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Establishing reasonable, prior distributions remains a significant obstacle far the 

construction of probabilistic expert systems. Humon assessment of chance is 

often relied upon for this purpose, but this hos the drawback of being incon- 

sistent with axioms of probability. This arficfe ndvonces o method for extracting o 

coherent distribution of probability from humon judgment. The method is based 

on a psychological model of probabilistic reasoning, followed by o correction 

phase using linear programming. 

Human probability judgment has its strengths and weaknesses. Its strength 
is fecundity, providing reasonable assessments of chance in numerous 
domains. Its weakness is incoherence, because often, it cannot be represented 
by numbers in a manner consistent with the probability cakulus. The strength 
has Ied to the development of expert systems built around a core of human 
probability assessments {e.g., Andersen, Olesen, Jensen, & Jensen, 1989; 
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Andreassen, Woldbye, Falck, & Andersen, 1989; Horvitz, Breese, & Henrion, 
1988; Long, Naimi, Criscitiello, & Jayes, 1987). The weakness has led to 
research on the causes and circumstances of incoherent judgment (Shafir, 
Smith, & Osherson, 1990; Tversky & Kahneman, 1983), and to the elabora- 
tion of procedures for inducing better behavior on the part of informants 
(Kahneman, Slavic, & Tversky, 1982, Part VIII; Winterfeld & Edwards, 
1986). 

To exploit the strength of human judgment while avoiding its weakness, 
it would be useful to have a method for minimally revising a person’s judg- 
ment so as to relieve it of incoherency. Such revision would protect, as much 
as possible, the insight embodied in the judgment while avoiding conflict 
with the elementary laws of chance. It is noteworthy that such a method 
exists for a particular reasoning context, namely, one in which probabilities 
must be attached to a finite set of statements along with their logical com- 
binations. The method uses linear programming to construct a distribution 
as close as possible to the numbers that a person proposes for these proba- 
bilities. The method works best in the context of a psychological theory that 
uses a small set of parameters to predict the numbers people choose. Such a 
theory will be proposed in this article, building on the “Gap Model,” 
developed in Osherson, Smith, Meyers, Shafir, & Stob (1994). The aim of 
this article is to show how linear programming, in conjunction with the Gap 
Model, can be exploited to produce coherent probabilities close to human 
judgment. 

The discussion proceeds as follows: Background concepts related to 
probability and linear programming are reviewed in the next two sections. 
Section 4 presents the Gap Model, and completes the description of our 
method for converting raw judgment into probability. Empirical evaluation 
of the method is contained in Sections 5 through 7. Section 8 is devoted to 
concluding remarks. 

2. PROBABILITY IN A FINITE, PROPOSITIONAL ALGEBRA 

Our theory bears on probability distributions in finite propositional 
algebras. This section reviews relevant concepts and definitions, which are 
illustrated in Appendix I. A more complete treatment can be found in 
Neapolitan (1990). 

Suppose we are given a set X of n declarative statements s, . . .sn. By a 
valuafionfor X, it is meant an assignment of truth-value to each of s, . . .sn. 
A valuation is thus a mapping of X into {true, fufse}, and there are 2” of 
them. By the algebra A over X is meant the infinite set of propositions 
that come from combining s, . . .s,, using the logical connectives /\, V, 1, 
and so forth. Under the usual interpretation of connectives, a given valua- 
tion imposes a truth-value on each proposition of d . 
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Now consider a real-valued map m defined on the set of valuations for X 
and possessing the following properties: 

(1) (a) m(v) E [0, l] for every valuation v; and 
(b) CV m(v) = 1, where v indexes all the valuations for X. 

We may convert m into a probability distribution P over A in the following 
way. For any proposition p E A, define P(p) = C, m(w), where w indexes 
just the valuations that make (a true. In this case, P is said to be based on m. 
Henceforth, by “distribution (over A )” is meant a mapping of A into 
reals that is based on some map satisfying (1). 

From a given distribution P, conditional probabilities are obtained 
through the familiar equation: 

(*) P(C,I B, . . . Bm) = ‘(St; : A ’ ’ ’ * Bm) , provided that P(B, A. . . ABm) > 0. 
I . . . A &I) 

To be able to move freely between conditional and unconditional probability, 
we adopt the following terminology: A pair of the form (C, (B, . . .&,}), 
where C, B, . . . Bm are propositions drawn from A, will be called an argu- 
ment (of A ). The statement C is designated the “conclusion” of the argu- 
ment, whereas the set {B,. . . Bm) (which might be empty) is called its 
“premises.” The argument (C, 8) (no premises) is also denoted by C. Given 
distribution P, we define P(C, (B, . . .Bm)) to be P(C) if rn =O; otherwise, 
P(C, (B, . . . Bm}) is given by the right-hand side of (*).I 

Suppose that someone assigns probabilities to a subset S of the arguments 
of A. The assignment can be conceived as a function H that maps S into 
real numbers. We call H coherent just in case it can be extended to a distri- 
bution over A. If H is incoherent, we would like to “fix it up” using a 
method that makes minimal modification to H, in some sense. One such 
method is described in the following Definition and Fact. Suppose that S is 
a finite subset of the arguments of A, and that H assigns numbers to S. 

(2) 

(3) 

DEFINITION: Let P be any distribution over A. P’s error for S and His 
defined as the maximum absolute value of H(a) - P(a) over all arguments 
a E S. Any distribution P that minimizes the error for S and His called a 
normative envelope for S and H. 

FACT: There is at least one normative envelope for Hand S. Moreover, it 
can be computed using linear programming. 

For an illustration of how to use linear programming for this purpose, see 
Appendix I and also, Franklin (1980) Section 1.1, Example 6. The use of 

I For simplicity, we assume in the following discussion that conditional probabilities are 
well defined, that is, that P(B, . . A &) > 0 for the P in question. The assumption is easily 
lifted in exchange for various provisos in our claims and definitions. 
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linear programming to find a normative envelope in the sense just described 
will be called the “LP method” for revising a person’s probability judg- 
ment in view of coherency. The question confronting us is how to make best 
use of LP.= 

3. USING LP 

We call a set S of arguments over A full (with respect to the algebra A), just 
in case the following is true: Any coherent mapping of S into the reals can 
be extended to just one distribution over A. In other words, once numbers 
are assigned in coherent fashion to a full set of arguments, the arithmetic of 
probability determines the values of all remaining arguments. The following 
Definition and Fact describe a full set of arguments that will be important in 
the sequel. Suppose that algebra A is generated by statements X = {s, . . . sn}. 

(4) 

(5) 

DEFINITION: Argument (C, {B, . . . I&}) of A is elementary just in case 
{C, B,. . .Bm) g X. (Th us, an argument is elementary if its premises and 
conclusion contain no logical connectives, like A and 1.) 

FACT: The collection E of elementary arguments is full. Indeed, E is 
larger than necessary because there are proper subsets of E with only 2” - 1 
members that are also full. On the other hand, no set of arguments (ele- 
mentary or not) with fewer than 2” - 1 members is full. (The Fact is proved 
in Appendix II.) 

The method LP is most plausibly applied to a function H defined on a 
full set of arguments. For a non-full set, LP embodies considerable arbitrar- 
iness because linear programming makes arbitrary choices about which nor- 
mative envelope to impose on H, even when the latter is coherent. In view of 
(S), one way of deploying LP may be formulated as follows (where we iden- 
tify a person with the function H he or she embodies): 

(6) SCHEME FOR USING LP: Suppose that person H is confronted with a 
set X of declarative statements. It is desired to define a (coherent) proba- 
bility distribution for the algebra generated by X that is close to H’s raw 
intuitions (which may be incoherent). For this purpose, obtain H’s proba- 
bilities for a full set of elementary arguments of Ji . Then apply LP to 
compute an associated normative envelope. 

2 If normative envelopes are defined in terms of average instead of maximum error, linear 

programming cannot be applied in a straightforward way. Nonlinear programming (Luenberger, 

1984) is a more complicated affair (including problems of local minima), so we have opted for 
the efficiency, familiarity, and simplicity of the linear programming approach. 
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Scheme (6) is particularly attractive inasmuch as elementary arguments 
represent accessible intuitions about chance. This is because only condition- 
ing is in play, rather than logical structure. Consider, for example, the 
relative ease of judging whether the probability is greater than .5 that 
human blood contains lithium as an essential component, assuming that 
canine blood does, compared to evaluating the joint probability that both 
types of blood have this property. On the other hand, despite their simplicity, 
Fact (5) shows that elementary arguments embody sufficient information to 
determine a probability distribution. 

There is only one difficult in applying the scheme. It may be impractical 
to obtain probabilities from person H for a full set of elementary argu- 
ments. For one thing, if the initial statements X = {s, . . .s,} are numerous, 
H would be required to make too many judgments. For example, if n = 10, 
then 1023 elementary arguments need evaluation. For another thing, evalu- 
ating probabilities might not be as natural for H as other types of judg- 
ments. For example, similarity assessments or feature ratings might provide 
better access to H’s knowledge about the domain in question this point is 
discussed in Szolovits & Pauker (1978). 

To remedy these problems and ensure the applicability of LP, a psycho- 
logical theory of elementary arguments is needed. Such a theory would in- 
clude a relatively small set of parameters which, once set, map the class of 
elementary arguments into [0, 11. If the theory is accurate, then for most 
people there will exist parameter-settings that yield probabilities close to the 
person’s raw intuitions of chance. The probabilities derived from the theory 
can then be fed to LP for rectification. The advantage of applying LP to the 
theory’s output rather than directly to judgments of probability, is this. It 
might be possible to set the parameters of the theory on the basis of smaller, 
simpler input than a person’s judgment about the entire set of elementary 
arguments. This possibility is illustrated in the experimental work described 
below. In sum, the existence of a successful theory, T, of elementary 
arguments would allow us to replace Scheme (6) with the following, revised 
scheme: 

(7) REVISED SCHEME FOR USING LP: Suppose that person H is con- 
fronted with a set X of declarative statements. It is desired to define a 
(coherent) probability distribution for the algebra generated by X that is 
close to H’s raw intuitions (which may be incoherent). For this purpose, 
set the parameters of T so that every elementary argument is assigned a 
probability close to H’s judgment. (Use any kind of input from H in order 
to find the right parameters for T.) Then, LP to compute an associated 
normative envelope. 

Obviously, Scheme (7) can be implemented only in the context of a 
theory of elementary arguments. Such a theory is proposed later in this 
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paper. We then describe experiments designed to determine whether use of 
Scheme (7) yields a distribution that is reasonably close to a person’s origi- 
nal intuitions about probability. 

4. THE GAP MODEL OF ELEMENTARY ARGUMENTS 

We now present a theory of elementary arguments, known as the “Gap 
Model.” Alternative versions of the theory are discussed in Osherson, Shafir 
et al. (1994) and Smith, Shafir, and Osherson (1993). The present formula- 
tion preserves their psychological assumptions but relies on better formulas. 
Neural net implementation of a related theory is discussed in Sloman 
(1993). Earlier work on the Gap Model did not include a subsequent correc- 
tion step to ensure coherence; that is the focus of this investigation. 

4.1 The Fine Structure of Statements 
In the following discussion we limit our attention to statements that have 
the grammatical form, “subject-predicate,” as in: 

{S) Bears have three distinct layers of fat tissue surrounding vital organs. 

To avoid confusion with “subjects” in the experimental sense, the gram- 
matical subject of a statement will be termed its “object.” The object 0 of 
(8) is “Bears,” the predicate P is “have three distinct layers. . . ,” and the 
entire sentence may be denoted (0, P). Instead of specifying a set of n x m 
statements as the basis of our algebra A, it suffices to list n objects and m 
predicates, with the understanding (as in what follows) that any of the 
predicates may be applied sensibly to any of the objects; H x m statements 
are generated thereby. It is also assumed that the statements are analytically 
neither true nor false, and exhibit no IogicaI entailments, one to another. 

It seems safe to suppose that human judgment of probability is often 
based on mental representation of the referents of the objects and predicates 
that compose statements. For example, many people associate large size 
with both the object and predicate of (8), which renders (8) more probable 
than the contrasting statement: 

(9) Bats have three distinct layers of fat tissue surrounding vital organs. 

Such mental representations are no doubt highly structured, perhaps taking 
the form of “frames” (see Bobrow & Winograd, 1976; Minsky, 1981; 
Minsky, 1986; ~umelhart & Ortony, 1977; Smith, 1989 for discussion of the 
psychological reality of frames). However, for simplicity in this study, we 
assume that mental representations are just nonnegative, real feature-vectors 
in an appropriate attribute space (see Medin, Altom, Edelson, & Freko, 
1982; Osherson, Stern, Wilkie, Stob, & Smith, 1991; Shafir et al., 1990; 
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Smith, Osherson, Rips, & Keane, 1988; Tversky, 1977; Tversky & Gati, 
1982 for similar assumptions in other contexts).” 

The numbers reflect the perceived degree to which objects possess the 
corresponding attribute, or in the case of predicates, the perceived degree to 
which objects satisfying the predicate, typically possess the attribute.* No 
assumption of independence (conceptual or stochastic) is made about attri- 
butes. They well may interact (see Malt & Smith, 1984; Medin et al., 1982; 
Medin & Shoben, 1988) and their values may depend on the totality of ob- 
jects and predicates in play as discussed in Heit and Rubinstein (in press). 
More discussion of featural representations of both objects and predicates 
is available in Osherson, Shafir, and Smith (1994) Sec. 3. Ground-breaking 
studies include Katz (1972) and Lakoff (1970) and Quillian (1968). 

In the presence of feature vectors for each object and predicate, the Gap 
Model assigns probabilities to every elementary argument. This is achieved 
through three principles, namely: 

(a) a principle that determines the probability of any statement (0, P} con- 
sidered in isolation 

(b) a principle that modifies the features associated with a conclusion in 
light of the features associated with a single premise 

(c) a principle like (b) for multiple premises 

We consider these items, in turn. Suppose that human agent Ei associates 
feature vectors of length I to every object and predicate. The (nonnegative) 
value of the ith feature associated with object 0 is denoted by O(i), and 
similarly, for P(i). Hypothetical attributes and feature vectors are presented 
in Table 1. 

4.2 ProbabiIities of Individual S~te~ents 
Let statement (0, P) be given. It is assumed that Xs probability for (0, P) 
varies directly with the overlap in feature content between 0 and P, and in- 
directly with the feature content present in P, but missing in 0. Overlap is 
measured using the minimum operator, whereas missing material is 
measured using 2, the “cut-off” operator.5 For example, according to TabIe 
1, the overlap for ferocity between horses and rage is min~m~rn~~orse~(3), 
rage(3)) = minimum(3, 111 = 3 and the material missing from horses is 

3 We exclude negative features in order to simplify our similarity analysis; see formula (13) 
later. 

4 Thus, we use the term “attribute” for a dimension afong which objects and predicates are 
to be compared, for example, ferocity or size. We use “feature” for the actual number asso- 
ciated with a given object or predicate on an attribute, for example, 100 for lions on theferocity 
attribute. 

’ Recall that for all numbers X, JJ, x : y=maximum{O, x-y}; hence, x : y is subtraction 
bounded below by 0. 
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TABLE 1 

~ypofhefical Feature Vectors 
Associated With Three Objects and Two Predicates 

objects predicates 
wolves cows horses fight rage 

attributes 
1) size 4 9 8 9 12 
2) irritability 8 3 6 7 5 

3) ferocity 9 2 3 13 11 

Note. fight=“are more likely to exhibif ‘fight’ than ‘flight’when startled.” 
rage=“have a brain center for an inborn rage reaction.” 

rage(3) L horses(3) = 11 I 3 = 8. The use of cut-off is motivated by the asym- 
metrical roles of objects and predicates in determining the truth of state- 
ments. In particular, the truth of (0, P) seems to depend more on the degree 
to which 0 possesses the characteristics demanded by P than vice-versa.6 

To arrive at probability from the foregoing measures of overlap and dis- 
parity, the Gap Model relies on the following rule: 

(10) The probability assigned to (0, P) = 

Cil[ ~~~j~~~~P(i), O(i)} C&j minimum{P(i), O(i)] 

Ci,t[(P(i) : O(i)) + ~~~~~~~~~(~~, O(i)]1 = Cisl P(i) 

The numbers so assigned fall in the interval [0, 11. They are scale-invariant 
in the following sense: multiplying all the features by an arbitrary, positive 
scalar has no effect on the probability attributed to (0, P). TabIe I and for- 
mula (10) yield __ 8+5+3 = .57 as the probability of (horse&rage). 

(8+5+3)+(4+0+8) 

4.3 Single Premise Arguments 
We now consider the probability assigned to an argument with conclusion 
(0, P) and sole premise (0 : P '), as in: 

(11) Cows are more likely to exhibit ‘fight’ than ‘flight’ when startled. I(0 : P ‘)I 

Horses have a brain center for an inborn rage reaction. [(0, P)] 

In this case, (horses,rage) is modified under the impact of (cow~,~g~~) prior 
to the application of rule (10). The impact of (cow~,fig~~~ may be conceived 
in the following terms: 

6 Thus, “Corrupt politicans are crooks” commands more assent than “Crooks are corrupt 
politicians.” 
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Because (cow~,fight) is a premise, H is requested to assume its truth, 
which conflicts with the fact that cows do not meet H’s standards for fight 
with respect to some of the attributes. For example, the shortfall, or “gap,” 
with respect to the irritability attribute is fight(2) I COWS(~) = 7 : 3 = 4. To 
resolve the conflict, we assume that H is prepared to increase the value 
of irritability in objects like cows.’ The relevance of this increase to 
(horses,rage) depends on the similarity of cows to horses and on the 
similarity of fight to rage. High similarity warrants a corresponding in- 
crease in horses(a), whereas low similarity, with respect to either object or 
predicate, renders the premise irrelevant to horses. We are thus led to 
the following measure of the impact of an argument’s premise upon its 
conclusion: 

(12) Let (0: P’) be a premise in an argument with conclusion (0, P). The 
impact of (0 :P’) on (0, P) with respect to attribute i is defined as: 
[P ’ (i) : 0 ’ (i)] x sirnilarity(0 ‘, 0) X simiIarity(P ‘, P) . 

For the similarity function needed in (12), we distinguish two cases. In 
the presence of numerous dimensions (e.g., 30 or more), we use the Pearson 
correlation between the feature vectors associated with each object or 
predicate; negative correlations are set to zero. Otherwise, we are forced to 
rely on a cruder measure of the covariation of features, often employed in 
psychometrics and in other studies of probability judgment (see Gregson, 
1975, Section 2.5; Osherson et al., 1991; Stern, 1991). It is defined as the 
ratio of common to common-plus-distinctive features, which amounts to 
the following formula when applied to nonnegative vectorsf, g of length 1. 

Cjsl minimum(f(_i),g(j)} 
(13) similarity(fg)= CjSr maximum~f(j),g(j)~ 

Similarity defined either way is scale-invariant and returns values in [0, 11.’ 
To illustrate the use of formula (13) using Table 1: 

8+3+2 
(14) (a) similarityfcows, horses) = 9+6+3 = .72 

(b) similarity(fight, rage) = T2:;++y3 = .78 

’ The conflict could also be resolved by lowering the predicate values, as implemented in 
Osherson et al., 1994; Smith et al., 1993). However, (IO) must then be reformulated to avoid 
undesired consequences. The overall model is simpler, as stated here. 

B It is also symmetric, whereas human similarity judgment is known to violate symmetry in 

certain circumstances (Tversky, 1977). We have explored “contrast” versions of similarity 

measures (as in Osherson, 1987; Tversky, 1977) without improvement in the empirical results 

to be reported below. 
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(c) impact of (cowsfight) on (horses,rage) with respect to size = (9 : 9) x 
.72x .78=0 

(d) impact of (cowsJig&) on (horses,ruge) with respect to irritability = 
(7 : 3) x .72 x .78 = 2.25. 

(e) impact of (cows,.fight) on (horses,rage) with respect to ferocity = 
(13: 2)x.72x.78=6.18 

Definition (12) is used in one-premise arguments like (11) as follows: For 
each feature i, O(i) is increased by the impact of (0 : P ') with respect to i. 

The probability of the argument is then calculated using (lo), with the 
modified 0 in place of the original. As a result of applying the computa- 
tions in (14), the feature vector for horses in (11) becomes: 

The probability given to (horses,rage) under the premise (cows&ght) is: 

8+5+9.18 
= .79. 

(4+0+1.82)+(8+5+9.18) 

The latter probability is higher than computed in Section 4.2 for (horses,rage) 

under no premises. The difference reflects the information carried in (cows, 
fight). More generally, adding premises to elementary arguments only in- 
creases the probability of their conclusions, according to the Gap Model. 
This kind of “monotonicity” is not a general feature of reasoning, as 
revealed by examples discussed years ago in the context of the “total evi- 
dence” requirement see Hempel(l960) Section 2 and references cited there). 
Even in the limited domain of mammals, monotonicity is sometimes violated 
in human judgment (see Osherson, Smith, & Wilkie, Lopez, & Shafir, 1990; 
Smith et al., 1993; Sloman, in press). Such cases are too rare, however, to 
justify complicating the model here. Nonmonotonicity can be predicted by 
introducing new assumptions about feature matching as in Sloman (1993), 
or else by introducing “coverage” variables, as discussed in Osherson et al. 
(1990). 

4.4 Multiple Premise Arguments 
Now consider multiple premise arguments, such as this one: 

(15) Wolves have a brain center for an inborn rage reaction. [(0”, P)] 
Cows are more likely to exhibit ‘fight’ than ‘flight’ when startled. [(0 : P ‘)] 

Horses have a brain center for an inborn rage reaction. [(O, P)] 
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The Gap Model assigns probabilities to such arguments through the follow- 
ing maximum concept (which relies on Definition [12], above): 

(16) Let (s, {s,. . .s,,,}) be a multipremise argument with conclusion S. The 
maximum impact of the premises s, . . .s,,, on s, with respect to attribute i, 
is the largest of the following numbers: 

the impact of sI on s with respect to i 

the impact of sm on s with respect to i 

For argument (15) and Table 1, arithmetic shows that the maximum impacts 
are: 

(a) 4.16 for size (provided by (wolves,rage) 
(b) 2.25 for irritability (provided by (cows,fight) 
(c) 6.18 for ferocity (provided by (cows,fight) 

Definition (16) is used in multiple premise arguments as follows: For 
each feature i, O(i) is replaced by O(i) + 1, where I is the maximum impact 
of the premises on (0, P) with respect to i. The probability of the argument 
is then calculated using (IO), with the modified 0 in place of the original. 
For example, the feature vector for horses in (15) becomes 

and the probability given to (horses,rage) under the premises (wolves,rage) 
and (cows,fight) is: 

12+5+9.18 
= .93. 

(0+0+1.82)+(12+5+9.18) 

Compared to argument (1 l), the additional premise (wolves,rage) raises the 
probability attributed to (horses,rage). It is evident that the Gap Model’s 
treatment of single-premise and premise-free arguments is a special case of 
its treatment of multiple-premise arguments. 

The foregoing use of maximum is motivated by the following considera- 
tion: Suppose that 0, and O2 are highly similar objects, perhaps differing 
only in name (like porpoises and dolphins). Then an argument of form (a) 
below should have probability close or identical to that for (b). 

(0% P) 
(01, P) (OL, P) 

(a) (b) 
(0, P) (09 P) 
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Such an outcome is obtained by application of the maximum principle. In 
contrast, summing the impacts of premises gives the wrong result because 
argument (a) is then assigned an appreciably higher probability than (b) for 
many choices of predicate P. On the other hand, when 0, and 0, are dis- 
similar we expect (a) to be stronger than (b). It is easy to see that use of the 
maximum principle assures this outcome whenever the features for 0, do 
not systematically dominate those for O,.9 Hybrid models employing a 
combination of maximum and sum are also possible (see Osherson et al., 
1990, p. 199), but in the interests of simplicity, only maximum appears here. 

This completes our description of the Gap Model. The reader may verify 
that the model is insensitive to premise order, and that arguments in which 
the conclusion appears as premise are uniformly assigned probability 1. 
These properties of the model have a descriptive appeal, as well as being 
normatively correct. There is, nonetheles, no guarantee that the “probabil- 
ities” generated by the model are coherent; some choices of feature vectors 
lead to coherence, others to incoherence. It falls upon LP to correct the 
latter state of affairs, as summarized in Scheme (7) above. The use of the 
Gap model, followed by application of LP to its outputs, will be denoted 
“Gap + LP” in the remainder of the discussion. 

5. FIRST EXPERIMENTAL TEST: INPUT FEATURES 

Instead of asking a person H to evaluate elementary arguments, we may ask 
H, instead, for the feature-vectors underlying a set of objects and predicates. 
The Gap Model converts the vectors into probabilities for elementary argu- 
ments, which may then be fed to LP for rectification. The resulting dis- 
tributionn is guaranteed to be coherent. However, it is not guaranteed to 
approximate H’s judgment of probability. Our first experiment was designed 
to assess the quality of this approximation. 

5.1 Method 
Twenty undergraduates from the University of Michigan participated, 
recruited by advertisement and paid for their time. There were four parts to 
the experimental protocol. The students were first presented with a set of 
objects and predicates. Next, they assigned probabilities to the elementary 
arguments thus engendered. The same judgments were then made a second 
time as a reliability check. Finally, participants rated each object and 
predicate along thirty dimensions. We consider these parts, in turn. 

9 For illustration of these points, see Osherson et al,, 1990; Smith et al., 1993. 
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TABLE 2 

Sets of Obiects ond Predicates Available as Options in Experiment 1 

Objects: 

Predicate 1: 
Predicate 2: 

set 1 

Bears, Beavers, Squirrels, Monkeys, Gorillas 

have 3 distinct layers of fats tissue surrounding vital organs 
have over 80% of their brain surface devoted to neocortex 

set 2 
Objects: 1 Lions, Housecats, Camels, Elephants, Hippos 

Predicafe 1: [ have a visual system that fully adapts t,o darkness in less than 5 minutes 
Predicafe 2: have skins &we resistant to pen&ration than most synthetic fibers 

Presentation of Objects and Predicates 
Subjects were randomly assigned one set of stimuli from the two options 
shown in Table 2. Each set consisted of five objects and two predicates. Five 
objects and just one of the predicates yields 5 statements and 80 nontrivial, 
elementary arguments (i.e., 80 elementary arguments whose conclusion 
does not figure among the premises). Each of these arguments involves the 
same predicate in premises (if any) and conclusion. Relying on the same five 
objects and the second predicate yieIds another set of 80 elementary argu- 
ments of similar character. These two sets of 80 arguments constitute the 
stimuli delivered to a given participant for evaluation. 

Assignment of Probabilities 
Each person assigned probabilities to his or her 160 arguments, delivered in 
individualized random order by means of computer. Order of premises was 
determined randomly for multi-premise arguments. To illustrate, a typical 
2-premise argument was presented in the following form: 

What is the probability that 
Bears have over 80% of brain surface devoted to neocortex, 

given that this property also applies to the following: 
squirrels 
beavers 

Probability: 

The “given that” clause did not appear for O-premise arguments. Prior in- 
structions emphasized that probabilities were to be assigned while assuming 
the truth of given premises (if any). Each question was to be treated sepa- 
rately, with no assumptions carried forward. The first two parts of the pro- 
cedure were performed in immediate succession, and required roughiy one 
hour to complete. 
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Reliability Check 
Several days later, participants returned to evaluate all their arguments a 
second time under a new random order (premise order also was freshly 
randomized). Previous responses were not made available. 

Feature Ratings 
Participants were asked to rate their five objects and two predicates along 
thirty dimensions on a scale of 0 to 10. The dimensions used were the same 
for all participants, and they are shown in Table 3. They were rated in the 
order listed, first for the two predicates, then for the five objects. These par- 
ticular dimensions were selected from a set of 80 that figured in earlier 
experiments (e.g., Osherson et al. 1991). The thirty dimensions in Table 3 
received the highest, average rating of relevancy to the objects and 
predicates appearing in Table 2; the rating was carried out by a separate 
group of 10 individuals. 

5.2 Preliminary Analyses 
Three participants were dropped from further analyses on the basis of 
anomalous responses to the probability procedure (e.g., assigning .5 to all 
arguments, or assigning probability 1.0 to all O-premise arguments). As a 
measure of reliability for each of the remaining 17 individuals, a Pearson 
correlation was calculated between his or her responses in parts 2 and 3 of 
the procedure. Reliability ranged from .38 to .90, with a median of .68.‘O In 
all subsequent analyses, we use the average of a participant’s two responses 
to the same argument as his or her “official” judgment about that argu- 
ment. The coherency of the participants’ responses is reported in Section 6. 

As explained earlier, each person evaluated two sets of 80 arguments, 
each set homogeneous in predicate. In subsequent analyses, we keep these 
sets segregated and thus refer to “half-subjects.” Each half-subject evaluated 
all 80 elementary arguments that arose from the underlying set of five objects 
and one predicate. The 17 subjects thus represent 34 half-subjects, each 
analyzed on a within-subject basis. 

5.3 Performance of the Gap Model With and Without LP 
Applied to the feature-values associated with a given half-subject, the Gap 
Model produces probabilities for all 80 of his or her arguments. For each 
half-subject, we thus compared the mean absolute deviation between the 
Gap Model’s predictions and the value actually assigned, along with the 
correlation between the latter two numbers. Since each object and predicate 
was coded along 30 dimensions, the Pearson coefficient was used as a 

lo None of the 17 subjects was dropped on grounds of insufficient reliability. In the next ex- 
periment (discussed later), we switched policy and only used data obtained from subjects who 
passed a reliability threshold. 
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measure of similarity, with negative correlations set to zero.” The median 
(over 34 half-subjects) absolute deviation is .21. The median correlation is 
53 (with 28 positive correlations significant at the .Ol level). For each half- 
subject we next computed normative envelopes for the probabilities offered 
by the Gap Model. The incoherency of the Gap Model’s predictions turned 
out to be minimal (average error of .007 in the sense of Definition [2]). As a 
consequence (see Fact [5]), Gap+ LP makes the same predictions as the 
Gap Model, alone. 

For comparison, we wished to determine the predictive value of a 
superficial aspect of arguments, and chose the number of premises in an 
argument for this purpose. Hence, for each half-subject, we computed the 
Pearson correlation between the number of premises in an argument (rang- 
ing from O-4 over the 80 arguments) and the probability assigned to it. The 
median coefficient over all 34 half-subjects was .35, hence inferior to use of 
the Gap Model with features. On the other hand, we also computed for each 
half-subject the mean absolute deviation between the probabilities assigned 
to the 80 arguments, and the average of those same probabilities. The 
median deviation was .17, hence superior to the Gap Model (which does 
not, of course, peek at the empirically obtained probabilities to make its 
predictions). 

A more sensitive test with input features would tailor the choice of 
dimensions to the particular subject whose probability judgment is in ques- 
tion. However, even on the basis of preimposed dimensions the Gap Model 
(with or without LP) makes appreciable sense of attributed probabilities, 
yielding statistically significant correlations in a large majority of cases. 

6. SECOND EXPERIMENT TEST: INPUT PROBABILITIES 

As noted in Section 2, it is often impractical to request evaluation of a full 
set of elementary arguments. This is because any full set for an algebra 
based on n initial statements includes at least 2” - 1 arguments. It is thus im- 
portant to determine whether the parameters of the Gap Model can be set 
accurately on the basis of just a subset of elementary arguments. The model 
can then be used to generate probabilities for all elementary arguments, 
with LP applied as before.12 

‘I See Section 4.3. If formula (13) is used instead, the results are slightly inferior to those 

reported later. On the other hand, in a fifth step to the procedure subjects rated all pairs of 
mammals for similarity. Using these numbers in place of (13) slightly improves the results. 

(Since only one predicate figured in a given stimulus set, only its self-similarity is needed for the 

Gap Model; this was assumed to be 1.) 

I* Some of the data analyzed in this section appeared in Osherson et al. (1994). They are 
analyzed here in terms of the revised Gap Model, along with the additional step of rectification 

through LP. The data from Experiments 1 and 3 are reported here for the first time. 



A SOURCE OF BAYESIAN PRIORS 393 

6.1 Method 
Fifty-two undergraduates from the University of Michigan completed the 
first three parts of the procedure described in Section 5.1, that is, everything 
but feature rating. In this experiment, we insisted on high reliability between 
the probability judgments given in parts 2 and 3, as measured by the Pear- 
son correlation between them. For 22 participants, this coefficient fell 
below .70, so their data were dropped from further analyses. The median 
reliability for the remaining 30 participants was .80. As before, we used the 
average of a subject’s two responses to the same argument as his or her 
“official” judgment about that argument. Also as before, arguments were 
segregated by predicate, yielding two half-subjects. Each half-subject 
evaluated all 80 elementary arguments that arose from an underlying set of 
five objects and one predicate. Finally, we added the 34 half-subjects from 
the first experiment to the present data set (ignoring the feature ratings col- 
lected for them). The ensuing analyses were thus carried out on a total of 94 
half-subjects.1g 

6.2 Prelimjna~ Analyses 
For each half-subject, we computed a normative envelope for the 80 argu- 
ments and associated probabilities. The error of this distribution (according 
to Definition [2]) is a measure of the incoherency of judgment; zero error 
implies coherency. Over all 94 half-subjects, the median error was ,068, 
with a minimum of .005 and a m~imum of -268. Thus, participants tended 
to be incoherent.14 

6.3 Performance of the Gap Model With and Without LP 
Let us now consider the predictive accuracy of our method when supplied 
with a small set of elementary arguments plus associated probability judg- 
ments. The analysis proceeded as follows for each of the 94 half-subjects 
(analyzed individually): 

First, ten arguments were randomly selected from the total of 80, to fix 
the Gap Model’s parameters. Different random selections were made for 
each half-subject. These ten arguments are called the “input” arguments in 
the following discussion. 

Second, an iterative procedure was employed to find six vectors of non- 
negative numbers, one vector for each of the five objects and one predicate 
that underlay the 80 elementary arguments. For the length of these vectors, 

I3 If the analyses are limited to either (a) the 30 subjects p~tic~pating in the second experi- 
ment, or (b) the 42 subjects in both experiments with intersession reliability of .7 or better, then 
the performance of the Gap Model is slightly superior to that reported below. 

” It is possible that our linear programming method is subject to rounding error and that 
some of our participants were perfectly coherent. We note in this connection that the analysis 
relied on the widely used MINOS package (Murtagh & Saunders, 1992) for linear optimization. 
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TABLE 4 

Predictive Accuracy of the Gap Model and Gap+LP in Experiment 2 

Arguments Predictive Accuracy Predictive Accuracy 
of the Gap Model of GapfLP 

# input # predicted Deviation Correlation Deviation Correlation. 
1) 10 70 .141 .51 .157 .44 

2) 20 60 ,114 .69 .131 .63 

31 30 50 .093 .75 .113 .72 

Note. The columns headed Deviation give the median, average absolute deviation 

between predicted and observed values. The columns headed Correlation give the me- 
dian correlation coefficient between these numbers. The medians are computed over 

94 half-subiects. 

we experimented with values of 2, 3, and 4. The resulting analyses yielded 
virtually identical results; we show only those for 3 attributes.lf The itera- 
tive procedure sought a set of vectors that minimized the average absolute 
deviation between (a) the probabilities assigned by the half-subject to the 
ten input arguments, and (b) the probabilities calculated by the Gap Model 
for the same arguments on the basis of the chosen vectors. The minimiza- 
tion algorithm employed was based on the “direction set” method described 
in (Press, Flannery, Teukolsky, & Vetterling, 1992, Chapter lo), with a high 
penalty given to negative numbers. Ten starting points were tried, chosen 
uniformly-randomly within the unit interval. The best set of features over 
all ten runs was retained. 

Third, once the best set of features was obtained in the preceding step, 
the Gap Model was applied to all 70 elementary arguments not participating 
in the feature-finding stage. A probability was obtained in this way for 
each. The accuracy of the Gap Model’s predictions was measured by calcu- 
lating the average absolute deviation between its predictions and the half- 
subject’s response for these remaining 70 arguments. The median value of 
this statistic over all 94 half-subjects is shown in row 1, column 4 of Table 4. 
We also calculated the Pearson correlation between the probabilities pre- 
dicted by the Gap Model and those provided by the half-subject, again with 
respect to the 70 arguments not involved in f~ture~finding. The median 
value of this coefficient over all 94 half-subjects is shown in row I, column 5 
of Table 4, These numbers measure the accuracy of the Gap Model, with no 
concern for coherence of the predicted probabilities. 

Fourth, we computed a normative envelope for the Gap Model’s proba- 
bilities over all 80 elementary arguments, in the sense of Definition (2). The 
resulting distribution assigns coherent probabilities to all 70 arguments not 
participating in the feature-finding stage. Just as for the non-normalized 

Is Because of the low dimensionality of feature vectors (namely, 3), formula (13) of Section 
4.3 was used to compute similarity within the Gap Model. 



A SOURCE OF BAYESIAN PRIORS 395 

TABLE 5 

Predictive Accuracy in Experiment 2 of the “Direct” Method, 

and of Use of the Mean of the Input Arguments 

Arguments Predictive Accuracy Predictive Accuracy 
of direct method of input means 

# input # predicted Deviation Correlation Deviation 

1) 10 70 .278 .14 .171 

2) 20 60 .245 .31 .166 

3) 30 50 .177 .55 ,170 

Note. The columns headed Deviofion gives the median, average absolute devia- 

tion between predicted and observed values. The column headed Correlation give 
the median correlation coefficient between these numbers. The medians are com- 
puted over 94 half-subjects. 

Gap Model, we determined the average absolute deviation between these 
values and those assigned by the half-subject in question, and we also com- 
puted the Pearson correlation between these two sets of 70 numbers. The 
median values (over all 94 half-subjects) for these statistics are shown in row 
1, columns 6 and 7 of Table 4. These numbers measure the accuracy of 
Gap +LP. The probabilities put out by the method form a coherent set. 

Fifth, as a comparison to the results in Table 4, we computed a normative 
envelope directly from the 10 input arguments, without the iterative method 
of Step 2, and with no role for the Gap Model. Applying LP in this way to 
the non-full set of input arguments is called the “direct” method. The 
resulting distribution was applied, as before, to the remaining 70 arguments, 
yielding median values for average absolute deviation and for correlation. 
They are shown in row 1, columns 4 and 5 of Table 5. These numbers 
measure the accuracy of the direct method. Again, the probabilities are 
coherent. 

Sixth, as another comparison, we calculated the mean value m of the 10 
input arguments, and used m to predict the probabilities assigned to the 
remaining 70 arguments. For each half-subject, this yields the average 
absolute deviation of m from the empirically obtained probabilities of the 
70 arguments. Its median value over the 94 participants appears in row 1, 
column 6 of Table 5. 

Seventh, we repeated steps 1 through 6 above using 20 and then 30 input 
arguments, in place of 10. The number of predicated arguments thus 
decreases from 70 to 60 and 50, respectively. The results appear in rows 2 
and 3 of Tables 4 and 5. 

6.4 Discussion 
Tables 4 and 5 suggest the following conclusions: 

(a) In conjunction with the iterative, feature-finding method described 
earlier, the Gap Model enjoys reasonable accuracy in predicting the 
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(b) 

Cc) 

probabilities assigned to new arguments, starting from those assigned to 
a small number of input arguments. Compared to using the mean of the 
latter to predict the former, the Gap Model is 21%, 46%, and 83% 
more accurate for sets of input arguments of sizes 10, 20, and 30, respec- 
tively (using the ratios of the median error). The Gap Model also provides 
significant information about the relative magnitudes of the probabilities 
assigned to new arguments, as shown in the correlation coefficients of 
Table 4. 
The normative envelope provided by LP is almost as accurate as the 
uncorrected Gap Model itself. In exchange for coherence, Gap + LP’s 

predictions are only 1 l%, lS%, and 22% inferior to those of the Gap 
Model, for sets of input arguments of sizes 10, 20, and 30 arguments, 
respectively (again, using ratios of median error). The obtained correla- 
tions are also only slightly inferior to those obtained from the Gap 
Model.16 
Gap + LP is considerably more accurate in its predictions than the direct 
method, which makes no appeal to the Gap Model. (As noted in Section 
3, the direct method opens the door to arbitrariness in the choice of the 
normative envelope selected by linear programming; so, we did not 
expect it to produce a descriptively accurate distribution.) 

In place of medians over subjects, the same conclusions emerge when we 
consider the number of half-subjects for which one or another method is 
more predictive. Consider, for example, the mean absolute deviation asso- 
ciated with Gap + LP versus the direct method. With 10, 20, and 30 input 
arguments, Gap + LP is more accurate than the direct method for 84, 84, 
and 79 of the 94 half-subjects, respectively. On the other hand, Gap + LP is 
fess accurate than the (uncorrected) Gap Model for 57, 75, and 68 of the 
half-subjects, respectively. 

7. EXPERIMENT 3: 
SECOND TEST WITH INPUT PROBABILITIES 

The arguments figuring in Experiments 1 and 2 are homogeneous in predi- 
cate; the same predicate figures in all the statements composing a given 
argument. This restriction is lifted in this experiment, which is otherwise 
similar to Experiment 2. 

I6 These results arc a consequence of the fact that the probabilities offered by the Gap 

Model are almost coherent, at least for the feature vectors delivered by the iterative procedure. 
Over all 94 half-subjects, for 10, 20, and 30 input arguments, the Gap Model’s median error (in 

the sense of [2]) is only ,011, .012, and .012, respectively. 
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TABLE 6 

Sets of Objects and Predicates Available OS Options in Experiment 3 

set 1 

Objects: Bears, Wolverines, Cows, Pigs 

Predicate 1: Have a brain center that when stimulated gives rise to an inborn rage react,ion. 

Predzcote 2: Are more likely to exhibit a ‘fight’ rather than ‘flight’ posture when startled. 

set 2 
Objecis: Chimpanzees, Gorillas. Beavers, Squirrels 

Prcdtcate 1: Have most of their brain surface devoted to neocortex. 

Predzrate 2: Can learn to navigate a complex maze in a matter of minutes. 

7.1 Method 
Thirty undergraduates from the University of Michigan participated. They 
were recruited by advertisement and paid for their time. 

First, participants were assigned randomly one set of stimuli from the 
two options shown in Table 6. Each set consisted of four objects and two 
predicates. They then assigned probabilities to a subset of elementary argu- 
ments, now described. Four objects and two predicates gave rise to eight 
statements and more than a thousand elementary arguments. From among 
this set, we chose every one- and two-premise argument that met the follow- 
ing condition: at most one premise could have a different predicate than 
the conclusion, and in this case, the object of the premise and the conclu- 
sion were identical. The condition eliminated the more difficult arguments, 
those in which both the predicate and object vary between a given premise 
and the conclusion. There were exactly 80 elementary arguments that meet 
the stated condition (excluding trivial arguments in which the conclusion 
figures among the premises). 

Participants assigned probabilities to their 80 arguments in individual- 
ized, random order, by means of the same procedure used in Experiments 
1 and 2. 

7.2 Performance of the Gap Model With and Without LP 
To evaluate predictive accuracy, we proceeded as in Experiment 2 for each 
of the 30 students. In summary: 

First, ten “input” arguments were randomly selected from the total of 80. 
Second, an iterative procedure was employed to find six vectors of non- 

negative numbers, one vector for each of the four objects and two predicates 
that underlay the 80 elementary arguments. We used a vector length of 3 
(the same as used in the second experiment; formula [13] was, therefore, 
employed for similarity calculations). The iterative procedure sought a set 
of vectors that would minimize the average absolute deviation between (a) 
the probabilities assigned by the subject to the ten arguments, and (b) the 
probabilities calculated by the Gap Model for the same arguments, on the 
basis of the chosen vectors. 
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TABLE 7 

Predictive Accuracy of the Gap Model and Gap+LP in Experiment 3 

Arguments Predictive Accuracy Predictive Accuracy 
of the Gap Model of Gap+LF 

f input # predicted Deviation Correlatiqn Deviation Correlation 

1) 10 70 .150 .66 .170 .58 
2) 20 60 .093 .82 ,129 .70 
3) 30 50 .076 .87 .105 .78 

Note. The columns headed Deviation give the median, average absolute deviation 
between predicted and observed values. The columns headed Correlation give the median 
correlation coefficient between these numbers. The medians are computed over 39 
subjects. 

~~~r~, once the best set of features was obtained in the preceding step, 
the accuracy of the Gap Model’s predictions was measured by calculating 
the average absolute deviation between its predictions and the participant’s 
response for the remaining 70 arguments. The median value of this statistic 
for all 30 individuals is shown in Table 7, along with the relevant Pearson 
correlation. 

Fourth, we computed a normative envelope for the Gap Model’s proba- 
bilities over its elementary arguments, in accordance with Definition (2). 
However, because it was not computationally feasible to use all possible ele- 
mentary arguments for this purpose, our normative envelope was based on 
a random sample of 25% of them (different random samples for each par- 
ticipant). As before, the resulting distribution assigned coherent probabili- 
ties to all 70 arguments not participating in the feature-finding stage. We 
determined the average absolute deviation between these values and those 
assigned by the subject. We also computed the Pearson correlation between 
these two sets of 70 numbers. The results are shown in Table 7. 

Fifth, as a comparison to the results in Table 7, we calculated the mean 
value m of the 10 input arguments, and used m to predict the probabilities 
assigned to the remaining 70 arguments, See Table 8.” 

Sixth, we repeated steps 1 through 6 above using 20 and then 30 input 
arguments, in place of 10. See Tables 7 and 8. 

7.3 Discussion 
The tables suggest that the Gap Model, both with and without rectification 
by LP, enjoys considerable predictive accuracy. This finding is reaffirmed 
by the number of subjects for which Gap and Gap f LP are more accurate 
than the mean of the input arguments. For 10, 20, and 30 input arguments, 
Gap -t-LP yielded more accurate predictions for 18, 26, and 27 subjects, 
respectively (out of 30). On the other hand, Gap + LP was consistently less 
accurate than the nonrectified Gap Model, alone. 

I7 Due to the Iarge number of valuations (namely, 256) compared to input arguments, the 
“direct” approach is not a plausible alternative. 
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TABLE B 

Predictive Accuracy Using the Mean of the Input Arguments, 

Experiment 3 

11 

Note. The column headed Deviation gives the median, averoge 
absolute deviation between predicted and observed values. The 

medians are computed over 94 half-subjects. 

8. CONCLUSIONS 

Our method Gap + LP is only a preliminary attempt to harness the richness 
of human probability judgment. Despite its rudimentary character, we 
believe that its predictive accuracy suggests the feasibility of converting a 
relatively small set of judgments (about features, similarity, probabilities of 
simple arguments, and so on) into useful measures of chance. Further pro- 
gress would require many extensions, including the following: 

Domains 

experiments with a wide variety of reasoning domains, instead of just 
mammals, and with subjects whose expertise in their chosen domain vary 

Linguistic Representation 

extension to a wider set of predicates, for example, to “unbounded” 
predicates such as runs faster than deer, and to “point” predicates such 
as runs exactly as fast as deer (for which the cut-off formula [lo] in Sec- 
tion 4.2 is unlikely to be accurate) 
extension to statements having more complicated linguistic structure 
than object-predicate form 

Mental Representation 

use of more structured representations of knowledge, compared to the 
attribute-feature system of the Gap Model 
integration of more sophisticated models of similarity, including 
models that allow the similarity of objects to depend on the predicates 
with which they are paired (see Cheng, 1991; Heit & Rubinstein, in 
press; Osherson, Smith, & Shafir, 1986, Section 2.7; Shafir et al., 1990, 
p. 237; Stern, 1991) 
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More Kinds of Data 

l extension to other sources on input, e.g., similarities, judgments of 
“conditional independence” (Geiger & Heckerman, 1991; van der 
Gaag, 1991), information about default and exceptional properties 

. tests of models using nonelementary arguments 

Other Algorithms 

. use of alternative means of computing normative envelopes, for exam- 
ple, quadratic instead of linear programming” 

As a complement to developing methods like Gap+LP, it is essential, 
also, to analyze the kinds of distributions they offer. In exchange for their 
human-like character, such methods will be limited in the range of chance 
situations they can model. Useful application thus requires insight into the 
class of distributions that can be induced on the basis of specified types of 
input. For example, we have noted already that the probabilities assigned by 
the Gap Model to arguments are monotonic~ly related to the inclusiveness 
of the premise-set; adding a premise to an elementary argument cannot 
lower the probability assigned to the conclusion. It is clear that many 
distributions fail to enforce this property of arguments, which is why the 
probability cafculus is sometimes considered sufficient to underwrite non- 
monotonic reasoning (see Bacchus, 1990; Neufeld, 1989). For another ex- 
ample, call an argument “strong” if it has appreciabIy higher probabiIity 
than does its conclusion taken alone. Suppose that the Gap Model rules 
arguments (a) and (b), below, strong. 

to*, PII (01, p21 (01, Pi) 
(a) (b) (4 

(01, P2) (02, P2) (02, P2) 

Then it must rule (c) strong as well. For, according to the Gap Model, the 
strength of (a) and (b) imply high similarity between the two objects and the 
two predicates, and the strength of (a) implies a sizable “gap” in the 
premise of (c). This is enough to raise the probability of the conciusion of 
(c). However, it is easy to find interpretations of the objects and predicates 
in which the first two arguments are strong, but the third is not.l9 

IS A few of our analyses were carried out using the quadratic programming method devised by 
Wolfe (see Franktin, 1980, Ch. 11.1) with resuits comparable to those reported here. However, 
the computational burden of these analyses prevented us from using them throughout. 

I9 For example, consider a harmonious couple consisting of an astronaut 0, and his wife 0,. 
Let PI be, “is selected for a mission to Mars,” and let P2 be, “is happy.” Then, (a) is strong 
because of 0,‘s ambition, and (b) is strong because O2 tends to be happy when 0, is. But (c) is not 
strong because of 02’s desire to be with 0,. 
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Finally, it is worth emphasizing that the attempt to transform human 
judgment into coherent, Bayesian priors does not obviate the need to under- 
stand the origins of incoherence. Indeed, in any situation that leads human 
intuition to gross violations of the probability axioms, normalization will 
yield a distribution disconnected from natural judgment and, hence, with 
no claim to plausibility. Insightful characterization of such situations is thus 
a precondition for execution of the program we advocate. 

APPENDIX I. ILLUSTRATION OF PROBABILITY CONCEPTS 

The illustrations that follow are designed to aid comprehension of Sections 
2 and 3. 

Valuations, Algebras, and Distributions 
Suppose that there are just 2 members of the initial set X = {s,, sZ} of declar- 
ative statements. For definiteness, they can be imagined to be: 

s, = “It will snow in Altanta during 1999.” 
sZ = “It will hail in Dallas during 1999.” 

Then, there are exactly 4 valuations for X, namely: 

wl(s1) = true WI(+) = true wz(51) = false w2(s2) = true 

fJ3(91) = true 2)3(52) = false oq(sr) = false wd(ss) = false 

(Think of each valuation as a “possible state of affairs” regarding X). The 
algebra A over X consists of infinitely many statements such as these: 

SI S2 1 St 1 s2 St A SZ s1 vs, 
s, A 1 SZ St A 1 s, l (Sl v SJ l(Sl A s,) 7 l(S! - &) & v 6, v s*) 

Each valuation imposes a truth-value on every formula of A. For example: 

V,( ls,) = true v2(sI A s,) = false v& V s,) = true 

V2(SI A ls2)=fa/se v2(s2 A ls,) = true v,( 1 l(sl -sJ) = true 

Now consider the real-valued map m defined on the four valuations as 
follows: 

m(v,) = .l m(h) = .2 m(h) = .3 m(v,) = .4 

(Thus, m gives the probability of each, possible state of affairs.) Since m 
satisfies the conditions in (l), it may be converted into a distribution P over 
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A , as indicated in Section 2. For example, consider the formula, sI v sI. It 
is easy to verify that just the valuations of v,, vI, v, render s2 v s, true. 
Hence, P(s, V s,) = m(v,) + m(v,) + m(v,) = .6. As an illustration of condi- 
tional probability, we have: 

P(lS,.) s2 v s,)= 
P(ls, A (s* ” s,)) = m(h) .2 1 =A=- 

P(s* v s,) m(h) + m(b) + m(b) .6 3 * 

Coherence Through Linear Programming 
Here are some arguments of A : 

(ls,, Is* VSll) (Sl v l SZ, {ls,, SZ}) (s* v ls,, 0) SZ vls, 

The probability according to P of (ls,, {sI v sl}) was calculated earlier to 
be l/3. 

Let S be the subset {s,, sI A s2} of (zero-premise) arguments of A. 
Suppose that H is defined on S so that H(s,) = .4 and H(s, A sZ) = . 1. Then 
H is coherent because it can be extended to a distribution over A . For 
example, P as defined previously is such a distribution. By contrast, if H(s,) 
= .4 and H(s, A sI) = S, then H is incoherent because no distribution 
assigns greater probability to s, A s2 than to s,. Because s, is made true by 
{v,, v,}, and s, /\ s2 by {v,}, a normative envelope for the incoherent ver- 
sion of H is found by minimizing the variable c relative to the following 
linear constraints see Franklin (1980) for discussion. 

c + v, + VI 5 .4 c + v, h .5 -c + v, + v, 5 .4 -c + v, s .5 

v, z 0.0 vz 1 0.0 v, B 0.0 vg 20.0 
c 1 0.0 VI + VI + vj + v4 = 1.0 

One normative envelope that emerges from the minimization is: 

m(v,) = .45 m(v,) = .275 m(v,) = 0.00 m(v,) = 6.275 

Its error with respect to S and H is .05, which is the value assigned to c by 
the minimization. A slight variant of this procedure computes normative 
errors for arguments with non-empty sets of premises. 

Elementary Arguments 
Here are all the elementary arguments of A, except for the trivial ones in 
which the premises include the conclusion. 

s1 S2 (Sl, {s21) (SZ> {St 1) 

It can be shown that the first three arguments constitute a full set (as do the 
first, second, and fourth). Thus, any coherent assignment of probabilities 
to the first three arguments can be extended to a distribution over A in just 
one way. For example, let H be such that H(s,) = .6, H(s2) = .5, and H(s,, 
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F$)d;,7. Then His coherent and can be extended only to the distribution 
. 

m(v,) = .35 m(h)=.15 m(h) = .25 m(v,) =0.25 

APPENDIX II: SKETCH OF THE PROOF OF FACT (5) 

By a “positive conjunction,” we mean any formula of the form S, A. . . A Sj, 
where each si is an elementary (unnegated) statement. It is easy to verify 
that r statements lead to 2’- 1 logically distinct positive conjunctions of 
length 1 to r. By reflecting on the Venn diagram associated with a distribu- 
tion over r events, it is clear that the probability of positive conjunctions 
determines the probability of every formula (because the labeled regions of 
a Venn diagram are just the positive conjunctions). Hence, the set of 
positive conjunctions is full. *O It is thus sufficient to show that the prob- 
abilities of any positive conjunction can be deduced from those of elemen- 
tary arguments. To see that this is true, consider the positive conjunctions si 
and Si A Sj. Their probabilities follow from those attached to the elementary 
arguments Si and (Sj, {si}). For si, this is trivial. For si A sj, notice that 
P(Sj9 {Si}) X P(Si) = [P(Si A Sj)/P(Si)] X &Ti) = P(Si A Sj).” For positive 
conjunctions with more than two conjuncts, it is clear how to proceed by in- 
duction. In fact, only 2’- 1 elementary arguments are necessary to deduce 
all of the positive conjunctions in this manner. Fewer than 2’- 1 arguments 
(even in the presence of the sum-to-one constraint) are insufficient because 
the dimensionality of the space of valuations is 2’. 
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