurements of x. To do this in practice, we might resort to

CS hardware which directly acquires the linear measurements y without ever sampling or storing

x directly. Several forms of compressive imaging architectures have been proposed, ranging from

existing data collection schemes in Magnetic Resonance Imaging (MRI) [91] to more exotic CS-based

techniques. One architecture [55], for example, replaces the conventional CCD/CMOS sensor in a

digital camera with a digital micromirror device (DMD), which modulates the incoming light and

reflects it onto a single photodiode for measurement. Some intriguing uses of this inexpensive “single

pixel camera” could include infrared or hyperspectral imaging, where conventional high-resolution

sensors can cost hundreds of thousands of dollars.

Before proceeding, however, we note that CS can also be useful in settings where it is possible

to acquire high-resolution signals, but is difficult or expensive to subsequently encode them. For

example, x might represent a video signal, for which direct measurement is possible, but for which

subsequent compression typically requires exploiting complicated spatio-temporal correlations [96,

104]. A more straightforward encoder might simply compute y = Φx for some random, compressive

Φ. Other scenarios where data is difficult to encode efficiently might be in sensor networks or in

multi-view imaging, which is the topic of Chapter 4 and is discussed further in that chapter.
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CHAPTER 3

Compressed Sensing in Video Acquisition and

Reconstruction

3.1 Introduction

3.1.1 Motivation and Overview

The emerging theory of Compressed Sensing (CS) has inspired a number of efficient new designs

for signal acquisition in general and imaging in particular. Architectures such as the “single-pixel

camera” [139, 55] provide a promising proof-of-concept that still images can be acquired using small

numbers of randomized measurements. Despite the apparently incomplete data collected by such

devices, reconstruction of the signal can be accomplished by employing a sparse model specifying,

for example, that a high-dimensional image may have only a small number of significant coefficients

when expanded in the two-dimensional (2D) wavelet domain [94].

There are numerous applications where it could be helpful to extend the CS imaging framework

beyond still images to incorporate video. Standard video capture systems require a complete set

of samples to be obtained for each frame, at which point a compression algorithm may be applied

to exploit spatial and temporal redundancy. In some applications, such as imaging at non-visible

(e.g., infrared) wavelengths, it may be difficult or expensive to obtain these raw samples. In other

applications, it could be computationally challenging to implement a state-of-the-art video compres-

sion algorithm at the sensor. We argue that these burdens may be reduced by using compressive

imaging hardware where random measurements are collected independently from each frame in the

video and no additional compression protocol is needed.

This work is in collaboration with Michael B. Wakin [106], and builds upon earlier work that appeared in [104] in
collaboration with Michael B. Wakin, and also upon a technical report in [134] by Michael B. Wakin. The theoretical
discussions on the bandwidth of video signals presented in this work have initially been discussed in [134].
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From a hardware perspective, it is not difficult to envision extending standard compressive imag-

ing architectures to acquire compressive measurements of a video. For example, the single-pixel

camera takes random measurements serially in time. Each measurement corresponds to a random

linear function of the image on the focal plane at the instant that measurement is collected. When

the single-pixel camera is photographing a fixed scene, each measurement corresponds to the same

image. When the single-pixel camera is photographing a scene containing motion, each measure-

ment will correspond to a different “frame” of the video. The single-pixel camera is capable of

taking many thousands of measurements per second. While we will continue to use the single-pixel

camera as a specific example in this chapter, other compressive imaging architectures (such as a

CMOS-based transform imager [112] and a coded-aperture imager [97]) could be similarly used to

acquire streaming measurements of a video.

From a data processing perspective, though, there are two major reasons why implementing a

CS video system may be significantly more difficult than implementing a CS imaging system:

• Challenge 1: The complexity of a CS reconstruction algorithm is dependent on the number

of unknowns that must be recovered from the compressive samples. The sheer volume of data

in a raw video signal makes CS reconstruction a formidable task. As we explain in Section 3.3,

this problem is only exacerbated in compressive video systems that collect streaming measure-

ments, where the number of measured frames can be in the thousands per second. Naively

reconstructing all of the pixels in all of these frames could literally involve solving for billions

of unknowns every second.

• Challenge 2: Reconstructing a signal from compressive measurements requires an efficient

sparsifying transform and a corresponding algorithm that can promote this sparsity in the re-

constructed signal. In the long literature of standard video compression [143] (not video CS),

a variety of methods have been proposed to exploit spatial and temporal redundancies. One

common approach combines motion compensation and estimation algorithms [79] with image

compression techniques; for example, given a set of vectors describing the motion in the video,

the LIMAT framework [118] yields a motion-compensated wavelet transform (across the tem-

poral and spatial dimensions) intended to provide a sparse representation of the video. While

some of these central ideas can be absorbed into the CS framework, there is an important

challenge that we must address. Unlike the standard video compression problem where the

frames of the video are explicitly available to perform motion estimation, in CS only random

measurements of the underlying video are available. We are faced with a chicken-or-egg prob-
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lem [104]: Given the video frames, we could estimate the motion; but given the motion we

could better estimate the frames themselves.

In this chapter, we offer suggestions for confronting both of these challenges. We begin in Section 3.2

with a short discussion concerning the temporal bandwidth of video signals. We argue analytically

that, at the imaging sensor, many videos should have limited temporal bandwidth due to the spatial

lowpass filtering that is inherent in typical imaging systems. Under modest assumptions about the

motion of objects in the scene, this spatial filtering prevents the temporal complexity of the video

from being arbitrarily high.

We then explain in Section 3.3 how this limited temporal complexity can be exploited in address-

ing Challenge 1 above. Following standard arguments in sampling theory, we note that under various

interpolation kernels, a stream of high-rate video frames (such as those measured by a single-pixel

camera) can be represented as a linear combination of a low-rate (e.g., Nyquist-rate) “anchor” set of

sampled video frames. We then explain how the CS video problem can be reformulated by setting up

a system of linear equations that relate the compressive measurements to the underlying degrees of

freedom of the video (specifically, the anchor frames). This significantly reduces the number of un-

knowns that must be solved for. As we demonstrate, our use of interpolation kernels for reducing the

burden of processing streaming measurements can also be much more effective than the traditional

technique of partitioning the measurements into short groups and assuming that all measurements

within a group come from the same frame. Such raw aggregation of measurements—which actually

corresponds to using a rectangular interpolation kernel in our formulation—can introduce significant

interpolation error and degrade the reconstruction quality.

Our analysis of the temporal complexity of videos reveals an interesting tradeoff between the

spatial resolution of the camera, the speed of any moving objects, and the temporal bandwidth of

the video. In Section 3.4, we explain how this tradeoff can be leveraged to address Challenge 2

above. We propose a novel, multiscale algorithm for reconstructing video signals from compressive

measurements. Our algorithm begins by reconstructing a coarse-scale approximation to the video,

having low spatial and temporal resolution. From this, we obtain a crude estimate of the motion

vectors in the video, and we then use these motion vectors to define a sparsifying transform that

enables reconstruction of the next-finer scale approximation to the video. Our representation frame-

work is built around the LIMAT [118] method for standard video compression, in which motion

compensation is used to improve sparsity in the three-dimensional (3D) wavelet domain. We solve

the chicken-or-egg problem by alternating between motion estimation and video reconstruction, pro-
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ceeding to higher and higher spatial and temporal resolutions. At each scale, we employ the anchor

frames described above to manage the complexity of the reconstruction process.

We conclude in Section 3.5 by describing the differences between our work and several other

important ones in the literature. We also present simulations that demonstrate the performance of

our algorithm. We stress that to some degree, the algorithm we present in this chapter is a proof-

of-concept inspired by our temporal bandwidth analysis. We see our work as an addition to—not a

replacement for—the nascent CS video literature, and we believe that the ideas we expound (such

as using anchor frames to reduce the complexity of reconstruction) could be combined with other

existing ideas in the literature.

3.2 On the Temporal Bandwidth of Video Signals

3.2.1 Setup

3.2.1.1 Signal model and objectives

For the sake of simplicity, we begin by considering “videos” that have just one spatial dimension;

we extend this to videos with two spatial dimensions in Section 3.2.4. We also begin by considering

continuous-time, continuous-space videos; our analysis will reveal the implications of sampling these

videos. We use the variable t ∈ R to index time (which we measure in seconds), and we use the

variable x ∈ R to index spatial position on the focal plane. For convenience, we measure x in an

arbitrary real-valued unit we call “pix”; this unit is intended to symbolize what might be the typical

pixel size in a subsequent discretization of this video. One could easily replace pix with micrometers

or any other arbitrary unit of distance.

We consider videos belonging to a simple but representative translational model. Let g(x) denote

a 1D function of space (think of this as a continuous-space “still image”), and consider a continuous-

space, continuous-time video f(x, t) in which each “frame” of the video merely consists of a shifted

version of this prototype frame. More formally, suppose that

f(x, t) = g(x− h(t)),

where h(t) is some function that controls how much (in pix) the prototype frame is shifted in the

focal plane at each time step. Because we have an interest in video imaging systems with high

temporal sampling rates, our purpose is to characterize the temporal bandwidth of the video f(x, t).

In particular, we suggest that f(x, t) could have limited temporal bandwidth in plausible scenarios
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where the prototype frame g(x) and translation signal h(t) have limited complexity. For example, in

a physical imaging system, one may envision f(x, t) as the video that exists at the focal plane prior

to being sampled by the imaging sensor. It is reasonable to expect that, due to optical blurring and

due to the implicit filtering that occurs from the spatial extent of each light integrator, the prototype

frame g(x) will have limited spatial bandwidth. Similarly, if the camera motion is constrained or due

to the physics governing the movement of objects in the scene, one might expect that the translation

signal h(t) will have limited slope and/or limited temporal bandwidth. In the sections that follow,

we explain how such scenarios can allow us to bound the approximate temporal bandwidth of f(x, t).

3.2.1.2 Fourier setup

Let F (ωx, ωt) denote the 2D Fourier transform of f(x, t), and let G(ωx) denote the 1D Fourier

transform of g(x); in terms of units, ωx is measured in rad/pix, and ωt is measured in rad/s. From

the separability property of the 2D Fourier transform and the shift property of the 1D Fourier

transform, it follows that

F (ωx, ωt) = G(ωx) · L(ωx, ωt),

where

(3.1) L(ωx, ωt) := Ft{e−jωxh(t)}(ωx, ωt)

and Ft{·} denotes an operator that performs a 1D Fourier transform in the temporal direction.

That is, for fixed ωx, L(ωx, ωt) equals the 1D Fourier transform of e−jωxh(t) with respect to time,

evaluated at the frequency ωt.

3.2.2 Temporal Bandwidth Analysis

The appearance of the h(t) term within an exponent in (3.1) can complicate the task of charac-

terizing the bandwidth of f(x, t). However, by imposing certain assumptions on h(t), this analysis

can become tractable.

3.2.2.1 Constant velocity model for h(t)

As a starting example, we briefly discuss a “constant velocity” model for h(t) that is commonly

seen in textbook discussions of video bandwidth (see, e.g., [142]). We assume that h(t) = Γt for

some constant Γ (having units of pix/s). In this case we have L(ωx, ωt) = δ(ωt + ωxΓ), and so
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F (ωx, ωt) = G(ωx) · δ(ωt + ωxΓ), which corresponds to a diagonal line in the 2D Fourier plane with

slope (∆ωt over ∆ωx) that depends linearly on Γ.

To see the implications of this in terms of bandwidth, suppose that G(ωx) is bandlimited (or

essentially bandlimited) to some range of frequencies ωx ∈ [−Ωx,Ωx] rad/pix. (Again, even if the

moving object has sharp edges, G(ωx) may be bandlimited due to blurring in the imaging system.)

In this case, it follows that F (ωx, ωt) must be bandlimited (or essentially bandlimited) to the range

of frequencies (ωx, ωt) ∈ [−Ωx,Ωx] × [−ΓΩx,ΓΩx]. In other words, the temporal bandwidth of the

video is no greater than ΓΩx rad/s.

3.2.2.2 Bounded velocity model for h(t)

We now consider a more robust “bounded velocity” model for h(t); we note that similar mathe-

matics have appeared in the analysis of plenoptic [48] and plenacoustic [7, 8] functions, which arise

from measuring light and sound, respectively, at various positions in a room. We assume that the

position function h(t) has bounded slope, i.e., that for some Γ > 0, |dh(t)/dt| ≤ Γ pix/s for all

t. This corresponds to a bound on the speed at which the object can move in the video, without

requiring that this speed be constant. We also assume that the translation signal h(t) is bandlimited,

with bandwidth given by Ωh rad/s.

For any fixed ωx, we can recognize e−jωxh(t) as a frequency-modulated (FM) sinusoid [149] having

carrier frequency 0 and instantaneous frequency (in rad/s) ωi(t) = −ωx ·dh(t)/dt. Let us also define

the deviation term

D :=
|ωx|
Ωh

max

∣∣∣∣dh(t)

dt

∣∣∣∣ .
From Carson’s bandwidth rule for frequency modulation [149], we have that for fixed ωx, at least

98% of the total power of e−jωxh(t) must be concentrated in the frequency range ωt ∈ [−2(D +

1)Ωh, 2(D + 1)Ωh] rad/s. Since D ≤ |ωx|Γ
Ωh

, we conclude that at least 98% of the total power of

e−jωxh(t) must be concentrated in the frequency range ωt ∈ [−(2|ωx|Γ + 2Ωh), 2|ωx|Γ + 2Ωh] rad/s.

We note that the dependence of this bandwidth on ωx is essentially linear.

We conclude that L(ωx, ωt) will have a characteristic “butterfly shape” with most of its total

power concentrated between two diagonal lines that intercept the ωt-axis at ±2Ωh and have slope

approximately ±2Γ. This shape is illustrated in Figure 3.1(a). Though not shown, the corresponding

figure for the constant velocity model discussed in Section 3.2.2.1 would involve a single diagonal

line intersecting the origin and having slope −Γ (which is half as large as the slope that appears in

our more general bounded velocity analysis).
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Fig. 1: (a) Butterfly structure in the two-dimensional Fourier transform of a simple translational 1D video. The slope of the lines
is proportional to the maximum speed of the translation. (b) Bandlimiting the video in space (e.g., by spatial lowpass filtering)
will also bandlimit the video in time. The resulting temporal bandwidth will be proportional to the spatial bandwidth times the
maximum translational speed.

1

Figure 3.1: (a) Butterfly structure in the two-dimensional Fourier transform of a simple translational 1D
video. The slope of the lines is proportional to the maximum speed of the translation. (b) Bandlimiting
the video in space (e.g., by spatial lowpass filtering) will also bandlimit the video in time. The resulting
temporal bandwidth will be proportional to the spatial bandwidth times the maximum translational speed.

To see the implications of this in terms of bandwidth, let us again suppose that G(ωx) is ban-

dlimited (or essentially bandlimited) to the range of frequencies ωx ∈ [−Ωx,Ωx]. We must then have

that F (ωx, ωt) = G(ωx) · L(ωx, ωt) is also (essentially) bandlimited in the spatial direction to the

range of frequencies ωx ∈ [−Ωx,Ωx]. Because of the butterfly structure in L(ωx, ωt), however, this

will also cause F (ωx, ωt) to be (essentially) bandlimited in the temporal direction to the range of

frequencies

(3.2) ωt ∈ [−(2ΩxΓ + 2Ωh), 2ΩxΓ + 2Ωh] rad/s.

This fact, which is illustrated in Figure 3.1(b), exemplifies a central theme of our work: filtering a

video in the spatial direction can cause it to be bandlimited both in space and in time. Once again,

we note that similar conclusions were reached in the analysis of plenoptic [48] and plenacoustic [7, 8]

functions.

3.2.2.3 Sampling implications

From a classical (not compressive) sampling perspective, the Nyquist theorem and the temporal

bandwidth predicted in (3.2) suggest that in order to avoid aliasing, the video should be sampled

at a minimum rate of 2ΩxΓ+2Ωh
π samples/s. Let us plug in some plausible numbers to illustrate the

implications of these bounds. First, consider the spatial bandwidth Ωx of the prototype frame. In a

reasonable imaging system, we might expect the pixel size to be balanced with the spatial bandwidth

of the frame so that spatial aliasing is avoided. (This should occur naturally if we assume each pixel
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integrates spatially over a window of size approximately 1 pix.) Thus, one might anticipate that Ωx

will be on the order of π rad/pix. (This corresponds to a spatial bandwidth of π
2π = 1

2 cycles/pix,

which suggests a spatial Nyquist sample rate of one sample per pix.)

Under the assumption that Ωx = π, (3.2) suggests the video will have temporal bandwidth

limited to approximately 2πΓ + 2Ωh rad/s. We note that Ωh, the temporal bandwidth of h(t), does

not depend on the amplitude or slope of h(t), but only on its shape and smoothness. The term Γ, in

contrast, increases with the amplitude or slope of h(t), which in turn could increase for objects closer

to the camera. We conjecture that in practice (aside from exceptionally non-smooth motions h(t)),

the 2πΓ term will typically dominate the 2Ωh term, and therefore in general a temporal Nyquist

sampling rate of roughly 2Γ samples/s should suffice to avoid temporal aliasing. Stated differently,

to avoid temporal aliasing we should not allow a moving object to traverse more than ≈ 1
2 pix

between adjacent sampling times. While this of course makes strong intuitive sense, we have arrived

at this conclusion through a principled analysis—one that illustrates the direct relationship between

the speed of object motion in the video and the video’s overall temporal bandwidth.

Again, to be clear, the paragraphs above concern the implications of our analysis in classical

(not compressive) sampling of a video. As we discuss in Section 3.3, the streaming compressive

measurements produced by a single-pixel camera may actually need to be acquired much faster than

the video’s temporal Nyquist rate (because only one measurement is collected from each frame). The

specific reason that the temporal bandwidth of the video will be relevant is because it will impact the

spacing of the “anchor frames” that we use to reduce the complexity of the reconstruction problem.

3.2.3 Supporting Experiments

3.2.3.1 Within our model assumptions

As an illustration, we can analytically define a continuous-space, continuous-time video that

allows us to test our predictions about spectral support. We let the prototype function g(x) =

sinc
(

Ωxx
π

)
, where sinc(x) = sin(πx)

πx and Ωx = π rad/pix. This definition ensures that g(x) is

bandlimited and that its bandwidth equals precisely Ωx rad/pix. We let the motion signal

(3.3) h(t) =

5∑
i=1

aisinc

(
Ωh(t− di)

π

)
,

where Ωh controls the total bandwidth (we set Ωh = 15 rad/s), the delays di are chosen randomly,

and the amplitudes ai are chosen somewhat arbitrarily but ensure that the maximum value attained
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by |h(t)| equals some parameter Γ, which we set to 25 pix/s. (By changing Ωh and Γ, we can

independently articulate the bandwidth and the maximum slope of this signal.) Figure 3.2(a) shows

the video f(x, t).

We oversample this video compared to its predicted spatial and temporal bandwidths, and in

Figure 3.2(b) we show the approximate spectrum using the FFT.1 The blue lines in Figure 3.2(b)

indicate the predicted “butterfly shape” which should bound the nonzero support of F (ωx, ωt). We

see that the empirical spectrum does largely concentrate within this region. For this video, the

temporal bandwidth is predicted not to exceed 2ΩxΓ + 2Ωh ≈ 187 rad/s.

In other experiments, we have observed that as we vary the bandwidth and velocity parameters,

the approximate support of the estimated spectrum stays within the “butterfly shape” predicted

by our theory in Section 3.2.2.2. For the sake of space, these experiments are omitted from the

current manuscript; however, they are available in a companion technical report [134]. For several

videos, we have computed the empirical temporal bandwidth based on our estimated spectrum. To

do this, we determine the value of Ωt for which 99.99% of the energy in the FFT (or windowed

FFT) falls within the range |ωt| ≤ Ωt. In each case, the empirical bandwidth Ωt equals roughly half

of the bandwidth 2ΩxΓ + 2Ωh predicted by our theory. (There are occasional exceptions where the

unwindowed FFT gives a higher estimate, but this is likely due to sampling artifacts.) This suggests

that in some cases, the bandwidth prediction based on Carson’s bandwidth rule may be pessimistic.

3.2.3.2 Beyond our model assumptions

Our formal analysis and the experiments described in Section 3.2.3.1 pertain specifically to trans-

lational videos in which g(x) is bandlimited, h(t) has bounded velocity and bandwidth, and the entire

contents of the frame translate en masse. However, real world videos may contain objects whose

appearance (neglecting translation) changes over time, objects that move in front of a stationary

background, multiple moving objects, and so on. We suspect that as a general rule of thumb, the

temporal bandwidth of real world videos will be dictated by the same tradeoffs of spatial resolution

and object motion that our theory suggests. In particular, the prediction of 2ΩxΓ + 2Ωh given

by our theory may be approximately correct, if we let Ωx be the essential spatial bandwidth of the

imaging system, Γ be the maximum speed of any object moving in the video, and Ωh be the essential

bandwidth of any object motion. This last parameter is perhaps the most difficult to predict for

a given video, but we suspect that in many cases its value will be small and thus its role minor in

1All spectral plots in Figure 3.2 show the magnitude of the FFT on a log10 scale. In panels (d) and (f) we apply
a smooth Blackman-Harris window to the samples before computing the FFT; this helps remove artifacts from the
borders of the sampling region.
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Fig. 1: Top row: (a) Video f(x, t) = g(x − h(t)) with bandlimited profile g(x) and bandlimited translation signal h(t).
(b) Estimated spectrum. Middle row: (c) 4096 sampled 1D rows from Candle video. (d) Estimated spectrum with windowing
to alleviate border artifacts. Bottom row: (e) 4096 sampled 1D rows from Pendulum + Cars video. (f) Estimated spectrum with
windowing to alleviate border artifacts.

1

Figure 3.2: Top row: (a) Video f(x, t) = g(x − h(t)) with bandlimited profile g(x) and bandlimited
translation signal h(t). (b) Estimated spectrum. Middle row: (c) 4096 sampled 1D rows from Candle video.
(d) Estimated spectrum with windowing to alleviate border artifacts. Bottom row: (e) 4096 sampled 1D
rows from Pendulum + Cars video. (f) Estimated spectrum with windowing to alleviate border artifacts.
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determining the overall temporal bandwidth.

To support these conjectures, we have identified the characteristic “butterfly shape” in experi-

ments where g(x) is not bandlimited (e.g., a Gaussian bump convolved with the unit-step function),

where h(t) is not bandlimited (e.g., a triangle wave), where there are multiple moving edges, and

where there are occluding objects. Again, these experiments are available in a companion technical

report [134]. In general, the estimated spectra continue to follow the predicted butterfly shape.

However, it remains an open problem to support this with theoretical analysis. We do note that we

believe our results are largely consistent with the classical study by Dong and Atick concerning the

statistics of real-world videos [50]. Although the videos in that study had relatively low temporal

resolution, Dong and Atick did note a certain radial symmetry to the spectrum (with one term

depending on ωt/ωx) and observe that at low spatial frequencies the power spectrum will have a

strong decay as a function of the temporal frequency.

We conclude this examination with our own series of experiments on real-world videos. These

videos (courtesy of MERL) were collected in a laboratory setting using a high-speed video camera,

but the scenes being imaged contained natural (not particularly high-speed) motions. For each video,

we select a 2D “slice” of the 3D video cube, extracting one spatial dimension and one temporal

dimension.

We begin with the Candle video which features two candle flames in front of a dark background;

the video was acquired at a rate of 1000 frames per second. We select 4096 consecutive time samples

from the video, and we extract 512 pixels from a certain row in each frame. Figure 3.2(c) shows the

video, and Figure 3.2(d) shows the estimated spectrum. Again, we recognize the approximate but-

terfly shape and an approximate limitation to the video bandwidth, both spatially and temporally.

More specifically, we see a collection of lines having various slopes, with the lines passing roughly

through the origin. However, there is also a bit of “thickness” near the origin due to a possible Ωh

term. The slopes of these lines match what might be expected based on an empirical examination of

the video itself. For example, the fastest motion in the video appears to occur at roughly t = 2.6 s,

where the candle flame translates to the right with a speed of roughly 1500 pix/s. Consequently,

we see a portion of the estimated spectrum oriented along a line with slope of approximately 4000

pix/s. Overall, for this video the empirical temporal bandwidth (in this case, the value of Ωt for

which 99% of the energy in the windowed FFT falls within the range |ωt| ≤ Ωt) equals 348 rad/s.

This suggests that the video’s temporal sampling rate (1000 frames/s) may have been higher than

necessary.

Next, we consider the Pendulum + Cars video, featuring two translating cars and an occlusion
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as one car passes in front of the other; the video was acquired at a rate of 250 frames per second.

We select 4096 consecutive time samples from the video, and we extract 640 pixels from a certain

row in each frame. Figure 3.2(e) shows the video, and Figure 3.2(f) shows the estimated spectrum.

Once again, we recognize the approximate butterfly shape and an approximate limitation to the

video bandwidth, both spatially and temporally, and once again, we see a collection of lines with

various slopes, but with a bit of “thickness” near the origin due to a possible Ωh term. The slopes

of these lines match what might be expected based on an empirical examination of the video itself.

For example, the maximum slope appears to be on the order of 140 pix/s, while the maximum

translational speed of the cars appears to be on the order of 70 pix/s. The overall empirical temporal

bandwidth is less than 35 rad/s, and consequently, this video’s temporal sampling rate (250 frames/s)

may also have been higher than necessary.

3.2.4 Videos with Two Spatial Dimensions

3.2.4.1 Signal model

Our analysis is easily generalized to the more conventional case of videos having two spatial

dimensions. We again use the variable t ∈ R to index time in seconds, and we use the variables

x, y ∈ R to index spatial position on the focal plane in pix. We again consider videos belonging to

a simple but representative translational model. Let g(x, y) denote a 2D function of space (one can

think of this as a continuous-space “still image”), and consider a continuous-space, continuous-time

video f(x, y, t) in which each “frame” of the video consists of a shifted version of this prototype

frame. More formally, suppose that f(x, y, t) = g(x−hx(t), y−hy(t)), where h(t) = (hx(t), hy(t)) is

a function that controls how much (in pix) the prototype frame is shifted in the x- and y-directions

at each time step.

3.2.4.2 Fourier setup

Let F (ωx, ωy, ωt) denote the 3D Fourier transform of f(x, y, t), and let G(ωx, ωy) denote the 2D

Fourier transform of g(x, y). Using similar analysis to the above, we will have

F (ωx, ωy, ωt) = G(ωx, ωy) · L(ωx, ωy, ωt),

where L(ωx, ωy, ωt) := Ft{e−jωxhx(t)−jωyhy(t)}(ωx, ωy, ωt). For fixed ωx, ωy, L(ωx, ωy, ωt) equals the

1D Fourier transform of e−jωxhx(t)−jωyhy(t) with respect to time, evaluated at the frequency ωt.
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3.2.4.3 Temporal bandwidth analysis

We assume that the position functions hx(t) and hy(t) have bounded slope, i.e., that for some

Γx,Γy > 0, |dhx(t)/dt| ≤ Γx pix/s and |dhy(t)/dt| ≤ Γy pix/s for all t. This corresponds to a bound

on the “speed” at which the object can move in each direction. We also assume that both translation

signals hx(t) and hy(t) have bandwidths bounded by Ωh rad/s.

Using arguments that parallel our 1D analysis (see [134]), we conclude that L(ωx, ωy, ωt) will have

a characteristic “polytope hourglass shape.” Considering the first octant of the 3D frequency space

(in which ωx, ωy, ωt ≥ 0), most of the total power of L(ωx, ωy, ωt) will fall below (in the temporal

direction) a plane passing through the points (0, 0, 2Ωh), (1, 0, 2Γx + 2Ωh), and (0, 1, 2Γy + 2Ωh).

The other seven octants follow symmetrically.

To see the implications of this in terms of bandwidth, suppose that G(ωx, ωy) is bandlimited

(or essentially bandlimited) to the range of frequencies (ωx, ωy) ∈ [−Ωx,Ωx]× [−Ωy,Ωy]. We must

then have that F (ωx, ωy, ωt) = G(ωx, ωy) ·L(ωx, ωy, ωt) is also essentially bandlimited in the spatial

direction to the range of frequencies (ωx, ωy) ∈ [−Ωx,Ωx] × [−Ωy,Ωy]. Because of the hourglass

structure in L(ωx, ωy, ωt), however, this will also cause F (ωx, ωy, ωt) to be essentially bandlimited

in the temporal direction to the range of frequencies

(3.4) ωt ∈ [−(2ΩxΓx + 2ΩyΓy + 2Ωh), 2ΩxΓx + 2ΩyΓy + 2Ωh].

Therefore, we see that filtering such a video in the spatial directions can cause it to be essentially

bandlimited both in space and in time.

From a classical (not compressive) sampling perspective, if we expect that both Ωx and Ωy will

be on the order of π rad/pix, and if we assume that the 2ΩxΓx+2ΩyΓy term will typically dominate

the 2Ωh term, then in typical scenarios, to avoid temporal aliasing we should not allow a moving

object to traverse more than ≈ 1
2 pix in any direction between adjacent sampling times. Aside from

exceptionally non-smooth motions h(t), we do strongly suspect that the influence of the temporal

bandwidth Ωh will be minor in comparison to the influence of the 2ΩxΓx + 2ΩyΓy term, and so in

general a temporal Nyquist sampling rate of 2(Γx+Γy) samples/s will likely serve as a reasonable rule

of thumb. Again, this rule of thumb illustrates the direct relationship between the speed of object

motion in the video and the video’s overall temporal bandwidth. As we will see in Section 3.3, this

bandwidth will impact the spacing of the anchor frames that we use to reduce the complexity of the

CS reconstruction problem.
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3.3 Anchor Frames for Reducing Reconstruction Complexity

The insight we have developed in Section 3.2 suggests that many videos of interest may indeed be

exactly or approximately bandlimited in the temporal direction. For problems involving CS of such

videos, this implies that there may be a limit to the “complexity” of the information collected by

streaming compressive measurement devices. One way of exploiting this limited complexity draws

from classical interpolation identities for bandlimited signals. We briefly review these identities in

Section 3.3.1 before exploring their applications for CS reconstruction in Section 3.3.2.

3.3.1 Sampling and Interpolation Principles

Before considering 2D or 3D video signals, let us first review the basic principles involved in non-

compressive sampling and interpolation of a bandlimited 1D signal. Suppose that f(t) is a signal

with temporal bandwidth bounded by Ωt rad/s. The Nyquist theorem states that this signal can

be reconstructed from a discrete set of samples {f(nTs)}n∈Z, where the sampling interval Ts ≤ π
Ωt

seconds. In particular, it holds that

(3.5) f(t) =
∑
n∈Z

f(nTs)sinc

(
t− nTs
Ts

)
.

Instead of actually reconstructing the continuous-time signal f(t), a more important consequence of

(3.5) for us will be the fact that, for any t0 ∈ R, f(t0) can be represented as a linear combination of

the discrete samples {f(nTs)}n∈Z.

With varying degrees of approximation, it is possible to replace the sinc interpolation kernel in

(3.5) with other, more localized kernels. We will write

(3.6) f(t) ≈
∑
n∈Z

f(nTs)γ

(
t− nTs
Ts

)
,

where γ(t) is a prototype interpolation kernel. In addition to the sinc kernel, for which γ(t) = sinc (t),

other possible choices include the zero-order hold (rectangular) kernel, for which γ(t) = 1 when

|t| ≤ 1
2 and γ(t) = 0 otherwise, the first-order hold (triangular, or “linear interpolation”) kernel,

for which γ(t) = 1 − |t| when |t| ≤ 1 and γ(t) = 0 otherwise, and a variety of cubic interpolation

kernels [100].

In general, a smoother choice for γ(t) will better approximate the ideal sinc kernel. However,

smoother kernels tend to have wider temporal supports, and it can be desirable in some applications

(such as the CS recovery problem discussed below) to limit the temporal support of the kernel.
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One way to improve the performance of the lower-order, more narrow interpolation kernels is to

decrease the sampling interval Ts. However, for our CS recovery problem discussed below, this too

will increase the complexity of the recovery algorithm by increasing the number of anchor frames.

For a 2D or 3D video with limited temporal bandwidth, the separability of the Fourier transform

implies that the interpolation formulas presented above should hold for each spatial location (i.e.,

for each pixel). Using the videos discussed in Section 3.2.3, we have confirmed this in experiments

evaluating the quality of interpolation as a function of the video properties, interpolation kernel,

etc. Again, these experiments are available in a companion technical report [134].

3.3.2 CS in Streaming Scenarios

3.3.2.1 Measurement process

To set up the CS problem, consider a continuous-space, continuous-time video f(x, y, t). Let

fd : {1, 2, . . . , N} × R → R denote a sampled discrete-space, continuous-time version of this video,

where for p = 1, 2, . . . , N ,

(3.7) fd(p, t) = f(xp, yp, t).

In the expression above, N specifies the number of pixels in each sampled frame, and (xp, yp)

represents the spatial location of pixel number p. Typically, {(xp, yp)}Np=1 will form a 2D grid of

points in the focal plane. For notational convenience, we rasterize these pixel values and index

spatial position in fd using only the pixel number p.

We consider an imaging system that collects streaming measurements of the video f(x, y, t)

according to the following model. We let T denote a measurement interval (in seconds), and we

suppose that one linear measurement is collected from fd every T seconds. (As we will discuss

below, typically T will be much smaller than the Nyquist sampling interval suggested by the video’s

bandwidth.) Letting y(m) denote the measurement collected at time mT , we can write

(3.8) y(m) =

N∑
p=1

φm(p)fd(p,mT ) = 〈φm, fd(:,mT )〉,

where φm ∈ RN is a vector of random numbers (see Section 3.4.2 for details on the measurement

vectors we prescribe), and we use “Matlab notation” to refer to a vector fd(:, t) ∈ RN . In total, we
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suppose that M measurements are collected. Stacking all of the measurements, we have

(3.9) y =



y(1)

y(2)

...

y(M)


=



〈φ1, fd(:, T )〉

〈φ2, fd(:, 2T )〉
...

〈φM , fd(:,MT )〉


=



φT1

φT2
. . .

φTM


︸ ︷︷ ︸

Φ: M×MN



fd(:, T )

fd(:, 2T )

...

fd(:,MT )


.

︸ ︷︷ ︸
xd: MN×1

Stacking the raw frames into a vector xd = [fd(:, T )T fd(:, 2T )T · · · fd(:,MT )T ]T ∈ RMN , and

letting Φ denote the M ×MN block diagonal measurement matrix appearing in (3.9), we can write

y = Φxd. This appears to be a standard CS problem, with measurements on the left, unknowns

on the right, and a measurement matrix that relates the two. Unfortunately, this is a very difficult

CS problem to solve directly: first, the recovery problem is very highly underdetermined, with

the number of measurements representing only 1
N times the number of unknowns; and second, the

size of the recovery problem, with MN unknowns, can be immense. We stress that the frames

fd(:, T ), fd(:, 2T ), . . . , fd(:,MT ) are assumed to be very close together in time (perhaps less than a

thousandth of a second apart), and so xd gets very large very quickly.

3.3.2.2 Simplifying the linear equations

Fortunately, if we assume that the video f(x, y, t) has limited temporal bandwidth, we can

simplify this recovery process to some degree. Let us assume that f(x, y, t) has temporal bandwidth

bounded by Ωt rad/s. We note that the temporal bandwidth of fd will also be bounded by Ωt rad/s.

Let Ta denote a time interval no greater than the Nyquist limit ( πΩt seconds) suggested by the

video’s bandwidth, and assume that Ta = V T for some integer V ≥ 1. Then for any integer j, we

can apply (3.6) and write

fd(:, jT ) ≈
∑
n∈Z

fd(:, nTa)γ

(
jT − nTa

Ta

)
=
∑
n∈Z

fd(:, nTa)γ

(
j

V
− n

)

=

[
· · · γ

(
j

V
− 1

)
IN γ

(
j

V
− 2

)
IN γ

(
j

V
− 3

)
IN · · ·

]


...

fd(:, Ta)

fd(:, 2Ta)

fd(:, 3Ta)

...


,
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where IN denotes the N ×N identity matrix. Therefore,

(3.10)



fd(:, T )

fd(:, 2T )

...

fd(:,MT )


︸ ︷︷ ︸

xd

≈



· · · γ
(

1
V − 1

)
IN γ

(
1
V − 2

)
IN · · ·

· · · γ
(

2
V − 1

)
IN γ

(
2
V − 2

)
IN · · ·

...
...

...

· · · γ
(
M
V − 1

)
IN γ

(
M
V − 2

)
IN · · ·


︸ ︷︷ ︸

Γ



...

fd(:, Ta)

fd(:, 2Ta)

...


︸ ︷︷ ︸

xa

.

Assuming γ(t) has temporal support within some reasonable bound, the matrix Γ above will have

size MN × (MN
V + O(1)) and so this allows a dimensionality reduction by a factor of V . In other

words, using the interpolation matrix Γ, we can relate the raw video frames (acquired T seconds

apart) to a reduced set of what we call anchor frames, which are spaced Ta seconds apart. In the

equation above, the stack of anchor frames is denoted by xa, and the length of xa is approximately

V times smaller than the length of xd.

Putting all of this together, we have

(3.11) y = Φxd ≈ ΦΓxa,

where

ΦΓ =



· · · γ
(

1
V − 1

)
φT1 γ

(
1
V − 2

)
φT1 γ

(
1
V − 3

)
φT1 · · ·

· · · γ
(

2
V − 1

)
φT2 γ

(
2
V − 2

)
φT2 γ

(
2
V − 3

)
φT2 · · ·

...
...

...

· · · γ
(
M
V − 1

)
φTM γ

(
M
V − 2

)
φTM γ

(
M
V − 3

)
φTM · · ·


.

︸ ︷︷ ︸
M×(MNV +O(1))

We have arrived at a CS problem in which the total number of unknowns has been reduced from

MN to MN
V + O(1). Indeed, the largest dimension of any matrix or vector in this formulation is

now limited to MN
V + O(1) instead of MN . Moreover, due to decay in γ, the matrix ΦΓ will be

banded, with zeros in all positions sufficiently far from the diagonal. This facilitates storage of

the matrix and reconstruction of very long video sequences by breaking the recovery problem into

blocks. (However, we consider only reconstructing a single sequence of the video in this chapter.)

From the formulation above, we see that it is possible to focus the reconstruction process on

recovery of a relatively low-rate stream of anchor frames xa, rather than the high-rate stream of

frames xd measured by the imaging system. Of course, in simplifying the CS problem, we have

changed the very unknowns that must be solved for. In many cases, we believe that it will suffice
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merely to reconstruct and display the anchor frames themselves; however, we note that the raw

video frames xd can be estimated from the reconstructed anchor frames by using the interpolation

equation (3.10).

If the anchor frames are defined at the video’s temporal Nyquist rate, and if there are no ad-

ditional assumptions made about the video, then one should not expect any temporal correlations

to remain among the anchor frames. In many real world settings, however, there will be objects

moving within the scene, and the smoothness of the object motion can lead to temporal correla-

tions, e.g., that can be captured via motion-compensated transforms. Thus, in order to impose the

strongest possible model on the vector of anchor frames, it may be helpful to look for sparsity in

a motion-compensated wavelet transform.2 In Section 3.4, we propose one method for doing this

while confronting the chicken-or-egg problem.

3.3.2.3 Optimizing the spacing between anchor frames

The quality of the interpolation approximation described in (3.10) relies on the assumption that

Ta ≤ π
Ωt

. However, in practical settings one may not know Ωt exactly, and this raises the question

of how to properly set Ta, the spacing between anchor frames. We note that when Ta is chosen to

be too small a multiple of T (that is, when V = Ta
T is small), the dimensionality of the reduced

problem (3.11) may not be small enough to permit reconstruction. Thus, in practice one should

generally aim to choose Ta small enough that the interpolation approximation (3.10) holds to a

reasonable degree of accuracy but large enough that the number of unknowns is sufficiently reduced.

Our simulations in Section 3.5.2 explore these trade-offs and demonstrate that it can indeed be

possible to find a setting for Ta that meets both of these criteria.

3.4 Multiscale Reconstruction Algorithm

Our analysis in the previous sections has (i) revealed that videos that are sampled by imaging

devices (including CS imaging devices) may have limited temporal bandwidth, (ii) characterized the

tradeoffs between the spatial resolution of the camera, the speed of any moving objects, and the

temporal bandwidth of the video, and (iii) explained how a relatively low-rate stream of “anchor

frames” can be used to reduce the complexity of the reconstruction problem. In this section, we

build on these insights and propose a complete algorithm for reconstructing a video from streaming

compressive measurements. In order to construct an effective sparsifying basis for the video, this

2For promising experiments that involve a simplified version of our algorithm (one that uses anchor frames but not
with a motion-compensated wavelet transform), we refer the reader to a companion technical report [134].
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algorithm involves a motion-compensated wavelet transform, and in order to confront the chicken-

or-egg problem, this algorithm is multiscale, employing anchor frames at a sequence of progressively

finer scales and alternating between reconstructing an approximation of the video and estimating

the motion vectors.

3.4.1 Problem Formulation

Following the setup in Section 3.3.2, we suppose that one linear measurement is collected from fd

every T seconds. Using (3.9), we can write the vector of M measurements as y = Φxd. Using (3.10),

we can write xd ≈ Γxa, where xa is formed by stacking the anchor frames. For the sake of simplicity

in formulating our algorithm, we specifically take xa = [fd(:, Ta)T fd(:, 2Ta)T · · · fd(:, MV Ta)T ]T ,

i.e., we truncate the stream of anchor frames at the beginning and end so that we consider exactly

Na := M
V anchor frames, and we adapt Γ at the borders to account for this truncation. To model

any interpolation errors, we introduce an error term e ∈ RM and model the collected measurements

as y = ΦΓxa + e.

As a sparsifying basis to be used for reconstructing xa, we employ the lifting-based invertible mo-

tion adaptive transform (LIMAT) [118]. Further details regarding LIMAT are given in Section 3.4.3

(and in [118]), but the key idea is this: Given a set of vectors describing the motion in a video, LI-

MAT yields a motion-compensated wavelet transform (across the temporal and spatial dimensions)

intended to provide a sparse representation of that video. For a given set of motion vectors v, we

let ΨL(v) denote the resulting LIMAT transform. We will apply LIMAT transforms to videos of

various sizes; in all cases, ΨL(v) is a square matrix, but its dimension will depend on the context.

If one had access to the anchor frames xa, it would be possible to examine the video and estimate

the vectors v describing motions between frames. Alternatively, if one had access to the motion

vectors v, one could write xa = ΨL(v)αa for some sparse coefficient vector αa and solve a CS

reconstruction problem such as

(3.12) α̂a = argminαa‖αa‖1 s.t. ‖y − ΦΓΨL(v)αa‖2 ≤ ε

to recover αa and subsequently xa from the compressive measurements [27]. In order to get around

this chicken-or-egg problem, we propose a multiscale reconstruction approach.
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3.4.2 The Multiscale Approach

Rather than reconstructing the full set of high-resolution anchor frames xa directly, our algorithm

aims to reconstruct a sequence of approximations to the anchor frames. These approximations begin

at a low temporal and spatial resolution and progress to successively finer resolutions.

To set our notation, we use the variable s to denote scale, with s = 1 denoting the coarsest

(low-resolution) scale and s = S denoting the finest (high-resolution) scale for some positive integer

S. For each s = 1, 2, . . . , S, let Ds represent a 22(s−S)N ×N linear operator that, when applied to a

video frame containing N pixels, performs a spatial low-pass filtering and downsampling operation

to produce a low-resolution frame containing 22(s−S)N pixels. (When s = S, Ds is the identity;

when s = S − 1, Ds averages over 2 × 2 blocks of pixels; when s = S − 2, Ds averages over 4 × 4

blocks of pixels; etc.) Recalling that

xa = [fd(:, Ta)T fd(:, 2Ta)T · · · fd(:, NaTa)T ]T ∈ RNaN ,

we define for each s = 1, 2, . . . , S, Ns := 23(s−S)NaN and

xa,s := [Dsfd(:, Ta · 2S−s)T Dsfd(:, 2Ta · 2S−s)T · · · Dsfd(:, NaTa)T ]T ∈ RNs .

The video xa,s contains 2s−SNa frames, each with 22(s−S)N pixels. It represents a lowpass filtered

and downsampled version of the original set of anchor frames xa. We note in particular that xa,S =

xa.

Our reconstruction begins at the coarsest scale with an attempt to estimate xa,1. Motivated

by our temporal bandwidth analysis, we begin reconstruction at a low spatial resolution for the

following reasons:

• Our theory predicts that at low spatial resolutions, the temporal bandwidth of the video will

be small. This limits the amount by which the video can change between successive frames

and justifies the temporal downsampling in the definition of xa,1. This downsampling also

leaves us with a relatively small number of frames that must be sparsely represented, and so

this sequence can be reconstructed from a small number of measurements.

• The spatial downsampling leaves us with larger pixels in each frame, and so an object that

traverses, say, P pixels per second in the high-resolution anchor frames will traverse only

21−SP pixels per second at scale s = 1. With relatively slow object motion, we can thus
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obtain a reasonable estimate of xa,1 without employing motion compensation, or equivalently,

with LIMAT motion vectors v set to 0.

After we have reconstructed an estimate of xa,1, it is then possible to compute a preliminary esti-

mate of the motion in the video. Although the resulting motion vectors will have limited spatial

and temporal accuracy (since xa,1 does), they can be used to perform a motion-compensated re-

construction of xa,2.3 From this point, we iterate (as detailed below), alternating between video

reconstruction and motion estimation, and proceeding to finer and finer scales. Between each pair

of adjacent scales, we double the spatial resolution and (as suggested by our analysis) double the

temporal resolution as well.

The following pseudo-code is an outline of our algorithm.

• Step 0: initialize scale s← 1 and motion vectors v1 = 0

• Step 1: solve

(3.13) α̂a,s = argminα′∈RNs ‖α′‖1 s.t. ‖ys − ΦsΓsΨL(vs)α
′‖2 ≤ εs,

where, as explained below, ys contains all measurements in y that are associated with scales

1, 2, . . . , s, Φs and Γs relate these measurements to xa,s, and εs accounts for interpolation error

• Step 2: form x̂a,s = ΨL(vs)α̂a,s

• Step 3: if s = S, terminate algorithm; otherwise go to Step 4

• Step 4: given x̂a,s use motion estimation to compute the set of motion vectors vs+1

• Step 5: set s← s+ 1 and go to Step 1

Our reconstruction algorithm places certain constraints on the measurement functions φm that

can be used. In particular, note that for each s ∈ {1, 2, . . . , S} solving the optimization problem

(3.13) requires a set of measurements ys that are assumed to obey ys = ΦsΓsxa,s + es. To facilitate

this, we assume that each measurement y(m) is associated with some scale s ∈ {1, 2, . . . , S}. A

measurement y(m) is said to be associated with scale s if y(m) can be written as y(m) = 〈φ̃m,Dsfd(:

,mT )〉 for some φ̃m ∈ R22(s−S)N . Stated differently, this requires that the frame fd(:,mT ) be

measured using a function that is piecewise constant over blocks of size 2S−s × 2S−s pixels, i.e.,

that frame fd(:,mT ) be measured with limited spatial resolution. This is easily accomplished using

programmable measurement devices such as the single-pixel camera. In particular, we suggest using

3Typically we choose S small enough so that the frames in xa,1 contain enough pixels to obtain a reasonable
estimate of the motion vectors.
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noiselets [37] for measurement functions, as they incorporate both randomness and multiple spatial

resolutions.

The measurements ys that we propose to use for solving (3.13) are merely a subset of the mea-

surements in y. In particular, for each for s = 1, 2, . . . , S, ys contains all measurements in y that

are associated with scales 1, 2, . . . , s. Thus, measurements from coarser scales are re-used for recon-

struction at finer scales, and at the finest scale all measurements are used for reconstruction. Other

terms appearing in (3.13) are Γs, an interpolation matrix that relates xa,s to a spatially lowpass-

filtered stream of the original high-rate frames [Dsfd(:, T )T Dsfd(:, 2T )T · · · Dsfd(:,MT )T ]T , and

Φs, a measurement matrix populated with the vectors φ̃m. The term εs appearing in (3.13) is to

account for interpolation error. In our current simulations we assume that we know the amount of

interpolation error as an oracle, and we set εs accordingly.

The specific number of measurements (call this Ms) that we associate with each scale s is a

design parameter. We find it useful to allocate a generous portion of the measurement budget to

M1 for two reasons: (i) it is relatively cheap to reconstruct an accurate video at low resolution,

and (ii) an accurate initial reconstruction is important to obtain an accurate initial estimate of the

motion vectors. As we progress in the algorithm to finer scales, the number of unknowns that

we are solving for increases by a factor of eight with each increment in scale. Therefore, it is also

natural to increase the number of measurements Ms that we associate with each scale. Although the

size of the video increases by a factor of eight between one scale and the next, however, the sparsity

level may not necessarily increase by the same factor. To get a rough estimate of the increase in

sparsity level, consider that within a 3D video, the boundary of a moving object will generally trace

out a 2D surface. Using simple box-counting arguments, one would generally expect the sparsity

level in an isotropic 3D dictionary (such as a 3D wavelet transform) to increase by a factor of four

between adjacent scales. Based on this observation, we believe that an increase of Ms by (very

roughly) a factor of four for every increment in scale would be a reasonable choice. Our simulations

in Section 3.5.2 use measurement rates inspired by this 4× rule of thumb and refined with a small

amount of trial and error.

Finally, we comment on the allocation strategy of the multiscale measurements across the M

frames, i.e., which of the M frames we associate with which scale. One straightforward allocation

strategy would be a random one, e.g., randomly choose M1 out of the M original frames and associate

these with scale 1, randomly choose M2 out of the M −M1 remaining frames and associate these

with scale 2, etc. However, we have found that in doing so, it is usually helpful to ensure that all

anchor frames at a given scale s are automatically associated with scale s (or a coarser scale). The
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remaining (non-anchor) frames are associated randomly.

3.4.3 Lifting-based Invertible Motion Adaptive Transform (LIMAT)

At each scale s = 1, 2, . . . , S, we use LIMAT [118] as a sparsifying transform for the anchor frames

xa,s. Recall that xa,s contains 2s−SNa frames, each with 22(s−S)N pixels. To simplify notation in

this section, set n = 2s−SNa and for k = 1, 2, . . . , n, let xk denote frame k from the sequence xa,s.

The lifting transform partitions the video into even frames {x2k} and odd frames {x2k+1} and

attempts to predict the odd frames from the even ones using a forward motion compensation op-

erator. This operator, which we denote by F , takes as input one even frame and a collection of

motion vectors denoted vf that describe the anticipated motion of objects between that frame and

its neighbor. For example, suppose that x2k and x2k+1 differ by a 3-pixel shift that is captured

precisely in vf ; then as a result x2k+1 = F(x2k, vf ) exactly. Applying this prediction to each pair

of frames and keeping only the prediction errors, we obtain a sequence of highpass residual detail

frames (see (3.14) below). The prediction step is followed by an update step that uses an analogous

backward motion compensation operator denoted B and motion vectors vb. The combined lifting

steps

hk = x2k+1 −F(x2k, vf )(3.14)

lk = x2k +
1

2
B(hk, vb)(3.15)

produce an invertible transform between the original video and the lowpass {lk} and highpass {hk}

coefficients. For maximum compression, the lifting steps can be iterated on pairs of the lowpass

frames until there remains only one. Ideally, with perfect motion compensation, the n− 1 highpass

frames will consist only of zeros, leaving only one frame of nonzero lowpass coefficients, and making

the sequence significantly more compressible. As a final step, it is customary to apply the 2D

discrete wavelet transform (DWT) to each lowpass and highpass frame to exploit any remaining

spatial correlations.

In our proposed algorithm, we use block matching (BM) [16] to estimate motion between a pair

of frames. The BM algorithm divides the reference frame into non-overlapping blocks. For each

block in the reference frame the most similar block of equal size in the destination frame is found

and the relative location is stored as a motion vector. There are several possible similarity measures;

we use the `1 norm.
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3.5 Discussion and Simulations

In this section, we conclude by describing the differences between our work and several other

important ones in the literature. We also present simulations that demonstrate the performance of

our algorithm.

3.5.1 Related Work

Our algorithm is intended for reconstructing a video from streaming compressive measurements;

specifically, we assume that one compressive measurement is collected at each time instant. (The

single-pixel camera is a prototypical example of an imaging device that produces such measurements.)

We note that a preliminary version of our algorithm [104] was intended for a different measurement

model—one in which multiple measurements are collected from each frame but at a much lower frame

rate. For example, 1000 measurements might be collected from each of 30 frames per second. While

acquiring such measurements may be possible using other compressive imaging architectures [112,

97], our particular interest in this chapter is on how to correctly deal with streaming measurements.

In addition to our preliminary algorithm [104], several others have also been proposed in the CS

video literature that incorporate motion estimation and compensation. These are discussed below.

We note that none of these algorithms were explicitly designed to handle streaming measurements.

However, any of these algorithms could be modified to (approximately) operate using streaming

measurements by partitioning the measurements into short groups and assuming that all measure-

ments within a group come from the same frame. Such raw aggregation of measurements actually

corresponds to using a rectangular interpolation kernel in our formulation (3.11). As one would ex-

pect, and as we will demonstrate in Section 3.5.2, one can achieve significantly better performance by

employing smoother interpolation kernels. To the best of our knowledge we are the first to propose

and justify the use of other interpolation kernels for aggregating measurements. We do note that one

algorithm from the literature [117] does present a careful method for grouping the measurements in

order to minimize the interpolation error when using a rectangular kernel.

One related algorithm [64] is based on the observation that nearby frames should have a sparse

or compressible residual when one frame is subtracted from the other. The authors employ motion

estimation and compensation to produce a sparse or compressible residual frame even in the presence

of fast or global motion. More specifically, let x1 and x2 denote two frames in a video sequence. Initial

estimates of x1 and x2 are obtained via independent reconstruction from the measurements y1 = Φx1

and y2 = Φx2, respectively. Motion vectors are then computed between these frame estimates, and
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subsequently a motion-compensated frame, xmc, is computed from x1 and the estimated motion

vectors. When motion estimation is accurate, the residual xr = x2−xmc is likely to be highly sparse

or compressible. The authors propose to reconstruct the residual frame, xr, from the measurements

yr = y2 − ymc = Φx2 − Φxmc. The estimate of the residual frame, x̂r, can be used to improve upon

the previous estimate of x2 via x̂2 = xmc + x̂r. This procedure is then carried out for the next pair of

frames x2 and x3. This method requires that the same matrix Φ be used for measuring each frame.

In some cases, the use of such measurement matrices may decrease diversity in the measurements.

As an extreme example, if a video contains no motion, the measurements from every frame will be

identical.

Another related algorithm [123] has been proposed in the field of dynamic medical resonance

imaging (MRI). This algorithm relies on the assumption that the locations of the significant coef-

ficients of each video frame can be estimated via a motion-compensated frame. Similarly to the

above, a motion-compensated frame, xmc, is obtained from motion vectors computed between a pair

of estimates of the frames x1 and x2. The initial estimates of the video frames are computed in a

frame-by-frame fashion from their respective random measurements. When motion compensation is

accurate, the indices of large coefficients of xmc will provide an accurate prediction of the locations of

the significant coefficients of x2, and this knowledge can be used to reconstruct an accurate estimate

of x2. Once a new estimate of x2 is formed, this procedure is repeated for the next frame x3, and

so on.

Another related algorithm [83] involves dividing a video sequence into several groups of pictures

(GOPs), each of which is made up of a key frame followed by several non-key frames. The authors

propose to reconstruct each key frame in a frame-by-frame fashion. Given the estimates of the key

frames, estimates of the non-key frames are computed via a technique called motion-compensated

interpolation. Refined estimates of the non-key frames are obtained in a frame-by-frame fashion,

using the initial motion-compensated frame as the starting point of a gradient projection for sparse

reconstruction (GPSR) solver. The authors propose a novel stopping criterion for the GPSR solver

that helps find a solution that is not too different from the initial estimate. This procedure is then

carried out for the next non-key frame, and so on.

Finally, one other related algorithm involves a dual-scale reconstruction of a video [117]. First,

a sufficient number of low-resolution measurements are collected to permit a low-resolution preview

of the video to be obtained using simple least-squares. Motion information is then extracted from

this preview video, and this motion information is used to help reconstruct the high-resolution video

sequence. An optimization problem minimizes the sum of the `1-norm of the expansion coefficients

36



of each individual frame in an appropriate sparsifying transform subject to a data fidelity constraint.

Additionally, the minimization problem is subject to a constraint such as

‖x̂i(x, y)− x̂i+1(x+ vx, y + vy)‖2 ≤ ε, ∀i,

which ensures that the reconstructed video agrees with the motion vectors estimated from the pre-

view video. While this method can be relatively successful in recovering videos from small numbers

of measurements, according to the authors, the algorithm can have difficulty in reconstructing high

spatial frequency components.

We would like to point out that all of the above methods require, for each frame, a number of

measurements proportional to the sparsity level of that frame (after appropriate motion compen-

sation and a spatial sparsifying transform such as a 2D wavelet transform). This is true simply

because three of the above methods [64, 123, 83] involve reconstructing the video one or two frames

at a time. The fourth of the above methods [117] does involve jointly reconstructing the ensemble

of video frames. However, this algorithm still requires a total number of measurements proportional

to the sum of the sparsity levels of the individual frames because that quantity is what is minimized

in the `1 optimization procedure.

We argue that a temporal sparsifying transformation can help to decrease the sparsity level of a

video signal and thus reduce the number of measurements that must be collected of that video. In

particular, for videos with slowly moving objects or videos with stationary backgrounds, temporal

redundancies may persist for longer than the duration of one or two frames. The above methods,

however, are essentially employing a temporal transform with a temporal support of one or two

frames. If one can successfully remove temporal redundancies over a longer temporal support,

the overall sparsity level of the video will decrease, and this in turn will reduce the number of

measurements that must be collected from each frame.

Some methods for CS video reconstruction have been proposed that do employ a 1D temporal

sparsifying transform along with a 2D spatial sparsifying transform. In essence, each of these al-

gorithms corresponds to applying a different 3D sparsifying transform Ψ. One algorithm uses the

3D-DWT for Ψ and reconstructs the entire video all at once [139]. Another approach, termed “Cn”

and proposed for compressive coded aperture video reconstruction [96], relies on small inter-frame

differences together with a spatial 2D-DWT to produce a sparse representation of the underlying

video. Unfortunately, neither of these algorithms involves any motion compensation, and so these

3D transforms will not be successful in sparsifying videos containing any significant levels of motion.
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We see that the two classes of methods described above have two distinct strengths. Algorithms

in the first class employ motion information in the reconstruction to better reconstruct the video

sequence, while algorithms in the second class employ a temporal transformation to remove the

temporal redundancies over a longer temporal support. In this chapter (and in [104]), we use

LIMAT which essentially combines these two strengths: LIMAT performs a full motion-compensated

temporal decomposition that, when seeded with accurate motion vectors, can effectively remove

temporal redundancies even in the presence of complex motion.

We would like to point out, however, that LIMAT is just one of many possible 3D sparsifying

bases and that our algorithm can be modified to use other choices of basis as well. We also note

that the frame-by-frame reconstruction methods [64, 123, 83] have the advantage of being more

computationally efficient as they involve reconstruction problems of a smaller size. This may be

an important factor in applications where computational resources are scarce and full temporal

decompositions are not practical. We also reiterate that to some degree, the multiscale algorithm we

present in this chapter is a proof-of-concept inspired by our temporal bandwidth analysis. We see

our work as an addition to—not a replacement for—the nascent CS video literature, and we believe

that the ideas we expound (such as using anchor frames to reduce the complexity of reconstruction)

could be combined with some of the other existing ideas mentioned above.

Finally, to place our work in the proper context, we reiterate the differences between a stan-

dard (“non-compressive”) video capture system and the CS-based (“compressive”) video acquisition

strategy discussed in this chapter. As we discussed in Section 3.1, the primary advantages of a com-

pressive video system are twofold: first, it reduces the physical burden of measuring the incoming

video, as it does not require a complete set of samples to be obtained for every frame, and second, it

reduces the computational complexity of the encoding process, as it does not require any spatiotem-

poral transform to be implemented at the encoder. These advantages do not make a compressive

video system appropriate for all situations, however. For example, it is well known in CS that for a

given sparse signal, the requisite number of measurements is slightly higher (by a small multiplicative

factor) than one would require if the relevant sparse components could be directly extracted from the

signal. Standard video capture systems have the advantage of getting to “look at” the fully sampled

video before identifying the critical features to be encoded. One would naturally expect, then, that

for a given quality level, a traditional video encoder would require fewer bits than a compressive

video encoder (one in which the CS measurements were quantized and converted to bits). Standard

video capture systems also have a second main advantage: the decoding algorithm can be much

simpler than in a compressive video system. Our comments on these points are not unique to our
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particular CS framework; indeed they are fully consistent with observations made in another recent

paper dealing with CS for video [109].4 For our algorithm, however, a detailed comparison against

a traditional encoder in terms of bit rate, power consumption, memory requirements, resiliency to

errors, etc., is beyond the scope of this chapter.

3.5.2 Simulations

In this section we present simulation results for our proposed algorithm. We compare our algo-

rithm (using a linear interpolation kernel) to the 3D-DWT [139] and Cn [96] temporal sparsifying

transforms using a rectangular interpolation kernel. We also compare to a modified version of our

algorithm that uses LIMAT but with zero-motion vectors. The results demonstrate the benefits of

combining motion compensation with a temporal sparsifying transform and the benefits of using a

non-rectangular interpolation kernel.

We present results for two different test videos (courtesy of MERL), the Candle video and the

Pendulum + Cars video. These are the same videos that we described in Section 3.2.3.2, but we

have selected different time samples and cropped the frames to different image regions. Four of the

original anchor frames of each video are presented in Figures 3.3(a) and 3.4(a). Each video consists

of 512 frames; the frames in the Candle video are of size N = 128 × 128, while the frames in the

Pendulum + Cars video are of size N = 256× 256. The first test video contains two candle flames

moving in front of a black (zero-valued) background. This video was acquired with a high-speed

camera at 1000 frames per second. The flames warp into different shapes and sway from left to right

as the video progresses. The typical speed of the moving edge of a flame is approximately 0.3 pixels

per frame. The second video contains a white car that is moving in front of a “Newton’s cradle” (a

pendulum with several silver metal balls) and a stationary background. As the video progresses, the

white car moves from right to left, and the two metal balls at each end of the Newton’s cradle swing

throughout the video sequence. This video was acquired with a high-speed camera at 250 frames

per second. The motion of the car is mostly translational (it moves from right to left at a speed of

roughly 0.025 pixels per frame), while the two metal balls swing at a much faster speed of roughly

1–1.5 pixels per frame.

In our simulations, we construct synthetic CS measurements from the original high-rate video

sequences. In order to reasonably apply CS to either of these video sequences, one would need more

4The encoder proposed in [109] also has some philosophical similarities and differences with our work and others
we have described. Like our work, the system in [109] can operate with frame-by-frame CS measurements and is
intended to exploit spatial and temporal correlations in the video. Unlike our work, however, the system in [109]
utilizes a special post-measurement encoding of the CS measurements to exploit temporal correlations. It also relies
on raw aggregation (rectangular interpolation) of the measurements.
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(a) Original frames (b) 3D-DWT (c) Cn with n = 32 (d) LIMAT with v = 0 (e) LIMAT

Fig. 1: Reconstructed anchor frames of Candle video. Out of 512 original frames, 32 anchor frames were reconstructed. From
the top each row shows the 5th, 11th, 21st, and 28th anchor frame and its reconstruction via various reconstruction methods.
From the left each column represents: (a) original frames, (b) 3D-DWT with rectangular interpolation kernel, PSNR = 33.67 dB,
(c) Cn, n = 32, with rectangular interpolation kernel, PSNR = 33.68 dB, (d) LIMAT with rectangular interpolation kernel and
zero-motion vectors, PSNR = 33.80 dB, (e) LIMAT with linear interpolation kernel, PSNR = 36.76 dB.

1

Figure 3.3: Reconstructed anchor frames of Candle video. Out of 512 original frames, 32 anchor frames
were reconstructed. From the top each row shows the 5th, 11th, 21st, and 28th anchor frame and its
reconstruction via various reconstruction methods. From the left each column represents: (a) original frames,
(b) 3D-DWT with rectangular interpolation kernel, PSNR = 33.67 dB, (c) Cn, n = 32, with rectangular
interpolation kernel, PSNR = 33.68 dB, (d) LIMAT with rectangular interpolation kernel and zero-motion
vectors, PSNR = 33.80 dB, (e) LIMAT with linear interpolation kernel, PSNR = 36.76 dB.

than 1000 measurements per second, and thus with the available videos (acquired at 1000 and 250

frames per second) we would not have a sufficient number of measurements if we synthesized only one

measurement from each frame. Thus, for the purposes of testing our algorithm, we collect more than

one random measurement from each frame of the test video. (Still, the number of measurements

we collect from each frame is moderate—120 per frame for the first video and 800 per frame for the

second video.) Our setting remains very different from related ones [64, 123, 83], however, because

we do not intend to reconstruct all of the high-rate frames directly (indeed, this would be difficult to

do with so few measurements per frame); rather we will reconstruct a reduced set of anchor frames.

We begin by reconstructing both videos using Na = 32 anchor frames. The total number of

unknowns that we are solving for in case of the Candle video is NNa = 128× 128× 32; in the case

of the Pendulum + Cars video it is NNa = 256 × 256 × 32. Note that the use of anchor frames

reduces the reconstruction complexity by a factor of V = 512/32 = 16. For the Candle video, we

divide the reconstruction into S = 3 scales. At scale 1 we reconstruct a low-resolution video of size
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(a) Original frames (b) 3D-DWT (c) Cn with n = 32 (d) LIMAT with v = 0 (e) LIMAT

Fig. 1: Reconstructed anchor frames of Pendulum + Cars video. Out of 512 original frames, 32 anchor frames were reconstructed.
From the top each row shows the 4th, 13th, 22nd, and 30th anchor frame and its reconstruction via various reconstruction methods.
From the left each column represents: (a) original frames, (b) 3D-DWT with rectangular interpolation kernel, PSNR = 28.22 dB,
(c) Cn, n = 32, with rectangular interpolation kernel, PSNR = 29.58 dB, (d) LIMAT with rectangular interpolation kernel and
zero-motion vectors, PSNR = 29.81 dB, (e) LIMAT with linear interpolation kernel, PSNR = 31.38 dB.

1

Figure 3.4: Reconstructed anchor frames of Pendulum + Cars video. Out of 512 original frames, 32
anchor frames were reconstructed. From the top each row shows the 4th, 13th, 22nd, and 30th anchor
frame and its reconstruction via various reconstruction methods. From the left each column represents:
(a) original frames, (b) 3D-DWT with rectangular interpolation kernel, PSNR = 28.22 dB, (c) Cn, n = 32,
with rectangular interpolation kernel, PSNR = 29.58 dB, (d) LIMAT with rectangular interpolation kernel
and zero-motion vectors, PSNR = 29.81 dB, (e) LIMAT with linear interpolation kernel, PSNR = 31.38 dB.

N1 := 32 × 32 × 8, at scale 2 a low-resolution video of size N2 := 64 × 64 × 16, and at scale 3 the

full-resolution video of size N3 := 128× 128× 32. Similarly, we divide the reconstruction into S = 4

scales for the Pendulum + Cars video. Thus, at scale 1 we reconstruct a low-resolution video of size

N1 := 32×32×4, at scale 2 a low-resolution video of size N2 := 64×64×8, at scale 3 a low-resolution

video of size N3 := 128×128×16, and at scale 4 the full-resolution video of size N4 := 256×256×32.

For the Candle video we take 120 measurements from each of the 512 frames, and for the Pendulum

+ Cars video we take 800 measurements from each of the 512 frames. Out of the 512 frames in the

video, for the Candle video, we allocate 54 frames to scale 1, 250 frames to scale 2, and 208 frames

to scale 3. Thus, we have M1 = 54×120, M2 = 250×120, and M3 = 208×120 when reconstructing

the video. Similarly, for the Pendulum + Cars video we allocate 5 frames to scale 1, 30 frames to

scale 2, 130 frames to scale 3, and 347 frames to scale 4, so that M1 = 5 × 800, M2 = 30 × 800,

M3 = 130× 800, and M4 = 347× 800 when reconstructing the video.

This means that when reconstructing the Candle video, at scale 1 we solve for N1 unknowns
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using M1 measurements, and we have M1/N1 ≈ 0.79. At scale 2, we solve for N2 unknowns using

M1 + M2 measurements, and we have (M1 + M2)/N2 ≈ 0.56 (recall that we re-use coarser scale

measurements at the current scale). Finally, at scale 3, we solve for N3 unknowns using M1+M2+M3

measurements, and we have (M1 +M2 +M3)/N3 ≈ 0.12. Similarly, for the Pendulum + Cars video,

at scale 1 we have M1/N1 ≈ 0.98,5 at scale 2 we have (M1 + M2)/N2 ≈ 0.85, at scale 3 we have

(M1 +M2 +M3)/N3 ≈ 0.50, and at scale 4 we have (M1 +M2 +M3 +M4)/N4 ≈ 0.20.

Figures 3.3 and 3.4 show the original anchor frames and their reconstructions via the various

reconstruction methods. The PSNR values shown in both figures have been computed across the 32

anchor frames. For each reconstruction method that we test, we use the same multiscale measure-

ments described above; the only differences are in what kernel is used for interpolating the measure-

ments and in what algorithm (i.e., sparsifying transform) is used for reconstruction. Columns (b)

and (c) show the performance of the 3D-DWT [139] and Cn [96] temporal sparsifying transforms,

respectively. For both we use a rectangular interpolation kernel. As discussed in Section 3.5.1, using

a rectangular interpolation kernel is equivalent to aggregating the CS measurements and assigning

them to the nearest anchor frame. Column (d) shows the performance of a modified version of our

algorithm that uses LIMAT with zero-motion vectors and a rectangular interpolation kernel. Col-

umn (e) shows the performance of our full algorithm, using a linear interpolation kernel and using

LIMAT with motion vectors estimated during the multiscale reconstruction procedure.

Using the same total number of measurements, we repeat the experiments above but using

Na = 16 anchor frames instead of 32 (we also use a different allocation of measurements across the

scales). The results are presented in Figures 3.5 and 3.6. For all reconstruction methods—including

ours—we see a decrease in the PSNR of the reconstruction. We believe that this is mainly due to

the inevitable increase in interpolation error that occurs when the anchor frames are spaced further

apart. In exchange for the decrease in PSNR, however, the complexity of the reconstruction problem

has been reduced by a factor of 2.

In all experiments, we see that our algorithm gives the highest PSNR value. Our reconstruction

algorithm also successfully recovers some features in the video frames that other methods cannot.

For example, we can see that the flames in column (e) of the Candle video reconstructions have

sharper and more detailed edges than those of other reconstructions shown in columns (b)–(d). We

can also see that the edges of the car and the details of features of the wheels are more pronounced

than those of the others. We note that objects with slow motion (e.g., cars) are most accurately

5Here we could consider taking a few more measurements so that M1/N1 ≥ 1 and simply inverting the measure-
ment matrix to obtain a low-resolution estimate of the video. However, as the measurements contain error due to
interpolation, we believe it would be preferable to solve an `1-regularized problem instead.
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(a) Original frames (b) 3D-DWT (c) Cn with n = 16 (d) LIMAT with v = 0 (e) LIMAT

Fig. 1: Reconstructed anchor frames of Candle video. Out of 512 original frames, 16 anchor frames were reconstructed. From the
top each row shows the 3rd, 6th, 12th, and 15th anchor frame and its reconstruction via various reconstruction methods. From the
left each column represents: (a) original frames, (b) 3D-DWT with rectangular interpolation kernel, PSNR = 32.79 dB, (c) Cn,
n = 32, with rectangular interpolation kernel, PSNR = 32.70 dB, (d) LIMAT with rectangular interpolation kernel and zero-motion
vectors, PSNR = 32.64 dB, (e) LIMAT with linear interpolation kernel, PSNR = 35.49 dB.

1

Figure 3.5: Reconstructed anchor frames of Candle video. Out of 512 original frames, 16 anchor frames
were reconstructed. From the top each row shows the 3rd, 6th, 12th, and 15th anchor frame and its
reconstruction via various reconstruction methods. From the left each column represents: (a) original frames,
(b) 3D-DWT with rectangular interpolation kernel, PSNR = 32.79 dB, (c) Cn, n = 32, with rectangular
interpolation kernel, PSNR = 32.70 dB, (d) LIMAT with rectangular interpolation kernel and zero-motion
vectors, PSNR = 32.64 dB, (e) LIMAT with linear interpolation kernel, PSNR = 35.49 dB.

reconstructed, while objects that are moving fast (e.g., metal balls) are less accurately reconstructed.

A different spacing of anchor frames could help to reconstruct more rapidly moving objects, and

one could even consider adaptively changing the spacing of the anchor frames throughout the video.

While such extensions are beyond the scope of this chapter, our companion technical report [134]

does contain additional discussion on this front.

Overall, both visually and in terms of PSNR, we have seen the benefits of combining motion

compensation with a temporal sparsifying transform and the benefits of using a non-rectangular

interpolation kernel. Though not shown, we have also tested our algorithm using zero-motion LIMAT

with a linear interpolation kernel. For Na = 32, the PSNR for the reconstructed Candle video is

36.60 dB, and the PSNR for the reconstructed Pendulum + Cars video is 30.79 dB; for Na = 16, the

PSNR for the reconstructed Candle video is 34.84 dB, and the PSNR for the reconstructed Pendulum

+ Cars video is 29.35 dB. Thus, while both the motion compensation and the interpolation kernel

are contributing to the gains that we see, the change in interpolation kernel seems to be a bit more
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(a) Original frames (b) 3D-DWT (c) Cn with n = 16 (d) LIMAT with v = 0 (e) LIMAT

Fig. 1: Reconstructed anchor frames of Pendulum + Cars video. Out of 512 original frames, 16 anchor frames were reconstructed.
From the top each row shows the 2nd, 6th, 11th, and 15th anchor frame and its reconstruction via various reconstruction methods.
From the left each column represents: (a) original frames, (b) 3D-DWT with rectangular interpolation kernel, PSNR = 27.81 dB,
(c) Cn, n = 32, with rectangular interpolation kernel, PSNR = 28.30 dB, (d) LIMAT with rectangular interpolation kernel and
zero-motion vectors, PSNR = 28.48 dB, (e) LIMAT with linear interpolation kernel, PSNR = 29.64 dB.

1

Figure 3.6: Reconstructed anchor frames of Pendulum + Cars video. Out of 512 original frames, 16 anchor
frames were reconstructed. From the top each row shows the 2nd, 6th, 11th, and 15th anchor frame and its
reconstruction via various reconstruction methods. From the left each column represents: (a) original frames,
(b) 3D-DWT with rectangular interpolation kernel, PSNR = 27.81 dB, (c) Cn, n = 32, with rectangular
interpolation kernel, PSNR = 28.30 dB, (d) LIMAT with rectangular interpolation kernel and zero-motion
vectors, PSNR = 28.48 dB, (e) LIMAT with linear interpolation kernel, PSNR = 29.64 dB.

valuable.

The reconstruction time of our algorithm depends mainly on size of the unknown signal. Thus,

the reconstruction will be faster at coarser scales in the algorithm and slower at finer scales. The

reconstruction complexity also depends on the motion vectors, since the time to compute a matrix

vector product increases with the number of non-zero motion vectors used in LIMAT. Thus, the

reconstruction time when using LIMAT with zero-motion vectors will be comparable to the time

required for, e.g., the 3D-DWT (which is based on orthonormal linear filters) but shorter than the

time required for LIMAT with non-zero motion vectors. Using an off-the-shelf Windows-based PC

with quad-core CPU, the total times for our algorithm to reconstruct 16 and 32 anchor frames

of the Candle video were roughly 30 minutes and 230 minutes, respectively. To be more specific,

for the reconstruction involving 32 anchor frames, the algorithm required 9 seconds at scale 1, 552

seconds at scale 2, and 13679 seconds at scale 3. For the sake of comparison, the 3D-DWT, Cn, and

LIMAT with zero-motion vector algorithms took approximately 2204 seconds, 16106 seconds, and
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2796 seconds, respectively. Reducing the computational complexity of our algorithm is an important

problem for future research. We do note, though, that while our algorithm may not currently be

feasible for real-time reconstruction purposes, as with CS-MUVI [117] it would be possible to view

a low-resolution preview of the video in almost real-time.
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CHAPTER 4

Compressed Sensing in Multiview Imaging and

Reconstruction

4.1 Introduction

Armed with potentially limited communication and computational resources, designers of dis-

tributed imaging systems face increasing challenges in the quest to acquire, compress, and communi-

cate ever richer and higher-resolution image ensembles. In this chapter, we consider multi-view imag-

ing problems in which an ensemble of cameras collect images describing a common scene. To simplify

the acquisition and encoding of these images, we study the effectiveness of non-collaborative com-

pressed sensing (CS) [52, 26], also known as Distributed CS (DCS) [18], encoding schemes wherein

each sensor directly and independently compresses its image using a small number of randomized

measurements (see Figure 4.1). CS is commonly intended for the encoding of a single signal, and a

rich theory has been developed for signal recovery from incomplete measurements by exploiting the

assumption that the signal obeys a sparse model. In this chapter, we address the problem of how

to recover an ensemble of images from a collection of image-by-image random measurements. To do

this, we advocate the use of implicitly geometric models to capture the joint structure among the

images.

While DCS encoding is non-collaborative, an effective DCS decoder should reconstruct all signals

jointly to exploit their common structure. As we later discuss, most existing DCS algorithms for

distributed imaging reconstruction rely fundamentally on sparse models to capture intra- and inter-

signal correlations [18, 34, 96, 104]. What is missing from each of these algorithms, however, is

an assurance that the reconstructed images have a global consistency, i.e., that they all describe a

This work is in collaboration with Michael B. Wakin [105], and builds upon earlier work that appeared in [137]
by Michael B. Wakin.
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Figure 4.1: Multi-view compressive imaging setup. A common scene is observed by J cameras from different
positions. Each camera j encodes a small number of random measurements yj of its observed image xj , and
a single decoder jointly reconstructs all images {xj} from the ensemble of compressive measurements {yj}.

common underlying scene. This may not only lead to possible confusion in interpreting the images,

but more critically may also suggest that the reconstruction algorithm is failing to completely exploit

the joint structure of the ensemble.

To better extend DCS techniques specifically to problems involving multi-view imaging, we pro-

pose in this chapter a general geometric framework in which many such reconstruction problems

may be cast. We specifically focus on scenarios where a representation of the underlying scene is

linearly related to the observations. This is mainly for simplicity, and there is plenty of room for

the development of joint reconstruction algorithms given nonlinear mappings; however, we present

a number of scenarios where a linear mapping can be found. For these problems, we explain how

viewing the unknown images as living along a low-dimensional manifold within the high-dimensional

signal space can inform the design of effective joint reconstruction algorithms. Such algorithms can

build on existing sparsity-based techniques for CS but ensure a global consistency among the re-

constructed images. We refine our discussion by focusing on two settings: far-field and near-field

multi-view imaging. Finally, as a proof of concept, we demonstrate a “manifold lifting” algorithm

in a specific far-field multi-view scenario where the camera positions are not known a priori and we

only observe a small number of random measurements at each sensor. Even in such discouraging

circumstances, by effectively exploiting the geometrical information preserved in the manifold model,

we are able to accurately reconstruct both the underlying scene and the camera positions.
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4.2 Problem Setup and Related Work

4.2.1 Multi-view Imaging using Image-by-Image Random Measurements

Let us now turn to the problem of distributed image compression for multi-view imaging. We

imagine an ensemble of J distinct cameras that collect images x1, x2, . . . , xJ ∈ RN describing a

common scene, with each image xj taken from some camera position θj ∈ Θ. We would like to

efficiently compress this ensemble of images, but as in any sensor network, we may be limited in

battery power, computational horsepower, and/or communication bandwidth. Thus, although we

may be able to posit sparse and manifold-based models for concisely capturing the intra- and inter-

signal structures among the images in the ensemble, directly exploiting these models for the purpose

of data compression may be prohibitively complex or require expensive collaboration among the

sensors. This motivates our desire for an effective disjoint encoding strategy.

The encoding of multiple signals in distributed scenarios has long been studied under the auspices

of the distributed source coding (DSC) community. The Slepian-Wolf framework [120] for lossless

DSC states that two sources X1 and X2 are able to compress at their conditional entropy rate

without collaboration and can be decoded successfully when the correlation model (i.e., the joint

probability distribution p(x1, x2)) is known at the decoder. This work was extended to lossy coding

by Wyner and Ziv when side information is available at the decoder [144], and in subsequent years,

practical algorithms for these frameworks have been proposed based on channel coding techniques.

However, one faces difficulties in applying these frameworks to multi-view imaging because the inter-

image correlations are arguably better described geometrically than statistically. Several algorithms

(e.g., [126, 67, 125]) have been proposed for combining these geometric and statistical frameworks,

but fully integrating these concepts remains a very challenging problem.

As a simple alternative to these type of encoding schemes, we advocate the use of CS for

distributed image coding, wherein for each sensor j ∈ {1, 2, . . . , J}, the signal xj ∈ RN is inde-

pendently encoded using an Mj × N measurement matrix Φj , yielding the measurement vector

yj = Φjxj ∈ RMj . Such an encoding scheme is known as DCS [18]. While the primary motivation

for DCS is to simplify the encoding of correlated high-resolution signals, one may of course bypass

the potentially difficult acquisition of the high-resolution signals and directly collect the random

measurements using CS hardware.

After the randomized encoding, the measurement vectors y1, y2, . . . , yJ are then transmitted to

a central node for decoding. Indeed, DCS differs from single-signal CS only in the decoding process.

Rather than recover the signals one-by-one from the measurement vectors, an effective DCS decoder
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should solve a joint reconstruction problem, exploiting the intra- and inter-signal correlations among

the signals {xj}, while ensuring consistency with the measurements {yj}.

The proper design of a DCS decoder depends very much on the type of data being collected

and on the nature of the intra- and inter-signal correlations. Ideally, compared to signal-by-signal

recovery, joint recovery should provide better reconstruction quality from a given set of measurement

vectors, or equivalently, reduce the measurement burden needed to achieve a given reconstruction

quality. For example, if each signal in the ensemble is K-sparse, we may hope to jointly recover

the ensemble using fewer than the O(K log(N/K)) measurements per sensor that are required to

reconstruct the signals separately. Like single-signal CS, DCS decoding schemes should be robust to

noise and to dropped measurement packets. Joint reconstruction techniques should also be robust

to the loss of individual sensors, making DCS well-suited for remote sensing applications.

4.2.2 Current Approaches to DCS Multi-view Image Reconstruction

For signals in general and images in particular, a variety of DCS decoding algorithms have been

proposed to date. Fundamentally, all of these frameworks build upon the concept of sparsity for

capturing intra- and inter-signal correlations.

One DCS modeling framework involves a collection of joint sparsity models (JSMs) [18]. In a

typical JSM we represent each signal xj ∈ RN in terms of a decomposition xj = zC + zj , where

zC ∈ RN is a “common component” that is assumed to be present in all {xj}, and zj ∈ RN is an

“innovation component” that differs for each signal. Depending on the application, different sparsity

assumptions may be imposed on zC and zj . In some cases these assumptions can dramatically restrict

the space of possible signals. For example, all signals may be restricted to live within the same K-

dimensional subspace. The DCS decoder then searches for a signal ensemble that is consistent

with the available measurements and falls within the space of signals permitted by the JSM. For

signal ensembles well-modeled by a JSM, DCS reconstruction can offer a significant savings in the

measurement rates. While each sensor must take enough measurements to account for its innovation

component zj , all sensors can share the burden of measuring the common component zC .

Unfortunately, the applicability of JSMs to multi-view imaging scenarios can be quite limited.

While two cameras in very close proximity may yield images having sparse innovations relative to

a common background, any significant difference in the camera positions will dramatically increase

the complexity of the innovation components. Because conventional JSMs are not appropriate for

capturing any residual correlation that may remain among these innovations, we would expect JSM-

based recovery to offer very little improvement over independent CS recovery.
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Recently, a significant extension of the JSM framework has been proposed specifically for multi-

view compressive imaging [34]. This framework assumes that images of a common scene are related

by local or global geometrical transformations and proposes an overcomplete dictionary of basis

elements consisting of various geometrical transformations of a generating mother function. It is

assumed that each image can be decomposed into its own subset of these atoms plus the geometrically

transformed atoms of the neighboring images. The benefit of this approach is that information

about one image helps reduce the uncertainty about which atoms should be used to comprise the

neighboring images. Unfortunately, there seems to be a limit as to how much efficiency may be gained

from such an approach. To reconstruct a given image, the decoder may be tasked with solving for,

say, K sparse coefficients. While the correlation model may help reduce the measurement burden at

that sensor below O(K log(N/K)), it is not possible to reduce the number of measurements below K.

As we will later argue, however, there is reason to believe that alternative reconstruction techniques

based on the underlying scene (rather than the images themselves) can succeed with even fewer than

K measurements.

Other approaches for multi-view image reconstruction could draw naturally from recent work

in CS video reconstruction by ordering the static images {xj} according to their camera positions

and reconstructing the sequence as a sort of “fly-by” video. One approach for video reconstruction

exploits the sparsity of inter-frame differences [96]. For multi-view imaging, this would correspond

to a difference image xi − xj having a sparse representation in some basis Ψ. Again, however, this

condition may only be met if cameras i and j have very close proximity. We have also proposed a CS

video reconstruction technique based on a motion-compensated temporal wavelet transform [104].

For multi-view imaging, we could modify this algorithm, replacing block-based motion compensation

with disparity compensation. The challenge of such an approach, however, would be in finding

the disparity information without prior knowledge of the images themselves. For video, we have

addressed this challenge using a coarse-to-fine reconstruction algorithm that alternates between

estimating the motion vectors and reconstructing successively higher resolution versions of the video

using the motion-compensated wavelet transform.

What would still be missing from any of these approaches, however, is an assurance that the

reconstructed images have a global consistency, i.e., that they all describe a common underlying

scene. In the language of manifolds this means that the reconstructed images do not necessarily live

on a common IAM defined by a hypothetical underlying scene. This may not only lead to possible

confusion in interpreting the images, but more critically may also suggest that the reconstruction

algorithm is failing to completely exploit the joint structure of the ensemble—the images are in fact
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constrained to live in a much lower-dimensional set than the algorithm realizes.

4.3 Manifold Lifting Techniques for Multi-view Image Reconstruction

In light of the above observations, one could argue that an effective multi-view reconstruction

algorithm should exploit the underlying geometry of the scene by using an inter-signal modeling

framework that ensures global consistency. To inform the design of such an algorithm, we find it

helpful to view the general task of reconstruction as what we term a manifold lifting problem: we

would like to recover each image xj ∈ RN from its measurements yj ∈ RMj (“lifting” it from the

low-dimensional measurement space back to the high-dimensional signal space), while ensuring that

all recovered images live along a common IAM.

Although this interpretation does not immediately point us to a general purpose recovery algo-

rithm (and different multi-view scenarios could indeed require markedly different algorithms), it can

be informative for a number of reasons. For example, as we have discussed in Sec. 2.2, manifolds

can have stable embeddings under random projections. If we suppose that Φj = Φ ∈ RM×N for all

j, then each measurement vector we obtain will be a point sampled from the embedded manifold

ΦM ⊂ RM . From samples of ΦM in RM , we would like to recover samples of (or perhaps all of)

M in RN , and this may be facilitated if ΦM preserves the original geometric structure of M. In

addition, as we have discussed in Sec. 2.1, many IAMs have a multiscale structure that has proved

useful in solving non-compressive parameter estimation problems, and this structure may also be

useful in solving multi-view recovery problems.

While this manifold-based interpretation may give us a geometric framework for signal modeling,

it may not in isolation sufficiently capture all intra- and inter-signal correlations. Indeed, one cannot

disregard the role that concise models such as sparsity may still play in an effective manifold lifting

algorithm. Given an ensemble of measurements y1, y2, . . . , yJ , there may be many candidates IAMs

on which the original images x1, x2, . . . , xJ may live. In order to resolve this ambiguity, one could

employ either a model for the intra-signal structure (such as sparsity) or a model for the underlying

structure of the scene (again, possibly sparsity). To do the latter, one must develop a representation

for the underlying scene or phenomenon that is being measured and understand the mapping between

that representation and the measurements y1, y2, . . . , yJ . To keep the problem simple, this mapping

will ideally be linear, and as we discuss in this section, such a representation and linear mapping

can be found in a number of scenarios.

To make things more concrete, we demonstrate in this section how the manifold lifting viewpoint
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can inform the design of reconstruction algorithms in the context of two generic multi-view scenarios:

far-field and near-field imaging. We also discuss how to address complications that can arise due

to uncertainties in the camera positions. We hope that such discussions will pave the way for the

future development of broader classes of manifold lifting algorithms.

4.3.1 Far-field Multi-view Imaging

We begin by considering the case where the cameras are far from the underlying scene, such

as might occur in satellite imaging or unmanned aerial vehicle (UAV) remote sensing scenarios. In

problems such as these, it may be reasonable to model each image xj ∈ RN as being a translated,

rotated, scaled subimage of a larger fixed image. We represent this larger image as an element x

drawn from a vector space such as RQ with Q > N , and we represent the mapping from x to xj

(which depends on the camera position θj) as a linear operator that we denote as Rθj : RQ → RN .

This operator Rθj can be designed to incorporate different combinations of translation, rotation,

scaling, etc., followed by a restriction that limits the field of view.

This formulation makes clear the dependence of the IAM M on the underlying scene x: M =

M(x) = {Rθx : θ ∈ Θ} ⊂ RN . Supposing we believe x to obey a sparse model and supposing

the camera positions are known, this formulation also facilitates a joint recovery program that can

ensure global consistency while exploiting the structure of the underlying scene. At camera j, we

have the measurements yj = Φjxj = ΦjRθjx. Therefore, by concatenating all of the measurements,

we can write the overall system of equations as y = ΦbigRx, where

(4.1) y =



y1

y2

...

yJ


, R =



Rθ1

Rθ2
...

RθJ


, and Φbig =



Φ1 0 . . . 0

0 Φ2 . . . 0

...
...

. . .
...

0 0 . . . ΦJ


.

Given y and ΦbigR, and assuming x is sparse in some basis Ψ (such as the 2D wavelet domain),

we can solve the usual optimization problem as stated in (2.1) (or (2.2) if the measurements are

noisy). If desired, one can use the recovered image x̂ to obtain estimates x̂j := Rθj x̂ of the original

subimages. These are guaranteed to live along a common IAM, namely M(x̂).

4.3.2 Near-field Multi-view Imaging

Near-field imaging may generally be more challenging than far-field imaging. Defining a useful

representation for the underlying scene may be difficult, and due to effects such as parallax and
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occlusions, it may seem impossible to find a linear mapping from any such representation to the

measurements. Fortunately, however, there are encouraging precedents that one could follow.

One representative application of near-field imaging is in Computed Tomography (CT). In CT,

we seek to acquire a 3D volumetric signal x, but the signals xj that we observe correspond to slices

of the Fourier transform of x. (We may assume yj = xj in such problems, and so the challenge is

actually to recover M(x), or equivalently just x, rather than the individual {xj}.) Given a fixed

viewing angle θj , this relationship between x and xj is linear, and so we may set up a joint recovery

program akin to that proposed above for far-field imaging. Similar approaches have been used for

joint recovery from undersampled frequency measurements in MRI [91].

For near-field imaging using visible light, there is generally no clear linear mapping between a 3D

volumetric representation of the scene and the observed images xj . However, rather than contend

with complicated nonlinear mappings, we suggest that a promising alternative may be to use the

plenoptic function [71] as a centralized representation of the scene. The plenoptic function f is a

hypothetical 5D function used to describe the intensity of light that could be observed from any

point in space, when viewed in any possible direction. The value f(px, py, pz, pθ, pφ) specifies the

light intensity that would be measured by a sensor located at the position (px, py, pz) and pointing in

the direction specified by the spherical coordinates pθ and pφ. (Additional parameters such as color

channel can be considered.) By considering only a bounded set of viewing positions, the plenoptic

function reduces to a 4D function known as the lumigraph [71].

Any image xj ∈ RN of the scene has a clear relationship to the plenoptic function. A given camera

j will be positioned at a specific point (px, py, pz) in space and record light intensities arriving from

a variety of directions. Therefore, xj simply corresponds to a 2D “slice” of the plenoptic function,

and once the camera viewpoint θj is fixed, the mapping from f to xj is a simple linear restriction

operator. Consequently, the structure of the IAM M = M(f) is completely determined by the

plenoptic function.

Plenoptic functions contain a rich geometric structure that we suggest could be exploited to

develop sparse models for use in joint recovery algorithms. This geometric structure arises due to

the geometry of objects in the scene: when a physical object having distinct edges is photographed

from a variety of perspectives, the resulting lumigraph will have perpetuating geometric structures

that encode the shape of the object under study. As a simple illustration1, a Flatland-like scenario

(imaging an object in the plane using 1D cameras) is shown in Figure 4.2(a). The resulting 2D

1The authors gratefully acknowledge Richard Baraniuk and Hyeokho Choi for many influential conversations
concerning the lumigraph and for their help in developing the lumigraph experiments presented here.
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Figure 4.2: Lumigraph geometry in compressive multi-view imaging. (a) Flatland-like illustration for
collecting 1D images of an object in the 2D plane. At each camera position, all viewing directions may be
considered. (b) Resulting 128 × 128 lumigraph for the ellipse-shaped object. Each row corresponds to a
single “image”. (In the real world each image is 2D and the full lumigraph is 4D.) The lumigraph can be
repeated for viewing from all four sides of the object. (c) Wedgelets provide a simple parametric model for
local patches of a 2D lumigraph; only two parameters are needed to describe the orientation and offset of
the linear discontinuity. (d) Wedgelet-based lumigraph reconstruction from M = 5 compressive samples of
each image (row of lumigraph). (e) Scene geometry estimated using local edge positions/orientations in the
reconstructed lumigraph. Each blue line connects an estimated point on the object to a camera from which
that point is visible. The true ellipse is shown in red.

lumigraph is shown in Figure 4.2(b), where each row corresponds to a single “image”. We see that

geometric structures in the lumigraph arise due to shifts in the object’s position as the camera

viewpoint changes. For the 4D lumigraph these structures have recently been termed “plenoptic

manifolds” [20] due to their own nonlinear, surface-like characteristics. If a sparse representation

for plenoptic functions can be developed that exploits these geometric constraints, then it may be

possible to recover plentopic functions from incomplete, random measurements using a linear problem

formulation and recovery algorithms such as (2.1) or (2.2). One possible avenue to developing

such a sparse representation could involve parameterizing local patches of the lumigraph using

the wedgelet [51] or surflet [32] dictionaries. Wedgelets (see Figure 4.2(c)) can be tiled together

to form piecewise linear approximations to geometric features; surflets offer piecewise polynomial

approximations.

As a proof of concept, we present a simple experiment in support of this approach. For the

lumigraph shown in Figure 4.2(b), which has J = 128 1D “images” that each contain N = 128
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pixels, we collect M = 5 random measurements from each image. From these measurements we

attempt to reconstruct the entire lumigraph using wedgelets [32] following a multiscale technique

outlined in Chapter 6 of [135]. The reconstructed lumigraph is shown in Figure 4.2(d) and is

relatively accurate despite the small number of measurements.

Finally, to illustrate the rich interplay between geometry within the lumigraph and the underlying

geometry of the scene, we show that it is actually possible to use the reconstructed lumigraph to

estimate the underlying scene geometry. While we omit the precise details of our approach, the

estimated wedgelets help us to infer three pieces of information: the positions of each local wedgelet

patch in the v and t directions indicate a camera position and viewing direction, respectively, while

the orientation of the wedgelet indicates a depth at which a point in the scene belongs to the object.

Putting these estimates together, we obtain the reconstruction of the scene geometry shown in

Figure 4.2(e). This promising proof of concept suggests that wedgelets or surflets could indeed play

an important role in the future for developing improved concise models for lumigraph processing.

4.3.3 Dealing with Uncertainties in Camera Positions

In all of our discussions above, we have assumed the camera positions θj were known. In some

situations, however, we may have only noisy estimates θ̂j = θj + nj of the camera positions. Sup-

posing that we can define linear mappings between the underlying scene and the images xj , it is

straightforward to extend the CS recovery problem to account for this uncertainty. In particu-

lar, letting R denote the concatenation of the mappings Rθj as in (4.1), and letting R̂ denote the

concatenation of the mappings Rθ̂j corresponding to the noisy camera positions, it follows that

y = ΦbigRx = ΦbigR̂x + n for some noise vector n, and so (2.2) can be used to obtain an approxi-

mation x̂ of the underlying scene. Of course, the accuracy of this approximation will depend on the

quality of the camera position estimates.

When faced with significant uncertainty about the camera positions, the multiscale properties of

IAMs help us to conceive of a possible coarse-to-fine reconstruction approach. As in Sec. 2.1, let hs

denote a blurring kernel at scale s, and suppose for simplicity that Θ = R. Based on the arguments

presented in [138], it follows that for most reasonable mappings θ → xθ, we will have ‖∂(hs∗xθ)
∂θ ‖2 → 0

as s→ 0. What this implies is that, on manifolds of regularized imagesMs = {hs ∗xθ : θ ∈ Θ}, the

images will change slowly as a function of camera position, and so we can ensure that hs ∗ (Rθ̂jx) is

arbitrarily close to hs ∗ (Rθjx) by choosing s sufficiently small (a sufficiently “coarse” scale). Now,

suppose that some elements of each yj are devoted to measuring hs ∗ xj = hs ∗ (Rθjx). We denote

these measurements by yj,s = Φj,s(hs ∗ xj). In practice, we may replace the convolution operator
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with a matrix Hs and collect yj,s = Φj,sHsxj = Φj,sHsRθjx instead. Concatenating all of the

{yj,s}Jj=1, we may then use the noisy position estimates to define operators {Rθ̂j} and solve (2.2)

as above to obtain an estimate x̂ of the scene. This estimate will typically correspond to a lowpass

filtered version of x, since for many reasonable imaging models, we will have hs∗(Rθjx) ≈ Rθj (h′s∗x)

for some lowpass filter h′s, and this implies that yj,s ≈ Φj,sRθj (h
′
s ∗ x) contains only low frequency

information about x.

Given this estimate, we may then re-estimate the camera positions by projecting the measure-

ment vectors yj,s onto the manifold M(x̂). (This may be accomplished, for example, using the

parameter estimation techniques described in [138].) Then, having improved the camera position

estimates, we may reconstruct a finer scale (larger s) approximation to the true images {xj}, and

so on, alternating between the steps of estimating camera positions and reconstructing successively

finer scale approximations to the true images. This multiscale, iterative algorithm requires the sort

of multiscale randomized measurements we describe above, namely yj,s = Φj,s(hs ∗ xj) for a se-

quence of scales s. In practice, the noiselet transform [37] offers one fast technique for implementing

these measurement operators Φj,sHs at a sequence of scales. Noiselet scales are also nested, so

measurements at a scale s1 can be re-used as measurements at any scale s2 > s1.

The manifold viewpoint can also be quite useful in situations where the camera positions are com-

pletely unknown, as they might be in applications such as cryo-electron microscopy (Cryo-EM) [119].

Because we anticipate that an IAMM will have a stable embedding ΦM in the measurement space,

it follows that the relative arrangement of the points {xj} on M will be preserved in ΦM. Since

this relative arrangement will typically reflect the relative arrangement of the values {θj} in Θ, we

may apply to the compressive measurements2 any number of “manifold learning” techniques (such

as ISOMAP [124]) that are designed to discover such parameterizations from unlabeled data. An

algorithm such as ISOMAP will provide an embedding of J points in Rp whose relative positions

can be used to infer the relative camera positions; a similar approach has been developed specifically

for the Cryo-EM problem [119]. (Some side information may be helpful at this point to convert

these relative position estimates into absolute position estimates.) Once we have these estimates,

we may resort to the iterative refinement scheme described above, alternating between the steps of

estimating camera positions and reconstructing successively finer scale approximations to the true

images.

2We have found that this process also performs best using measurements of hs ∗ xj for s small because of the
smoothness of the manifold Ms at coarse scales.
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Figure 4.3: (a) Setup for manifold lifting demonstration. The original image x (courtesy USGS) has size
192 × 192 and is observed by J = 200 satellites. The red boxes illustrate the limited field of view for a
few such cameras. (b) Image-by-image reconstruction from random measurements, PSNR 14.4dB. (c) Joint
reconstruction using our manifold lifting algorithm with unknown camera positions, PSNR 23.6dB.

4.4 Manifold Lifting Case Study

4.4.1 Problem Setup

As a proof of concept, we now present a comprehensive multi-view reconstruction algorithm

inspired by the manifold lifting viewpoint. We do this in the context of a far-field imaging simulation

in which we wish to reconstruct a Q-pixel high-resolution image x of a large scene. Information about

this scene will be acquired using an ensemble of J satellites, which will collect N -pixel photographs

xj of the scene from different positions and with limited but overlapping fields of view, as illustrated

with red boxes in Figure 4.3(a).

We denote the vertical and horizontal position of satellite j by θj = (θVj , θ
H
j ) ∈ R2. The satellite

positions take real values and are chosen randomly except for the caveats that the fields of view

all must fall within the square support of x and that each of the four corners of x must be seen

by at least one camera. (These assumptions are for convenience but can be relaxed without major

modifications to the recovery algorithm.) We let Rθj denote the N × Q linear operator that maps

x to the image xj . This operator involves a resampling of x to account for the real-valued position

vector θj , a restriction of the field of view, and a spatial lowpass filtering and decimation, as we

assume that xj has lower resolution (larger pixel size) than x.

In order to reduce data transmission burdens, we suppose that each satellite encodes a random set

of measurements yj = Φjxj ∈ RMj of its incident image xj . Following the discussion in Section 4.3.3,

these random measurements are collected at a sequence of coarse-to-fine scales s1, s2, . . . , sT using

noiselets. (The noiselet measurements can actually be collected using CS imaging hardware [55],

bypassing the need for a conventional N -pixel sensor.) We concatenate all of the measurement
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vectors {yj,si}Ti=1 into the length-Mj measurement vector yj = Φjxj . Finally, we assume that all

satellites use the same set of measurement functions, and so we define M := M1 = M2 = · · · = MJ

and Φ := Φ1 = Φ2 = · · · = ΦJ .

Our decoder will be presented with the ensemble of the measurement vectors y1, y2, . . . , yJ but

will not be given any information about the camera positions (save for an awareness of the two

caveats mentioned above) and will be tasked with the challenge of recovering the underlying scene

x. Although it would be interesting to consider quantization in the measurements, it is beyond the

scope of this chapter and we did not implement any quantization steps in the following simulations.

4.4.2 Manifold Lifting Algorithm

We combine the discussions provided in Sections 4.3.1 and 4.3.3 to design a manifold lifting

algorithm that is specifically tailored to this problem.

4.4.2.1 Initial estimates of satellite positions

The algorithm begins by obtaining a preliminary estimate of the camera positions. To do this, we

extract from each yj the measurements corresponding to the two or three coarsest scales (i.e., yj,s1 ,

yj,s2 , and possibly yj,s3), concatenate these into one vector, and pass the ensemble of such vectors

(for all j ∈ {1, 2, . . . , J}) to the ISOMAP algorithm. ISOMAP then delivers an embedding of points

v1, v2, . . . , vJ in R2 that best preserves pairwise geodesic distances compared to the input points; an

example ISOMAP embedding is shown in Figure 4.4(a). What can be inferred from this embedding

are the relative camera positions; a small amount of side information is required to determine the

proper scaling, rotation, and (possible) reflection of these points to correctly align them with an

absolute coordinate system. Assuming that we know the correct vertical and horizontal reflections,

after reflecting these camera positions correctly, we then rotate and scale them to fill the square

support of x.

4.4.2.2 Iterations

Given the initial estimates {θ̂j} of our camera positions, we can then define the operators {Rθ̂j}

and consequently R̂. By concatenating the measurement vectors and measurement matrices, initially

only those at the coarsest scale (i.e., yj,s1 across all j), we write the overall system of equations as

y = ΦR̂x+ n as in Sec. 4.3.1, and solve for

α̂ = argminα‖α‖1 subject to ‖y − ΦbigR̂Ψα‖2 ≤ ε,
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Figure 4.4: (a) Initial ISOMAP embedding v1, v2, . . . , vJ of the measurement vectors. (b) Initial estimates

{θ̂j} of camera positions after rotating and scaling the {vj}. (c) Final camera position estimates after
running the manifold lifting algorithm. In (b) and (c), the colored points represent the estimated camera
positions (color coded by the true θHj value), while the blue vectors represent the error with respect to the
true (but unknown) camera position.

where Ψ is a wavelet basis and ε is chosen3 to reflect the uncertainty in the camera positions θj .

Given α̂, we can then compute the corresponding estimate of the underlying scene as x̂ = Ψα̂.

After we obtain the estimate x̂, we refine the camera positions by registering the measurement

vectors yj with respect to this manifold. In other words, we solve the following optimization problem:

θ̂j = argminθ‖yj − ΦRθx̂‖2,

where again in each yj we use only the coarse scale measurements. To solve this problem we use the

multiscale Newton algorithm proposed in [138].

With the improved estimates θ̂j , we may then refine our estimate of x̂ but can do so by incorpo-

rating finer scale measurements. We alternate between the steps of reconstructing the scene x̂ and

re-estimating the camera positions θ̂j , successively bringing in the measurements yj,s2 , yj,s3 , . . . , yj,sT .

(At each scale it may help to alternate once or twice between the two estimation steps before bring-

ing in the next finer scale of measurements. One can also repeat until convergence or until reaching

a designated stopping criterion.) Finally, having brought in all of the measurements, we obtain our

final estimate x̂ of the underlying scene.

4.4.2.3 Experiments

We run our simulations on an underlying image x of size Q = 192 × 192 that is shown in

Figure 4.3(a). We suppose that x corresponds to 1 square unit of land area. We observe this scene

3In our experiments, we choose the parameter ε as somewhat of an oracle, in particular as 1.1‖y − ΦbigR̂x‖2. In
other words, this is slightly larger than the error that would result if we measured the true image x but with the
wrong positions as used to define R̂. This process should be made more robust in future work.

59



using J = 200 randomly positioned cameras, each with a limited field of view. Relative to x, each

field of view is of size 128× 128, corresponding to 0.44 square units of land area as indicated by the

red boxes in Figure 4.3(a). Within each field of view, we observe an image xj of size N = 64 × 64

pixels that has half the resolution (twice the pixel size) compared to x. The total number of noiselet

scales for an image of this size is 6. For each image we disregard the coarsest noiselet scale and set

s1, s2, . . . , s5 corresponding to the five finest noiselet scales. For each image we collect 96 random

noiselet measurements: 16 at scale s1, and 20 at each of the scales s2, . . . , s5. Across all scales and

all cameras, we collect a total of 96 · 200 = 19200 ≈ 0.52Q measurements.

Based on the coarse scale measurements, we obtain the ISOMAP embedding v1, v2, . . . , vJ shown

in Figure 4.4(a). After rotating and scaling these points, the initial estimates {θ̂j} of camera positions

are shown in Figure 4.4(b). These initial position estimates have a mean absolute error of 1.8 and

2.0 pixels (relative to the resolution of x) in the vertical and horizontal directions, respectively.

Figure 4.4(c) shows the final estimated camera positions after all iterations of our manifold lifting

algorithm. These estimates have a mean absolute error of 0.0108 and 0.0132 pixels in the vertical

and horizontal directions, respectively. The final reconstruction x̂ obtained using these estimated

camera positions is shown in Figure 4.3(c). We note that the border areas are not as accurately

reconstructed as the center region because fewer total measurements are collected near the borders of

x. The scale-by-scale progression of the reconstruction of x and the estimated camera positions are

shown in Figure 4.5. Figure 4.5(a) shows the reconstructed images of x at each scale s1, s2, . . . , s5,

where the left most image is the reconstruction at the coarsest scale s1 and the right most image

is the reconstructed image at the finest scale s5. Figure 4.5(b) shows the corresponding camera

position estimates that were used in the reconstruction of the images in Figure 4.5(a). As we have

mentioned above, it can help to alternate between reconstruction of the image and estimation of the

camera positions at the same scale more than once before moving on to the next finer scale. In this

particular simulation, we have alternated between reconstruction and camera position estimation 3

to 4 times at each scale but the finest and 6 times at the finest scale.

In order to assess the effectiveness of our algorithm, we compare it to three different reconstruc-

tion methods. In all of these methods we assume that the exact camera positions are known and

we keep the total number of measurements fixed to 19200. First, we compare to image-by-image

CS recovery, in which we reconstruct the images xj independently from their random measurements

yj and then superimpose and average them at the correct positions. As expected, and as shown

in Figure 4.3(b), this does not yield a reasonable reconstruction because there is far too little data

collected (just 96 measurements) about any individual image to reconstruct it in isolation. Thus,
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(a)

(b)

Figure 4.5: (a) Scale-by-scale reconstruction of the underlying image proceeding from the coarsest scale s1

on the left to the finest scale s5 on the right. (b) The corresponding camera position estimates used in the
reconstruction of the images in (a) proceeding from the coarsest scale s1 on the left to the finest scale s5 on
the right.

we see the dramatic benefits of joint recovery.

Second, for the sake of completeness, we compare to a non-distributed encoding scheme in which

one measures the entire image x using a fully populated 19200×N Gaussian random matrix. Fig-

ure 4.6(a) shows the reconstructed image obtained using a single invocation of `1-minimization.

Perhaps surprisingly, the reconstruction quality is actually inferior to that obtained using the man-

ifold lifting algorithm with distributed measurements (shown in Figure 4.6(c)). This is somewhat

counterintuitive since one would expect that the spatially limited measurement functions would

have inferior isometry properties compared to global measurement functions. Although we do not

have a concrete theoretical explanation for this phenomenon, we believe that this difference in re-

construction quality is mainly due to the multiscale nature of measurement functions employed in

our manifold lifting example. To support this argument with an experiment, we run the manifold

lifting algorithm with spatially limited but non-multiscale measurement functions: for each window,

we measure a total of 96 noiselet measurements at the finest scale only, where previously these 96

measurements were spread across several scales. In this case, the reconstructed image has a PSNR

of 19.8dB, which is worse than that obtained using a global Gaussian measurement matrix. This is

consistent with our intuition that, when using measurements with limited spatial support, one could

pay a penalty in terms of reconstruction quality.

Third, we compare to another alternative encoding scheme, where rather than encode 96 random

noiselet measurements of each image, we encode the 96 largest wavelet coefficients of the image in the

61



(a) (b) (c)

Figure 4.6: (a) Reconstruction using fully dense Gaussian random matrix, PSNR 21.9dB. (b) Joint re-
construction using transform coding measurements with known camera positions, PSNR 22.8dB. (c) Joint
reconstruction using random measurements with known camera positions, PSNR 24.7dB.

Haar wavelet basis. (We choose Haar due to its similarity with the noiselet basis, but the performance

is similar using other wavelet bases.) This is a rough approximation for how a non-CS transform

coder might encode the image, and for the encoding of a single image in isolation, this is typically a

more efficient encoding strategy than using random measurements. (Recall that for reconstructing a

single signal, one must encode about K log(N/K) random measurements to obtain an approximation

comparable to K-term transform coding.) However, when we concatenate the ensemble of encoded

wavelet coefficients and solve (2.1) to estimate x̂, we see from the result in Figure 4.6(b) that the

reconstructed image has lower quality than we obtained using a manifold lifting algorithm based

on random measurements, even though the camera positions were unknown for the manifold lifting

experiment. In a sense, by using joint decoding, we have reduced the CS overmeasuring factor from

its familiar value of log(N/K) down to something below 1! We believe this occurs primarily because

the images {xj} are highly correlated, and the repeated encoding of large wavelet coefficients (which

tend to concentrate at coarse scales) results in repeated encoding of redundant information across

the multiple satellites. In other words, it is highly likely that prominent features will be encoded

by many satellites over and over again, whereas other features may not be encoded at all. As a

result, by examining Figure 4.6(b) we see that strong features such as streets and the edges of

buildings (which have large wavelet coefficients) are relatively more accurately reconstructed than,

for example, forests or cars in parking lots (which have smaller wavelet coefficients). Random

measurements capture more diverse information within and among the images. To more clearly

illustrate the specific benefit that random measurements provide over transform coding (for which

the camera positions were known), we show in Figure 4.6(c) a reconstruction obtained using random

measurements with known camera positions.
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J Independent CS TC w/ cam. ML w/ cam.
ML w/out cam.

PSNR 1
J

∑
j |θj − θ̂j |

200 14.4 22.8 24.7 23.6 (0.0108, 0.0132)

150 13.7 22.9 24.6 23.7 (0.0110, 0.0148)

100 15.1 23.5 25.1 23.9 (0.0177, 0.0121)

70 15.6 23.7 24.6 23.8 (0.0059, 0.0143)

Table 4.1: Reconstruction results with varying numbers of camera positions J . From left to right, the
columns correspond to the PSNR (in dB) of image-by-image CS reconstruction from random measurements,
joint reconstruction from transform coding measurements with known camera positions, joint reconstruction
from random measurements with known camera positions, and joint reconstruction from random measure-
ments with unknown camera positions. The final subcolumn lists the mean absolute error of the estimated
camera positions in the vertical and horizontal directions, respectively.

Finally, we carry out a series of simulations with the same image x using different numbers J of

camera positions. We keep the total number of measurements (19200) and the sizes of the subimages

(64 × 64) constant. The results are summarized in Table 4.1. In all cases, our manifold lifting

algorithm without knowledge of the camera positions outperforms transform coding with knowledge

of the camera positions. We do note that as J decreases, the performance of transform coding

improves. This is likely because each satellite now has more measurements to devote to encoding

information about the underlying scene, and there are fewer total cameras to encode redundant

information.
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CHAPTER 5

Concentration of Measure for Block Diagonal Matrices with

Applications to Compressive Signal Processing

5.1 Introduction

Recent technological advances have enabled the sensing and storage of massive volumes of data

from a dizzying array of sources. While access to such data has revolutionized fields such as signal

processing, the limits of some computing and storage resources are being tested, and front-end

signal acquisition devices are not always able to support the desire to measure in increasingly finer

detail. To confront these challenges, many signal processing researchers have begun investigating

compressive linear operators Φ : RN → RM for high resolution signals x ∈ RN (M < N), either as a

method for simple dimensionality reduction or as a model for novel data acquisition devices [52, 26].

Because of their universality and amenability to analysis, randomized compressive linear operators

(i.e., random matrices with M < N) have drawn particular interest.

The theoretical analysis of random matrices often relies on the general notions that these ma-

trices are well-behaved most of the time and that we can bound the probability with which they

perform poorly. Frequently, these notions are formalized using some form of the concentration of

measure phenomenon [87], a powerful characterization of the tendency of certain functions of high-

dimensional random processes to concentrate sharply around their mean. As one important example

of this phenomenon, it is known that for any fixed signal x ∈ RN , if Φ is an M×N matrix populated

with independent and identically distributed (i.i.d.) random entries drawn from a suitable distribu-

tion, then with high probability Φ will approximately preserve the norm of x. More precisely, for

many random distributions for Φ, the probability that
∣∣‖Φx‖22 − ‖x‖22∣∣ will exceed a small fraction

This work is in collaboration with Han Lun Yap, Christopher J. Rozell, and Michael B. Wakin. Jae Young Park
and Han Lun Yap are both primary authors to this work that appeared in [107]. This work also builds upon previous
work that appeared in [140, 113] in collaboration with the same authors.
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of ‖x‖22 decays exponentially in the number of measurements M .

As we discuss in Section 5.2, such concentration results have a number of favorable implications.

Among these is the Johnson-Lindenstrauss (JL) lemma [81, 1, 40], which states that when applied

to a finite set of points Q ⊂ RN , a randomized compressive operator Φ can provide a stable, distance

preserving embedding of Q in the measurement space RM . This enables the efficient solution of a

broad variety of signal processing problems by permitting these problems to be solved in the low-

dimensional observation space (such as finding the nearest neighbor to a point x in a database Q).

Such concentration results have also been used to prove that certain families of random matrices

can satisfy the Restricted Isometry Property (RIP) [30, 14, 101] (see Definition 2.3). In the field of

Compressed Sensing (CS), the RIP is commonly used as a sufficient condition to guarantee that a

sparse signal x can be recovered from the measurements Φx.

Despite the utility of norm preservation in dimensionality reduction, concentration analysis to

date has focused almost exclusively on dense matrices that require each measurement to be a

weighted linear combination of all entries of x. Dense random matrices are often either imprac-

tical because of the resources required to store and work with a large unstructured matrix (e.g.,

one with i.i.d. entries), or unrealistic as models of acquisition devices with architectural constraints

preventing such global data aggregation. For example, in a distributed sensing system, communica-

tion constraints may limit the dependence of each measurement to only a subset of the data. For a

second example, applications involving streaming signals [9, 23] often have datarates that necessitate

operating on local signal blocks rather than the entire signal simultaneously.

In such scenarios, the data may be divided naturally into discrete subsections (or blocks), with

each block acquired via a local measurement operator. To see the implications of this, let us model a

signal x ∈ RNJ as being partitioned into J blocks x1, x2, . . . , xJ ∈ RN , and for each j ∈ {1, 2, . . . , J},

suppose that a local measurement operator Φj : RN → RMj collects the measurements yj = Φjxj .

Concatenating all of the measurements into a vector y ∈ R
∑
jMj , we then have

(5.1)



y1

y2

...

yJ


︸ ︷︷ ︸

y: (
∑
jMj)×1

=



Φ1

Φ2

. . .

ΦJ


︸ ︷︷ ︸

Φ: (
∑
jMj)×NJ



x1

x2

...

xJ


.

︸ ︷︷ ︸
x:NJ×1
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In cases such as these, we see that the overall measurement operator Φ will have a characteristic

block diagonal structure. In some scenarios, the local measurement operator Φj may be unique for

each block, and we say that the resulting Φ has a Distinct Block Diagonal (DBD) structure. In other

scenarios it may be appropriate or necessary to repeat a single operator across all blocks (such that

Φ1 = Φ2 = · · · = ΦJ); we call the resulting Φ a Repeated Block Diagonal (RBD) matrix.

Starting from this block diagonal matrix structure, the main contributions of this chapter are

a derivation of concentration of measure bounds for DBD and RBD matrices and an extensive

exploration of the implications and utility of these bounds for the signal processing community.

Specifically, in Section 5.3 we derive concentration of measure bounds both for DBD matrices popu-

lated with i.i.d. subgaussian1 random variables and for RBD matrices populated with i.i.d. Gaussian

random variables. In contrast to the signal agnostic concentration of measure bounds for i.i.d. dense

matrices, these bounds are signal dependent; in particular, the probability of concentration depends

on the “diversity” of the component signals x1, x2, . . . , xJ being well-matched to the measurement

matrix (we make this precise in Section 5.3). As our analytic discussion and supporting simulations

show, these measures of diversity have clear intuitive interpretations and indicate that, for signals

with the most favorable characteristics, the concentration of measure probability for block diagonal

matrices can scale exactly as for an i.i.d. dense random matrix.

Sections 5.4 and 5.5 are devoted to a detailed investigation of the utility of these non-uniform

concentration results for signal processing practitioners. Specifically, in Section 5.4, we extend

our concentration results to formulate a modified version of the JL lemma appropriate for block

diagonal matrices. We also explain how this lemma can be used to guarantee the performance of

various compressive-domain signal inference and processing algorithms such as signal detection and

estimation. Given the applicability of these results for providing performance guarantees in these

tasks, a natural question is whether there are large classes of signals that have the diversity required

to make block diagonal matrices perform well. In Section 5.5 we provide several examples of signal

families that are particularly favorable for measurement via DBD or RBD matrices.

5.2 Background and Related Work

In this section, we begin with a definition of subgaussian random variables, describe more formally

several existing concentration of measure results for random matrices, and review some standard

applications of these results in the literature.

1Subgaussian random variables [25, 132] are precisely defined in Section 5.2.1, and can be thought of as random
variables from a distribution with tails that can be bounded by a Gaussian.
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5.2.1 Subgaussian Random Variables

In fields such as CS, the Gaussian distribution is often invoked for probabilistic analysis thanks

to its many convenient properties. Gaussian random variables, however, are just one special case in

a much broader class of subgaussian distributions [25, 132]. Where possible, we state our results in

terms of subgaussian random variables, which are defined below using standard notation from the

literature.

Definition 5.1. [132] A random variable W is subgaussian if ∃a > 0 such that

(E|W |p)1/p ≤ a√p for all p ≥ 1.

The quantity ‖W‖ψ2
:= supp≥1 p

−1/2(E|W |p)1/p is known as the subgaussian norm of W .

We restrict our attention to zero-mean subgaussian random variables in this chapter. Examples of

such random variables include zero-mean Gaussian random variables, ±1 Bernoulli random variables

(each value with probability 1
2 ), and uniform random variables on [−1, 1].

For a given subgaussian random variable W , the variance Var(W ) is a constant multiple of

‖W‖2ψ2
with 0 ≤ Var(W )

‖W‖2ψ2

≤
√

2; the exact value of Var(W )
‖W‖2ψ2

depends on the specific distribution for W

under consideration (Gaussian, Bernoulli, etc.). We also note that in some cases, we will consider

independent realizations of a subgaussian random variable W that are normalized to have different

variances. However, it is useful to note that for any scalar α > 0, Var(αW )
‖αW‖2ψ2

= α2Var(W )
α2‖W‖2ψ2

= Var(W )
‖W‖2ψ2

.

5.2.2 Concentration Inequalities

Concentration analysis to date has focused almost exclusively on dense random matrices popu-

lated with i.i.d. entries drawn from some distribution. Commonly, when Φ has size M ×N and the

entries are drawn from a suitably normalized distribution, then for any fixed signal x ∈ RN the goal

is to prove for any ε ∈ (0, 1) that

(5.2) P (
∣∣‖Φx‖22 − ‖x‖22∣∣ > ε‖x‖22) ≤ 2e−Mc0(ε),

where c0(ε) is some constant (depending on ε) that is typically on the order of ε2. When discussing

bounds such as (5.2) where the probability of failure scales as e−X , we refer to X as the concentration

exponent.

The past several years have witnessed the derivation of concentration results for a variety of

(ultimately related) random distributions for Φ. A uniform concentration result of the form (5.2)
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was originally derived for dense Gaussian matrices populated with entries having mean zero and

variance 1
M [76]; one straightforward derivation of this uses standard tail bounds for chi-squared

random variables [1]. Using slightly more complicated arguments, similar concentration results were

then derived for Bernoulli matrices populated with random ±1√
M

entries (each with probability 1
2 )

and for a “database-friendly” variant populated with random { 3√
M
, 0,− 3√

M
} entries (with proba-

bilities { 1
6 ,

2
3 ,

1
6}) [1]. Each of these distributions, however, is itself subgaussian, and more recently

it has been shown that uniform concentration results of the form (5.2) in fact holds for all subgaus-

sian distributions having variance 1
M [101, 47].2 Moreover, it has been shown that a subgaussian

distribution is actually necessary for deriving a uniform concentration result of the form (5.2) for a

dense random matrix populated with i.i.d. entries [47].

Concentration inequalities have also been derived in the literature for certain structured (non-

i.i.d.) dense random matrices. Examples include matrices populated with random orthogonal rows [65]

or matrices constructed by combining a structured matrix with certain random operations [5]. A

concentration bound also holds for the randomized RIP matrices [6, 85] that we discuss in the final

paragraph of Section 5.2.3 below.

5.2.3 Applications of Concentration Inequalities

While nominally a concentration result of the form (5.2) appears to guarantee only that the

norm of a particular signal x is preserved in the measurements Φx, in fact such a result can be

used to guarantee that the information required to discriminate x from other signals may actually

be preserved in Φx. Indeed, one of the prototypical applications of a concentration result of the

form (5.2) is to prove that with high probability, Φ will preserve distances between various signals

of interest.

Definition 5.2. Consider two sets U, V ⊂ RN . We say that a mapping Φ provides a stable embedding

of (U, V ) with conditioning δ if

(5.3) (1− δ)‖u− v‖22 ≤ ‖Φ(u− v)‖22 ≤ (1 + δ)‖u− v‖22

holds for all u ∈ U and v ∈ V .

To relate this concept to norm preservation, note that for a fixed x ∈ RN , a randomized oper-

ator that satisfies (5.2) will, with high probability, provide a stable embedding of ({x}, {0}) with

2This fact also follows from our Theorem 5.3 by considering the special case where J = 1.
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conditioning ε. As we discuss in Section 5.4, this fact is useful for studying the performance of a

compressive-domain signal detector [43].

However, much richer embeddings may also be considered. For example, suppose that a signal

family of interest Q ⊂ RN consists of a finite number of points. If a randomized operator Φ satisfies

(5.2) for each vector of the form u − v for u, v ∈ Q, then it follows from a simple union bound

that with probability at least 1 − 2|Q|2e−Mc0(ε), Φ will provide a stable embedding of (Q,Q) with

conditioning ε. From this fact one obtains the familiar JL lemma [81, 1, 40], which states that

this stable embedding will occur with high probability if M = O
(

log(|Q|)
c0(ε)

)
. Thus, the information

required to discriminate between signals in Q is preserved in the compressive measurements. This

fact is useful for studying the performance of a compressive-domain nearest-neighbor search [76], a

compressive-domain signal classifier [43], and various other signal inference strategies that we discuss

in Section 5.4.

In certain cases (particularly when dealing with randomized operators that satisfy (5.2) uniformly

over all signals x ∈ RN ), it is possible to significantly extend embedding results far beyond the JL

lemma. For example, for a set Q consisting of all signals with sparsity K in some basis for RN ,

one can couple the above union bound approach with some elementary covering arguments [14, 101]

to show that if M = O (K log(N/K)), then Φ will provide a stable embedding of (Q,Q) with high

probability. This guarantee is known as the RIP (see Definition 2.3) in CS, and from the RIP, one can

derive deterministic bounds on the performance of CS recovery algorithms such as `1 minimization

[27]. Concentration of measure type results have also been used to prove the RIP for random

matrices with subexponential columns [2], and a concentration result of the form (5.2) has also been

used to probabilistically analyze the performance of `1 minimization [47]. Finally, we note that one

can also generalize sparsity-based embedding arguments to the case where Q is a low-dimensional

submanifold of RN [15].

In a different direction of interest regarding stable embeddings of finite collections of points, we

note that several authors have also recently shown that the direction of implication between the JL

lemma and the RIP can be reversed. Specifically, it has been shown [6, 85] that randomizing the

column signs of a matrix that satisfies the RIP results in a matrix that also satisfies the JL lemma.

One of the implications of this is that a computationally efficient stable embedding can be achieved

by randomizing the column signs of a partial Fourier matrix [31, 72, 114].
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5.3 Non-uniform Concentration of Measure Inequalities

In this section we state our concentration of measure results for Distinct Block Diagonal (DBD)

and Repeated Block Diagonal (RBD) matrices. For each type of matrix we provide a detailed

examination of the derived concentration rates and use simulations to demonstrate that our results

do indeed capture the salient signal characteristics that affect the concentration probability. We also

discuss connections between the concentration probabilities for the two matrix types.

5.3.1 Distinct Block Diagonal (DBD) Matrices

5.3.1.1 Analytical Results

Before stating our first result, we define the requisite notation. For a given signal x ∈ RNJ

partitioned into J blocks of length N as in (5.1), we define a vector describing the energy distribution

across the blocks of x: γ = γ(x) :=
[
‖x1‖22 ‖x2‖22 · · · ‖xJ‖22

]T ∈ RJ . Also, letting M1,M2, . . . ,MJ

denote the number of measurements to be taken of each block, we define a J × J diagonal matrix

containing these numbers along the diagonal: M := diag(M1,M2, . . . ,MJ). Finally, for a given signal

x ∈ RNJ and measurement allocation M, we define the quantities

(5.4) Γ2(x,M) :=
‖γ‖21

‖M−1/2γ‖22
=

(∑J
j=1 ‖xj‖22

)2

∑J
j=1

‖xj‖42
Mj

, Γ∞(x,M) :=
‖γ‖1

‖M−1γ‖∞
=

∑J
j=1 ‖xj‖22

maxj
‖xj‖22
Mj

.

Using this notation, our first result concerning the concentration of DBD matrices is captured in

the following theorem.

Theorem 5.3. Suppose x ∈ RNJ , and for each j ∈ {1, 2, . . . , J} suppose that Mj > 0. Let φ denote

a subgaussian random variable with mean 0, variance 1, and subgaussian norm ‖φ‖ψ2 . Let {Φj}Jj=1

be random matrices drawn independently, where each Φj has size Mj × N and is populated with

i.i.d. realizations of the renormalized random variable φ√
Mj

, and let Φ be a
(∑J

j=1Mj

)
×NJ DBD

matrix composed of {Φj}Jj=1 as in (5.1). Then

(5.5) P (
∣∣‖Φx‖22 − ‖x‖22∣∣ > ε‖x‖22) ≤ 2 exp

{
−C1 min

(
C2

2ε
2

‖φ‖4ψ2

Γ2(x,M),
C2ε

‖φ‖2ψ2

Γ∞(x,M)

)}
,

where C1 and C2 are absolute constants.

Proof: See Appendix A.

From the tail bound (5.5), it is easy to deduce that the concentration probability of interest
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decays exponentially as a function of ε2Γ2(x,M) in the case where 0 ≤ ε ≤ ‖φ‖2ψ2
Γ∞(x,M)

C2Γ2(x,M) and

exponentially as a function of εΓ∞(x,M) in the case where ε >
‖φ‖2ψ2

Γ∞(x,M)

C2Γ2(x,M) . One striking thing

about Theorem 5.3 is that, in contrast to analogous concentration of measure results for dense

matrices with i.i.d. subgaussian entries,3 the concentration rate depends explicitly on the signal x

being measured.

To elaborate on this point, since we are frequently concerned in practice with applications where ε

is small, let us focus on the first case of (5.5), when the concentration exponent scales with Γ2(x,M).

In this case, we see that larger values of Γ2(x,M) promote sharper concentration of ‖Φx‖22 about

its mean ‖x‖22. Using elementary inequalities relating the `1 and `2 norms, one can bound the range

of possible Γ2 values by minjMj ≤ Γ2(x,M) ≤∑J
j=1Mj . The worst case, Γ2(x,M) = minjMj , is

achieved when all of the signal energy is concentrated into exactly one signal block where the fewest

measurements are collected, i.e., when ‖xj‖22 = 0 except for a single index j′ ∈ {arg minjMj} (where

{arg minjMj} is the set of indices where {Mj} is minimum). In this case the DBD matrix exhibits

significantly worse performance than a dense i.i.d. matrix of the same size (
∑J
j=1Mj)×NJ , for which

the concentration exponent would scale with
∑J
j=1Mj . This makes intuitive sense, as this extreme

case would correspond to only one block of the DBD matrix sensing all of the signal energy. On

the other hand, the best case, Γ2(x,M) =
∑J
j=1Mj , is achieved when the number of measurements

collected for each block is proportional to the signal energy in that block. In other words, letting

diag(M) represent the diagonal of M, when diag(M) ∝ γ (i.e., when diag(M) = Cγ for some

constant C > 0) the concentration exponent scales with
∑J
j=1Mj just as it would for a dense i.i.d.

matrix of the same size. This is in spite of the fact that the DBD matrix has many fewer nonzero

elements.

The probability of concentration behaves similarly in the second case of (5.5), where the con-

centration exponent scales with Γ∞(x,M). One can bound the range of possible Γ∞ values by

minjMj ≤ Γ∞(x,M) ≤∑J
j=1Mj . The lower bound is again achieved when ‖xj‖22 = 0 except for a

single index j′ ∈ {arg minjMj}, and the upper bound again is achieved when diag(M) ∝ γ.

The above discussion makes clear that the concentration performance of a DBD matrix can vary

widely depending on the signal being measured. In particular, DBD matrices can perform as well

as dense i.i.d. matrices if their measurement allocation is well matched to the energy distribution

of the signal. Such a favorable event can occur either (i) by design, if a system designer has some

operational knowledge of the energy distributions to expect, or (ii) by good fortune, if favorable

3The uniformity of such concentration results comes not from the fact that these matrices are dense but rather that
that are populated with i.i.d. random variables; certain structured dense random matrices (such as partial Fourier
matrices) could have signal-dependent concentration inequalities.

71



signals happen to arrive that are well matched to a fixed system design. We note that even in

the former situation when the general energy distribution across blocks is known, this does not

imply that the designer has a priori knowledge of the signal being sensed. Furthermore, even when

significant information about the signal (or a finite class of signals) is known, there may still be

much to learn by actually measuring the signal. For example, Section 5.4 outlines several interesting

signal inference problems that benefit from a norm-preservation guarantee for a known signal (or

finite signal family). Also, in the second of these situations, it may not be unreasonable to expect

that a fixed measurement allocation will be well matched to an unknown signal most of the time.

For example, in Section 5.5 we describe several realistic signal classes that are favorably matched to

fixed systems that have equal measurement allocations (M1 = M2 = · · · = MJ).

Two final comments are in order. First, while Theorem 5.3 was derived by considering all signal

blocks to be of equal length N , one can see by a close examination of the proof that the same

theorem in fact holds for signals partitioned into blocks of unequal lengths. Second, it is instructive

to characterize the range of ε for which the two cases of Theorem 5.3 are relevant; we do so in the

following lemma, which can be proved using standard manipulations of the `1, `2, and `∞ norms.

Lemma 5.4. If J ≥ 2, the point of demarcation between the two cases of Theorem 5.3 obeys

‖φ‖2ψ2
· 2(
√
J − 1)

C2(J − 1)

minj
√
Mj

maxj
√
Mj

≤
‖φ‖2ψ2

Γ∞(x,M)

C2Γ2(x,M)
≤
‖φ‖2ψ2

C2
.

Examining the bound above, we note that for J ≥ 2 it holds that 2(
√
J−1)
J−1 ≥ 1√

J
. Thus, as an

example, when M1 = M2 = · · · = MJ , the first (“small ε”) case of Theorem 5.3 is guaranteed to

at least permit ε ∈
[
0,
‖φ‖2ψ2

C2

√
J

]
. We note further that when the measurement matrix is well-matched

to the signal characteristics, the first case of Theorem 5.3 permits ε as large as
‖φ‖2ψ2

C2
, which is

independent of J .

5.3.1.2 Supporting Experiments

While the quantity Γ2(x,M) plays a critical role in our analytical tail bound (5.5), it is reasonable

to ask whether this quantity actually plays a central role in the empirical concentration performance

of DBD matrices. We explore this question with a series of simulations. To begin, we randomly

construct a signal of length 1024 partitioned into J = 16 blocks of length N = 64. The energy

distribution γ of the signal x is plotted in Figure 5.1(a) (and the signal x itself is plotted in the

top right corner). For this simulation, to ensure diag(M) ∝ γ with integer values for the Mj , we
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(a) (b) (c)

Figure 5.1: (a) Test signal for concentration in a DBD matrix. The main panel plots the energy distribution
γ when the signal is partitioned into J = 16 blocks of length N = 64; the subpanel plots the length-1024
signal x itself. (b),(c) Test signals for concentration in a RBD matrix. The main panels plot the eigenvalue
distributions λ for Sig. 1 and Sig. 2, respectively, when partitioned into J = 16 blocks of length N = 64; the
subpanels plot the length-1024 signals themselves.
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Figure 5.2: Comparisons of concentration behavior for various matrix and signal types; each figure shows
the percentage of trials for which (1 − ε) ≤ ‖Φx‖2/‖x‖2 ≤ (1 + ε) as a function of ε. (a) Performance of
the dense and DBD matrices on the signal shown in Figure 5.1(a). (b) Performance of the dense and RBD
matrices on the signals shown in Figure 5.1(b),(c).

begin by constructing M (populated with integers) and then normalize each block of a randomly

generated signal to set γ accordingly.

Fixing this signal x, we generate a series of 10000 random 64× 1024 matrices Φ using zero-mean

Gaussian random variables for the entries. In one case, the matrices are fully dense and the entries

of each matrix have variance 1/64. In another case, the matrices are DBD with diag(M) ∝ γ

and the entries in each block have variance 1/Mj . Thus, we have Γ2(x,M) =
∑J
j=1Mj and our

Theorem 5.3 gives the same concentration bound for this DBD matrix as for the dense i.i.d. matrix

of the same size. For each type of matrix, Figure 5.2(a) shows the percentage of trials for which

(1 − ε) ≤ ‖Φx‖2/‖x‖2 ≤ (1 + ε) as a function of ε, and indeed, the curves for the dense and DBD

matrices are indistinguishable.

Finally, we consider a third scenario in which we construct 10000 random 64×1024 DBD matrices

as above but with an equal number of measurements in each block. In other words, we set all Mj = 4,

and obtain measurement matrices that are no longer matched to the signal energy distribution. We
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quantify this mismatch by noting that Γ2(x, 4 · IJ×J) = 32.77 <
∑J
j=1Mj . Again, Figure 5.2(a)

shows the concentration success probability over these 10000 random matrices. It is evident that

these mismatched DBD matrices provide decidedly less sharp concentration of ‖Φx‖2.

5.3.2 Repeated Block Diagonal (RBD) Matrices

5.3.2.1 Analytical Results

We now turn our attention to the concentration performance of the more restricted RBD matrices.

Before stating our result, let us again define the requisite notation. Given a signal x ∈ RNJ

partitioned into J blocks of length N , we define the J ×N matrix of concatenated signal blocks

(5.6) X := [x1 x2 · · · xJ ]T ,

and we denote the non-negative eigenvalues of the N ×N symmetric matrix A = XTX as {λi}Ni=1.

We let λ = λ(x) := [λ1, . . . , λN ]
T ∈ RN be the vector composed of these eigenvalues. We let

M := M1 = M2 = · · · = MJ denote the number of measurements to be taken in each block. Finally,

for a given signal x ∈ RNJ and per-block measurement rate M , we define the quantities

(5.7) Λ2(x,M) :=
M‖λ‖21
‖λ‖22

and Λ∞(x,M) :=
M‖λ‖1
‖λ‖∞

.

Equipped with this notation, our main result concerning the concentration of RBD matrices is as

follows.

Theorem 5.5. Suppose x ∈ RNJ . Let Φ̃ be a random M×N matrix populated with i.i.d. zero-mean

Gaussian entries having variance σ2 = 1
M , and let Φ be an MJ × NJ block diagonal matrix as

defined in (5.1), with Φj = Φ̃ for all j. Then

(5.8) P (
∣∣‖Φx‖22 − ‖x‖22∣∣ > ε‖x‖22) ≤ 2 exp

{
−C1 min

(
C2

3ε
2Λ2(x,M), C3εΛ∞(x,M)

)}
,

where C1 and C3 are absolute constants.

Proof: See Appendix B.

From (5.8), one can deduce that the concentration probability of interest decays exponentially

as a function of ε2Λ2(x,M) in the case where 0 ≤ ε ≤ Λ∞(x,M)
C3Λ2(x,M) and exponentially as a function of

εΛ∞(x,M) in the case where ε > Λ∞(x,M)
C3Λ2(x,M) . Thus, we see that the concentration rate again depends

explicitly on the signal x being measured.
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Again, since we are frequently concerned in practice with applications where ε is small, let us

focus on the first case of (5.8), when the concentration exponent scales with Λ2(x,M). It follows

from the standard relation between `1 and `2 norms that M ≤ Λ2(x,M) ≤ M min(J,N). One

extreme, M , is achieved when A =
∑
j xjx

T
j has only one nonzero eigenvalue, implying that the

blocks xj are the same modulo a scaling factor. In this case, the RBD matrix exhibits significantly

worse performance than a dense i.i.d. matrix of the same size MJ×NJ , for which the concentration

exponent would scale with MJ rather than M . However, this diminished performance is to be

expected since the same Φ̃ is used to measure each identical signal block.

The other extreme, Λ2(x,M) = M min(J,N) is favorable as long as J ≤ N , in which case the

concentration exponent scales with MJ just as it would for a dense i.i.d. matrix of the same size. For

this case to occur, A must have J nonzero eigenvalues and they must all be equal. By noting that

the nonzero eigenvalues of A = XTX are the same as those of the Grammian matrix G = XXT , we

conclude that this most favorable case can occur only when the signal blocks are mutually orthogonal

and have the same energy. Alternatively, if the signal blocks span a K-dimensional subspace of RN

we will have M ≤ Λ2(x,M) ≤ MK. All of this can also be seen by observing that calculating the

eigenvalues of A = XTX is equivalent to running Principal Component Analysis (PCA) [77] on the

matrix X comprised of the J signal blocks. Said another way, an RBD matrix performs as well as a

dense i.i.d. matrix of the same size when the signal has uniform energy distribution across its blocks

(as in the DBD case) and has sufficient variation in the directions exhibited by the blocks.

We note that there is a close connection between the diversity measures Γ2(x,M) and Λ2(x,M)

that is not apparent at first glance. For a fair comparison, we assume in this discussion that

M := diag(M,M, . . . ,M). Now, note that ‖λ‖21 = ‖γ‖21 and also that ‖λ‖22 = ‖A‖2F = ‖XXT ‖2F =∑J
i=1 ‖xi‖42 +2

∑
i>j(x

T
i xj)

2 = ‖γ‖22 +2
∑
i>j(x

T
i xj)

2. Using these two relationships, we can rewrite

Λ2(x,M) as

Λ2(x,M) =
M‖λ‖21
‖λ‖22

=
M‖γ‖21

‖γ‖22 + 2
∑
i>j(x

T
i xj)

2
≤ M‖γ‖21
‖γ‖22

= Γ2(x,M).(5.9)

From this relationship we see that Λ2 and Γ2 differ only by the additional inner-product term in the

denominator of Λ2, and we also see that Λ2 = Γ2 if and only if the signal blocks are mutually orthog-

onal. This more stringent condition for RBD matrices—requiring more intrinsic signal diversity—is

expected given the more restricted structure of the RBD matrices.
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5.3.2.2 Supporting Experiments

While the quantity Λ2(x,M) plays a critical role in our analytical upper bound (5.8) on the

concentration tail probabilities, it is reasonable to ask whether this quantity actually plays a central

role in the empirical concentration performance of RBD matrices. We explore this question with

a series of simulations. To begin, we randomly construct a signal of length 1024 partitioned into

J = 16 blocks of length N = 64, and we perform Gram-Schmidt orthogonalization to ensure that

the J blocks are mutually orthogonal and have equal energy. The nonzero eigenvalues of A = XTX

are shown in the plot of λ in Figure 5.1(b) (and the signal x itself, denoted “Sig. 1”, is plotted in

the top left corner).

As we have discussed above, for signals such as Sig. 1 we should have Λ2(x,M) = MJ , and

Theorem 5.5 suggests that an RBD matrix can achieve the same concentration rate as a dense i.i.d.

matrix of the same size. Fixing this signal, we generate a series of 10000 random 64× 1024 matrices

Φ populated with zero-mean Gaussian random variables. In one case, the matrices are dense and

each entry has variance 1/64. In another case, the matrices are RBD, with a single 4 × 64 block

repeated along the main diagonal, comprised of i.i.d. Gaussian entries with variance 1
4 . For each

type of matrix, Figure 5.2(b) shows the percentage of trials for which (1−ε) ≤ ‖Φx‖2/‖x‖2 ≤ (1+ε)

as a function of ε. As anticipated, we can see that the curves for the dense and RBD matrices are

indistinguishable.

In contrast, we also construct a second signal x (denoted “Sig. 2”) that has equal energy between

the blocks but has non-orthogonal components (resulting in non-uniform λ); see Figure 5.1(c). This

signal was constructed to ensure that the sorted entries of λ exhibit an exponential decay. Due to

the non-orthogonality of the signal blocks, we see for this signal that Λ2(x,M) = 21.3284 which is

approximately 3 times less than the best possible value of MJ = 64. Consequently, Theorem 5.5

provides a much weaker concentration exponent when this signal is measured using an RBD matrix

than when it is measured using a dense i.i.d. matrix. As shown in Figure 5.2(b), we see that the

concentration performance of the full dense matrix is agnostic to this new signal structure, while

the concentration is clearly not as sharp for the RBD matrix.

5.4 Applications

As discussed briefly in Section 5.2.3, a concentration of measure inequality—despite nominally

pertaining to the norm preservation of a single signal—can lead to a number of guarantees for

problems involving multi-signal embeddings and signal discrimination. In this section, we extend
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our concentration bounds to formulate a modified version of the JL lemma appropriate for block

diagonal matrices. We also survey a collection of compressive-domain inference problems (such as

detection and classification) in which such a result can be leveraged. For simplicity we will focus

on DBD matrices in this section, but parallel results can be derived in each case for RBD matrices.

Given the nonuniform nature of our concentration bounds, the performance of algorithms for solving

these problems will depend on the signals under consideration, and so, in Section 5.5 we provide

several examples of signal classes that are particularly favorable for measurement via DBD or RBD

matrices.

5.4.1 Stable Embeddings and the Johnson-Lindenstrauss Lemma

For a given signal x ∈ RNJ and measurement allocation M, let us define Γ̃2(x,M) := Γ2(x,M)∑J
j=1Mj

and

Γ̃∞(x,M) := Γ∞(x,M)∑J
j=1Mj

. Note that both quantities are upper bounded by 1, with equality achieved

for signals best matched to M as discussed in Section 5.3.1. Using this notation, Theorem 5.3 allows

us to immediately formulate a version of the JL lemma appropriate for DBD matrices.

Theorem 5.6. Let U, V be two finite subsets of RNJ , let Φ be a randomly generated DBD matrix

as described in Theorem 5.3 with measurement allocation M, and let ρ ∈ (0, 1) be fixed. If

(5.10)

J∑
j=1

Mj ≥
log |U |+ log |V |+ log(2/ρ)

C1 min

(
C2

2δ
2

‖φ‖4ψ2

minu∈U,v∈V Γ̃2(u− v,M), C2δ
‖φ‖2ψ2

minu∈U,v∈V Γ̃∞(u− v,M)

) ,

then with probability exceeding 1−ρ, Φ will provide a stable embedding of (U, V ) with conditioning δ.

Alternatively, under the same conditions, with probability exceeding 1− ρ the matrix Φ will provide

a stable embedding of (U, V ) with conditioning

δ̃(U, V,M, ρ)(5.11)

:=
‖φ‖2ψ2

C2
max

(√
log |U |+ log |V |+ log(2/ρ)

C1 minu∈U,v∈V Γ2(u− v,M)
,

log |U |+ log |V |+ log(2/ρ)

C1 minu∈U,v∈V Γ∞(u− v,M)

)
.

Proof. Taking the union bound over all u ∈ U and v ∈ V and using (5.5), we then know that the

desired (near) isometry holds over all difference vectors u− v except with probability bounded by

(5.12) 2 |U | |V | exp

(
−C1 min

(
C2

2δ
2

‖φ‖4ψ2

min
u∈U,v∈V

Γ2(u− v,M),
C2δ

‖φ‖2ψ2

min
u∈U,v∈V

Γ∞(u− v,M)

))
.

Ensuring that (5.10) holds guarantees that the above failure probability is less than ρ. The bound in

77



(5.11) follows from (5.10) and the observation that min(aδ2, bδ) = c implies that δ = max
(√

c
a ,

c
b

)
.

Similar theorems can be formulated for RBD matrices, as well as for stable embeddings of a

signal subspace rather than just a finite family of signals. Equation (5.10) gives a lower bound on

the total number of measurements to guarantee a stable embedding with conditioning δ. One can see

that the denominator on the right-hand side will scale with δ2·minu∈U,v∈V Γ̃2(u−v,M) when 0 ≤ δ ≤
‖φ‖2ψ2

minu∈U,v∈V Γ̃∞(u−v,M)

C2 minu∈U,v∈V Γ̃2(u−v,M)
and with δ·minu∈U,v∈V Γ̃∞(u−v,M) when δ >

‖φ‖2ψ2
minu∈U,v∈V Γ̃∞(u−v,M)

C2 minu∈U,v∈V Γ̃2(u−v,M)
.

Thus, focusing just on cases where δ is small, in order to guarantee a stable embedding with a mod-

erate number of measurements, we require Γ̃2(u− v,M) to be sufficiently close to 1 over all u ∈ U

and v ∈ V . Equivalently, if Γ2(u − v,M) is uniformly close to
∑
Mj over all u ∈ U and v ∈ V ,

the conditioning δ̃ provided in (5.11) is comparable to what would be achieved with a dense i.i.d.

random matrix of the same size. In Section 5.5, we provide several examples of signal classes of U

and V for which it may be reasonable to expect such uniformly favorable Γ2 (or Λ2) values.

The attentive reader may notice that the failure probability in (5.12) is in fact loose, since we

have bounded the sum of the individual failure probabilities by |U | |V | times the worse case failure

probability. Due to the exponential form of these probabilities, however, it seems that the worse case

probability—even if it is rare—will typically dominate this sum. Therefore, in most applications we

do not expect that it is possible to significantly improve over the bounds provided in (5.12) and thus

(5.10). Unfortunately, it appears that this fact would forbid the derivation of a sharp RIP bound for

block diagonal matrices via the elementary covering arguments mentioned briefly in Section 5.2.3.4

However, such an RIP result, which would guarantee the stable embedding of an infinite family of

signals that are sparse in a particular basis, is not necessary for problems that require embeddings

of only finite signal families or appropriate for problems where the signals may not all be sparse

in the same basis (e.g., using the RIP to derive embedding guarantees such as Theorem 5.6 could

require many more measurements than using a concentration bound).

Indeed, ensuring a stable embedding of even a finite signal class is very useful for guaranteeing

the performance of many types of compressive-domain signal inference and processing algorithms.

In the following subsections, we explore two canonical tasks (detection and classification) in detail

to show how signal characteristics affect one’s ability to solve these problems using measurements

4As an aside, since the submission of the corresponding journal paper [107] of this chapter, some of the authors
(with an additional collaborator) have shown that using tools from the theory of empirical processes [114], it is possible
to derive RIP bounds for DBD matrices [145] that are in fact dependent on the basis used for sparse representation
of the signals. This does not make the present results obsolete, however: neither our concentration bounds nor our
measurement bound (5.10) follow as a consequence of the RIP result.
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acquired via a block diagonal matrix. Performing tasks such as these directly in the measurement

space not only reduces the data acquisition burden but can also reduce the computational burden

far below what is required to solve these problems in the high dimensional ambient signal space.

Before concluding this subsection, we briefly note that there are several other tasks (aside from

detection and classification) that can be performed in the measurement space when a block diagonal

matrix provides a stable embedding of a finite signal family. For one example, when a block diagonal

matrix Φ provides a stable embedding of (S, {x}) for some signal database S and query signal x,

it is possible to solve the approximate nearest neighbor problem [76] (finding the closest point in

S to x) in the compressed domain without much loss of precision. Another potential application

in compressive signal processing involves a simple compressive-domain linear estimator [43]. When

Φ provides a stable embedding of (L,X ∪ −X ) for some sets L and X , then for any ` ∈ L and

x ∈ X , we can estimate the value of 〈`, x〉 from the measurements 〈Φ`,Φx〉. Signal families L and X

whose sum and difference vectors `± x have favorable Γ2 values will have favorable and predictable

estimation performance. Finally, a similar result also discussed in [43] shows that filtering vectors in

order to separate signal and interference subspaces is possible when the difference vectors between

these subspaces are stably embedded by Φ.

5.4.2 Signal Detection in the Compressed Domain

While the canonical CS results center mostly around reconstructing signals from compressive

measurements, there is a growing interest in forgoing this recovery process and answering certain

signal processing questions directly in the compressed domain. One such problem that can be

solved is binary detection, where one must decide whether or not a known template signal was

present when the noisy compressive measurements were collected [74, 44, 43, 116]. In particular,

let s ∈ RNJ denote a known signal, and suppose that from the measurement vector y, we wish to

decide between two hypotheses:

H0 : y = z or H1 : y = Φs+ z,

where Φ is a known compressive measurement matrix, and z is a vector of i.i.d. zero-mean Gaussian

noise with variance σ2. If one were designing a measurement matrix specifically for the purpose

of detecting this signal, then the optimal choice of Φ would be the matched filter, i.e., Φ = sT .

However, implementing a measurement system that is designed specifically for a particular s restricts

its capabilities to detecting that signal only, which could require a hardware modification every time
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s changes. A more generic approach would be to design Φ randomly (perhaps with a block diagonal

structure out of necessity or due to efficiency considerations) and then use the acquired measurements

y to test for one or more candidate signals s.

Given the measurements y, a Neyman-Pearson (NP) optimal detector [43] maximizes the proba-

bility of detection, PD := P {H1 chosen |H1 is true}, subject to a given limitation on the probability

of a false alarm, PF = P {H1 chosen |H0 is true}. The optimal decision for this problem is made

based on whether or not the sufficient statistic t := yTΦs surpasses a threshold κ, i.e., t
H1
>
<
H0

κ, where

κ is chosen to meet the constraint PF ≤ α for a specified α. As can be seen from the analysis in [43],

the performance of such a detector depends on ‖Φs‖2. In effect, if Φ “loses” signal energy for some

signals the detector performance will suffer, and if Φ “amplifies” signal energy for some signals the

detector performance will improve. A stable embedding of any signal the detector may encounter,

however, guarantees consistent performance of the detector.

Theorem 5.7. Suppose S is a finite set of signals and let Φ be a randomly generated DBD matrix as

described in Theorem 5.3 with a number of measurements denoted by the matrix M. Fix 0 < ρ < 1

and pick α such that PF ≤ α. Then with probability exceeding 1−ρ, any signal s ∈ S can be detected

with probability of detection bounded by

Q

(
Q−1(α)−

√
1− δ̃(S, {0},M, ρ)

√
‖s‖22
σ2

)
≤ PD(α) ≤

Q

(
Q−1(α)−

√
1 + δ̃(S, {0},M, ρ)

√
‖s‖22
σ2

)
,

where Q(α) = 1√
2π

∫∞
α
e−

u2

2 du and where δ̃(S, {0},M, ρ) is as defined in (5.11).

The proof of this theorem follows by combining the fact that

PD(α) = Q

(
Q−1(α)− ‖Φs‖2

σ

)

(see [43]) with (5.11) and the monotonicity of the function Q(·). While achieving the best possible

PD for a given PF is of course desirable for a detector, another very important consideration for a

system designer is the reliability and consistency of that system. Large fluctuations in performance

make it difficult to ascribe meaning to a particular detection result and to take action with a certain

level of confidence. The theorem above tells us that the consistency of the detector performance is

tied to how reliably Φ preserves the norm of signals in S. Examining this relationship, it is clear that

more favorable values of Γ2(s,M) for a signal class result in tighter bounds on PD(α) and therefore
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Figure 5.3: (a) Histogram of PD for 10000 signals with uniform energy across blocks (signal class S1) and for
10000 signals with decaying energy across blocks (signal class S2) when measured with a DBD matrix. The
compressive NP detector has the constraint PF ≤ α = 0.1. (b) Plots of the probability of misclassification
PE over a range of values of M = 1, · · · , 20. The first class of signals S1 are sparse in the frequency domain.
The second class of signals S2 are nonzero only on a single block in the time domain. While PE decreases
with increasing M for both classes of signals, classification performs better for the signals in S1, which are
more amenable to a stable embedding with a DBD matrix.

in stronger consistency guarantees for the detector.

To illustrate this fact with an example, we create a single DBD measurement matrix Φ ∈ RMJ×NJ

having an equal number of measurements Mj = M per block. We take M = 4, J = 16 and N = 64,

and we draw the nonzero entries of Φ as i.i.d. Gaussian random variables with variance 1/M . We

test the detection performance of this matrix by drawing 10000 unit-norm test signals randomly

from two classes: S1, in which signals have uniform energy across their blocks, and S2, in which

signals have decaying energy across their blocks. We choose the noise variance σ2 such that each test

signal s has a constant signal-to-noise ratio of 10 log10

(
‖s‖22
σ2

)
= 8dB. Because of the construction of

S1, Γ2(s,M) attains its maximum value of MJ for all signals s ∈ S1, resulting a small conditioning

δ̃ and a tight bound on PD. In contrast, S2 will have a smaller value of Γ2(s,M), resulting in larger

values of δ̃ and much looser bounds on PD. We choose the maximum probability of failure to be

α = 0.1 and use the equation PD(α) = Q
(
Q−1(α)− ‖Φs‖2σ

)
to calculate the expected PD for each

signal.

Figure 5.3(a) shows the histogram of PD for the signals in S1 and S2 when measured with

a DBD matrix. We see that for the uniform energy signals in S1, the detector performance is

indeed tightly clustered around PD = 0.9; one can see that this is the point of concentration

predicted by Theorem 5.7 since Q
(
Q−1(0.1)−

√
108/10

)
≈ 0.8907. Thus for this class of signals,

the detector performance is consistent and we can be assured of a favorable PD when using the

detector for all signals in S1. However, when using the DBD matrix on the signal class S2, the

PD values are widely spread out compared to those for S1, despite the fact that the average PD is
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nearly the same. Although some individual signals may have above average performance because

the measurement matrix happened to amplify their energies, other signals may have very poor

performance because the measurement matrix significantly attenuated their energies. Thus this

experiment shows how the signal statistics affect the performance reliability in compressive detection

tasks when the measurements matrices have block diagonal structure.

5.4.3 Classification in the Compressed Domain

Rather than determining the presence or absence of a fixed candidate signal, some scenarios

may require the classification of a signal among multiple hypotheses [44, 43]. In particular, let

s1, s2, . . . , sR ∈ RNJ denote known signals, and suppose that from the measurement vector y, we

wish to decide between R hypotheses:

Hi : y = Φsi + z, for i = 1, 2, . . . , R,

where Φ is a known compressive measurement matrix, and z is a vector of i.i.d. zero-mean Gaussian

noise with variance σ2.

It is straightforward to show that when each hypothesis is equally likely, the classifier with

minimum probability of error selects the hypothesis that minimizes the sufficient statistic ti :=

‖y−Φsi‖22. As can be imagined, the performance of such a classifier depends on how well Φ preserves

pairwise distances among the signals {si}. If a situation were to occur where
‖Φsp−Φsq‖2
‖sp−sq‖2 was small

for some p, q, then sp could easily be mistaken for sq in the measurements y. Therefore, having

a stable embedding can again be particularly useful for guaranteeing consistent and predictable

performance.

Theorem 5.8. Let S denote a fixed set of signals with |S| = R <∞ and fix 0 < ρ < 1. Suppose Φ

is a randomly generated DBD matrix as described in Theorem 5.3 with a number of measurements

denoted by the matrix M. Assume we receive the measurements y = Φsi∗ + z for some i∗ ∈

{1, 2, . . . , R} and z ∼ N (0, σ2I). Then, with probability at least

1−
(
R− 1

2

)
exp

−d
2
(

1− δ̃(S,S,M, ρ)
)

8σ2

− 2ρ,

we have i∗ = arg mini∈{1,...,R} ti and thus the signal si∗ can be correctly classified. Here d :=

mini,j ‖si − sj‖2 denotes the minimum separation among the signals in S and δ̃(S,S,M, ρ) is as

defined in (5.11).
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The proof of this theorem again follows by combining bounds from [43] with (5.11). From this

theorem it follows that, if Φ is a block diagonal matrix, signal families S whose difference vectors

sp − sq have favorable Γ2 values will have consistent and predictable classification performance.

The following simulation demonstrates the potential for predictable classification of signals ac-

quired using compressive block diagonal matrices. We again consider DBD matrices having an equal

number of measurements Mj = M per block, and we consider signals having J = 16 blocks of length

N = 64. We first create a favorable class of unit-norm signals S1 with R = J elements such that

each signal has just 4 nonzero DFT coefficients at randomly chosen frequencies. To ensure that

the signals are real, we restrict the coefficients on conjugate pairs of frequencies to have complex

conjugate values. We also ensure that no frequencies are repeated amongst the signals in S1. As

we show in Section 5.5.2, frequency sparse signals with randomly selected frequency support will

have large Γ2 values with high probability; therefore the difference of any two signals from S1 will

also have a large Γ2 value with high probability. We also create a second class of unit-norm signals

S2 with R = J elements such that each signal sr for r = 1, 2, . . . , R has nonzero (and randomly

selected) values only on its r-th block and is zero everywhere else. Difference signals from this class

will have small Γ2 values since their energies across the blocks are not uniform.

For each M ranging from 1 to 20, we create 1000 instances of a random DBD matrix Φ of size

MJ×NJ . For each Φ and for each signal class S1 and S2, we identify the indices i1, i2 that minimize

‖Φsi1 −Φsi2‖2. The signals corresponding to si1 and si2 will be among the most difficult to classify

since they each have a close neighbor (either Φsi2 or Φsi1 , respectively) after projection by Φ. Then

for each of these signals {sij}j=1,2, we create 1000 noisy measurement vectors y = Φsij + z with

z ∼ N (0, σ2I) and with σ chosen such that 10 log10

(
d2

σ2

)
= 15dB. Finally, we let p = arg min ti be

the output of the classifier and calculate the probability of misclassification, PE(M), for each M as

the proportion of occurrences of p 6= i1 or p 6= i2, respectively, over the combined 1000 instances of

noise z and 1000 instances of Φ.

Figure 5.3(b) plots PE(M) for both classes of signals. As expected, the curve for S1 is lower

than that for S2 since the signals in S1 are expected to have a stable embedding with a tighter

conditioning. Both curves also show a decreasing trend for increasing M (although it is much more

obvious for signal class S2) as should be expected. Lastly, we see that PE(M) saturates at a certain

level with increasing M . This is also predicted by Theorem 5.8, where the smallest upper bound

that can be provided for PE is given by R−1
2 exp

(
− d2

8σ2

)
> 0. With the parameters used in this

experiment, it can be calculated that the smallest theoretical upper bound for PE is approximately

0.144. This shows that Theorem 5.8 may be slightly pessimistic.
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5.5 Favorable Signal Classes

The various compressive signal processing guarantees presented in Section 5.4 are built upon the

premise that a DBD matrix provides a stable embedding of the signals of interest; as we have noted,

these arguments can be extended to RBD matrices as well. Our analysis has also indicated that

such stable embeddings are most easily realized with matrices that are well matched to the energy

distribution (and sometimes orthogonality) of the signal blocks. In many applications, however—

perhaps for the sake of generality, or because little advance knowledge of the signals is available—it

may be most natural to use a fixed and equal allocation of measurements. Fortunately, there are

a number of interesting signal families (and, in some cases, the corresponding difference signals)

that provide favorable Γ2 values for “uniform” DBD matrices where all Mj are equal (for all j, we

suppose Mj = M for some M) and in some cases also provide favorable Λ2 values for RBD matrices.

In this section we survey several such examples.

5.5.1 Delay Networks and Multiview Imaging

One favorable signal class for uniform DBD and RBD matrices can occasionally arise in certain

sensor network or multi-view imaging scenarios where signals with steeply decaying autocorrelation

functions are measured under small perturbations. Consider for example a distributed sensor network

of J sensors where we would like to detect the presence of a known signal given the observations from

each sensor. Due to limited resources, each sensor uses random measurement matrices Φ1,Φ2, . . . ,ΦJ

to efficiently capture the underlying information with only a few random projections. Suppose that

the received signals x1, x2, . . . , xJ ∈ RN represent observations of some common known underlying

prototype signal w ∈ RN . However, due to the configurations of the sensors, these observations

occur with different delays or translations. More formally, we might consider the one-dimensional

delay parameters δ1, δ2, . . . , δJ ∈ Z and have that for each j, xj(n) = w(n − δj). Then, denoting

the measurements at sensor j as yj = Φjxj it is straightforward to see that the overall system of

equations can be represented with a DBD matrix, or when Φ1 = Φ2 = · · · = ΦJ with an RBD

matrix.

Assuming w is suitably zero-padded so that border and truncation artifacts can be neglected,

we will have ‖xj‖2 = ‖w‖2 for all xj ; this gives Γ2([xT1 xT2 · · ·xTJ ]T ,M) = MJ , which is the ideal

case for observation with a uniform DBD matrix. This suggests that the outputs from distributed

network systems can be highly amenable to the sort of compressive-domain signal inference and

processing tasks described Section 5.4.
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Moreover, the correlations among the components xj can be characterized in terms of the auto-

correlation function Rw of w: we will have 〈xi, xj〉 =
∑N
n=1 xi(n)xj(n) =

∑N
n=1 w(n− δi)w(n− δj),

which neglecting border and truncation artifacts will simply equal Rw(|δi−δj |). Therefore, signals w

that exhibit strong decay in their autocorrelation function will be natural candidates for observation

with RBD matrices as well. For example, equation (5.9) gives

Λ2([xT1 xT2 · · ·xTJ ]T ,M) =
MJ2‖w‖42

J‖w‖42 + 2
∑
i>j Rw(|δi − δj |)2

.

When Rw(|δi−δj |) is small for most i and j, the quantity Λ2([xT1 xT2 · · ·xTJ ]T ,M) is near its optimal

value of MJ .

5.5.2 Frequency Sparse Signals

Signals having sparse frequency spectra arise in many different applications involving communi-

cations intelligence systems and RF sensor networks. Based on time-frequency uncertainty princi-

ples and the well-known incoherence of sinusoids and the canonical basis (i.e., “spikes and sines”)

[127, 29], it is natural to expect that most signals that are sparse in the frequency domain should

have their energy distributed relatively uniformly across blocks in the time domain. In the following

theorem, we make formal the notion that frequency sparse signals are indeed likely to be favorable

for measurement via uniform DBD matrices, producing values of Γ2(x,M) within a log factor of its

maximum possible.

Theorem 5.9. Let N, β > 1 be fixed, suppose N ′ = NJ > 512, and let M = diag{M,M, . . . ,M} be

a DBD measurement allocation with M fixed. Let Ω ⊂ [1, N ′] be of size S ≤ N generated uniformly

at random. Then with probability at least 1−O(J(log(N ′))1/2(N ′)−β),5 every signal x ∈ CN ′ whose

DFT coefficients are supported on Ω will have:6

(5.13) Γ2(x,M) ≥MJ ·min

 0.0779

(β + 1) log(N ′)
,

1(√
6(β + 1) logN ′ + (logN ′)2

N

)2

 .

Proof: See Appendix C.

Note that as N ′ grows, the lower bound on Γ2(x,M) scales as MJ
1
N2 log4(N ′)

, which (treating the

5The O(·) notation is with respect to N ′. With the component length N fixed, this means that only the number
of blocks J is growing with increasing N ′.

6We consider complex-valued signals for simplicity and clarity in the exposition. A result with the same spirit
that holds with high probability can be derived for strictly real-valued signals, but this comes at the cost of a more
cumbersome derivation.
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Figure 5.4: Histograms of the normalized quantity Γ2 for frequency sparse signals. (a) The distribution
of Γ2

M
for randomly generated frequency sparse signals of length N ′ = N × J = 64 × 64 for sparsity levels

S ∈ {5, 30, 64}. Note that Γ2
M

accumulates near its upper bound of J = 64 for all three sparsity levels. (b)

The distribution of Γ2
MJ

for randomly generated frequency sparse signals with S = 5 and the number of

signal blocks J ∈ {64, 200, 400}. Note that Γ2
MJ

accumulates near its upper bound of 1.

fixed value N as a constant) is within log4(N ′) of its maximum possible value of MJ . Thus the

concentration exponent for most frequency sparse signals when measured by a uniform DBD matrix

will scale with ε2MJ/ log4(N ′) for small ε. Also note that the failure probability in the above

theorem can be bounded by O( 1
N ′β−2 ) since both J and

√
log(N ′) are less than N ′.

To explore the analysis above we use two illustrative simulations. For the first experiment,

we generate 5000 signals with length N ′ = NJ = 64 × 64 = 4096, using three different sparsity

levels S ∈ {5, 30, 64}. The DFT coefficient locations are selected uniformly at random, and the

corresponding nonzero coefficient values are drawn from the i.i.d. standard Gaussian distribution.

Figure 5.4(a) plots the ratio Γ2(x,M)
M , showing that this quantity is indeed near the upper bound of

J = 64, indicating a favorable energy distribution. This gives support to the fact that the theoretical

value of Γ2(x,M) predicted in Theorem 5.9 does not depend strongly on the exact value of S. For the

second experiment, we fix the sparsity at S = 5 and vary the signal block length J ∈ {64, 200, 400}

(and thus the total signal length N ′ = NJ changes as well). For each J we generate 5000 random

signals in the same manner as before and plot in Figure 5.4(b) the distribution of Γ2(x,M)
MJ . It is

clear that this value concentrates near its upper bound of 1, showing the relative accuracy of the

prediction that Γ2

M scales linearly with increasing J . While some of the quantities in Theorem 5.9

appear pessimistic (e.g., the scaling with log4(N ′)), these simulations confirm the intuition derived

from the theorem that frequency sparse signals should indeed have favorable energy distributions

and therefore favorable concentration properties when measured with DBD matrices.

Because differences between frequency sparse signals are themselves sparse in the frequency

domain, it follows immediately that not only do frequency sparse signals x have favorable Γ2(x,M)
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values for uniform DBD matrices, but also that most differences x1 − x2 between frequency sparse

signals have favorable Γ2(x1 − x2,M) values. Thus, when measured by a uniform DBD matrix,

many families of frequency sparse signals are likely to perform favorably and predictably in the

compressive signal processing scenarios outlined in Section 5.4.

Importantly, Theorem 5.9 can also allow us to guarantee the stable embedding of certain infinite

collections of frequency sparse signals. In particular, for any sparse support Ω on which (5.13) holds

uniformly, one can apply standard covering arguments (as discussed briefly in Section 5.2.3) to

guarantee that with a moderate total number of measurements MJ = O
(
|Ω|
ε2 log4(N ′)

)
, a uniform

DBD matrix will simultaneously approximately preserve the norm of all frequency signals supported

on Ω. This fact allows one to consider compressive-domain interference cancellation (as discussed in

Section 5.4.1 and in [43]) from a set of frequency sparse signals, where the set of possible interferers

live in a known subspace of frequency sparse signals.

5.5.3 Difference Signals

In applications such as classification, we require a stable embedding of difference vectors between

signals in a certain signal class. It is interesting to determine what signal families in addition to

frequency sparse signals will give rise to difference signals that have favorable values of Γ2 (for

uniform DBD matrices) or Λ2 (for RBD matrices).

We provide a partial answer to this question by briefly exemplifying a signal family that is

favorable for measurement via uniform DBD matrices. Consider a set Q ⊂ RJN of signals that, when

partitioned into J blocks of length N , satisfy both of the following properties: (i) each x ∈ Q has

uniform energy across the J blocks, i.e., ‖x1‖22 = ‖x2‖22 = · · · = ‖xJ‖22 = 1
J ‖x‖22, and (ii) each x ∈ Q

has highly correlated blocks, i.e., for some a ∈ (0, 1], 〈xi, xj〉 ≥ a 1
J ‖x‖22 for all i, j ∈ {1, 2, . . . , J}.

The first of these conditions ensures that if M = diag{M,M, . . . ,M}, then each x ∈ Q will have

Γ2(x,M) = MJ and thus be highly amenable to measurement by a uniform DBD matrix. The

second condition, when taken in conjunction with the first, ensures that all difference vectors of the

form x− y where x, y ∈ Q will also be highly amenable to measurement by a uniform DBD matrix.

In particular, for any i, j ∈ {1, 2, . . . , J}, one can show that

∣∣‖xi − yi‖22 − ‖xj − yj‖22∣∣ ≤ 4
√

2‖x‖2‖y‖2
√

1− a
J

,

meaning that the energy differences in each block of the difference signals can themselves have small

differences. One implication of this bound is that as a→ 1, Γ2(x− y,M)→MJ .
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Signal families of the form specified above—with uniform energy blocks and high inter-block

correlations—may generally arise as the result of observing some phenomenon that varies slowly as

a function of time or of sensor position. As an empirical demonstration, let us consider a small

database of eight real-world video signals frequently used as benchmarks in the video compression

community, where we will treat each video frame as a signal block.7 We truncate each video to

have J = 150 frames, each of size N = 176× 144 = 25344 pixels, and we normalize each video (not

each frame) to have unit energy. Because the test videos are real-world signals, they do not have

perfectly uniform energy distribution across the frames, but we do observe that most frame energies

are concentrated around 1
J = 0.00667. For each video, we present in Table 5.1 the minimum and

Video name Akiyo Bridge close Bridge far Carphone

max〈xi, xj〉 0.00682 0.00668 0.00668 0.00684

min〈xi, xj〉 0.00655 0.00664 0.00665 0.00598

Γ2/M 149.9844 149.9998 149.9999 149.9287

Video name Claire Coastguard Foreman Miss America

max〈xi, xj〉 0.00690 0.00742 0.00690 0.00695

min〈xi, xj〉 0.00650 0.00562 0.00624 0.00606

Γ2/M 149.9782 149.2561 149.9329 149.9301

Table 5.1: The maximum and minimum inner products between all pairs of distinct frames in each video,
and the quantity Γ2/M for each video. The best possible value of Γ2/M is J = 150.
maximum inner products 〈xi, xj〉 over all i 6= j, and we also list the quantity Γ2(x,M)

M for each video.

As we can see, the minimum inner product for each video is indeed quite close to 0.00667, suggesting

from the arguments above that the pairwise differences between various videos are likely to have

highly uniform energy distributions. To verify this, we compute the quantity Γ2

M for all possible
(

8
2

)
pairwise difference signals. As we are limited in space, we present in Figure 5.5 plots of the energies

‖xj‖22, ‖yj‖22, and ‖xj − yj‖22 as a function of the frame index j for the pairs of videos x, y that give

the best (highest) and the worst (smallest) values of Γ2(x−y,M)
M . We see that even the smallest Γ2

M

value is quite close to the best possible value of Γ2

M = 150. All of this suggests that the information

required to discriminate or classify various signals within a family such as a video database may be

well preserved in a small number of random measurements collected by a uniform DBD matrix.

5.5.4 Random Signals

Our discussions above have demonstrated that favorable Γ2 values (for uniform DBD matrices)

and Λ2 values (for RBD matrices) can arise for signals in a variety of practical scenarios. This is no

7Videos were obtained from http://trace.eas.asu.edu/yuv/.
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Figure 5.5: Plots of the energy distributions of individual videos and of their differences for the best video
pair and the worst video pair among all possible

(
8
2

)
possible video pairs. (a) The difference of the video pair,

“Bridge close” and “Bridge far”, giving the best value of Γ2(x− y,M)/M = 149.9988. (b) The difference of
the video pair, “Coastguard” and “Miss America”, giving the worst value of Γ2(x− y,M)/M = 148.7550.

accident. Indeed, as a blanket statement, it is true that a large majority of all signals x ∈ RJN , when

partitioned into a sufficiently small number of blocks J and measured uniformly, will have favorable

values of both Γ2 and Λ2. One way of formalizing this fact is with a probabilistic treatment such as

that given in the following lemma.

Lemma 5.10. Let φ denote a subgaussian random variable with mean 0, variance σ2, and sub-

gaussian norm ‖φ‖ψ2 , and suppose x ∈ RNJ is populated with i.i.d. realizations of φ. Let M =

diag{M,M, . . . ,M} with M fixed. Pick ε ≤ ‖φ‖
2
ψ2

C2
and suppose that J ≤ C1C

2
2Nε

2

2‖φ‖4ψ2
log(12/ε)

, where C1, C2

are absolute constants as given in Theorem 5.3. Then, with probability at least 1−2 exp

(
− 1

2
C1C

2
2Nε

2

‖φ‖4ψ2

)
,

we have

Γ2(x,M) ≥ Λ2(x,M) ≥M +M

(
1− ε
1 + ε

)2

(J − 1).

Proof: See Appendix D.

We see from Lemma 5.10 that when random vectors are partitioned into a sufficiently small

number of blocks, these signals will have their norms preserved giving rise to Γ2(x,M) and Λ2(x,M)

values close to their optimal value of MJ . To give some illustrative numbers, numerical simulations

showed that over 10000 random draws of Gaussian i.i.d. signals with J = 16 and N = 64 the average

value of Γ2(x,M)/M was 15.5 and the average value of Λ2(x,M)/M was 12.6, which are both large

fractions of the maximum possible value of 16. We also note that by using the same argument we

can show that the differences of random signals will exhibit large Γ2 and Λ2 values. One possible use

of this lemma could be in studying the robustness of block diagonal measurement systems to noise

in the signal. The lemma above tells us that when restrictions are met on the number of blocks,

random noise will tend to yield blocks that are nearly orthogonal and have highly uniform energies,
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thereby guaranteeing that they will not have their energy amplified by the matrix.

5.6 Conclusion

In this chapter we have derived concentration of measure inequalities for compressive DBD and

RBD matrices. Our experimental results confirm what our theoretical bounds suggest: that the

actual probability of concentration depends on the degree of alignment between the allocation of

the measurements and the energy distribution (and sometimes orthogonality) of the signal blocks.

However, in situations where one can optimize the measurement allocation in anticipation of certain

signal characteristics or where a fixed system may be measuring certain favorable classes of signals,

we have shown that the highly structured DBD and RBD matrices can provide concentration perfor-

mance that is on par with the dense i.i.d. matrices often used in CS. We have highlighted a number

of compressive signal processing applications that benefit from having a stable embedding of a finite

signal family, and we have presented a modified JL lemma for block diagonal matrices that reflects

the number of measurements required to ensure such a stable embedding. Finally, we have surveyed

a number of signal classes whose blockwise energy distribution and/or orthogonality makes them

well-suited to measurement via uniform DBD matrices or via RBD matrices. Despite not leading to

state-of-the-art RIP bounds, we conclude that our nonuniform concentration results can provide a

valuable tool for understanding and possibly mitigating the potential pitfalls of working with highly

constrained block diagonal matrices.

There are many natural questions that arise from these results and are suitable topics for future

research. For example, it would be natural to consider whether the concentration results for Gaus-

sian RBD matrices could be extended to more general subgaussian RBD matrices (to match the

distribution used in our DBD analysis), or whether strong RIP results can be established for RBD

matrices. Also, as more applications are identified in the future, it will be important to examine the

diversity characteristics of a broader variety of signal classes to determine their favorability for mea-

surement via block diagonal matrices. Additionally, it would be interesting to examine whether the

concentration of measure result for RBD matrices could prove useful in the analysis in the multiple

measurement vector (MMV) problem [60, 45] that arises, for example, in array signal processing.

As a final note, we briefly mention that our concentration bounds for block diagonal matrices

can actually be useful for studying certain other types of structured matrices that arise in linear

systems applications. In particular, these results can be applied to derive concentration bounds

and RIP results for compressive Toeplitz matrices that arise in problems such as channel sensing
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and for compressive observability matrices that arise in the analysis of linear dynamical systems.

Although space limitations prevent us from detailing these results here, we refer the interested reader

to [146, 141] for more information.
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CHAPTER 6

Sketched SVD: Recovering Spectral Features from

Compressive Measurements

6.1 Introduction

Consider a collection of data arranged in a matrix X of size N × n. Each column represents a

length-N signal (or image, frequency counts of terms in a particular document, etc.) and there are

n such observations. The singular value decomposition (SVD) of X,

X = UΣV T ,

carries important information about the structure of the data set, especially when the rank k of

X is small. In particular, the columns of U (known as the left singular vectors of X) span the

principal directions of the data set and can be used as basis vectors for building up typical signals,

and the diagonal entries of Σ (known as the singular values of X) reflect the energy of the data

set in each of these directions. The extraction of these features is commonly known as Principal

Component Analysis (PCA), and PCA is a fundamental and commonly used tool in data analysis

and compression. This exact same process can be viewed through a slightly different lens when one

imagines the columns of X as independent realizations of a length-N random vector x. Computing

the left singular vectors of X is equivalent to computing the eigenvectors of XXT , which (up to

rescaling) is the N ×N sample covariance matrix of the data. In this context, PCA is also known as

the Karhunen-Loeve (KL) Transform, and the KL Transform is a fundamental and commonly used

tool in statistics.

There are in fact a number of applications where the right singular vectors V of a data matrix X

This work is in collaboration with Michael B. Wakin and Anna C. Gilbert [69].
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are more important, or equivalently, where the eigenvectors of XTX carry the structure of interest.

For example, the product ΣV T gives a low-dimensional embedding of the data set that preserves

distances and angles between the n data vectors. This embedding can be used for clustering or

categorizing the signals [103, 19]; for example, this is used for comparing documents in latent se-

mantic analysis. The right singular vectors of X can also be viewed as the result of applying the

KL Transform to the rows, rather than the columns, of X. In this sense, the columns of V describe

the inter-signal (rather than intra-signal) statistical correlations. In cases where the column index

corresponds to a distinct sensor position, or a vertex in a graph, etc., this correlation structure can

carry important structural information [122, 35].

Unfortunately, many of the applications in which we seek the right singular vectors of X (equiv-

alently, the eigenvectors of XTX) are those in which the data is simply too large, too distributed, or

generated too quickly for us to store the data or to process it efficiently in one, centralized location.

There are, however, settings in which the data sets—while large—have low intrinsic dimension or are

of low rank. Let us suppose that the length of each data vector N is much larger than the number

of observations n, and suppose that X has rank k ≤ n. The data may or may not be generated in

a dynamic, streaming fashion and it may or may not be collected in a distributed fashion amongst

n sensors.

We wish to design a joint observation process (which can be distributed amongst n sensors) that

maintains a “sketch” of the data stream and a reconstruction process that, at a central location,

reconstructs not an approximation of the original data, but rather a good approximation to the

singular values σj and the (right) singular vectors vj of the original matrix X. The sketch of the

data stream should be a linear, non-adaptive procedure, one that is efficient to update, and one that

uses as few observations of the data matrix as possible so that as little communication as possible is

required from the sensors to the central processing entity. Because the procedure is linear and non-

adaptive, we can represent the sketch as a matrix-matrix product ΦX = Y , where the observation

matrix Φ is of size m × N and the sketch Y is of size m × n. We want m as small as possible.

From the sketch matrix Y , we want to produce estimates σ′j of the k non-zero singular values and

estimates v′j of the associated (right) singular vectors of X such that

(1− ε)1/2σj ≤ σ′j ≤ (1 + ε)1/2σj

and

‖vj − v′j‖2 ≤ εγ,
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where γ is a function of the smallest gap between the singular values of X.

Most of the current work on low-rank matrix approximations, robust PCA [28], rank-revealing

QR factorizations (see [73] and the references therein for a comprehensive survey), etc. has focused on

obtaining a good approximation X̂ to the original data matrix X, albeit one that is parsimonious.

Some of the measurement schemes [28] sketch both the row and column space of X, collecting

measurements Y = ΦXΦT , and some sketch the column space only so as to derive a few orthogonal

vectors that span the column space [73]. These results are of the form

‖X − X̂‖X ≤ (1 + ε)‖X‖X

for some norm X (typically, the Frobenius norm, but others as well). Our goal is an approximation

to the singular vectors and singular values of X themselves, directly, and while one could apply

standard perturbation theory techniques to compare the singular vectors of an approximation X̂ to

those of the original dataX, the error guarantees would be rather poor. Furthermore, while one could

ask about preserving the subspaces spanned by the singular vectors, there are many applications

from PCA to data clustering, image segmentation, graph embedding, and modal analysis in which

the individual singular vectors are critical for data analysis tasks, and data reconstruction is not

necessarily required.

Our algorithmic approach is straightforward. We sketch one side of the N × n data matrix

X, maintaining a sketch matrix Y = ΦX of size m × n. (The fact that the sketch is one-sided

allows it to be computed sensor-by-sensor in distributed data collection settings.) We then compute

the SVD of the sketch matrix Y , using standard (iterative) SVD algorithms. Our analysis is quite

different from that of most randomized linear algebra methods. We assume that the sketching matrix

Φ is randomly generated and satisfies the distributional Johnson-Lindenstrauss (JL) property (see

Definition 6.1) so that with high probability it acts as a near isometry on the column span of X, and

we then exploit relative error (as opposed to absolute error) perturbation analysis for deterministic

(as opposed to random) matrices to obtain our results. As detailed in our main result, Theorem 6.2,

we can obtain accurate relative estimates for the singular values, and in some cases we can obtain

accurate estimates for the singular vectors as well. However, we struggle to achieve high accuracy

in the singular vectors when the corresponding singular values are close. This is a consequence of

well-studied perturbation theory and seems inherent in our approach.

One major application of our work is to determining structural graph properties of streaming

graph data, albeit for low-rank graphs (ones with many connected components). Recent work on the
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structure and evolution of online social networks [86] suggests that a significant fraction of vertices

in such networks participate in isolated communities, “small groups who interact with one another

but not with the network at large.”

In Section 6.2, we set the stage for our mathematical problem and in Section 6.3, we outline the

related work, including an overview of the relative error perturbation techniques from linear algebra

that we will use. In Section 6.4, we present our main result which we apply, in Section 6.5, to the

spectral analysis of streaming graphs.

6.2 Problem Setup

Let X denote the N × n real-valued data matrix. For example, one may envision that each

column represents a length-N time series signal collected from one of n sensors. Let us assume that

N ≥ n, and that rank(X) = k ≤ n. We write the truncated SVD of X as X = UXΣXV
T
X , where

unlike the full SVD, UX is N × k, ΣX = diag(σ1, . . . , σk) with σ1 ≥ · · · ≥ σk > 0, and VX is n× k.

Our goal in this chapter is to estimate the singular values ΣX and the right singular vectors VX from

a low-dimensional sketch obtained by left-multiplying X with a compressive matrix. In particular,

we let Φ denote a sketching matrix of dimension m×N , and we denote the sketch of X by Y = ΦX.

We are specifically interested in cases where m < N and thus Y is a shorter matrix than X. We

also note that the sketching matrix Φ can be applied individually to each column of X, and these

sketched columns can be concatenated to form the m× n matrix Y . In other words, the sketching

can be performed sensor-by-sensor.

Our algorithm for estimating ΣX and VX from Y is explained in Section 6.4.1. This algorithm

is very simple and is based on the idea that under a suitable choice of Φ, the singular values and

right singular vectors of Y will approximate the singular values and right singular vectors of X. In

order to state our results, we write the truncated SVD of Y as Y = UY ΣY V
T
Y , where UY is m× k,

ΣY = diag(σ′1, . . . , σ
′
k) with σ′1 ≥ · · · ≥ σ′k ≥ 0, and VY is n × k. (We will be interested in cases

where m ≥ k, and typically Y will have rank k just like X.) It will also be useful for us to write the

eigendecompositions of XTX and Y TY as XTX = VXΛXV
T
X and Y TY = VY ΛY V

T
Y , respectively,

where ΛX = diag(λ1, . . . , λk) and ΛY = diag(λ′1, . . . , λ
′
k). (Although it is not common practice we

will use the “truncated” eigendecomposition so that VX and VY are both of dimension n × k and

ΛX and ΛY are both of dimension k × k; when k = n we will have the usual eigendecomposition.)

Note that λj = σ2
j and λ′j = σ′2j for j = 1, . . . , k.

To ensure that the spectral information about X is preserved in the sketched matrix Y = ΦX,
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we rely on randomness to construct the sketching matrix Φ. Any random distribution that can be

used to construct a Johnson-Lindenstrauss (JL) embedding can be used to generate Φ.

Definition 6.1. An m×N random matrix Φ is said to satisfy the distributional JL property if for

any fixed x ∈ RN , and any 0 < ε < 1,

Pr
[∣∣‖Φx‖22 − ‖x‖22∣∣ > ε‖x‖22

]
≤ 2e−mf(ε),

where f(ε) > 0 is a constant depending only on ε.

For most random matrices satisfying the distributional JL property, the functional dependence

on ε, f(ε), is quadratic in ε as ε → 0. For compactness, we suppress this except where necessary

for quantifying the number of measurements or the run time of our algorithm. There are a va-

riety of random matrix constructions known to possess the distributional JL property. Notably,

random matrices populated with independent and identically distributed (i.i.d.) subgaussian entries

(see Definition 5.1) will possess this property [41]. Subgaussian distributions include suitably scaled

Gaussian and ±1 Bernoulli random variables. Other examples of non-i.i.d. JL matrices and dis-

cussions of the function f(ε) are contained in works such as [80, 39]. There are many papers that

address the sparsity of a JL matrix, the speed of its application to a vector, the minimum number

of rows it must possess, the minimum amount of randomness necessary to generate such a matrix,

etc. For our results, a random matrix satisfying the distributional JL property is sufficient and,

depending on the particular application (streaming versus static data), we want either fast update

times (i.e., a sparse transform) or a fast transform. We appeal to a long line of work in assessing

the qualities of such transforms and in constructing them, either randomly or deterministically.

Finally, we note that a primary objective of this work is to quantify the amount of perturbation

of the right singular vectors of X under the random measurement operator Φ. For j = 1, . . . , k, let

us denote the jth column of VX as vj and the jth column of VY as v′j . Our bounds concern the

quantity ‖vj − v′j‖2. However, we note that the right singular vectors vj and v′j are each unique

only up to multiplication by −1. Thus, without loss of generality, we will assume that the sign of

each v′j is chosen so that it is positively correlated with vj . That is, we will assume for each j that

〈vj , v′j〉 ≥ 0.
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6.3 Related Work

In order to quantify the amount of change in the singular values and the right singular vectors,

we approach this problem from the matrix perturbation theoretic perspective. To see the connection

to matrix perturbation theory, let us write

Y TY = XTΦTΦX = VXΣXU
T
XΦTΦUXΣXV

T
X .

Defining ∆Φ := ΦTΦ− I, Y TY becomes

Y TY = VXΣXU
T
X(I + ∆Φ)UXΣXV

T
X = VXΣ2

XV
T
X + VXΣXU

T
X∆ΦUXΣXV

T
X .

Given this equation, we can think of the symmetric matrix Y TY as being the summation of some

original symmetric matrix

A := VXΣ2
XV

T
X

and a perturbation matrix

E := VXΣXU
T
X∆ΦUXΣXV

T
X .

Roughly speaking, when E is small in some sense, it would be reasonable to expect Y TY to have

approximately the same spectral information as A. Thus we can think about our problem as quanti-

fying the amount of change between the eigenvalues and eigenvectors of A (which equal the squared

singular values and the right singular vectors ofX) and those of Y TY under the additive perturbation

E.

In the following sections, we briefly review some of the important results in the matrix perturba-

tion theory literature and also discuss the connection of our problem to the simultaneous iteration

method, an important algorithm for computing the eigendecomposition of a matrix.

6.3.1 Absolute Bounds

There is an extensive literature in the field of matrix perturbation theory quantifying the amount

of change in the eigenvalues and eigenvectors of a symmetric n× n matrix A when it undergoes an

additive perturbation. A perturbed matrix, Ã, may be written in the form of Ã = A+ E, where E

is the perturbation matrix that is being added to A. It is well-known that the eigenvalues of A and

those of Ã will be close to one another when the amount of perturbation E is small (typically with

respect to the 2-norm of E). Let us denote the jth largest eigenvalues of A and Ã as λj and λ̃j ,
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respectively. Then, it is known [70] that for j = 1, . . . , n,

(6.1) |λ̃j − λj | ≤ ‖E‖2.

Thus we can see that the distance between each perturbed eigenvalue and the corresponding original

eigenvalue will depend on the amount of perturbation, i.e., ‖E‖2.

To discuss the perturbation in the eigenvectors let us first represent the eigenvectors of A as vj

such that Avj = λjvj . Similarly, let us define the eigenvectors of Ã as ṽj such that Ãṽj = λ̃j ṽj . It is

well known that for general matrices A and E, the eigenvectors vj and ṽj may vary drastically even

when the amount of perturbation is small. In other words, ‖ṽj−vj‖2 can be large even when ‖E‖2 is

small. To see why, let us for example look at the case when two eigenvalues, λ1 and λ2, of A are equal

to each other. For such a case, we know that the eigenvectors corresponding to those eigenvalues,

v1 and v2, will not be unique: any linear combination of the two eigenvectors will also be a valid

eigenvector corresponding to the same eigenvalue. A perturbation to this matrix will generally cause

λ1 and λ2 to split into two eigenvalues λ̃1 and λ̃2, each of which will satisfy equation (6.1) above.

If λ̃1 and λ̃2 are distinct, the corresponding eigenvectors ṽ1 and ṽ2 will now be uniquely identified.

Since v1 and v2 were not unique, it is possible for ṽ1 to differ from any particular choice of v1 and

for ṽ2 to differ from any particular choice of v2.

The perturbation in the eigenvectors, however, is not completely arbitrary. It is known that the

angle between the space spanned by v1 and v2 and the space spanned by ṽ1 and ṽ2 will be small if

E is small. To state this result more concretely, let us represent the eigendecompositions of A and

Ã as

A = V ΛV T = (V1 V2)

 Λ1 0

0 Λ2


 V T1

V T2


and

Ã = Ṽ Λ̃Ṽ T =
(
Ṽ1 Ṽ2

) Λ̃1 0

0 Λ̃2


 Ṽ T1

Ṽ T2

 .

The eigenvalue matrices are such that,

Λ1 = diag(λ1, . . . , λp), Λ2 = diag(λp+1, . . . , λn),

Λ̃1 = diag(λ̃1, . . . , λ̃p), Λ̃2 = diag(λ̃p+1, . . . , λ̃n)
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for an arbitrarily chosen p ∈ {2, . . . , n− 1}.

It is possible to quantify how close the spaces spanned by the columns of V1 and Ṽ1 are. In order

to provide a measure of closeness between the two spaces, the following notion of angle matrix was

defined in [46]:

Θ(X1, X2) := arccos
(

(XT
1 X1)−

1
2XT

1 X2(XT
2 X2)−1XT

2 X1(XT
1 X1)−

1
2

)− 1
2

,

where X1 and X2 are two matrices of the same dimension n × p with n > p and full column rank.

The singular values of Θ(X1, X2) are the angles required to rotate the space spanned by X1 onto

that of X2. Going back to our notation of V1, V2, Ṽ1, and Ṽ2, it was shown [46] that

‖ sin Θ(V1, Ṽ1)‖ = ‖Ṽ T2 V1‖

for any unitarily invariant norm. This fact can be used to bound the angle between V1 and Ṽ1. In

particular, if κ := min |λ(Λ1)− λ(Λ̃2)| > 0, then

‖ sin Θ(V1, Ṽ1)‖F = ‖Ṽ T2 V1‖F ≤
‖E‖F
κ

.

Once again we note that the above bound relies on the absolute separation between eigenvalues (in

contrast with the relative separation, which appears in Section 6.3.2). The above can be further

generalized to any invariant norm. Detailed discussion on this subject can be found in [46].

6.3.2 Relative Bounds

The perturbation results discussed above are in terms of the absolute differences between eigen-

values. These types of results are most useful for ensuring the preservation of the largest eigenvalues

but least useful for ensuring the relative preservation of the smallest eigenvalues; a small absolute

change in a small eigenvalue could actually correspond to a large relative change in that eigenvalue.

The absolute perturbation results are the best we can do when the perturbation to A is completely

arbitrary. However, when the perturbation exhibits some structure one can do much better than

what the absolute error bounds indicate.

Consider the class of perturbations that take the form Ã = A + E = DTAD, where D is non-

singular. It was shown [57] that in this case a relative perturbation bound for the eigenvalues is

given by

|λ̃j − λj | ≤ |λj |‖DTD − I‖2,
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where the factor ‖DTD − I‖2 represents how close D is to being an orthonormal matrix. In the

extreme case when D has orthonormal columns we will have that λ̃j = λj as expected.

Similarly, the angle 0 ≤ θj ≤ π
2 between the jth eigenvector and its corresponding perturbed

eigenvector has been shown [57] to satisfy

sin θj ≤
‖DTD‖2‖(DDT )−1 − I‖2
ρj(A)− ‖DTD − I‖2

+ ‖D − I‖2,

provided that ρj(A) > ‖DTD − I‖2, where the jth relative gap, ρj(A), of the eigenvalues of A is

defined as

ρj(A) = min
i 6=j

|λi − λj |
|λj |

.

We can see that for the type of perturbation described above we obtain a much stronger perturbation

result that depends on the relative gap between the eigenvalues. There are many variants of relative

perturbation results that have been proposed to date [89, 88, 57, 17] that differ from one another

depending on the underlying matrix A (e.g., whether it is a symmetric matrix, positive definite

matrix, indefinite matrix, etc.) and also on the type of perturbation.

6.3.3 Relation to Simultaneous Iteration

Our problem also has a close connection to various algorithms for computing the eigenvalues

and eigenvectors of symmetric matrices. One algorithm that we shall focus on is the simultaneous

iteration method [115, 36]. This method is best suited for cases when we are interested in computing

the top few eigenvalues and their corresponding eigenvectors and when the underlying matrix is

sparse.

To state the algorithm explicitly, let us set some notation. Let A be an n×n positive-semidefinite

matrix with eigendecomposition A = V ΛV T . We let λj and vj denote the jth eigenvalue of A and its

corresponding eigenvector. We also assume that the eigenvalues are ordered in descending order such

that λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. We then pick a set of trial vectors and denote them as p1, p2, . . . , pk,

where the number of trial vectors k depends on how many eigenvectors we wish to compute. The

trial vectors can be any set of orthonormal vectors such that

(6.2) span(p1, . . . , pk)
⋂

span(vk+1, . . . , vn) = {0}.

One possible choice of trial vectors is a set of k orthonormal vectors that are chosen randomly. Let

us stack the trial vectors into columns of a matrix and denote it as P = [p1, . . . , pk]. Given this
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notation the simultaneous iteration method is carried out as follows:1

1. W (0) ← AP

2. for i = 1, 2, . . .

(a) Q(i)R(i) ←W (i) via the QR-decomposition

(b) W (i+1) ← AQ(i)

(c) if stopping criterion is not met, set i ← i + 1 and go back to step (a), otherwise output

Q(i).

As we can see, the simultaneous iteration method iteratively refines the set of eigenvectors of A.

Denoting the jth column of Q(i) as q
(i)
j , it is known [115] that

‖q(i)
j − vj‖2 = O(pij),

where pj = max{λj+1/λj , λj/λj−1}. From this we can see that the rate of convergence of the

eigenvectors depends on the ratio between the eigenvalues. Put differently, an eigenvector that

corresponds to an eigenvalue with a favorable eigenvalue ratio pj will converge faster to the true

eigenvector. This is also similar in spirit to the relative perturbation results that we discussed above

in that pj provides relative measure of the closeness between the eigenvalues, and the accuracy

between vj and q
(i)
j depends on pj .

Lastly, let us focus on the very first step in the simultaneous iteration algorithm, in which we

multiply the original matrix A with k (potentially randomly chosen) vectors. Interestingly, this

is similar in spirit to our algorithm, except that our data matrix X is not necessarily square or

positive-semidefinite, and we do not require the rows of Φ to be orthonormalized. We would like

to note that—when they are used in the simultaneous iteration method—random trial vectors are

merely chosen as a way to satisfy the condition (6.2). We believe, however, that randomness will

also help to better preserve the true eigenvectors in the first iteration.

6.3.4 Randomized Algorithms for Linear Algebra

In a similar vein, there have been a large number of results on what we will refer to as randomized

algorithms for linear algebra. The monograph [93] covers a number of these methods and references.

There are several lines of work that are closely related to our results. The first involves the

spectral analysis of random matrices and the application to algorithmic tasks such as information

1There are a few variants of the simultaneous iteration method. Here, we use the algorithm presented in [115].
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retrieval and spectral random graph analysis. Two representative works are [10, 38] which build

random matrix models (or random perturbations of random matrices) for data and graphs and then

use those models to find the approximate spectral structures in the data (or the SVDs). Many of

the perturbation results used in these papers fall into our category of absolute bounds.

A second line of work is that of robust PCA or low-rank matrix completion, of which [28] is

just one example (there are many other such papers). In this problem, the data matrix X is either

sampled or random linear measurements of the form ΦXΦT are obtained, from which a sparse,

low-rank approximation X̂ to the original data matrix is produced. The primary goal of this line of

work is to approximate the original data with a parsimonious representation. Our work, in contrast,

aims to recover or to approximate the parsimonious representation itself.

A third line of work is the recovery of principal components of a data matrix X from compressive

projection measurements [111, 63]. Briefly speaking, in these works, a rectangular data matrix X

of size p × n is considered where p < n, i.e., X has more columns than rows. Each column of X

represents a data sample, and the objective in these works is to compute the left singular vectors of

X from compressive projections of the columns of X. However, different random projection matrices

are applied to different columns of X. The key differences between the work proposed in [111, 63]

and our work are that 1) we are interested in the right singular vectors of X, 2) the data matrix

X in our problem is assumed to have more rows than columns, 3) our measurement matrix is a JL

matrix, and 4) we apply the same random matrix to every column of X.

Finally, we emphasize the distinction between subspace approximation and the approximation

of the singular vectors themselves. Feldman et al. [61] give coreset and sketching algorithms for

approximating subspaces spanned by portions of the data set. This problem is also similar to the

work of Halko et al. [73], in which one constructs a basis for an approximate subspace spanned by

the columns of X from a sketch Y = ΦX of the data. Finally, we note that the work of Drineas

et al. [54] that approximates leverage scores of a matrix is similar in nature to ours but does not

produce approximate singular vectors.

6.4 Main Result

6.4.1 Proposed Algorithm and Estimation Bounds

Recall the problem setup discussed in Section 6.2. Our algorithm for estimating ΣX and VX from

the sketched matrix Y = ΦX is stated in Algorithm 1. This algorithm is very simple: we simply

return the truncated singular values and right singular vectors of Y .
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Algorithm 1: Pseudo-code for sketched SVD.

Input: Sketched matrix Y = ΦX
Output: Σ̂X and V̂X (estimates of the singular values and right singular vectors,

respectively, of X)
(UY ,ΣY , VY )← SVD(Y )

Σ̂X ← ΣY
V̂X ← VY

The computational complexity of our algorithm can be divided into two parts. The first part

concerns the complexity of computing the sketch Y from Φ and X. If both Φ and X are available

at a central processing node, Y can be computed simply by multiplying Φ and X; as discussed in

Section 6.2, there may be a fast algorithm for doing this, depending on the structure of Φ. As

we have noted, however, it is also possible to compute the sketch column-by-column by applying

Φ separately to each column of X; when data is collected in a distributed fashion, this may be

the natural way to construct a sketch. Let us denote the computational complexity computing Y

as T1(m,N, n). In distributed scenarios, we will have T1(m,N, n) = nT ′(m,N), where T ′(m,N)

denotes the computational complexity of one matrix-vector multiplication with Φ.

The second part concerns the complexity of computing the SVD of Y . Using standard techniques,

computing the SVD of an m× n matrix with m ≥ n requires O(mn2) operations. (When k is very

small compared to n, we may have m < n and the SVD of Y can be computed even more efficiently

than this.) Combining this fact with the bound on m provided in our main result (see (6.3))

and assuming f(ε) is quadratic in ε, the computational complexity of this second part will be

O(n2kε−2(log(1/ε) + log(1/δ)), where δ denotes the failure probability. One can add this cost to

T1(m,N, n) to determine the overall computational complexity, although it is important to stress

that the computation of Y may be streaming or distributed over many sensors, while the computation

of the SVD of Y may be performed all at once at a central computing node.

We are now ready to state our main result.

Theorem 6.2. Let X be an N×n matrix with N ≥ n and rank(X) = k ≤ n, and let X = UXΣXV
T
X

denote the truncated SVD of X as explained in Section 6.2. Let ε ∈ (0, 1) denote a distortion factor

and δ ∈ (0, 1) denote a failure probability, and suppose Φ is an m×N random matrix that satisfies

the distributional JL property with

(6.3) m ≥ k log(42/ε) + log(2/δ)

f(ε/
√

2)
.

Let Y = ΦX denote the sketched matrix, and let Σ̂X = ΣY and V̂X = VY denote the estimated
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singular vectors and right singular values of X returned by Algorithm 1. Then with probability

exceeding 1− δ, rank(Y ) = k and both of the following statements hold:

1. (Preservation of singular values) For all j = 1, . . . , k,

(1− ε)1/2 ≤
σ′j
σj
≤ (1 + ε)1/2,

where σ1 ≥ · · · ≥ σk ≥ 0 denote the singular values of X (the diagonal entries of ΣX) and

σ′1 ≥ · · · ≥ σ′k ≥ 0 denote the singular values of Y (the diagonal entries of Σ̂X).

2. (Preservation of right singular vectors) For all j = 1, . . . , k,

‖vj − v′j‖2 ≤ min

√2,
ε
√

1 + ε√
1− ε max

i 6=j

√
2σiσj

min
c∈[−1,1]

{|σ2
i − σ2

j (1 + cε)|}

 ,

where v1, . . . , vk denote the right singular vectors of X (the columns of VX) and v′1, . . . , v
′
k

denote the right singular vectors of Y (the columns of V̂X).

Proof: See Section 6.4.2.

Corollary 6.3. When Φ is generated randomly from an i.i.d. subgaussian distribution (suitably

scaled) or some other random distribution satisfying the distributional JL property with quadratic

f(·), the bounds in Theorem 6.2 will hold with m = O(kε−2(log(1/ε) + log(1/δ)).

This result states that from Y we can obtain accurate relative estimates for the singular values

of X, and in some cases we can obtain accurate estimates for the right singular vectors of X as

well. However, we struggle to achieve high accuracy in the singular vectors when the corresponding

singular values are close. This is a consequence of well-studied perturbation theory (recall the role

that the relative gap played in Section 6.3.2) and seems inherent in our approach.

We note that, naturally, we could obtain similar results for preserving the left singular vectors of

X were we to sketch its rows, rather than its columns. We also note that when the exact rank k of

the data matrix is unknown (or if the rank of X is not necessarily below n), substituting n for k in

the measurement bound (6.3) yields a guarantee that applies to any N × n matrix X with N ≥ n.

6.4.2 Proof of Theorem 6.2

In this section we prove Statements 1 and 2 within Theorem 6.2. As noted in Section 6.2, it will

be useful for us to write the truncated eigendecompositions of XTX and Y TY as XTX = VXΛXV
T
X
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and Y TY = VY ΛY V
T
Y , respectively, where ΛX = diag(λ1, . . . , λk) and ΛY = diag(λ′1, . . . , λ

′
k). Recall

that λj = σ2
j and λ′j = σ′2j for j = 1, . . . , k.

6.4.2.1 Proof of Statement 1

In order to prove Theorem 6.2, we require the following result, adapted from Lemma 5.1 in [14]

and Theorem 4.3 in [42].

Lemma 6.4 ([14, 42]). Let X denote a k-dimensional subspace of RN . Let ε ∈ (0, 1) denote a

distortion factor and δ ∈ (0, 1) denote a failure probability, and suppose Φ is an m × N random

matrix that satisfies the distributional JL property with

m ≥ k log(42/ε) + log(2/δ)

f(ε/
√

2)
.

Then with probability exceeding 1− δ,

√
1− ε‖x‖2 ≤ ‖Φx‖2 ≤

√
1 + ε‖x‖2,

for all x ∈ X .

To see how this lemma can help us guarantee the preservation of the singular values of X (or,

equivalently, the eigenvalues of XTX), we begin by noting that

Y TY = XTΦTΦX = VXΣXU
T
XΦTΦUXΣXV

T
X .

We define a new k × k matrix

M := V TX Y
TY VX = ΣXU

T
XΦTΦUXΣX

and represent its eigendecompostion as M = VMΛMV
T
M . Noting that Y TY = VY Σ2

Y V
T
Y , we have

M = V TX Y
TY VX = V TX VY Σ2

Y V
T
Y VX .

From this we can infer that ΛM = Σ2
Y , i.e., M has the same set of eigenvalues as Y TY . Thus, we

turn our attention to proving that the eigenvalues of M approximate the eigenvalues of XTX. Let
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us define ∆Φ := ΦTΦ− I and consider the ratio

xTMx

xTΣ2
Xx

=
xTΣXU

T
XΦTΦUXΣXx

xTΣ2
Xx

=
xTΣX(I + UTX∆ΦUX)ΣXx

xTΣ2
Xx

= 1 +
xTΣXU

T
X∆ΦUXΣXx

xTΣ2
Xx

.

We will be interested in the range of values that the fraction (xTMx)/(xTΣ2
Xx) can take over all

nonzero x ∈ Rk. We note that for any vector x ∈ Rk we can associate a vector y := ΣXx ∈ Rk and

write

xTMx

xTΣ2
Xx

= 1 +
yTUTX∆ΦUXy

yT y
.

To bound the range of values that this quantity can take, it suffices to consider all vectors y ∈ Rk

with unit norm. Thus, we focus on the quantity

1 + yTUTX∆ΦUXy = 1 + yTUTX(ΦTΦ− I)UXy = yTUTXΦTΦUXy = ‖ΦUXy‖22.(6.4)

Our next step is to apply Lemma 6.4 on the subspace X = colspan(UX), using the fact that

‖UXy‖2 = ‖y‖2 = 1. This tells us that with a probability of at least 1− δ,

1− ε ≤ ‖ΦUXy‖22 ≤ 1 + ε,

holds for all unit norm vectors y ∈ Rk. Combining this inequality with (6.4) we get

(6.5) −ε ≤ yTUTX∆ΦUXy ≤ ε,

which implies that for any nonzero x ∈ Rk,

(6.6) 1− ε ≤ xTMx

xTΣ2
Xx
≤ 1 + ε.

In order to complete the proof we use the following lemma, which is a simplification of Lemma 1

in [17].

Lemma 6.5 (Lemma 1, [17]). Let H be a diagonal matrix and suppose δH has the property that

for all nonzero x,

gl ≤
xT (H + δH)x

xTHx
≤ gu,
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where 0 < gl ≤ gu. Then

gl ≤
λi(H + δH)

λi(H)
≤ gu

for all i, where λi(Z) denotes the ith eigenvalue of the matrix Z.

Applying Lemma 6.5 to (6.6) with H = Σ2
X (which is diagonal) and H + δH = M completes the

proof of Statement 1 of Theorem 6.2 and also implies that rank(Y ) = k.

6.4.2.2 Proof of Statement 2

In order to prove Statement 2 of Theorem 6.2, we require the following important theorem.

Theorem 6.6 (Theorem 1, [99]). Let H = UΓU∗ and H̃ = H+δH = Ũ Γ̃Ũ∗ be p×p positive definite

matrices. Assume that U and Ũ are unitary and that Γ = diag(γ1, . . . , γp) and Γ̃ = diag(γ̃1, . . . , γ̃p)

are diagonal. Let S = U∗Ũ , and assume

η = ‖H− 1
2 δHH−

1
2 ‖ < 1,

where H−
1
2 = UΓ−1/2U∗. Then for any j and for any set T not containing j we have,

(∑
i∈T

|sij |2
)1/2

≤ min

{
1, max

i∈T

γ
1/2
i γ̃

1/2
j

|γi − γ̃j |
η√

1− η

}
,

and, in particular, for any i 6= j,

|sij | ≤ min

{
1,

γ1/2γ̃
1/2
j

|γi − γ̃j |
η√

1− η

}
.

To prove Statement 2, we continue from the proof of Statement 1. In particular, we suppose (6.5)

holds for all unit norm vectors y ∈ Rk (recall that this event happens with probability at least 1−δ).

Our first goal will be to prove that this implies that

(6.7) ‖UTX∆ΦUX‖2 ≤ ε.

To see why this follows, let us for notational simplicity denote A = UTX∆ΦUX . Note that A is a

symmetric matrix. Then, (6.5) says that −ε ≤ yTAy ≤ ε holds for all unit norm vectors y ∈ Rk. Note

that this is equivalent to −ε ≤ yTAy
yT y

≤ ε. This fraction is the well known Rayleigh quotient. It can

be shown that the range of values that the Rayleigh quotient takes is confined between the minimum

and the maximum eigenvalues of A. Let us denote the maximum and minimum eigenvalues of A as
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αmax and αmin, respectively. Since equation (6.5) says that the Rayleigh quotient is in between −ε

and ε we can infer that −ε ≤ αmin ≤ yTAy
yT y

≤ αmax ≤ ε. Thus, ‖A‖2 = max{|αmin|, |αmax|} ≤ ε and

so we have proved that (6.7) holds.

To quantify ‖vj − v′j‖2, we look at a different yet equivalent quantity that may simplify the

problem. Let us again look at the matrix M that we introduced in the proof of Statement 1. We

have seen that there is a close connection between the eigenvalues of M and those of Y TY . We now

show that in order to prove that the eigenvectors of Y TY approximate those of XTX, it suffices to

study the eigenvectors of M .

Remembering that

M = V TX Y
TY VX = V TX VY Σ2

Y V
T
Y VX ,

we can see that the eigenvectors of M are closely related to the right singular vectors of X and Y .

Specifically, we have that VM = V TX VY , and denoting the jth eigenvector of M as ṽj , it is easy to

see that ṽj = V TX v
′
j . This implies that 〈ṽj , ej〉 = 〈vj , v′j〉 for j = 1, . . . , k, where ej represents the

jth canonical basis vector. Furthermore, we note that colspan(VY ) = rowspan(Y ) = rowspan(X)

since every row in Y is a linear combination of the rows in X and since we have argued above

that rank(Y ) = rank(X). From this (and the fact that v′j ∈ colspan(VY )) it follows that ‖ṽj‖2 =

‖V TX v′j‖2 = 1. Now, using the relation 〈ṽj , ej〉 = 〈vj , v′j〉 and the facts that ‖ṽj‖2 = ‖ej‖2 = ‖vj‖2 =

‖v′j‖2 = 1, we see that ‖ṽj − ej‖2 = ‖vj − v′j‖2. To make sense out of the quantity ‖ṽj − ej‖2, let us

examine the expression M = Σ2
X+ΣXU

T
X∆ΦUXΣX . We can view M as the sum of a diagonal matrix

Σ2
X and a perturbation matrix ΣXU

T
X∆ΦUXΣX . The eigenvectors of Σ2

X are the canonical basis

vectors ej . Therefore, the quantity ‖ṽj−ej‖2 reflects the amount of perturbation in the eigenvectors

of M . This is why, to bound ‖vj − v′j‖2, it suffices to focus on the perturbation analysis of M .

We apply Theorem 6.6 as follows: As we have discussed, we will quantify ‖vj−v′j‖2 via ‖ṽj−ej‖2.

Let us set the original unperturbed matrix as H = Σ2
X and the perturbation to this matrix as

δH = ΣXU
T
X∆ΦUXΣX , such that

H̃ = H + δH = ΣX(I + UTX∆ΦUX)ΣX = M,

and both H and H̃ are k × k. Clearly, H is positive definite since it is a diagonal matrix with all

positive entries along the diagonal (because rank(X) = k). To check that M is positive definite,

note that M = ΣXU
T
XΦTΦUXΣX is of the form M = BTB, where B = ΦUXΣX is an m × k

matrix with m ≥ k. The fact that B has full column rank will follow because all diagonal entries of
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ΣX are nonzero (again, because rank(X) = k) and because in the proof of Statement 1 we applied

Lemma 6.4 on the subspace X = colspan(UX). Because B has full column rank, M will be positive

definite.

We further have that

η = ‖H− 1
2 δHH−

1
2 ‖2 = ‖Σ−1

X δHΣ−1
X ‖2 = ‖UTX∆ΦUX‖2.

Then, applying (6.7), η = ‖UTX∆ΦUX‖2 ≤ ε. Let us set S = ITVM = VM and denote the jth

eigenvalue of M as λ̃j . Then, straightforward application of Theorem 6.6 yields

∑
i 6=j

|sij |2
1/2

≤ min

{
1, max

i 6=j

σiλ̃
1/2
j

|σ2
i − λ̃j |

η√
1− η

}
≤ min

{
1, max

i 6=j

σiλ̃
1/2
j

|σ2
i − λ̃j |

ε√
1− ε

}
.

As we have discussed in Section 6.2 we assume that sjj = 〈ṽj , ej〉 = 〈vj , v′j〉 ≥ 0. Then,

‖vj − v′j‖2 = ‖ṽj − ej‖2 =
√
‖ṽj‖22 − 2〈ṽj , ej〉+ ‖ej‖22,

=
√

2
√

1− sjj ,

=
√

2

√√√√1−
√

1−
∑
i 6=j

|sij |2,

≤
√

2

√√√√√1−

√√√√1−min

{
1, max

i 6=j

σ2
i λ̃j

(σ2
i − λ̃j)2

ε2

1− ε

}
,

≤
√

2 min

{
1, max

i 6=j

σiλ̃
1/2
j

|σ2
i − λ̃j |

ε√
1− ε

}
,

where the last inequality is due to the fact that 1−
√

1− x ≤ x for 0 ≤ x ≤ 1.

To write the above only in terms of the unperturbed singular values, σj , we make use of Statement

1 and the fact that λ̃j = (σ′j)
2 for j = 1, . . . , k to obtain

‖vj − v′j‖2 ≤ min

√2,
ε
√

1 + ε√
1− ε max

i6=j

√
2σiσj

min
c∈[−1,1]

{|σ2
i − σ2

j (1 + cε)|}

 .

6.5 Application to Spectral Analysis of Streaming Graphs

In this section, we apply our data analysis framework to streaming graphs, a model of data

collection where edges of a graph are updated dynamically. We consider a scenario in which edges
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are inserted and deleted over an observation period, and our goal is to maintain a small data structure

that encodes the graph information so that we may analyze the spectrum of the graph quickly at

any point during or after the sequence of edge updates. Spectral graph analysis has a multitude of

applications including graph embedding, graph isomorphism testing, data clustering/segmentation

(of which there are yet many more applications!), numerical linear algebra, etc. We refer the reader

to just a few in [19, 103, 122, 35]. Determining the spectrum of a graph is at the heart of many

modern data analysis and graphical information processing algorithms.

Let G = (V,E) be a graph with vertex set V and undirected, unweighted edges E. Let A denote

the symmetric binary adjacency matrix of G, denote by dv the degree of a vertex v ∈ V , and define

the graph Laplacian as

LG(u, v) =


dv if u = v

−1 if u and v are adjacent

0 otherwise.

There is a compact definition of LG using the adjacency matrix: LG = diag(dv)−A.

Let X be the incidence matrix of the graph G. This matrix has N = |E| rows and n = |V |

columns and to define each entry of X, consider an edge (u, v) between vertices u and v. Since the

graph is undirected, the ordering of the vertices is chosen arbitrarily. Then,

X(u,v),u = 1 and X(u,v),v = −1.

It is well-known that the rank of the graph is the rank of the incidence matrix and that this value is

|V | − c where c is the number of connected components in G. If the graph G is weighted, we replace

the ±1’s with the appropriate weights in the incidence matrix.

From the definitions of the graph Laplacian and the incidence matrix, it is clear that LG = XTX.

The singular values of X are, therefore, related to the eigenvalues of LG in a straightforward fashion:

σi(X) =
√
λi(LG).

Furthermore, the right singular vectors V of X = UXΣXV
T
X are the eigenvectors of the Laplacian.

Thus, it is sufficient to compute (good) approximations to the singular values and the right singular

vectors of X to obtain (good) approximations to the top eigenvalues of LG and the corresponding

eigenvectors. From standard spectral graph theory, we know that the eigenvalues λi of the Laplacian
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satisfy λ1 ≥ · · · ≥ λn = 0 and, with the assumption that G has c connected components,

λ1 ≥ · · · ≥ λn−c > λn−c+1 = · · · = λn = 0.

In particular, rank(X) = rank(LG) = n− c.

Next, we define the streaming graph model. Following [4, 3], we define a dynamic graph stream

as a stream of edge updates (both insertions and deletions). This is a faithful model of the evolution

of an online social network, for example, in which users connect and disconnect to other users over

time [86].

Definition 6.7 (Dynamic graph stream). A stream S = 〈a1, . . . , aT 〉 where at = (jt, kt,∆t) ∈

[n]× [n]× R defines a weighted graph G = (V,E) where V = [n] and the weight of an edge (j, k) is

given by

A(j, k) =
∑

t:(jt,kt)=(j,k) or (k,j)

∆t.

We assume that at any update time t, the adjacency matrix A is well-formed; that the edge weight

is non-negative; and that the graph has no self-loops.

In this prototype application, the stream of edge updates S defines the edge-vertex incidence

matrix X of the graph G. The matrix X has N =
(
n
2

)
rows and n columns, and for each stream

item, we update two entries in X as

X(jt,kt),jt = X(jt,kt),jt + ∆t,

X(jt,kt),kt = X(jt,kt),kt −∆t.

We collect sketches of each column of X and aggregate them into a matrix Y . Denoting the jth

column of X by xj , the jth column of the sketched matrix is given by yj = Φxj . We can update the

sketch in a streaming fashion. Upon receipt of a stream item (ut, vt,∆t), we update yut and yvt :

yut = yut + ∆tφ(ut,vt),

yvt = yvt −∆tφ(ut,vt),

where φj denotes the jth column of Φ.

Our main result, Theorem 6.2, tells us that a sketch of the matrix X is sufficient to recover

information about its singular value decomposition.
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Corollary 6.8. Assume that the undirected, weighted graph G = (V,E) is presented in a streaming

fashion so that its incidence matrix X has n = |V | columns, N =
(
n
2

)
rows, and rank k ≤ n− 1. Let

ε ∈ (0, 1) denote a distortion factor and δ ∈ (0, 1) denote a failure probability, and suppose Φ is an

m×N random matrix that satisfies the distributional JL property with

m ≥ k log(42/ε) + log(2/δ)

f(ε/
√

2)
.

Let Y = ΦX denote an m × n sketch of X maintained in the streaming graph model, and let

Σ̂X = ΣY and V̂X = VY denote the estimated singular vectors and right singular values of X

returned by Algorithm 1. Then with probability at least 1− δ, the following statements hold:

1. (Preservation of eigenvalues) For all j = 1, . . . , k,

1− ε ≤
λ′j
λj
≤ 1 + ε

where λj denote the true eigenvectors of the graph Laplacian LG and λ′j denote the estimated

eigenvalues obtained by squaring the diagonal entries of Σ̂X .

2. (Preservation of eigenvectors) For all j = 1, . . . , k,

‖vj − v′j‖2 ≤ min

√2,
ε
√

1 + ε√
1− ε max

i 6=j

√
2λ

1/2
i λ

1/2
j

min
c∈[−1,1]

{|λi − λj(1 + cε)|}

 ,

where vj are the eigenvectors of the graph Laplacian LG and v′j denote the estimated eigenvec-

tors obtained from the columns of V̂X .

Because the adjacency matrix A of G has at most |V |2 non-zero entries, this result is useful only

when the rank k of LG is significantly smaller than n = |V |, the number of vertices; or, equivalently,

when G has many connected components. In this case, the size of the sketch is smaller than that of

the adjacency matrix. In summary, for highly disconnected graphs presented in a streaming fashion,

we can recover the approximate eigenvalues and eigenvectors of the Laplacian. The sparsity of the

matrix Φ and the speed with which we can update the sketch matrix Y under a stream of updates

are functions of the quality of the JL transform. The structural evolution of online social networks

[86] suggests that it is reasonable to assume that the underlying graph has a significant fraction of

vertices in small, disconnected components so that the graph is essentially a low-rank graph.
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6.6 Conclusion

We present a data collection and analysis scheme that permits the distributed collection of

data X by resource constrained sensors in a network and the central computation of the spectral

decomposition of XTX or the right singular vectors of the data itself. The algorithm returns not an

approximation to the original data, but a good approximation to the singular values σj and the right

singular vectors vj of the data. This data collection and analysis framework makes a small number

of linear, non-adaptive measurements of the data. The number of measurements each sensor makes

is comparable to the rank of the data and, if the data are full rank, the number of measurements at

each sensor is comparable to the total number of sensors. This efficient data collection is especially

important for sensors that are severely resource constrained and cannot store or transmit a large

amount of data to a central device; we believe that one possible application of such an algorithm

would be in operational modal analysis of structures (buildings, bridges, etc.) [108].
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CHAPTER 7

Compressed Sensing in Structural Health Monitoring

Systems

7.1 Introduction

7.1.1 Structural health monitoring systems

Over the past decade, more than 5 million commercial buildings1, 130 million housing units2, and

0.6 million bridges3 have been built in the United States. This trend will continue and engineers and

architects will continue to build ever more complex and larger structures in the future. Although

buildings are built safe and robust at the time of construction, structural damage caused over time by

continuous use is inevitable. In order to maintain safely operable structures for as long as possible,

periodic inspections are a must. The purpose of these inspections is to locate damaged areas such

as cracks or wear and tear in structures. Once damage is detected and considered repairable the

structure will undergo repairs to maintain safely operable conditions and to extend its life expectancy.

If, on the other hand, the damage is considered irreparable and the state of the structure inoperable,

the structure must be taken out of service immediately.

Due to the large sizes and complex natures of structures, the task of inspection is labor intensive,

costly and time consuming. In light of these problems, there have been significant efforts in the

structural engineering community to automate the task of health monitoring of structures. Structural

Health Monitoring (SHM) systems are precisely designed to address this issue. Throughout the SHM

literature, researchers in the field have proposed numerous methods to make this task as efficient

This work is in collaboration with Michael B. Wakin and Anna C. Gilbert.
12003 Commercial Buildings Energy Consumption SurveyOverview of Commercial Buildings Characteristics,

http://www.eia.gov/consumption/commercial/data/2003/pdf/a5.pdf
2http://factfinder2.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=AHS 2011 C01AH&prodType=table
3http://www.infrastructurereportcard.org/fact-sheet/bridges
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and as accurate as possible. Although the details of each of the proposed SHM systems vary, there

are common features that are shared among many methods [121, 49].

A typical SHM system monitors in-service structures in real-time. To do so, it makes use of a

network of sensors installed on structures to collect relevant vibration data for damage detection.

These may include acceleration data, strain data, or displacement data. The acquired data from

each sensor are transmitted over a network to the central data repository where damage detection

algorithms are run to detect, localize, classify, etc., possible damage in structures.

An important part of damage detection is the identification of modal parameters, which is called

modal analysis. It is carried out to infer modal properties such as modal frequencies, mode shapes

and modal damping ratio. These parameters describe the vibrational characteristics when external

forces such as wind, earth quakes, or vehicle loadings are subjected to structures. For example, when

a structure is forced to vibrate close to a modal frequency, the shape of vibration of the structure

will be dominated by the corresponding mode shape. This vibration will eventually die out in the

absence of external force, and the size of damping ratio will determine how fast the vibration will

come to an end.

Many damage detection algorithms make use of these parameters to detect, localize, and assess

the severity of damage. Briefly speaking, damage detection methods rely on the notion that struc-

tural properties will change once the structures become damaged, thus causing the modal parameters

to change. Assuming that one has the modal parameters at the time when the structure was healthy,

these are compared to the current estimates of modal parameters to judge whether or not damage

has occurred. A comprehensive survey of damage detection methods is presented in [121, 49].

7.1.2 The usefulness of wireless SHM systems

In the early designs of SHM systems, sensors were linked via coaxial cables that provided reliable

communication to the central data repository. In addition, power cables were coupled with the

coaxial cables providing requisite power to run the sensors. However, due to the large sizes and

complex designs of structures, installing the sensors together with the coaxial cables and power

cables was expensive, difficult, and time-consuming. Hence, it was generally the case that the

deployment of dense networks of sensors were too expensive, allowing only a few sensors to be

installed. A dense network of sensors is generally desired as it allows for more accurate damage

detection analysis.

As a way to overcome this issue researchers have proposed to deploy wireless sensors on structures

to acquire and transmit data to the central repository. With the rapid advancement of wireless
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technology and the ability to build sensors at low cost, it has become possible to deploy a much

denser network of sensors for a given budget. Therefore, the use of wireless sensors in place of wired

ones provides the advantages of low installation cost, rapid installation time and density of sensors.

The challenges of wireless sensor networks in SHM are quite different from those of wired sensor

networks. Contrary to a wired sensor network, a primary challenge in a wireless network is to

maximize the life expectancy of the battery that is used to power each sensor in the network. There

are important questions that need to be asked when designing a wireless sensor from the battery

saving point of view: Should we compress the time data before we transmit it to the central data

repository? This will allow us to transmit less information at the cost of additional power for

processing. Or, would we save more battery by sending the raw data itself without processing the

data at all?

In [92], the authors presented thorough answers to these questions in real world applications for

a certain wireless sensor. The authors found that on average, significant savings in battery can be

expected by locally compressing and processing the data first compared to sending the raw time

data. The main reason for this was that the radio that transmits the data drains much more power

(almost 3 times as much) than the processor that carries out the local computation. As long as the

execution time of the local algorithm is reasonably short, it would be more beneficial to first process

and compress, then transmit less information.

Another factor that contributes to the severe draining of the battery is the sampling interval.

Obviously, the faster and/or the longer we sample the more power is required. As we know, the

Nyquist-Shannon sampling theorem tells us that the sampling frequency should be proportional

to the maximum frequency content in the signal. For the purpose of modal analysis the highest

frequency content will be determined via the highest modal frequency of the underlying structure.

Intuitively, structures that are stiff and light will generally posses high modal frequencies and for

such structures we may have to sample at relatively high frequencies. The length of total sampling

interval also plays an important role in optimizing the battery life. Obviously, it would be best to

sample only for the requisite amount of time and turn the sensor off once we have all the information

we need.

In light of these observations, we believe that wireless sensors equipped with Compressed Sensing

(CS) architectures will be a perfect fit to address the concerns in the conventional wireless systems.

To see how, let us highlight the advantages that a CS wireless sensor could bring to this scenario. CS

in wireless sensors will be able to minimize the battery usage by directly obtaining the compressed

time data, bypassing the need for any local processing. This also allows us to sample at a rate lower
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than the Nyquist rate providing a further reduction in battery usage. As a result, each sensor will

transmit minimal amount of data (typically proportional to the information level of each signal) to

the data repository, which in turn will reduce the power drained by the transmission radio. Lastly, all

of the sensors will acquire the time data in a completely disjoint fashion eliminating the need for any

additional communication amongst sensors. This, again, will help reduce the power drained by the

transmission radio. Mathematically, denoting the continuous-time displacement signal at each sensor

as vn(t), where n = 1, . . . , N and N denotes the number of nodes, a CS architecture would simply

sample at time points t1, . . . , tM and transmit the resulting vector {vn} = {vn(t1), . . . , vn(tM )}.

The compression would come from the fact that M is smaller than the number of Nyquist samples.

Typically, one would choose t1, . . . , tM randomly.

The aforementioned ideal attributes of CS equipped sensors come with a price. Because we

have significantly undersampled the original signal at each node, the decoder has to face a severely

ill-posed system of equations. There have been several papers presenting the application of CS

to SHM systems. In [98], the authors have implemented a prototype wireless sensor, which takes

compressed measurements locally once the wireless sensor acquires the time data. By sending both

compressed measurements and the raw time measurements to the central node, the authors evaluate

the performance of CS reconstruction of the raw data. It is shown that a number of measurements

M ≈ 0.8L is needed for an accurate reconstruction of the raw data, where L represents the length

of the original signal. Once the time data are reconstructed, conventional modal analysis techniques

are carried out that aid in damage detection. In [148], the authors also reconstruct the original time

data from CS measurements obtained at each sensor. Similarly to the work in [98], the authors

claim that many measurements were required to reach an accurate level of reconstruction.

The main reason for the above methods to require such large fractions of measurements is because

each signal was simply not sparse enough in the Discrete Wavelet Transform (DWT) or the Discrete

Fourier Transform (DFT). The lack of sparsity of each individual signal suggests that the model of

sparsity of each signal may not be an appropriate model for the types of signals that arise in modal

analysis. A joint signal model for the signal entire ensemble may serve as a better model to exploit

the abundant correlations that potentially exist across the signals.

A timely question to ask at this point is whether or not we truly need to reconstruct the underlying

signal at all. The only reason to reconstruct the signals in the above methods is to utilize conventional

modal analysis tools that all rely on signals that are sampled at the Nyquist rate. Although this

approach to first reconstruct then extract modal parameters is a viable option, there are two reasons

to contemplate this question. The first reason is the potential loss of performance. The frequency
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content within the signals plays an important role in the subsequent modal analysis algorithm. For

example, a popular modal analysis algorithm proposed in [24] is very sensitive to the accuracy of each

frequency component of the signal. As we anticipate noise in our acquired signals the reconstruction

of each signal will also be noisy. These errors will propagate to the modal analysis step, which could

potentially lead to misidentification and errors in modal parameters.

The second reason is the added computational complexity. Taking the above method for exam-

ple, using an off-the-self CS reconstruction algorithm presented in [102], the total computational

complexity for N signals will scale as NL log2(L). Added to this will be the additional computa-

tion required for the subsequent modal analysis step. One can view this step of reconstruction as

being somewhat wasteful as this is carried out only to utilize one of the conventional modal analysis

algorithms.

The main objective of this chapter is to propose a novel method that directly extracts the

mode shapes from CS measurements without ever reconstructing the individual time signals. Our

proposed method differentiates itself from the previously proposed CS based methods in that it

exploits the joint signal structure that can be observed through equations describing a simplified (no

damping and free-decay) Multiple-Degree-Of-Freedom (MDOF) system. Our method is as simple

as computing the Singular Value Decomposition (SVD) of the signal matrix obtained by stacking

each {vn} into a matrix. We evaluate the performance of this method when t1, . . . , tM are uniform

time points, and also when t1, . . . , tM are random time points. For each sampling method, we give

sufficient conditions on the required sampling rate, the total sampling time span, and the total

number of measurements for the accurate recovery of mode shape vectors. Our analysis reveals the

surprising fact that the requisite sampling rate for the uniform measurement case is lower than the

Nyquist rate, but that the required number of measurements is structure dependent. The analysis

on the random measurements shows that we can achieve the same recovery guarantee as the uniform

sampling case at the expense of more but structure independent number of measurements. At the

end of this chapter, we present promising simulation results that show that our algorithm is able

to accurately estimate the mode shapes given only a small fraction of measurements of the original

signal.

7.2 Background

In this section, we give an introduction to the frequently used mathematical model that governs

the motion of structures. We begin with the simplest system called the Single-Degree-Of-Freedom
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(SDOF) system, and then move on to the MDOF system. Following what is standard in structural

dynamics community, we will use {x} to denote a vector x and [A] to denote a matrix A. We will

denote the lth entry of {x} as {x}(j), and denote [A]l,n as the lth row and nth column entry of

[A]. Furthermore, we will reserve i =
√
−1 to denote the imaginary unit and [A]∗ to denote the

conjugate transpose of [A].

7.2.1 Single-degree-of-freedom system

An SDOF system under no external force can be described by the following differential equation,

(7.1) mẍ(t) + Cẋ(t) + kx(t) = 0,

where m, C, and k denote the mass, damping, and stiffness parameters of the underlying system.

To solve for the signal x(t) that satisfies the above equation, let us assume a solution of the form

x(t) = Aest, where A, s ∈ C. Then, ẍ(t) = As2est , ẋ(t) = Asest, x(t) = Aest, and by plugging in

these expressions into equation (7.1) we get,

(
ms2 + Cs+ k

)
x(t) = 0.

Since the above needs to be satisfied for all t, it must be that ms2 + Cs + k = 0, and it is easy to

see that s = −C±
√
C2−4mk
2m . In the structural dynamics community it is customary to rewrite this

solution as,

(7.2) s = −ξω0 ± ω0

√
ξ2 − 1,

where ω0 =
√

k
m , ξ = C

2mω0
represent the natural frequency and damping ratio, respectively. As we

can see, the natural frequencies and damping ratios will always be positive, and depending on the

value of ξ, s may be real or complex and there may be one or two possible solutions.

In this chapter, we will be restricting ourselves to the case when there is no damping, i.e., C = 0

and thus ξ = 0. From equation (7.2) we can see that when ξ = 0, we will have two purely imaginary

solutions s1 = iω0, and s2 = −iω0. Thus, x1(t) = Aeiω0t, and x2(t) = Be−iω0t are both eligible

solutions to equation (7.1). In fact, any solution to the above equation can be expressed as linear

combinations of x1(t) and x2(t), such that the general equation can be written as

x(t) = Aeiω0t +Be−iω0t.
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We can also express the above as,

x(t) = Aeiω0t +Be−iω0t = (A+B) cos(ω0t) + i(A−B) sin(ω0t).

Furthermore, noting that x(0) = A+B, and ẋ(0) = i(A−B)ω0,

x(t) = x(0) cos(ω0t) +
ẋ(0)

ω0
sin(ω0t).

Since the signals that we acquire from a sensor are real, we want to deal with real valued signals

x(t), and this means it must be that B = A∗. Denoting A = a + ib, we can once again rewrite the

above as,

x(t) = 2a cos(ω0t)−
2b

ω0
sin(ω0t).

Finally, because any linear combination of sines and cosines with the same frequency is also a

sine wave with the same frequency, we can rewrite the above as,

x(t) = ρ sin(ω0t+ θ),

where

(7.3) ρ = 2

√
a2 +

b2

ω2
0

, and θ =


arcsin

 a√
a2+ b2

ω2
0

 b ≤ 0

π − arcsin

 a√
a2+ b2

ω2
0

 b > 0.

7.2.2 Multiple-degree-of-freedom system

Similarly to the SDOF system, an N -degree MDOF system4 can be formulated as

[M ]{ü(t)}+ [C]{u̇(t)}+ [K]{u(t)} = {0(t)},

where [M ] is an N × N diagonal mass matrix, [C] is a symmetric N × N damping matrix, [K] is

an N ×N symmetric stiffness matrix, and {u(t)} is an N × 1 vector of displacement signals. Note

that {u(t)} = {u1(t), . . . , uN (t)}, and each {u(t)}(l) = ul(t), where l = 1, . . . , N , is a displacement

4Theoretically, a structure will have infinitely many degrees of freedom. However, the number of mode shapes and
their corresponding modal frequencies and modal damping ratios that we are able to detect is equal to the number
of sensor nodes placed on structures. In the following, whenever we are dealing with an N -degree MDOF system we
are implicitly assuming that we have N sensor nodes deployed on the structure.
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signal. One can view ul(t) as the signal being observed at the lth sensor node. Let us again consider

an undamped system and set [C] = [0]. This simplifies the above equation to

[M ]{ü(t)}+ [K]{u(t)} = {0(t)}.

Let us assume {u(t)} = {φ}Aeiωt to be a solution to the above equation, where ω, t ∈ R. Note that

{φ} is an N ×1 spatial vector that is independent of time and we define it so that it has unit energy,

i.e., ‖{φ}‖2 = 1 (we can assume this as the normalization can be absorbed into the scalar variable

A). Plugging in the appropriate derivative to the above expression we get,

(
−[M ]ω2 + [K]

)
{φ}Aeiωt = {0(t)}.

Since the above must hold for all values of t it must be that,

(
[K]− ω2[M ]

)
{φ} = {0}.

This equation represents a generalized eigenvalue problem and our objective is to find pairs of ω2 and

{φ} that satisfy the above equation. Notice the similarity to the conventional eigenvalue problem

which corresponds to the case when [M ] = I. To solve the above problem, as in the conventional

eigenvalue problem, one starts off by computing the generalized eigenvalue ω that satisfies

det
(
[K]− ω2[M ]

)
= 0.

Assuming that this does not vanish as a function of ω2 and M is full rank, the above will represent

an Nth order polynomial and there will be N generalized eigenvalues ω2 as solutions to this poly-

nomial. Each ω2 when plugged back in to the above equation will have a corresponding generalized

eigenvector {φ} satisfying the above equation. Thus, there will be N generalized eigenvalues, i.e.,

modal frequencies, ω1, . . . , ωN and their corresponding generalized eigenvectors, i.e., mode shape

vectors, {φ1}, . . . , {φN}. Note that each modal frequency must be real and ωn > 0. Also, without

loss of generality, let us assume that the frequencies are sorted, i.e., ω1 ≥ ω2 ≥ · · · ≥ ωN > 0.

Going back to our assumption about the solution to the MDOF system equation it is clear that

each {un(t)} = {φn}Aneiωnt will be valid solutions, where n = 1, . . . , N . Furthermore, as in the

SDOF system {φn}Bne−iωnt will also be valid solutions and thus for each n a complete solution will
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be of the form

(7.4) {un(t)} = {φn}
(
Ane

iωnt +Bne
−iωnt

)
.

We want {un(t)} to be real, which we can get when {φn} is real (there exists a real eigenvector that

satisfies the above equation given that the mass and stiffness matrices are real and symmetric) and

Bn = A∗n. Thus, as with the SDOF case we can rewrite the solution as

{un(t)} = {φn}ρn sin(ωnt+ θn),

where ρn and θn are as defined in (7.3).

Finally, it is easy to see that all linear combinations of {un(t)} are valid solutions to the MDOF

system equation and thus the general solution is of the form

(7.5) {u(t)} =

N∑
n=1

{φn}ρn sin(ωnt+ θn).

In the structural dynamics community this is also known as the modal superposition equation.

7.3 Problem Formulation

7.3.1 The analytic signal of {u(t)}

In order to simplify the upcoming analysis, we are going use what is known as the analytic signal

of {u(t)} [22]. The definition of an analytic signal is given as,

Definition 7.1 (Definition 1.2.1, [22]). A signal v(t) is said to be analytic iff

V (f) = 0 for f < 0,

where V (f) is the Fourier transform of v(t).

Essentially, an analytic signal can be obtained by removing all the negative frequencies in the

original signal. The analytic signal is a frequently used representation in mathematics, signal pro-

cessing, and communications, prevalently for easing the mathematical manipulations.

To see what the analytic signal of {u(t)} is, let us take a step back and look at each entry in
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{u(t)}, i.e., ul(t). Each ul(t) can be written as

ul(t) =

N∑
n=1

{φn}(l)ρn sin(ωnt+ θn) =

N∑
n=1

{φn}(l)(Aneiωnt +A∗ne
−iωnt).

Note that the variable An and A∗n corresponds to what we have seen in equation (7.4). Then, it is

easy to see that the analytic signal of ul(t), represented as vl(t), is simply

vl(t) =

N∑
n=1

{φn}(l)Aneiωnt,

which only contains non-negative frequencies, i.e., eiωnt. Then, the analytic signal of the entire

vector {u(t)}, denoted as {v(t)}, can be written as

{v(t)} =

N∑
n=1

{φn}Aneiωnt.

Note that {v(t)} is no longer real but complex. The practical implementation of obtaining an

analytic signal involves the application of a Hilbert transform. However, detailed discussion on this

matter is out of scope of this chapter and we will refer interested readers to [84] for more detail. For

the remainder of this chapter, we will assume that we have successfully extracted the analytic signal

from each ul(t). Thus, all the derivations from here onwards will be in terms of {v(t)}.

7.3.2 The relationship to singular value decomposition

We can write the modal superposition equation in a matrix-vector multiplication format such as

{v(t)} =

N∑
n=1

{φn}Aneiωnt = [{φ1}, {φ2}, . . . , {φN}]︸ ︷︷ ︸
[Φ]



A1 0 . . . 0

0 A2 . . . 0

...
...

. . . 0

0 0 . . . AN


︸ ︷︷ ︸

[Γ]



eiω1t

eiω2t

...

eiωN t

︸ ︷︷ ︸
{s(t)}

= [Φ][Γ]{s(t)},(7.6)

where [Φ] denotes the N ×N mode shape vector matrix with orthonormal columns, [Γ] is an N ×N

diagonal matrix with diagonal entries An, and {s(t)} is an N × 1 vector known as the modal
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coordinate vector. The above equation establishes an explicit relationship of the observed time data

{v(t)} to the modal parameters such as the mode shape vector and modal frequencies. This equation

plays the key role of motivating the use of the SVD as a way to extract the modal parameters.

In order to see how the SVD can be used to extract the modal parameters, let us suppose that

we sample each row of {v(t)} in time at M distinct points t1, . . . , tM . Let us denote the resulting

N ×M data matrix as

[V ] =



v1(t1) v1(t2) . . . v1(tM )

v2(t1) v2(t2) . . . v2(tM )

...

vN (t1) vN (t2) . . . vN (tM )


∈ RN×M .

The sampling of {v(t)} at t1, . . . , tM implies the sampling of {s(t)} at the exact same time points

which results in

[S] =



eiω1t1 eiω1t2 . . . eiω1tM

eiω2t1 eiω2t2 . . . eiω2tM

...

eiωN t1 eiωN t2 . . . eiωN tM


∈ RN×M .

Overall, this means that after sampling {v(t)} at t1, . . . , tM , equation (7.6) becomes

(7.7) [V ] = [Φ][Γ][S].

The above equation makes explicit the relationship between SVD and the modal parameters. At

this point, we know that [Φ] is a square matrix with orthonormal columns, and [Γ] is a diagonal

matrix. If [S] is a matrix with orthogonal (or orthonormal) rows, then equation (7.7) describes

nothing but the SVD of [V ]. In that case, we can obtain the modal parameters by simply computing

the SVD of [V ].

7.3.3 The implications of sampling

Note that we have not made any assumptions on how we select the sampling times t1, . . . , tM . In

fact, it is easy to see that the orthogonality of the rows in [S] will depend highly on how we sample
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{s(t)}. A natural example that comes to mind is when the rows of [S] are the Discrete Fourier

Transform (DFT) vectors. As we know, any subset of the DFT vectors are perfectly orthogonal to

one another. Then, the SVD of [V ] would exactly recover the modal parameters. This particular

example corresponds to the case when the modal frequencies lie on a grid such that ωn = 2πkn
MTs

,

where kn ∈ {1, . . . , N} and Ts represents the sampling interval, and we sample at tm = Ts(m− 1),

where m ∈ {1, . . . ,M}, assuming N ≤M . This, however, is an unrealistic model for the purpose of

modal analysis specifically because the modal frequencies will typically not lie on a grid as explained

above.

If we drop the assumption that the modal frequencies lie on a grid, the problem becomes much

more complicated and it is very likely for the rows of [S] to be correlated to each other. However, it

seems possible to carefully design a sampling scheme that would make the rows nearly orthogonal.

Then, intuitively, we would expect for the SVD of V to give us mode shape vectors that are good

approximations to the true ones. All of this will be discussed in the following sections.

7.4 Main Results

In this section, we present our two main results. For each result, we propose to use Algorithm 2 to

recover the mode shape vectors. We propose two sampling schemes, uniform and random sampling,

and for each sampling scheme we provide a sufficient condition for the accurate recovery of mode

shapes via Algorithm 2.

7.4.1 Proposed method

Our proposed method to recover the mode shape vectors is very simple and is described in

Algorithm 2.

Algorithm 2: Pseudo-code for mode shape estimation

Input: Data matrix [V ]

Output: ˆ[Φ] (left singular vectors of [V ])
SVD(V) = [Φ̂][Γ̂][Ŝ]

As described above, our method simply computes the SVD of [V ] and returns the matrix of left

singular vectors [Φ̂] = [{φ̂1}, . . . , {φ̂N}] as estimates of the true mode shape matrix [Φ]. One point to

note about the algorithm is that because [V ] is N ×M , where we assume M > N , the dimensions of

each [Φ̂], [Γ̂], and [Ŝ] will be N ×N , N ×M , and M ×M , respectively. This is unlike the dimensions

of their supposedly respective counterparts given in equation (7.7). Actually, by noting that only N
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diagonal entries in [Γ̂] are non-zero we can compute the truncated SVD to obtain a decomposition

with the desired dimensions.

7.4.2 Uniform sampling

Equipped with the above algorithm, let us now suppose that we sample each complex exponential

eiωnt at uniform sampling interval denoted as Ts. The sampling times will be denoted as tm =

(m−1)Ts, m = 1, . . . ,M . Note that this means that we are sampling within the time span [0, tmax],

where tmax := (M−1)Ts. For this uniform sampling scenario, we can establish the following theorem.

Theorem 7.2. Let [V ] = [Φ][Γ][S] be as given in (7.7) describing an N -degree of freedom system

sampled according to the uniform sampling scheme described above. Let us define the minimum and

maximum spacing of the modal frequencies as δmin := minl 6=n |ωl−ωn|, and δmax := maxl 6=n |ωl−ωn|,

respectively. Let us sample for a time span of at least

tmax ≥
2π(log(bN/2c+ 1.01))

εδmin
,

with sampling interval Ts = π
δmax

. Or, equivalently, let us take number of measurements satisfying,

M ≥ 2(logbN/2c+ 1.01)

ε

δmax

δmin
+ 1,

taken at the sampling interval Ts = π
δmax

. Then, the mode shape estimates [Φ̂] obtained via Algo-

rithm 2 satisfy the following bound,

‖{φn} − {φ̂n}‖2 ≤ min

√2,
ε
√

1 + ε√
1− ε max

l 6=n

√
2γlγn

min
c∈[−1,1]

{|γ2
l − γ2

n(1 + cε)|}

 ,(7.8)

where γn := |An| are the magnitudes of the diagonal entries of [Γ].

Note from equation (7.8) that the error in the estimate will be small when ε is small. The

variable ε essentially captures how close the rows of [S] are to being orthogonal. Furthermore, the

bigger the smallest separation between γn, the better our estimate. Turning our attention to the

sampling parameters, the above theorem essentially tells us that we need to sample for a time span

that is inversely proportional to the minimum spacing between the modal frequencies. Thus, the

smaller the minimum spacing between the modal frequencies, the longer we have to sample to get an

accurate estimate. Also, the maximum spacing between modal frequencies determines how fast we

need to sample, i.e., Ts = π
δmax

. Comparing this sampling interval to the Nyquist sampling interval
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which would be T0 = π
2 maxn ωn

, it is interesting to note that Ts > T0. This suggests that for the

purpose of mode shape extraction, we can sample at a rate lower than the Nyquist rate and still

accurately recover the mode shapes. Finally, note that the condition on M is fairly satisfactory as it

essentially scales with log(N)
ε . The only disturbing factor is the ratio δmax

δmin
, which suggests that the

required number of measurements is structure dependent.

7.4.3 Random sampling

Let us now consider a simple random sampling scheme, where we sample M time points t1, . . . , tM

uniformly at random in the time interval [0, tmax]. Then, the following theorem can be established.

Theorem 7.3. Let [V ] = [Φ][Γ][S] be as given in (7.7) describing an N -degree of freedom system

sampled according to the uniform sampling scheme described above. Let us define the minimum

spacing of the modal frequencies as δmin := minl 6=n |ωl − ωn|. Let us sample for a time span of at

least

tmax ≥
4(log(bN/2c) + 1.01)

ε2δmin
,

and within this time span let us take number of measurements satisfying,

M >
log(N)

D((1 + ε)/N ||(1 + ε2)/N)
,

where D(a||b) := a(log(a) − log(b)) + (1 − a)(log(1 − a) − log(1 − b)) for a, b ∈ [0, 1], is known as

the binary information divergence, or the Kullback-Leibler divergence. Then, there exists a constant

c1 > 0 such that with probability at least 1 − e−c1M we will have that the mode shape estimates [Φ̂]

obtained via Algorithm 2 satisfy the following bound,

‖{φn} − {φ̂n}‖2 ≤ min

√2,
ε
√

1 + ε√
1− ε max

l 6=n

√
2γlγn

min
c∈[−1,1]

{|γ2
l − γ2

n(1 + cε)|}

 ,(7.9)

where γn := |An| are the magnitudes of the diagonal entries of [Γ].

The above theorem looks very similar to that of the uniform sampling case. The recovery

guarantee and the required time span is essentially the same. The only major difference is the

requisite number of measurements, which no longer has the dependency on δmax

δmin
and scales slightly

worse than log(N)
ε .
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7.5 Proof of Main Results

In this section we provide the proofs of the main results. To do so, we take a perturbation

theoretic viewpoint. We first describe how we can formulate our problem as a perturbation problem

and then provide separate proofs for each theorem.

7.5.1 Perturbation analysis

We start with the equation,

[V ] = [Φ][Γ][S]

where we assume that we sampled at some arbitrary times t1, . . . , tM .

To carry out perturbation analysis let us note that

[V ][V ]∗ = [Φ][Γ][S][S]∗[Γ]∗[Φ]∗,

where

[S][S]∗ =



1 1
M

∑M
m=1 e

j(ω1−ω2)tm . . . 1
M

∑M
m=1 e

j(ω1−ωN )tm

1
M

∑M
m=1 e

j(ω2−ω1)tm 1 . . . 1
M

∑M
m=1 e

j(ω2−ωN )tm

...
...

. . .
...

1
M

∑M
m=1 e

j(ωN−ω1)tm 1
M

∑M
m=1 e

j(ωN−ω2)tm . . . 1


.

Thus, we can decompose this product as, [S][S]∗ = [I] + [∆], where [∆] contains the off-diagonal

entries of [S][S]∗. Then,

[V ][V ]∗ = [Φ][Γ][Γ]∗[Φ]∗︸ ︷︷ ︸
H

+ [Φ][Γ][∆][Γ]∗[Φ]∗︸ ︷︷ ︸
δH

.

The above expression allows us to view [V ][V ]∗ as the summation of the original matrix H and the

perturbation matrix δH. To quantify how much the mode shapes [Φ] change due to δH, we are

going to use Theorem 6.2 presented in Chapter 6. In order to use this theorem all we need to do is

128



to quantify η = ‖[H]−
1
2 [δH][H]−

1
2 ‖2, where [H]−

1
2 = [Φ]

(
[Γ][Γ]H

)− 1
2 [Φ]∗. But

η = ‖[H]−
1
2 [δH][H]−

1
2 ‖2 = ‖[Φ] ([Γ][Γ]∗)

− 1
2 [Φ]∗[Φ][Γ][∆][Γ]∗[Φ]∗[Φ] ([Γ][Γ]∗)

− 1
2 [Φ]∗‖2,

= ‖ ([Γ][Γ]∗)
− 1

2 [Γ][∆][Γ]∗ ([Γ][Γ]∗)
− 1

2 ‖2,

= max
x 6=0

xH ([Γ][Γ]∗)
− 1

2 [Γ][∆]∗[Γ]∗ ([Γ][Γ]∗)
− 1

2 ([Γ][Γ]∗)
− 1

2 [Γ][∆][Γ]∗ ([Γ][Γ]∗)
− 1

2 x

xHx
,

= max
x 6=0

xH ([Γ][Γ]∗)
− 1

2 [Γ][∆]∗[∆][Γ]∗ ([Γ][Γ]∗)
− 1

2 x

xHx
,

= max
y 6=0

yH [∆]∗[∆]y

yHy
, let y = [Γ]∗ ([Γ][Γ]∗)

− 1
2 x and note y∗y = x∗x

= ‖[∆]‖2,

which in turn tells us that we need to quantify ‖[∆]‖2. Since the exact expression of ‖[∆]‖2 is

difficult to obtain we are going to compute an upper bound of ‖[∆]‖2 instead. To bound ‖[∆]‖2
let us take a step back and note that λn([S][S]∗) = λn([I] + [∆]) = 1 + λn([∆]), where use λn([A])

to denote the nth largest eigenvalue of [A]. This can be seen by looking at the eigendecomposition

[S][S]∗ = [US ][ΛS ][US ]∗ = [I] + [∆] and writing [ΛS ] = [I] + [US ]∗[∆][US ]. Note that [US ]∗[∆][US ]

must be a diagonal matrix, which corresponds to the eigenvalues of [∆].

Once we can find an upper and lower bound on the eigenvalues of [S][S]∗ such that λd ≤

λn([S][S]∗) ≤ λu holds for all n, then we can easily see that λd−1 ≤ λn([∆]) ≤ λu−1, which in turn

implies that ‖[∆]‖2 = maxn |λn([∆])| ≤ max{|λu− 1|, |λd− 1|}. Therefore, our strategy is to bound

λn([S][S]∗) from below and above in order to bound ‖[∆]‖2. In the following sections we establish

this result for both the random and uniform sampling cases. Our main results follow directly from

the respective results on λn([S][S]∗) and the above arguments.

7.5.2 Proof for random sampling

Let us first consider how to establish a bound on ‖[∆]‖2 if we were to sample t1, . . . , tM at uni-

formly random in the time interval [0, tmax]. We can establish the following bound on the eigenvalues

of [S][S]∗.

Theorem 7.4. Let [S][S]∗ be the matrix as described above. Given that we sample

M >
log(N)

D((1 + ε)/N ||(1 + ε2)/N)
,
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and choose

tmax ≥
4

ε2δmin
(log(bN/2c) + 1.01),

where δmin := minl 6=n |ωl − ωn|, there exists a constant c1 > 0 such that with probability at least

1− e−c1M we will have that,

1− ε < λn ([S][S]∗) < 1 + ε, ∀n.

Proof. To bound ‖[S][S]∗‖2 we are going to use a slightly modified theorem that appeared in [128].

Let us first state the original theorem.

Theorem 7.5. [[128], Theorem 5.1] Consider a sequence {Zm : m = 1, . . . ,M} of independent,

d-dimensional, random, self-adjoint matrices that satisfy

Zm � 0 and λmax(Zm) ≤ 1 almost surely.

Compute the minimum and maximum eigenvalues of the average expectation,

µ̄min := λmin

(
1

M

M∑
m=1

EZm

)
µ̄max := λmax

(
1

M

M∑
m=1

EZm

)
.

Then

P

{
λmin

(
1

M

M∑
m=1

Zm

)
≤ α

}
≤ de−MD(α||µ̄min) for 0 ≤ α ≤ µ̄min

P

{
λmax

(
1

M

M∑
m=1

Zm

)
≥ α

}
≤ de−MD(α||µ̄max) for µ̄max ≤ α ≤ 1.

The binary information divergence D(a||b) := a(log(a)− log(b)) + (1− a)(log(1− a)− log(1− b)) for

a, b ∈ [0, 1].

As the exact expression of µ̄max and µ̄min is difficult to compute, we are going to need the

following corollary that only requires an upper bound on µ̄max and a lower bound on µ̄min.

Corollary 7.6. Consider a sequence {Ẑm : m = 1, . . . ,M} of independent, d-dimensional, random,

self-adjoint matrices that satisfy

Ẑm � 0 and λmax(Ẑm) ≤ c almost surely.
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Then for any µ̃min and µ̃max such that,

µ̃min ≤ λmin

(
1

M

M∑
m=1

EẐm

)
, and µ̃max ≥ λmax

(
1

M

M∑
m=1

EẐm

)
,

we have

(7.10) P

{
λmin

(
1

M

M∑
m=1

Ẑm

)
≤ α

}
≤ de−MD(α/c||µ̃min/c) for 0 ≤ α ≤ µ̃min,

(7.11) P

{
λmax

(
1

M

M∑
m=1

Ẑm

)
≥ α

}
≤ de−MD(α/c||µ̃max/c) for µ̃max ≤ α ≤ c.

The binary information divergence D(a||b) := a(log(a)− log(b)) + (1− a)(log(1− a)− log(1− b)) for

a, b ∈ [0, 1].

Proof. Let us denote Ẑm = cZm, where Zm is such that Zm � 0 and λmax(Zm) ≤ 1. This simply im-

plies Ẑm � 0 and λmax(Ẑm) ≤ c, and that µ̂max := λmax( 1
M

∑M
m=1 EẐm) = cλmax( 1

M

∑M
m=1 EZm) =

cµ̄max. To derive the probability for Ẑm, let us look at the following chain of inequalities,

P

{
λmax

(
1

M

M∑
m=1

Ẑm

)
≥ α

}
= P

{
cλmax

(
1

M

M∑
m=1

Zm

)
≥ α

}
,

= P

{
λmax

(
1

M

M∑
m=1

Zm

)
≥ α/c

}
,

≤ de−MD(α/c||µ̄max) = de−MD(α/c||µ̂max/c).

The range of α that admits the above probability is µ̄max ≤ α/c ≤ 1, which is equivalent to

µ̂max ≤ α ≤ c. Similarly, we have µ̂min := λmin( 1
M

∑M
m=1 EẐm) = cλmin( 1

M

∑M
m=1 EZm) = cµ̄min

for the minimum eigenvalue. Then,

P

{
λmin

(
1

M

M∑
m=1

Ẑm

)
≤ α

}
= P

{
cλmin

(
1

M

M∑
m=1

Zm

)
≤ α

}
,

= P

{
λmin

(
1

M

M∑
m=1

Zm

)
≤ α/c

}
,

≤ de−MD(α/c||µ̄min) = de−MD(α/c||µ̂min/c).

Again, the above is valid for 0 ≤ α/c ≤ µ̄min and equivalently 0 ≤ α ≤ µ̂min.
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Next we need to show that the above probability is also valid for an upper bound µ̃max ≥ µ̂max

and a lower bound µ̃min ≤ µ̂max. We show this for the maximum eigenvalue by noting the fact that

the information divergence (also known as the Kullback-Leibler divergence) D(a||b) is a decreasing

function with respect to the second argument b when a ≥ b. Similarly, for the minimum eigenvalue

we use the fact that D(a||b) is an increasing function with respect to b when a ≤ b.

Let us first look at the derivative of D(a||b) with respect to b.

dD(a||b)
db

= −a
b

+
1− a
1− b =

−a(1− b) + b(1− a)

b(1− b) =
b− a
b(1− b) .

Note that the above derivative will be negative when a ≥ b and positive when b ≥ a, which is what

we wanted to show. This essentially means that for any b ≤ b
′ ≤ 1 as long as a ≥ b, we will have

D(a||b) ≥ D(a||b′). Similarly, for any 0 ≤ b
′ ≤ b, as long as a ≤ b we will have D(a||b) ≥ D(a||b′).

This completes the proof.

In order to apply Corollary 7.6, let us write

[S][S]∗ =
1

M

M∑
m=1



eiω1tm

...

eiωN tm


{
e−iω1tm , . . . , e−iωN tm

}

Let us define the vector {Sm} = {e−iω1tm , . . . , e−iωN tm}∗, where ‖{Sm}‖22 = N . Let us set the

matrix Zm that appears in the above theorem as Zm = {Sm}{Sm}∗. As a result, Zm will be i.i.d.

positive semi-definite matrix, i.e., Zm � 0, of rank 1 with λmax(Zm) = ‖{Sm}‖22 = N . We wish to

compute

λmin

(
1

M

M∑
m=1

E{Sm}{Sm}∗
)

= λmin (E{Sm}{Sm}∗) ,

λmax

(
1

M

M∑
m=1

E{Sm}{Sm}∗
)

= λmax (E{Sm}{Sm}∗) ,
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or the appropriate lower and upper bound on the above quantities. Note that

E{Sm}{Sm}∗ = E



1 ei(ω1−ω2)tm . . . ei(ω1−ωN )tm

e−i(ω1−ω2)tm 1 . . . ei(ω2−ωN )tm

...
...

. . .
...

e−i(ω1−ωN )tm e−i(ω2−ωN )tm . . . 1



=


1 when l = n

ei(ωl−ωn) tmax
2 sinc((ωl − ωn) tmax

2 ) when l 6= n.

The eigenvalues can also be written as λn (E{Sm}{Sm}∗) = λn (I + [∆S ]) = 1 + λn([∆S ]), where

[∆S ] is the off-diagonal matrix of E{Sm}{Sm}∗. According to Gershgorin’s circle theorem [68] we

know that every eigenvalue of E{Sm}{Sm}∗ must lie within at least one of the Gershgorin’s disk.

As [∆S ] has zero diagonal entries, every Gershgorin’s disk must be centered at zero. Essentially, all

we need to do is to find the Gershgorin’s disk that has the largest radius. Then, it will follow that

the largest radius corresponds to the bounds on the minimum and maximum eigenvalues.

The lth row of [∆S ] will be associated with the following disk,

|λ([∆S ])| ≤
N∑

n=1,n6=l

| sinc((ωl − ωn)
tmax

2
)| ≤

N∑
n=1,n6=l

| 2

(ωl − ωn)tmax
|.

At this point, we do not know which row will correspond to the largest radius as we do not know all

the separation of the modal frequencies ωl − ωn. We tackle this problem by considering the worst

case upper bound on each disk radii. Then, the radius of the disk with the largest upper bound will

correspond to the lower and upper bound on the smallest and largest eigenvalues.

To do so, let us assume that there is some minimum spacing between the modal frequencies that

we denote as δmin := minl,n∈{1,...,N} |ωl−ωn| > 0. The worst case bound on each of the radii will be

when all the modal frequencies are separated equally by the minimum spacing δmin. To show how

we can use this fact, let us focus on the first row such that l = 1. In this case we find that,

|λ([∆S ])| ≤
N∑
n=2

| sinc((ω1 − ωn)
tmax

2
)| ≤

N∑
n=2

2

|ω1 − ωn|tmax
≤ 2

tmax

N−1∑
n=1

1

δminn

=
2

δmintmax

N−1∑
n=1

1

n
.
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It is easy to see that the largest upper bound on the radius will be due to the middle row of [∆S ].

Let us denote the index of the middle row as l
′

(when N is even we can take either of N/2 or N/2+1

as the middle row) then,

|λ([∆S ])| ≤
N∑

n=1,n6=l′
| sinc((ωl′ − ωn)

tmax

2
)| ≤

N∑
n=1,n6=l′

| 2

(ωl′ − ωn)tmax
|

≤ 2

δmintmax

bN/2c∑
n=1

2

n
.

In summary, all the eigenvalues of [∆S ] will lie within the following disk,

|λ([∆S ])| ≤ 4

δmintmax

bN/2c∑
n=1

1

n
.

The summation term in the above bound is also known as the Harmonic number. We can simplify

the above expression a little by using the following upper bound on the Harmonic number.

Theorem 7.7 ([133], Theorem 1). For any natural number n ≥ 1, the following inequality is valid:

1

2N + 1
1−γ − 2

≤
N∑
n=1

1

n
− log(N)− γ < 1

2N + 1
3

.

The constant γ = 0.57721 · · · is known as Euler’s constant. The constants 1
1−γ − 2 = 0.3652 · · · and

1
3 are the best possible, and equality holds only for N = 1.

Using this theorem we have

|λ([∆S ])| ≤ 4

δmintmax

bN/2c∑
n=1

1

n
<

4(log(bN/2c) + γ + 1
2bN/2c+ 1

3

)

δmintmax
<

4(log(bN/2c) + γ + 3/7)

δmintmax

<
4(log(bN/2c) + 1.01)

δmintmax
.

Collecting everything together, we will have for all n,

1− 4(log(bN/2c) + 1.01)

δmintmax
< λn (E{Sm}{Sm}∗) = 1 + λn([∆S ]) < 1 +

4(log(bN/2c) + 1.01)

δmintmax

For the above bound to be useful we require that the right hand side to be less than or equal to n.

In fact, we need much more than this. Let us choose

δmintmax ≥
4

ε2
(log(bN/2c) + 1.01),
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where 0 < ε < 1. Then, we have that

µ̃min := 1− ε2 < λn(E{Sm}{Sm}∗) < 1 + ε2 =: µ̃max.

Note that µ̃max ≤ 1 + ε and µ̃min ≥ 1− ε. Then, according to the above theorem, inequality (7.11)

will hold for any 1+ε2 ≤ α ≤ N , which will always include α = 1+ε. Similarly, inequality (7.10) will

hold for any 0 ≤ α ≤ 1−ε2, which will always include α = 1−ε. Substituting the appropriate values

of α = 1±ε, µ̃max, and µ̃min into Corollary 7.6, with probability at least 1−Ne−MD((1+ε)/N ||(1+ε2)/N)

we will have

1− ε < λmin([S][S]∗) ≤ λn([S][S]∗) ≤ λmax([S][S]∗) < 1 + ε.

All that remains is to show that there exists a constant c1 > 0 such that

Ne−MD((1+ε)/N ||(1+ε2)/N) ≤ e−c1M .

It is easy to see that this can be accomplished by choosing

M >
log(N)

D((1 + ε)/N ||(1 + ε2)/N)
.

This conditions means, D((1 + ε)/N ||(1 + ε2)/N)− log(N)
M > 0, and if we choose c1 > 0 sufficiently

small we can have that D((1 + ε)/N ||(1 + ε2)/N) − log(N)
M > c1 > 0. With simple manipulation we

can see that this will guarantee Ne−MD((1+ε)/N ||(1+ε2)/N) < e−c1M .

7.5.3 Proof for uniform sampling

For the uniform sampling scenario, we can establish the following theorem on the eigenvalues of

[S][S]∗.

Theorem 7.8. Let [S][S]∗ be the matrix as described above. Let us define the minimum and max-

imum spacing of the modal frequencies as δmin := minl,n |ωl − ωn|, and δmax := maxl,n |ωl − ωn|,

respectively. Let us sample for a time span of at least

tmax ≥
2π(log(bN/2c+ 1.01))

εδmin
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with sampling interval Ts = π
δmax

. Or, in other words, let us take at least

M ≥ 2(logbN/2c+ 1.01)

ε

δmax

δmin
+ 1

measurements with sampling interval Ts = π
δmax

. This will ensure the following bound on the eigen-

values of [S][S]∗:

1− ε ≤ λn([S][S]∗) ≤ 1 + ε.

Proof. Let us recall that the off-diagonal matrix of [S][S]∗, denoted as [∆], has the following entries,

[∆] =



0 1
M

∑M−1
m=0 e

j(ω1−ω2)mTs · · · 1
M

∑M−1
m=0 e

j(ω1−ωN )mTs

1
M

∑M−1
m=0 e

−j(ω1−ω2)mTs 0 · · · 1
M

∑M−1
m=0 e

j(ω2−ωN )mTs

...
...

. . .
...

1
M

∑M−1
m=0 e

−j(ω1−ωN )mTs 1
M

∑M−1
m=0 e

−j(ω2−ωN )mTs · · · 0


We can evaluate each off-diagonal entry [∆]l,n as

[∆]l,n =
1

M

M−1∑
m=0

ej(ωp−ωq)mTs =
1

M

1− ej(ωl−ωn)MTs

1− ej(ωl−ωn)Ts

= ej(ωl−ωn)Ts(M−1)/2 sin((ωl − ωn)MTs
2 )

M sin((ωl − ωn)Ts2 )
= ej(ωl−ωn)Ts(M−1)/2 sin(|ωl − ωn|MTs

2 )

M sin(|ωl − ωn|Ts2 )
.

The above expression looks quite similar to a sinc function. In fact the real part of the above is

known as the periodic sinc function or the Dirichlet function and is defined as

psinc(x) =
sin(M x

2 )

M sin(x2 )
.

More specifically,

psinc(x) =


sin(M x

2 )

M sin( x2 ) ,when x 6= 2πk, k = 0,±1,±2, . . .

(−1)k(M−1),when x = 2πk, k = 0,±1,±2, . . . .

As its name implies, the psinc function is a periodic function where the period is equal to 2π when

M is odd, and 4π when M is even. Every time x is equal to an integer multiple of 2π, the psinc
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Ts

f(Ts) = |ωl−ωn|Ts
π

g(Ts) = sin(|ωl − ωn|Ts2 )1

2π
|ωl−ωn|

π
|ωl−ωn|

Figure 7.1: A plot of g(Ts) = sin(|ωl − ωn|Ts2 ) in black and f(Ts) = |ωl−ωn|Ts
π

in red. This plot illustrates
that g(Ts) ≥ f(Ts) when Ts ≤ π

|ωl−ωn|
.

function will reach its maximum value.

Again, we are going to bound the eigenvalues of [∆] using the Gershgorin’s disk theorem. The

theorem says that every eigenvalue of [∆] will lie in at least one Gershgorin’s disk. This disk is of

the form,

|λ([∆])| ≤
N∑
n=1

|[∆]l,n| =
N∑
n=1

∣∣∣∣∣ sin(|ωl − ωn|MTs
2 )

M sin(|ωl − ωn|Ts2 )

∣∣∣∣∣ .
We need to find the disk with the maximum radius and thus it is our next objective to compute an

upper bound on the radius of all disks.

As the psinc function fluctuates between low and high values depending on the combination of

ωl−ωn, Ts, and M , we have to restrict ourselves to only certain values of ωl−ωn, Ts, and M , to make

sure that we can guarantee the evaluation of psinc to be small. Note that all ωn for n = 1, . . . , N

are arbitrary and unknown but fixed and therefore cannot be controlled. Thus we have to find a

condition on Ts and/or M .

Let us first look at each [∆]l,n. One way to find an upper bound of [∆]l,n is to note that the

denominator can be lower bounded by a linear function for a certain range of Ts. More specifically,

note that for Ts ≤ π
|ωl−ωn| we have that,

sin

(
|ωl − ωn|

Ts
2

)
≥ |ωl − ωn|Ts

π
.

This is illustrated in Figure 7.1. Applying this lower bound to each |[∆]l,n| we get,

|[∆]l,n| =
∣∣∣∣∣ sin(|ωl − ωn|MTs

2 )

M sin(|ωl − ωn|Ts2 )

∣∣∣∣∣ ≤
∣∣∣∣∣π sin(|ωl − ωn|MTs

2 )

|ωl − ωn|MTs

∣∣∣∣∣ =
π

2

∣∣∣∣sinc(|ωl − ωn|
MTs

2
)

∣∣∣∣ ,
when Ts ≤ π

|ωl−ωn| . We can see that the off-diagonal entries behave essentially like a sinc function

when Ts ≤ π
|ωl−ωn| . To further upper bound the above we simply note that sinc(x) ≤ 1/|x|, and
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apply this to get

|[∆]p,q| ≤
π

|ωp − ωq|MTs
, when Ts ≤

π

|ωp − ωq|
.

As we need to make sure that the above holds for all pairs of p and q we need to choose a

sampling interval such that

(7.12) Ts ≤
π

δmax
.

Overall, given that we sample with Ts satisfying inequality (7.12), we will have that

|λ([∆])| ≤
N∑
n=1

π

|ωl − ωn|MTs
.

Following the same arguments as we have seen for random sampling this will give us

|λ([∆])| ≤ π

δminMTs

bN/2c∑
n=1

2

n
<

2π(log(bN/2c) + 1.01)

δminMTs
<

2π(log(bN/2c) + 1.01)

δmin(M − 1)Ts
.

Now, note that (M − 1)Ts = tmax and if we choose tmax so that

tmax ≥
2π(log(bN/2c) + 1.01)

δminε
,

we will have that

|λ([∆])| < ε.

In summary, when we sample at sampling interval satisfying Ts ≤ π
δmax

and a time span satisfying

tmax ≥ 2π(log(bN/2c)+1.01)
δminε

, we will have

1− ε < λn([S][S]∗) = 1 + λn([∆]) < 1 + ε.

Or, in other words, if we set Ts = π
δmax

, and remembering that tmax = (M − 1)Ts, this means that

we need to sample at least

M ≥ 2(log(bN/2c) + 1.01)

ε

δmax

δmin
+ 1,

to achieve the above eigenvalues guarantee. Note that this is the smallest number of measurements

we need since we set Ts as large as possible. If we were to reduce the sampling interval we would

need to take more measurements to cover the same time span tmax.
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7.6 Experimental Results

In order to see how the proposed method performs, we present simulation results with real data

collected from a bridge in Ypsilanti, MI5. On this bridge, there are N = 18 wireless nodes each of

which are equipped with an accelerometer. Each sensor measures acceleration data and transmits

them to the central node for analysis.

We compare the proposed method to the method presented in [98, 148]. In the following we

term this method “CS+FDD”. This method reconstructs each signal {ul} from random Gaussian

measurements, {yl} = [Φ]{ul}, one-by-one and feeds them in to the Frequency Domain Decompo-

sition (FDD) method presented in [24] for modal analysis. The reconstruction solves the following

problem,

(7.13) min
{αl}
‖{αl}‖1 s.t. {yl} = [Φ][Ψ]{αl},

where {ul} = [Ψ]{αl} and [Ψ] represents the discrete Wavelet transform (our simulations were

carried out with DWT, but similar results were obtained with DFT). To solve this problem, we use

the SPGL1 solver [131, 130].

For both the proposed method and the CS+FDD method, we took M = 50 measurements for

each {ul} using the same measurement matrix [Φ]. Since we do not know of the true mode shapes

of our dataset we benchmark the mode shapes returned via FDD. There are three dominant mode

shapes identified via FDD in this data set.

To assess the closeness between two mode shapes we compute the correlation (COR) between

two vectors {a} and {b},

(7.14) COR({a}, {b}) =
|〈{a}, {b}〉|
‖{a}‖2‖{b}‖2

∈ [0, 1].

This function will equal to 1 when {a} and {b} are equal and 0 when they are orthogonal. The

results are presented in Figure 7.2. As we can see, the mode shapes of CS+FDD, plotted in black,

are not highly correlated with the mode shapes of FDD, plotted in blue. This is because there were

not enough measurements to accurately reconstruct the original signal {ul} ∈ RL, which in turn

5We would like to thank Sean O’Connor and Prof. Jerome P. Lynch at the University of Michigan for helpful
discussions on modal analysis and providing us with real datasets to carry out the experiments presented in this
chapter.
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Figure 7.2: Comparison of FDD with CS+FDD and our proposed method SVD(Y ). Each mode shape
returned by CS+FDD and SVD(Y ) is compared against the corresponding mode shape returned by FDD.
The result is evaluated by computing the correlation (COR) between a pair of mode shapes. (a) CS+FDD:
COR = 0.9382, SVD(Y ): COR = 0.9867 (b) CS+FDD: COR = 0.8726, SVD(Y ): COR = 0.9701, and (c)
CS+FDD: COR = 0.5209, SVD(Y ): COR = 0.9882.

resulted in bad estimates of mode shapes by FDD. In fact, the number of measurements we took

corresponded to M = 50 ≈ 0.02L and each signal was simply not sparse enough for an accurate

recovery. On the other hand, given the same set of measurements our proposed method, plotted in

red, was able to extract highly correlated mode shapes.

The simulation results indeed support our theoretical results that the SVD of the data matrix

Y should return accurate estimates of the true mode shape vectors. We would like to emphasize

the fact that the dataset that we have used for this simulation contained noise and were acquired

from a real structure with damping. Despite these conditions, the fact that our method was able

to successfully identify the mode shape vectors suggest that our theoretical findings are potentially

extendable to more complicated scenarios.
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CHAPTER 8

Conclusion

In this dissertation, we have applied CS to various multi-signal applications. We gave thorough

treatments of the sensing, joint signal model, and reconstruction algorithm aspects that need to be

considered for a successful application of CS in these multi-signal environments.

8.1 Joint signal model and reconstruction algorithm

8.1.1 Video application

In the video application, based on the observation that many videos should have limited temporal

bandwidth we proposed an algorithm that only reconstructs a small set of anchor frames of the video.

The proposed algorithm is multiscale and iterative in nature and accurately compensates for the

motion between anchor frames by using LIMAT as the sparsifying transform in the reconstruction

step. By alternating between video reconstruction and motion estimation our algorithm is able to

successfully reconstruct the anchor frames. Simulation results show that our algorithm outperforms

other sparsifying transforms proposed in the literature.

There are various future directions one can think of based on our work. For example, although

we have reported results in terms of the reconstruction quality of the anchor frames themselves,

it is worth reiterating that from the estimated anchor frames x̂a one can, if desired, also obtain

an estimate of the original high-rate video sequence via x̂d = Γx̂a. As an example, we construct

an estimate of the full 512-frame Pendulum + Cars video sequence by interpolating the 32 anchor

frames that were reconstructed in Figure 3.4. In Figure 8.1, we plot in blue the PSNR for each of

the 512 reconstructed frames. Among these 512 frames, of course, are the 32 anchor frames that

were reconstructed in the first place; the PSNR for each of these anchor frames is marked with a red

square. We note that the PSNR of the full reconstructed video sequence is 31.31 dB, which is only
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Fig. 1: Frame-by-frame PSNR values of high-rate Pendulum + Cars video estimate. This video was obtained by interpolating the
32 anchor frames that were reconstructed with our algorithm. Four of the reconstructed anchor frames are illustrated in Fig. ??(e).
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the full reconstructed video sequence is 31.31 dB, which is only slightly lower than the PSNR of the reconstructed anchor frames.

1

Figure 8.1: Frame-by-frame PSNR values of high-rate Pendulum + Cars video estimate. This video was
obtained by interpolating the 32 anchor frames that were reconstructed with our algorithm. Four of the
reconstructed anchor frames are illustrated in Figure 3.4(e). The blue line shows the PSNR values of each
frame, and the red squares mark the PSNR values of each anchor frame. The PSNR of the full reconstructed
video sequence is 31.31 dB, which is only slightly lower than the PSNR of the reconstructed anchor frames.

slightly lower than the PSNR of the reconstructed anchor frames. This confirms that the anchor

frames capture much of the critical information in the video, and of course reconstructing the anchor

frames was an essential step in recovering the full video, because the full video (with 256×256×512

unknowns) would be very difficult to reconstruct directly from just 800× 512 measurements.

Based on the above observation, our work can be of great value to conventional high-rate video

acquisition systems that suffer from an explosion of high-resolution video frames. In such systems

a video sequence of only a few seconds or minutes can amount to tera-bytes of data. It is easy to

see how the entire process from video acquisition to data storage can be extremely challenging even

for the most state-of-the-art computers. Our analysis of temporal complexity of videos provides a

interesting guideline on how to make each step in the process more efficient. For example, our analysis

on the limited temporal complexity suggests that the temporal bandwidth is essentially limited to

a bandwidth that is proportional to the maximum motion content in the video. Therefore, the

speed of motion essentially dictates the information level of the video, and depending on the motion

content and the desired spatial resolution one may be able to sample at a much lower rate reducing

the overall complexity of the system.

Another direction of future work is to establish the overall and/or scale-by-scale reconstruction

guarantees of the multiscale algorithm using LIMAT as the sparsifying transform. This guarantee

will depend on how accurately we can extract the motion vectors after each scale and also on how

these motion vectors may affect the coherence of the columns of the LIMAT matrix. A good starting
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point would be to study the effects of motion vectors on the coherence, i.e., what kind of motion

vectors will cause the coherence to be high and what kind of motion will cause the coherence to be

low. Based on these findings we would then need to think about how the combination of a block

diagonal matrix with the LIMAT matrix will affect the reconstruction performance. Since both

block diagonal matrices and LIMAT are dependent on the underlying signal it would be important

to devise an appropriate assumption about the signal to carry out the analysis.

8.1.2 Multi-view application

In the multi-view imaging application, we have discussed how non-collaborative CS measurement

schemes can be used to simplify the acquisition and encoding of multi-image ensembles. We have

presented a geometric framework in which many multi-view imaging problems may be cast and

explained how this framework can inform the design of effective manifold lifting algorithms for joint

reconstruction. We conclude with a few remarks concerning practical and theoretical aspects of the

manifold lifting framework.

First, let us briefly discuss the process of learning camera positions when they are initially com-

pletely unknown. In our satellite experiments, we have observed that the accuracy of the ISOMAP

embedding depends on the relative size of the subimages xj to the underlying scene x, with larger

subimages leading us to higher quality embeddings. As the size of the subimages decreases, we need

more and more camera positions to get a reasonable embedding, and we can reach a point where

even thousands of camera positions are insufficient. In such cases, and in applications not limited to

satellite imaging, it may be possible to get a reliable embedding by grouping local camera positions

together. On a different note, once an initial set of camera position estimates have been obtained,

it may also be possible to build on an idea suggested in [75] and seek a refinement of these position

estimates that minimize the overall `1 norm of the reconstructed image. A multiscale approach

could again help such a technique converge if the initial estimates are far off.

Second, an interesting open question is whether the measurement matrices utilized in DCS multi-

view imaging scenarios satisfy the RIP with respect to some reconstruction basis Ψ. Establishing an

RIP bound would give a guide for the requisite number of measurements (ideally, at each scale) and

also give a guarantee for reconstruction accuracy. Although we do not yet have a definitive answer to

this question, we suggest that there may be promising connections between these matrices and other

structured matrices that have been studied in the CS literature. For example, the measurement

matrix ΦbigR employed in the satellite experiment is closely related to a partial circulant matrix,

where the relative shifts between the rows represent the relative offsets between the camera posi-
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tions. RIP results have been established for circulant matrices [12] that are generated by a densely

populated random row vector. In our case, ΦbigR has more of a block circulant structure because it

is generated by the submatrices Φj , and so there may also be connections with the analysis in [96].

However, each row of ΦbigR will contain a large number of zeros, and it is conceivable that this

could degrade the isometric property of ΦbigR. We believe, though, that by collecting multiple mea-

surements from each camera, we are compensating for this degradation. Other possible directions

for analysis could be to build on the concentration of measure bounds recently established for block

diagonal matrices [140] and Toeplitz matrices [116].

Finally, another open question in the manifold lifting framework is what could be said about

the uniqueness of M(x) given samples of ΦM(x). When all points on the manifold M(x) are K-

sparse, the RIP can be one avenue to proving uniqueness, but since our objective is to sample fewer

than O(K log(N/K)) measurements for each signal, a stronger argument would be preferable. By

considering the restricted degrees of freedom that these signal ensembles have, it seems reasonable

to believe that we can in fact establish a stronger result.

8.1.3 Structural health monitoring application

In this work, we identified the joint signal structure of signal ensembles that arise in SHM systems

from equations describing an MDOF system. This allowed us to relate the acquired measurements

from each sensor node to the underlying modal parameters via a simple SVD of the data matrix. We

provided sufficient conditions for the accurate recovery of mode shapes via the SVD for uniform and

random sampling schemes. Our experimental results on a real dataset1 showed that the proposed

method is able to successfully recover the underlying mode shapes.

An immediate extension of our work would be to consider the problem of extracting the modal

frequencies in addition to the mode shapes. Essentially, the SVD of [V ] indirectly reveals an estimate

of the modal frequencies. More specifically, let us consider the case when {v(t)} is sampled according

to the uniform sampling scheme. Then the matrix [Ŝ] that is a byproduct obtained via SVD of [V ]

implicitly contains the information of the modal frequencies because each row of [Ŝ] can be written as

[Ŝ]l,: = {eiωlt1 , . . . , eiωltM }+{n}, where {n} ∈ RM represents an error component. A straightforward

way to estimate the frequency content of each [Ŝ]l,:, is to use Fourier transform and locate the peaks

in the spectrum. However, it is possible that such a method may not work well (due to potential

1As we had limited access to real datasets we were only able to test our method against one particular dataset. To
get a better idea of how our method performs given this dataset we could use cross-validation and test our method
on various subsamples of {u1}, . . . , {u18}. We could also create synthetic vibration data by simulating a system of
ordinary differential equations.
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aliasing) for frequencies that are higher than δmax/2. In such a case, random sampling schemes

together with sparsity enforced reconstructions may serve as a better method for extracting modal

frequencies.

Other extensions are also possible such as considering damping in an MDOF system, and in-

cluding a forcing term in the equation. Each extension will lead to a more realistic modeling of the

underlying structural dynamics that will lead to a more precise and accurate algorithm.

Finally, all of our theory is based on the fact that we are sampling each vibration signal at the

same time points t1, . . . , tM . This facilitated the extraction of important geometrical information

such as the right singular vectors of the signal matrix. Another interesting alternative to this

sampling method would be to use different sampling times at each sensor node. This may potentially

increase the diversity in the measurements. However, to utilize these measurements in the extraction

of the modal parameters we have to design a completely new algorithm since the signal matrix can no

longer be related to the modal parameters via the SVD. The key to designing such algorithm would

be to identify an appropriate signal model to fully exploit the added diversity in the measurements.

8.2 Measurement matrices in multi-signal scenarios

We have also analyzed important characteristics of CS measurement matrices. In particular,

we have studied the CoM behavior of BD matrices, and also established that random matrices are

able to closely preserve the singular values and right-singular vectors of matrices in the relative

sense. Although the meaning and purpose of each result differs, the common thread between the

two results is that they are both applicable in multi-signal scenarios. Interestingly, when each signal

xj ∈ RN is measured with the same measurement matrix Φ, i.e., yi = Φxi i = 1, . . . , J , the overall

equation can be represented with an RBD matrix but also via Y = ΦX, where Y = [y1, . . . , yJ ] and

X = [x1, . . . , xJ ]. Our results provide a useful guideline that if we desire a CoM guarantee it is best

when the signals have equal energies and are orthogonal to one another, but if we want to obtain

accurate right singular vectors of X it is best when the singular values of X are sharply decaying.

A curious line of future work is to establish a unifying theory on the advantages/disadvantages,

the gains/losses, etc., of using the same versus different measurement matrices for the acquisition

of multiple signals. In the applications that we have discussed in this dissertation we have seen

both cases. For example, in CS video we have used different measurement matrices to measure each

video frame. In both multiview imaging and SHM systems we have used the same measurement

matrices to measure each image/vibration signal. It is easy to see that using different measurement
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matrices will help us acquire more diverse information about the underlying signals. For example,

in the extreme case when x1 = · · · = xJ , each corresponding measurement vector y1, . . . , yJ will

give us more information about x1. However, for the same example, using the same measurement

matrix to acquire x1, . . . , xJ , each corresponding measurement vector y1, . . . , yJ will give us the

same information over and over again. On the other hand, using the same measurement matrix can

give us important insights into the geometry that relates the signal ensemble. For example, in both

multiview imaging and SHM systems it was crucial for us to use the same measurement matrix to

estimate the initial camera positions and the mode shape vectors, respectively.

An interesting application of our work on the singular values and singular vectors is to the

recovery of a low-rank, N ×N symmetric matrix X. Let us write the eigendecomposition of X as

X = UΛUT , where we assume that Λ only has a few non-zero eigenvalues that are sharply decaying,

or sufficiently separated. Suppose we wish to recover X from Y = ΦX. A simple way to achieve this

is to compute the SVD of Y to get estimates of Û and Λ̂. This can be used to build X̂ = Û Λ̂ÛT . In

some sense, it is remarkable how we can recover X without exploiting any sparsity within and/or

across the signals in X, which are what most reconstruction methods rely on in the multi-signal CS

literature.
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APPENDIX A

Appendix A: Proof of Theorem 5.3

Proof. Let y = Φx. For each matrix Φj , we let [Φj ]i,n denote the nth entry of the ith row of Φj .

Further, we let yj(i) denote the ith component of measurement vector yj , and we let xj(n) denote

the nth entry of signal block xj .

We begin by characterizing the point of concentration. One can write yj(i) =
∑N
n=1 [Φj ]i,n xj(n),

and so it follows that Ey2
j (i) = E

(∑N
n=1 [Φj ]i,n xj(n)

)2

. Since the [Φj ]i,n are zero-mean and

independent, all cross product terms are equal to zero, and therefore we can write Ey2
j (i) =

E
∑N
n=1 [Φj ]

2
i,n x

2
j (n) = σ2

j ‖xj‖22 = 1
Mj
‖xj‖22. Combining all of the measurements, we then have

E‖y‖22 =
∑J
j=1

∑Mj

i=1 Ey2
j (i) =

∑J
j=1

∑Mj

i=1
‖xj‖22
Mj

=
∑J
j=1 ‖xj‖22 = ‖x‖22.

Now, we are interested in the probability that
∣∣‖y‖22 − ‖x‖22∣∣ > ε‖x‖22. Since E‖y‖22 = ‖x‖22,

this is equivalent to the condition that
∣∣‖y‖22 −E‖y‖22

∣∣ > εE‖y‖22. For a given j ∈ {1, 2, . . . , J}

and i ∈ {1, 2, . . . ,Mj}, all {[Φj ]i,n}Nn=1 are i.i.d. subgaussian random variables with subgaussian

norms equal to ‖ φ√
Mj

‖ψ2 =
‖φ‖ψ2√
Mj

. From above, we know that yj(i) can be expressed as a linear

combination of these random variables, with weights given by the entries of xj . As with Gaussian

random variables, linear combinations of i.i.d. subgaussian random variables are also subgaussian.

In particular, from [132, Lemma 9] it follows that each yj(i) is a subgaussian random variable with

subgaussian norm ‖yj(i)‖ψ2
≤ c1 ‖φ‖ψ2√

Mj

‖xj‖2, where c1 is an absolute constant.

In order to obtain a concentration bound for ‖y‖22, we require the following important theorem

regarding sums of squares of subgaussian random variables.

Theorem 1. [132] Let X1, . . . , XL be independent subgaussian random variables with subgaussian

norms ‖Xi‖ψ2
for all i = 1, . . . , L. Let T = maxi ‖Xi‖2ψ2

. Then for every t ≥ 0 and every a =
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(a1, . . . , aL) ∈ RL, we have

P

{∣∣∣∣∣
L∑
i=1

ai(X
2
i −EX2

i )

∣∣∣∣∣ ≥ t
}
≤ 2 exp

{
−C1 min

(
t2

16T 2‖a‖22
,

t

4T‖a‖∞

)}
,

where C1 > 0 is an absolute constant.

Proof. From [132, Lemma 14], we know that each X2
1 , . . . , X

2
L is a subexponential random variable

with subexponential norm ‖X2
i ‖ψ1 ≤ 2‖Xi‖2ψ2

. For each i = 1, 2, . . . , L, we define Yi = X2
i −EX2

i is

a zero-mean subexponential random, and from [132, Remark 18], it follows that ‖Yi‖ψ1
≤ 2‖X2

i ‖ψ1
.

The theorem follows by applying [132, Proposition 16] to the sum
∑L
i=1 aiYi with K = 4T ≥

maxi ‖Yi‖ψ1 .

Now, let us define ỹj(i) :=
yj(i)

‖yj(i)‖ψ2
so that ‖ỹj(i)‖ψ2

= 1, and note that

P
(∣∣‖y‖22 −E‖y‖22

∣∣ > ε‖x‖22
)

= P

∣∣∣∣∣∣
∑
j

∑
i

‖yj(i)‖2ψ2

(
ỹ2
j (i)−Eỹ2

j (i)
)∣∣∣∣∣∣ > ε‖x‖22

 .

We apply Theorem 1 to the subgaussian random variables ỹj(i) (over all i, j) with weights aj(i) =

‖yj(i)‖2ψ2
. Letting a denote a vector of length

∑
jMj containing these weights, we have that

‖a‖22 =
∑
j

∑
i

a2
j (i) =

∑
j

∑
i

‖yj(i)‖4ψ2
≤ c41‖φ‖4ψ2

∑
j

∑
i

‖xj‖42/M2
j

= c41‖φ‖4ψ2

∑
j

‖xj‖42/Mj = c41‖φ‖4ψ2
‖M−1/2γ‖22,

and

‖a‖∞ = max
i,j

aj(i) = max
i,j
‖yj(i)‖2ψ2

≤ c21‖φ‖2ψ2
max
j
‖xj‖22/Mj = c21‖φ‖2ψ2

‖M−1γ‖∞.

Further note that ‖x‖22 = ‖γ‖1 and ‖x‖42 = ‖γ‖21. We complete the proof by substituting these

quantities into Theorem 1 with T = 1 and t = ε‖x‖22 and by taking C2 = 1
4c21

.
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APPENDIX B

Appendix B: Proof of Theorem 5.5

In order to prove Theorem 5.5, we will require the following two lemmas.

Lemma B.1. Suppose x ∈ RNJ and Φ̃ is an M ×N matrix where Φ̃T = [φ1 φ2 · · · φM ] with each

φi ∈ RN . Let Φ be an MJ ×NJ RBD matrix as defined in (5.1) with all Φj = Φ̃. If y = Φx, then

‖y‖22 =
∑M
i=1 φ

T
i Aφi, where A = XTX with X defined in (5.6).

Proof of Lemma B.1.

‖y‖22 = xTΦTΦx =

J∑
j=1

xTj Φ̃T Φ̃xj =

J∑
j=1

xTj

(
M∑
i=1

φiφ
T
i

)
xj

=

M∑
i=1

φTi

 J∑
j=1

xjx
T
j

φi =

M∑
i=1

φTi Aφi.

Lemma B.2. Suppose z ∈ RN is a random vector with i.i.d. Gaussian entries each having zero-

mean and variance σ2. For any symmetric N ×N matrix A with eigenvalues {λi}Ni=1, there exists a

collection of independent, zero-mean Gaussian random variables {wi}Ni=1 with variance σ2 such that

zTAz =
∑N
i=1 λiw

2
i .

Proof of Lemma B.2. Because A is symmetric, it has an eigen-decomposition A = V TDV , where D

is a diagonal matrix of its eigenvalues {λi}Ni=1 and V is an orthogonal matrix of eigenvectors. Then

we have zTAz = (V z)TD(V z) =
∑N
i=1 λiw

2
i , where w = V z and w = [w1, w2, · · · , wN ]T . Since V

is an orthogonal matrix, {wi}Ni=1 are i.i.d. Gaussian random variables with zero-mean and variance

σ2.
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Proof of Theorem 5.5. Let y = Φx. We first calculate E‖y‖22 to determine the point of concentration.

Applying Lemma B.1 to y and Lemma B.2 with z = φi for each i = 1, 2, . . . ,M , we have ‖y‖22 =∑M
i=1 φ

T
i Aφi =

∑M
i=1

∑N
j=1

λj
Mw2

i,j , where each {wi,j}i,j is an independent Gaussian random variable

with zero mean and unit variance. After switching the order of the summations and observing that

Tr(XTX) = Tr(XXT ) where Tr(·) is the trace operator, we have E‖y‖22 =
∑N
j=1

λj
M

∑M
i=1 Ew2

i,j =∑N
j=1 λj = Tr(XXT ) = ‖x‖22.

Having established the point of concentration for ‖y‖22, let us now compute the probability that∣∣‖y‖22 − ‖x‖22∣∣ > ε‖x‖22. Since E‖y‖22 = ‖x‖22, this is equivalent to the condition that
∣∣‖y‖22 −E‖y‖22

∣∣ >
εE‖y‖22. We again apply Theorem 1 to establish a concentration result. To do so, note that each

wi,j is a subgaussian random variable with the same subgaussian norm ‖w‖ψ2
:= ‖wi,j‖ψ2

; because

these variables are Gaussian with unit variance, it is also known [132] that there exists an absolute

constant c2 such that ‖w‖ψ2 ≤ c2. Let us define w̃i,j :=
wi,j
‖w‖ψ2

so that ‖w̃i,j‖ψ2 = 1, and note that

P (|‖y‖22 −E‖y‖22| > ε‖x‖22) = P

∣∣∣∣∣∣
∑
j

∑
i

‖w‖2ψ2

M
λj(w̃

2
i,j −Ew̃2

i,j)

∣∣∣∣∣∣ > ε‖x‖22

 .

We apply Theorem 1 to the subgaussian random variables w̃i,j (over all i, j) with weights aj(i) =

‖w‖2ψ2

M λj . Letting a denote a vector of length MJ containing these weights, we have that ‖a‖22 =∑
j

∑
i a

2
j (i) =

∑
j

∑
i

‖w‖4ψ2

M2 λ2
j =

‖w‖4ψ2

M

∑
j λ

2
j =

‖w‖4ψ2

M ‖λ‖22 ≤ c42
M ‖λ‖22 and ‖a‖∞ = maxi,j aj(i) =

‖w‖2ψ2

M maxj λj =
‖w‖2ψ2

M ‖λ‖∞ ≤ c22
M ‖λ‖∞. Note that ‖x‖22 = Tr(XTX) = ‖λ‖1 and ‖x‖42 = ‖λ‖21 since

the eigenvalues {λj}Nj=1 are non-negative. We complete the proof by substituting these quantities

into Theorem 1 with T = 1 and t = ε‖x‖22 and by taking C3 = 1
4c22

.
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APPENDIX C

Appendix C: Proof of Theorem 5.9

Our result follows from an application of the following.

Theorem 2. [29, Theorem 3.1] Let x ∈ CN ′ and β > 1. Suppose N ′ > 512 and choose NT and NΩ

such that:

NT +NΩ ≤
0.5583N ′/q√

(β + 1) log(N ′)
and NT +NΩ ≤

√
2/3N ′

(
1
q −

(logN ′)2

N ′

)
√

(β + 1) log(N ′)
.

Fix a subset T of the time domain with |T | = NT . Let Ω be a subset of size NΩ of the frequency

domain generated uniformly at random. Then with probability at least 1 − O((log(N ′))1/2N ′−β),

every signal x supported on Ω in the frequency domain has most of its energy in the time domain

outside of T . In particular, ‖xT ‖22 ≤ ‖x‖
2
2

q , where xT denotes the restriction of x to the support T .

Proof of Theorem 5.9. First, observe that ‖γ‖21 = ‖x‖42 and ‖γ‖22 =
∑J
k=1 ‖xk‖42. Next, apply

Theorem 2 with NΩ = S and NT = N = N ′/J , being careful to select a value for q such that (C.1)

is satisfied. In particular, we require

1

q
≥ (N + S)

√
(β + 1) logN ′

0.5583N ′
and

1

q
≥

(N+S)√
2/3

√
(β + 1) logN ′ + (logN ′)2

N ′
.

This is satisfied if we choose

(C.1) q ≤ min

 0.5583N ′

(N + S)
√

(β + 1) logN ′
,

N ′

(N+S)√
2/3

√
(β + 1) logN ′ + (logN ′)2

 .

Choosing any q satisfying (C.1), we have that with failure probability at most
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O((log(N ′))1/2(N ′)−β), ‖xk‖22 ≤ ‖x‖
2
2

q for each k = 1, 2, . . . , J , implying that each block individually

is favorable. Taking a union bound for all k to cover each block, we have that with total failure

probability at most O(J(log(N ′))1/2(N ′)−β), ‖γ‖22 =
∑J
k=1 ‖xk‖42 ≤

J‖x‖42
q2 . Thus with this same

failure probability, Γ2

M =
‖γ‖21
‖γ‖22

≥ q2

J . Combining with (C.1) and using the fact that S < N , we thus

have:

Γ2

M
≥ min


0.55832N2J

(N + S)2(β + 1) logN ′
,

N2J(
(N+S)√

2/3

√
(β + 1) logN ′ + (logN ′)2

)2


≥ min


(0.55832/22)J

(β + 1) log(N ′)
,

J(
2√
2/3

√
(β + 1) logN ′ + (logN ′)2

N

)2

 .
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APPENDIX D

Appendix D: Proof of Lemma 5.10

Proof. Let X be the J × N matrix as defined in (5.6). Without loss of generality, we suppose the

nonzero eigenvalues {λi}min(J,N)
i=1 of XTX are sorted in order of decreasing magnitude, and we let

λmax := λ1 and λmin := λmin(J,N). We can lower bound Λ2 in terms of these extremal eigenvalues

by writing

Λ2 =
M‖λ‖21
‖λ‖22

= M

∑
i λ

2
i +

∑
i

∑
j 6=i λiλj∑

i λ
2
i

≥M +M
λmin

λmax

∑
i

∑
j 6=i λi∑
i λi

= M +M
λmin

λmax
(J − 1).

(D.1)

Assume that ε ≤ ‖φ‖
2
ψ2

C2
, and let us define the following events:

A =

{
Nσ2(1− ε)2 ≤ ‖X

T z‖22
‖z‖22

≤ Nσ2(1 + ε)2, ∀z ∈ RJ
}
,

B =
{
λmax ≤ Nσ2(1 + ε)2

}⋂{
λmin ≥ Nσ2(1− ε)2

}
,

C =

{
λmin

λmax
≥
(

1− ε
1 + ε

)2
}
,

D =

{
Λ2 ≥M +M

(
1− ε
1 + ε

)2

(J − 1)

}
.

These events satisfy A = B ⊆ C ⊆ D, where the last relation follows from (D.1). It follows that

P (Dc) ≤ P (Ac), where Ac represents the complement of event A. Because XT is populated with

i.i.d. subgaussian random variables, it follows as a corollary of Theorem 5.3 (by setting M ← N and

J ← 1 in the context of that theorem) that for any z ∈ RJ and ε ≤ ‖φ‖
2
ψ2

C2
, P (

∣∣‖XT z‖22 −Nσ2‖z‖22
∣∣ >
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εNσ2‖z‖22) ≤ 2 exp

(
−C1C

2
2Nε

2

‖φ‖4ψ2

)
. Thus, for an upper bound for P (Ac), we can follow the straight-

forward arguments in [14, Lemma 5.1] and conclude that P (Ac) ≤ 2
(

12
ε

)J
exp

(
−C1C

2
2Nε

2

‖φ‖4ψ2

)
. Thus

by choosing J ≤ C1C
2
2Nε

2

2‖φ‖4ψ2
log(12/ε)

, we see that P (Dc) ≤ 2 exp

(
− 1

2
C1C

2
2Nε

2

‖φ‖4ψ2

)
. Finally, the fact that

Γ2 ≥ Λ2 follows from (5.9).
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