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ABSTRACT 

Bisphenol A (BPA) is a widely used monomer of polycarbonate plastics and 

epoxide resin implicated in asthma pathogenesis when exposure occurs to the developing 

fetus.  Widespread exposure to BPA is evident by detectable levels present in 93% of the 

United States population.  This project tested the hypothesis that exposure to 

environmentally relevant levels of BPA enhances pro-inflammatory mediator release 

from mast cells, a key cell type involved in the development of atopic asthma, and leads 

to worsened adulthood pulmonary inflammation after perinatal exposure in an allergen-

induced rodent model of asthma.   

Pro-inflammatory mediator release was examined using bone marrow-derived 

mast cells (BMMCs) following in vitro or in vivo BPA exposure.  Exposure to 

environmentally relevant levels of BPA (1-1000 nM) in vitro increased BMMC histamine 

(p≤0.030) and cysteinyl leukotriene (CysLT) (p≤0.029) release – a response that was not 

inhibited by estrogen receptor antagonism, but was inhibited by blocking extracellular 

signal-regulated kinase signaling (p≤0.003) or by chelating extracellular
 
calcium ions 

(p≤0.037).  Perinatal BPA exposure through maternal diet in mice with mixed C57BL/6 

and C3H/HeJ backgrounds increased the release of CysLTs (p≤0.036), TNF-α (p≤0.019), 

prostaglandin D2 (p=0.009), and IL-13 (p=0.001) and decreased global DNA methylation.  



 

xv 

 

The influence of BPA exposure on pulmonary inflammation and allergic 

sensitivity was tested using an ovalbumin sensitization and airway challenge model in 

BALB/c mice exposed to BPA during in utero and early postnatal development through 

the maternal diet.  At 12-weeks-old, BPA-exposed offspring displayed increased sera 

anti-OVA IgE levels (p≤0.038) and production of IL-13 (p≤0.028) and IFN-γ (p<0.0001) 

from OVA-stimulated splenocytes, indicating enhanced allergen sensitization.  However, 

pulmonary inflammation, as assessed by total and differential leukocyte counts, 

cytokines, and histopathological scoring, was either not different or reduced in mice 

exposed to BPA.   

In this work, exposure to environmentally relevant levels of BPA in vitro and in 

vivo resulted in upregulated release of pro-inflammatory mediators from mast cells and 

enhanced allergen sensitization.  However, BPA exposure did not worsen pulmonary 

inflammation following allergen challenge.  Based on these results, minimizing BPA 

exposures during the perinatal period may be an important means of reducing the risk of 

asthma and other allergic diseases later in life. 
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CHAPTER 1 

INTRODUCTION 

Asthma 

 Asthma is a chronic inflammatory disease of the airways characterized by 

reversible airway obstruction, bronchospasm, airway hyperreactivity, airway remodeling, 

and recurrence of clinical symptoms such as wheezing, coughing, shortness of breath, 

and chest congestion (Barrios et al., 2006).  Asthma is categorized into two 

classifications: atopic asthma and non-atopic asthma.  These classifications can also be 

designated as extrinsic and intrinsic asthma or allergic and non-allergic asthma.  

Development of allergic asthma is typically seen early in life, and asthmatic episodes are 

initiated in response to a particular allergen such as pollen or dander.  Non-allergic 

asthma, on the other hand, usually develops later in life and its cause is unclear.  Non-

allergic asthmatic episodes have been linked to non-allergen triggers such as stress, 

exercise, air pollution, cigarette smoke, or repeated exposure to occupational hazards.   

 The worldwide prevalence of asthma has steadily risen since the 1970s, and 

current reports estimate that the number of individuals diagnosed with asthma is about 

300 million globally (WHO, 2007; Anandan et al., 2010), with 23 million of those cases 

in the United States alone (CDC, 2012).  The rapid growth in asthma prevalence has put a 

significant economic strain on healthcare systems.  In the United States, the direct cost of 
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treating asthma is estimated to be $50.1 billion a year (Barnett and Nurmagambetov, 

2011).  Factoring in another $5.9 billion for indirect costs, such as work absenteeism, 

raises the approximate economic burden of asthma to $56 billion (Barnett and 

Nurmagambetov, 2011).  Despite successful advances in asthma treatment, asthma 

mortality remains high, especially in underdeveloped countries with limited resources to 

diagnose and treat asthma.  Global asthma mortality rates reach nearly 300,000 yearly, 

compared to the US alone where mortality reaches approximately 3,000 yearly (CDC, 

2012).  Interestingly, epidemiologic studies have repeatedly indicated that the prevalence 

of asthma is highest in industrialized areas, suggesting that environmental exposure to 

certain products may play a role in asthma pathogenesis (Anandan et al., 2010).   

  

Mast Cells 

Mast cells are resident leukocytes of myeloid origin commonly found in many 

vascularized tissues, especially those in contact with the external environment such as 

skin, lungs, and intestines.  Mast cells exhibit different phenotypes dependent upon the 

tissue to which they are localized (Bienenstock et al., 1983; Damas and Lecomte, 1983; 

Schulman et al., 1983).  In the lung and certain other tissues, mast cells exhibit two 

distinct phenotypes: mucosal mast cells (MMCs) and connective tissue mast cells 

(CTMCs) (Irani et al., 1986).  MMCs and CTMCs in the lung are distinguishable by their 

unique profiles of proteases, which are induced by T cells in MMCs and constitutively 

expressed in CTMCs (Xing et al., 2011).  In experimental settings, primary mast cells are 

routinely derived from collected bone marrow after stimulation with growth factors to 
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induce differentiation; however, the phenotype of these mast cells differ from both MMC 

and CTMC phenotypes (Hunter et al., 2012). 

The main characteristic of mast cells is cytoplasmic granules containing 

preformed pro-inflammatory mediators, which include histamine, cytokines, lipid-derived 

mediators, proteases, and proteoglycans.  Mast cells play an important role in the 

induction of allergic asthma since they can become activated in response to a particular 

antigen.  While dormant, the mast cell exists with half a million IgE molecules bound to 

the cell surface by transmembrane high-affinity Fcε receptors (FcεRIs) (Amin, 2012).  In 

the presence of an antigen, several IgE molecules will bind to a single antigen in a 

process called crosslinking, which initiates a complex intracellular signaling cascade to 

induce mast cell release of pro-inflammatory mediators by both degranulation and de 

novo synthesis (Walls et al., 2001).  Mast cells may also be activated by other stimuli 

such as complement proteins, cell injury, and chemical and biologic substances, although, 

these processes are less understood.   

IgE crosslinking on the mast call surface directly results in FcεRI aggregation.  

Subsequently the lipid-raft protein Lyn, a Src-family kinase, phosphorylates tyrosine 

residues on the FcεRI β-chain and γ-chains to serve as Lyn, SYK (spleen tyrosine 

kinase), and Fyn docking sites (Okayama et al., 2012).  Independently or together, Lyn 

and SYK phosphorylate membrane-bound scaffold protein LAT (linker for activation of 

T cells), while Lyn, SYK, and Fyn phosphorylate NTAL (non-T-cell activation linker).  

Activation of LAT versus activation of NTAL thereby establishes a divergence in the 

FcεRI-initiated signaling cascade for mediator release.  LAT phosphorylation results in 
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direct recruitment of GRB2 (growth-factor-receptor-bound protein 2), GADS (GRB2-

releated adaptor protein), and PLCγ1 (phospholipase Cγ1) and indirect recruitment of 

SHC (Src homology 2 (SH2)-domain-containing transforming protein C), SLP76 (SH2-

domain-containing leukocyte protein of 65 kDa), SOS (son of sevenless), and Vav.  Once 

formed, the GRB2-SOS-SHC complex can induce the mitogen-activated protein kinase 

(MAPK) pathway to synthesize lipid-derived mediators or induce cytokine transcription, 

while PLCγ1 in the PLCγ1-GADS-SPL76-VAV complex induces degranulation through 

PKC (protein kinase C) signaling and calcium ion (Ca
2+

) influx.  In a similar fashion, 

NTAL, also referred to as LAT2, forms a GRB2-SOS complex that activates the MAPK 

pathway to induce cytokine transcription, and also forms a complex with VAV, GRB2, 

GAB2 (GRB2-associated binding protein 2), and PI3K (phosphatidylinisitol 3-kinase) to 

induce cytokine transcription or Ca
2+

 influx for degranulation.  The redundancy in LAT-

induced and NTAL-induced mast cell activation has been studied using bone marrow-

derived mast cells (BMMCs) that are LAT and/or NTAL deficient.  LAT knockout (KO) 

BMMCs displayed similarly diminished degranulation and synthesis of mediators as 

LAT-NTAL double KOs, yet, NTAL KO BMMCs displayed a higher capacity for 

degranulation and mediator synthesis (Gilfillan and Tkaczyk, 2006).  Thus, LAT-

mediated mast cell activation is viewed as the primary signaling cascade, and NTAL-

mediated activation is viewed as a secondary cascade.   

 The end result of either LAT- or NTAL-mediated signaling in mast cells is the 

release of pro-inflammatory mediators.  The most well characterized mediator released 

by mast cells is histamine, a biologic amine.  Mast cells are capable of releasing large 
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quantities of histamine, approximately 3 picograms per cell (Shahid et al., 2009).  In 

allergic responses, histamine acts as a vasodilator allowing other leukocytes to infiltrate 

the inflamed tissues, but also can act to stimulate release of mediators from macrophages, 

basophils, eosinophils, fibroblasts, lymphocytes, neutrophils, epithelial cells, and 

endothelial cells.   

Mast cells have been demonstrated to release over 60 different cytokines, 

chemokines, and growth factors (Galli et al., 2005).  Most notable in relation to asthma 

and allergic disease is mast cells’ release of Th2 cytokines.  Specific inflammatory 

responses mediated by T helper type 2 (Th2) cells, a subclass of T helper (Th) 

lymphocytes, play a large role in the mechanism leading to airway obstruction.  Th2 cells 

release a highly characteristic profile of cytokines that includes IL-4, IL-5, IL-9, and IL-

13.  These cytokines are capable of initiating immediate hypersensitivity responses 

mediated by IgE.  IL-4, IL-9, and IL-13 stimulate B cells to produce IgE, while IL-5 and 

IL-13 act on airway smooth muscle and epithelium to elicit airway hyperreactivity and 

glycoprotein production (Chung and Barnes, 1999).  IL-4, IL-5, and IL-13 also play a 

role in eosinophil maturation and recruitment to the lungs, while IL-9 stimulates mast cell 

proliferation and differentiation (Chung and Barnes, 1999).   

The lipid mediators released in greatest quantity by mast cells are prostaglandin 

(PG) D2 and leukotriene (LT) C4.  PGD2 is produced through the cyclooxygenase-1 and -

2 pathway, while LTC4, which can be further metabolized into LTD4 and LTE4 

(collectively referred to as the cysteinyl LTs (CysLTs)), is produced through the 5-

lipoxygenase (5-LO) pathway.  PGD2 is generally thought of as a vasodilator and airway 
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constrictor, however, a study of allergen-induced pulmonary inflammation using PGD2 

receptor KO mice indicated that PGD2 signaling plays a role in lymphocyte recruitment, 

eosinophil recruitment, Th2 cytokine production, and development of airway 

hyperresponsiveness (Matsuoka et al., 2000).  Similarly, the primary activity of the 

CysLTs in asthma is believed to be airway smooth muscle constriction.  However, an 

allergen-induced pulmonary inflammation study in mice lacking LTC4 synthase, the final 

enzyme in the 5-LO pathway needed for LTC4 synthesis, indicated a role for the CysLTs 

in eosinophil recruitment, mast cell recruitment and activation, mucus secretion, goblet 

cell hyperplasia, IgE and IgG1 production, Th2 cytokine production, and airway 

hyperresponsiveness (Kim et al., 2006).   

Due to the complexity involved in regulating inflammatory responses, it is 

difficult to define the precise role of each cell type or signal involved in asthma 

pathophysiology.  While mast cells are important for the induction of allergic asthma and 

regulating acute responses, their role becomes diminished in comparison to other 

leukocytes as chronic asthma is established.  Cells including eosinophils, neutrophils, 

macrophages, and lymphocytes take on more prominent roles as they are and continue to 

be recruited to the lungs.  Many of the pro-inflammatory mediators released by mast cells 

continue to be released by other cell types as well.  Thus, completely understanding how 

an environmental exposure influences inflammation associated with asthma, especially 

from a mechanistic standpoint, is very difficult.  

 

Bisphenol A 
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Bisphenol A (BPA, also (CH3)2C(C6H4OH)2, 2,2-bis(p-hydroxyphenyl)-propane, 

or p,p'-isopropylidenebisphenol) is a monomer of polycarbonate plastics and epoxide 

resin.  First synthesized in 1891, BPA monomer is produced by a condensation reaction 

with two parts phenol and one part acetone (Figure 1.1).  Polymerization to generate 

polycarbonate plastics occurs through a 1-to-1 addition of BPA monomer and phosgene 

catalyzed by HCl, while polymerization of BPA-containing epoxide resin is most 

commonly formed by a 1-to-1 addition of BPA monomer and epichlorohydrin catalyzed 

by NaOH (Figure 1.2).  In 2009, the yearly production of BPA was estimated to be 6 

billion pounds, with an additional 100 tons released directly into the atmosphere 

(Vandenberg et al., 2009).  BPA is a regular component of food-related consumer 

products such as baby bottles, food storage containers, plastic wrap, water bottles, and the 

linings of metal cans; however, BPA is also found in non-food-related items such as 

medical tubing, dental sealants, thermal receipts, and paper towels (Vandenberg et al., 

2007).   

In 1993, Krishnan et al. was the first to report that BPA monomers are released 

from polycarbonate containers when several failed experiments led to the discovery that 

water autoclaved in polycarbonate flasks contained dissociated BPA molecules (Krishnan 

et al., 1993).  BPA monomers readily dissociate from polymers through hydrolysis of the 

ester bond.  While BPA depolymerization occurs at normal conditions such as room 

temperature and neutral pH, high temperatures, low or high pH, age, repeated washing, 

and general use increase the amount of BPA monomers leaching from a polycarbonate or 

epoxide products (Kang et al., 2006; Richter et al., 2007).  Due to the widespread use of 
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BPA in food-related items, the main route of human exposure is through ingestion of 

tainted food and drink.  However, minor routes of exposure through inhalation and 

dermal absorption exist due to the presence of BPA in indoor air, outdoor air, household 

dust, thermal receipts, and other paper goods (Vandenberg et al., 2007).   

Many studies from Europe, Japan, and the United States have reported regular and 

widespread exposure to BPA in adults and children as evidenced by measurable 

quantities in serum, urine, saliva, and breast milk in the majority of study participants 

(Vandenberg et al., 2007).  Levels of BPA detected in biologic samples vary from 

individual to individual, but can also vary from day to day for a single individual (Ye et 

al., 2011; Christensen et al., 2012; Braun et al., 2012).  Most studies report biologic BPA 

levels in humans centering around the low nanomolar range.  For example, typical total 

BPA levels in adult serum and urine range from 0.2-20 ng/mL and 1.12-2.82 ng/mL, 

respectively (Vandenberg et al., 2007).  Furthermore, quantification of BPA in infant 

cord blood (Ikezuki et al., 2002), amniotic fluid (Edlow et al., 2012), placenta 

(Schonfelder et al., 2002), and fetal liver tissues (Nahar et al., 2013) reveal higher levels 

of free BPA than found in adult samples.  The higher fetal burden of BPA may result 

from the developing liver’s altered capacity for metabolism, enterohepatic recirculation, 

and elimination of xenobiotics (Ginsberg et al., 2004; Vandenberg et al., 2009; Nahar et 

al., 2013).   

The half-life of BPA in humans has been estimated to be very short – on the order 

of six hours – though new evidence questions the accuracy of this observation (Pritchett 

et al., 2002; Volkel et al., 2002; Ye et al., 2005).  Human studies conducted in the early 
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2000s by Volkel et al., Ye et al., and Pritchett et al. examined BPA metabolism and 

toxicokinetics of administered doses.  These reports described efficient BPA 

glucuronidation and sulfonation leading to rapid excretion with relatively low body 

burden (Pritchett et al., 2002; Volkel et al., 2002; Ye et al., 2005).  However, the presence 

of free BPA excreted in urine suggests incomplete metabolism (Calafat et al., 2005; Liao 

and Kannan, 2012; Mendonca et al., 2012).  Other reports have suggested that high levels 

of BPA in certain tissues, for example placental tissue (Schonfelder et al., 2002), 

umbilical tissue (Ikezuki et al., 2002), and possibly adipose tissue (Fernandez et al., 

2007), indicate bioaccumulation in part due to BPA being lipophilic.  Additionally, BPA 

may be deconjugated in the intestines (Sakamoto et al., 2002) and possibly other tissues 

(Stowell et al., 2006), thus potentially lengthening the biological half-life.  Moreover, a 

study by Stahlhut et al. using 2003-2004 National Health and Nutrition Examination 

Survey (NHANES) data compared total BPA levels in urine with reported fasting times 

of nearly 1,500 participants (Stahlhut et al., 2009).  This study did not report a rapid 

decline in urinary BPA levels up to 24 hours of fasting, thus suggesting that the half-life 

of BPA in the body is longer than originally thought, or that non-food exposures have a 

sizable impact on biologic BPA levels, or both.  Conversely, a similar study by 

Christensen et al. that monitored five fasting volunteers reported declined total BPA 

levels in urine 12-24 hours after fasting that remained low up to 48 hours (Christensen et 

al., 2012).   

Even though a consensus on the biological half-life of BPA has not been reached, 

there is agreement that human exposure to BPA occurs on a daily basis for most 



 

10 

 

individuals.  Even with a hypothetical rapid excretion of BPA from the body, daily 

consumption of BPA through tainted food perpetuates biologic levels causing complete 

elimination of BPA from the body to be very difficult, if not impossible (Vandenberg et 

al., 2007).  Based on literature quantifying BPA contamination in food, water, air, and 

soil, Kang et al. estimated the daily human BPA intake for adults to be 1 μg/kg body 

weight/day (Kang et al., 2006), while the European Commission’s estimate of human 

BPA intake from only food sources ranges from 0.48-1.6 μg/kg body weight/day 

(European Commission Scientific Committee on Food, 2002).  Neonates are exposed to 

the highest amounts of BPA due to lower body weight, possible higher concentrations of 

BPA in breast milk that in other bodily fluids, and use of BPA-containing plastic bottles.  

Estimates suggest that infants less than three months old are exposed to 24 μg BPA/kg 

body weight/day (Wong et al., 2005).   

Reliance on BPA quantification in foodstuffs as a way to estimate BPA intake is 

very subjective since levels of BPA can vary from the type of food, the type of container, 

the manufacturer, and the time of manufacture (Vandenberg et al., 2007).  For example, 

D’Antuono et al. observed that heating water in polycarbonate baby bottles to 100 °C for 

30 minutes result in a mean BPA leachate level of 1.2 ng/mL (D’Antuono et al., 2001).  

However, Brede et al. demonstrated that unused baby bottles leached an average of 0.23 

ng/mL of BPA after being heated to 100 °C for 1 hour, while bottles washed 51 times and 

brushed 13 times leached an average of 8.4 ng/mL of BPA and bottles washed 169 times 

and brushed 23 times leached and average of 6.7 ng/mL of BPA (Brede et al., 2003).  

Similarly, Brontons et al. examined BPA leachate in water heated to 125 °C for 30 
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minutes in 20 different food cans and reported BPA levels ranging from 4-23 μg/can 

(Brontons et al., 1995).  Kang et al. reported that the contents of canned foods also 

influence concentration of BPA leachate, with vegetable oil and salt solutions having 

greater BPA leachate than water or glucose (Kang et al., 2003).  Quantification of BPA in 

paper towels conducted by Vinggaard et al. indicated almost no detectable BPA in virgin 

paper towels, but yielded BPA levels of 0.55-24.1 mg/kg in paper towels made from 

recycled paper products (Vinggaard et al., 2000).  Another study examining the portion of 

paper and cardboard takeout containers in direct contact with food found detectable levels 

of BPA in 47% of paper containers and 38% of cardboard containers, with higher levels 

in the cardboard containers (Lopez-Espinosa et al., 2007).   

 

 BPA Endocrine Disruption 

The distinguishing structural feature of the BPA monomer is two protruding 

phenol groups, which create a structure similar to estradiol (E2) as well as other synthetic 

estrogens (Figure 1.3).  This similarity allows for BPA molecules to fit into estrogen 

receptor (ER) binding pockets and alter normal endocrine signaling, thereby behaving as 

an endocrine-disrupting chemical (EDC).  Additionally, BPA has been demonstrated to 

bind to the thyroid hormone receptor (TR) (Zoeller et al., 2005), peroxisome proliferator-

activated receptor-γ (PPAR-γ) (Kwintkiewicz et al., 2010), estrogen-related receptor-γ 

(ERR-γ) (Matsushima et al., 2007), human pregnane X receptor (Sui et al., 2012), and G-

protein Coupled Estrogen Receptor-1 (GPER, also GPR30) (Dong et al., 2011; Pupo et 

al., 2012).   
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Kinetic studies of BPA-ER binding have reported that BPA binds to both ER 

alpha (ERα) and ER beta (ERβ), with an approximate 10-fold higher affinity toward ERβ 

(Gould et al., 1998; Matthews et al., 2001; Routledge et al., 2000).  However, early 

kinetic studies labeled BPA as a “weak estrogen” due to the observation that BPA-ER 

binding affinity was approximately 10,000-fold weaker than E2-ER affinity (Kuiper et 

al., 1998; Andersen et al., 1999; Fang et al., 2000).  More recent evidence has 

demonstrated that low doses of BPA (femtomolar to nanomolar) promote E2-mediated 

responses at similar or greater strength than E2 (Alonso-Magdalena et al., 2005; Hugo et 

al., 2008; Zsarnovszky et al., 2005).  Higher BPA-ER binding affinity at low doses has 

been explained in part by BPA binding to ERs differently than E2 (Gould et al., 1998).  

For example, Washington et al. demonstrated that BPA binds to the low-affinity type II 

estrogen binding site where it outcompetes E2 at concentrations up to 10-15 μM 

(Washington et al., 2001).  Higher BPA-ER binding affinity at low doses has also been 

explained by BPA eliciting responses through non-classical estrogen receptors (Alonso-

Magdalena et al., 2012).  In addition, BPA activity has also been demonstrated to act in a 

tissue-specific manner (Welshons et al., 2006), with high activity especially noted in the 

prostrate (Gupta, 2000). 

Over many years, numerous in vivo studies have demonstrated estrogenic activity 

of BPA through alterations to female reproductive tissues.  In 1936, Dodds and Lawson 

were the first to show BPA estrogenicity when rats injected twice daily for a total of four 

days with 100 mg BPA had increased uterine wet weight by the end of the exposure 

(Dodds and Lawson, 1936).  The impact of this finding, however, was minimal since use 
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of BPA in plastics manufacturing did not begin until the 1950s.  More recently, rats 

treated with 400 mg/kg BPA a day for three days (Ashby and Tinwell, 1998) and rats 

treated with 10 mg/kg and 30 mg/kg BPA once a day for four days (Dodge et al., 1996) 

exhibited increased uterine wet weight by the end of the exposure period.  Proliferation of 

vaginal and uterine epithelial cells from 2-3 layers to 6-8 layers and increased uterine 

luminal epithelial cell height following 0.3 mg/kg/day BPA exposure in rats has also been 

reported (Steinmetz et al., 1998).  Furthermore, proliferative activity of mammary gland 

epithelium following 11 days of 0.1 mg/kg/day and 0.5 mg/kg/day BPA exposure in rats 

was seen to increase 143% and 220%, respectively (Colerangle and Roy, 1997).  

Evidence implicating BPA as an EDC has also been displayed in vitro using the estrogen-

sensitive human breast cancer cell lines MCF-7, T-47D, and ZR-75-1.  When exposed to 

BPA at quantities equal to or greater than 1 μM for one week, cells display enhanced 

proliferation (Schafer et al., 1999).   

Controversy continues to surround the perceived toxicity of BPA (Vandenberg et 

al., 2009).  A toxicological profile of BPA conducted by Morrissey et al. established the 

maximum tolerated dose (or lowest observed adverse effect level (LOAEL)) for BPA to 

be 1000 mg/kg body weight/day in rats and mice (Morrissey et al., 1987).  Using the 

LOAEL, the EPA established a reference dose of 50 μg/kg body weight/day by buffering 

with a safety factor of 1000 (Vandenberg et al., 2009); however, the reference dose is 

typically calculated based on the no observed adverse effect level (NOAEL).  Due to the 

low-dose effects and nonmonotonic dose response curves seen in a verity of endpoints 



 

14 

 

resulting from BPA exposure, a NOAEL has not been established.  Thus, a “safe” level 

for human exposure remains undefined.   

 

BPA Epigenetic Modification 

In addition to BPA acting as an EDC, evidence also supports that BPA acts as an 

epigenetic modifier by altering the methylation state of cytosine-phosphate-guanine 

(CpG) sites in DNA (Rubin, 2011).  Methylation of DNA is a normal biological process 

used to silence specific genes in certain cells when appropriate.  When methyl groups are 

present on DNA, they alone or through proteins that specifically bind methylated CpG 

sites act as a steric hindrance preventing transcription factors from interacting with DNA.  

Thus, alteration of the methylation profile by BPA results in misregulation of gene 

transcription and activation (Dolinoy et al., 2007; Bromer et al., 2010).  The mechanism 

of BPA-induced DNA methylation alterations is unclear (Ooi and Bestor, 2008).  

Theories postulate that BPA may alter the activity of DNA methyltransferases, a group of 

enzymes responsible for catalyzing the transfer of a methyl group onto DNA, or Tet 

methylcytosine dioxygenases, a group of enzymes that catalyze the conversion of 5-

methylcytosine to 5-hydroxymethylcytosine (Szyf, 2012).  Another theory suggests that 

BPA may directly interact with DNA methyl groups. 

Early evidence linking BPA exposure and DNA hypomethylation was reported by 

Dolinoy et al. (Dolinoy et al., 2007).  Using the viable yellow agouti mouse model, which 

has distinct phenotype dictated by DNA methylation status of the metastable allele A
vy

, 
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Dolinoy et al. showed that maternal exposure to BPA caused a shift in offspring coat 

color from brown to yellow corresponding to increased hypomethylation of the interstitial 

A particle in the agouti gene (Dolinoy et al., 2007).  Additionally, it was shown that 

dietary supplementation with methyl-donating compounds was able to counteract the 

DNA hypomethylating effect of BPA (Dolinoy et al., 2007).  Subsequent studies have 

demonstrated BPA-induced hypomethylation or hypermethylation for several genes with 

diverse functions (Singh and Li, 2012).  For example, Anderson et al. demonstrated that 

perinatal exposure to multiple environmentally relevant doses of BPA through the 

maternal diet increased global DNA methylation and increased DNA methylation at the 

CDK5 activator-binding protein metastable epiallele (Anderson et al., 2012).   

While most works examining the epigenetic modification potential of BPA have 

been focused on DNA methylation, newer studies have also demonstrated that BPA plays 

a role in histone modification and microRNA (miRNA) expression.  Doherty et al. 

demonstrated in MCF-7 cells and mouse mammary glands that BPA treatment induces 

histone H3 trimethylation of lysine 27, which was linked to increased expression of the 

histone methyltransferase EZH2 (Doherty et al., 2010).  Meanwhile, Avissar-Whiting et 

al. showed that BPA exposure in immortalized human cytotrophoblast cell lines causes 

overexpression of the miRNA miR-146a resulting in decreased cell proliferation 

(Avissar-Whiting et al., 2010).  Through use of a microarray, Cho et al. also showed 2-

fold upregulation or downregulation of 37 miRNAs following BPA exposure in an 

immortalized mouse Sertoli cell line (Cho et al., 2010).   
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The in utero and early postnatal development periods are believed to be highly 

sensitive to chemical insults that induce epigenetic modifications.  Embryogenesis is an 

especially sensitive period since the DNA synthesis rate is high and elaborate DNA 

methylation patterning and chromatin organization take place (Bernal and Jirtle, 2010).  

In accordance with the developmental origins of health and disease hypothesis, several 

studies suggest that epigenetic changes sustained in early development resulting from 

BPA exposure can have permanent effects on health into adulthood (Kundakovic and 

Champagne, 2011).  Additionally, BPA exposure during gestational development has 

been demonstrated to alter gene expression transgenerationally (Wolstenholme et al., 

2012).  Some epigenetic modifications, specifically DNA methylation and miRNA 

expression, have been demonstrated to be mitotically and meiotically heritable changes in 

gene expression (Robertson, 2005).   

 

BPA and Inflammation Associated with Asthma 

Epidemiological evidence supports the idea that E2 contributes to asthma disease 

status.  First, the prevalence of asthma and other allergic diseases are three times more 

common in women during middle adulthood compared to men (De Marco et al., 2002; 

Vink et al., 2010; Leynaert et al., 2012).  Also, patients undergoing estrogen replacement 

therapy have a high occurrence of new onset asthma either during or after therapy (Barr 

et al., 2004; Dratva, 2010).  Thirdly, some women with an existing asthma problem 

report worsened symptoms corresponding to ovulation, which is a time when E2 levels 

become upregulated (Vrieze et al., 2003; Thornton et al., 2012).  Lastly, the ER 
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polymorphisms IVS1-397CT and IVS1-397TT have been associated with the presence of 

airway hyperresponsiveness in females diagnosed with asthma, while the polymorphisms 

IVS1-351AA, exon1+30CT, and exon1+30TT have been associated with lung function 

decline in females diagnosed with asthma (Dijkstra et al., 2006).  In addition to 

epidemiologic studies, in vitro studies have determined that E2 and progesterone may 

contribute to pulmonary inflammation associated with asthma by activating mast cells 

(Zaitsu et al., 2007; Jensen et al., 2010).  Importantly, mast cell activation has also been 

reported for several EDCs including endosulfan, dieldrin, 

dichlorodiphenyldichloroethylene (DDE), nonylphenol, Aroclor 1242, Aroclor 1254, and 

4-tert-octylphenol (Narita et al., 2007; Kennedy et al., 2012).  Evidence also suggests that 

BPA exposure may induce mast cell activation; limited studies examining mast cell 

activation following exposure to a high dose of BPA (50 μM) have reported increased 

histamine, IL-4, IL-6, TNF-α, and IFN-γ release (Shim and Lim, 2009; Park and Lim, 

2010; Lee and Lim, 2010; Lee et al., 2012).   

Evidence indicates that epigenetic modifications, including DNA methylation and 

histone modification, are critical regulatory mechanisms for proper immune function 

(Mostoslavsky and Bergman, 1997; Teitell and Richardson, 2003).  Additionally, new 

studies focusing on regulation of mast cell function via DNA methylation (Kuramasu et 

al., 1998; Walczak-Drzewiecka et al., 2010) and miRNA expression (Ishizaki et al., 2011; 

Mayoral et al., 2011; Molnar et al., 2012) have begun emerging.  Thus, researchers have 

speculated that epigenetic dysregulation may play a role in immune disorders 

(Richardson, 2003; Robertson, 2005), especially asthma and other allergic sensitivities 
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(Miller et al., 2008; Shaheen and Adcock, 2009; Durham et al., 2011; North and Ellis, 

2011; Kabesch and Adcock, 2012; Yang and Schwartz, 2012).  With the previously 

mentioned understanding that sensitivity to epigenetic dysregulation is highest during 

gestation and that dysregulation can lead to disease status later in life, several reports 

have supported the developmental origins of adult asthma and other allergic diseases 

(Martino and Prescott, 2011; Henderson and Warner, 2012; Duijts, 2012; De Luca et al., 

2010; Hong and Wang, 2012).  Meanwhile, experimental approaches seeking to link 

epigenetic regulation through environmental exposure with asthma and allergic disease 

have begun to emerge (Kohli et al., 2012; Nadeau et al., 2010; Ho, 2010).   

Limited studies have examined a connection between BPA exposure and asthma.  

An epidemiologic investigation by Spanier et al. demonstrated an association with total 

BPA in maternal urine at 16 weeks gestation and incidence of infant wheezing from age 6 

months to 3 years (Spanier et al., 2012).  Similarly, Vaidya and Kulkarni using NHANES 

data established that higher total BPA in urine from adult females corresponded to a 

higher likelihood of having asthma and predicted an asthmatic episode over the past 12 

months (Vaidya and Kulkarni, 2012).  An experimental study by Midoro-Horiuti et al. 

reported that neonatal mice exposed to 10 μg/mL BPA through maternal drinking water 

beginning 1 week before fertilization and ending on postnatal day (PND) 21 and 

subsequently sensitized to ovalbumin (OVA) display worsened asthma-like pulmonary 

inflammation as detected by increased pulmonary eosinophil infiltration and greater 

airway hyperresponsiveness after OVA challenge (Midoro-Horiuti et al., 2010).  Using a 

similar experimental model, Nakajima et al. demonstrated that neonatal mice exposed to 
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10 μg/mL BPA through maternal drinking water during gestation only (gestational day 

(GD) -7 to GD 20) or during gestation and lactation (GD -7 to PND 21) displayed 

increased eosinophil infiltration and greater airway hyperresponsiveness, whereas mice 

free of BPA exposure or mice exposed to BPA during maternal lactation only (PND 0 to 

PND 21) did not display changes in eosinophil numbers nor airway hyperresponsiveness 

(Nakajima et al., 2012).  Bauer et al. examined pulmonary inflammation in an adult 

allergen-induced mouse model using intraperitoneal sensitization with OVA following in 

utero and early life BPA exposure through maternal diet (Bauer et al., 2012).  In this 

study, female offspring exposed to BPA at doses of 0.5, 5, or 50 μg/kg/day beginning on 

GD 6 and ending on PND 21 displayed significantly lowered pulmonary eosinophilia 

after challenge compared to controls, while animals exposed to 500 μg/kg/day had the 

same level of eosinophilia as controls.  Additionally, BPA-exposed offspring displayed 

lower levels of serum IgE than controls (Bauer et al., 2012).   

 

Summary 

The correspondence between the increased prevalence of asthma over the past 40 

years and the increased manufacture and usage of BPA-containing products suggests a 

possible connection between the two.  Additionally, the suggested regulation of atopic 

asthma through both epigenetic modification and endocrine signaling makes BPA an 

ideal compound to study in asthma research, since BPA behaves as both an EDC and an 

epigenetic modifier.  Limited epidemiologic studies have indicated an association 

between BPA exposure and severity of asthma symptoms and likelihood of having 
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asthma; though, experimental studies have produced mixed results on whether gestational 

and/or early-life BPA exposure alters allergen-induced bronchial inflammation and 

hyperresponsiveness in murine models of asthma.  Still, any mechanistic explanation of 

BPA increasing atopic asthma pathogenesis or worsening asthma-related inflammation 

has not been examined.  Mast cell stimulation by BPA may be one possible mechanistic 

explanation of BPA increasing asthma prevalence and worsening pulmonary 

inflammation, since evidence indicates that mast cells are sensitive to activation by E2 

and other EDCs.  This research will test the hypothesis that exposure to environmentally 

relevant levels of BPA induces subclinical changes that enhance the release of pro-

inflammatory mediators associated with allergic airway disease in mast cells, and results 

in worsened pulmonary inflammation in an allergen-induced rodent model of asthma.  

This hypothesis will be tested through the following aims:  

(1)    Determine the short-term effect of BPA exposure on BMMC activation through 

quantification of histamine and CysLT release. 

(2)    Assess the long-term effect of BPA exposure through maternal diet on BMMC 

production of pro-inflammatory mediators associated with asthma (CysLTs, 

PGD2, IL-4, IL-5, IL-6, IL-13, TNF-α, histamine). 

(3)    Characterize the impact of BPA exposure through maternal diet on severity of 

inflammation in adult mice by using an allergen-induced asthma model to 

measure cellular recruitment, pulmonary cytokines and eicosanoids, splenocyte 

cytokines, and serum IgE. 
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 This work will add to the growing literature regarding BPA exposure and adverse 

health outcomes.  Especially relevant is the inclusion of environmental BPA levels, 

perinatal exposure, and physiologic delivery of BPA to the developing fetus via the 

maternal diet.  Collectively, studies of BPA exposure and adverse health issues have 

prominence as the question regarding potential regulation of BPA production continues 

to be discussed, and the limited number of studies on BPA exposure and inflammation 

associated with asthma has prompted more research in this area.   
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Figure 1.1: BPA monomer is formed through a condensation reaction between phenol 

and acetone in a 2-to-1 ratio.   
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Figure 1.2: The polymerization reaction to form polycarbonate plastic (a) involves a 

reaction catalyzed by HCl in the presence of a 1-to-1 ratio of BPA monomer and 

phosgene, while polymerization to form epoxide resin (b) involves a reaction catalyzed 

by NaOH in the presence of BPA monomer and epichlorohydrin, usually in a 1-to-1 ratio.   
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Figure 1.3: Comparison of the molecular structures of BPA (a) and E2 (b).  Notice the 

similarity between the two protruding phenol groups on BPA and the one protruding 

phenol group and one protruding hydroxide on E2 
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CHAPTER 2 

BISPHENOL A AT ENVIRONMENTALLY RELEVANT CONCENTRATIONS 

ENHANCES HISTAMINE AND CYSTEINYL LEUKOTRIENE  

RELEASE FROM BONE MARROW-DERIVED MAST CELLS  

Abstract 

 Bisphenol A (BPA), a monomer of polycarbonate plastics and epoxide resin, acts 

as an endocrine-active compound and has been shown to enhance the inflammatory 

response to allergen challenge.  Previous reports in rodents have demonstrated that 

perinatal BPA exposure alters airway inflammation following sensitization and challenge 

to ovalbumin in juvenile and adult offspring.  Since mast cells play an important role in 

allergen-induced airway inflammation, the effect of BPA exposure on mast cell activation 

was examined.  Primary murine bone marrow-derived mast cells (BMMCs) produced 

from femurs of female C57BL/6 mice were stimulated with BPA or estradiol (E2) in vitro 

to assess the effects on histamine and cysteinyl leukotriene (CysLT) release.  Both BPA 

and E2 were observed to increase BMMC histamine release over a range of nanomolar 

concentrations (1-1000 nM).  Estrogen receptor alpha (ERα) antagonism using ICI 

182,780 partially blocked the ability of E2, but not BPA, to elevate histamine release.  

BPA also increased CysLT release, which was not abrogated by ERα inhibition.  It was 

also observed that the ability of BPA to enhance histamine and CysLT release was 

inhibited by blocking the extracellular signal-regulated kinase (ERK) pathway with 
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U0126 or by chelating extracellular
 
calcium ions (Ca

2+
) using EGTA.  In summary, these 

experiments demonstrated that acute BPA exposure enhances mast cell histamine and 

CysLT release in vitro.  This effect was not blocked by ERα antagonism, indicating the 

effect of BPA on histamine and CysLT release is not dependent on an ERα-mediated 

mechanism.  Instead, BPA-induced mast cell histamine and CysLT release may be 

mediated via the ERK pathway and extracellular Ca
2+

 concentrations.  In conclusion, 

these data suggest that exposure to BPA at environmentally relevant levels may provoke 

an acute inflammatory response in atopic individuals via mast cell activation.  

 

Introduction 

The prevalence of asthma, a chronic inflammatory disease of the airways 

characterized by wheezing, shortness of breath, chest tightness, and coughing (Murdoch 

and Llyod, 2010), has steadily increased since the 1970s (Lai et al., 2009; Anandan et al., 

2010; To et al., 2012).  Current estimates suggest 300 million individuals have been 

diagnosed with asthma globally, and that asthma accounts for nearly 300,000 deaths 

yearly (Holgate et al., 2007; WHO, 2007).  Asthma pathogenesis arises from a complex 

interplay of genetic predisposition and environmental exposure (Holgate et al., 2007).  

The observation that asthma prevalence tends to be highest in industrialized areas 

suggests that one or more products of industrialization may be contributing to asthma 

pathogenesis (Masoli et al., 2004; Anandan et al., 2010; Asher, 2010; Crinnion, 2012; To 

et al., 2012).    
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Observational epidemiologic studies have suggested that endogenous and 

exogenous estrogen may contribute to the pathogenesis and severity of asthma (Bonds 

and Midoro-Horiuti, 2013); asthma prevalence among adults is higher in women than in 

men (Leynaert et al., 2012; Vink et al., 2010), and peaks in estrogen and progesterone 

corresponding to the ovulation cycle have been associated with worsened asthma 

symptoms (Vrieze et al., 2003; Thornton et al., 2012).  Additionally, a higher prevalence 

of adult-onset asthma has been reported in patients undergoing hormone replacement 

therapy (Barr et al., 2004; Dratva, 2010).  Lab-based approaches also indicate that 

estradiol, progesterone, and synthetic xenoestrogens can enhance mast cell degranulation 

(Narita et al., 2007; Zaitsu et al., 2007; Jensen et al., 2010; Kennedy et al., 2012), and 

since mast cells play a central role in atopic asthma, it has been hypothesized that 

widespread exposure to synthetic xenoestrogens (Yang et al., 2006; Phillips and Foster, 

2008; Latini et al., 2010) may be contributing to the increased prevalence of asthma by 

enhancing mast cell activation.   

Mast cells play a critical role in the development of atopic asthma and other 

allergic diseases by initiating an acute inflammatory response (Amin, 2012).  Activated 

mast cells release preformed mediators stored in cytoplasmic secretory granules including 

histamine, leukotriene (LT) C4, and prostaglandin (PG) D2, which are capable of inducing 

bronchoconstriction, mucus secretion, and edema, as well as pro-inflammatory cytokines 

(IL-4, IL-5, IL-13, and TNF-α), which contribute to IgE production and eosinophil 

recruitment (Boyce, 2003; Bradding et al., 2006).   
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Recently, the endocrine-active compound, BPA, a monomer of polycarbonate 

plastics and epoxide resin, has been associated with worsened asthma symptoms in 

humans (Spanier et al., 2012; Vaidya and Kulkarni, 2012; Donohue et al., 2013) and the 

development of asthma in juvenile mice (Midoro-Horiuti et al., 2010; Nakajima et al., 

2012).  Human exposure to BPA is widespread (Vandenberg et al., 2007), with National 

Health and Nutrition Examination Survey (NHANES) data revealing detectable levels of 

total BPA in the urine of 95% of participants (Calafat et al., 2005).  BPA is capable of 

disrupting normal endocrine signaling by weakly binding to steroid receptors including 

the ERs and thyroid hormone receptor (Zoeller et al., 2005).  BPA has also been 

demonstrated to bind to the membrane-bound G-protein coupled ER 1 (GPER, also 

GPR30) (Bouskine et al., 2009; Sheng and Zhu, 2011), as well as the nuclear receptor 

estrogen-related receptor-γ (ERR-γ) (Matsushima et al., 2007).  BPA levels in adult 

human samples including urine, serum, blood, and saliva can vary depending on sample 

type, study population, and detection method, though reported levels repeatedly focus 

around low nanomolar concentrations (Vandenberg et al., 2007; Vandenberg et al., 2012).  

Previous reports conducted using a high level of BPA have shown that BPA can enhance 

mast cell activation (Shim and Lim, 2009; Park and Lim, 2010; Lee and Lim, 2010; Lee 

et al., 2012).   

This study tests the hypothesis that BPA at levels relevant to human exposure 

enhances BMMC release of histamine and CysLTs.  Furthermore, the requirements of 

ERα, the ERK pathway, and extracellular Ca
2+

 in BPA-induced mediator increases were 

investigated.  It was observed that BPA exposure increased histamine and CysLT release 
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from mast cells, and that these responses could not be attenuated by inhibiting ERα.  Yet, 

BPA-induced histamine and CysLT increases were found to require ERK signaling and 

extracellular Ca
2+

.  These observations suggest that BPA exposure may exacerbate 

inflammation mediated by enhanced mast cell degranulation in atopic individuals.  

 

Materials and Methods 

Animals 

Wild type female C57BL/6 mice, 8 weeks of age, were purchased from Charles River 

(Wilmington, MA) and housed in a University of Michigan animal facility.  Animals 

were treated according to National Institutes of Health guidelines for the use of 

experimental animals with approval of the University of Michigan Committee for the Use 

and Care of Animals. 

Generation and Culture of BMMCs  

Following euthanasia by CO2 inhalation, femurs were obtained from mice and lavaged 

with RPMI (Life Technologies, Invitrogen, Carlsbad, CA).  Primary BMMCs were 

generated by culturing bone marrow cells in RPMI containing 10% fetal bovine serum 

(Invitrogen) and 1% penicillin/streptomycin (Invitrogen) supplemented with 10 ng/mL 

murine IL-3 (Sigma, St. Louis, MO) and 10 ng/mL murine stem cell factor (Sigma) at 37 

°C in 5% CO2.  Throughout incubation, culture media and culture flasks were changed 

once weekly.  After 4 weeks in culture, cells were cytospun onto glass slides using a 

cytocentrifuge (STAT SPIN, Norwood, MA), and the mast cell phenotype was confirmed 
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when 95% of the cells were positive for c-kit.  During immunocytostaining, c-kit was 

probed using an anti-c-kit antibody produced in rabbit (Cell Signaling, Beverly, MA), 

secondarily probed using a goat anti-rabbit avidin biotin complex kit (Vector, 

Burlingame, CA) and visualized using a diaminobenzidine kit (Vector) according to the 

manufacturer’s instructions. 

Stimulation of BMMCs for Pro-inflammatory Mediator Release 

Differentiated BMMCs were collected by centrifugation, resuspended in RPMI 

containing 1% penicillin/streptomycin, enumerated using a hemocytometer, and plated in 

flat-bottom 96-well plates at a concentration of 2.0 x 10
5
 cells per well.  Plated BMMCs 

were treated with vehicle control (0.01% ethanol), BPA (0.1, 1, 10, 100, or 1000 nM) 

(National Toxicology Program standard), or 17β-estradiol (E2) (0.1, 1, 10, 100, or 1000 

nM) (Sigma) for 30 minutes at 37 °C with 5% CO2 to induce BMMC release of histamine 

and CysLTs.  As an internal control, cells were also treated with 1 μM of the calcium 

ionophore A23187 (Sigma) to induce mass release of pro-inflammatory mediators.  In 

subsequent experiments, plated BMMCs were pretreated with the ER antagonist ICI 

182,780 (referred to as ICI) (0.1, 1, or 10 μM) (Sigma), the ERK1/2 inhibitor U0126 (10 

μM) (Sigma), or the Ca
2+

 chelator ethylene glycol tetraacetic acid (EGTA) (3 mM) 

(Sigma) for 1 hour at 37 °C with 5% CO2 before treatment with 10 nM BPA or E2 for 30 

minutes.  After the allotted time, cell culture media were collected and stored at -80 °C 

until analysis. 

Histamine Determination 



 

43 

 

Analysis of histamine was conducted according to the protocol previously described by 

Zhao et al. (Zhao et al., 2001).  Briefly, 30 μL from collected supernatants were 

distributed on 384-well plates.  6 μL of 1 M NaOH and 1.5 μL of 10 mg/mL o-

phthaldialdehyde (Sigma) prepared in methanol were added to each sample to induce 

histamine derivatization.  After incubation at room temperature for 4 minutes, 5 μL of 3 

M HCl were added to each well to halt histamine derivatization.  Fluorescence was read 

at 530 nm (360 nm excitation, 450 nm emission). Values are expressed as % release of 

the vehicle control.   

CysLT Determination 

The levels of CysLTs produced by BMMCs following stimulation were determined by 

commercially available enzyme immunoassay (EIA) kits (Cayman Chemical, Ann Arbor, 

MI) according to the manufacturer’s instructions.   

Statistical Analysis  

Data are expressed as mean ± SEM.  Analyses were conducted in Prism Graph Software 

using one-way analysis of variance with the Bonferroni test (Figures 2.1 and 2.2a) or 

Student’s t-test (Figures 2.2b and 2.3) for separation of the means.  In all cases, a p-value 

of <0.05 was considered statistically significant.   

 

Results 

BPA Enhances BMMC Histamine and CysLT Release 



 

44 

 

To determine if short-term BPA exposure affects the release of pro-inflammatory 

mediators from mast cells, BMMC release of histamine and CysLTs was determined 

following treatment with varying concentrations (0.1 to 1000 nM) of BPA for 30 minutes 

(Figure 2.1).  Cells exposed to 1 nM (p=0.001), 10 nM (p<0.0001), and 100 nM 

(p=0.030) BPA displayed significantly increased histamine release compared to vehicle 

control, with cells in the 10 nM exposure group displaying the highest mean increase in 

histamine release (9.0%) among BPA-exposed cells (Figure 2.1a).  Increased histamine 

release was not significant following exposure to BPA at 0.1 nM (p=0.076) or 1000 nM 

(p=0.061).  As a comparison, cells exposed to E2 also displayed increased histamine 

release in 10 nM (p=0.0004) and 100 nM (p=0.046) exposure groups, as well as at 1000 

nM (p=0.024), compared to vehicle control.  Treatment with 0.1 nM (p=0.145) and 1 nM 

(p=0.191) E2 did not result in significantly increased histamine release.  Cells in the 10 

nM E2 exposure group displayed the highest mean increase in histamine release (13.5%) 

among E2-treated cells.  There was no difference in histamine release between BPA- and 

E2-exposed cells treated with matching concentrations.  CysLT release from treated 

BMMCs was increased at 10 nM (p=0.013), 100 nM (p=0.029), and 1000 nM (p=0.002) 

BPA compared to vehicle control, with no statistical differences between concentrations 

(Figure 2.1b).   

ERα Antagonism on BPA-induced Histamine and CysLT Release from BMMCs 

BMMCs have previously been demonstrated to express only the ERα subunit, and not to 

express the ER beta (ERβ) subunit (Zaitsu et al., 2007; Jensen et al., 2010).  Thus, the 

role of ERα in BPA-induced increased release of histamine and CysLTs from BMMCs 
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was investigated using the antagonist ICI (Figure 2.2).  Pretreatment with 0.1 μM 

(p=0.178), 1 μM (p=0.627), or 10 μM (p=0.674) ICI before treatment with 10 nM BPA 

for 30 minutes, did not alter histamine release compared to BPA treatment alone (Figure 

2.2a).  However, pretreatment with ICI at 0.1 μM (p=0.034), 1 μM (p=0.048), or 10 μM 

(p=0.049) before treatment with 10 nM E2 decreased E2-induced histamine release from 

BMMCs compared with E2 alone, but did not completely abolish the response (Figure 

2.2a).  Pretreatment with 1 μM ICI before treatment with 10 nM BPA did not alter CysLT 

release (p=0.463) from BMMCs compared to BPA treatment alone (Figure 2.2b).  

ERK Inhibition on BPA-induced Histamine and CysLT Release from BMMCs 

To examine the role of the ERK pathway in BPA-induced increases in histamine and 

CysLT release, cells were pretreated with the inhibitor U0126 (Figure 2.3).  Pretreatment 

with U0126 followed by treatment with 10 nM BPA for 30 minutes nearly completely 

inhibited the increase in histamine release from BMMCs observed with 10 nM BPA 

alone (p=0.003) (Figure 2.3a).  A similar response was observed with CysLT release.  

Pretreatment with U0126 followed by treatment with 10 nM BPA resulted in decreased 

CysLT release compared to 10 nM BPA alone (p=0.004) (Figure 2.3b).   

Extracellular Ca
2+

 Chelation on BPA-induced Histamine and CysLT Release from 

BMMCs 

The requirement of extracellular Ca
2+

 needed for BPA-induced increases in histamine 

and CysLT release from mast cells was studied by pretreating cells and media with 

EGTA before treatment with 10 nM BPA (Figure 2.3).  Pretreatment with the Ca
2+
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chelator followed by BPA treatment nearly completely inhibited increased histamine 

release compared to 10 nM BPA alone (p=0.025) (Figure 2.3a).  Similarly, EGTA 

pretreatment followed by 10 nM BPA treatment inhibited CysLT release compared to 

BPA alone (p=0.037), bringing EGTA-pretreated CysLT levels in line with vehicle 

control CysLT levels (p=0.427) (Figure 2.3b).   

 

Discussion 

 The results of this study are the first to demonstrate that environmentally relevant 

concentrations of BPA stimulate BMMCs to release the pro-inflammatory mediators 

histamine and CysLTs.  In this study, upregulated levels of histamine induced by BPA 

treatment match closely to the increased levels of histamine induced by E2, both of which 

produced nonmonotonic dose response curves for increased histamine release.  

Meanwhile, increased CysLT release from mast cells was observed to be monotonic in 

response to BPA treatment.  Since BPA is a known xenoestrogen, the hypothesis that 

BPA (and E2) may be acting through ERα to cause changes in mediator release was 

tested by antagonizing ERα with ICI.  The results do not support a role for ERα in BPA-

induced changes in histamine or CysLT release, although, data suggest that E2-induced 

histamine increase is partially dependent on ERα.  Additionally, the role of the ERK 

pathway in the BPA-induced responses was examined, since this pathway is integral for 

mast cell production of CysLTs and other lipid mediators (Kambayashi and Koretzky, 

2007) and is also a common pathway used in ER-initiated signaling (Levin, 2011).  The 

requirement of the ERK pathway in BPA-induced mast cell stimulation was tested by 
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pretreating cells with the inhibitor U0126, which actively inhibits ERK kinase 1/2 

(MEK1/2), and thus passively inhibits ERK1/2 and gene transcription downstream.  

Pretreatment with the inhibitor resulted in diminished BMMC histamine and CysLT 

release compared to 10 nM BPA alone, thus supporting a novel role of the ERK pathway 

in BPA-mediated increases in histamine and CysLT release.  Lastly, the role of 

extracellular Ca
2+

 on the ability of BPA to alter mediator release was examined, since 

cytoplasmic influx of Ca
2+

 is necessary for mast cells to induce exocytosis of granular 

contents (Kambayashi and Koretzky, 2007).  Pretreatment with the extracellular Ca
2+

 

chelator EGTA reduced histamine and CysLT release from BMMCs exposed to 10 nM 

BPA, suggesting a novel requirement for extracellular Ca
2+

 in the BPA-mediated 

response.  Collectively, this study indicates that environmentally relevant levels of BPA 

can activate BMMCs to increase histamine and CysLT release, and do so in an ERα-

independent, ERK-dependent, and Ca
2+

-dependent manner.   

 While other studies have demonstrated that BPA can enhance histamine release 

from HMC-1 (a human mast cell line) and RBL-2H3 (a rat mast cell line) cells, this 

report is the first to demonstrate that BPA increases BMMC release of CysLTs and 

histamine and does so at levels that are in the range of human exposures.  Previous 

reports have observed that physiologic levels of E2 (Zaitsu et al., 2007; Jensen et al., 

2010) and progesterone (Jensen et al., 2010) can enhance the release of β-hexosaminidase 

(β-hex), a degranulatory enzyme, and LTC4 from mast cells.  In partial agreement with 

the current study, Zaitsu et al. reported that in vitro treatment of mast cells with E2 

resulted in nonmonotonic dose responses curves for increased β-hex and LTC4 release 
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(Zaitsu et al., 2007).  Additionally, treatment of mast cells with synthetic xenoestrogens 

including endosulfan, dieldrin, dichlorodiphenyldichloroethylene (DDE), nonylphenol, 

Aroclor 1242, Aroclor 1254 (Narita et al., 2007), and 4-tert-octylphenol (Kennedy et al., 

2012) has been demonstrated to increase release of β-hex.   

Some studies have examined the effect of BPA exposure on mast cell mediator 

release, but have done so using BPA concentrations above the environmentally relevant 

range (Shim and Lim, 2009; Park and Lim, 2010; Lee and Lim, 2010; Lee et al., 2012).  

Shim and Lim demonstrated that treatment of HMC-1 cells with 50 μM BPA resulted in 

increased histamine, IL-4, and IFN-γ release and upregulated phosphorylation of ERK1/2 

(Shim and Lim, 2009), while Lee and Lim reported increased release of IL-6 and TNF-α 

under the same conditions (Lee and Lim, 2010).  Increased release of histamine, IL-4, 

and IFN-γ following treatment with the same BPA concentration was also reported in 

RBL-2H3 cells (Park et al., 2010).  Lee et al. reported increased release of IL-6 and TNF-

α and increased phosphorylation of ERK1/2 in RBL-2H3 cells following treatment with 

50 μM BPA, and also reported increased in vivo levels of β-hex and histamine in BALB/c 

mice dosed with 5 mg BPA/kg BW/day for four weeks (Lee et al., 2012).   

The requirement of ERα for E2-induced mast cell release of mediators has been 

clearly demonstrated by Zaitsu et al. (Zaitsu et al., 2007).  Pretreatment with the ER 

antagonist tamoxifen followed by E2 treatment in both RBL-2H3 cells and HMC-1 cells 

resulted in diminished β-hex and LTC4 release compared to E2 alone (Zaitsu et al., 2007).  

In addition, BMMCs from ERα knockout (KO) mice did not exhibit upregulated β-hex or 

LTC4 release displayed by BMMCs from wild-type (WT) mice when treated with various 
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concentrations of E2 (Zaitsu et al., 2007).  However, the requirement of ERα for 

enhanced mediator release induced by synthetic xenoestrogens, including BPA, remains 

unclear.  Of the synthetic xenoestrogens examined by Narita et al., one displayed no 

difference in β-hex release between BMMCs of WT mice and ERα KO mice (Arocolr 

1242), while another displayed a difference at only one particular dose of E2 (Arocolr 

1252, 1 nM) (Narita et al., 2007).  Interestingly, β-hex release from mast cells following 

treatment with DDE, dieldrin, or nonylphenol resulted in U-shaped dose response curves 

indicating that ERα was required at low and high concentrations of E2, but not at middle-

range doses (Narita et al., 2007).  One synthetic xenoestrogen even displayed 

significantly greater E2-stimulated β-hex release in the ERα KO BMMCs compared to 

WT BMMCs for one dose of E2 (endosulfan, 1 nM) (Narita et al., 2007).   

Considering the variability in requirement of ERα for synthetic xenoestrogens to 

stimulate mast cells (Narita et al., 2007), it’s not surprising that no effect on ERα 

antagonism with regard to histamine and CysLT release following treatment with 10 nM 

BPA was observed.  Variable ERα requirements by synthetic xenoestrogens including 

BPA may be explained by interactions with nonclassical ERs, especially GPER.  At 

environmentally relevant doses, BPA has been demonstrated to interact with GPER 

(Bouskine et al., 2009; Sheng and Zhu, 2011).  Interestingly, Dong et al. reported that 

BPA induced activation of ERK in ERα/β-negative breast cancer cell lines, and that 

siRNA blocking GPER inhibited BPA-induced ERK activation (Dong et al., 2011).   

The requirement of ERK activation and Ca
2+

 influx for mast cell activation and 

degranulation are well understood.  Allergen-mediated mast cell activation occurs when 
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IgE molecules bound to high-affinity Fcε receptors (FcεRI) on the mast cell surface 

crosslink with a single ligand.  Downstream signaling rapidly induces ERK1/2 

phosphorylation, thereby helping to mediate mast cell activation by initiating synthesis of 

lipid mediators (Kambayashi and Koretzky, 2007).  Similarly, IgE crosslinking and 

subsequent signaling result in a critically important influx of Ca
2+

 that mediates cellular 

degranulation (Kambayashi and Koretzky, 2007).  The novel findings that mast cell 

mediator release enhanced by BPA is blocked by ERK inhibition and Ca
2+

 influx 

inhibition suggest that BPA relies on these critical mechanisms to stimulate mast cells. 

The new findings that BPA, at levels relevant to human exposure, can enhance 

mast cell release of histamine and CysLTs suggests that exposure to this endocrine-active 

chemical can exacerbate symptoms associated with allergen-mediated inflammation. Due 

to the current environmental situation where humans are regularly exposed to multiple 

synthetic estrogens (Yang et al., 2006; Phillips and Foster, 2008; Latini et al., 2010), it 

will be important for future studies to examine the effect of exposure to multiple 

xenoestrogens at the same time on mast cell activation and function.  Likewise, future in 

vivo studies should examine adverse health outcomes like asthma and other allergic 

inflammatory diseases that may be augmented following exposure to multiple 

xenoestrogens.    
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Figure 2.1: Percent increase in histamine release (a) from BMMCs following 30-minute 

treatment with E2 (open bars) or BPA (solid bars), and CysLT release (b) following 30-

minute treatment with BPA.  Bars represent mean ± SEM.  *p<0.05 and **p≤0.001 

compared to untreated cells.   
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Figure 2.2: Percent increase in histamine release (a) from BMMCs pretreated with ICI 

for 1 hour before treatment with 10 nM E2 (open bars) or 10 nM BPA (solid bars) for 30 

minutes, and CysLT release (b) from BMMCs pretreated with (shaded bar) or without 

(solid bar) 1 μM ICI before treatment with 10 nM BPA.  Bars represent mean ± SEM.  

*p<0.05 compared to no ICI treatment. 
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Figure 2.3: Percent increase in histamine release (a) and CysLT release (b) from 

BMMCs pretreated with 10 μM U0126 (shaded bar) or 3 mM EGTA (checkered bar) for 

1 hour before treatment with 10 nM BPA for 30 minutes.  Bars represent mean ± SEM.  

*p<0.05 and **p<0.005. 
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CHAPTER 3 

PERINATAL BISPHENOL A EXPOSURES INCREASE  

PRODUCTION OF PRO-INFLAMMATORY MEDIATORS IN  

BONE MARROW-DERIVED MAST CELLS OF ADULT MICE  

Abstract 

Bisphenol A (BPA) is a widely used monomer of polycarbonate plastics and 

epoxide resin that has been implicated in asthma pathogenesis when exposure occurs to 

the developing fetus.  However, few studies have examined the relationship between 

perinatal BPA exposure and asthma pathogenesis in adulthood.  This study used an 

isogenic mouse model to examine the influence of perinatal BPA exposure via maternal 

diet on inflammatory mediators associated with asthma in 6-month-old adult offspring by 

measuring bone marrow-derived mast cell (BMMC) production of lipid mediators 

(cysteinyl leukotrienes and prostaglandin D2), cytokines (IL-4, IL-5, IL-6, IL-13, and 

TNF-α), and histamine.  Global DNA methylation levels in BMMCs from adult offspring 

were also determined to gauge the permanence of BPA-induced changes in the 

production of pro-inflammatory mediators.  Four environmentally relevant BPA exposure 

doses were tested: low (50 ng BPA/kg diet, n=5), medium (50 μg BPA/kg diet, n=4), 

high (50 mg BPA/kg diet, n=4), and control (n=3).  Following BMMC activation, 

increases in cysteinyl leukotriene (p<0.01) and TNF-α (p<0.05) production were 

observed in all BPA-exposure groups, and increases in prostaglandin D2 (p<0.01) and IL-
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13 (p<0.01) production were observed in the high exposure group.  Additionally, 

BMMCs from adult mice in all exposure groups displayed a decrease in global DNA 

methylation compared to control animals.  Thus, perinatal BPA exposure displayed a 

long-term influence on mast cell-mediated production of pro-inflammatory mediators 

associated with asthma and global DNA methylation levels, suggesting a potential for 

mast cell dysregulation, which could affect pulmonary inflammation associated with 

allergic airway disease into adulthood.  

 

Introduction 

There is an accumulating body of literature supporting the developmental origins 

of adult asthma and other lung diseases (Duijts, 2012; Henderson and Warner, 2012; 

Harding and Maritz, 2012).  For example, the worldwide prevalence of asthma, a chronic 

inflammatory disease of the airways characterized by wheezing, coughing, chest 

tightness, and airway obstruction (Murdoch and Lloyd, 2010), has been steadily 

increasing over the past 40 years (Lai et al., 2009; Anandan et al., 2010; To et al., 2012); 

current estimates suggest nearly 300 million individuals are diagnosed with asthma 

globally (WHO, 2007; Holgate et al., 2007).  Furthermore, observational reports 

revealing that asthma prevalence is highest among industrialized countries suggest that 

one or more byproducts of industrialization present in the environment may be 

contributing to asthma pathogenesis, thus stressing the important role that environmental 

influences can have on disease status (Masoli et al., 2004; Anandan et al., 2010; Asher et 

al., 2010; To et al., 2012).   
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Bisphenol A (BPA), a monomer of polycarbonate plastics and epoxide resin, is a 

high production volume chemical that has been implicated in asthma pathogenesis when 

exposure occurs to the developing fetus (Midoro-Horiuti et al., 2010; Nakajima et al., 

2012).  BPA routinely leaches into the food and water supply from consumer products 

including food and liquid storage containers, baby bottles, and linings of aluminum cans.  

While the main route of human exposure to BPA is through indigestion of contaminated 

food and water, possible exposure through inhalation and dermal routes may exist due to 

the presence of BPA in dental sealants and thermal paper (Vandenberg et al., 2007; 

Marquet et al., 2011).  Human exposure to BPA is widespread with National Health and 

Nutrition Examination Survey (NHANES) data revealing detectable amounts of BPA in 

the urine of 95% of study participants (Calafat et al., 2005; Vandenberg et al., 2012).  

Quantification of BPA in infant cord blood (Vandenberg et al., 2007), amniotic fluid 

(Edlow et al., 2012), placenta (Schonfelder et al., 2002), and fetal liver tissues (Nahar et 

al., 2013) shows higher quantities of free BPA than found in adult samples.  The higher 

fetal burden of estrogenic BPA may result from the developing liver’s altered capacity 

for detoxification, enterohepatic recirculation, and elimination of xenobiotics (Ginsberg 

et al., 2004; Vandenberg et al., 2009).   

Asthma pathogenesis arises from a complex interplay of genetic susceptibility and 

environmental exposures (Holgate et al., 2007), resulting in abnormal inflammatory 

responses led by T helper type 2 (Th2) lymphocytes.  Mast cells play an unequivocal role 

in the pathogenesis of atopic asthma and other allergic diseases, and contribute to airway 

and lung tissue inflammation by secreting cytokines (TNF-α, IL-4, IL-5, IL-6, and IL-13) 
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and vasoactive agents such as histamine and lipid mediators (leukotrienes and 

prostaglandins).  Observational epidemiologic studies indicate that mast cells are 

sensitive to activation or dysregulation by estradiol (E2) (Bonds and Midoro-Horiuti, 

2013), and it has long been known that asthma prevalence is two to three times higher in 

women than in men (Vink et al., 2010; Leynaert et al., 2012).  More recent studies have 

shown that peaks in E2 during ovulation (Vrieze et al., 2003; Thornton et al., 2012) or 

hormone replacement therapy
 
(Barr et al., 2004; Dratva, 2010) are associated with 

worsened asthma symptoms in women.  Additionally, E2 (Zaitsu et al., 2007) and other 

xenoestrogens (Narita et al., 2007; Kennedy et al., 2012) are capable of activating human 

or rat mast cell lines in vitro in the absence of IgE crosslinking.   

It has been suggested that heightened sensitivity to industrialization exposures, 

such as BPA, during critical windows of development may influence the pathogenesis of 

asthma or other allergic airway diseases in the exposed individual (Ahmed, 2000; Teitell 

and Richardson, 2003; Clayton et al., 2011).  Perinatal exposures to BPA have resulted in 

altered Th2 allergic responses using the ovalbumin-induced asthma model in mice 

(Midoro-Horiuti et al., 2010; Bauer et al., 2012; Nakajima et al., 2012).  Additionally, at 

μM levels, BPA has been demonstrated to increase the release of TNF-α, IL-6, and 

histamine in both HMC-1 cells (human mast cell line) (Lee and Lim, 2010) and RBL-

2H3 cells (rat mast cell line) (Lee et al., 2012).  Using an isogenic mouse model, this 

study sought to determine if exposures to BPA through the maternal diet increase pro-

inflammatory cytokine and lipid mediator production and alter global DNA methylation 

levels in bone marrow-derived mast cells (BMMCs) from adult mouse offspring.  
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Interestingly, it was observed that cysteinyl leukotrienes (CysLTs), prostaglandin D2 

(PGD2), TNF-α, and IL-13 production were increased at 6 months of age following 

perinatal BPA exposure.  A decrease in global DNA methylation levels in BMMCs from 

BPA-exposed animals was also observed.  Thus, perinatal exposure to BPA results in 

enhanced pro-inflammatory mediator synthesis and altered DNA methylation in BMMCs 

from adult mice.   

 

Materials and Methods 

Animals 

Breeders were obtained from a University of Michigan A
vy

 breeding colony maintained 

on a genetically identical C57BL/6 and C3H/HeJ background (Waterland and Jirtle, 

2003; Anderson et al., 2012).  At 6 weeks old, virgin female breeders with an a/a 

genotype were randomly assigned to one of four modified phytoestrogen-free BPA-

supplemented diets with 7% corn oil substituted for 7% soybean oil (Harland, Madison, 

WI): 50 ng BPA/kg diet (low dose, diet 09798), 50 µg BPA/kg diet (medium dose, diet 

09797), 50 mg BPA/kg diet (high dose, diet 09518), or BPA-free control diet (diet 

95092).  All diet ingredients were supplied by Harland, except for BPA (National 

Toxicology Program standard).  Female breeders were maintained on the assigned diet 

for two weeks before being paired with a heterozygous A
vy

/a male.  Dams and offspring 

remained on the assigned diet throughout gestation and lactation until weaning on post 
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natal day 21.  At weaning, all offspring were group-housed by sex and fed the BPA-free 

control diet and subsequently aged to 6 months.  Offspring generated from the mating 

paradigm were 50% a/a and 50% A
vy

/a, though only a/a offspring were used in this study 

to avoid bias introduced by the A
vy

 retroelement, which induces ectopic Agouti expression 

and varies dramatically among isogenic A
vy

/a mice (Miltenberger et al., 1997; Waterland 

and Jirtle, 2003).  In this study, the control, 50 ng BPA/kg diet, 50 µg BPA/kg diet, and 

50 mg BPA/kg diet groups each had 3, 5, 4, and 4 subjects, respectively.  Due to 

experimental limitations, all animals in both the 50 ng BPA/kg diet group and the 50 µg 

BPA/kg diet group were female, while all animals in the 50 mg BPA/kg diet group were 

male, and animals in the control group were one male and two females.  Additionally, 

offspring in the control, 50 ng BPA/kg diet, 50 µg BPA/kg diet, and 50 mg BPA/kg diet 

groups were generated from 1, 4, 2, and 3 litters, respectively.  Animals were housed in a 

University of Michigan animal facility and treated according to National Institutes of 

Health guidelines for the use of experimental animals with approval of the University of 

Michigan Committee for the Use and Care of Animals.   

Generation and Culture of BMMCs 

Following euthanasia with CO2 inhalation, femurs were obtained from mice and lavaged 

with RPMI (Life Technologies, Invitrogen, Carlsbad, CA).  Primary BMMCs were 

generated by culturing bone marrow cells in RPMI containing 10% fetal bovine serum 

(Invitrogen) and 1% penicillin/streptomycin (Invitrogen) supplemented with 10 ng/mL 

murine IL-3 and 10 ng/mL murine stem cell factor (Sigma, St. Louis, MO) at 37 °C in 

5% CO2.  Throughout incubation, culture media and culture flasks were changed once 



 

64 

 

weekly.  After 4 weeks in culture, cells were cytospun onto glass slides using a 

cytocentrifuge (STAT SPIN, Norwood, MA), and the mast cell phenotype was confirmed 

when 95% of the cells were positive for c-kit.  During immunocytostaining, c-kit was 

probed using an anti-c-kit antibody produced in rabbit (Cell Signaling, Beverly, MA), 

secondarily probed using a goat anti-rabbit avidin biotin complex kit (Vector, 

Burlingame, CA), and visualized using a diaminobenzidine kit (Vector) according to the 

manufacturer’s instructions. 

Stimulation of BMMCs for Pro-inflammatory Mediator Production 

BMMCs were pelleted by centrifugation, resuspended in RPMI, enumerated using a 

hemocytometer, and plated in 96-well plates at a concentration of 2.0 x 10
5
 cells per well.  

BMMCs were cultured with vehicle (0.001% ethanol) alone (as a control) or with 100 

ng/mL anti-DNP IgE antibody (Sigma) for 1 hour at 37 °C with 5% CO2 before the 

addition of 10 ng/mL DNP-BSA (Sigma) for 30 minutes to activate the cells via IgE 

crosslinking (Narita et al., 2007).  After stimulation, cell culture media were collected 

and stored at -80 °C until analysis. 

CysLT and PGD2 Determinations 

The levels of CysLTs and PGD2 (measured after methoximation (PGD2-MOX)) produced 

by mast cells following stimulation were determined by commercially available enzyme 

immunoassay (EIA) kits (Cayman Chemical, Ann Arbor, MI) according to the 

manufacturer’s instructions.   

Cytokine Determinations 
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Analyses of cytokines TNF-α, IL-4, IL-5, IL-6, and IL-13 in cell culture supernatants 

were conducted by the University of Michigan Immunology Core Facility using 

commercial EIA kits (DuoSet, R&D Systems, Minneapolis, MN) according to the 

manufacturer’s instructions.  Values below the limit of detection (4.1 pg/mL) are reported 

as zero.   

Histamine Determination 

Analysis of histamine was conducted according to the protocol previously described by 

Zhao et al. (Zhao et al., 2001).  Briefly, 30 μL from collected supernatants were 

distributed on 384-well plates.  6 μL of 1 M NaOH and 1.5 μL of 10 mg/mL o-

phthaldialdehyde (Sigma) prepared in methanol were added to each sample to induce 

histamine derivatization.  After incubation at room temperature for 4 minutes, 5 μL of 3 

M HCl were added to each well to halt histamine derivatization.  Fluorescence was read 

at 530 nm (360 nm excitation, 450 nm emission). Values are expressed as % release of 

the control.   

Global DNA Methylation Determination 

Unstimulated BMMCs obtained from culture were collected by centrifugation, washed 

twice in cold PBS, and stored at -80 °C.  Frozen cells were thawed, and DNA was 

extracted using a DNeasy Blood and Tissue Kit for purification of total DNA according 

to the manufacturer’s instructions (Qiagen, Valencia, CA).  Samples were processed by 

the automated QIAcube platform (Qaigen).  Isolated DNA was quantified using a micro-

volume nucleic acid spectrophotometer NanoDrop2000 (Thermo Fisher Scientific, 
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Waltham, MA).  Analysis of global DNA methylation was conducted on 50 ng of isolated 

sample using a commercial EIA kit that detects 5-methylcytosine (5-mC) (Epigentek, 

Farmingdale, NY) according to the manufacturer’s instructions.   

Statistical Analyses  

Data analyses were conducted using a one-way analysis of variance with a post-hoc 

Bonferroni test for separation of the means in Prism Graph Software.  In all cases, a p-

value of <0.05 was considered statistically significant.   

 

Results 

Perinatal BPA Exposure Increases Adult BMMC CysLT and PGD2 Levels after IgE 

Crosslinking 

To test whether perinatal exposure to BPA upregulates the production of pro-

inflammatory lipid mediators known to contribute to the pathogenesis of allergic airway 

disease, BMMC secretion of eicosanoids CysLTs and PGD2 following IgE crosslinking 

was assessed (Figure 3.1).  Following activation, 3- to 4-fold increases in the secretion of 

CysLTs from the low (p=0.013), medium (p=0.005), and high (p=0.036) BPA exposure 

groups compared to the control group were observed, with no differences between BPA 

exposure groups (Figure 3.1a).  Additionally, a 2-fold increase in production of PGD2 in 

the high BPA exposure group (p=0.009), without increased PGD2 levels in the low 

(p=0.542) and medium (p=0.120) BPA exposure groups, was observed (Figure 3.1b).  
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Perinatal BPA Exposure Enhances Adult BMMC IL-13 and TNF-α Production after IgE 

Crosslinking 

Next, the impact of BPA exposure on IgE crosslinking-induced BMMC cytokine release 

was assessed (Figure 3.2).  In these experiments, the levels of TNF-α, IL-4, IL-5, IL-6, 

and IL-13 were determined since these mast cell-derived cytokines contribute to allergic 

airway inflammation (Walls et al., 2001; Boyce, 2003; Bradding et al., 2006; Amin, 

2012).  IgE mediated activation resulted in a 3- to 4-fold increase in BMMC secretion of 

TNF-α from low (p=0.018), medium (p=0.008), and high (p=0.019) BPA exposure 

groups compared with the control group (Figure 3.2a).  Furthermore, IL-13 release was 

also upregulated in the high BPA exposure group (p=0.0005) (Figure 3.2b).  However, 

there were no statistically significant differences in IL-4, IL-5, or IL-6 between the 

control group and BPA exposure groups following BMMC stimulation (Figures 3.2c, 

3.2d, 3.2f).   

Effect of Perinatal BPA Exposure on Adult BMMC Histamine Release 

The effect of BPA exposure on IgE crosslinking-induced histamine release was measured 

(Figure 3.3).  Compared to controls, a statistical increase in histamine release among 

BMMCs of BPA-exposed animals was not observed, despite a nearly 2-fold higher 

release of histamine from the low (p=0.213) and medium (p=0.333) BPA exposure 

groups, compared to the control group.   

Perinatal BPA Exposure Decreases Global DNA Methylation in Adult BMMCs 
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The observed increases in pro-inflammatory mediator secretion from BMMCs of animals 

exposed to BPA perinatally suggest increased gene transcription of cytokines and 

proteins involved in the synthesis of eicosanoids, which may be regulated by DNA 

methylation changes (Richter et al., 2007).  To test this hypothesis, the relative 

concentrations of 5-mC in DNA extracts from BMMCs of BPA-exposed and control 

animals were determined by EIA.  As shown in figure 3.4, global DNA methylation 

levels in extracts of BMMCs from the BPA-exposed animals were decreased compared to 

controls, although, statistical significance was observed only in the low BPA exposure 

group (p=0.014).   

 

Discussion  

 Since little is known regarding the long-term effect of perinatal BPA exposure on 

mast cell function, the current study measured mediator production from BMMCs 

obtained from 6-month-old mice exposed perinatally to four doses of BPA (low, medium, 

high, and control) through the maternal diet.  Enhanced lipid mediator synthesis (CysLTs 

and PGD2) and cytokine release (TNF-α and IL-13) following BMMC activation via IgE 

crosslinking were observed.  In association with these increases in pro-inflammatory 

mediator production, a decrease in global DNA methylation was observed.  Thus, these 

results highlight the potential for persistent epigenetic modification by the endocrine-

active monomer BPA, resulting in lasting consequences on mast cell-mediated pro-

inflammatory lipid mediator and cytokine production in adulthood that could potentially 

worsen inflammation associated with allergic airway disease.  
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An important and novel finding of this study is that the increases in pro-

inflammatory mediator production and changes in DNA methylation states were observed 

in cells obtained from adult animals that were exposed to BPA perinatally.  Thus, effects 

of BPA exposure persisted for over five months following termination of exposure, 

supporting a role for early environmental exposures in mast cell dysregulation of pro-

inflammatory mediator production.  Several previous reports have demonstrated long-

term effects from early exposures to BPA (Richter et al., 2007), especially when dealing 

with reproductive physiology (Markey et al., 2005; Newbold et al., 2009; Edlow et al., 

2012).  Additionally, there have been significant findings in newly focused epigenetic 

studies directed toward transgenerational outcomes in the F3 generation and beyond 

following an environmental exposure in the F0 generation (Skinner and Guerrero-

Bosagna, 2009; Skinner et al., 2010).  However, few in vivo studies have investigated 

long-term effects on mast cell function, or other immune functions for that matter, after 

perinatal BPA exposure from an epigenetic standpoint as the current has done.   

 CysLTs and PGD2 are arachidonic acid metabolites, with CysLTs generated via 

the 5-lipoxygenase (5-LO) pathway and PGD2 generated via cyclooxygenase-1 and -2 

(COX1/2) pathway.  While data from this study indicate that perinatal BPA exposure 

resulted in increased CysLT and PGD2 release from BMMCs of adult animals, a clear 

mechanism explaining increased CysLT and PGD2 release has yet to be determined.  The 

observed global hypomethylation in BPA exposure groups compared to the control group 

may lead to increased transcription of genes whose promoter regions were less 

methylated following exposure (Dolinoy et al., 2007; Anderson et al., 2012).  
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Dysregulation of the mitogen-activated protein kinase (MAPK) pathway, which is 

upstream of where the 5-LO and COX1/2 pathways converge, may explain the observed 

responses.  Yi and Krieg demonstrated that DNA demethylation resulted in increased c-

Jun, p38, MAPK, and activator protein-1 (AP-1) activation (Yi and Krieg, 1998).  

Additionally, Lee et al. showed in head and neck cancer cell lines that silencing of 

suppressor of cytokine signaling-1 (SOCS-1) by DNA hypermethylation resulted in 

increased downstream activation of signal transducer and activator of transcription 3 

(STAT3) through activation of Janus kinase 1 and 2 (JAK1/2) and extracellular signal-

regulated kinase (ERK) (Lee et al., 2006).  Future work examining gene-specific 

methylation changes to the promoter regions of the genes described here will be needed 

to identify the mechanisms of increased BMMC lipid mediator secretion following 

perinatal BPA exposure. 

 Following perinatal BPA exposure, the current study also observed an increase in 

BMMC release of the cytokines IL-13, which contributes to eosinophil recruitment and 

IgE production in the asthmatic lung, and TNF-α, which increases airway 

hyperresponsiveness and sputum neutrophils (Chung and Barnes, 1999).  Future work 

will focus on identifying possible DNA methylation changes to the promoter regions of 

the Il13 gene, which may explain increased BMMC IL-13 production.  Recently, Yu et 

al. demonstrated in a model of constitutive DNA methyltransferase 3a (Dnmt3a) and 3b 

(Dnmt3b) knockout (KO) mice that IL-13 cytokine production is modifiable depending 

on gene methylation state, with increased IL-13 production observed in KO mice 

compared to wild-type mice (Yu et al., 2012).  Likewise, future work will examine 
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methylation states of the Tnf promoter to help explain BMMC increases in TNF-α 

production.  Several reports have described age-related or disease-related CpG 

methylation changes to the Tnf promoter (Gowers et al., 2011; Han et al., 2011; Wang et 

al., 2012), and Kamei et al. observed that overexpression of Dnmt3a in white adipose 

tissue of obese mice increased TNF-α gene expression compared to wild-type mice 

(Kamei et al., 2010).  In addition to the cytokines examined in this report, future research 

should also examine the T helper cell type 1 (Th1) cytokine INF-γ and the Th2 cytokine 

IL-4.  Yoshino et al. showed that fetal exposure to BPA through maternal consumption of 

300 µg BPA/kg BW/day from days 0 to 17 of gestation resulted in increased production 

of INF-γ and IL-4in stimulated splenocytes (Yoshino et al., 2004).  Likewise, Yan et al. 

demonstrated similar results by showing that maternal exposure to 100 nM BPA in 

drinking water two weeks before mating and during the first week of gestation increased 

adult offspring production of IL-4 and INF-γ from stimulated splenocytes (Yan et al., 

2008).   

It is important to note that limitations to the exposure model used in the current 

study are the number, litter distribution, and sex of animals included as test subjects.  

Animals observed in this study were generated from a larger heterozygous breeding 

scheme of A
vy

 mice (Anderson et al., 2012; Anderson et al., 2013) and were selected 

based on a/a genotype and age.  Heterozygous A
vy

/a offspring were not included in the 

study group due to the inheritance of metabolic disorders, obesity, and tumorigenesis 

(Miltenberger et al., 1997; Morgan et al., 1999).  Thus, the animals examined in this 

study represent skewed sex and litter distributions described in the Materials and 
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Methods section.  In terms of pro-inflammatory mediator production from cells, some 

studies suggest sex differences in cellular production of Th2 cytokines, specifically TNF-

α, and CysLTs.  Spitzer reported increased TNF-α production from female rat alveolar 

macrophages and Kupffer cells following in vivo ethanol treatment compared to males 

(Spitzer, 1999).  Bouman et al. also reported that production of TNF-α, IL-12, and IL-1β 

was increased in healthy males compared to healthy females, but suggested that higher 

cytokine quantity in males was the result a higher initial number of circulating monocytes 

in the study participants (Bouman et al., 2004).  Similarly, Pergola et al. reported a 

decrease in leukotriene production from peripheral monocytes, neutrophils, and whole 

blood of healthy males compared to healthy females, which was attributed to lower 

baseline expression of 5-LO in cells from males and inhibition of phospholipase D by 5α-

dihydrotestosterone (Pergola et al., 2008; Pergola et al., 2011).  In the current study, 

robust CysLT and TNF-α upregulation from BMMCs in all BPA exposure groups was 

observed compared to the control group, with no significance between exposure groups.  

Thus, it is suspected that sex differences in cytokine production are minimal, if present, 

for CysLT and TNF-α production in this model.  On the other hand, possible mitigating 

influences of sex with IL-13 and PGD2 production cannot be ruled out.  For these makers, 

significant IL-13 and PGD2 increases were observed only in the highest BPA exposure 

group, which is a group composed entirely of male animals.  Future research should 

examine possible baseline differences in cytokine and lipid mediator production between 

sexes in mice and humans.   
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Ideally, sera BPA levels in dams or neonate offspring used in this study would be 

quantified to validate BPA dosing through the supplemented diets.  However, the study 

design and limited subjects precluded these measurements.  A study conducted by 

Jasarevic et al. reported conjugated and unconjugated (free) BPA levels in sera of deer 

mice dams chronically (~12 months) fed the same high BPA diet (50 mg BPA/kg diet) 

used in the current study (Jasarevic et al., 2013).  Conjugated BPA levels ranged from 

1.6 ng/mL to 157 ng/mL with a mean of ~60 ng/mL, while free BPA levels ranged from 

0.79 to 19.3 ng/mL with a mean of ~5.5 ng/mL (Jasarevic et al., 2013) – values that are 

within the range of human exposure (Vandenberg et al., 2007).  Comparatively, dams fed 

the control diet had conjugated or free BPA sera levels ranging from the limit of 

detection (0.1 ng/mL) to 0.79 ng/mL (Jasarevic et al., 2013).  Jasarevic et al. also note 

that, based on the linear response curves for BPA pharmacokinetics (Doerge et al., 2010; 

Doerge et al., 2011; Taylor et al., 2011), dams chronically fed the medium or low BPA 

diets are expected to have free BPA sera levels below the limit of detection (Jasarevic et 

al., 2013).  BPA levels in liver of 22-day-old offspring generated from this breeding 

scheme have been reported previously (Anderson et al., 2012).  Offspring exposed to the 

high BPA diet displayed a mean conjugated BPA level of 278 ng/g and a mean free BPA 

level of 164 ng/g (Anderson et al., 2012).  However, offspring in the medium and low 

exposure groups had much lower mean conjugated BPA (0.3 and 1.0 ng/g, respectively) 

and mean free BPA (1.8 and 1.8 ng/g, respectively) levels, which did not differ from 

controls (conjugated: 0.6 ng/g, unconjugated 3.7 ng/g) but were within the range of 

human environmental exposure (Anderson et al., 2012).   
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While the debate regarding removal of BPA from consumer products persists, a 

strength of this study is its focus on environmentally relevant levels of BPA using an 

exposure model that includes low (50 ng BPA/kg diet), medium (50 µg BPA/kg diet), 

and high (50 mg BPA/kg diet) doses, where the medium dose is the closest to the 

consumption levels seen in humans (Anderson et al., 2012; Anderson et al., 2013).  It is 

important to note that significant increases in pro-inflammatory mediator secretion were 

observed at the lowest BPA dose, which is well below the average human consumption 

levels, indicating the necessity of continuing relevant BPA research, especially at low 

doses (Volkel et al., 2002; Tominaga et al., 2006).  The current report has established an 

novel association between perinatal BPA exposure through maternal diet and mast cell 

dysregulation, as evidenced by increased CysLT, PGD2, TNF-α, and IL-13 release from 

BMMCs of adult offspring with perinatal BPA exposures.  These responses occurred in 

conjunction with decreased global DNA methylation in BMMCs.  Due to the important 

role of mast cells in the development of atopic asthma, BPA-induced mast cell 

dysregulation could have implications on asthma pathogenesis.  Future studies focusing 

on the developmental origins of asthma will help to lay a better groundwork for reduction 

of environmental exposures to the developing fetus.   
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Figure 3.1: Levels of CysLTs (a) and PGD2 (b) secreted after IgE crosslinking from 

BMMCs of animals exposed perinatally to BPA.  Concentrations of CysLTs and PGD2 

were determined in cell culture supernatants after 30 minutes of cellular activation.  Bars 

represent mean ± SEM for n=3-5 mice per group.  **p<0.01 compared to control. 
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Figure 3.2: Levels of TNF-α (a), IL-13 (b), IL-4 (c), IL-5 (d), and IL-6 (e) secreted after 

IgE crosslinking from BMMCs of animals exposed perinatally to BPA.  Concentrations 

of TNF-α, IL-13, IL-4, IL-5, and IL-6 were determined in cell culture supernatants after 

30 minutes of cellular activation.  Bars represent mean ± SEM for n=3-5 mice per group.  

*p<0.05 and **p<0.01 compared to control.   
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Figure 3.3: Percentage increase in histamine release after IgE crosslinking from BMMCs 

of animals exposed perinatally to BPA, as compared to IgE-free control.  Relative 

fluorescence units were determined in cell culture supernatants after 30 minutes of 

cellular activation.  Bars represent mean ± SEM for n=3-5 mice per group.   
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Figure 3.4: Decreased levels of global DNA methylation in BMMCs from adult animals 

with perinatal BPA exposures.  DNA was isolated from cultured BMMCs of adult 

animals, and 5-mC concentration was measured.  Bars represent mean arbitrary OD units 

± SEM for n=3-5 mice per group.  **p<0.01 compared to control.   
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CHAPTER 4 

PERINATAL BISPHENOL A EXPOSURES  

ENHANCE ALLERGEN SENSITIZATION, BUT NOT  

PULMONARY INFLAMMATION, IN ADULT MICE  

Abstract 

Bisphenol A (BPA), a monomer of polycarbonate plastics and epoxide resin, is a 

high-production-volume chemical that has been implicated in asthma pathogenesis when 

exposure occurs to the developing fetus.  However, few studies have examined the effect 

of in utero and early-life BPA exposure on the pathogenesis of asthma in adulthood.  In 

this study, the influence of perinatal BPA exposure through maternal diet on allergen 

sensitization and pulmonary inflammation was examined.  Two weeks before mating, 

BALB/c dams were randomly assigned to a phytoestrogen-free, BPA-free control diet or 

phytoestrogen-free diets containing 50 ng, 50 μg, or 50 mg of BPA/kg of rodent chow.  

Dams remained on the assigned diet throughout gestation and lactation until postnatal day 

21 when offspring were weaned onto the BPA-free diet.  Twelve-week-old offspring 

were sensitized to ovalbumin (OVA) with alum by intraperitoneal injection and 

subsequently challenged with aerosolized OVA.  Sera, splenocytes, bronchoalveolar 

lavage fluid, and whole lungs were recovered to assess allergen sensitization and 

pulmonary inflammation 24 hrs after the last OVA challenge.  Serum anti-OVA IgE 

levels were increased 2-fold in offspring of mice exposed to 50 μg and 50 mg BPA/kg 
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diet as compared with the control diet.  In addition, production of IL-13 and IFN-γ was 

increased in OVA-stimulated splenocytes recovered from mice exposed to BPA.  

However, pulmonary inflammation, as indicated by total and differential leukocyte 

counts, cytokines, and pulmonary histopathology inflammatory scores, were either not 

different or reduced in mice exposed to BPA through the maternal diet.  While these data 

suggest that perinatal BPA exposure enhances allergen sensitization by increasing serum 

IgE and splenocyte cytokine production, a substantial impact of BPA on OVA-induced 

pulmonary inflammation in adulthood was not observed.    

 

Introduction 

 The increase in global asthma prevalence observed since the 1970s, especially 

among developed countries (Lai et al., 2009; Anandan et al., 2010; To et al., 2012), has 

given rise to the belief that industrialization and associated environmental exposures play 

a role in asthma pathogenesis (Holgate et al., 2007).  Human exposure to synthetic 

xenoestrogens, a group of chemicals structurally similar to estrogen and known to 

interfere with estrogen receptor signaling, has been implicated in the pathogenesis of 

asthma (Dodson et al., 2012).  Furthermore, epidemiologic studies suggest that estrogen 

plays a role in asthma development and severity of symptoms (Haggerty et al., 2003; 

Tam et al., 2011; Bonds and Midoro-Horiuti, 2013) as evidenced by the higher 

prevalence of asthma in adult females compared to adult males (Vink et al., 2010; 

Leynaert et al., 2012), worsened asthma symptoms corresponding to peaks in estrogen 

and progesterone corresponding to the ovulation cycle (Vrieze et al., 2003; Thornton et 
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al., 2012), and an increased risk of developing adult-onset asthma in patients undergoing 

hormone replacement therapy (Barr et al., 2004; Dratva, 2010).  Recently, human 

exposure to the ubiquitous xenoestrogen BPA has been associated with worsened asthma 

symptoms (Spanier et al., 2012; Vaidya and Kulkarni, 2012; Donohue et al., 2013).   

BPA is a synthetic monomer produced in high quantities on a global scale 

(Vandenberg et al., 2009), and it is a regular component of polycarbonate plastic and 

epoxide resin products such as baby bottles, water bottles, food storage containers, and 

linings of metal cans (Vandenberg et al., 2007).  BPA is also a component or precursor in 

thermal receipt paper (Biedermann et al., 2010), dental sealants (Joskow et al., 2006), and 

flame retardants (Meerts et al., 2001).  Human exposure to BPA mainly occurs through 

ingestion of tainted food and drink, though exposure through inhalation and dermal 

absorption are possible exposure routes as well (Vandenberg et al., 2007).  National 

Health and Nutrition Examination Survey (NHANES) data report detectable amounts of 

BPA and BPA metabolites in the urine of 95% of participants, indicating that BPA 

exposure is widespread (Calafat et al., 2005; Vandenberg et al., 2012).   

Research on the developmental origins of asthma (Henderson and Warner, 2012; 

Duijts, 2012) has recently focused on in utero and early postnatal exposures to BPA 

(Midoro-Horiuti et al., 2010; Nakajima et al., 2012; Bauer et al., 2012).  This study seeks 

to build upon existing literature by examining the effect of perinatal BPA exposure at 

doses relevant to human exposure on allergen-induced pulmonary inflammation in 

adulthood.  Through use of the OVA sensitization model in BALB/c mice, markers of 

inflammation and allergen sensitization including cellular recruitment, cytokine and 
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chemokine production, lipid mediator production, lung histopathology scoring, sera anti-

OVA IgE levels, and splenocyte cytokine production were assessed.  The current study 

reports that BPA exposure enhanced OVA sensitization as indicated by elevated serum 

IgE and splenocyte cytokine production, but did not enhance pulmonary inflammation.  

These data suggest that early life exposures to BPA in humans may contribute to 

enhanced allergen sensitization in adulthood.   

 

Methods and Materials 

Animals 

Eight-week-old male and female BALB/c breeders were obtained from Charles River 

(Wilmington, MA).  Dams were randomly assigned to one of four modified, BPA-

supplemented diets with 7% corn oil substituted for 7% soybean oil (Harland, Madison, 

WI): 50 ng, 50 µg, or 50 mg BPA/kg diet (diets 09798, 09797, and 09518, respectively), 

or a BPA-free control diet (diet 95092).  All diet ingredients were supplied by Harland, 

except for BPA which was provided by the National Toxicology Program.  Female 

breeders were maintained on the assigned diet for two weeks before being paired with a 

BALB/c sire.  Dams and offspring remained on the assigned diet throughout gestation 

and maternal lactation until weaning at postnatal day (PND) 21.  At weaning, all 

offspring were group-housed by sex and fed the BPA-free control diet and subsequently 

aged to 12 weeks.  Animals were housed in a University of Michigan animal facility and 

treated according to National Institutes of Health guidelines for the use of experimental 
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animals with approval of the University of Michigan Committee for the Use and Care of 

Animals.   

Induction of Allergic Asthma 

Twelve-week-old offspring from all of the dietary treatment groups were sensitized to 

OVA with a single 200-μL intraperitoneal injection of a PBS solution containing 20 μg 

OVA (Sigma, St. Louis, MO) with 2 mg of Al(OH)3 from Imject Alum® (Thermo Fisher 

Scientific, Waltham, MA) as an adjuvant.  One week after sensitization, offspring were 

challenged twice, with 24 hours in between, by exposure to an aerosol of 3% OVA in 

PBS for 20 minutes using an ultrasonic nebulizer (ICEL US-800) delivering particles of 

0.5-10 nm in diameter at 0.75 mL/min.  Twenty-four hours after the second OVA 

challenge, lungs, sera, and spleens were collected from euthanized animals. 

Lung Leukocyte Recovery by Bronchoalveolar Lavage (BAL) and Enumeration 

Lungs were removed en bloc from euthanized mice, cannulated through the trachea, and 

lavaged twice with 1 mL of ice cold HEPES buffer, as previously described (Mancuso et 

al., 1998).  The maximum amount of BAL fluid (BALF) retrievable was collected (1.6 

mL on average).  The total number of cells suspended in BALF was enumerated by 

counting on a hemacytometer under a light microscope.  Differential counts were 

determined after cells had been cytospun onto glass slides using a StatSpin Cytofuge 2 

Centrifuge (Iris Sample Processing, Westwood, MA) and stained using a modified 

Wright-Giemsa stain (Differential Quik Stain, Thermo Fisher Scientific).  A total of 200 

cells were counted in randomly chosen fields under a light microscope (×1000) by a 
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single observer (EO).  The total number of cells per mL of a particular leukocyte subset 

was determined by multiplying the percentage of the population by the total number of 

lung leukocytes per mL collected from the same mouse, as previously described 

(Mancuso et al., 2002). 

Splenocyte Culture 

Excised spleens were homogenized in 2 mL of cold PBS and passed through a 40-μm 

filter.  Suspended splenocytes were centrifuged at 1500 RPMs and 4 °C for 5 minutes, 

then resuspended in 1 mL of RPMI (Life Technologies, Invitrogen, Carlsbad, CA) 

supplemented with 10% fetal calf serum (Invitrogen) and 1% penicillin/streptomycin 

(Invitrogen).  Cells in suspension were enumerated on a hemacytometer under a light 

microscope and plated in 96-well culture plates at a concentration of 5.0 x 10
5
 cells/well.  

Cells were stimulated with or without 15 μg OVA/well for 72 hours to elicit cytokine 

production, after which supernatants were collected and stored at -80 °C until analysis.  

Due to small sample size (n=4), male and female splenocyte cytokine data were 

combined.   

Sera IgE Determination 

Sera were collected at the time of dissection and stored at -80 °C until analysis.  The 

levels of anti-OVA IgE in sera were determined by a commercially available enzyme 

immunoassay (EIA) kit (Cayman Chemical) according to the manufacturer’s instructions.  

IgE measurements below the limit of detection (3.12 ng/mL) are reported as zero.   

Cytokine and Chemokine Determinations 
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Measurement of the cytokines and chemokines TNF-α, INF-γ, IL-4, IL-5, IL-13, 

RANTES (CCL5), MCP-1 (CCL2), MIP-3 (CCL20), and eotaxin-1 (CCL11) in BALF, 

lung homogenates, and/or splenocyte supernatants were conducted by the University of 

Michigan Immunology Core Facility using commercially available EIA kits (DuoSet, 

R&D Systems, Minneapolis, MN) according to the manufacturer’s instructions.  

Cytokine measurements below the limit of detection (4.1 pg/mL) are recorded as zero.  

Cytokine and chemokine values in lung homogenates were normalized by total protein 

content of samples.   

Cysteinyl Leukotriene (CysLT) and Prostaglandin D2 (PGD2) Determinations 

The levels of CysLTs in BALF and PGD2 after methoximation (PGD2-MOX) in lung 

homogenates were determined by commercially available EIA kits (Cayman Chemical, 

Ann Arbor, MI) according to the manufacturer’s instructions.  PGD2 values in lung 

homogenates were normalized by total protein content of samples.   

Histology 

Excised lungs were fixed in a solution of 60% ethanol (Thermo Fisher Scientific), 30% 

chloroform (Sigma), and 10% glacial acetic acid (Thermo Fisher Scientific).  Samples 

were parafilm embedded, sectioned onto slides, and stained with hematoxylin and eosin 

(H&E) by the University of Michigan Research Histology & Immunoperoxidase Core 

Facility.  Lung sections were scored by a histopathologist, who was blinded to the 

identity of the samples, in the University of Michigan Unit for Laboratory Animal 

Medicine (Dr. Ingrid L. Bergin) for severity of inflammation in the following categories: 
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peribronchiolar inflammation (0: none; 1: mild; 2: moderate; 3: severe; 4: marked), 

perivascular inflammation (0: none; 1: mild; 2: moderate; 3: severe; 4: marked), and 

alveolar inflammation (0: absent; 1: few foci present; 2: many foci present).  Each lung 

section was individually scored in all three categories.  Categories were then summed 

across the parameters to give a total inflammatory score (maximum score of 10).  The 

criteria dictating the numeric scores for peribronchiolar and perivascular inflammation 

were as follows: 0: none; 1: thin inflammatory peribronchiolar/perivascular infiltrate (<3 

cell layers) confined to central lung; 2: dense inflammatory peribronchiolar/perivascular 

infiltrate (≥3 cell layers) confined to central lung; 3: thin (<3 cell layers) to dense (≥3 cell 

layers) inflammatory peribronchiolar/perivascular infiltrate extending to peripheral 

(smaller diameter) airways/vessels; 4: dense (≥3 cell layers) inflammatory 

peribronchiolar/perivascular infiltrate extending to pleural surface.  

Statistical Analyses 

All data are expressed as mean ± SEM.  Analyses for data in table 4.1 were conducted 

using a one-way analysis of variance with a post-hoc Bonferroni test for separation of the 

means in Prism Graph Software.  Each data point in figures 4.1-4.5 represents a 

measurement from a single offspring.  Data in figures 4.1-4.5 that were normally 

distributed were analyzed using a categorical mixed model to test the significance of 

BPA-exposed groups to the control group where measure = intercept + 

beta1*(bpadose1=1) + beta2*(bpadose2=2) + beta3*(bpadose3=3).  Within-litter 

correlation was adjusted by including a random intercept by litter with BPA exposure 

group as a fixed effect.  Data in figures 4.1-4.5 with skewed distributions were analyzed 
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using generalized estimating equations with Poisson distribution.  Within-litter 

correlation was adjusted by using a compound symmetric covariance matrix.  Analyses 

for figures 4.1-4.5 were conducted in statistical analysis system (SAS) software.  Data 

from female and male offspring were analyzed separately.  In all cases, a p-value of 

<0.05 was considered statistically significant.   

 

Results 

Impact of BPA Exposure on Offspring  

Consistent with previous reports, prenatal exposure to 50 ng BPA/kg (4 litters, 20 

offspring), 50 μg BPA/kg (4 litters, 23 offspring), or 50 mg BPA/kg (4 litters, 18 

offspring) did not significantly alter litter size (p=0.790) or offspring survival (p=0.603), 

compared to control offspring (4 litters, 19 offspring) (Table 4.1) (Anderson et al., 2012; 

Anderson et al., 2013).  Interestingly, BPA exposure increased the percentage of female 

offspring per litter among dams fed the 50 mg BPA/kg diet compared to control dams 

(p=0.036).  The mean percentage of female offspring per litter was approximately 80% in 

50 mg BPA/kg diet litters, compared to 44% in control litters.  There was no significant 

difference in the percentage of female offspring per litter in 50 ng BPA/kg diet (p=0.171) 

or 50 μg BPA/kg diet (p=0.402) exposure groups compared to controls.   

Anti-OVA IgE Sera Levels 
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To determine the impact of BPA exposure on systemic OVA sensitization, anti-OVA IgE 

levels in sera were measured (Figure 4.1).  A modest increase in sera anti-OVA IgE 

levels in female (p=0.016) and male (non-significant increase, p=0.096) offspring 

exposed to the 50 ng BPA/kg diet was observed, while mean IgE levels increased 2-fold 

in sera obtained from both female and male offspring exposed to the 50 μg (female: 

p<0.0001, male: p=0.021) and 50 mg BPA/kg (female: p<0.0001, male: p=0.038) diets, 

compared to respective controls.   

OVA-stimulated Splenocyte Cytokine Production 

Since the balance of T helper cell type 1 (Th1) and Th2 cytokines plays an important role 

in driving the production of IgE, cytokine production in splenocytes obtained from mice 

was examined in order to determine if BPA exposure influences Th1-Th2 balance (Figure 

4.2).  As shown in figure 4.2a, the Th2 cytokine IL-13, known to promote 

immunoglobulin class switching to IgE, was increased in OVA-stimulated splenocytes 

obtained from mice exposed to the 50 μg (p=0.004) and 50 mg BPA/kg (p=0.028) diets, 

compared to controls.  Interestingly, IFN-γ production was also increased in OVA-

stimulated splenocytes obtained from offspring exposed to the 50 ng (p<0.0001), 50 μg 

(p<0.0001), and 50 mg BPA/kg (p<0.0001) diets (Figure 4.2b).  There was no difference 

in IL-4, IL-5, or TNF-α production from OVA-stimulated splenocytes between any 

treatment groups (data not shown).  Additionally, there was no difference in the 

production of any cytokine (IL-4, IL-5, IL-13, IFN-γ, or TNF-α) from splenocytes that 

were not stimulated with OVA (data not shown).  

Leukocyte Recruitment following OVA Challenge  
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The influence of perinatal BPA exposure on leukocyte recruitment to the lungs following 

OVA challenge was examined as one endpoint indicative of altered pulmonary 

inflammation (Figure 4.3).  As shown in figure 4.3a, the total number of leukocytes 

obtained from BALF of male offspring exposed to 50 ng (p<0.0001) or 50 mg BPA/kg 

(p=0.0003) were decreased compared to male controls.  Additionally, females exposed to 

50 mg BPA/kg displayed a modest decreased (p=0.047) in total leukocytes, compared to 

female controls.  Total eosinophil cell counts revealed a decrease among female mice 

exposed to 50 mg BPA/kg (p<0.0001) and males exposed to 50 ng BPA/kg (p=0.041) 

(Figures 4.3b, 4.3c).  Total polymorphonuclear neutrophils (PMNs) were also decreased 

in male mice exposed to 50 ng (p<0.0001), 50 μg (p=0.018), and 50 mg BPA/kg 

(p<0.0001), while total lymphocytes were decreased in males exposed to 50 mg BPA/kg 

(p<0.0001) and total macrophages were decrease in males exposed to 50 ng BPA/kg diet 

(p=0.027) (Figure 4.3c).  Total PMNs, lymphocytes, and macrophages did not differ 

between exposure groups in females (Figure 4.3b).  In addition, the percentage of 

lymphocytes recovered from both female (p=0.001) and male (p=0.015) mice exposed to 

the 50 ng PBA/kg diet were increased, compared to respective control offspring (Figures 

4.3d, 4.3e).  Female offspring exposed to 50 mg BPA/kg also displayed a modest 

decrease in the percent airway leukocytes that were eosinophils (p=0.045), which was 

accompanied by an increases in percentage of PMNs (p=0.019) (Figure 4.3d).  The 

percent of airway leukocytes that were macrophages did not differ between exposure 

groups among males or females.  

Cytokines and CysLTs in BALF following OVA Challenge 
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Cytokine and CysLT concentrations in BALF were measured as one way to determine if 

perinatal BPA exposure effects pulmonary inflammation following OVA challenge 

(Figure 4.4).  The concentrations of IL-4, IL-13, and TNF-α in BALF collected from 

female offspring were significantly lower among animals exposed to the 50 ng BPA/kg 

(IL-4: p=0.007, IL-13: p=0.002, TNF-α: p=0.007) and 50 mg BPA/kg (IL-4: p=0.001, IL-

13: p=0.040, TNF-α: p=0.027) diets compared to female controls (Figure 4.4a).  Changes 

in BALF concentrations of IL-4, IL-13, and TNF-α among males did not differ between 

exposure groups (Figure 4.4b).  Compared with their respective controls, BALF levels of 

IL-17 were lower for both female and male mice in all BPA exposure groups: 50 ng 

BPA/kg (female: p=0.004, male: p<0.0001), 50 μg BPA/kg (female: p=0.006, male: 

p=0.001), and 50 mg BPA/kg (female: p=0.001, male: p<0.0001) (Figures 4.4a, 4.4b).  

Additionally, CysLTs levels were decreased in BALF from females (p<0.0001) and 

males (p=0.003) exposed to the 50 mg BPA/kg diet (Figure 4.4c).  Perinatal BPA 

exposure had no effect on eotaxin-1 levels in BALF following OVA challenge (data not 

shown).   

Lung Homogenate Cytokines, Chemokines, and PGD2 following OVA Challenge 

Lungs were homogenized following OVA challenge in order to measure production of 

cytokines, chemokines, and the lipid mediator PGD2 (Figure 4.4d).  An increase in 

RANTES production was observed in female offspring exposed to 50 ng BPA/kg diet, 

compared to controls (p=0.006).  However, there was no difference in the levels of TNF-

α, IFN-γ, IL-4, IL-5, IL-13, MCP-1, MIP-3, eotaxin-1, or PGD2 between any BPA 

exposure group and controls (data not shown).   



 

98 

 

Lung Histology 

Lung sections were examined and scored as a means to directly quantify the severity of 

pulmonary inflammation.  Examples of tissues and scoring are shown in figures 4.5a, 

4.5b, and 4.5c.  There was no difference in total inflammatory score among female BPA-

exposed and control offspring (Figure 4.5d).  Likewise, there was no difference in 

inflammation score between female offspring within individual parameters (i.e. 

peribronchiolar inflammation, perivascular inflammation, and alveolar inflammation) 

(data not shown).  In contrast, the total inflammatory score was lower than the control for 

male offspring exposed to the 50 mg BPA/kg diet (p=0.003) (Figure 4.5e).  The lower 

total inflammation score among 50 mg BPA/kg diet males was not driven by any one 

individual parameter since this exposure group consistently exhibited a significantly 

lower score within each inflammatory parameter (data not shown).   

 

Discussion 

  The current study examined the effect of in utero and early-life BPA exposure on 

allergic airway inflammation in adult BALB/c mice through use of the conventional 

OVA sensitization-aerosol challenge model.  This study was conducted using BALB/c 

mice since this strain is considered susceptible to allergen sensitization due to it having a 

Th2 dominant immune response.  Offspring exposure to BPA began two weeks before 

fertilization and ended on PND 21.  All of embryogenesis was included in the exposure 

window due to the considerable amount of epigenetic reprogramming that occurs during 
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in utero development, especially early on after fertilization (Morgan et al., 2005; Jirtle 

and Skinner, 2007), and the potential for BPA to act as an epigenetic disruptor by altering 

DNA methylation (Dolinoy et al., 2007; Bernal and Jirtle, 2010; Doshi et al., 2011; 

Fernandez et al., 2012; Singh and Li, 2012; Zhang et al., 2012; Patel et al., 2013).  

Methyl groups on DNA act as steric hindrances to silence gene transcription, and 

modification of the methylation state during in utero and early postnatal development 

could lead to long-lasting improper gene transcription and activation into adulthood.  

Previously, two studies using the OVA model examined the influence of in utero and 

early-life BPA exposure on allergic inflammation in neonate offspring (Midoro-Horiuti et 

al., 2010; Nakajima et al., 2012), and one study examined allergic inflammation in adult 

offspring (Bauer et al., 2012).   

A novel observation in this study was that perinatal BPA exposure enhanced 

allergic sensitization to OVA in adult mice, as evidenced by increased sera anti-OVA IgE 

levels.  This result was similar to a report by Midoro-Horiuti et al. which found elevated 

IgE levels in sera of juvenile BALB/c mice exposed to BPA perinatally through maternal 

drinking water at a concentration of 10 μg/mL and sensitized to a “suboptimal” dose of 

OVA with alum (5 μg OVA, 1 mg alum) on PND 4 (Midoro-Horiuti et al., 2010).  In the 

current study, mice reached an adult age (12 weeks) prior to OVA sensitization indicating 

the early-life exposure to BPA may have long-term consequences on hypersensitivity 

responses.  In addition, a study by Lee et al. also reported that BPA exposure enhances 

allergen sensitization (Lee et al., 2003).  In the study conducted by Lee et al., adult 

female BALB/c mice sensitized to keyhole limpet haemocyanin (KLH, simulates 
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shellfish allergy) with alum and subsequently treated with 25 mg/kg BPA or saline once 

every other day for one week  displayed elevated levels of anti-KLH IgE in sera 

compared to saline-treated animals (Lee et al., 2003).  In contrast, Bauer et al. revealed 

that exposure to 0.5, 5, or 500 μg BPA/kg BW/day through maternal gavage in C57BL/6 

mice from gestational day (GD) 6 through PND 21, followed by intraperitoneal OVA 

sensitization and subsequent challenge in adulthood, decreased anti-OVA IgE levels, 

compared to controls (Bauer et al., 2012).  Differences in IgE responses following 

perinatal BPA exposure and OVA sensitization may be reflective of the timing of BPA 

exposure.  In the current study and the report by Midoro-Horiuti et al., BPA exposure 

occurred through maternal diet or drinking water prior to pregnancy, throughout 

gestation, and throughout nursing until day 21 after birth.  In contrast, Bauer et al. 

exposed dams to BPA beginning on GD 6 until PND 21.  This detail is significant since 

BPA is capable of altering DNA methylation prior to implantation of the fertilized 

embryo and during early post-implantation development when the genome is most 

vulnerable to epigenetic reprogramming (Reik et al., 2001; Chao et al., 2012).  

Differences in mouse strains may have also influenced the levels of OVA-specific IgE, 

which has been demonstrated to be variable between different strains of mice (Shinagawa 

and Kojima, 2003) and rats (Pauwels et al., 1979).   

Enhanced production of IL-13 and IFN-γ from OVA-stimulated splenocytes of 

mice exposed to BPA perinatally through the maternal diet and subsequently sensitized 

and challenged to OVA is also a novel observation of the current study.  IL-13 is a 

classical Th2 cytokine known to promote the growth and differentiation of allergen-
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specific B cells that elaborate IgE (Ingram and Kraft, 2012), while IFN-γ is a classical 

Th1 cytokine that can inhibit eosinophilia and IgE production during asthma (Chung and 

Barnes, 1999; Teixeira et al., 2005).  Enhanced splenocyte production of IL-13 and IFN-γ 

observed in the current study is similar to a report by Yoshino et al., which observed that 

male mice exposed to 300 or 3000 μg BPA/kg BW/day through maternal drinking water 

prior to fertilization until GD 18 and sensitized to OVA as adults displayed increased IL-

4 and IFN-γ production following OVA stimulation of cultured splenocytes (Yoshino et 

al., 2004).  Combined, these results suggest that BPA exposure upregulates both Th1 and 

Th2 responses (Yoshino et al., 2004).  This effect has also been reported in mice exposed 

to BPA as adults (Yoshino et al., 2003), and a similar response was observed for male 

mice exposed to 10 or 100 nM BPA through maternal drinking water from fertilization 

until GD 7 and sensitized to Leishmania major at 10 weeks old (Yan et al., 2008).   

BPA exposure has been shown to influence Th1 and Th2 cell populations in 

allergen-induced inflammation models (Yoshino et al., 2004; Yan et al., 2008).  A very 

modest increase in lymphocyte recruitment among animals in the 50 ng BPA/kg diet 

exposure group was also observed.  This increase in lymphocyte recruitment was 

associated the novel observation that lung homogenate levels of RANTES, a 

chemoattractant known to recruit T cells to the lung in response to allergen challenge 

(Palmqvist et al., 2007), were increased in animals from the 50 ng BPA/kg diet group.  In 

contrast, Bauer et al. observed a nonsignificant increased in lymphocyte recruitment to 

airways among adult female mice exposed to 500 μg BPA/kg BW/day via maternal 

gavage and sensitized with OVA or OVA with lipopolysaccharide intratracheally.  
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However, increased lymphocyte recruitment was not observed in females exposed to 0.5, 

5, or 50 μg BPA/kg BW/day or among BPA-exposed males (Bauer et al., 2012).  

Likewise, neither male nor female offspring receiving the same BPA exposures but being 

sensitized to OVA intraperitoneally displayed changes in airway lymphocyte recruitment 

compared to controls (Bauer et al., 2012).  Collectively, these results suggest that 

increases in lymphocyte recruitment, and other endpoints for that matter, could depend on 

a variety of factors including BPA dose, BPA exposure window, sex, age (Pilegaard and 

Madsen, 2004), animal strain (Gueders et al., 2009; Zhu and Gilmour, 2009), OVA type 

(Huntington and Stein, 2001), OVA sensitization route (Bauer et al., 2012), and OVA 

challenge quantity (Stumm et al., 2011).  Future research should examine the influence of 

BPA exposure on lymphocyte recruitment and production of lymphocyte 

chemoattractants.   

The conclusions from this study in regard to pulmonary inflammation reflect 

those summarized by Bauer et al. (Bauer et al., 2012).  Evidence does not suggest that 

perinatal BPA exposure results in worsened allergen-induced pulmonary inflammation in 

adulthood; pulmonary inflammation, as measured by leukocyte recruitment; BALF 

cytokines and CysLTs; lung homogenate cytokines, chemokines, and PGD2; and 

histopathology scores, appeared to be unaffected or possibly dampened among BPA-

exposed animals.  The enhanced eosinophilia and airway hyperreactivity observed in 

animals exposed perinatally to BPA in studies by Midoro-Horiuti et al. and Nakajima et 

al. are likely complemented by the young age at which offspring were sensitized and 

challenged (Midoro-Horiuti et al., 2010; Nakajima et al., 2012).  Juvenile sensitivity to 
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hormone dysregulation may possibly influence airway inflammation outcomes (Bauer et 

al., 2012), but as neonates age into adulthood in the absence of the original BPA 

exposure, the body burden of BPA that is present at weaning will be gradually reduced as 

well.  Thus, body burden of BPA at the time of sensitization and challenge may also 

affect pulmonary inflammation outcomes.  However, this concept of reduced BPA body 

burden does not factor in possible epigenetic dysregulation occurring in early 

development as a result of BPA exposure, which could affect immune responses into 

adulthood (Teitell and Richardson, 2003).   

OVA sensitization in mice provokes the recruitment of eosinophils to the lung and 

is used as a model of atopic asthma.  Using a “suboptimal” model for OVA sensitization, 

Midoro-Horiuti et al. demonstrated increased eosinophil counts in the lungs of mice 

exposed to BPA during perinatal development (Midoro-Horiuti et al., 2010).  However, 

in the current study, mice exposed to BPA through the maternal diet displayed no 

difference or a decrease in eosinophil counts.  This discrepancy was most likely due to 

the differences in OVA sensitization.  In the current study, mice were challenged with 

enough OVA to induce a robust influx of eosinophils into the lung (100,000 to 300,000 

eosinophils per mL of BALF).  In contrast, the suboptimal OVA sensitization model used 

by Midoro-Horiuti et al. resulted in a very modest number of eosinophils in BALF 

(<2,000 cells per mL of BALF) (Midoro-Horiuti et al., 2010).  Therefore, if BPA 

exposure induces a subtle effect on eosinophil-mediated pulmonary inflammation, this 

may not be observed using a more robust OVA-sensitization model.  
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The current study reports the finding that IL-4, IL-13, and TNF-α levels in BALF 

from female offspring exposed to 50 ng and 50 mg BPA/kg diet were decreased 

compared to control females, a response not seen in males.  In contrast, lung 

inflammatory scores were reduced in male offspring exposed to the 50 mg BPA/kg diet 

compared with control males, yet inflammatory score was unchanged among females.  

These examples of sex differences in inflammatory endpoints, while not uncommon 

(Blacquiere et al., 2010; Regal et al., 2006), may be caused by sex hormones known to 

play a role in development and severity of asthma (Balzano et al., 2001) and interaction 

with the endocrine disruptor BPA (Bauer et al., 2012).   

A limitation of this work is the exclusion of experimental investigation into 

physiologic alterations in lung function following perinatal BPA exposure and 

subsequent allergen challenge.  Previously, it was reported that in utero (Nakajima et al., 

2012) and perinatal (Midoro-Horiuti et al., 2010; Nakajima et al., 2012) BPA exposure 

enhanced airway hyperresponsiveness after allergen challenge in juvenile mice as 

determined through whole-body barometric plethysmography and/or forced oscillation 

with methacholine challenge.  However, perinatal BPA exposure did not influence airway 

hyperresponsiveness as measured by forced oscillation in offspring undergoing allergen 

challenge as adults (Bauer et al., 2012).  The unchanged or dampened measures of 

pulmonary inflammation in adult offspring with perinatal BPA exposure observed in the 

current study and the report by Bauer et al. suggest a low likelihood that there would be 

enhancement of airway hyperresponsiveness were it assessed in the current study (Bauer 

et al., 2012).  
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The current study observed that litters born to dams fed the 50 mg BPA/kg diet 

were significantly more female that control litters, an effect that has not be previously 

reported.  Colleagues using the same BPA exposure model in a mouse strain with mixed 

C57BL/6 and C3H/HeJ backgrounds did not observe the same effect (Anderson et al., 

2012; Anderson et al., 2013).  The highest dose of BPA used in this study was designed 

to be an order of magnitude lower than the established maximum non-lethal threshold in 

rodents (Takahashi and Oishi, 2003), and is above the range of normal human BPA 

exposure (Vandenberg et al., 2007).  Future studies should seek to clarify if this is a real 

effect and possibly identify differences between mouse strains.   

In conclusion, the current study is the first to demonstrate that exposure to BPA 

throughout all of gestation and early postnatal development via the maternal diet 

enhances allergen sensitization in adulthood.  While BPA exposure was not observed to 

worsen pulmonary inflammation following allergen challenge, this study is the first to 

report on stimulated splenocyte cytokine production, cytokine levels in BALF, CysLT 

levels in BALF, and cytokine; chemokine; and PGD2 levels in lung homogenates as 

markers of inflammation after challenge.  This study suggests that BPA promotes 

hypersensitivity responses in adults that are exposed to this chemical in early 

development.  BPA-induced hypersensitivity could be mediated through endocrine-

disruptive mechanisms or epigenetic modification of genes that regulate Th2 cytokines 

and IgE-mediated allergic responses, or a combination of both.  Based on these findings, 

developmental BPA exposures may play a role in the asthma pathogenesis, while not 

worsening pulmonary inflammation in adulthood.   
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Table 4.1: Number of litters, mean litter size, mean offspring survival rate, and mean 

percent of female offspring displayed for each exposure group.    
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Figure 4.1: Anti-OVA IgE measured in sera of female (a) and male (b) offspring with 

developmental exposure to BPA and subsequent OVA challenge.  Note that the y-axes in 

(a) and (b) are the same to facilitate comparison between female and male offspring.  

Bars represent mean ± SEM.  *p<0.05 and **p<0.0001 compared to respective control 

(open bar). 
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Figure 4.2: Production of cytokines IL-13 (a) and IFN-γ (b) from stimulated splenocytes 

of male and female offspring with developmental exposure to BPA and subsequent OVA 

challenge.  Cytokines are measured in collected cell culture media.  Bars represent mean 

± SEM.  *p<0.05, **p<0.005, and †p<0.0001 compared to respective control (open bar).   
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Figure 4.3: Airway influx of total leukocytes as measured in BALF of female and male 

offspring (a), airway influx of macrophages; PMNs; lymphocytes; and eosinophils as 

measured in BALF of female (b) and male (c) offspring, and percent composition of 

macrophages; PMNs; lymphocytes; and eosinophils among total leukocytes in BALF 

from female (d) and male (e) offspring all with developmental BPA exposure and 

subsequent OVA challenge.  Bars represent mean ± SEM.  *p<0.05, **p<0.005, and 

†p<0.0001 compared to respective control (open bar).   
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Figure 4.4: Airway production of cytokines IL-4, IL-13, TNF-α, and IL-17 measured in 

BALF of female (a) and male (b) offspring, airway production of CysLTs (c) measured 

in BALF of female and male offspring, and lung concentration of RANTES (d) measured 

in tissue homogenates from female offspring all with perinatal exposure to BPA and 

subsequent OVA challenge.  Note that the y-axes in (a) and (b) are the same to facilitate 

comparison between female and male offspring.  Bars represent mean ± SEM.  *p<0.05, 

**p<0.01, †p<0.005, and ‡p≤0.001 compared to respective control (open bar).   



 

111 

 

 
Figure 4.5: Representative lung sections from OVA-challenged mice stained with H&E 

(a-c) depicting (a) no inflammation, (b) thin inflammatory infiltrate around the 

bronchiole and in the interbronchiolar-interarteriolar space (arrows), and (c) dense 

peribronchiolar inflammation (arrow).  Bar = 100 μm.  Total inflammatory score of lung 

sections from female (d) and male (e) offspring with perinatal exposure to BPA and 

subsequent OVA challenge.  Total inflammatory score represents the summation of 

individual scores for peribronchiolar, perivascular, and alveolar inflammation.  Bars 

represent mean ± SEM.  *p<0.005 compared to male control (open bar). 

 



 

112 

 

References 

Anandan C, Nurmatov U, van Schayck OCP, Sheikh A. Is the prevalence of asthma 

declining? Systematic review of epidemiological studies. Allergy. 2010; 65 (2), 152-

167. 

Anderson OS, Nahar MS, Faulk C, Jones TR, Liao C, Kannan K, Weinhouse C, Rozek 

LS, Dolinoy DC. Epigenetic responses following maternal dietary exposure to 

physiologically revelant levels of bisphenol A. Environ Mol Mutagen. 2012; 53 (5), 

334-342. 

Anderson OS, Peterson KE, Sanchez BN, Zhang Z, Mancuso P, Dolinoy DC. Perinatal 

bisphenol A exposure promotes hyperactivity, lean body composition, and hormonal 

responses across the murine life course. FASEB J. (In Press). 

Balzano G, Fuschillo S, Melillo G, Bonini S. Asthma and sex hormones. Allergy. 2001; 

56 (1), 13-20. 

Barr RG, Wentowski CC, Grodstein F, Somers SC, Stampfer MJ, Schwartz J, Speizer FE, 

Camargo CA Jr. Prospective study of postmenopausal hormone use and newly 

diagnosed asthma and chronic obstructive pulmonary disease. Arch Intern Med. 

2004; 164 (4), 379-386. 

Bauer SM, Roy A, Emo J, Champan TJ, Georas SN, Lawrence BP. The effects of 

maternal exposure to bisphenol A on allergic lung inflammation into adulthood. 

Toxicol Sci. 2012; 130 (1), 82-93. 

Bernal AJ, Jirtle RL. Epigenomic Disruption: The effects of early developmental 

exposures. Birth Defects Res A Clin Mol Teratol. 2010; 88 (10), 938-944.  

Biedermann S, Tschudin P, Grob K. Transfer of bisphenol A from thermal printer paper 

to the skin. Anal Bioanal Chem. 2010; 398 (1), 571-576.   

Blacquiere MJ, Hylkema MN, Postma DS, Geerlings M, Timens W, Melgert BN. Airway 

inflammation and remodeling in two mouse models of asthma: Comparison of males 

and females. Int Arch Allergy Immunol. 2010; 153 (2), 173-181. 

Bonds RS, Midoro-Horiuti T. Estrogen effects in allergy and asthma. Curr Opin Allergy 

Clin Immunol. 2013; 13 (1), 92-99. 

Calafat AM, Kuklenyik Z, Reidy JA, Caudill SP, Ekong J, Needham LL. Urinary 

concentrations of bisphenol A and 4-nonylphenol in a human reference population. 

Environ Health Persp. 2005; 113 (4), 391-395. 

Chao HH, Zhang XF, Chen B, Pan B, Zhang LJ, Li L, Sun XF, Shi QH, Shen W. 

Bisphenol A exposure modifies methylation of imprinted genes in mouse oocytes via 



 

113 

 

the estrogen receptor signaling pathway. Histochem Cell Biol. 2012, 137 (2), 249-

259. 

Chung KF, Barnes PJ. Cytokines in asthma. Thorax. 1999; 54 (9), 825-857.  

Dodson RE, Nishioka M, Standley LJ, Perovich LJ, Brody JG, Rudel RA. Endocrine 

disruptors and asthma-associated chemicals in consumer products. Environ Health 

Perspect. 2012; 120 (7), 935-943.   

Dolinoy DC, Huang D, Jirtle RL. Maternal nutrient supplementation counteracts 

bisphenol A-induced DNA hypomethylation in early development. P Natl Acad Sci 

USA. 2007; 104 (32), 13056-13061. 

Donohue KM, Miller RL, Perzanowski MS, Just AC, Hoepner LA, Arunajadai S, 

Candield S, Resnick D, Calafat AM, Perera FP, Whyatt RM. Prenatal and postnatal 

bisphenol A exposure and asthma development among inner-city children. J Allergy 

Clin Immunol. 2013; 131 (3), 736-742.   

Doshi T, Mehta SS, Dighe V, Balasinor N, Vanage G. Hypermethylation of estrogen 

receptor promoter region in adult testis of rats exposed neonatally to bisphenol A. 

Toxicology. 2011; 289 (2-3), 74-82.  

Dratva J. Use of oestrogen oly hormone replacement therapy associated with increased 

risk of asthma onset in postmenopausal women. Evid Based Med. 2010; 15 (6), 190-

191.  

Duijts L. Fetal and infant origins of asthma. Eur J Epidemiol. 2012; 27 (1), 5-14. 

Fernandez SV, Huang Y, Snider KE, Zhou Y, Pogash TJ, Russo J. Expression and DNA 

methylation changes in human breast epithelial cells after bisphenol A exposure. Int 

J Oncol. 2012; 41 (1), 369-377.  

Gueders MM, Paulissen G, Crahay C, Quesada-Calvo F, Hacha J, Van Hove C, Tournoy 

K, Lousi R, Foidart JM, Noel A, Cataldo DD. Mouse models of asthma: A 

comparison between C57BL/6 and BALB/c strains regarding brochial 

responsiveness, inflammation, and cytokine production. Inflamm Res. 2009; 58 (12), 

845-854. 

Haggerty CL, Ness RB, Kelsey S, Waterer SW.  The impact of estrogen and progesteron 

on asthma. Ann Allergy Asthma Immunol. 2003; 90 (3), 284-291.   

Henderson AJ, Warner JO. Fetal origins of asthma. Semin Fetal Neonat M. 2012; 17 (2), 

82-91.   

Holgate ST, Davies DE, Powel RM, Howarth PH, Haitchi HM, Holloway JW. Local 

genetic and environmental factors in asthma disease pathogenesis: Chronicity and 

persistence mechanisms. Eur Respir J. 2007; 29 (4), 793-803. 



 

114 

 

Huntington JA, Stein PE. Structure and properities of ovalbumin. J Chromatogr B 

Biomed Sci Appl. 2001; 756 (1-2), 189-198. 

Ingram JL, Kraft M. IL-13 in asthma and allergic disease: Asthma phenotypes and 

targeted therapies. J Allergy Clin Immumol. 2012; 130 (4), 829-842. 

Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibality. Nat Rev 

Genet. 2007; 8 (4), 253-262.  

Joskow R, Barr DB, Barr JR, Calafat AM, Needham LL, Rubin C. Exposure to bisphenol 

A from bis-glycidyl dimethylacrylate-based dental sealants. J Am Dent Assoc. 2006; 

137 (3), 353-362.   

Lai CKW, Beasley R, Crane J, Foliaki S, Shah J, Weiland S. Global variation in the 

prevalence and severity of asthma symptoms: Phase three of the International Study 

of Asthma and Allergies in Childhood (ISAAC). Thorax. 2009; 64 (6), 467-483.  

Lee MH, Chung SW, Kang BY, Park J, Lee CH, Hwang SY, Kim TS. Enhanced 

interleukin-4 production in CD4+ T cells and elevated immunoglobulin E levels in 

antigen-primed mice by bisphenol A and nonylphenol, endocrine disruptors: 

Involvement of neuclear factor-AT and Ca2+. Immunology. 2003; 109 (1), 76-86. 

Leynaert B, Sunyer J, Carcia-Esteban R, Svanes C, Jarvis D, Cerveri I, Dratva J, Gislason 

T, Heinrich J, Janson C, Kuenzli N, de Marco R, Omenaas E, Raherison C, Gomez 

Real F, Wist M, Zemp E, Zureik M, Burney PG, Anto JM, Neukirch F. Gender 

differences in prevealnce, diagnosis and incidence of allergic and non-allergic 

asthma: A population-based cohort. Thorax. 2012; 67 (7), 625-631. 

Mancuso P, Standiford TJ, Marshall T, Peters-Golden M. 5-Lipoxygenase reasction 

products modulate alveolar macophage phagocytosis of Klebsiella pneumoniae. 

Infect Immun. 1998; 66 (11), 5140-5146.  

Mancuso P, Gottschalk A, Phare SM, Peters-Golden M, Lukacs NW, Huffnagle GB. 

Leptin-deficient mice exhibit impared host defense in Gram-negative pneumonia. J 

Immunol. 2002; 168 (8), 4018-4024.  

Meerts IA, Letcher RJ, Hoving S, Marsh G, Bergman A, Lemmen JG, van den Burg B, 

Brouwer A. In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated 

PDBEs, and polybrominated bisphenol A compounds. Environ Health Perspect. 

2001; 109 (4), 399-407. 

Midoro-Horiuti T, Tiwari R, Watson CS, Goldblum, RM. Maternal bisphenol A exposure 

promotes the development of experimental asthma in mouse pups. Environ Health 

Persp. 2010; 118 (2), 273-277. 

Morgan HD, Santos F, Green K, Dean W, Rejk W. Epigenetic reprogramming in 

mammals. Hum Mol Genet. 2005; 15, (1), R47-R58.   



 

115 

 

Nakajima Y, Goldblum RM, Midoro-Horiuti T. Fetal exposure to bisphenol A as a risk 

factor for the development of childhood asthma: An animal model study. Environ 

Health. 2012; 11, 1-7. 

Palmqvist C, Wardlaw AJ, and Bradding P. Chemokines and their receptors as potential 

targets for the treatment of asthma. Br J Pharmacol. 2007; 151 (6), 725–736. 

Patel BB, Raad M, Sebag IA, Chalifour LE. Lifelong exposure to bisphenol A alters 

cardiac structure/function, protein expression, and DNA methylation in adult mice. 

Toxicol Sci. (In Press).  

Pauwels R, Bazin H, Platteau B, van der Straeten M. The influence of antigen dose on 

IgE production in different rat strains. Immunology. 1979; 36 (1), 151-157 

Pilegaard K, Madsen C. An oral Brown Norway rat model for food allergy: Comparison 

of age, sex, dosing volume, and allergen preperation. Toxicology. 2004; 196 (3), 

247-257.   

Regal JF, Regal RR, Meehan JL, Mohrman ME. Primary prevention of asthma: Age and 

sex influence sensitivity to allergen-induced airway inflammation and contribute to 

asthma heterogeneity in Guinea pigs. Int Arch Allergy Immunol. 2006; 141 (3), 241-

256. 

Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. 

Science. 2001; 293 (5532), 1089-1093.   

Shinagawa K, Kojima M. Mouse model of airway remodeling: strain differences. Am J 

Respir Crit Care Med. 2003; 168 (8), 959-967.  

Singh S, Li SS. Epigenetic effects of environmental chemicals bisphenol A and 

phthalates. Int J Mol Sci. 2012; 13 (8), 10143-10153. 

Spanier AJ, Kahn RS, Kunselman AR, Hornung R, Xu Y, Calafat AM, Lanphear BP. 

Prenatal exposure to bisphenol A and child wheeze from birth to 3 years of age. 

Environ Health Perspect. 2012; 120 (6), 916-920.  

Stumm CL, Wettlaufer SH, Jancar S, Peters-Golden M. Airway remodeling in murine 

asthma correlates with a defect in PGE2 synthesis by lung fibroblasts. Am J Physiol 

Lung Cell Mol Physiol. 2011; 301 (5), L636-L644. 

Takahashi O, Oishi S. Testicular toxicity of dietarily or parenterally administered 

bisphenl A in rats and mice. Food Chem Toxicol. 2003; 41 (7), 1035-1044. 

Tam A, Morrish D, Wadsworth S, Dorscheid D, Man SF, Sin DD. The role of female 

hormones on lung function in chronic lung disease. BMC Womens Health. 2011; 11 

(24), 1-9.  



 

116 

 

Teitell M, Richardson B. DNA methylation in the immune system. Cl Immunol. 2003; 

109, 2-5. 

Teixeira LK, Fonseca BP, Barboza BA, Viola JP. The role of interferon-gamma on 

immune and allergic responses. Mem Inst Oswaldo Cruz. 2005; 100 (Suppl 1), 137-

144. 

Thornton J, Lewis J, Lebrun CM, Licskai CJ. Clinical characteristics of women with 

menstrual-linked asthma. Respir Med. 2012; 106 (9), 1236-1243.  

To T, Stanojevic S, Moores G, Gershon AS, Bateman ED, Cruz AA, Boulet LP. Global 

asthma prevalence in adults: Findings from the cross-sectional world health survey. 

BMC Public Health. 2012; 12, 204-211.  

Vaidya SV, Kulkarni H. Association of urinary bisphenol A concentration with 

allergic asthma: results from the National Health and Nutrition Examination Survey 

2005-2006. J Asthma. 2012; 49 (8), 800-806. 

Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV. Human exposure to 

bisphenol A (BPA). Reprod Toxicol. 2007; 24 (2), 139-177. 

Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM. Bisphenol-A and 

the great divide: A review of controversies in the field of endocrine disruption. 

Endocr Rev. 2009; 30 (1), 75-95.  

Vandenberg LN, Chahoud I, Heindel JJ, Padmanabhan V, Paumgartten FJ, Schoenfelder 

G. Urinary, circulating, and tissue biomonitoring studies indicate widespread 

exposure to bisphenol A. Cien Saude Colet. 2012; 17 (2), 407-434.   

Vink NM, Postma DS, Schouten JP, Rosmalen JG, Boezen HM. Gender differences in 

asthma development and remission during transition through puberty: the TRacking 

Adolescents’ Individual Lives Survey (TRAILS) study. J Allergy Clin Immunol. 

2010; 126 (3), 498-504.  

Vrieze A, Postma DS, Kerstjens HAM. Perimenstrual asthma: A syndrome without 

known cause or cure. J Allergy Clin Immunol. 2003; 112 (2), 271-282. 

Yan H, Takamoto M, Sugane K. Exposure to bisphenol A prenatally or in adulthood 

promotes TH2 cytokine production associated with reduction of CD4CD25 

regulatory T cells. Environ Health Perspect. 2008; 116 (4), 514-519. 

Yoshino S, Yamaki K, Li X, Yanagisawa R, Takano H, Taneda S, Hayashi H, Mori Y. 

Prenatal exposure to bisphenol A upregulates immune responses, including T helper 

1 and T helper 2 responses in mice. Immunology. 2004; 112 (3), 489-495. 

Yoshino S, Yamaki K, Yanagisawa R, Takano H, Hayashi H, Mori Y. Effects of 

bisphenol A on antigen-specific antibody production, proliferative responses of 



 

117 

 

lymphoid cells, and TH1 and TH2 immune response in mice. Br J Pharmacol. 2003; 

138 (7), 1271-1276. 

Zhang XF, Zhang LJ, Feng YN, Chen B, Feng YM, Liang GJ, Li L, Shen w. Bisphenol A 

exposure modifies DNA methylation of imprint genes in mouse fetal germ cells. Mol 

Biol Rep. 2012; 39 (9), 8621-8628.  

Zhu W, Gilmour MI. Comparison of allergic lung disease in three mouse strains after 

systemic or mucosal sensitization with ovalbumin antigen. Immunogenetics. 2009; 

61 (3), 199-207. 

 

 

 

 



 

118 

 

 

 

 

 

 

CHAPTER 5 

SUMMARY AND CONCLUSION 

Summary of Research 

 The research presented here tested the hypothesis that exposure to 

environmentally relevant levels of bisphenol A (BPA) induces subclinical changes that 

enhance the release of pro-inflammatory mediators associated with allergic airway 

disease in mast cells, leading to worsened pulmonary inflammation in an allergen-

induced rodent model of asthma.  Both short-term and long-term changes in mast cell 

release of pro-inflammatory mediators were examined following BPA exposure.  Chapter 

2 examined the short-term effect of in vitro exposure to BPA at environmentally relevant 

doses on mediator release from bone marrow-derived mast cells (BMMCs).  Thirty 

minutes after treatment, BPA at concentrations of 1, 10, and 100 nM increased histamine 

release, with maximal increased histamine release observed at 10 nM.  A similar response 

was observed when BMMCs were treated with exogenous estradiol (E2).  E2 

concentrations of 10, 100, and 1000 nM caused increased histamine release compared to 

vehicle control, with maximal histamine release observed at 10 nM.  Additionally, BPA 

treatment at 10, 100, and 1000 nM increased cysteinyl leukotriene (CysLT) release from 

BMMCs, compared to vehicle control.  The requirements of estrogen receptor alpha 

(ERα), extracellular signal-regulated kinase (ERK) signaling, and extracellular calcium 
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ion (Ca
2+

) in BPA-induced histamine and CysLT increases were individually tested by 

pretreating BMMCs with the ER antagonist ICI 182,780, the ERK inhibitor U0126, or the 

Ca
2+

 chelator EGTA, respectively, before treatment with 10 nM BPA.  ERα antagonism 

did not alter BPA-induced increases in histamine or CysLT release; though, ERα 

antagonism partially inhibited E2-induced increased histamine release.  BPA-induced 

increases in histamine and CysLT release were blocked by ERK inhibition and 

extracellular Ca
2+

 chelation (Figure 5.1).   

 The long-term effect of BPA exposure on mast cell release of pro-inflammatory 

mediators was tested in chapter 3 using an in vivo BPA exposure model.  Mice were 

exposed to low (50 ng BPA/kg diet), medium (50 µg), and high (50 mg) doses of BPA 

through the maternal diet during gestation and maternal lactation.  After weaning on 

postnatal day (PND) 21, animals were transferred onto the control diet and subsequently 

aged to 6 months old.  BMMCs from offspring were activated by IgE crosslinking to 

induce release of pro-inflammatory mediators.  BMMCs from offspring in the low, 

medium, and high BPA exposure groups displayed increased CysLT and TNF-α release 

compared to controls.  Additionally, BMMCs from animals in the high BPA exposure 

group exhibited increased prostaglandin D2 (PGD2) and IL-13 release.  However, BMMC 

release of histamine, IL-4, IL-5, and IL-6 did not differ between BPA-exposed and 

control groups.  Global DNA methylation in BMMC lysates was quantified as a 

preliminary investigation into a possible epigenetic mechanism that could explain the 

long-term effect of BPA exposure on mast cell mediator release.  Methylation analysis 

revealed decreased global DNA methylation in BMMCs from BPA-exposed animals 
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compared to controls, though significance was only observed for the low exposure group 

(Figure 5.1).   

 Severity of pulmonary inflammation and allergen sensitization following BPA 

exposure were examined in chapter 4 using the same in vivo BPA exposure model that 

was used in chapter 3.  At weaning on PND 21, BPA-exposed offspring were transferred 

onto the control diet and aged to 12 weeks old.  At 12 weeks old, animals were sensitized 

to the allergen ovalbumin (OVA) with an adjuvant by intraperitoneal injection.  One 

week after sensitization, animals were challenged to aerosolized OVA in an enclosed 

chamber for 20 minutes.  The challenge was repeated 24 hours later, and samples were 

collected 24 hour after the second challenge.  Quantification of IgE in sera indicated a 

robust increase in circulation of anti-OVA IgE in males and females from the medium 

and high BPA exposure groups.  Additionally, stimulation of splenocytes with OVA 

resulted in increased IL-13 release among animals from medium and high exposure 

groups and increased IFN-γ release from animals in all BPA exposure groups.  However, 

splenocyte release of IL-4, IL-5, and TNF-α did not differ among BPA-exposed and 

control animals.  In general, leukocyte recruitment to the airways as measured in 

bronchoalveolar lavage fluid (BALF) was unchanged or dampened among BPA-exposed 

females and males, compared to respective controls.  However, female and male 

offspring in the low exposure group displayed an increase in the percentage of 

lymphocytes among total leukocytes.  Similarly, quantification of pro-inflammatory 

mediators in BALF revealed decreased levels of IL-4, IL-13, and TNF-α in females 

exposed to the low dose of BPA and decreased levels of IL-4, IL-13, TNF-α, and CysLTs 
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in females exposed to the high dose of BPA.  Except for a decrease in CysLTs in the high 

exposure group, these observations were not seen in male offspring.  Additionally, female 

and male offspring in the all BPA exposure groups displayed decreased levels of IL-17 

compared to controls.  Eotaxin-1 measured in BALF did not differ between BPA-exposed 

and control animals.  RANTES was quantified in lung homogenates from female 

offspring and revealed increased levels in females in the low exposure group.  However, 

levels of IL-4, IL-5, IL-13, TNF-α, IFN-γ, eotaxin-1, MCP-1, MIP-3, and PGD2 in lung 

homogenates from female offspring did not differ between BPA-exposed and control 

animals.  Lastly, severity of inflammation was quantified by histopathological scoring.  

Among female offspring, there was no difference in total inflammatory score between 

BPA-exposed and controls animals; however, male offspring in the high exposure group 

scored significantly lower than control males (Figure 5.1).   

 The studies conducted in chapters 2 and 3 revealed that exposure to 

environmentally relevant levels of BPA can result in short- and long-term changes that 

upregulate the release of pro-inflammatory mediators from mast cells, thus confirming 

the first part of the proposed hypothesis.  Additionally, the short-term effects study 

indicated a requirement for mitogen-activated protein kinase (MAPK) signaling and 

extracellular Ca
2+

, but did not support a requirement for ERα.  Meanwhile, preliminary 

evidence from the long-term effects study supports a mechanism involving altered DNA 

methylation states, but needs further investigation.  Enhanced mediator release from mast 

cells observed in chapters 2 and 3 did not result in worsened pulmonary inflammation in 

the allergen-induced asthma model conducted in chapter 4.  Instead, markers of 
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pulmonary inflammation were generally unchanged or decreased among BPA-exposed 

animals compared to controls, suggesting a diminished role for mast cells in the 

inflammatory response.  However, this study revealed that BPA-exposed animals have a 

greater allergen sensitization compared to control animals, indicating the possibility of an 

enhanced inflammatory response under chronic challenge conditions.    

 

Contributions to Existing Knowledge 

 Prior to the current report, BPA as well as other synthetic xenoestrogens had been 

demonstrated to stimulate release of pro-inflammatory mediators from mast cells, though, 

critical regulatory mechanisms had not been identified (Narita et al., 2007; Shim and 

Lim, 2009; Park and Lim, 2010; Lee and Lim, 2010; Lee et al., 2012; Kennedy et al., 

2012).  The current report has contributed to the understanding of mast cell dysregulation 

by demonstrating that ERK signaling and extracellular Ca
2+

 influx are required by BPA 

to upregulate mast cell mediator release.  These findings have bearing on E2-induced and 

other synthetic xenoestrogen-induced mast cell dysregulation as well.   

The current report has further contributed to the understanding of mast cell 

dysregulation by also demonstrating that in utero and early postnatal exposure to BPA 

can lead to enhanced mast cell release of inflammatory mediators in adulthood, possibly 

stemming from BPA-induced DNA hypomethylation in the mast cell.  This report is the 

first to have assessed the function of any immune cell from adult animals with continuous 

perinatal BPA exposure.  The importance of enhanced mediator release from mast cells 
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of adult mice with developmental BPA exposure is not limited only to the mediators 

measured in this report nor only to mast cells.  Individual production of each pro- and 

anti-inflammatory cytokine and chemokine is ultimately enabled by gene transcription, 

and there is the potential that mediators not measured in this report had their genes 

expressed as a result of BPA exposure.  Additionally, production of inflammatory 

mediators occurs in many cell types, including both immune cells and non-immune cells, 

using the same genes for specific mediators.  Thus, the observation of enhanced mediator 

release from mast cells of animals with perinatal BPA exposure has broader implications 

on BPA-induced immune dysfunction as a whole.   

Broader implications of immune dysfunction stemming from perinatal BPA 

exposure were observed through the allergen challenge model of asthma in adult animals 

reported on in chapter 4.  Though it went against the proposed hypothesis, several 

measures used to assess pulmonary inflammation displayed significantly lower values in 

BPA-exposed animals compared to controls.  However, the study did not mechanistically 

explain the observed changes.  Additionally, the allergen challenge study corroborated 

previous findings regarding pulmonary inflammation in adulthood following perinatal 

BPA exposure (Bauer et al., 2012) and has helped solidify the ideal that severity of 

asthma symptoms in individuals with in utero and early postnatal BPA exposure are 

highly dependent on age (Midoro-Horiuti et al., 2010; Nakajima et al., 2012).   

An important contribution to existing knowledge of asthma pathogenesis came 

from the allergen challenge study conducted in chapter 4 when it indicated that BPA 

exposure throughout all of gestation enhanced allergen sensitization in adult animals.  
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Not only does this finding implicate perinatal BPA exposure in contributing to asthma 

pathogenesis in adulthood in accordance with the developmental origins of health and 

disease hypothesis, it also establishes a critical window of sensitivity to BPA during early 

postfertilization development.  Previously, enhanced allergen sensitization in adulthood 

was not observed when BPA exposure began on gestational day 6 and ended on PND 21 

(Bauer et al., 2012).  However, in the current report, BPA exposure began two weeks 

before fertilization and included all of gestation, thus indicating that exposure during the 

first six days of gestation can have a very significant impact on disease status later in life.   

In summary, this work has furthered existing knowledge on environmental 

exposure-induced mast cell dysfunction and pulmonary inflammation associated with 

asthma (Figure 5.2).  Additionally, this work implicates perinatal BPA exposure in 

asthma pathogenesis – a finding which has bearing on other diseases with perceived 

developmental origins – and has established early postfertilization development as a 

critical window of sensitivity to endocrine-active and/or epigenetic-disruptive 

environmental compounds in relation to allergen sensitization.  The latter suggests that 

limiting human BPA exposure during early gestation is important for preventing the 

development of asthma and other allergic diseases in adulthood.   

 

Future Investigations 

 In chapters 3 and 4, offspring were perinatally exposed to BPA during a known 

window of sensitivity to epigenetic insults.  As mentioned, the upregulation of pro-
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inflammatory mediators observed in chapter 3 and the enhancement of allergic 

sensitization observed in chapter 4 may be due, in part, to BPA-induced epigenetic 

dysregulation of methylation profiles in the promoter regions of relevant genes (Salam et 

al., 2012; Karmaus et al., 2013).  To confirm a role for epigenetic dysregulation in the 

observed effects, future research should investigate gene-specific DNA methylation using 

banked samples.  Candidate genes include Alox5 (the gene for 5-lipoxygenase) and Ptgs1 

(the gene for cyclooxygenase-1), since release of CysLT and PGD2 from mast cells of 

animals with perinatal BPA exposure was observed to be increased.  Additionally, the 

genes Ccl5, Ifng, Il13, and Tnf are included as candidates due to observed increased 

levels of the chemokine RANTES and the cytokines IFN-γ, IL-13, and TNF-α from lung 

tissue, splenocytes, and/or BMMCs of animals exposed to BPA perinatally.  Future 

research should also include investigation of BPA-induced alterations to other epigenetic 

mechanisms, including histone modification and microRNA expression, in relation to 

asthma and pulmonary inflammation endpoints.   

 Experimental investigations of altered pulmonary inflammatory responses to 

allergen challenge following perinatal exposure to synthetic xenoestrogens have been 

limited to studies of BPA alone.  Yet, other synthetic xenoestrogens have been implicated 

in asthma pathogenesis, such as phthalates (Bornehag and Nanberg, 2010; Bertelsen et 

al., 2013) and alkylphenols (Dodson et al., 2012; Suen et al., 2012).  Future research 

should investigate the effect of developmental exposure to other synthetic xenoestrogens 

on asthma pathogenesis and worsened inflammation associated with asthma, especially 

using juvenile models (Rigoli et al., 2011).  Furthermore, future studies examining 
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mixtures of synthetic xenoestrogens at relevant environmental doses would better 

represent human-environment exposures than single-exposure models.   

 Interestingly, the investigation of perinatal BPA exposure on allergen-induced 

pulmonary inflammation discussed in chapter 4 indicated a dampening of intrabronchial 

inflammation following allergen challenge in animals exposed to low and high levels of 

BPA.  This observation introduces a potential role for perinatal BPA exposure in 

inhibiting innate host defenses against bacterial or viral infection, something that few in 

vivo studies have examined (Rogers et al., 2013).  One study by Sugita-Konishi et al. 

treated adult mice subcutaneously with 5 mg BPA/kg BW/day for 5 days before 

intraperitoneal administration of Escherichia coli K-12 (Sugita-Konishi et al., 2003).  

Compared to control animals, BPA-treated animas displayed diminished peritoneal 

bacterial clearance 24 hours after infection, reduced macrophage and lymphocyte 

recruitment to the infection site, and reduced neutrophil phagocytosis (Sugita-Konishi et 

al., 2003).  Only one study has examined the influence of perinatal BPA exposure on host 

defense after pathogen exposure.  Roy et al. reported that mice exposed to BPA 

perinatally and subsequently infected with influenza A virus exhibited moderate 

inhibition of innate pulmonary immune defenses including decreased TNF-α, IFN-γ, 

RANTES, IP-10, and iNOS production and decreased histopathological inflammatory 

scores, although survival after infection did not differ between BPA-exposed and control 

animals (Roy et al., 2012).  Future research should not only focus on the effect of 

perinatal BPA exposure on immune disorders, but also on normal immune function as 

well.   
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Discussion on Limits of Detection  

In chapters 2, 3, and 4, limits of detection are reported only for cases where a 

sample value fell below the detection limit for a specific assay.  Thus, if the limit of 

detection for a measure is not reported, all sample values were above the detection limit.  

The limits of detection for measurements conducted in this report are very low (4.1 

pg/mL or lower).  Due to the increased intra-assay variability and resultant heightened 

inaccuracy of assessing values at these low levels, values that fell below the detection 

limit were reported as zero.  Additionally, cytokine and IgE levels that fall below the 

respective detection limits are highly unlikely to have a physiologic bearing in asthmatic 

inflammatory responses, and such low levels would be considered to have the same 

physiologic response as a value of zero.  Values below the detection limit did not 

influence significance, if any, whether they were reported as zero (lowest possible 

estimate) or reported as the approximated value based on the standard curve (high 

estimate).  Furthermore, Croghan and Egeghy reported that substituting values below the 

detection limit with either zero, half the detection limit, or the square root of the detection 

limit introduced little to no bias when a small percentage (≤10%) of values fell below the 

detection limit (Croghan and Egeghy, 2003).  However, when a large percent of values 

(≥75%) fell below the detection limit, all substitution methods introduced large biases 

and were equally considered “inadequate replacement techniques” (Croghan and Egeghy, 

2003; Helsel, 2006).   
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BPA Controversy 

 In the mid-2000s, unfavorable media attention began focusing on human exposure 

to BPA and associated adverse health outcomes, so much so that writer Jerome 

Groopman referred to BPA as one of the most vilified chemicals in the world 

(Groopman, 2010).  As considerable media reports continued to depict BPA as a 

detrimental chemical, advocacy groups, legislators, and everyday citizens moved to limit 

BPA exposure by putting pressure on manufacturers to cease BPA production and by 

petitioning for legislative measures restricting BPA usage.  While there is currently no 

outright ban on BPA manufacture in any country, measures to prohibit production (and in 

some cases import, export, sale, or advertisement) of baby bottles and other items used 

for infants containing BPA have been implemented in Canada (Layton and Lee, 2008), 

the European Union (Koch, 2010), Australia, China, Denmark, France, Germany, 

Malaysia, and New Zealand (Mei, 2011).  Similar measures have been implemented in 

the states of Connecticut, Delaware, Maine, Maryland, Massachusetts, Minnesota, New 

York, Vermont, Washington, Wisconsin (Shapley, 2011), and California (Mohan, 2011), 

and last year, the US Food and Drug Administration announced a ban on production of 

baby bottles and sippy cups containing BPA (Koch, 2012).  In some case, stricter 

measures banning BPA have been implemented.  For example, France has moved to 

prohibit manufacture, import, export, and marketing of all food packing containing BPA 

by 2015 (Goessl, 2012), while Suffolk County, New York, has prohibited the use of 

BPA-containing cash register receipts (Carducci, 2013).   
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 Opinions on legislatively prohibiting manufacture of certain consumer products 

that contain BPA differ between agreement, disagreement, and neutral.  In 2007, the 

National Toxicology Program (NTP) organized an expert panel to review the current 

literature regarding BPA exposure and human health.  While the NTP report concluded 

that BPA exposure is of some concern for fetuses, infants, children, and pregnant women, 

it did not give a recommendation on limiting exposure (NTP, 2008).  Similarly, a 2010 

expert panel led by the Food and Agriculture Organization (FAO) of the United Nations 

and the World Health Organization (WHO) prepared a comprehensive report on BPA 

exposure and human health, concluding that there may be concern regarding human BPA 

exposure while not commenting on restricting production (FAO/WHO, 2010).  One 

proponent of restricting BPA manufacture is the American Medical Association (AMA) 

which stated in a July 2011 report that it “encourages actions to stop producing BPA-

containing baby bottles and infant feeding cups and supports bans on the sale of such 

products” (AMA, 2011).  Conversely, the American Chemistry Council (ACC) is one 

opponent of legislation at state, national, and international levels that seeks to restrict 

BPA use, and promotes the use of BPA in manufacturing by referencing multiple 

government and scientific bodies that “have declared that BPA is safe as used” (ACC, 

2013).   

 In addition to legislative reform, negative media attention focused on BPA and 

subsequent consumer complaints have also led to the voluntary removal of the compound 

from manufacturing processes and distribution.  In 2008, Nalgene, a producer of reusable 

plastic water bottles, announced it would discontinue the use of BPA in its products 
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(Austen, 2008), while large retailers including Toys “R” Us and Wal-Mart opted to 

removed BPA-containing baby bottles and other infant products from distribution (Lee, 

2008).  In more drastic cases, petitions against specific companies have led to promises 

from executives that BPA will be phased out of products in order to appease consumers – 

such was the case with Campbell’s Soup.  In 2011, a petition led by Healthy Child 

Healthy World on Change.org calling on Campbell’s Soup to remove BPA from the 

linings of soup cans resulted in a response from company leaders in March 2012 agreeing 

to phase out BPA usage (Westervelt, 2012; Change.org, 2013).  However, other 

companies have taken a different approach to consumer concern over BPA usage.  The 

beverage distributor Coca-Cola, for example, published its own assessment on BPA, 

which conveyed that the use of BPA in epoxide can linings is safe and will continue to be 

used in Coca-Cola containers (Bottemiller, 2011; Coca-Cola Company, 2013).   

 

BPA Substitutes 

 While debates over voluntary and involuntary removal of BPA from consumer 

products and packaging continue to play out, new investigations are beginning to 

examine human exposure to BPA substitutes and potential adverse health outcomes.  In 

plastics manufacturing, when BPA is removed from a product, it is usually replaced by 

another bisphenol.  Commonly used BPA substitutes include bisphenol B (BPB), 

bisphenol F (BPF), bisphenol AF (BPAF), and bisphenol S (BPS) (Figure 5.2), though 

other bisphenols may be used as well.  While there is no information available on the 

production volume of any bisphenol other than BPA, recently, BPB and BPF have been 
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detected in some canned beverages (Cunha et al., 2011; Gallart-Ayala et al., 2011), and 

BPB was also been detected in canned tomatoes (Grumetto et al., 2008).  Additionally, 

BPS has been detected in various canned foods (Vinas et al., 2010) and a variety of paper 

products including receipts and currency (Liao et al., 2012).   

Distribution into the environment has been observed for BPAF, BPF, and BPS.  

Detectable levels of BPAF have been reported in samples of river water, sediment, soil, 

indoor dust, and well water collected near industrial sites in China (Song et al., 2012), 

while BPF and BPS have been detected in soil samples collected from industrial sites in 

the United States, Japan, Korea (Liao et al., 2012), and Germany (Fromme et al., 2002).  

Additionally, household dust samples collected from homes in the United States, China, 

Japan, and Korea that were not near industrial sites contained measurable levels of BPF, 

BPAF, and BPS (Liao et al., 2012).  Widespread human exposure to BPS was observed 

in a study conducted by Liao et al. (Liao et al., 2012).  In this study, total BPS was 

quantified in human urine samples representative of the general populations in China, 

India, Japan, Korea, Kuwait, Malaysia, the United States, and Vietnam (Liao et al., 

2012).  BPS was detected in 81% of the samples, with detection observed for each 

country (Liao et al., 2012).  In a separate study of healthy and endometriotic women 

conducted by Cobellis et al., total BPB was detected in the sera of 16 out of 58 

endometriotic patients, while it was not detected in the sera of any health patients 

(Cobellis et al., 2009).  Additionally, Cunha and Fernandes reported the detection of 

conjugated BPB in the urine of 2 out of 20 health individuals (Cunha and Fernandes, 

2010).   
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 Despite the few studies summarized above, very little is known regarding 

environmental exposure in humans to BPB, BPF, BPAF, BPS, or other bisphenols that 

may be used as substitutes for BPA.  Thus, experimental-based studies examining 

potential estrogenicity and toxicity of these bisphenols are limited by not knowing what 

doses to consider “environmentally relevant.”  However, estrogenicity and cytotoxicity 

have been implicated for several BPA alternatives.  BPB has been reported to be 

estrogenic as measured by proliferation of estrogen-sensitive MCF-7 cells (a human 

breast cancer cell line) (Hashimoto et al., 2001; Kitamura et al., 2005; Pisapia et al., 

2012) and dimerization with ERs using the yeast two-hybrid system (Chen et al., 2002).  

In one study, BPB was reported to be more estrogenic than BPA at equal concentrations 

(Kitamura et al., 2005).  Additionally, BPB has also been demonstrated to inhibit 

androgenic activity of 5α-dihydrotestosterone in NIH3T3 cells (a mouse fibroblast cell 

line) (Kitamura et al., 2005).   

Similar to BPB, estrogenicity of BPF has been detected through MCF-7 cell 

proliferation (Perez et al., 1998; Hashimoto and Nakamura, 2000; Hashimoto et al., 2001; 

Pisapia et al., 2012), dimerization with ERs (Hashimoto and Nakamura, 2000), and 

increased luciferase activity in Hep G2 cells (a human liver cancer cell line) transfected 

with hERα and/or hERβ (ER-responsive luminescent reporter genes) (Cabaton et al., 

2009); although, BPF estrogenicity was reported to be weaker than that of BPA (Pisapia 

et al., 2012).  BPF estrogenicity was also demonstrated in an in vivo study where 22-day-

old female rats treated with BPF via gavage for four days resulted in increased vaginal 

epithelial cell cornification and uterine wet weight (Stroheker et al., 2003).  Anti-
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androgenic activity of BPF has also been noted in androgen-sensitive MDA-kb2 cells (a 

human breast cancer cell line) transfected with MMTV-neo-Luc (an androgen receptor-

responsive luminescent reporter gene) when BPF treatment resulted in lower luciferase 

activity (Cabaton et al., 2009).  BPF has been reported to be slightly genotoxic, as 

indicated by increased DNA fragmentation (Cabaton et al., 2009) and increased histone 

H2AX phosphorylation (indicative of DNA double-strand breaks) (Audebert et al., 2011) 

in Hep G2 cells.   

  Estrogenicity has also been reported for BPAF (Perez et al., 1998), and multiple 

studies have observed that BPAF acts as an ERα agonist and an ERβ antagonist in both 

MCF-7 cells (Kitamura et al., 2005) and HeLa cells (a human cervical cancer cell line) 

(Matsushima et al., 2010; Li et al., 2012).  Additionally, an in vivo study where adult 

male rats were treated with BPAF via gavage for 14 days led to decreased testosterone 

levels and increased luteinizing hormone and follicle-stimulating hormone levels in 

serum (Feng et al., 2012).  BPAF has also been reported to induce apoptosis in HT-22 

cells (a mouse hippocampal neuronal cell line) and primary mouse neuronal cells via 

activation of the MAPK pathway (Lee et al., 2013).   

 BPS estrogenicity has been reported to be comparable to that of BPA as measured 

through MCF-7 cell proliferation (Hashimoto and Nakamura, 2000; Hashimoto et al., 

2001; Kuruto-Niwa et al., 2005) and dimerization with ERs (Hashimoto and Nakamura, 

2000; Chen et al., 2002).  Additionally, a study conducted by the European Commission 

Institute of Health and Consumer Protection reported BPS estrogenicity comparable to 

BPA estrogenicity using MCF-7 cells transfected with ERE-βGlob-Luc-SVNeo (an ER-
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responsive luminescent reporter gene) and BG-1 cells (a human ovarian cancer cell line) 

transfected with hERα and hERβ (Grignard et al., 2012).  Although, in silico modeling 

predictions of BPS-ER binding suggested a 37-fold lower binding affinity than that of 

BPA (Grignard et al., 2012).  Vinas and Watson also reported that treating GH3/B6/F10 

cells (a rat pituitary cell line) with BPS resulted in increased ERK1/2 phosphorylation 

and cell proliferation, a response similarly observed with E2 (Vinas and Watson, 2013). 

  

BPA Free 

  The question of whether or not to go “BPA free” is one that has been, and 

continues to be, debated by politicians, physicians, scientists, manufacturers, and 

ordinary individuals.  Interestingly, only two studies have attempted to substantiate 

marketing claims of BPA-free products and packaging.  One independent study seeking 

to confirm that four different types of reusable water bottles labeled as “BPA free” were 

indeed free of BPA leachate reported that BPA levels in water stored at room temperature 

for 120 hours or 100 °C water cooled to room temperature over 24 hours in the tested 

bottles were below the limit of detection (0.05 ng/mL), thus corroborating the BPA-free 

claim (Cooper et al., 2011).  However, a study conducted by the non-profit group 

Consumers Union measured BPA leachate in canned foods produced by two different 

companies that both labeled their products as being BPA free and subsequently found 

detectable BPA levels of 1 and 20 ng/mL, respectively (Consumerreports.org, 2009).  

Furthermore, no investigation has been conducted to confirm that the removal of BPA 



 

135 

 

from consumer products that has already occurred, both legislatively and voluntarily, has 

been successful in reducing human BPA exposure.   

It is important to point out that “BPA free” does not equate to “xenoestrogen free” 

or “free of estrogen activity.”  Besides BPA, other estrogenic chemicals including other 

bisphenols, phthalates (Gonzales-Castro et al., 2011), alkylphenols (Amiridou and 

Voutsa, 2011; Guart et al., 2011; Niu et al., 2012), and brominated flame retardants 

(Schecter et al., 2008; Schecter et al., 2010) have been reported as food contaminants.  In 

fact, many plastic and epoxide products used in food packaging test positive for 

estrogenic activity using sensitive in vitro assays (Ogawa et al., 2006; Wanger and 

Oehlmann, 2009; Yang et al., 2011).  The unfavorable media attention surrounding BPA 

use and the “BPA free” movement have done little to address the bigger issue of human 

exposure to synthetic xenoestrogens.  Research of endocrine-active chemicals is a large 

field that will continue to grow as human exposure to synthetic xenoestrogens persists.   
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Figure 5.1: Conceptual summary of research aims. 
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Figure 5.2: A proposed model for BPA-induced mast cell dysregulation and the broader 

effect of perinatal BPA exposure on pulmonary inflammation after allergen challenge in 

adulthood.  BPA upregulates the release of pro-inflammatory mediators from mast cells 

through ERK-dependent and extracellular Ca
2+

-dependent signaling as well as through 

DNA hypomethylation induced during perinatal development.  Changes in mast cell 

function resulting from BPA exposure are a partial contribution to adult airway 

inflammation after perinatal BPA exposure but are overshadowed by changes sustained 

in other cell types.  Many cell types contribute to allergen-induced pulmonary 

inflammation, including (clockwise from top left) basophils, dendritic cells, B cells, mast 

cells, airway epithelial cells, T cells, airway smooth muscle cells, natural killer cells, 

macrophages, eosinophils, and polymorphonuclear neutrophils.  While perinatal BPA 

exposure does not worsen pulmonary inflammation, it does enhance allergen sensitization 

through upregulating IgE production from B cells and enhancing T cell (splenocyte) 

cytokine production after allergen challenge.   
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Figure 5.3: Comparison of the molecular structures of BPA (a), BPB (b), BPF (c), BPAF 

(d), and BPS (e).   
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