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ABSTRACT 

 

Improved Estimates of the Spatial Distributions and Temporal Trends of Water Quality 

Parameters Using Geostatistical Data Fusion Methods 

by 

Yuntao Zhou 

Chair: Anna M. Michalak 

Strategies aimed at reducing the degradation of water quality and predicting future changes 

in surface waters resulting from natural and anthropogenic forcing rely on the ability to track 

water quality changes, and to accurately quantify the distribution of water quality attributes. The 

three components of this dissertation focus on developing geostatistical data fusion methods that 

make optimal use of the available monitoring data in the Passaic River, Lake Erie, and the 

Chesapeake Bay, respectively.  

The first component presents a method for accurately estimating the spatial distribution of 

the total organic carbon in the sediments of the Passaic River using a dataset with non-uniform 

resolution. Estimating the spatial distribution of water sediment attributes at a uniform spatial 

resolution is often required for site characterizations and the design of appropriate risk-based 

remediation alternatives. Using a pseudodata example, a noval geostatisitical downscaling 

approach is shown to yield better estimates with a more accurate assessment of uncertainties, 

relative to traditional kriging methods. When applied to the estimation of the distribution of total 

organic carbon, geostatistical downscaling shows that the uncertainty associated with the spatial 
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distribution of attribute is higher than would have been assumed if a kriging approach had been 

applied. 

The second and third components explore the degradation of water quality in time and space. 

Specifically, hypoxia (low dissolved oxygen) has been observed in Lake Erie and Chesapeake 

Bay since the early 1900s, leading to negative impacts such as ecosystem habitat degradation, 

altered migration patterns, and decreased fishery production. The interannual variability in 

hypoxic extent since mid-1980s in these two systems is quantified by combining spatially 

explicit auxiliary data with in situ dissolved oxygen measurements. The significance of nutrient 

loading, weather patterns, and stratification in explaining hypoxia in these systems is also 

explored. This research points to strong meteorological controls on hypoxia, through impacts on 

stratification and nutrient loading, in addition to the impact of anthropogenic activities. 

Overall, the developed geostatistical data fusion methods are shown to provide a means for 

producing reliable estimates of water quality attributes along with their associated uncertainties.
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CHAPTER 1 Introduction 

1.1 Surface water quality 

The growing scarcity of fresh and clean water due to a variety of anthropogenic activities 

(such as irrigation, industry, recreation, and waste treatment) is one of the most important issues 

facing the world today [U.S. EPA, 2008]. Hypoxia (low dissolved oxygen), overfishing, harmful 

algal blooms (HABs), contaminated sediments, and physical alteration of habitats associated 

with coastal developments are several high-priority problems that decrease the ecological health 

of waters [Committee on Environment and Natural Resources, 2010]. This dissertation 

contributes to a better understanding of two of these problems, namely hypoxia and 

contaminated sediments. 

 Among the results of human activities, excessive input of nutrients (e.g., nitrogen, 

phosphorous) can cause the deterioration of water quality in surface water [National Research 

Council, 2000]. The increase in nutrients has led to eutrophication (defined as the increase of 

organic matter), a major environmental problem in estuarine and coastal waters throughout the 

world [Nixon et al., 1995], and in inner to mid-continental shelf waters [Rabalais, 2005]. It is 

therefore necessary to identify the major anthropogenic activities impacting the eutrophication in 

aquatic ecosystems, and to recommend remedial actions for improving the health and viability of 

these systems.  

Eutrophication can cause accelerated algae production, which depletes dissolved oxygen 

(DO) in water and further degrades water quality. When the DO concentrations drop below a 

certain threshold (normally 2 mg/L), this phenomenon is called hypoxia. Hypoxia can cause a 

loss of submerged aquatic vegetation and habitat, and can kill fish and other organisms. Tourism, 

boat manufacturing, fisheries, and other commercial activities that thrive on the wealth of natural 
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resources that estuaries supply are also affected [NSTC, 2003]. Therefore, reducing hypoxia and 

improving the quality of available surface water are necessary to benefit human health, natural 

ecosystems, and economic stability in the long term [Kurunc et al., 2005]. To better understand 

and predict hypoxia, it is necessary to address the seasonal and interannual variability of hypoxia 

and to know how specific drivers (e.g., nutrient loading, stratification) affect the variability of 

hypoxia. 

Sediment contaminants, including metals and organics, have been identified as a serious 

environmental problem in estuaries around the world [Ridgway and Shimmield, 2002; Wells and 

Hill, 2004].  Contaminants are introduced into the sediments from run-off, direct discharge, and 

atmospheric deposition [National Research Council, 2007]. While metals are found naturally in 

the natural environment, enrichment over background levels of certain trace metals can be 

attributed to human activities [Valettesilver, 1993]. Organic contaminants, which include, but are 

not limited to, pesticides, polychlorinated biphenyls (PCBs), and polycyclic aromatic 

hydrocarbons, (PAHs) come from anthropogenic sources [National Research Council, 2007]. 

These pollutants threaten the environment as they pose potentially dangerous human health risks. 

Remediation of contaminated sediments (e.g., heavy metals, Polychlorobiphenyls, and 

pesticides) can be extremely expensive [Adriaens et al., 2006]. In order to formulate effective 

remediation strategies, it is of great importance to develop methods capable of providing detailed 

knowledge about the spatial distribution of contamination in the sediment.  

1.2 Importance of data fusion methods 

Decisions regarding water management are difficult to make without a thorough 

understanding of the causes and consequences of degradation of water quality. Water 

management and protection authorities need extensive information about the state of aquatic 
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ecosystems in order to plan appropriate actions to improve water quality and the sustainability of 

water ecosystems [National Research Council, 2000].  

Reliable knowledge of impact of natural processes and human activities on surface water is 

required to develop management strategies and to make accurate water quality forecasts for days, 

months or years into the future. Effective and comprehensive monitoring, data interpretation, and 

modeling are all needed to provide information for the development of adequate water quality 

management. Continuous monitoring in the long term benefits our understanding of water 

quality changes. Nevertheless, it is impractical and financially infeasible to implement a 

monitoring plan that captures comprehensive variability of parameters in surface water or 

sediment in both space and time. At present, our understanding of the degradation of water 

quality greatly depends on effective water quality models using in situ measurements. However, 

there exist many data limitations such as missing data, mixing of coarse and fine resolution of 

sample data, temporal and spatial gaps, and declining coverage [Clark et al., 2001]. These 

imperfect data usually cause high levels of uncertainty in water quality models. Predictions on 

how unprecedented natural processes and human activities will affect the water environment are, 

therefore, limited.  

Non-uniform sampling 

In some cases, available data are obtained at a variety of spatial resolutions (i.e. support) due 

to the constraints of sampling instruments and natural environment. For example, information 

about the attributes (e.g., nutrients, organic matter, contaminants) in water sediments (i.e., 

benthic sediments) is typically obtained from cores. Each core is divided into several core 

sections of varying thickness. The reported value typically represents an average within 

individual segments of each core, and the sampling resolution is therefore not uniform [Barabas 
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et al., 2001]. Spatial resolution for the measurements is important because: (i) mechanisms vital 

to the spatial dynamics of a process at one resolution may be unimportant or inoperative at 

another, and (ii) relationships between variables at one resolution may be obscured or distorted 

when viewed at another resolution [Gotway and Young, 2002]. Therefore, a method for 

estimating the distribution of attributes at a uniform spatial resolution is of great importance. 

Sparse sampling 

In situ measurements of attributes are usually insufficient to gain an accurate understanding 

of their spatial structure in the surface water. Lack of systematic and complete data sets 

challenges both spatial and temporal predictions at unsampled locations. In addition to the in situ 

point measurements, more and more high-density remote sensing (e.g., satellite) data are also 

available for providing information on water quality attributes (e.g., chlorophyll) in surface 

water. To maximize the use of both in situ data and remote sensing data, it is necessary to 

develop models that can assimilate data from different sources and of different kinds.  

1.3 Purpose of this dissertation 

The ultimate purpose of this dissertation is to explore the causes of degrading water quality 

by making optimal use of sparse water quality monitoring data (Figure 1-1). To achieve this 

goal, this dissertation provides examples of spatial data integration techniques using 

geostatistical data fusion (i.e., combining different sources of information into a single final data 

set [Fasbender et al., 2008]). Geostatistical methods were selected because they have the 

advantage of considering the spatial correlation of the data (to be discussed in Chapter 3). By 

putting the available monitoring data to optimal use, the causes of degrading water quality and 

the solutions to improve water quality could be found with more thorough analysis and 

understanding.  
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al., 2001]. However, an estimate of the attribute distribution at a uniform spatial resolution is 

often required for site characterization or the design of appropriate risk-based remediation 

alternatives. 

The purpose of this first work is to estimate the unknown fine resolution attribute 

distribution. Uniform resolution (i.e. the area over which a sample averages) is the basic 

requirement for almost all the existing interpolation methods [Chiles and Delfiner, 1999]. 

Although frequently used to interpolate measurements, traditional kriging methods are specially 

designed for the data sampled at a uniform resolution. To make optimal use of the non-uniform 

data set, the proposed geostatistical downscaling method is applied to both pseudodata and field 

data (i.e., total organic carbon) in Passaic River.  

1.3.2 Objective 2: Estimating areal extent of hypoxia in Lake Erie with geostatistical 

methods  

The second component of this dissertation focuses on estimating hypoxic extent in Lake Erie 

by integrating water quality data from different sources, with the ultimate goal of informing 

fisheries and leading to better water quality management. Traditional in situ sampling data 

usually cannot produce accurate spatial and temporal information without high-density 

measurement campaigns that are typically expensive [Schwab et al., 1999]. For Lake Erie, there 

are only ten regular stations measuring dissolved oxygen (DO) in its central basin. To augment 

these sparse in situ sampling DO data, auxiliary variables (e.g., data representing spatial trend, 

remote sensing data measuring water quality) that are correlated with the DO measurement are 

used. Auxiliary variables are those associated with the distribution of the target variable in time 

and/or space.  
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In order to achieve the goal, Bayesian Information Criterion was used first to select the 

significant auxiliary variables that explain the spatial distribution of DO concentration in the 

bottom of the lake. Using Universal Kriging (UK, a.k.a. kriging with an external drift), the 

spatial distribution of DO throughout Lake Erie for each year from 1987 to 2007 was estimated 

in two dimensions. In addition, conditional realizations were applied to provide quantitative 

estimates of the areal extent of hypoxia in the central basin of Lake Erie for August and 

September, and their associated uncertainties.  

1.3.3 Objective 3: Impacts of nutrients and weather patterns to the temporal variability 

of hypoxic volume in Chesapeake Bay  

The third component of this dissertation explores both the causes of variability in hypoxic 

volume and the temporal duration of hypoxic events in Chesapeake Bay for the years 1985 to 

2010 by using the available data that are correlated with hypoxia. Both the spatial extent and 

temporal duration of hypoxia affect spawning grounds, migratory pathways, and feeding habitats 

of fish species [Hagy et al., 2004]. The approach outlined in section 1.3.2 is expanded from two- 

to three-dimensions due to the extremely complex physical and biochemical dynamics of the 

Bay.  

The purpose of this work is to estimate the variability of hypoxia from April to October in 

half-monthly resolution and to examine the effects of nutrient loading and other weather patterns 

(e.g., precipitation, wind) on the variability in hypoxia. In addition, this work establishes the 

hypoxic frequency from 1985 to 2010 at every location in the Bay.  

In summary, this dissertation contributes to water quality research by developing 

geostatistical methods capable of providing more accurate estimates based on available data. All 

the methods described here could easily be applied to other aquatic ecosystems facing similar 
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problems or challenges (e.g., data with different resolutions or data from different sources). In 

addition to providing technical and methodological developments, this dissertation also answers 

scientific questions by using these methods. For example, this dissertation maps spatial estimates 

of water sediment attributes (i.e., total organic carbon) with the associated uncertainties that 

serve as an important method for site remediation by providing the detailed spatial distribution of 

these attributes. The spatial distribution is required for either full river remediation or hot spot 

removal (i.e., removal of small areas of highly contaminated sediments). In addition, this 

dissertation also provides long-term historical information about hypoxic extent in Lake Erie and 

Chesapeake Bay from the mid-1980s to the late 2000s. Such information can provide a basis for 

the research on hypoxic forecasting. With this detailed information on hypoxic extents over the 

last two-plus decades, this dissertation explores the causes of hypoxia, which could provide 

detailed suggestions and strategies (e.g., for nutrient management) to policy makers.  

The remainder of this dissertation is organized as follows. Chapter 2 provides a detailed 

overview of the complexities in water research related to the three objectives of this dissertation 

and reviews previous studies relevant to the presented work. Chapter 3 briefly describes the main 

methods applied for this dissertation. Chapter 4 compares the spatial distribution of water 

attributes estimated from geostatistical downscaling with that from traditional interpolation 

methods, using both pseudodata and field data from the sediment of Passaic River, New Jersey. 

Chapter 5 derives long-term (1987-2007) hypoxic extent estimates for Lake Erie by combining 

in situ DO measurements with auxiliary data. Chapter 6 estimates the seasonal and interannual 

variation in hypoxic volume in Chesapeake Bay from 1985 to 2010 and explores how nutrient 

loads and other weather patterns affecting it. The final chapter (Chapter 7) concludes this 
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dissertation by summarizing the results observed and by suggesting promising avenues for future 

work.  
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CHAPTER 2 Literature Review 

This chapter summarizes the background and the state of science related to the three 

components discussed in Chapter 1. This literature review also covers methodological studies 

with some discussion of scientific results and a brief introduction to the study sites. 

2.1 Mapping the distribution of water attributes (e.g., organic matter, contaminants) in 

the sediment 

Contaminated sediments in aquatic environments can pose health risks to many types of 

organisms, including humans. Sediments are of great importance for small creatures such as 

worms, crustaceans, and insect larvae that inhabit the bottom of a body of water (i.e., benthic 

environment). In addition to providing important habitats for these aquatic organisms, sediments 

play a significant role in determining the overall environmental quality of an aquatic ecosystem. 

Toxic sediments can kill benthic organisms, and thus reduce the quantity of food available to 

larger animals such as fish. Additionally, some contaminants with hydrophobicity and low 

degradability in the sediments are taken up by benthic organisms through a process called 

bioaccumulation [Vanderoost et al., 1988].  When larger animals feed on these contaminated 

prey species, the pollutants are taken into their bodies and are passed along to other animals in 

the food web. In particular, high concentrations can be found in natural aquatic organisms, while 

at the same time concentrations found in water are very low, even below detection limits 

[Vanderoost et al., 1988]. As a result of toxic and bioaccumulative substances, benthic 

organisms, fish, birds, mammals, and human being can be adversely affected by contaminated 

sediments [MacDonald et al., 2002]. Therefore, it is necessary to develop efficient strategies for 

removing contaminants from the sediments (i.e., sediment remediation) [National Research 

Council, 2007]. 
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Currently, there are three main well-developed technologies for sediment remediation: 

dredging (a.k.a., excavation), capping (a.k.a., isolation), and monitored natural recovery (MNR) 

[Foerstner and Apitz, 2007; U. S. EPA, 2005]. Dredging removes contaminated sediments from 

an aquatic environment with the purpose of disposing of them at a different location. In the US, 

about six million yards of contaminated sediment have been removed and disposed of using 

dredging technology as part of 71 major remediation projects, because dredging results in 

permanent removal of the contaminants [Zeller and Cushing, 2006]. However, it only shifts the 

problem to another place, as the removed sediment has to be deposited elsewhere and requires 

further management [Perelo, 2010]. Capping, by contrast, places clean dredged materials over a 

deposit of contaminants in open-water or upland locations as a means of isolating these 

sediments from the surrounding environment. However, contaminated sediment can be mixed 

with the clean material or can be resuspended during the placement of the dredged materials, and 

sedimentary natural attenuation processes can be altered [Himmelheber et al., 2007]. The 

resuspension of contaminated sediments is a frequently recurring ecological threat in 

contaminated aquatic habitats. MNR uses naturally occurring processes (i.e., physical, biological, 

and chemical mechanisms) to contain, destroy, or reduce the organic matter or contaminants in 

sediment [Magar and Wenning, 2006]. However, MNR generally takes the longest time to 

achieve protection than dredging and in situ capping [National Research Council, 2007]. 

Overall, all remediation technologies have both advantages and disadvantages when applied at a 

particular site, and it is critical for risk management to identify a suitable technology for each 

site. Site conditions are of great importance in determining which remediation techniques (and 

combinations thereof) are appropriate [National Research Council, 2007]. 
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While beneficial for qualitative site characterization and efficient management and selection 

of remediation technologies, sparse sampling provides insufficient information or detail about 

the spatial distribution of the sampled attributes throughout the sampled area. Therefore, 

interpolation methods, including mathematical splines, inverse distance weighted interpolation, 

and geostatistical methods [French et al., 1995; Kravchenko and Bullock, 1999; Leenaers et al., 

1990], are typically used to map attribute distribution throughout a site.  

Due to the irregular thickness of sediment above the bedrock surface, samples of 

contaminated stream or riverbed sediments are often obtained from cores that vary in length. 

Each core is subsequently subdivided into several sections of varying thickness, which are 

analyzed for key attributes. The reported values at each location typically represent an average 

within individual segments of each core, and the sampling resolution (a.k.a. support) is therefore 

non-uniform [Barabas et al., 2001]. One method of overcoming the cross-resolution limitations 

is to rescale the measurements according to the requirements of the model simulation process. 

Most interpolation approaches (such as inverse distance weighting or point-to-point kriging) are 

only designed for data sets with uniform resolutions for all variables [Chiles and Delfiner, 1999]. 

Therefore, the cross-resolution issue is usually ignored during the process of applying 

interpolation, which will lead to errors in the estimated parameter distributions (REF). Most of 

the time, parameters with different resolutions are averaged up to those with the largest 

resolution before analysis, which results in a loss of information at small resolutions.  

The direct application of traditional interpolation methods, including traditional geostatistical 

methods, for data with non-uniform resolution, as is typical of data sets describing contaminated 

sediments, is itself problematic for several reasons.  First, a uniform resolution is required by a 

majority of interpolation approaches, including those that fall within the framework of 
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geostatistical interpolation (i.e. point-to-point kriging).  Therefore, in order to apply point-to-

point kriging methods, one needs to make some assumptions regarding the distribution of the 

attribute within the individual core sections. In general, this is done by performing the spatial 

interpolation at a resolution finer than the resolution of the core sections, and assuming either (i) 

that the sampled average value is representative of the attribute value at the center of each 

original section, or (ii) that the measured average value is representative of the attribute value at 

every point in the core section [Barabas et al., 2001].  Violating the requirement for uniform 

measurement support in this way can yield inaccuracies in both the estimated field and its 

associated estimation error.  Second, the variance of a spatially distributed attribute usually 

changes with the spatial support of measurements [Chiles and Delfiner, 1999], with apparent 

variance usually decreasing with coarser resolution, while the converse is true with correlation 

lengths [Isaaks and Srivastava, 1989; Western and Bloschl, 1999].  

As a result, accurate information about the spatial structure at the resolution of the final 

estimates, including measures of overall variability and correlation length that are required for 

geostatistical analysis, is difficult to obtain using a data set with variable resolution.  When data 

with variable support are used for estimating variability, the true variability can be 

underestimated due to the averaging process inherent to sampling in non-uniform core sections.  

The geostatistical framework contains many unique features for making optimal use of the 

limited water quality data to achieve statistically rigorous estimates, and provides a broad 

theoretical framework for addressing the problem of water data fusion [Chiles and Delfiner, 

1999; Cressie, 1993]. A general overview of data fusion theory from the spatial statistical 

perspective can be found in Gotway and Young [2002]. 
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In order to preserve all the information provided by the measurements, estimating attribute 

values at a smaller and uniform resolution (i.e., downscaling) is an option for solving the mixed-

resolution problem. Downscaling in a geostatistical co-kriging framework has been successfully 

applied in past studies [Pardo-Iguzquiza et al., 2006], but requires the joint estimation of 

multiple attributes.  

Geostatistical downscaling in the form of inverse modeling has the ability to produce 

estimates at a finer resolution than that of its component measurements by including a sensitivity 

matrix corresponding to the contribution of small resolution data to large resolution data. 

Geostatistical inverse modeling has been widely used in hydrogeology for characterizing 

contaminant sources [Michalak and Kitanidis, 2004; Sun, 2007], as well as identifying the 

distribution of hydraulic conductivities or transmissivities in aquifers [Fienen et al., 2004; Yeh 

and Zhang, 1996; Zimmerman et al., 1998]. Fienen et al. [2004] generated hydraulic 

conductivity in borehole flow-meter tests, which indicates the feasibility of downscaling by 

inverse modeling. Erickson and Michalak [2006] also produced a unified data set using different 

remote sensing observations of differing resolutions, grid orientations, and spatial extent from 

multiple sensors by applying a geostatistical inverse modeling approach.  

2.2 Brief review of the study site 

This dissertation provides an example of mapping the spatial distribution of attributes in the 

sediments of the Passaic River. 

Passaic River  

The Passaic River is a tidal tributary to Newark Bay and part of the New York and New 

Jersey Harbor Estuary, and its flow pattern is determined by both seasonally varying freshwater 

input and tidal events [Barabas et al., 2001]. The study area of the first component of this 
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dissertation is a 10 km stretch of the lower Passaic River in New Jersey, under investigation by 

the EPA as part of its evaluation of the Diamond Alkali Superfund site 

(http://www.ourpassaic.org). Nearly two centuries of industrial activities and nonpoint sources of 

pollution have resulted in elevated levels of dioxins in the sediments [Gunster et al., 1993].  

The concentrations of heavy metals (e.g., mercury, zinc, lead, and copper), Polycyclic 

Aromatic Hydrocarbons (PAHs), Polychlorinated Biphenyls (PCBs), and pesticides (DDT) are of 

particular concern in Passaic River sediment [Crawford et al., 1995; Donovan et al., 2008; 

Walker et al., 1999], not only because of their high level of toxicity at low concentrations but 

also because of their persistence in the environment. Resident aquatic organisms are exposed to 

and can bioaccumulate a variety of chemical contaminants from sediments, water and other 

organisms. 

Spatial distribution of contaminants is required to decide whether a full river remediation or 

hot spot removal would be required. Because the river is tidal, the water, the sediment, and most 

species of fish and invertebrates (i.e., blue clawed crabs) travel throughout and outside of the 

Passaic River. Storm events and other natural processes might disturb the sediments. Alternatives 

ranging from no action to dredging to capping and their combinations within different areas 

should be evaluated. The potential long-term risk reduction associated with these approaches 

requires knowledge of contaminant stability in sediment [Adriaens et al., 2006]. Therefore, an 

interpolation method that is able to provide accurate spatial analysis of contaminants in sediment 

is needed. 

Total organic carbon  

Total organic carbon (TOC) from the lower Passaic River was used analyzed as an example, 

using the geostatisitical data fusion tools developed in this dissertation. TOC forms water-soluble 
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and water-insoluble complexes with metal ions and hydrous oxides, interact with clay minerals 

and bind particles together, as well as sorbs and desorbs both naturally-occurring and 

anthropogenically-introduced organic contaminant compounds [Lake et al., 1990; Schumacher, 

2002]. Organic carbon comes from land sources (e.g., leaves, grasses, soils, and wastewater 

treatment plants) that run off into water, and water sources produced in the aquatic plants (e.g., 

phytoplankton, seaweeds). TOC content in sediments has been used as an indicator of pollution 

and eutrophication rate [Folger, 1972; U. S. EPA, 2002a].  The analysis of TOC distribution is 

therefore essential for the further analysis of contaminant distribution knowledge. 

2.3 Causes and impacts of hypoxia on surface water 

Globally, hypoxia (low dissolved oxygen, DO) threatens many large bodies of water around 

the world, including the Baltic Sea [Sandberg, 1994], the Black Sea [Daskalov, 2003], the 

Yangtze River Estuary [Chen et al., 2007; Li et al., 2002], the Gulf of Mexico [Rabalais et al., 

2001], Long Island Sound [Parker and Oreilly, 1991; Welsh and Eller, 1991], Chesapeake Bay 

[Breitburg, 1990; Dauer et al., 1992; Officer et al., 1984; Sanford et al., 1990] and Lake Erie 

[Burns et al., 2005; Carrick et al., 2005]. Hypoxia has also developed in the eastern Pacific 

Ocean, the south Atlantic west of Africa, the Arabian Sea, and the Bay of Bengal [Diaz and 

Rosenberg, 2008]. In the United States, increased nutrient inputs to bodies of water have led to 

substantial changes in the Great Lakes and two-thirds of all coastal systems [National Research 

Council, 2000].  

Human activities alter the global cycling of nutrients enormously, especially the movement 

of nutrients to bodies of water [National Research Council, 2000]. Economic development, 

population growth, and related human activities have increased nutrient inputs to levels that are 

many times higher than those that occur naturally. Besides the increasing direct inputs of 
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agricultural fertilizer and industrial sewage, other human activities including land use change and 

dam construction have increased nutrient loading indirectly [Hopkinson and Vallino, 1995]. 

Nutrient enrichment stimulates algae production and biomass accumulation in freshwater and 

coastal marine ecosystems [Cloern, 1999]. 

It is clear that the most common single factor causing low DO in these environments is an 

increase in the amount of nutrient loading they receive [Nixon et al., 1995]. Nutrient loading is 

defined as the total amount of various nutrients contributed by the upstream landscape and 

atmosphere [National Research Council, 2000]. Phosphorous and nitrogen are the two main 

nutrients leading to the degradation of surface water. Nitrogen is generally considered the most 

frequent driver of estuarine low oxygen conditions and currently is mostly the result of non-point 

sources (e.g., agriculture) [NSTC, 2003], while phosphorous is generally the most frequent driver 

of freshwater low oxygen conditions and most commonly comes from both non-point sources 

(e.g., agriculture) and point sources (e.g., wastewater treatment) [NSTC, 2003; Rucinski et al., 

2010].  

In addition to increasing nutrient loading, summertime stratification of surface waters is 

another main cause of hypoxia. Vertical stratification isolates colder waters in the bottom layer, 

where low light restricts photosynthesis, from re-aeration and the diffusion of oxygen from the 

surface to the bottom [National Research Council, 2000]. Moreover, the strong vertical 

stratification can retain and increase the phytoplankton blooms in the upper zone where light and 

nutrients are more favorable, and thus encourage higher production as well as larger algal 

blooms and grazers [NSTC, 2003]. The settlement of phytoplankton and grazers within the 

bottom layer results in the depletion of DO from deep waters. Decomposing phytoplankton and 

other settled organic matter consumes oxygen, often reducing it to below the 2 mg/L hypoxic 
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threshold in the bottom layer. When the DO is completely consumed, anoxia, an extreme 

condition, occurs [Committee on Environment and Natural Resources, 2010]. 

Taking the hypoxic condition in coastal waters (e.g., Chesapeake Bay) as an example, Figure 

1-1 compares a hypoxic ecosystem (left) with a healthy (i.e., non-hypoxic) ecosystem (right). 

Density stratification of the water column, in which a less dense layer of water floats on top�of a 

denser bottom layer, is an almost universal characteristic of coastal systems subject to seasonal 

bottom water hypoxia. Stratification reduces�the potential for oxygen from the atmosphere to 

replenish oxygen depleted at bottom layer of water. In most cases involving marine systems, a 

vertical gradient of salinity, creating a halocline or pycnocline (Figure 1-1), is the most important 

factor contributing to density stratification [NSTC, 2000]. While in most freshwater systems, 

surface heating, creating warmer surface water temperatures and thus a vertical gradient of 

temperature or a thermocline, is the cause of stratification [Hawley et al., 2006]. In addition, 

wind and tidal stresses can upset the stabilizing effects and are likely to be important 

mechanisms for the mixing of the upper freshwater and lower seawater in estuarine ecosystems 

[Committee on Environment and Natural Resources, 2010].  
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such work only estimates the magnitude of hypoxic extent, but not its spatial location. To obtain 

systematic and complete data sets of hypoxic extent that can be used to better understand 

hypoxia, interpolation of DO concentrations at un-sampled locations (i.e., location of hypoxia) is 

needed. The following section discusses different types of models that can be used for estimating 

both the location and the extent of hypoxia.  

Mechanistic models  

Mechanistic models focused on hypoxia have been developed for many large bodies of 

surface water to provide estimates of hypoxic extent. For example, one-dimensional (e.g., 

[Rucinski et al., 2010]) and box water quality models (e.g., [Chapra, 1979; DiToro and 

Connolly, 1980; Riley, 1946; Vollenweider, 1979]) have been used for estimating the extent of 

hypoxia in Lake Erie. Stow and Scavia [2009] combined a Bayesian model with a traditional 

water quality model to estimate DO concentration variability in Chesapeake Bay in one 

dimension, as well as to calculate the hypoxic volume and associated uncertainties. Hagy and 

Murrell [2007] developed a box model to analyze hypoxic extent in Pensacola Bay. Such water 

quality models can be used to evaluate the overall hypoxic conditions of a system, and can help 

decision makers to reduce the severity of hypoxia by estimating the reduction of nutrient loads. 

Although most multi-segment box models do estimate the spatial distribution of DO to some 

extent, the spatial resolution of these models is typically rather coarse. The mechanistic models 

are usually not designed specifically to analyze the spatial distribution of water quality 

parameters accurately.  

In recent years, some fine-resolution mechanistic and site-specific models have been 

developed to estimate the spatial distribution of water quality parameters.  For example, the 

Curvilinear-grid Hydrodynamics model in three dimensions (CH3D) and its Integrated Model 
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System (CH3D-IMS), developed by Sheng [1990], was applied to the Upper Charlotte Harbor 

[Kim et al., 2010] to provide a measurement of DO changes in the coastal waters. In order to 

show the spatial extent of hypoxia in Chesapeake Bay, a sophisticated three-dimensional water 

quality model, CE-QUAL-ICM [Cerco and Cole, 1993; Cerco and Noel, 2004], was developed 

and updated over almost two decades through collaboration between the Chesapeake Bay 

Program (CBP) and the U.S. Army Corps of Engineers. Although CE-QUAL-ICM provides 

accurate estimates of hydraulic parameters, the estimates of water quality parameters (e.g., 

chlorophyll, DO) do not precisely match their instantaneous observations of interest [Murphy et 

al., 2010]. The CE-QUAL-ICM model was also applied to Lake Washington to estimate DO 

from 1995 to 1997 [Cerco et al., 2006]. Both CH3D and CE-QUAL-ICM models are 

eutrophication models simulating water-column and sediment processes that affect water quality 

at a fine spatial resolution. However, the fine-resolution outputs from these water quality models 

come at the expense of high computational cost and complexity, and the uncertainties associated 

with their estimates are difficult to quantify.   

In summary, most simple mechanistic models are more useful for considering the overall 

nutrients or DO concentrations of an entire body of water, rather than their detailed spatial 

distribution.  Mechanistic models capable of offering spatial details are typically site-specific and 

highly complicated, requiring a long time for validation [Murphy et al., 2010]. 

Simple regression and interpolation 

Simple linear and nonlinear regression methods have been widely used to show the spatial 

distribution of DO concentration. Burns et al. [2005] applied a linear interpolation to estimate the 

maximum yearly extent of hypoxia in Lake Erie for fourteen years between 1983 and 2002, 

using the lowest DO measurement in each year from each of ten sampling stations. Bahner 
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[2006] applied a three-dimensional inverse distance weighted interpolation to estimate water 

quality parameters (including DO) in Chesapeake Bay since 1985, when cruises associated with 

the Chesapeake Bay Program started to collect data throughout the entire year [Chesapeake Bay 

Program, 2011]. Coopersmith et al. [2011] used k-nearest neighbor and regression tree 

algorithms to forecast the probabilities of observing hypoxia and DO levels in Corpus Christi 

Bay in the short term. Pokryfki and Randall [1987] used a simple interpolation scheme to map 

DO concentration in the Gulf of Mexico. These simple linear and nonlinear interpolation 

approaches are easily adapted to other ecosystems, and thus have gained wide application 

elsewhere. 

Although simple techniques (e.g., linear and nonlinear interpolation [Pokryfki and Randall, 

1987], inverse distance weighted interpolation [Bahner, 2006]) can provide an estimate of the 

spatial extent of hypoxia, they are deterministic models and, as such, can only provide limited 

quantitative estimates of uncertainties and cannot make adequate use of data on any other related 

variables to improve spatial estimates. Furthermore, although the simple statistical interpolation 

is easy to apply, it does not explicitly account for the spatial correlation (i.e. smoothness) of the 

DO distribution.  However, in most environmental processes, including the distribution of DO, 

the residuals are generally spatially and/or temporally correlated.  

Geostatistical models 

Other methods that consider the spatial correlation of data, such as geostatistical Ordinary 

Kriging (OK), which greatly depends on the sparse in situ measurements, were applied to 

Charleston Harbor [Rathbun, 1998], Chesapeake Bay [Chehata et al., 2007], the Gulf of Mexico 

[Rabalais et al., 2007a], Neuse River Estuary [Buzzelli et al., 2002] and Ryan Lake [Stefanovic 

and Stefan, 2002]. Although OK accounts for the spatial correlation of DO observations, it 
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cannot make use of information on any covariates, and therefore leads to high uncertainties if the 

in situ measurements are sparse.  

The accuracy of estimating water quality parameters such as chlorophyll and DO are limited 

by sparse spatial sampling, uncertainty in loading, and difficulty in assigning boundary 

conditions. Sparse sampling of data in space makes it difficult to determine the spatial variability 

of DO. For a system such as Lake Erie, for example, DO is measured at only ten locations in its 

central basin for most years because of the difficulty and expense associated with data collection. 

OK cannot produce sufficiently detailed spatial information to accurately reflect the spatial and 

interannual variability of hypoxia [Rathbun, 1998]. Thus, there is a need for the application of 

more methods that can both account for the spatial correlation of DO and incorporate 

information on related ancillary data sources. 

Auxiliary variables are of great help to provide more accurate estimates of the spatial 

distribution of DO [Rossi and Posa, 1990]. The amount of oxygen in the water is naturally 

affected by the distribution of nutrients, water temperature, water density, stratification situation 

and chlorophyll concentration. During the summer, the warmer and lighter water of the surface 

water’s uppermost layer blocks the colder and denser water of the bottom layer from the 

atmosphere due to the availability of sunlight [National Research Council, 2000]. Phytoplankton 

produces oxygen through photosynthesis and also consumes oxygen during respiration and 

decomposition. As a result, the amount of DO changes with location, temperature, phytoplankton 

distribution, and time of year.  

Whereas the majority of early applications of geostatistical methods were for interpolating 

sparsely sampled data from a single data set, many methodological innovations have been made 

in the area of geostatistical approach, which aim to infer DO distribution based on measurements 
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of a secondary variable. Universal Kriging (UK, a.k.a. kriging with an external drifst) uses 

auxiliary variables, in addition to the limited in situ DO measurements, to obtain a detailed 

spatial distribution of DO. For example, Rossi and Posa [1990] applied UK to interpolate the DO 

concentration in Mar Piccolo of Taranto, Italy using spatial trends. Murphy et al. [2010] used UK, 

among other approaches, to interpolate water quality parameters such as salinity, water 

temperature, and DO in Chesapeake Bay, using the output from a water quality model as 

auxiliary information. Obenour et al. [2012] also used a UK-type model to separate the impacts 

of stratification and nutrient loading on DO in the Gulf of Mexico. 

Method 
Computational 

cost & complexity 
Consideration of 
spatial correlation 

Estimation 
uncertainty 

Auxiliary 
variables 

Mechanistic model High No Limited Limited 

Simple statistical model 
(e.g., linear or nonlinear 

regression) 
Low No Yes Yes 

Simple interpolation 
(e.g., linear interpolation, 

inverse distance 
weighting) 

Low No No No 

Ordinary Kriging Low Yes Yes No 

Universal Kriging Low Yes Yes Yes 

Table 2-1 Methods of estimating hypoxic extent. 

A comparison of different types of models for estimating distribution of DO and hypoxic 

extent is shown in Table 2-1. Geostatistical methods, which quantify and account for spatial 

correlation, are more suitable for providing estimates in space and more reasonable uncertainty 

bounds [Zimmerman et al., 1999]. All types of models have their own strengths in solving 

various problems. For example, mechanistic models are most effective at reflecting existing 

scientific understanding of the processes that control hypoxia development. Within the scope of 
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this dissertation, geostatisitical Universal Kriging is simple and effective for testing hypothesis 

regarding factors that control hypoxia, especially as long-term DO data become available. 

2.3.2 Brief review of study sites  

This dissertation focuses on exploring the variability of hypoxia and quantifying the potential 

factors causing hypoxia in Lake Erie and Chesapeake Bay. The section below briefly describes 

the hypoxic conditions in these two systems. 

Lake Erie 

Summertime hypoxia is a natural phenomenon in the central basin of Lake Erie, probably 

dating back thousands of years [Delorme, 1982].  Notably, small areas of hypoxic water were 

first recorded in the central basin of Lake Erie in the 1930s [Fish, 1960; Herdendorf, 1984]. 

However, evidence suggests that oxygen depletion rates increased in the 1950s due to 

anthropogenic factors [Committee on Environment and Natural Resources, 2010]. Although 

there is growing awareness of large scale, long term changes in watersheds and waters, the 

causes and consequences of hypoxia in Lake Erie are not yet fully understood. 

As a measure of hypoxia, hypoxic areal extent is the one of the best indicators for tracking 

historical changes, as well as the response of hypoxia to water quality management and other 

ecosystem variables [Hagy et al., 2004]. A comprehensive record of seasonal or interannual 

hypoxic extent would therefore increase knowledge of the history, variability, dynamic causes 

and consequences of hypoxia, as well as pertinent characteristics (e.g., the most vulnerable 

locations) of the lake system. Such understanding is, in turn, needed for developing efficient 

water quality management and conservation strategies. 
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Chesapeake Bay 

Chesapeake Bay is the largest and most productive estuary on the East Coast of the United 

States, but is plagued with bottom-water hypoxia and/or anoxia due to agricultural and industrial 

development and population growth along its shores and headwaters [Cerco and Cole, 1993]. 

Hypoxia was first reported in Chesapeake Bay in the 1930s [Newcombe and Horne, 1938; 

Officer et al., 1984], and became more common and widespread starting in the late 1950s and 

early 1960s, due to anthropogenic nutrient influx [Cronin and Vann, 2003]. 

Chesapeake Bay is an extremely narrow and shallow estuary, which presents a unique set of 

challenges for the implementation of spatial interpolation methods. As a partially stratified 

estuary in which fresh water and seawater are partially mixed, Chesapeake Bay has extremely 

complex physical and biochemical dynamics. Stratification caused by salinity differences varies 

geographically [U. S. EPA, 2002b]. Therefore, it is necessary to take auxiliary variables 

reflecting the stratification situation into consideration during the process of estimating DO 

spatial distribution.  
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CHAPTER 3 Methodology 

This chapter describes existing geostatistical methods implemented as part of the work 

presented in Chapters 4 to 6. The details of the gesotatistical approach for each research 

component in this dissertation are presented within the discussion of each component. 

3.1 Background of geostatistical methods 

In order to solve the problems presented by degrading water quality, methods that predict the 

response of ecological communities to both anthropogenic and natural alterations are needed 

[Clark et al., 2001]. Moreover, because of the requirement for risk benefit analysis and water 

management, the impact of the uncertainties associated with attribute estimation need to be taken 

into account throughout the analysis. Statistical methods can be formulated in a stochastic 

framework, yielding optimal estimates and accurate measures of uncertainty. In stochastic 

approaches, unknown parameters are described through statistical distributions, and meaningful 

uncertainty bounds can often be identified [Burrough and McDonnell, 1998]. 

In most cases, environmental data taken from locations closer to one another are likely to be 

more similar than the those taken from locations further apart [Chiles and Delfiner, 1999]. 

Therefore, spatial correlation is an important feature of these data. However, traditional 

statistical models assuming data to be independently and identically distributed (I.I.D.) usually 

ignore this fact, which could result in biased estimates [Chiles and Delfiner, 1999]. Compared to 

these traditional statistical models, geostatistical methods can provide more accurate analyses of 

the spatial distribution of environmental data by capturing their underlying spatial correlation 

[Chiles and Delfiner, 1999].  

Geostatistical methods include models for characterizing the degree and the type of spatial 

correlation, as well as models for making use of this correlation for estimation. The original 
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theory of geostatistics [Matheron, 1963] was developed in the late 1950s and early 1960s to 

provide a set of inference methods for estimating ore reserves in three dimensions. Geostatistical 

methods, which explicitly account for spatial correlation, are normally selected as interpolation 

approaches [Butcher, 1996; Little et al., 1997]. They have been extensively used and generalized 

for applications in many areas beyond mining, such as ground water (e.g., [Delhomme, 1979; 

Kitanidis and Vomvoris, 1983; Mouser et al., 2005]), soil science (e.g., [Bourennane et al., 2007; 

Hengl et al., 2007; Trangmar et al., 1985; Wu et al., 2006]), hydrology (e.g., [Ahmed and 

Demarsily, 1987; El Idrysy and De Smedt, 2007; Woodbury and Sudicky, 1991]), ecology (e.g., 

[Robertson, 1987]), meteorology (e.g., [Kyriakidis et al., 2001]), oceanography (e.g., [Gohin and 

Langlois, 1993]), atmospheric science (e.g., [Gourdji et al., 2008; Michalak et al., 2004; Mueller 

et al., 2008]), and surface water (e.g., [Murphy et al., 2010; Obenour et al., 2012]).  

In addition to spatial correlation, a trend can also be used to estimate statistical relationships 

between the observation variable (i.e., dependent variable) and those variables in the trend (i.e., 

auxiliary variables). Geostatistical data fusion methods can account for both the trend and the 

underlying spatial or temporal correlation in the measurements. These methods have also been 

used in other disciplines including oceanographic science (e.g., [Georgakarakos and Kitsiou, 

2008]), water table mapping [Hoeksema et al., 1989], and meteorological science to improve 

upon the predictability of short-term weather forecasting models (e.g., [Carroll and Cressie, 

1996; Pardo-Iguzquiza et al., 2005; Phillips et al., 1992]).  

Given that the sampled attributes (e.g., DO, total organic carbon) in the surface water or 

water sediment often exhibit spatial continuity [Barabas et al., 2001], geostatistical data fusion 

approaches, which are widely used for spatially or temporally correlated data, have been selected 

as the main methods in this dissertation. The specific applications used in this dissertation are 
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geostatistical kriging and geostatistical inverse modeling. For kriging, the target variable to be 

estimated is sampled directly, while for inverse modeling, the variable is sampled indirectly. 

3.2 Basic setup in geostatistical methods 

Within a geostatistical framework, an n  1 vector of random variables, z(x), at locations x (n 

 1) can be divided into a deterministic part (a.k.a. trend) and a stochastic part (a.k.a. residual) 

which is dependent upon location in space: 

ሻܠሺܢ  ൌ ۲ሺܠሻ ൅ ሻ 3.1ܠ௥௘௦ሺܢ

The deterministic part will be specified later in each research component, because it differs 

among the three research components. In this dissertation, the residuals are assumed to be 

second-order stationary, i.e. they have a constant mean over the domain and the covariance of 

any pair of residuals is only dependent upon the separation distance between their locations.  

A variogram, ઻ሺܐሻ, describes the variance of residuals, ܢ௥௘௦ሺܠሻ, as a function of separation 

distance, h, between any two measurements: 

 
઻ሺܐሻ ൌ

1
2
Eൣ൫ܢ௥௘௦ሺܠ ൅ ሻܐ െ ሻ൯൧ 3.2ܠ௥௘௦ሺܢ

where E[ ] denotes the expected value operator. If the residuals are second-order stationary 

(Figure 3-1), a covariance function, ۿሺܐሻ, could be linked to the variogram by the following 

equation [Chiles and Delfiner, 1999]: 

 ઻ሺܐሻ ൌ ሺ૙ሻۿ െ ሻ 3.3ܐሺۿ

A covariance function shows the correlation between a pair of data with a separation 

distance, while a variogram shows the dissimilarity between a pair of data. Both variogram and 
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covariance function are quantitative tools to characterize the spatial or temporal structure of the 

residuals. 

 

Figure 3-1 Variogram and covariance function for an exponential model. 

 

There are many types of variogram models describing the expected behavior of the residuals, 

such as nugget effect, linear, exponential and Gaussian, to describe the spatial behavior of 

residuals [Cressie, 1993; Kitanidis, 1997]. For example, an exponential variogram together with 

a nugget effect is: 

 
઻൫ߪ|ܐଶ, ݈, ொߪ

ଶ൯ ൌ ଶߪ ൭1 െ exp ൬െ
ܐ
݈
൰൱ ൅ ொߪ

ଶ ∙ ሺ1 െ δሾܐሿሻ 3.4

where ߪଶ is the part of variance that is spatially correlated, ߪொ
ଶ is the micro-variability which is 

independent (i.e., uncorrelated) in space, and 3l is the practical range. δ[ ] is a Kronecker delta 

function, equal to one when the separation distance is zero and equal to zero otherwise. The 

corresponding covariance function is: 
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,ଶߪ|ܐ൫ۿ ݈, ொߪ

ଶ൯ ൌ ଶexpߪ ൬െ
ܐ
݈
൰ ൅ ொߪ

ଶ ∙ δሾܐሿ 3.5

3.3 Ordinary Kriging and Universal Kriging 

Ordinary Kriging (OK) has been extensively used for interpolation when only the target 

parameter to be estimated is available or the parameter does not suggest trend [Chiles and 

Delfiner, 1999; Cressie, 1993; Isaaks and Srivastava, 1989]. Universal Kriging (UK) is a 

geostatistical method that can include some other covariates (i.e. auxiliary variables) that are 

related to the estimates [Cressie, 1993]. Both OK and UK require the data to have the same 

resolution at each measurement and estimation location within the entire domain [Chiles and 

Delfiner, 1999]. The procedural steps for the OK and UK models followed in this research are 

described in Kitanidis [1997]. Only the main steps were summarized in this chapter. 

As mentioned in Section 3.1, the measurement z can be divided into a deterministic part and 

a stochastic part. For both OK and UK, the deterministic part represents the large-scale mean 

structure: 

ܢ  ൌ ܢܢ܆ ൅ ௥௘௦ 3.6ܢ

where z is a p × 1 vector of unknown drift coefficients that scale the components in Xz (n × p). 

 is the deterministic part described in equation 3.1. For UK, Xz defines a trend of z usually ܢܢ܆

including a constant (i.e., intercept) and auxiliary variables. For OK, Xz only includes the 

constant and does not include the auxiliary variables. The expected value of measurement z 

could be represented as:     

 Eሾܢሿ ൌ 3.7 ܢܢ܆
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3.4 Geostatistical inverse modeling 

In this dissertation, geostatistical inverse modeling (GIM) is based on the assumption of a 

linear relationship between the estimated field (s) and the available measurement (z):  

ܢ  ൌ ܛ۶ ൅ ௥௘௦ 3.8ܢ

where z is an n  1 vector of observations (in Chapter 4, average concentrations) and s is an m  

1 vector of unknowns (in Chapter 4, concentrations at a fine and uniform resolution). The known 

n  m Jacobian matrix H (i.e., Hij = zi/sj) describes the relationship between measurement z 

and estimated concentrations s. ܢ௥௘௦ is the model data mismatch error modeled as an n  1 vector 

of independent normally distributed random variables with zero mean and variance σR
2. The 

covariance matrix R (n  n) of ܢ௥௘௦ is shown as: 

܀  ൌ ோߪ
ଶ۷୬ 3.9

where In is an n  n identity matrix.  

The estimated field s is modeled as a random vector with its expected value:     

 Eሾܛሿ ൌ 3.10 ܛ઺ܛ܆

where s is a p × 1 vector of unknown drift coefficients that scale the components in auxiliary 

variables Xs, and Xs therefore becomes an m  p matrix. Xs defines known zonation [Fienen et 

al., 2004] or spatial trend of s [Michalak et al., 2004; Snodgrass and Kitanidis, 1997].    

3.5 Solutions  

After obtaining the variogram model (to be discussed in each research component), all the 

estimation results s, including the total organic carbon in Chapter 4 and DO concentration in 

Chapters 5 and 6, in this work can be solved from the equation below: 
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൤
઱ܢܢ ܢܢ۴
ܢܢ۴

் ૙
൨ ቂ઩

்

ۻ
ቃ ൌ ൤

઱ܛܢ
்ܛܛ۴

൨ 3.11

Table 3-1 explains the terms in equation 3.11 (i.e., ઱ܢܢ, ઱ܛܛ۴ ,ܢܢ۴ ,ܛܢ and ઱ܛܛ) as well as their 

dimensions for OK, UK, and GIM, respectively: 

Method ઱ܢܢ (n  n) ઱ܛܢ (n  m) (n  p) ܢܢ۴ (m  p) ܛܛ۴ ઱ܛܛ (m  m) 

OK Qzz Qzs Xz Xs Qss 

UK Qzz Qzs Xz Xs Qss 

GIM HQssH
T+R HQss HXs Xs Qss 

Table 3-1 Parameters in equation 3.11 for OK, UK, and GIM. 

where T represents matrix transposition. Qzz is an n  n covariance matrix of measurements, Qzs 

is an n  m covariance matrix between measurements and estimates, and Qss is an m  m 

covariance matrix between estimates. Xz and Xs are auxiliary variables at measurement and 

estimate locations, respectively.  is an m  n matrix of weights assigned to measurements for 

estimates, M is a p  m vector of Lagrange multipliers.  and M are parameters to be solved in 

the three approaches. 

The geostatistical approaches determine the estimation precision along with the best 

estimates. The estimated concentrations and their associated covariance matrix in OK, UK and 

GIM are determined by:        

ොܛ  ൌ ઩3.12 ܢ

ොܛ܄  ൌ െ۴ۻܛܛ ൅ ઱ܛܛ െ ઱்ܛܢ ઩் 3.13

where ŝ is the best estimate at fine resolution, and the square roots of the diagonal elements of Vŝ 

are standard deviations (i.e., estimation error).  
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The best estimate of drift coefficients, z of kriging and s of inverse modeling, are [Chiles 

and Delfiner, 1999]: 

 ઺෡ ൌ ሺ۴்ܢܢ ઱ିܢܢଵ۴ܢܢሻିଵ۴்ܢܢ ઱ିܢܢଵ3.14 ܢ

and their associated variance and covariance are: 

઺෡܄  ൌ ሺ۴்ܢܢ ઱ିܢܢଵ۴ܢܢሻିଵ 3.15
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CHAPTER 4 Geostatistical Downscaling for Non-uniform Resolution Data 

Information about attributes such as contaminant concentrations or hydraulic properties in 

benthic sediments is typically obtained in core sections of varying lengths, and only the average 

value is measured in each section. However, an estimate of the attribute distribution at a uniform 

spatial resolution is often required for site characterization and the design of appropriate risk-

based remediation alternatives. Because attributes exhibit spatial autocorrelation, geostatistical 

methods have become an essential tool for estimating their spatial distribution. The purpose of 

this chapter is to optimally infer the spatial distribution of sampled attributes at a uniform 

resolution from fluvial core sampling data, using a downscaling technique formulated as a 

geostatistical inverse problem.  

4.1 Introduction  

Remediation of contaminated sediments can be very expensive, and often requires detailed 

knowledge about the distribution of contamination in the subsurface in order to formulate 

effective remediation strategies [Barabas et al., 2001; Wang et al., 2004].  Measuring attributes 

important for remediation (e.g., contaminant concentrations, hydraulic properties, and microbial 

activities) everywhere in a system is not practical or financially feasible, however. The 

knowledge of subsurface properties of water sediment is often limited to a set of incomplete 

information obtained from sparse sampling. Due to the irregular thickness of sediment above the 

bedrock surface, samples of contaminated stream or riverbed sediments are often obtained from 

cores that vary in length. Each core is subsequently sub-divided into several sections of varying 

thickness, which are analyzed for key attributes. The reported value at each location typically 

represents an average within individual segments of each core, and the sampling resolution 

(a.k.a. support) is therefore not uniform.  
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In order to map the attribute distribution everywhere in the subsurface, interpolation 

methods, such as linear interpolation, geostatistical methods, and inverse distance weighting, are 

often used.  Because the sampled attributes often exhibit spatial continuity [Barabas et al., 

2001], geostatistical kriging methods, which explicitly account for spatial correlation, are 

commonly employed for interpolating parameters and estimating their spatial distribution 

[Butcher, 1996; Little et al., 1997]. In addition to an estimation of the distribution of attribute 

concentrations, geostatistical methods also provide an indication of the errors and uncertainties 

associated with the interpolated values [Burrough and McDonnell, 1998]. 

The idea of accounting for the connections between fine and coarse resolution data but 

ignoring the resolution issue is comparable to the area-to-point kriging method [Kyriakidis, 

2004]. In that work, however, the estimation of covariance parameters of the fine resolution data 

is not included, which prevents the application to the field data. 

The approach in this part of work for estimating the statistical model describing variability at 

the uniform resolution is further developed. Unlike point-to-point Ordinary Kriging, the 

presented approach does not assume a uniform resolution for the sampled data. As a result, 

geostatistical downscaling as presented here is designed to preserve the true, underlying, 

variability of the sampled attributes during the downscaling process. The primary objective of 

this work is to investigate the potential advantages of implementing a geostatistical downscaling 

method for inferring attribute values at a consistent resolution, using data from measured 

varying-resolution core sections using geostatistical downscaling. Taking sediment total organic 

carbon concentration observations as an example, geostatistical downscaling was compared to 

the more traditional approach of Ordinary Kriging.  
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This chapter is organized as follows: Section 4.2 presents the data used in this study. Section 

4.3 presents a brief overview of the inputs to the Ordinary Kriging and geostatistical 

downscaling models. Section 4.4 presents the results of the analysis, including the comparison of 

the results between the two methods for both pseudodata and field data studies. Section 4.5 

summarizes the main conclusions of the study. 

4.2 Data description 

This section describes the two applications used to evaluate the proposed approaches. The 

first application is based on pseudodata generated to be representative of variability typically 

observed in contaminated river sediments. The second application uses total organic carbon 

(TOC) data from the Passaic River in New Jersey. 

The data for the first application were generated at a fine, uniform resolution, using a pre-

specified spatial covariance matrix (Figure 4-2a), and were then averaged to represent core 

sections of differing lengths (Figure 4-2b). ). For simplicity, the data were generated using an 

isotropic model (i.e., same correlation length along different directions), such that only one 

correlation range parameter l is required. These average concentrations were assumed known, 

and were used as the basis for recovering the original fine-resolution spatial distribution of the 

attribute and its associated spatial covariance parameters. 

The field data used in the second application represent the TOC weight percentage of 

sediment in a ten-kilometer stretch of the lower Passaic River in New Jersey. The river is part of 

the Hudson Raritan tidal estuary, the sediments of which are cohesive and fine grained [Barabas 

et al., 2004]. The data were acquired from the US EPA [U. S. EPA, 2002c] and a database of 

New Jersey sediment data compiled by NOAA [NOAA, 2002]. A two-dimensional section along 

flow and vertical directions of the sediment bed is analyzed, which includes 27 cores and a total 
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of 153 core sections as shown in Figure 4-1, as well as over 5500 estimation locations (Figure 

3b). The TOC measurements represent the average weight percent within the core sections, all of 

which are larger or equal to 30 cm in length. TOC measurement represents the average 

concentrations of the core sections that are 30 cm and greater in length. Due to the meandering 

nature of the river in an s-shape, physical distances between observations cannot be identified 

with a mere Euclidean distance as some of them would necessarily be measured over land. All 

the separation distances between two locations are of the shortest in-water path to avoid 

including incorrect paths over intervening land [Barabas et al., 2001; 2004]. In addition, to 

ensure that all distances are measured within the water, sample coordinates were transformed 

prior to analysis with Gridgen, a grid generating software [Barabas et al., 2001]. Geostatistical 

interpolation methods are applied afterward. 
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Figure 4-1 Location of field data in the Passaic River, New Jersey, 
UTM coordinates (a) and in-water distance (b). 

4.3 Methodology 

This section describes the proposed geostatistical downscaling framework, and briefly 

reviews the Ordinary Kriging approach that is used in Section 4.4 as a comparison to the 

obtained results.   

4.3.1 Geostatistical downscaling  

The geostatistical downscaling (GD) approach is formulated as a geostatistical inverse 

modeling (GIM) problem. For the interpolation of TOC distribution in water sediment case, the 

forward model refers to the process of estimating average concentrations at the sampled 
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resolution from concentrations at a fine and uniform resolution, while the inverse model involves 

the estimation of concentrations at the fine and uniform distribution given sampled values 

representative of variable depth increments. Detailed descriptions of linear geostatistical inverse 

modeling are available in Snodgrass and Kitanidis [1997] and Michalak et al. [2004], and only 

the key equations are reproduced here. 

Detailed GD method steps are described in the methodology section 3.2. The known n  m 

Jacobian matrix H (i.e., Hij = zi/sj) describes the averaging relationship between measurements 

z and estimated attribute values s. In the case examined here, H is formulated as:  

 
௜௝ܪ ൌ ቐ

1

௜ܰ
, ݀௎௜ ൏ ௝݀ ൏ ݀௅௜

0, ݁ݏ݅ݓݎ݄݁ݐ݋
 4.1

where Ni is the number of fine-resolution estimation locations contained in the ith measured core 

section, dj is the depth of estimation location j, and dUi and dLi are the upper and lower 

boundaries of the core section corresponding to measurement i, respectively. 

The estimated field s is modeled as a random vector with its expected value:     

 Eሾܛሿ ൌ 4.2 ܛߚܛ܆

In this application, the distribution of attributes in sediment are assumed to have a constant 

but unknown mean s over the whole domain, and Xs therefore becomes an m  1 vector of ones.             

The corresponding variogram describing the spatial autocorrelation of the estimated attribute 

is assumed to follow an exponential model, based on an examination of the data from the Passaic 

River, New Jersey.  
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઻ୱୱ൫ߪ|ܐଶ, ݈, ொߪ

ଶ൯ ൌ ଶߪ ൭1 െ exp ൬െ
ܐ
݈
൰൱ ൅ ொߪ

ଶ ∙ ሺ1 െ δሾܐሿሻ 4.3

where h is the separation distance between two estimate locations. The parameters used in 

Equation 4.3 are optimized using REML given the available variable-resolution data, as 

described in Section Error! Reference source not found..1. Once all relevant vectors and 

matrices have been defined, the GIM estimation problem is solved as described in Section 3.1. 

4.3.2 Ordinary Kriging 

Ordinary Kriging (OK) has been extensively used for parameter interpolation when only 

limited samples are available. It requires the data to have the same or at least compatible 

resolution at each measurement and estimation location within the entire domain [Chiles and 

Delfiner, 1999; Cressie, 1993; Isaaks and Srivastava, 1989]. Therefore, if OK is chosen as the 

interpolations method, the observations or measurements must be assumed as a uniform 

resolution data set. To achieve this goal, all the varying depth core sections are divided into 

uniform core subsections and the measured value in the core section is assumed to represent the 

value at the center of the core section (e.g. Figure 4-2b). Hence, the spatial covariance structure 

of the fine resolution estimates and variable resolution measurements are implicitly assumed to 

be the same. In the presented applications, the portion of the observed variability that is not 

spatially correlated is assumed to be due to measurement errors, and OK is therefore 

implemented in the continuous part kriging form [Chiles and Delfiner, 1999; Kitanidis, 1997]. 

Methodology section 3.3 outlines the main steps of OK. 

4.3.3 Covariance parameter optimization  

There are many approaches of estimating the covariance parameters required for the 

application of geostatistical methods, including least squares (LS) fits to observed variability 
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[Bogaert and Russo, 1999], maximum likelihood methods [Kitanidis and Lane, 1985; Michalak 

et al., 2005; Pannone and Kitanidis, 2001], Restricted Maximum Likelihood (REML) [Kitanidis, 

1997], composite likelihood [Schabenberger and Gotway, 2005], and generalized estimation 

equations [Schabenberger and Gotway, 2005]. REML has the advantage of eliminating the 

unknown drift coefficient or mean βs that reduces the bias in the estimated variogram parameters 

[Kitanidis and Lane, 1985]. Major steps are summarized in this section. 

For	kriging	

In OK, the probability distribution function (pdf) of measurements z (i.e., the likelihood part) 

was shown in equation 4.4 [Kitanidis, 1995]: 

 
,ܢሺ݌ ઺ܢሻ ∝ ݌ݔ݁ ቆെ

1
2
ሺܢ െ ܢܢۿሻ்ܢ઺ܢ܆

ିଵሺܢ െ  ሻቇ 4.4ܢ઺ܢ܆

Maximizing the probability in the equation is equivalent to minimizing its negative 

logarithm: 

 
,ܢሺܮ ઺ܢሻ ∝ െ

1
2
ሺܢ െ ܢܢۿሻ்ܢ઺ܢ܆

ିଵሺܢ െ  ሻ 4.5ܢ઺ܢ܆

For OK, the structural parameters in Qzz are obtained by minimizing the cost function:  

 
ી୓୏ܮ ൌ

1
2
|ܢܢۿ|݈݊ ൅

1
2
݈݊หܢ܆

ܢܢۿ்
ିଵܢ܆ห ൅

1
2
 ܢબ୓୏்ܢ (1) 

  બ୓୏ ൌ ܢܢۿ
ିଵ െ ܢܢۿ

ିଵܢ܆൫ܢ܆
ܢܢۿ்

ିଵܢ܆൯
ିଵ
ܢ܆

ܢܢۿ்
ିଵ  (2) 

where Xz is an  n  1 vector of ones. 
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For geostatistical inverse modeling 

In GIM, the pdf of estimate (s) based on measurements (z) can be expressed as [Michalak 

and Kitanidis, 2004; Snodgrass and Kitanidis, 1997]: 

 
,ܛሺ݌ ઺|ܢሻ ∝ ݌ݔ݁ ቆെ

1
2
ሺܢ െ ܢଵሺି܀ሻ்ܛ۶ െ ሻܛ۶ െ

1
2
ሺܛ െ ܛܛۿሻ்ܛ઺ܛܛ܆

ିଵሺܛ െ ሻቇ 4.6ܛ઺ܛܛ܆

The first part of equation 4.6 is the pdf of likelihood, and the second half is the pdf of a priori 

information between measurements and estimates. Maximizing the probability in the equation is 

equivalent to minimizing its negative logarithm: 

 
,ܛሺܮ ઺|ܢሻ ∝

1
2
ሺܢ െ ܢଵሺି܀ሻ்ܛ۶ െ ሻܛ۶ ൅

1
2
ሺܛ െ ܛܛۿሻ்ܛ઺ܛ܆

ିଵሺܛ െ  ሻ 4.7ܛ઺ܛ܆

After integrating over all values of the βz and βs [Fienen et al., 2004; Kitanidis, 1995], the 

cost function becomes: 
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where | | denotes matrix determinant. 

4.4 Results and discussion    

This section describes the two applications used to test the GD approach presented, followed 

by a discussion of key results. The first application is based on pseudodata generated to be 

representative of variability typically observed in contaminated river sediments.  The second 

application uses total organic carbon data from the lower Passaic River in New Jersey (Figure 

4-1).  
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To validate our initial hypothesis that GD is a more appropriate method for reproducing the 

true variability of the subsurface than OK, a two-dimensional pseudodata case is presented here. 

The pseudodata involving the estimation of an attribute distribution with a constant mean in 

water sediment are generated according to the structural characteristics (i.e., covariance matrix) 

of the field data. However, anisotropy (i.e., different correlation lengths along different 

directions) is not included in the pseudodata case for simplification. Pseudodata are generated 

everywhere at uniform, fine resolution in a domain and followed by averaging up to the 

concentrations of different-length core sections in the vertical direction. The depth-averaged 

concentration samples are used, which is typically only available in field, as known measurement 

to infer the fine resolution concentrations as well as estimation error and compare with the 

original pseudodata. 

4.4.1 Pseudodata application 

Two-dimensional pseudodata application, presented in Figure 4-2, is designed to suggest the 

advantage of GD over OK at recovering estimation in fine resolution. The fine resolution 

pseudodata and coarse resolution sample experimental variograms, as well as corresponding 

variograms at fine resolution scale generated from GD and OK based on coarse resolution 

sample are all illustrated in Figure 4-2g. The blue lines in Figure 4-2g present the experimental 

variogram obtained using the samples from Figure 4-2b, together with the theoretical variogram 

fit based on the parameters estimated using the OK version of the REML algorithm. The red 

lines in Figure 4-2g represent the experimental variogram at the estimation resolution (Figure 

4-2a), and the theoretical variogram fit based on the parameters estimated using the GD version 

of the REML algorithm.  Ordinary Kriging variogram matches the average concentration 

variogram very well, while the variogram generated from GD matches the fine-resolution 
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concentration variogram. As interpolation results (Figure 4-2c and Figure 4-2d) are derived 

based on the variogram parameters estimated, the estimated concentration distribution strongly 

depends on the variogram obtained. As long as the variogram parameters are identified, 

estimation results can be interpolated accurately to the true distribution and its associated errors. 

Because of the difference between the resolutions of two data sets, the sills of variograms 

between the fine resolution data set and the average concentration are quite different. During the 

arithmetical averaging process that changes the resolution of the data set, extreme values are 

smoothed out which causes the inadequate description of variability by the variogram at the 

original resolution. When two resolutions are getting close, the sills of variograms are closer. 

Instead, when two resolutions are far away from each other, the sills of variograms are far away 

from each other as well. Additionally, the correlation length predicted from GD is shorter than 

that from OK. Because the variability of the data is smoothed out during the average process, 

spatial continuity becomes longer. 

Figure 4-2c and Figure 4-2d present the best estimates of the attribute distribution at the 

estimation resolution for GD and OK, respectively.  Visually, it is clear that the best estimates 

from GD are closer to the fine resolution pseudodata than those from OK. It is also clear that the 

OK best estimates show less variability when compared to GD. This can also be seen in Figure 

4-3a, which shows a one-dimensional vertical slice from the two-dimensional results presented 

in Figure 4-2. Figure 4-3a again confirms that the fine resolution pseudodata display more 

variability than the measured core sections. Although neither of the applied interpolation 

methods can reproduce the true fine resolution attribute distribution precisely due to the lack of 

fine scale observations, the GD results are much closer to the true distribution of fine-scale 

pseudodata, with the OK estimates showing insufficient variability. 
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Figure 4-2e and Figure 4-2f present the estimation uncertainties associated with the GD and 

OK estimated attribute distribution. A good uncertainty estimate is one that correctly quantifies 

the errors associated with the estimates provided by a particular method. Figure 4-3a also 

presents the upper and lower 95% confidence intervals for one vertical slice from the 2D results. 

As can be seen from Figure 4-2e, Figure 4-2f, and Figure 4-3a, the uncertainty estimates from 

the GD approach are higher relative to those from OK. Looking at the results presented in Figure 

4-3a, however, it is clear that OK underestimates the uncertainty associated with its estimates.  

This can be seen from the fact that the true attribute distribution at the estimation scale (which is 

known in this case because this is a pseudodata application) lies outside of the uncertainty 

bounds for a large portion of the estimation locations. The two-standard-deviation uncertainty 

bounds estimated using the GD approach, on the other hand, correctly encompass the true 

attribute value at the estimation resolution approximately 95% of the time. Although the 

uncertainties from OK are narrower, they are not adequately representative for the true 

uncertainties of the fine-resolution data. Since OK assumes that the measured average attribute 

values are representative of variability at the finer estimation resolution, it underestimates 

variability at fine resolutions leading to the observed underestimates of the estimation 

uncertainty. 



47 
 

 

 

Figure 4-2 Data and estimates for pseudodata example: (a) fine-resolution attribute distribution, 
(b) available coarse-resolution (average) data, (c) GD best estimates, (d) OK best estimates, (e) 
GD estimation uncertainty standard deviation, (f) OK estimation uncertainty standard deviation, 
(g) experimental (dashed lines) and theoretical (solid lines) variograms. The coarse-resolution 
experimental variogram (blue dashed) was derived using available data in (b). The fine-resolution 
experimental variogram (red dashed) was derived using the true fine-resolution data in (a). Both 
theoretical variograms were derived using REML and the data in (b). 

 

Figure 4-2e and Figure 4-2f also confirm that the uncertainty for both methods grows as the 

distance between the sampled cores and estimation locations increases, as would be expected.  In 

addition, these figures and Figure 4-3a also suggest that the uncertainty from OK is lowest at the 
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center of each core section, while the GD the uncertainties within core sections are relatively 

uniform.  This again reflects the different assumptions made by OK and GD about the location 

where the measurements reflect the true attribute value.  

In summary, the results are consistent with our initial hypothesis that the variogram 

generated through GD shows better agreement with the actual variance and correlation lengths 

observed at the fine-resolution relative to the covariance parameters obtained through OK. GD 

also provides better estimates of the spatial distribution of the attribute and its associated 

uncertainty relative to OK for the pseudodata case.  

 

Figure 4-3 One-dimensional slices of estimates for (a) pseudodata and (b) field data examples. 
The locations of the two slices are indicated with black frame in Figure 4-2b and Figure 4-4a, 
respectively. Solid blue and red lines represent best estimates. Dotted lines represent 95% 
confidence intervals. Note that the true fine-resolution distribution is unknown for the field data 
example. 

a b 
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4.4.2 Field data application 

Sediment TOC determinations are typically involved with contaminant analyses which is an 

important part of ecological risk assessment [Schumacher, 2002]. TOC forms water-soluble and 

water-insoluble complexes with metal ions and hydrous oxides, interact with clay minerals and 

bind particles together, as well as sorbs and desorbs both naturally-occurring and 

anthropogenically-introduced organic contaminant compounds [Schumacher, 2002]. The 

analysis of TOC distribution is therefore essential for the further analysis of contaminant 

distribution knowledge. The spatial analysis is needed to fully understand and quantify these 

correlations requires sensitive probabilistic techniques [Adriaens et al., 2006]. The analysis of 

the TOC distribution is therefore an essential component of the analysis of contaminant 

distributions. TOC data from the lower Passaic River (Figure 4-4a) are analyzed here, using the 

same tools applied for the pseudodata application in Section 4.4.1. 

The blue lines in Figure 4-4f and Figure 4-4g present the experimental variogram (dashed 

line) obtained using the samples from Figure 4-4a, together with the theoretical variogram fit 

(solid line) based on the parameters estimated using the OK version of the REML algorithm. The 

experimental variogram at the fine-scale resolution cannot be obtained in this case, because the 

attribute distribution at a fine resolution is unknown. However, the GD version of REML is used 

to derive the fine-scale variability. This approach was shown in Section 4.3 to yield a good 

representation of the true fine-scale variability. Based on the results from the pseudodata 

application, it is expected that the estimated variogram at the estimation scale would display 

more variability than the variogram at the measurement resolution, and this is indeed the case. 

Moreover, correlation lengths along the vertical direction (Figure 4-4f) from OK and GD were 

found to be much shorter than those along the flow direction (Figure 4-4g), which is consistent 
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with earlier work [Barabas et al., 2001]. This anisotropy of sediment structure is caused by the 

fact that the streambed sediments are known to show a strong horizontal layered structure 

[Salehin et al., 2004]. 

Figure 4-4a and Figure 4-4c present the best estimates of the attribute distribution at the 

estimation resolution for GD and OK, respectively.  Consistent with the pseudodata example, it 

is also clear that the OK best estimates show less variability when compared to GD. This can 

also be seen in Figure 4-3b, which shows a one-dimensional vertical slice from the two-

dimensional results presented in Figure 4-4.  Although the “true” TOC distribution at the fine-

scale resolution is not known in this case, the pseudodata example presented in Section 4.4.1 

showed that the GD estimates are more representative of the expected variability at the fine-scale 

resolution. The significant differences between the OK (Figure 4-4c) and GD (Figure 4-4b) 

estimates confirm that explicitly accounting for scale differences has a large impact on the 

estimated spatial distribution of field attributes. 

Figure 4-4d and Figure 4-4e present the estimation uncertainties associated with the GD and 

OK. Figure 4-3b also presents the 95% confidence intervals for one vertical slice from the two-

dimensional results. The uncertainty estimates from the GD approach are again higher relative to 

those from OK. Because OK assumes that the measured average attribute values are 

representative of the variability at the finer estimation resolution, it underestimates the variability 

and the uncertainties at fine resolutions. This indicates that, although the estimated uncertainties 

from OK are lower, they cannot accurately represent the true uncertainties of the OK estimates. 

Note that, although not implemented here, a numerical approach such as a Gibbs sampling 

algorithm could be implemented to enforce nonnegativity in the uncertainty bounds [Michalak, 

2008]. 
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The GD method presented in this chapter provides a rigorous approach for using data 

sampled at a non-uniform resolution to characterize the spatial distribution of attributes in 

sediments. GD infers the degree of spatial variability at a target resolution, and uses this 

information, together with information about the resolution of individual available samples, to 

yield an estimate of the attribute distribution at the target resolution and its associated 

uncertainty. The pseudodata example demonstrated that the GD approach can more accurately 

represent the true degree of spatial variability in the underlying distribution, and yield better 

estimates with a more accurate assessment of uncertainties, relative to traditional OK. The field 

application confirms that these differences have an impact on estimates at the field scale. For the 

Passaic River application, the GD estimates of TOC suggest more continuity in the flow 

direction at this site relative to OK. In addition, the estimation uncertainty is very high in many 

areas of the domain, due to the uneven and sparse sampling in the field. The high uncertainties in 

Figure 4-4d indicate that the prediction precision is limited, and that additional sampling would 

be beneficial, especially along the flow direction. 
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Figure 4-4 Data and estimates for field data TOC (a) available coarse-resolution (average) data, 
(b) GD best estimates, (c) OK best estimates, (d) GD estimation uncertainty standard deviation, 
(e) OK estimation uncertainty standard deviation, (f) experimental (dashed line) and theoretical 
(solid lines) variograms along vertical direction, (g) experimental (dashed line) and theoretical 
(solid lines) variograms along flow direction. The experimental variograms were derived using 
available data in (a). All theoretical variograms were derived using REML and the data in (a). 
Units: weight percentage. 
 

The results from the pseudodata case and the field data case consistently suggest that GD is 

better able to represent the true fine-resolution variability and characterize the uncertainty 
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associated with estimates relative to OK, one of the most widely-used interpolation methods, 

while honoring the average concentrations measured at larger, inconsistent resolutions. 

4.5 Conclusions 

Samples of contaminated stream or riverbed sediments are often obtained from cores that 

vary in length because of the irregular thickness of sediment above the bedrock surface and tidal 

influence from the river flow. Such non-uniform resolution data sets create a challenge for 

traditional interpolation methods in accurately estimating the contaminant distribution at un-

sampled locations. In this work, geostatistical downscaling was compared to the more traditional 

approach of point-to-point Ordinary Kriging for a hypothetical case study, and for total organic 

carbon observations from the Passaic River, New Jersey.  

The geostatistical downscaling method presented in this chapter (i.e., Zhou and Michalak 

[2009]) provides a rigorous approach for using data sampled at a non-uniform resolution to 

characterize the spatial distribution of attributes in contaminated sediments.  The proposed 

method infers the degree of spatial variability at a target resolution, and uses this information, 

together with information about the resolution of individual available samples, to yield an 

estimate of the attribute distribution at the target resolution and its associated uncertainty.  

Although frequently used to interpolate measurements, Ordinary Kriging is shown not to be able 

to estimate the spatial distribution of attributes accurately, because this approach assumes that 

data are sampled at a uniform resolution. Geostatistical downscaling, on the other hand, is shown 

to resolve this problem by explicitly accounting for the relationship between the known average 

measurements and the unknown fine-resolution attribute distribution to be estimated.  



54 
 

Using a pseudodata example, the approach is shown to more accurately represent the true 

degree of spatial variability in the underlying constituent distribution, and to yield better 

estimates with a more accurate assessment of uncertainties, relative to traditional point-to-point 

kriging methods. When the applied to the estimation of the total organic carbon distribution in 

the Passaic River, GD shows that the uncertainty associated with the spatial distribution of TOC 

is higher than would have been assumed if a kriging approach had been applied. While the 

application presented here involves water sediments, the methodology can also be adapted to 

other areas where sampling is conducted at multiple resolutions.    
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CHAPTER 5 Estimating Extent of Hypoxia in Lake Erie with Geostatistical Methods 

The work described in this chapter focuses on applying improved methods for merging in 

situ water quality parameters and other auxiliary variables (e.g., spatial trend related data, and 

related remote sensing observations) to obtain more accurate spatial distribution of dissolved 

oxygen. In addition, this work developed a novel method of obtaining uncertainties of hypoxic 

extent (i.e., areas of dissolved oxygen below a certain threshold). The proposed methods are 

applied to estimate the historical hypoxic extent in the central basin of Lake Erie during August 

and September from 1987 to 2007.  

5.1 Introduction  

Hypoxia refers to an abnormally low level of dissolved oxygen (DO) in a body of water, 

which leads to a large range of potentially negative effects [NSTC, 2000].  Hypoxia is generally 

defined as occurring when DO concentrations drop below 2 mg/L [Officer et al., 1984; Pearson 

and Rosenberg, 1978; Pihl et al., 1991; Rosenberg and Loo, 1988], and can lead to degraded 

habitat, altered migration patterns of aquatic wildlife, and decreased water quality. Thus, 

industries that depend on ecosystem productivity, such as fisheries [Diaz and Rosenberg, 2011], 

can be negatively impacted. In addition, the occurrence of hypoxia can compromise drinking 

water supplies, cause beach closures, and necessitate restrictions on swimming, boating, and 

tourism [NSTC, 2000]. 

Summer hypoxia is a natural phenomenon in the central basin of Lake Erie, probably dating 

back thousands of years [Delorme, 1982]. However, evidence suggests that oxygen depletion 

rates increased in the 1950s due to anthropogenic factors [Committee on Environment and 

Natural Resources, 2010]. During summer, the strong vertical thermal gradient (i.e., 

stratification) reduces mixing and hence the flux of oxygen into the hypolimnion, where low 
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light restricts photosynthesis.  The warm, light water near the surface acts as a barrier that 

prevents the colder, heavier bottom water from being replenished with oxygen. The lack of 

sufficient warmth and light in the bottom layer severely restricts the photosynthesis that produces 

oxygen. Decomposing phytoplankton and other settled organic matter consume oxygen, often 

reducing it to below the 2 mg/L hypoxic threshold in the hypolimnion, after they sink to the 

bottom from the surface water. 

Hypoxic areal extent is an important indicator for tracking historical changes in water quality, 

and is often used as a response metric for water quality management [Rabalais et al., 2002]. 

However, because of sparse sampling, the spatial and temporal dynamics of hypoxia in Lake Erie 

are poorly understood. 

This work proposes the use of the Bayesian Information Criterion (BIC; [Schwarz, 1978]) for 

identifying a set of ancillary variables that best inform the distribution of DO in Lake Erie, 

followed by the application of Universal Kriging (UK, a.k.a. kriging with an external drift) and 

conditional realizations [Chiles and Delfiner, 1999], geostatistical interpolation methods that can 

incorporate these additional data sources to augment the sparse sampling of DO in Lake Erie.  

Together, these methods are used to characterize the spatial distribution of hypoxia in Lake Erie 

for August and September of 1987 to 2007.   

To compensate for the sparseness of in situ DO measurements in Lake Erie, the data on 

ancillary variables with full spatial coverage were used to better represent the DO spatial 

variability. These ancillary variables could include any parameter that is correlated with DO, and 

therefore provides information about its distribution, such as water temperature [Buzzelli et al., 

2002] and salinity [Zhang et al., 2006]. Remote sensing observations of parameters such as sea 
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surface temperature (SST) and surface chlorophyll α concentration offer other potentially useful 

sources of information because they are dense in spatial information that can be used to inform 

the spatial variability of DO.  Specific data types used in this study are described in Section 5.2. 

The objectives of this part of work are: (1) to produce accurate estimates of the spatial 

variability of DO, and of the interannual variability of the extent of the hypoxic zone, in the 

central basin of Lake Erie using BIC and UK as data fusion tools to combine remote sensing data 

with limited in situ measurements, (2) to understand and evaluate the utility of factors, such as 

bathymetry, SST and chlorophyll, in explaining the extent of hypoxia in Lake Erie, (3) to explore 

the impact of stratification dynamics on intra-seasonal changes in hypoxic extent, and (4) to 

develop a simple model of hypoxic extent based on the average measured bottom water DO 

concentration.  

This work presents estimated DO concentrations only for the central basin of Lake Erie, 

because this is the basin where hypoxia has been found to occur most. The western basin is 

sufficiently shallow that the water column mixes and thereby diminishes hypoxia. The amount of 

phosphorous flowing into the eastern basin, on the other hand, is lower than that flowing into the 

west and central basins, and its water volume is sufficiently large that the DO remains relatively 

unaffected. Moreover, measurements of DO for these other two basins are not available for most 

years. 

This chapter is organized as follows: Section 5.2 presents the data used in this study. Section 

5.3 presents a brief overview of the inputs into geostatistical Universal Kriging, model selection 

method and conditional realizations. Section 5.4 presents the results of the analysis, including the 
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variation of hypoxic extent from August to September from 1987-2007. Section 5.5 summarizes 

the main conclusions of the study. 

5.2  Data description 

Dissolved Oxygen - The in situ DO data used in this study were collected by the U.S. EPA 

Great Lakes National Program Office [Great Lake National Program Office (GLNPO), 2008], 

the National Water Research Institute of Environment Canada (NWRI, [Rucinski et al., 2010]), 

and the National Oceanic and Atmospheric Administration (NOAA) Great Lakes Environmental 

Research Laboratory (GLERL).  GLNPO and NWRI have been collecting DO data for April, 

August, September and October since the 1980s at ten (sometimes nine) fixed buoy stations in 

the central basin of Lake Erie (Figure 5-1, [Esterby and Bertram, 1993]).  In addition, GLERL 

collected DO measurements at approximately 60 locations in the central basin of Lake Erie from 

May through October in 2005 and approximately 40 locations in the central basin in September 

2007 for the International Field Years on Lake Erie (IFYLE) program [Hawley et al., 2006].  

Overall, the analysis presented here was based on 75 sampling cruises for August and September 

between 1987 and 2007 (Table 5-1), 61 of which detected hypoxia. Note that within this study 

period, no DO data are available for August 1992, 1994, and 1995 or for September 1991, 2000, 

and 2006. Note that, within the period covered here, no DO data were available in August 1992, 

1994, and 1995 or in September 1991, 2000, and 2006.  
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Figure 5-1 Regular DO measurement locations.  

At each sampling location, DO concentrations were measured at about 3m, 1m, and <1m 

vertical intervals throughout the water column for the GLNPO, NWRI, and GLERL cruises, 

respectively.  For the analysis presented here, the DO observations 1m or 2m above the lake 

bottom at each sampling location were used (depending on the deepest available observations), 

which are normally representative of the DO concentration in the hypolimnion.    

The focus of our study was on August and September, the months when the hypoxic extent is 

typically at its maximum [Bertram, 1993]. The analysis was restricted to the central basin of 

Lake Erie, the basin most susceptible to hypoxia due to its depth and nutrient loading [Rucinski 

et al., 2010].  
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Auxiliary Data - To augment the sparse in situ DO measurements, auxiliary variables with 

full spatial coverage are included in the analysis.  These variables, selected based on availability 

and known association with DO, include latitude, longitude, bathymetry, and satellite-derived 

monthly-average sea surface temperature (SST) and surface chlorophyll concentration from 

April to September.   

The bathymetry data are a subset of the New Bathymetry of Lake Erie and Lake Saint Clair 

from the NOAA National Geophysical Data Center [National Geophysical Data Center, 2008]. 

The chlorophyll data are from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), and are 

available from the National Aeronautics and Space Administration (NASA) Ocean Color Web 

facility [NASA Ocean Color Web facility] at a resolution of 9 km × 9 km for 1998 onwards.  SST 

data at 2.5 km × 2.5 km are available starting in 1992 from Great Lakes Surface Environmental 

Analysis [Great Lakes Surface Environmental Analysis (GLSEA), 2008], a digital map of the 

Great Lakes surface temperature and ice cover produced daily from Advanced Very High 

Resolution Radiometer data by NOAA GLERL. These GLSEA data are produced specifically 

for the Great Lakes using a smoothing algorithm [Schwab et al., 1999]. All data were regridded 

to a 2.5 km × 2.5 km resolution using nearest neighbor interpolation for the geostatistical 

analysis.   

Analyzed Cases – Because the remote sensing data sets are not available for the full 

examined period, two case studies were designed and compared. Case 1 covered 1987 to 2007, 

and used only bathymetry, latitude, and longitude as auxiliary variables.  Case 2 included these 

variables, plus the GLSEA SST and SeaWiFS chlorophyll data for April through September, and 

covered 1998 to 2007.  The target analysis is annual DO distribution in the bottom water layer 
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during August and September, when hypoxia is typically at a maximum for Lake Erie [Bertram, 

1993; Hawley et al., 2006]. 

5.3 Methodology  

This section describes the geostatistical framework for estimating yearly hypoxic extent for 

the central basin of Lake Erie. 

5.3.1 Universal Kriging 

UK uses auxiliary variables, in this work latitude, longitude, bathymetry, SST and 

chlorophyll, in addition to the limited in situ DO measurements, to obtain a detailed picture of 

the spatial distribution of DO in Lake Erie. UK has been widely used in environmental sciences, 

for applications such as estimating snow accumulation, temperature and precipitation in 

meteorology [Arthern et al., 2006; Erickson et al., 2005; Haylock et al., 2008] characterizing 

contaminant distributions [Jerrett et al., 2001], and identifying the sources and sinks of carbon 

dioxide in atmospheric science [Mueller et al., 2010].  Within the context of estimating hypoxia, 

Murphy et al. [2010] recently used UK, among other approaches, to interpolate the spatial 

distribution of water quality parameters such as salinity, water temperature and dissolved oxygen 

in the Chesapeake Bay using water quality modeling outputs as ancillary sources of information. 

Obenour et al. [2012] used a UK-type model to separate the impacts of stratification and nutrient 

loading on DO in the Gulf of Mexico. 

The role of auxiliary variables in UK is analogous to the role of independent variables 

(covariates) in multiple linear regression. Contrary to linear regression, however, UK also (i) 

accounts for the spatial correlation (i.e. smoothness) of the DO distribution, and (ii) is an exact 

interpolator, such that it reproduces all the available DO observations to within their 

measurement error.  UK using data from all the cruises with hypoxic measurements were 
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performed simultaneously, such that the relationship between auxiliary variables and DO 

remained constant from cruise to cruise.  The estimates of DO themselves, however, were cruise-

specific, and no correlation was assumed among regression residuals from different cruises. 

For each of the two examined cases, the n × 1 observation vector z of DO is defined as: 

 

ܢ ൌ ൦

ଵܢ
ଶܢ
⋮
௬ܢ

൪ 5.1

where ܢ௜ (i = 1, 2, ... , y) are ni × 1 vectors of DO measurements, ni is the number of DO 

measurements for the ith cruise (i.e., ݊ ൌ ∑ ݊௜
௬
௜ୀଵ ), and y is the total number of cruises for which 

DO data are used in each case (y=61 for Case 1; y=32 for Case 2).   

Within the UK framework, the DO distribution is modeled as the sum of a deterministic term 

(trend) and a zero-mean stochastic term (spatially-correlated residuals).  The deterministic term 

represents the portion of the DO distribution that can be explained by the available auxiliary 

variables and spatially-constant cruise offsets (corresponding to each cruise), and the stochastic 

term represents the remaining portion of the observed variability: 

ܢ  ൌ ൅ܢ܆ ௥௘௦ 5.2ܢ

where ܢ܆ is a known n  (y+p) matrix of y categorical variables (corresponding to unique offsets 

[i.e. intercepts] for each cruise) and p auxiliary variables,  is a (y+p) × 1 vector of unknown 

drift coefficients on these variables, and ܢ௥௘௦ is an n × 1 vector of residuals. The approach used 

for selecting a subset of auxiliary variables from among those listed in Section 5.2 is presented in 

Section 5.3. Overall, the model of the trend, ܢ܆, is expressed as: 
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where  ૚௜ (i = 1, 2, ... , y) are ni × 1 vectors of ones, and ܆௜ is an ni × p matrix of auxiliary 

variables representing the trend for each cruise.  Because the mean DO concentration is expected 

to change from cruise to cruise, ܢ܆ includes y columns of categorical variables (ones and zeros).  

The components in  that multiply the first y columns of ܢ܆ represent a constant offset in DO 

concentrations for each cruise. 

The stochastic term ܢ௥௘௦ is modeled as spatially-correlated residuals. A spatial covariance 

function [Chiles and Delfiner, 1999], which quantifies the degree to which the spatial correlation 

between a pair of locations decays as a function of their separation distance h was defined as: 

 
ܳ௭௭ሺ݄ሻ ൌ ቐ

ଶߪ ൅ ۿߪ
ଶ, ݄ ൌ 0
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where ߪଶ is the variance of the portion of the residual DO variability that is spatially correlated, 

3l is the practical correlation range, and ۿߪ
ଶ is the variance of the portion of the variability that is 

not spatially correlated (e.g. measurement error).  These three model parameters were optimized 

by fitting the theoretical model (equation 5.4) to the empirical covariance of the residuals using 

nonlinear least-squares [Bogaert and Russo, 1999]. No covariance was assumed among cruises, 

and the overall n  n covariance matrix of the DO observations is therefore defined as: 
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where ۿ௜ (i = 1, 2, ... , y) is an ni × ni covariance matrix for the residuals in each cruise, and all 

the ۿ௜ 's use the same covariance parameters (ߪଶ, ۿߪ
ଶ, and l). 

The covariance matrix is used in the UK system of linear equations: 
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where ܛܢۿ is an n  m covariance matrix between the measurement and estimation locations 

obtained analogously to equation 5.5, the matrix ܛ܆ contains the same cruise-specific offsets and 

auxiliary variables as in ܢ܆ but defined at the estimation locations, and T denotes a matrix 

transposition.  The system of equation 5.6 was solved for ઩, which is an m  n matrix of weights 

assigned to each observation for each estimation location, and for ۻ, which is a (y+p)   m 

matrix of Lagrange multipliers.  Finally, ઩ and ۻ were used to obtain estimates of the DO 

distribution, and their associated uncertainties, throughout the central basin: 

ොܛ  ൌ ઩5.7 ܢ

ොܛ܄  ൌ െۻܛ܆ ൅ ܛܛۿ െ ܛܢۿ
் ઩் 5.8

where ܛො is an m × 1 vector of  DO estimates, ܛ܄ො is the covariance matrix representing the 

covariances associated with these estimates, and ܛܛۿ is an m  m covariance matrix between the 

residuals of estimates, obtained in the same way and using the same parameters as in equation 

5.4.  The square roots of the diagonal elements of ܛ܄ො are the standard deviations (i.e., estimation 

uncertainties) of the DO estimates.  Because the thermocline always appears at depths of 15m to 

20m during summer [Rao et al., 2008], and because shallower areas are usually oxygenated and 

rarely sampled, the DO estimates for areas with depths of less than 15m were constrained to be 

above the hypoxic threshold. 

The best estimate of drift coefficients (઺෡) of the auxiliary variables were obtained as [Chiles 

and Delfiner, 1999]:  

 ઺෡ ൌ ሺܢܢۿ்ܢ܆
ିଵܢ܆ሻିଵܢܢۿ்ܢ܆

ିଵ5.9 ܢ

and their associated covariances were: 

઺෡܄  ൌ ሺܢܢۿ்ܢ܆
ିଵܢ܆ሻିଵ 5.10
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where the square roots of the diagonal elements of ܄઺෡ are the estimation uncertainties of the 

individual parameters, and the off-diagonal terms represent their estimated covariances. 

Ordinary Kriging (OK), one of the most common geostatistical approaches, is used in this 

work for comparison to the UK estimates. OK also uses a covariance function to represent the 

spatial correlation, but it cannot use information about other auxiliary variables. Therefore, the 

spatial structure representing the DO distribution is obtained only from the in situ measurements, 

the matrix Xz therefore becomes: 

 
ܢ܆ ൌ ቎

૚ଵ ⋯ ∅
⋮ ⋱ ⋮
∅ ⋯ ૚௬

቏ 5.11

such that the (spatial) mean DO concentration is constant for each cruise but can differ from 

cruise to cruise. Otherwise, equations 5.6 - 5.10 remain unchanged for OK. 

5.3.2 Geostatistical auxiliary variable selection 

The Bayesian Information Criterion [Anderson et al., 1998] is used as a statistical variable 

selection method to identify the subset of the auxiliary variables described in Section 5.2 to be 

used in UK. The purpose of auxiliary variable selection is to choose a subset of variables that can 

reliably represent the spatial distribution of DO [Faraway, 2004].  Adding more variables to the 

trend of a model will always reproduce more of the variability observed in the DO measurements, 

but will also make the model more complex. Moreover, some of the variables may not provide 

significant insights into the DO variability, and may only serve to represent a spurious 

correlation that is not reliable for estimating DO at unsampled locations.  Therefore, it is 

necessary to identify a model that balances the degree to which available DO observations are 

reproduced (i.e., minimizes the sum of the squared residuals) with the complexity of the model 

(i.e. the number of selected variables).  
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Several statistical tests or criteria are available for model selection.  BIC, based on Bayesian 

factor or posterior probability [Schwarz, 1978], is used in this study because it is able to evaluate 

both nested and non-nested competing models. Instead of comparing the statistical significance 

of the difference between two models as in traditional hypothesis-testing-based approaches, BIC 

ranks how well a model with a specific set of variables explains the observations. 

Mathematically, the BIC criterion is defined as [Schwarz, 1978]: 

 BIC ൌ െ2lnሺܮሻ ൅ lnሺ݊ሻ 5.12݌

where L is likelihood of the observations. 

 If the residuals are normally distributed, the negative natural log of the likelihood becomes: 

 
െ݈݊ሺܮሻ ൌ

݊
2
݈݊ሺ2ߨሻ ൅

1
2
|ܢܢۿ|݈݊ ൅

1
2
ሺܢ െ ܢܢۿሻ்ܢ܆

ିଵሺܢ െ ሻ 5.13ܢ܆

After minimizing the likelihood with respect to the unknown drift coefficients  [Hoeting et 

al., 2006], and ignoring the constant term, the log-likelihood function becomes: 

 
െ݈݊ሺܮሻ ൌ
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2
|ܢܢۿ|݈݊ ൅
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2
ܢܢۿሺ்ܢ

ିଵ െ ܢܢۿ
ିଵܢ܆ሺܢܢۿ்ܢ܆

ିଵܢ܆ሻିଵܢܢۿ்ܢ܆
ିଵሻ5.14 ܢ

BIC is evaluated for each possible combination of auxiliary variables, and the set of variables 

with the lowest BIC is identified as the best model.  The auxiliary variables of the best model are 

the then used in UK. 

5.3.3 Conditional realizations 

UK yields estimates of DO concentrations across space, but cannot be used directly to 

estimate the hypoxic extent (i.e. the area for which DO concentration is below a given threshold) 

and its associated uncertainty.  Conditional realizations (a.k.a. simulations, [Gutjahr et al., 1994; 
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Kitanidis, 1995; Michalak et al., 2004]) of the DO distribution do this by providing equally-

likely alternative DO distribution scenarios.  The detailed procedure for generating conditional 

realizations is discussed by Gutjahr et al. [1994], Kitanidis [1995], and Michalak et al. [2004]. 

Each realization is an equally likely realization that follows the correlation structure Q, and 

reproduces the observations z within the measurement error zres [Michalak et al., 2004]. These 

realizations follow the spatial covariance Qss and are consistent with all available observations. 

Each realization (sci, m  1) is defined as [Kitanidis, 1996]: 

௖௜ܛ  ൌ ઩ሺܢ െ ௨௜ሻܢ ൅ ௨௜ 5.15ܛ

where  is the m  n matrix of weights defined in equation 5.6, and zui (n  1) and sui (m  1) are 

unconditional realizations at measurement locations and estimation locations, respectively, 

obtained from: 

 ቂ
௨௜ܢ
௨௜ܛ

ቃ ൌ 5.16 ܝ۱்

where u is an (n+m)  1 vector of normally distributed random values with zero mean and unit 

variance (note that a new vector u is generated for each realization), and C is the (n+m)  (n+m) 

matrix resulting from the Cholesky decomposition of the covariance matrix below: 

 
൤
ܢܢۿ ܛܢۿ

ܛܢۿ
் ܛܛۿ

൨ ൌ ۱۱் 5.17

Conditional realizations are generated for regions of the central basin with a depth greater 

than 15m, and the hypoxic area is calculated for each realization by summing the areas where the 

DO concentration is below 2 mg/L.  A thousand realizations are generated for each cruise, and 

the results are used to develop a probabilistic estimate of the hypoxic extent. 
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5.4 Results and discussion 

5.4.1 Variables explaining the spatial variability of DO in Lake Erie 

The selected auxiliary variables, together with the cruise-specific offsets, explained 53% of 

the DO variability for the 1987-2007 Case 1 data set.  Consistent variable selections between 

Cases 1 and 2 indicate that the difference in the timespans does not affect the significance of the 

auxiliary variables.  The estimated drift coefficients, ઺෡, for the selected auxiliary variables (Table 

1) explain a portion of the within-cruise spatial variability, while the cruise-specific offsets (not 

shown) account for temporal variability in DO due to other cofactors, such as nutrient loading or 

circulation [Rao et al., 2008; Rucinski et al., 2010].  The consistency of the ઺෡ values between 

cases further confirms that the relationships between DO and the auxiliary variables are 

consistent for different time periods. 

Longitude, depth, and a quadratic depth term (i.e. depth squared) were selected through the 

BIC analysis as being significant for both examined cases (Table 5-2).  Longitude was found to 

be positively correlated with DO, potentially acting as a proxy for phosphorus availability, which 

primarily enters the central basin from the west. Bathymetry was also correlated with DO, 

consistent with the fact that stratification is related to bathymetry (i.e., both the thermal structure 

and thickness of the bottom layer) in Lake Erie [Loewen et al., 2007; Schertzer et al., 1987]. 

Based on the regression coefficients for depth and depth-squared, the bottom water DO 

concentration is expected to be lowest at a station depth of around 23m (close to the 24m 

maximum depth of the central basin), all other factors being equal. 
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Case 
Longitude Depth Depth2 

(mg/L)/degree (mg/L)/m (mg/L)/m2 

1 1.24±0.26 -1.40±0.22 0.03±0.006 

2 1.17±0.33 -1.36±0.27 0.03±0.007 

Table 5-2 Drift coefficients (઺෡) and associated uncertainties (࣌઺෡) for the selected auxiliary 

variables for the two cases. 
 

Neither of the remote sensing data sets (only available in Case 2) was found to significantly 

improve the model.   In general, this suggests a more complex relationship between lake surface 

properties (SST and chlorophyll) and bottom DO.  Surface conditions are likely decoupled from 

bottom conditions due to stratification and varying circulation patterns in the epilimnion and 

hypoliminion.  For example, Walker and Rabalais [2006] suggested that a relationship between 

chlorophyll and hypoxia was not observed in the Gulf of Mexico due to the various physical and 

biological processes that confound a direct spatial correlation.  In addition, the significance of 

chlorophyll may have been further diminished due to the quality of the satellite data product, 

which is known to have considerable uncertainty in the central basin [Witter et al., 2009].    

5.4.2 Spatial extent of summer hypoxia each year 

Because the two examined cases yield consistent estimates of the hypoxic extent and use the 

same auxiliary variables, the discussion to the extents and uncertainties determined were 

restricted in Case 1. The extents were derived from the conditional realizations of the DO 

distribution (Figure 5-2), and the maximum estimated hypoxic extent for August and September 

of each year and associated uncertainty (Figure 5-3) show that the maximum extent occurs most 

often between late August and mid-September (Figure 5-2).   
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Figure 5-2 Plot of the median (circle), interquartile range (solid line), and 95% confidence 
intervals (dashed line) of the estimated hypoxic extent in early August (8/1-12), mid-August 
(8/13-22), late August and early September (8/23-9/5), and mid-September (9/6-26) from all 
available cruises with observed hypoxia from GLNPO, NWRI and GLERL for 1987-2007. 
The hypoxic extents of zero shown in solid circle represent cruises for which no hypoxia 
was observed, and periods shaded in grey represent times during which no data were 
available. 

 

Results are qualitatively consistent with those of Makarewicz and Bertram [1991], as well as 

Hawley et al. [2006] (Figure 5-3).  Makarewicz and Bertram [1991] reported that hypoxic extent 

decreased from the late 1980s to early 1990s as a result of the phosphorus load abatement 

programs, a part of the United States/Canada Great Lakes Water Quality Agreement of 1972 

[Dolan, 1993].  Hawley et al. [2006] subsequently reported that hypoxic extent increased and 
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remained relatively high in the late 1990s and early 2000s, likely due to an increase in nonpoint 

source phosphorus loading or nutrient recycling by dreissenids (i.e. zebra and quagga mussels) 

that appeared in the system in the late 1980s [Vanderploeg et al., 2009].   

The smallest yearly hypoxic zones were observed in 1995 and 1996 (Figure 5-2, Figure 5-3), 

but these years had only one and two cruises, respectively (Table 5-3). In 1995, the only 

available data were from mid-September. In 1996, August sampling data were available for 

August 2-4, followed by sampling in mid-September, and at only five locations. It is therefore 

possible that periods with larger hypoxic zones were missed in those years.  In 2002 and 2004, 

for example, the hypoxic extent was also small in early August and mid-September, but was 

larger during the interim period (Figure 5-3). On the other end of the spectrum, the largest 

estimated hypoxic extents exceeded 9000 km2 (nearly two thirds of the surface area of the central 

basin deeper than 15m) in early and mid-September 1987, late August 1988, early September 

2003, and mid-September 2005.  
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Figure 5-3 History of (a) the observed maximum hypoxic extent in August and September in the 
central basin of Lake Erie for 1987 to 2007, and (b) August to September change in hypolimnion 
thickness.  In (a), solid circles represent months where cruises indicated no hypoxia; for months 
when hypoxia was observed, open circles represent the median, solid lines represent the 
interquartile range, and dashed lines represent the 95% confidence intervals based on the 
conditional realizations. Years when the August to September decrease in the hypolimnion 
thickness was less than 2m (i.e. years with stable stratification) are indicated in purple in panels 
(a) and (b); conversely, years with a decrease of more than 2m, corresponding to a deepening 
thermocline and early re-oxygenation, are indicated in light blue. Data of changes in 
hypolimnion thickness are not available for 1996 and 2004. 
 

For a given number of measurements, the uncertainties associated with the estimated extents 

are generally higher for months with larger hypoxic areas. These uncertainties (representing as 

95% confidence intervals) range from nearly zero for mid-September 2002 when hypoxia was 

negligible, to almost 6,000 km2 for September 1999.  Months with large hypoxic extents have 

considerable areas with estimated DO concentrations close to the 2mg/L hypoxic threshold, 

leading to the large uncertainty on the exact area that is hypoxic.  Uncertainties are, as expected, 
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higher for cruises with fewer measurements, such as for mid-September 1994, when only 5 

measurements were available and the 95% confidence intervals span 7,000 km2 (Table 5-1, 

Table 5-3). Compared to other years with similar hypoxic extents, uncertainties for September 

2005 and 2007 are smaller due to the more extensive DO measurements available for those two 

years through the IFYLE program by GLERL (Figure 5-3). 

Source Year Month Date 
Hypoxic extent (103 km2) 

2.5% 25% 50% 75% 97.5% 
NWRI 1987 Aug 5-7,11 1.90 3.02 3.77 4.56 6.34 

GLNPO 1987 Aug 16-17 1.59 2.71 3.41 4.26 6.02 
NWRI 1987 Sep 3-5 7.38 9.19 10.13 10.85 12.02 
NWRI 1987 Sep 15-17 7.47 9.25 10.09 10.94 11.99 
NWRI 1988 Aug 2-4 2.48 3.72 4.53 5.51 7.70 

GLNPO 1988 Aug 11 1.97 3.23 3.93 4.77 6.57 
GLNPO 1988 Aug 18-19 1.83 3.02 3.72 4.61 6.45 
NWRI 1988 Aug 23,30-31 6.86 8.53 9.46 10.35 11.73 
NWRI 1988 Sep 14-17 4.47 5.91 6.69 7.46 8.84 
NWRI 1989 Aug 10-12 No observed hypoxia 

GLNPO 1989 Aug 13-14 No observed hypoxia 
GLNPO 1989 Aug 20-22 0.28 0.79 1.15 1.55 2.64 
NWRI 1989 Aug 28-30 0.59 1.45 1.98 2.56 4.10 
NWRI 1989 Sep 11-13 4.52 6.35 7.39 8.45 10.14 
NWRI 1990 Aug 7-9 1.27 2.19 2.89 3.66 5.58 

GLNPO 1990 Aug 8-9 1.63 2.86 3.56 4.34 6.48 
GLNPO 1990 Aug 16-17 5.66 7.29 8.19 9.13 10.70 
NWRI 1990 Aug 27-30 4.63 6.70 7.81 8.86 10.65 
NWRI 1990 Sep 18,20 0.04 0.17 0.40 0.77 1.87 

GLNPO 1991 Aug 8-9 1.05 1.86 2.48 3.20 5.02 
GLNPO 1991 Aug 15-16 2.20 3.49 4.23 5.18 6.95 
NWRI 1991 Aug 26-27 5.29 6.85 7.71 8.52 10.20 
NWRI 1992 Sep 17,19 1.51 2.47 2.91 3.43 4.59 
NWRI 1993 Aug 6-7 No observed hypoxia 
NWRI 1993 Aug 24-26 2.05 3.24 3.88 4.72 6.20 
NWRI 1993 Sep 15-16 1.33 2.28 2.79 3.33 4.64 
NWRI 1994 Sep 1 0.06 0.37 0.95 1.88 4.78 
NWRI 1994 Sep 15-17 1.05 2.69 3.94 5.33 8.13 
NWRI 1995 Sep 12-15 0.24 0.62 0.94 1.36 2.72 
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Source Year Month Date 
Hypoxic extent (103 km2) 

2.5% 25% 50% 75% 97.5% 
GLNPO 1996 Aug 4 No observed hypoxia 
NWRI 1996 Sep 18,20 0.00 0.02 0.11 0.36 1.65 

GLNPO 1997 Aug 3 No observed hypoxia 
NWRI 1997 Aug 3 No observed hypoxia 
NWRI 1997 Aug 26-27 1.66 2.66 3.27 4.01 5.50 
NWRI 1997 Sep 17-18 4.90 6.34 7.37 8.45 10.20 

GLNPO 1998 Aug 3-4 0.93 1.65 2.18 2.83 4.18 
NWRI 1998 Aug 3-4 0.49 1.24 1.73 2.38 3.91 
NWRI 1998 Aug 27-29 5.15 7.27 8.12 9.00 10.53 
NWRI 1998 Sep 16 2.97 4.34 5.15 6.09 7.70 

GLNPO 1999 Aug 5 No observed hypoxia 
NWRI 1999 Aug 5 No observed hypoxia 
NWRI 1999 Aug 24, 26-27 3.81 5.42 6.35 7.22 9.09 
NWRI 1999 Sep 8-9 5.50 7.71 8.77 9.72 11.25 
NWRI 1999 Sep 20-21 4.27 5.56 6.30 7.11 8.63 

GLNPO 2000 Aug 3-4 3.49 5.19 6.06 7.04 8.85 
NWRI 2000 Aug 3-4 2.68 4.07 4.90 5.76 7.77 
NWRI 2000 Aug 30 1.20 1.98 2.46 2.96 4.01 

GLNPO 2001 Aug 5-6 0.47 0.99 1.41 1.88 3.21 
NWRI 2001 Aug 6 1.91 3.02 3.72 4.56 6.31 
NWRI 2001 Aug 29-30 5.59 7.21 8.02 8.92 10.57 
NWRI 2001 Sep 13-14 0.71 1.26 1.59 2.05 2.86 

GLNPO 2002 Aug 6-7 No observed hypoxia 
NWRI 2002 Aug 6-7 0.20 0.57 0.89 1.29 2.31 
NWRI 2002 Aug 28-29 3.24 4.53 5.30 6.13 7.82 
NWRI 2002 Sep 14-15 0.02 0.09 0.16 0.27 0.59 

GLNPO 2003 Aug 8 0.32 0.77 1.10 1.54 2.55 
NWRI 2003 Aug 8-9 0.45 0.94 1.35 1.81 2.92 
NWRI 2003 Aug 19 2.92 4.38 5.33 6.20 8.31 
NWRI 2003 Sep 2-3 6.70 8.65 9.50 10.39 11.67 
NWRI 2003 Sep 15-16 3.69 4.92 5.65 6.38 7.79 

GLNPO 2004 Aug 6 No observed hypoxia 
NWRI 2004 Aug 18-19 0.59 1.38 1.89 2.59 4.16 
NWRI 2004 Aug 26 2.22 3.65 4.38 5.25 7.35 
NWRI 2004 Sep 15-16 1.21 1.98 2.51 3.14 4.67 
NWRI 2004 Sep 21-22 0.00 0.01 0.03 0.07 0.22 

GLNPO 2005 Aug 9-10 No observed hypoxia 
NWRI 2005 Aug 9-10 No observed hypoxia 
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Source Year Month Date 
Hypoxic extent (103 km2) 

2.5% 25% 50% 75% 97.5% 
GLERL 2005 Aug 8-12 No observed hypoxia 
GLERL 2005 Aug 15-19 0.45 1.02 1.41 1.95 3.15 
GLERL 2005 Aug 27-30 1.12 2.52 3.42 4.36 6.61 
NWRI 2005 Sep 8-9 6.27 8.08 9.00 9.84 11.24 

GLERL 2005 Sep 6-21 7.02 7.91 8.36 8.78 9.66 
GLNPO 2006 Aug 10-12 1.07 1.94 2.43 3.05 4.26 
GLNPO 2007 Aug 8 No observed hypoxia 
GLERL 2007 Sep 4-26 6.33 7.35 7.89 8.34 9.24 

Table 5-3 Median (50th percentile), interquartile range (25th and 75th percentiles), and 95% 
confidence intervals (2.5th and 97.5th percentiles) of estimated hypoxic extent from all available 
GLNPO, NWRI and GLERL cruises for 1987-2007.  This table presents the same information 
as that in Figure 5-2, but in tabular form. 
 

The maximum hypoxic extent and its location in August and September (Figure 5-4, Figure 

5-5) vary from year to year.  It is most common in the western and middle northern portion of the 

central basin in August, spreading east in September, and thus there is a greater probability of 

larger hypoxic areas in September relative to August (Figure 5-6). 

Reconstructions of the historical extent of August (Figure 5-4) and September (Figure 5-5) 

hypoxia for Cases 1 and 2 show that the spatial distribution of DO is consistent between the 

cases, despite the differences in auxiliary variables.  This again supports the robustness of the 

presented approach.  
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Figure 5-4 Estimated August DO concentrations using UK from the cruise with the 
observed maximum extent in each year.  The hypoxic zone (DO < 2mg/L) is outlined in 
white. 
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Figure 5-5 Estimated September DO concentrations using UK from the cruise with the 
observed maximum extent in each year.  The hypoxic zone (DO < 2mg/L) is outlined in 
white. 

 

Results show that hypoxia is most common in the western and middle northern portion of the 

central basin in August, and spreads to the central portion in September (Figure 5-6).  Consistent 

with Figure 5-3a, Figure 5-6 also shows a larger area with a greater probability of hypoxia in 

September relative to August.  
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Figure 5-6 Areas with 20% and 40% probability of 
hypoxic conditions in August and September from 
1987 to 2007, based on Case 1 estimated hypoxic areas 
(Figure 5-4 and Figure 5-5).  

 

Annual estimates of maximum hypoxic extent are generally consistent with Burns et al. 

[2005], who provided the previously most complete analysis of Lake Erie hypoxia (Figure 5-7).  

Their estimates are based on a location-by-location selection of observation with the lowest DO 

throughout the year.  One would expect that using the lowest measured concentration (especially 

from different times and different locations) would tend to overestimate the maximum extent of 

hypoxia.  In addition, the lack of information from auxiliary variables makes it difficult to 

represent DO distributions given the very limited number of in situ DO observations, as seen by 

a comparison of UK and OK estimates (Figure 5-8, Figure 5-9).  A quantitative or probabilistic 

comparison was not possible because Burns et al. [2005] did not include the actual values of 

hypoxic area or its uncertainty.  Nonetheless, the estimates presented here are qualitatively 

consistent with Burns et al. [2005], supporting the notion that central basin hypoxia was more 

extensive in the late 1980s and late 1990s, compared to the early 1990s. 
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Figure 5-7 Comparison of (a) estimates from this study to (b) estimates from Burns et al. 
[2005].  In panel (a), white contours represent the 2 mg/L boundary, while areas with 
estimated concentrations below 1 mg/L are presented in black for consistency with Burns 
et al. [2005]. Subplots in (a) are based on the largest observed hypoxic zone for a given 
year (Figure 5-4 and Figure 5-5).   
 

5.4.3 Validation of Universal Kriging and Ordinary Kriging 

Figure 5-8 illustrates the benefit of including the auxiliary variables in UK relative to relying 

solely on the DO observations as is the case for OK.  These sample maps, presented for 

September 1998, show the difference between OK results and UK results. Because areas close to 

eastern basin are generally not hypoxic, the hypoxic extent represented in UK (Figure 5-8b) is 

likely more representative of the actual DO distribution compared to that from OK (Figure 5-8a).  

Both methods have the lowest uncertainties near the measurement locations, but the uncertainties 

for OK are generally higher than those for UK away from the observed locations (Figure 5-8c 

and Figure 5-8d).   
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Figure 5-8 Estimated DO concentration for September 1998 using 
(a) OK and (b) UK; Kriging uncertainty (expressed as one 
standard deviation) using (c) OK and (d) UK. The white line 
defines the boundary of the hypoxic zone (DO<2mg/L). 

 

The superior performance of UK was further confirmed through cross validation using data 

from 2005, when substantially more DO observations are available (Figure 5-9).  To compare the 

methods, the DO measurements at the ten locations (Figure 5-9a) that are sampled in most years 

were used to predict DO throughout the central basin, and then compared the estimated DO 

distributions (Figure 5-9c for UK; Figure 5-9b for OK) with estimates obtained using the 

expanded data set of 63 observations (Figure 5-9d and Figure 5-9e).  The shape of the hypoxic 

area derived from the limited set of ten observations using UK is relatively consistent with the 

more extensive observations (Figure 5-9d) and associated estimates (Figure 5-9e), whereas the 

hypoxic area predicted by OK using only the limited data set (Figure 5-9b) deviates from the 

GLERL observations and associated estimates.  Overall, UK provides more reliable estimates, 

and with lower uncertainties, relative to OK. 
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Figure 5-9  Validation results for September 
2005. Best estimate of DO concentration 
obtained from OK (panel b) and UK (panel 
c), using only the 10 measurement locations 
available in most years (panel a). All 
available observations for September 2005 
are presented in panel (d). The estimated 
hypoxic extent using all the available 
observations is presented in panel (e). 
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5.4.4 Relationship of areal extent to average bottom DO concentration and thermocline 

depth  

The estimates of hypoxic extent presented above were based on a sequential application of 

BIC, UK, and conditional realizations.  Based on these results, a simple exponential relationship 

was developed for predicting hypoxic extent using the square of the average measured DO from 

the ten regular sampling locations (Figure 5-1, Figure 5-10). This model explains 97% of the 

variability in these estimated hypoxic extents: 

ܧ  ൌ 9.30expሺെܱܦ௠ଶ 7.09⁄ ሻ 5.18

where E is hypoxic extent (103 km2) and ܱܦ௠	is the mean of the DO concentration (mg/L) across 

the ten sites with regular observations (Figure 5-1).  The two model parameters were estimated 

through a least-squares fit to the estimated hypoxic extent from all conditional realizations, and 

therefore account for the varying uncertainty of the estimates across individual cruises.  The ten 

regular sampling locations could be used as index stations for obtaining estimates of hypoxic 

extent for times when detailed analyses such as the one presented are not done.  

During the sampling cruises, vertical temperature profile data were also collected, allowing 

us to analyze our results relative to the thermal structure of the lake.  The change in hypolimnion 

thickness (a correlate for thermocline depth) from August to September (Figure 5-3b) is an 

important predictor of seasonal change in hypoxic extent.  For each month, the hypolimnion 

thickness was determined by averaging the measured hypolimnion thickness across monitoring 

stations for the cruise with the maximum observed hypoxic extent.  Substantial deepening of the 

thermocline between August and September, as indicated by a decrease in hypolimnion thickness 

of more than two meters, is associated with early re-oxygenation of the basin, and a 

corresponding decrease in the hypoxic extent.  This decrease in hypoxic extent is statistically 
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significant for four of the six such years for which DO data were available in both August and 

September (p~0 for 1990, 2001, 2002; p=0.05 for 1988; p=0.06 for 1998; p=0.18 for 1993).  

Conversely, a smaller change in the hypolimnion thickness is consistent with more stable 

stratification and an expansion of hypoxic extent between August and September.  This 

expansion is significant for six of the seven such years (p~0 for 1987, 1989, 2007; p=0.01 for 

1997, 2005; p=0.02 for 2003; p=0.13 for 1999). This finding illustrates the importance of timing 

and thermal structure on the size of the hypoxic zone; and these factors should be considered 

(along with biological drivers, e.g. nutrient stimulated productivity) when exploring the 

interannual variability of hypoxia in Lake Erie.   

 

Figure 5-10 Predicted hypoxic extent based on average 
DO concentration from the ten index sampling locations 
and equation 5.18 (R2=0.97). GLNPO, NWRI, and GLERL 
data are those from Figure 5-2, together with 95% 
confidence intervals. 
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5.5 Conclusions 

Hypoxia occurs in the central basin of Lake Erie during most summers, but its spatial extent 

has been poorly understood due to sparse sampling.  Universal Kriging and conditional 

realizations were used here to provide quantitative estimates of the extent of hypoxia in the 

central basin of Lake Erie for August and September of 1987 to 2007, and their associated 

uncertainties.   

Bayesian Information Criterion was used to test the significance of auxiliary variables to the 

DO spatial distribution in the bottom of Lake Erie. Longitude was found to be positively 

correlated with DO, potentially acting as a proxy for phosphorus availability, because 

phosphorus primarily enters the central basin from the west. Bathymetry and its squared term 

were also shown to be correlated with DO distribution. The satellite observations of sea surface 

temperature and satellite chlorophyll were not found to significantly correlated with the spatial 

distribution of DO.   

Consistent with previous findings (e.g., [Hawley et al., 2006]), the hypoxic extent was 

generally found to have been lowest in the mid-1990s, with the late 1980s (1987, 1988) and the 

2000s (2003, 2005) experiencing the largest hypoxic zones.  The maximum hypoxic extent and 

its location in August and September vary from year to year.  Hypoxia is most common in the 

western and middle northern portion of the central basin in August, spreading East in September, 

and thus there is a greater probability of larger hypoxic areas in September relative to August. 

A simple exponential relationship based on the squared average measured bottom DO 

explains 97% of the estimated variability in the hypoxic extent.  The ten regular sampling 

locations could therefore potentially be used as index stations for obtaining estimates of hypoxic 

extent for times when detailed analyses such as the one presented are not done. 
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The change in the observed maximum extent between August and September is found to be 

sensitive to the corresponding variability in the hypolimnion thickness. Substantial deepening of 

the thermocline between August and September, as indicated by a decrease in hypolimnion 

thickness of more than two meters, is associated with early re-oxygenation of the basin, and a 

corresponding decrease in the hypoxic extent. 

 

 

  



87 
 

CHAPTER 6 Temporal Variability of Hypoxic Volume in Chesapeake Bay 

Hypoxia (low dissolved oxygen) was first reported in Chesapeake Bay in the 1930s, 

primarily due to nutrient loads and summertime stratification of the water column. The 

understanding of the seasonal and interannual variability of hypoxia is of great importance for 

proper water quality management and forecasting.  The purpose of this chapter is to estimate the 

variability of hypoxic volume in Chesapeake Bay from 1985 to 2010 at a half-monthly temporal 

resolution, and to examine the effects of nutrient loads and weather patterns on this variability. 

6.1 Introduction 

 Chesapeake Bay, the largest and the most productive estuary on the East Coast of the United 

States, is plagued with bottom-water hypoxia (dissolved oxygen, DO < 2mg/L) due to 

agricultural and industrial development and population growth along its shores and headwaters 

[Cerco and Cole, 1993]. While first reported in the 1930s [Newcombe and Horne, 1938; Officer 

et al., 1984], hypoxia in Chesapeake Bay became more common and widespread in the late 

1950s and early 1960s due to increased anthropogenic nutrient influx [Cronin and Vann, 2003].   

It is widely understood that nitrogen loads and summertime stratification are two primary 

factors leading to hypoxia in coastal systems [NSTC, 2000]. Based on the fact that increases in 

nitrogen loading cause expansions in the hypoxic volume in Chesapeake Bay [Flemer et al., 

1983; Hagy et al., 2004; Liu and Scavia, 2010], management efforts to improve water quality 

have focused on reducing nitrogen loading [U. S. EPA, 2002b]. Many hypoxia prediction models 

have thus been developed to guide management and policy in regulating nitrogen loading into 

the Bay (e.g., [Cerco and Cole, 1993; Evans and Scavia, 2011; Hagy et al., 2004; Kemp et al., 

2005; Murphy et al., 2011; Scavia et al., 2006]). In addition to the nitrogen loading, vertical 

stratification is another primary factor leading to hypoxia formation in coastal systems, by 
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inhibiting the reaeration of bottom waters [NSTC, 2003].  However, the linear correlation 

between spring tributary nitrogen loading and summertime hypoxia is relatively low [Hagy et al., 

2004], and spring total nitrogen loading from major tributaries can only explain a small portion 

of the variability of summertime hypoxic volume [Scully, 2010a]. As a result, it remains 

uncertain how much reduction in hypoxia could be achieved from only restricting the total 

nitrogen loading from tributaries into Chesapeake Bay. A major source of this uncertainty may 

come from an inadequate understanding of the relationship between hypoxia and nitrogen 

loading. Thus, a better understanding of the controls of uncertainty in hypoxic volume estimates 

is needed. 

Weather patterns (e.g., precipitation, wind) also play an important role in affecting both 

nitrogen loading and vertical stratification, which in turn impact hypoxic volume.  For example, 

wind was shown to determine the concentration of DO in the subpycnocline layer (i.e., the 

bottom water layer) of Chesapeake Bay [Malone et al., 1986; Sanford et al., 1990].  Recent 

analyses suggest the duration of wind along particular directions, rather than the magnitude of 

wind speed, has a stronger impact on hypoxia [Feng et al., 2012]. Previous studies suggested that 

the duration of westerly wind over Chesapeake Bay was correlated well with the summer 

hypoxic volume between 1950 and 2007 [Scully, 2010a; b]. However, Murphy et al. [2011]did 

not detect significant contributions from wind between 1985 and 2009. This discrepancy further 

adds to the need for a detailed investigation of how wind influences hypoxia.  

 Detailed analysis of the variability of hypoxic volume in Chesapeake Bay is thus needed to 

explore the effects of nitrogen loading and weather patterns. To map the detailed hypoxic 

conditions throughout the Bay, spatial interpolation methods such as simple linear interpolation, 

inverse distance weighting, and geostatistical methods have often been used [Bahner, 2006; 
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Murphy et al., 2011; Rossi and Posa, 1990]. However, because Chesapeake Bay is extremely 

narrow and shallow with variable depth, it creates some unique challenges for spatial 

interpolation.  

This work applied geostatistical Universal Kriging and conditional realizations to estimate 

hypoxic volume and its associated uncertainty by using the auxiliary variables which are 

correlated with the DO distribution. The purposes of this work are (i) to estimate early-April to 

late-October hypoxic volumes and associated uncertainties for 1985 to 2010; (ii) to show the 

frequency and duration of hypoxia over these 26 years; and (iii) to explore the degree to which 

nitrogen loads and weather patterns explain the variability of hypoxia.  

This chapter is organized as follows: Section 6.2 presents the data used in this study. Section 

6.4 provides a brief overview of the inputs used in the geostatistical methods including the model 

parameter optimization. Section 6.5 presents the results of the analysis, including the seasonal 

and yearly variability of estimated hypoxic volumes, factors affecting variation in hypoxic 

volume from April to October for 1985 through 2010, and the comparison of the estimated 

hypoxic volume from this work with the results from two other models. The last section (Section 

6.6) summarizes the main conclusions of the study. 

6.2 Data description 

6.2.1 Data for estimating hypoxic volume 

Chesapeake Bay includes many sub-estuaries and tributaries (Figure 6-1), but the analysis 

presented here was restricted to the mainstem of the Bay. The in situ DO data were collected by 

the Chesapeake Bay Program and their collaborators, and were obtained from the Chesapeake 

Bay Program Water Quality Database [Chesapeake Bay Program, 2011]. This database included 
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measurements starting in July 1984, with stations sampled once each month during late fall and 

winter months and twice each month during the warmer months. The sampling cruises generally 

took less than a week for each. There are about forty fixed monitoring stations in the mainstem at 

which water quality parameters are measured at intervals of 1m to 2m through the water column 

(Figure 6-1). The DO data collected twice a month from the early April to late October were 

used to calculate hypoxic volumes in this work.  

In addition to the in situ DO measurements, auxiliary variables with full spatial coverage 

were also included in the analysis.  These variables include east-west location, north-south 

location, bathymetry (i.e., the total depth of each station), and measurement depth (i.e., the depth 

at which each measurement was conducted), which describe the physical characteristics of each 

estimation location in the Bay. The bathymetry data, part of the National Oceanic and 

Atmospheric Administration (NOAA) Coastal Geospatial Data Project, were averaged to 1 km  

1 km resolution from their initial 1 m  1 m resolution. All horizontal locations in this work were 

georeferenced using the coordinate system North American Datum of 1983 (NAD83), Universal 

Transverse Mercator (UTM) Zone 18 North. Because stratification greatly affects hypoxia, as 

described in Section 6.1, these physical characteristics reflecting stratification are of great 

importance for estimating the DO spatial distribution. Chesapeake Bay stratification driven 

primarily by salinity differences varies spatially and decreases with distance toward the Bay 

mouth (close to Atlantic Ocean). 
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Figure 6-1 Locations of the Chesapeake Bay Program monitoring 
stations (blue stars) in the mainstem of Chesapeake Bay, river 
input monitoring stations (blue circles), precipitation monitoring 
sites (green triangles), and the wind monitoring station (green 
star). 

6.2.2 Data for analyzing the estimated hypoxic volume 

Nitrogen loads, precipitation, and wind were used to analyze the interannual variability in the 

hypoxic volumes. Monthly average total nitrogen (TN) loads data have been collected by the 

U.S. Geological Survey Chesapeake Bay River Input Monitoring Program [USGS, 2010] since 
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1981 for the main tributaries.  Among these tributaries, Susquehanna, Potomac, James, and 

Rappahannock Rivers provide the largest nutrient loads to Chesapeake Bay. However, James 

River is located at the mouth of the Bay, the load of which is thus not considered in this work. 

Susquehanna, Potomac and Rappahannock all flow directly into the Bay, which together account 

for more than 90% of the TN of all tributary inputs (Table 6-1 and Figure 6-1). Therefore, the 

total spring nitrogen (TN) loads from these three tributaries from January to May were used in 

this work. Precipitation and wind data were obtained from the NOAA’s National Climatic Data 

Center [NCDC, Accessed: August, 2012] and the National Weather Service [NWS, Accessed: 

August 2012]. The spring precipitation data from April to May were taken as the average of the 

measurements from Chestertown Station, Maryland and Norfolk Station, Virginia, which both 

provide long-term monitoring (Figure 6-1). Wind data are measured at Patuxent River Station, 

located close to the middle of the Bay (Figure 6-1). The wind data include average wind speed, 

and wind duration from different directions. The wind duration from a certain direction 

represents the length of time that wind blow over the Bay from this direction. The wind duration 

considered in this analysis was that from April to August, because the dominant wind direction 

changes after August according to the available wind data from 1985 to 2010. 

Tributary Station Name 

Susquehanna  Susquehanna River near Conowingo, MD 

Potomac  Potomac River at Chain Bridge, Washington DC 

Rappahannock  Rappahannock River near Fredericksburg, VA 

Table 6-1 Three main tributaries of Chesapeake Bay and their land use and wastewater 
discharge. 
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6.3 Models comparison for estimated hypoxic volume in Chesapeake Bay 
The most expansive set of hypoxic volumes in Chesapeake Bay were estimated by the 

Chesapeake Bay Interpolation (CBI) Tool [Bahner, 2006] and Main-channel Ordinary Kriging 

(OK) [Murphy et al., 2011], which both provide long term hypoxic volume estimation of the 

Bay. Including the model presented in this work, all three models have a similar timespan and 

the same temporal resolution (Table 6-2).  

6.3.1 Chesapeake Bay Interpolator Tool (CBI) 

Chesapeake Bay Interpolator Tool [Bahner, 2006] applied a three-dimensional inverse 

distance weighting (IDW) method to estimate the DO concentration for both the mainstem and 

tributaries in Chesapeake Bay. Only the hypoxic volume of the segments located in the mainstem 

was extracted for the comparison. IDW is commonly used and is easy to automate, but it only 

uses distance during interpolation without considering either spatial structure or estimation 

uncertainties. EPA recognized that geostatistical kriging could be a more accurate option and 

should be tested more for use in the Bay [U. S. EPA, 2007]. 

6.3.2 Main-channel Ordinary Kriging (Main-channel OK) 

Murphy et al. [2011] kriged DO concentration only in the main channel (vertical and north-

south direction) of the Bay, and then assumed the concentrations were constant laterally across 

the mainstem of the Bay to save extensively computational cost. By making this assumption, the 

near-shore zone is also hypoxic if the mainstem is hypoxic; however, it is unlikely to have 

hypoxia in the near-shore zone in reality. Therefore, the final results normally overestimate the 

actual hypoxic volume, especially in the summer. Unlike UK, OK does not use auxiliary 

variables. The spatial distribution of DO in this work was obtained only from the in situ 

measurements.   
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Model Method 
Spatial 
range 

Spatial 
resolution 

Time 
Temporal 
resolution 

Reference 

CBI 

Three-
dimensional 

inverse 
distance 

weighting 

Mainstem 
and 

tributaries 

1km (east-
west) × 1km 

(north-
south) × 1m 

(vertical) 

June-
September 
1985-2009 

Half-
month 

Bahner 
[2006] 

Main-
channel OK 

Two-
dimensional 

OK 

Mainstem 

2km (north-
south) × 1m 

(vertical) 

May-
September 
1984-2009 

Half-
month 

Murphy et 
al. [2011] 

3D 
conditional 
realizations 

Three-
dimensional 

UK and 
conditional 
realizations 

Mainstem 

1km (east-
west) × 1km 

(north-
south) × 1m 

(vertical) 

April-
October 

1985-2010 

Half-
month 

This work 

Table 6-2 Models of estimating spatial distribution of DO concentrations for comparison. 
 

6.4 Methodology 

The approach used to quantify hypoxia in this chapter is similar to the methods described in 

Chapter 5, but the geostatistical analysis presented here was expanded from two dimensions to 

three. The estimation timespan ranges from early April to late October (i.e., fourteen half-

monthly intervals in total), covering the entire seasonal cycle of hypoxia for 1985 to 2010. The 

data for each half-month period were analyzed individually without assuming any conceptual 

temporal covariance among different periods or different years to avoid slightly unrealistic 

smoothing of extreme hypoxic volumes. The spatial resolution of DO concentrations in this work 

is 1 km (north-south direction)  1 km (west-east direction)  1 m (vertical direction). 

A model selection method (i.e., Bayesian Information Criterion; see Section 6.4.4) was 

applied to identify which of the four auxiliary variables (i.e., east-west location [UTM X], north-
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south location [UTM Y], bathymetry, and measurement depth) were significant variables in 

explaining the DO distribution in each half-month period (Table 6-3). UTM X and measurement 

depth were selected as significant variables for all time periods. UTM Y was also selected as a 

significant variable for most periods except early April, late September and October. Bathymetry 

was selected as a significant variable for eight time periods over the total fourteen periods. As 

the UTM Y and bathymetry are constant variables and the analyzed system is the same Bay, all 

four auxiliary variables were used for all time periods to keep the methods and analysis 

consistent. 

Early 
Apr 

Late 
Apr 

Early 
May 

Late 
May 

Early 
Jun 

Late 
Jun 

Early 
Jul 

Late 
Jul 

Early 
Aug 

Late 
Aug 

Early 
Sep 

Late 
Sep 

Early 
Oct 

Late 
Oct 

UTM X * * * * * * * * * * * * * * 

UTM Y * * * * * * * * * * 

bathymetry * * * * * * * * 

measurement 
depth 

* * * * * * * * * * * * * * 

Table 6-3 Model selection results for the DO distribution in each half-month period. Variables 
indicated with asterisks are the significant ones based on the model selection results. 

The following Section 6.4.1 to Section 6.4.4 describe the methods used to estimate the spatial 

distribution of DO and the hypoxic volume for a given half-month period, using early July from 

1985-2010 as an example. A detailed description of these methods is available in Chapter 5, 

while only the key steps are presented here. 

6.4.1 Estimating DO spatial distribution using Universal Kriging 

The preliminary steps of the UK setup are shown below. All 26-year DO data (z, n × 1) are 

organized as follows: 

 

ܢ ൌ ൦

ଵଽ଼ହܢ
ଵଽ଼଺ܢ
⋮

ଶ଴ଵ଴ܢ

൪ 6.1
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where zi (i = 1985, ... , 2010) is an ni × 1 vector, and ni is the number of measurements within a 

given half-month period (e.g., early July) during year i (i.e., ݊ ൌ ∑ ݊௜
ଶ଴ଵ଴
௜ୀଵଽ଼ହ ). 

Within the UK framework, the DO distribution was modeled as the sum of a deterministic 

term and a zero-mean spatially correlated residual term. The deterministic term represents the 

portion of the DO distribution that can be explained by the categorical variables (ones and zeros) 

and auxiliary available, and the residual term represents the remaining portion of the observed 

variability. The categorical variables represent the spatially-constant yearly offsets (i.e., 

intercepts) corresponding to each year. Therefore, the measurement data (z) could also be written 

as:  

ܢ  ൌ ൅ܢ܆ ௥௘௦ 6.2ܢ

where ܢ܆ is a known n  (26+4) matrix of categorical variables and auxiliary variables that 

explain a portion of the DO variability in space,  is a (26+4) × 1 vector of unknown regression 

coefficients corresponding to these variables, 26 is the number of categorical variables (i.e., the 

number of examined years), 4 is the number of auxiliary variables (i.e., latitude, longitude, 

measurement depth, bathymetry), and ܢ௥௘௦ is an n × 1 vector of residuals. Note that the  values 

are different for each half-month period. Overall, the deterministic term (ܢ܆, n × (26+4)) is 

expressed as:   

 
ܢ܆ ൌ ൥

૚ଵଽ଼ହ ⋯ ∅
⋮ ⋱ ⋮
∅ ⋯ ૚ଶ଴ଵ଴

ଵଽ଼ହ܆
⋮

ଶ଴ଵ଴܆
൩ 6.3

where 1i (i = 1985, ... , 2010) is an ni × 1 vector of ones composing categorical variables, and Xi 

(i = 1985, ... , 2010) is an ni × 4 matrix of auxiliary variables.  

For the residual term (ܢ௥௘௦), an n × n generalized covariance matrix (Qzz) is used to represent 

its spatial structure: 
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ܢܢۿ ൌ ൥

ଵଽ଼ହۿ ⋯ ∅
⋮ ⋱ ⋮
∅ ⋯ ଶ଴ଵ଴ۿ

൩ 6.4

where Qi (i = 1985, ... , 2010) is a covariance matrix for the residuals within a given half-month 

period (e.g., early July) of each year. All Qi's use the same covariance parameters (ߪଶ, ۿߪ
ଶ, and l): 

 
ܳ௜ሺ݄ሻ ൌ ቐ

ଶߪ ൅ ۿߪ
ଶ; ݄ ൌ 0

ଶexpߪ ൬െ
݄
݈
൰ ; ݁ݏ݅ݓݎ݄݁ݐ݋

 6.5

where h is the separation distance between measurement locations, σ2 is the variance of the 

portion of the residual DO variability that is spatially correlated, 3l is the practical correlation 

range, and ۿߪ
ଶ is the measurement error. 

The covariance matrix is used in the UK system of linear equations: 

 
൤
ܢܢۿ ܢ܆
்ܢ܆ ૙

൨ ቂ઩
்

ۻ
ቃ ൌ ൤

ܛܢۿ

்ܛ܆
൨ 6.6

where Qzs is an n  m covariance matrix between the measurement and estimation locations 

obtained analogously to equation 6.4, m is the number of estimation locations, the m × (26+4) 

matrix Xs contains the same four auxiliary variables as in Xz but defined at the estimation 

locations, and T denotes a matrix transposition.  The system of equation 6.6 is solved for , 

which is an m  n matrix of weights assigned to each observation for each estimation location, 

and for M, which is a (26+4)  m matrix of Lagrange multipliers.  Finally,  and M are used to 

obtain estimates of the DO distribution, and their associated uncertainties:        

ොܛ  ൌ ઩6.7 ܢ

where ŝ is an m × 1 vector of  the final DO estimates.   
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6.4.2 Obtain spatial structure of DO using Restricted Maximum Likelihood 

The Restricted Maximum Likelihood (REML) approach maximizes the likelihood of 

available observations after marginalizing with respect to the unknown regression coefficients (β) 

[Snodgrass and Kitanidis, 1997; Zhou and Michalak, 2009]. This is equivalent to minimizing the 

following cost function to obtain the structural parameters in Qzz:  

 
ܮ ൌ

1
2
|ܢܢۿ|݈݊ ൅

1
2
ܢܢۿ்ܢ܆|݈݊

ିଵܢ܆| ൅
1
2
6.8 ܢબ்ܢ

 બ ൌ ܢܢۿ
ିଵ െ ܢܢۿ

ିଵܢ܆ሺܢܢۿ்ܢ܆
ିଵܢ܆ሻିଵܢܢۿ்ܢ܆

ିଵ 6.9

where | | denotes matrix determinant.  

Because of the stratification between surface water and bottom water in Chesapeake Bay 

from late spring to late summer, the detrended DO (i.e., zres) along the vertical direction still 

shows inconsistent spatial distribution between the surface and sub-pycnocline layers. Due to the 

discontinuous spatial patterns of DO along vertical directions, REML is not able to accurately 

estimate the covariance parameters (i.e., REML has difficulty finding the local minimum of the 

likelihood values). To solve this problem, covariance parameters in the horizontal and vertical 

directions were obtained separately, and were then combined. These covariance parameters are 

different for each half-month period (Table 6-4). Taking early July for example, equation 6.10 

shows its covariance matrix (ܳ௜ሺ݄ሻ, unit: [mg/L]2): 

 

ܳ௜ሺ݄ሻ ൌ

ە
ۖ
۔

ۖ
ۓ 3.4 ൅ 0.6; ݄௘௪ ൌ 0, ݄௡௦ ൌ 0, ݄௩ ൌ 0

3.4expቌെඨ൬
݄௘௪
26.0

൰
ଶ

൅ ൬
݄௡௦
98.4

൰
ଶ

൅ ൬
݄௩
13.3

൰
ଶ

ቍ ; ݁ݏ݅ݓݎ݄݁ݐ݋
 6.10

where hew, hns and hv are the separation distances along east-west, north-south and vertical 

directions, respectively. This equation suggests that the DO data are spatially correlated within 
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3*26.0 km (3lew) in east-west direction, within 3*98.4 km (3lns) in north-south direction, and 

within 3*13.3 m (3lv) in vertical direction. As expected, the variability of DO concentration is 

smoothest (i.e., the correlation length is longest) along the north-south direction because the 

surface fresh water flows from north to south, and the bottom sea water flows from south to 

north.  

Period 
Sill (σ2, 
[mg/L]2) 

Range parameter 
along E-W 

direction (lew, 
km) 

Range 
parameter along 

N-S direction 
(lns, km) 

Range 
parameter along 

vertical 
direction (lv, m) 

Nugget 
ۿ࣌)

૛ , 
[mg/L]2) 

Early April 1.8 36.9 87.8 21.2 0.4 

Late April 2.5 25.4 79.4 15.7 0.2 

Early May 2.7 19.9 82.9 13.0 0.3 

Late May 3.3 20.7 79.5 13.2 0.3 

Early June 2.8 28.7 95.6 12.1 0.6 

Late June 2.8 17.5 61.4 10.6 0.3 

Early July 3.4 26.0 100.0 13.3 0.6 

Late July 3.0 25.0 73.7 12.4 0.7 

Early August 2.9 21.0 69.8 12.6 0.5 

Late August 2.4 19.3 77.3 12.6 0.6 

Early 
September 

2.0 15.8 79.2 13.5 0.5 

Late 
September 

1.6 27.5 58.4 18.2 0.5 

Early October 1.3 18.2 51.9 19.5 0.2 

Late October 1.1 25.4 59.0 18.2 0.2 

Table 6-4 Covariance (Q) parameters of detrended DO for each half-month period (e.g., 
equation 6.10 for early July). 
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6.4.3 Estimating hypoxic volumes and associated uncertainties using conditional 

realizations 

UK provides a direct, quantitative assessment of the DO concentration; including an 

assessment of the uncertainty associated with the estimated DO concentrations. However, UK 

cannot be used directly to estimate the uncertainty associated with the hypoxic volume (i.e. the 

total volume for which DO concentration is below the 2 mg/L threshold). To provide a 

probabilistic estimate of the hypoxic volume uncertainty for each year, conditional realizations 

of the DO distribution were generated [Gutjahr et al., 1994; Kitanidis, 1995; Zhou and Michalak, 

2009]. Each conditional realization is defined as: 

௖௜ܛ  ൌ ઩ሺܢ െ ௨௜ሻܢ ൅ ௨௜ 6.11ܛ

where  is the m  n matrix of weights defined in equation 6.6, and zui and sui are unconditional 

realizations at measurement locations and estimation locations, respectively, obtained from: 

 ቂ
௨௜ܢ
௨௜ܛ

ቃ ൌ 6.12 ܝ۱்

where u is an (n+m)  1 vector of normally distributed random values with zero mean and unit 

variance (note that a new vector u is regenerated for each realization), and C is the (n+m)  

(n+m) matrix resulting from the Cholesky decomposition of the covariance matrix below: 

 
൤
ܢܢۿ ܛܢۿ

ܛܢۿ
் ܛܛۿ

൨ ൌ ۱۱் 6.13

Conditional realizations were only generated for locations that are deeper than 2m because (i) 

scientifically, the pycnocline depth is normally around 10m [Olson and Shenk, 2003], and (ii) 

computationally, it saves extensive computational cost. The hypoxic volume was calculated for 

each conditional realization by summing the volumes where the predicted DO concentration is 

below 2 mg/L. A thousand conditional realizations were generated for each half-month for which 
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hypoxia was estimated, and the results were used to develop a probabilistic estimate of the 

hypoxic volume. 

6.4.4 Auxiliary variable selection  

Bayesian Information Criterion (BIC) is based on the Bayesian factor or the posterior 

probability of a model, and considers both the goodness of fit and the number of variables in the 

model [Anderson et al., 1998; Schwarz, 1978]. The implementation of BIC was discussed in the 

methodology section of Chapter 5. BIC was evaluated for each possible subset of auxiliary 

variables, and the set of variables with the lowest BIC was identified as the best model. BIC was 

used several times in this work. As described in beginning of Section 6.4, BIC was used to 

identify the significance of latitude, longitude, bathymetry, and measured depth to the DO spatial 

distribution in the mainstem of the Bay. In addition, BIC was also used multiple times to select a 

subset of variables that can reliably represent the temporal variability of the hypoxic volume 

from 1985 to 2010.  

6.5 Results and discussions 

This section first shows the variability of hypoxia at half-monthly intervals and a summary of 

the frequency of occurrence of hypoxia by location in the Bay between 1985 and 2010, followed 

by an examination of the impact of nutrient loading and weather patterns on the hypoxic volume. 

The final part of this section compares estimated hypoxic volumes from conditional realizations 

with those from other two models. 
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6.5.1 Hypoxic frequency from 1985 to 2010 

 

Figure 6-2 Time frequency of hypoxia (from UK) in horizontal direction of Chesapeake Bay for 
every half-month from 1985 to 2010. 
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Figure 6-3 Time frequency of hypoxia (from UK) in vertical direction of Chesapeake Bay for 
every half-month from 1985 to 2010. 

 

The fraction of years for which hypoxic conditions occur at a given location for each half-

month period was estimated using the best estimates of DO from 1985 to 2010 (equation 6.7).  

Hypoxia was most frequent at depths greater than 10m to 15m of the mainstem (i.e., along the 

main/central channel) during the 26-year period under consideration (Figure 6-2 and Figure 6-3). 

This is expected because the central channel in the upper Bay and middle Bay is the deepest 

channel with strongest stratification, and its observed pycnocline depth is usually located around 

10m [Olson and Shenk, 2003]. The Bay is narrow along the east-west direction, thus the volume 

of water below the pycnocline is small enough that oxygen is depleted quickly. The near-shore 

zone and lower Bay zone suggest lower probabilities of hypoxia because they are not sufficiently 

deep to develop stratification.  

Differences in hypoxic frequency in Chesapeake Bay are suggested even at a half-monthly 

resolution (Figure 6-2 and Figure 6-3). Hypoxia appears earliest in the upper Bay in April, 
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although the low probabilities imply that hypoxia may only appear in this month in a minority of 

given years. Hypoxia appears first in the upper Bay because the primary input of nitrogen stems 

from the Susquehanna River, located at the head of the Bay [Evans and Scavia, 2011], which 

accounts for about 64% of the total tributary TN loads in spring [Murphy et al., 2011]. In 

addition, during this time of year stratification starts to form in the Bay. The melting snow and 

precipitation increase the freshwater flow in the surface of Chesapeake Bay, which results in a 

density gradient along the vertical direction within the Bay.  In June, hypoxia begins to spread 

south, to the middle and partial lower Bay zones. By July, hypoxic probabilities and extent have 

peaked; starting in late August hypoxia starts to disappear, first from the lower, then the middle, 

and finally the upper Bay. This decline is due to cooling surface waters that eventually sink 

disturbing the stable stratification and re-oxygenating the bottom water. By October, hypoxia has 

disappeared entirely from the Bay, with only extremely low possibilities of hypoxia in the upper 

Bay remaining. 
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6.5.2 Half-monthly estimated hypoxic volumes from 1985 to 2010 

 

 

Figure 6-4 Hypoxic volumes (a) and associated standard errors (b) of Chesapeake Bay 
from 3D conditional realizations from April to October 1985-2010. The cells with white 
borders represent the time periods for which DO measurements were not available, and 
these values represent the average volumes and standard error for each half-month. 

The estimated half-monthly hypoxic volumes and their associated uncertainties, derived from 

conditional realizations, are shown in the solid cells of Figure 6-4. Some hypoxic volumes and 

uncertainties represented in the cells using white borders were not estimated directly from 
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observations, because the DO measurements are not available for those periods. The hypoxic 

volume denoted by the cells with white borders was obtained by averaging the hypoxic volumes 

shown in solid cells during the same half-month when DO measurements are available. The 

uncertainty denoted in the cells with white borders of each half-month was calculated as the 

standard deviation of the hypoxic volumes from conditional realizations during the same half-

month. 

Hypoxic volumes exhibit a strong seasonal cycle, with the maximum volumes consistently 

found in July or August from 1985 to 2010 (Figure 6-4a). The summer months (i.e., June to 

August) with large hypoxic volumes have considerable volumes with estimated DO 

concentrations close to the 2mg/L hypoxic threshold, leading to a slightly larger uncertainty on 

the exact volume that is hypoxic (Figure 6-4b). However, the spring and fall months with small 

hypoxic volumes have considerable volumes with DO concentrations mostly above this hypoxic 

threshold, which results in smaller uncertainty of hypoxic volume. During the 26-year period, the 

largest volume of oxygen-depleted water appeared in early July 2003 due to heavy rain that 

spring, which brought intensive nutrient loading into the Bay within a short time [Lewis et al., 

2007]. However, hypoxia was greatly alleviated by late July due to storm-induced mixing in the 

water [Lewis et al., 2007]. This implies that the hypoxic volumes in a half-monthly resolution 

can be greatly affected by short-term extreme events. 

6.5.3 Selection of the auxiliary variables to hypoxic volume variability  

Several variables were included in the analysis to examine their significance in explaining 

the interannual variability of hypoxic volume from 1985 to 2010. These variables include total 

spring nitrogen (TN) loads, mean spring precipitation, average wind speed, and directional wind 

duration.  
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The TN loads used in this work were those from the Susquehanna, Potomac and 

Rappahannock Rivers. Loading from the Susquehanna River is of particular interest in most 

research because this river contributes a large fraction of nitrogen loading to the system and is 

among the major tributaries in flowing directly into the mainstem of Chesapeake Bay [Hagy et 

al., 2004]. However, Murphy et al. [2011] used TN loading from both the Susquehanna and 

Potomac Rivers to explain the variability of hypoxic volume. Although TN loading from the 

Rappahannock was ignored in accounting for the total loads into the Chesapeake Bay in previous 

research (e.g., [Murphy et al., 2011]), this work shows that including the loading from 

Rappahannock yields an improved explanation of the variability of hypoxia (to be discussed in 

Section 6.5.1) on the order of 1% (i.e., R2 decreased 0.01). This slight improvement makes sense 

because the loading from the Rappahannock, though not negligible, is much smaller than the 

other two tributaries. 

BIC was used to test the significance of wind speed in this work. Hunter et al. [2008] 

suggested that only wind above a certain speed threshold could affect the stratification or the 

bloom through the water column. Taking Lake Taihu (in China) with an area of 2,250 km² and 

an average depth of 2 m for example, 4 m/s was indicated as the wind speed threshold capable of 

inducing turbulent mixing [Cao et al., 2006]. For Lake Erie, 7.7 m/g was used as the effective 

wind speed threshold for affecting the stratification [Wynne et al., 2010]. As the dimensions of 

Chesapeake Bay are intermediate to those of Lake Taihu and Lake Erie, 6 m/s was chosen for 

this work as the criterion for affecting the wind-induced energy propagating into the bottom layer 

of the Bay. Therefore, two kinds of monthly wind data were tested in this work, which were 

calculated (i) from hourly wind data with speeds greater than 6 m/s and (ii) from all the hourly 

wind data, respectively. However, the model selection results shows that all wind data (BIC = -
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73.0, R2 = 0.85) better explain the hypoxic variability than the wind data above 6m/s (BIC = -

66.2, R2 = 0.83). Consequently, only the results using all wind data are shown in the following 

analysis.  

BIC was also used to test the significance of wind duration along different directions in 

explaining the variability of hypoxia from 1985 to 2010, together with TN loading data and 

precipitation data. Wind duration from the four cardinal directions (N, E, S, W) was used first, 

and followed by that from the four intercardinal directions (SW, NE, SE, NW). Preliminary BIC 

results suggest that the SW wind duration and NE wind duration were shown as the most and the 

second-most significant wind factors, respectively.  NE wind duration and SW wind duration 

were positively and negatively correlated with hypoxia (refer to Section 6.5.4 for details). To 

further explore whether a single parameter representing both durations could be a better 

substitute, the ratio between them (i.e., [SW wind duration] / [NE wind duration]) was selected 

for the best model according to BIC. Therefore, a more intuitive term (i.e., dominant wind 

effect), calculated as [SW wind duration] / [NE wind duration] minus 1, was used in this work, 

which measures the relative effect of the wind duration from these two directions. If the SW 

wind is dominant, the dominant wind effect should be negatively correlated with hypoxia. 

However, if the NE wind is dominant, the dominant wind effect should be positively correlated 

with hypoxia. 

6.5.4 Relationship of auxiliary variables to the variability of hypoxic volume  

Hypoxia is a complicated process involving many physical and biochemical reactions, 

changing every half-month (Figure 6-4a). Weather events can affect nutrient loading and mixing 

in the short term (e.g., early July 2003). To avoid the short-term effect caused by extreme events, 

this work considers hypoxic conditions throughout the entire year in the analysis for Chesapeake 
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Bay. For example, the summer hypoxia of 1996, a year with one of the highest nitrogen loads, 

was less extensive than that of 1995 [Hagy et al., 2004]. The research presented here reveals that 

although the July or early July hypoxic volume in 1995 is much larger than that in 1996, the 

mean hypoxic volume from April to October for 1995 representing the overall yearly hypoxic 

condition is actually smaller than 1996 (Figure 6-4a).  

To account for the overall hypoxic condition of each year, this work uses mean hypoxic 

volume and hypoxic volume intensity of each year. Mean hypoxic volume represents the average 

half-monthly hypoxic volume from April to October. Hypoxic volume intensity is calculated as 

the sum of each half-monthly hypoxic volume from April to October multiplied by fifteen days 

(i.e., a half-month). These two indices are proportional to each other, though their values are not 

identical. Since there is no hypoxia before April or after October each year, the mean hypoxic 

volume and hypoxic volume intensity in this work can be taken to reflect the total hypoxic 

condition for each year.  

From 1985 to 2010, spring mean precipitation (P [26×1], cm), spring TN loads (N [26×1], 

106 kg/day), and a variable representing the dominant wind effect (W [26×1], i.e., [SW wind 

duration] / [NE wind duration] minus 1) were selected by BIC and explained 85% of the 

variability in the mean hypoxic volume from April to October. This best model selected is: 

܄  ൌ 1.56 ൅ 3.16 ∙ ۼ ൅ 0.06 ∙ ۾ െ 0.38 ∙ 6.14 ܅

where V [km3] is a 26×1 vector representing the mean hypoxic volumes from 1985 to 2010. The 

correlation coefficients of the variables were shown in Table 6-5. Among the three variables, the 

importance of each variable can be isolated, because any pairs of these variables were not well 

correlated. 
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 TN Precipitation Dominant wind effect 

TN 1 0.36 0.20 

Precipitation  1 0.03 

Dominant wind effect   1 

Table 6-5 Correlation coefficient for each pair of the three coefficients. 

The contribution of these three variables and the constant is shown in a stacked bar plot 

(Figure 6-5). From 1985 to 2010, TN contributes 25.7-61.3% of mean hypoxic volume with a 

mean of 37%. Precipitation contributes10.1-24.2% of the mean hypoxic volume with a mean of 

17.3%. Dominant wind effect contributes 0.1-27.3% of the mean hypoxic volume with a mean of 

8.8%. The 95% confidence intervals associated with these mean hypoxic volume estimates are 

the approximate uncertainties, representing both the spatial uncertainties of each time period and 

temporal interpolation uncertainties of the periods without available DO measurements (Figure 

6-4b). The yearly uncertainty of mean hypoxic volume was the square root of the average 

variance (i.e., square of the uncertainty in Figure 6-4b) of all the half-monthly hypoxic volumes 

from April to October during the same year. Note that 2007 and 2008 are the years with the 

fewest DO measurements in space during the summer months. Their extremely sparse sampling 

results in large uncertainties associated with the estimated hypoxic volumes (Figure 6-4), and 

therefore the estimated volumes of these two years were not included in this analysis.  



111 
 

 

Figure 6-5 Stacked bar plot of selected variables explaining the mean hypoxic volume from 
April to October (or hypoxic volume intensity) during hypoxic season. Dominant wind effect is 
calculated as the [SW wind duration] / [NE wind duration] minus 1. Red cross and red line 
represent the mean and 95% confidence interval of hypoxic volume obtained from Figure 6-4. 

 

 
R2 of each 

variable (R2
ind) 

R2 for all variables in 
the best model (R2

all) 

R2 when each variable is 
removed from the best model 

(R2
rem) 

TN 0.64 

0.85 

0.36 

Precipitation 0.31 0.78 

Dominant wind 
effect 

0.05 0.73 

Table 6-6 Coefficient of determination (R2) of each individual variable and combination of these 
variables to the variability of mean hypoxic volumes. 

 

The positive correlation between TN loads and hypoxic volume makes intuitive sense, 

because greater nitrogen loads will result in more consumption of DO in the bottom of the Bay. 

TN loads from the Susquehanna, Potomac and Rappahannock were shown to explain more 

variability of the mean hypoxic volume than the other two selected variables for all the examined 
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years (Table 6-6). TN alone explains 64% variability of mean hypoxic volume, and the 

prediction capability of the model decreased by 49% (i.e., R2 decreased from 0.85 to 0.36) 

without taking TN into account. This confirms that TN loading is the primary contributing factor 

to the variability of hypoxia in Chesapeake Bay from 1985 to 2010. 

This work shows for the first time that spring precipitation is positively correlated with the 

mean hypoxic volume from April to October, and the impact of precipitation was not examined 

in previous studies.  This positive correlation is expected because precipitation is generally 

assumed to influence nitrogen loads by increasing river flow or soil erosion. Precipitation alone 

explains 31% variability of mean hypoxic volume, and the prediction capability of the model 

decreases 7% without precipitation (Table 6-6). This result confirms the importance of 

precipitation in rendering an accurate prediction of hypoxic volume.  

The precipitation appears to represent nonpoint sources of nitrogen downstream from the 

tributary monitoring sites. There are four main sources of nitrogen input into the Bay: (i) 

nitrogen from tributary monitoring (i.e., the TN loading used in this work), (ii) nonpoint sources 

downstream from the tributary monitoring sites, (iii) nitrogen from wastewater treatment plants 

downstream from the tributary monitoring sites, and (iv) atmospheric deposition of nitrogen to 

tidal water (Table 6-7, [USGS, 2011]). Due to data availability and measurement restrictions, 

only the nitrogen loads from the tributary monitoring sites were included in this work. As the 

nitrogen loads from tributary monitoring sites were measured in the upstream of the tributaries 

(Figure 6-1), the nonpoint sources downstream from the tributary monitoring sites that could be 

affected by precipitation were not included in the TN loading used in this work. The TN loading 

from tributary monitoring sites represent nearly twice the loading from nonpoint sources 

downstream from these monitoring sites (Table 6-7), which is analogous to the relationship 
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between the contribution of monitored TN (37%) and the contribution of mean precipitation 

(17.3%) to the variability of mean hypoxic volume. This indicates that even though the nonpoint 

sources of nitrogen downstream from the tributary monitoring sites were not available to this 

work, its contribution is probably captured by that attributed to precipitation. 

Source of loading Percent of total

Tributary monitoring sites 58% 

Nonpoint sources downstream from the tributary monitoring sites  23% 

Wastewater treatment plants downstream from the tributary monitoring sites 13% 

Atmospheric deposition of nitrogen into tidal water 6% 

Table 6-7 Nitrogen sources in Chesapeake Bay, [USGS, 2011]. 

The dominant wind factor (i.e., [SW wind duration] / [NE wind duration] minus 1) alone 

explains 5% of the variability of mean hypoxic volume. In addition, the prediction capability of 

the model decreases 12% (i.e., R2 reduced from 0.85 to 0.73) without this wind factor (Table 

6-6). The significance of wind in this context is expected because wind affects hypoxia by 

influencing the stratification in the Bay.  

NE wind duration and SW wind duration were positively and negatively correlated, 

respectively, with hypoxic volume. These results are consistent with the findings by Valle-

Levinson et al. [1998] and Guo and Valle-Levinson [2008], who demonstrated that the 

northeasterly winds could enhance stratification in the lower part of Chesapeake Bay. Stronger 

stratification usually results in larger hypoxic volume, which confirms the positive correlation 

between NE wind duration and hypoxic volume. In addition, Cho et al. [2012] also confirmed 

that down-estuary (e.g., NE wind) local wind stress tends to enhance stratification under 

moderate wind speeds, and the up-estuary (e.g., SW wind) local wind stress tends to reduce 
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stratification by reversing gravitational circulation. However, the wind effect on hypoxia 

detected in this work conflicts with that found from 1950-2009 by Scully [2010a]. It is important 

to note, though, that Scully [2010a] pointed out a shift in SE and westerly wind frequencies that 

occurred in the early 1980s, which is beyond the timespan examined in this work. Thus, the 

different timespans considered may thus be the main reason for the contradictory results.  

To further explore the impact of nutrient loading and weather patterns to hypoxia, other 

indexes of hypoxic conditions such as the half-monthly hypoxic volume in the summer and the 

maximum half-monthly hypoxic volume during each year, were examined in this analysis. The 

spring TN, precipitation, and dominant wind effect explain 46% variability of the maximum 

hypoxic volume observed in each year. In addition, these variables explained 43% of the 

variability in all half-monthly (including early July) hypoxic volumes across years. This further 

confirms that the nutrient loading during spring and the dominant wind effect during spring and 

summer affect the overall hypoxic condition for each year. 

6.5.5 The duration and the final and maximum months of hypoxia from 1985 to 2010 

The duration and seasonal timing of hypoxia have changed from 1985 to 2010 (Figure 6-6). 

A standard of 0.75km3 (~2% of the water volume in the mainstem) was used as the threshold of 

the appearance of hypoxia, which is the average uncertainty (i.e., red bar in Figure 6-5) for the 

modeled hypoxic volume in this work. There is no significant change for the appearance of 

hypoxia from 1985 to 2010 (p=0.38). However, the final month of hypoxia moves from October 

to September (p=0.005), and the duration of seasonal hypoxia decreases from five to less than 

four months (p=0.02). Although the hypoxic duration decreased, the mean hypoxic volume does 

not suggest a significant decline. This is because the hypoxic volumes in September and October 

are much smaller than those in the summer months (i.e., June to August).  
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Additionally, the appearance of the maximum hypoxic volume has moved from late July to 

early July (p = 0.07). Previous research suggested that this seasonality shift in the maximum 

hypoxic volume may be due to sea level rises, because a rising sea level could result in enhanced 

stratification strength [Murphy et al., 2011]. However, a significant correlation was not detected. 

It is possible that more complex models are needed to properly identify this relationship. 

 

Figure 6-6 Start month (blue squares), final month (blue circles), maximum month 
(blue stars) and duration of hypoxic volume (orange triangles) in Chesapeake Bay from 
1985 to 2010.  

 

6.5.6 Model comparison results 

The three-dimensional (3D) conditional realization results presented in this work are more 

comprehensive when compared to Main-channel OK and CBI in the sense that they provide 

estimation uncertainties associated with the best estimates. Main-channel OK and CBI can only 

provide the best estimates of hypoxic volumes, and are incapable of providing their associated 

estimated uncertainties. Because of the sparser sampling (i.e., some regular measurement stations 
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were skipped) in early July 1986 and 2002, and July to September 2008, the uncertainties (i.e., 

95% confidence intervals) of the hypoxic volume during these time periods are much larger than 

other periods (Figure 6-7). This suggests the current DO network is reliable in estimating 

hypoxic volume using conditional realization, and reducing the number of measurements could 

result in larger uncertainties. 

As expected, the estimated hypoxic volume figure from Main-channel OK are generally 

larger than 3D conditional realization results, especially in July and August (Figure 6-7), because 

the DO concentrations in the central channel of the Bay are lower than those in the near-shore 

zone (Figure 6-2). The assumption made by Main-channel OK of constant DO concentration 

along the lateral direction exaggerates the hypoxic volume. 
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Figure 6-7 Half-monthly hypoxic volume estimates from 3D conditional realizations in blue 
lines, CBI in green lines and Main-channel OK in red lines. Note that the y axes are different for 
each subplot. 
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6.6 Conclusions 

Geostatistical methods were implemented to estimate the hypoxic volume from April to 

October 1985-2010 and the associated uncertainties for Chesapeake Bay. This analysis shows 

that the mean hypoxic volume from April to October is better correlated with the examined 

factors than the maximum or any half-monthly hypoxic volume, suggesting that the mean 

hypoxic volume is better for elucidating mechanistic relationships between hypoxia and its 

contributing factors. The temporal trend in total hypoxic volume from 1985 to 2009 of this work 

is consistent with the results from Bahner [2006] and Murphy et al. [2011], although these three 

models were computed differently. 

Whereas previous work had only considered TN loading from the Susquehanna [Evans and 

Scavia, 2011; Hagy et al., 2004; Scavia et al., 2006], or the Susquehanna and Potomac [Murphy 

et al., 2011], including the loading from the Rappahannock was found to slightly improve the 

explanation of the interannual variability in mean hypoxic volume.  

 In addition to nitrogen loading, precipitation and wind duration are also shown to have 

significant contribution to the variability of hypoxic volumes in Chesapeake Bay.  According to 

the analysis in this work, higher springtime precipitation leads to higher hypoxic volume, even 

after monitored tributary nitrogen loading are taken into account. Precipitation appears to 

influence the variability of hypoxia by affecting the nonpoint source of nitrogen downstream the 

river monitoring stations. The presented results confirm that wind duration is a better predictor of 

hypoxia than wind speed [Scully et al., 2011], and that southwesterly winds are correlated with 

decreased hypoxic volume, while northeasterly winds lead to higher hypoxic volume.   
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This work also shows that the maximum hypoxic volume has been moving from late July to 

early July over the examined period, but there is no significant trend in the maximum hypoxic 

volume [Murphy et al., 2011].   Furthermore, no significant trend was found in the timing of 

onset of hypoxia, but the end of the hypoxic period moved from October to September over the 

examined period.     
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CHAPTER 7 Conclusions and Future Directions 
 

Each objective of this dissertation contributed in its own way to providing better scientific 

understanding of water quality in surface water or attribute (e.g., organic matter, contaminants) 

distributions in water sediments. This chapter summarizes the key findings and the overall 

contributions of this dissertation, and provides future directions. 

7.1 Contributions of this dissertation 

7.1.1 Objective 1: Geostatistical downscaling for data with a non-uniform resolution 

The first objective of this dissertation involved the development of a geostatistical 

downscaling method for dealing with non-uniform resolution data sets, using pseudodata and the 

total organic carbon distribution in Passaic River sediment as examples. Both cases suggested 

that geostatistical downscaling provides more reliable estimates and associated uncertainties at a 

fine and uniform resolution when compared to the traditional point-to-point Ordinary Kriging 

(OK) that cannot account for the non-uniform resolution of the available data.  

The methodology developed in this work can easily be adapted to other areas where the 

resolutions of the available samples is not uniform (e.g., remote sensing images with multi-

resolution [Zhan et al., 2012]), and therefore can improve estimation for engineers and scientists 

from a wide variety of backgrounds.  

As part of this study, published code of geostatistical downscaling written in MATLAB, 

algorithms, and documentation have been made freely available to the scientific community 

(http://www.puorg.engin.umich.edu/).  
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7.1.2 Objective 2: Spatial and temporal trends in Lake Erie hypoxia from 1987 to 2007 

The second objective of this dissertation was to provide a comprehensive analysis of the 

hypoxic extent in Lake Erie during August and September for the years 1987 to 2007 by using 

geostatistical methods. This work presented a geostatistical model selection approach that is able 

to determine the important factors for explaining the variability of bottom water dissolved 

oxygen (DO) concentrations. This work also provided the first quantitative history of hypoxic 

extent and its uncertainty in Lake Erie for each summer from 1987 to 2007. 

The methods developed and the estimates of long-term hypoxic extent presented in this 

dissertation would benefit the research aimed at reducing hypoxic extent and improving water 

quality in this region. For example, this work revealed the impact of stratification on the 

summertime evolution of hypoxia. Therefore, in order to predict the hypoxia in Lake Erie, it is 

necessary to consider the stratification situation and the factors affecting it. 

In addition, this work also provided a set of geostatistical methods that are easily transferable 

to other regions, with subsequent work applying these approaches in Chesapeake Bay (Chapter 

6) and the Gulf of Mexico [Obenour, manuscript].  

7.1.3 Objective 3: Impact of nutrient loading and weather patterns on seasonal hypoxia in 

Chesapeake Bay for 1985 to 2010  

The third objective of this dissertation involved the estimation of the variability in hypoxic 

volume in half-monthly intervals for Chesapeake Bay over the period 1985 to 2010, and the 

examination of the effect of nutrient loading and weather patterns (e.g., wind, precipitation) on 

the estimated variability in hypoxic volume. Hypoxia varies annually, depending on the timing 

and magnitude of springtime and summertime stratification, nutrient loading, and weather 

patterns in the water body and watershed. Knowledge of the historical seasonality and inter-
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annual variability of hypoxia provided in this work is of great importance for proper forecast of 

hypoxic volume in future.  

Although management efforts directed toward reducing nitrogen loading have been 

implemented to improve the water quality in Chesapeake Bay, the observed correlation between 

nitrogen loads and summertime hypoxia is relatively low according to previous research. By 

estimating hypoxic volume within a larger timespan of each year, this work provided a thorough 

understanding of the variability of hypoxia. The research presented in this dissertation better 

explained the effect of nitrogen loading on hypoxia relative to the existing literature. Nitrogen 

loads together with weather patterns (e.g., precipitation, wind) explain more of the variability of 

the average annual hypoxic volume from April to October of the years 1985 to 2010 than that of 

the maximum hypoxic volume of each year or the hypoxic volume of any single half-month. 

This accurate quantification of the effect of nitrogen loads on hypoxia will benefit the water 

quality management strategies of reducing nutrient input and therefore improving the water 

quality in Chesapeake Bay. 

7.1.4 Comparison between the research on the hypoxia in Lake Erie and that of 

Chesapeake Bay 

The occurrence of hypoxia is increasing in surface waters worldwide, and represents a 

significant threat to the health and economy of both Lake Erie and Chesapeake Bay [Committee 

on Environment and Natural Resources, 2010]. Hypoxia in these two systems is caused by a 

combination of nutrient-driven production of phytoplankton organic matter, decomposition, and 

stratification of the water column. Although hypoxia can occur in natural and undisturbed 

systems, a dramatic increase in Lake Erie and Chesapeake Bay hypoxia has been linked to 

nutrient (i.e., nitrogen and phosphorus) and organic matter enrichment resulting from human 
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activities [Committee on Environment and Natural Resources, 2010]. According to the results 

from this dissertation, the relationship to nutrient loading is simpler and more clear in the 

Chesapeake Bay than in Lake Erie.   

In addition to the hypoxia in Chesapeake Bay and Lake Erie, algal blooms are another main 

concern caused by the input of nutrients to these two systems [Committee on Environment and 

Natural Resources, 2010]. Lake Erie is divided into three basins (i.e., western, central and 

eastern) according to their bathymetry and locations. Algal blooms and hypoxia of Lake Erie 

mainly occur in western basin and central basin, respectively [Becker et al., 2009; Vincent et al., 

2004]. However, these two phenomena of Chesapeake Bay occur both mainly in upper Bay and 

lower Bay [Harding et al., 1994]. Consequently, it is possible that the response of algal blooms 

and hypoxia respond differently to nutrient loads for Lake Erie and Chesapeake Bay. 

According to the variability of hypoxic extent from 1987 to 2007, hypoxic extent in Lake 

Erie decreased from the late 1980s to the early 1990s as a result of phosphorus load abatement 

programs, part of the United States/Canada Great Lakes Water Quality Agreement of 1972 

[Dolan, 1993]. However, significant changes in the hypoxic volume in Chesapeake Bay were not 

observed from 1985 to 2010. In addition, the appearance of the maximum hypoxic volume was 

shown to have moved from late July to early July in Chesapeake Bay. However, similar change 

in the maximum hypoxic volume in Lake Erie was not detected. 

Hypoxia in the two systems usually reaches maximum in July and September of each year, 

respectively. In Lake Erie, hypoxia appears in the western and middle part of central basin in 

August, and spreads to the eastern part of the central basin in September. This is because most 

nutrients enter the lake mainly from the west. Chesapeake Bay, hypoxia first appears in the upper 
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Bay, then spread to the middle and lower Bay. This is because most nutrients enter the Bay from 

the north of upper Bay. These results are consistent with the fact that the nutrient availability is 

the primary cause of the appearance of hypoxia in different systems. 

Spatial trends play a significant role in estimating the bottom DO distributions in both Lake 

Erie and Chesapeake Bay. Weather patterns were shown to have a great impact on the inter-

annual variability of hypoxic volume in Chesapeake Bay. However, such research was not 

conducted in Lake Erie. Therefore, there is a need to further explore the impact of weather 

patterns on the variability of hypoxic extent in Lake Erie.  

7.1.5 Overall contributions 

This dissertation focused on developing and applying geostatistical approaches for improving 

estimates of the spatial distribution of water quality parameters in surface water and organic 

matter in water sediment. In order to provide more accurate estimation tools, this dissertation 

developed several geostatistical data fusion models that make optimal use of data with different 

resolutions and from different sources. The infrastructure developed as part of this dissertation 

including the modeling framework, and code of the data fusion models developed fit into the 

community-wide effort to improve the quality of surface water. 

Overall, knowledge of the spatial distribution of water quality parameters leads to a better 

understanding of physical, chemical, and ecological dynamics, making it easier to protect the 

world’s precious water resources. This work improved the estimates of attributes (e.g., organic 

matter, contaminants) in sediment, which would benefit remedial actions. In addition, this work 

also improved the estimates of the variability of hypoxia in Lake Erie and Chesapeake Bay for 

the recent two-plus decades. In providing these more accurate estimates of hypoxic extent, this 
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dissertation further quantified the drivers of the long-term variability of water quality (e.g., 

hypoxia). 

7.2 Future directions 

This section describes specific avenues for future research for the three stated objective based 

on the findings of this dissertation. The section also provides some future directions for larger 

community-wide for water quality research. 

7.2.1 Research on the spatial distribution of attributes in water sediment 

This work demonstrated that geostatistical downscaling can provide more reliable estimates 

of total organic carbon at a fine and uniform resolution by using the in situ data with non-

uniform resolutions in space. Future work could include: 

 Expanding the method from two to three dimensions in order to provide more detailed 

information on the condition of the sediment contaminants. This dissertation only 

provided a two-dimensional estimate along fluvial and vertical directions.  

 Qualifying the impact of river hydrology, erosion, and sedimentation on the distribution 

of organic carbon and contaminants in sediment and associated uncertainties.  As the 

Passaic River is a tidal system, the distribution of organic carbon and contaminants in the 

inner bends and outer bends of the river may suggest different spatial structures. 

Knowing the correlation between the river dynamics and the distribution of organic 

carbon and contaminants could provide guidance for selecting sampling locations, which 

would further provide more information for interpolation contaminant distribution in 

space. 
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 Applying the developed method to other contaminants (e.g., PCB) distributions. Different 

contaminants are known to have different spatial distribution patterns. As discussed in 

Chapter 2, distribution of contaminants is of great importance for remedial actions. 

Therefore, it is necessary to provide more accurate estimations and associated uncertainty 

bounds of contaminant distribution using this method. 

 Modifying the method developed in the first objective of this dissertation for non-

normally distributed data. Current geostatistical methods are not suitable for non-normal 

data [Kitanidis and Shen, 1996]. In addition, covariance parameter optimization 

approaches (e.g., Restricted Maximum Likelihood) should also be correspondingly 

modified to obtain the representative spatial structure of such non-normal data.  

7.2.2 Research on hypoxia in Lake Erie 

While this work provided data on the variability of hypoxic extent in August and September 

for years 1987 to 2007 in Lake Erie, there are a few direct extensions of the current work that 

would help to make it more directly applicable to water quality studies:  

 Examining the effect of nutrient loads and weather patterns on the variability of hypoxia 

in Lake Erie. Some extended work from this dissertation suggested that the linear 

correlation between phosphorous loading and hypoxic extent is weak (not discussed in 

the present work). It is therefore necessary to examine nonlinear or lagged relationships 

between nutrient loads and hypoxic extent in future research. In addition, it is highly 

likely that the combined contribution of phosphorous loading and weather patterns is 

greater than that of either factor alone. Chapter 6 confirmed that weather patterns (e.g., 

wind, precipitation) could present partial contributions to nutrient loading or stratification 
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situations, and therefore affects the variability in hypoxic volume in Chesapeake Bay. 

Similar contributions from these weather patterns might also be detected in Lake Erie. 

 Forecasting hypoxic extent for the years when DO measurements are not available (both 

historically and in the future). Geostatistical methods can only estimate hypoxic extent 

when there are in situ DO measurements. Therefore, other methods are needed to 

estimate hypoxic extent for the years when such measurements do not exist or are 

otherwise unavailable. Similarly, it is also necessary to develop models to forecast 

hypoxia in future so as to inform water quality management and decision-making.  

7.2.3 Research on hypoxia in Chesapeake Bay 

This part of the work presented the variability of hypoxic volume from April to October for 

the years 1985 to 2010. Further, this work demonstrated the importance of nitrogen loading from 

tributaries and weather patterns in explaining the mean hypoxic volume from April to October 

(representing the yearly hypoxic condition). Future directions include: 

 Evaluating all the sources of nutrient loads to Chesapeake Bay and examining their 

contribution to hypoxia. Currently, almost all studies included this dissertation focused 

solely on the nutrient loads at USGS monitoring stations from tributaries. There are other 

sources of nutrient loads such as those from wastewater treatment plants downstream 

from the monitoring stations, nonpoint sources downstream from the monitoring stations, 

and atmospheric deposition into tidal water [USGS, 2011]. However, direct 

measurements are not available for some of these sources of nutrients. Therefore, it is 

necessary to find factors that could represent these unmeasured nutrient loads. For 

example, this dissertation pointed out that spring precipitation appears to represent the 

effect of nonpoint sources of nutrients downstream from the river monitoring stations.  
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 Exploring the impact of extreme events on short-term variability of hypoxia. It remains 

unclear what effects the variability of hypoxic volume in for Chesapeake Bay in the 

short-term (e.g., half-month) [Lewis et al., 2007]. For example, how extreme events (e.g., 

hurricanes, heavy and more frequent storms) affect hypoxia in the short-term (e.g., early 

July 2003) is another key factor of understanding the changes of water quality.  

7.2.4 Community-wide future directions 

The methods implemented for the sediment work (Chapter 4) in this dissertation focus only 

on snapshots in time accounting for spatial correlation in the observed data. Given the dynamic 

nature of river sediments, studies that take into account temporal (e.g., seasonal) variability 

should be considered for an ecological risk assessment [Chapman and Wang, 2001]. For the data 

that are temporally correlated, the space-time analysis was shown to provide more information 

for management regarding contaminant distribution by including more information both in space 

and time. Space-time models have been extensively used in several areas of environmental 

research, such as precipitation forecasts (e.g., [Amani and Lebel, 1997]), assessment of wind 

energy resources (e.g., [Haslett and Raftery, 1989]), and estimation of surface ozone levels (e.g., 

[Guttorp et al., 1994; Sampson et al., 1994]). Therefore, future studies in contaminated sediment 

area could include temporal correlation in addition to spatial correlation. 

Additionally, sediments also affect the hypoxia in the water because they contain nutrients 

and organic matter (e.g. organic carbon) accumulated over the years [Kennish, 2002; Rabalais et 

al., 2007b; Turner et al., 2008]. Sediments thereby increase oxygen demand, and, in turn, expand 

the extent of hypoxia in bottom water [Turner et al., 2008]. To decrease the effect of organic 

matter or nutrients in sediments on hypoxia, it is necessary to obtain their distribution in water 
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sediments. In addition to the organic matter and nutrients, the impact of sediment contaminants 

to aquatic environment is another problem posing threats to the future health and viability of 

ecosystems worldwide [Kennish, 2002]. Testa and Kemp [2012] suggested the positive feedback 

between hypoxia and sediment recycling of nutrients in Chesapeake Bay using quantitative 

analysis of long-term monitoring data. However, it remains unknown if their feedback is the 

same in the non-hypoxic locations, slight hypoxic locations and severe hypoxic locations. It is 

therefore necessary to improve understanding of how nutrients and organic matter accumulated 

in water sediments affect the bottom water hypoxia spatially, which will lead to better models for 

forecasting hypoxia. 

As shown in this dissertation, weather patterns greatly affect water quality. Therefore, 

collaboration between researchers from these two research areas is needed to assess the impact of 

weather patterns on water quality changes and the response of water quality changes to variable 

weather patterns or climate. Many current nutrient control management designed to improve 

water quality in relatively stable climatic conditions may be ill prepared to adapt to future 

changes in climate, consumption, and population. Currently, research on the impact of weather 

patterns and climate changes on water quality usually takes place on the local level (e.g., [Frick 

et al., 2008; Lipp et al., 2001; Quinn et al., 2001]). There is a need for more in-depth analysis 

involving both water quality forecasts and weather forecasts at a continental or even global scale. 

A global perspective on water quality changes is important for ensuring sustainable water use. 
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