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[1] With growing interest in understanding the magnitudes and sources of uncertainty in
hydrological modeling, the difficult problem of characterizing model structure adequacy is
now attracting considerable attention. Here, we examine this problem via a model-structure-
independent approach based in information theory. In particular, we (a) discuss how to
assess and compute the information content in multivariate hydrological data, (b) present
practical methods for quantifying the uncertainty and shared information in data while
accounting for heteroscedasticity, (c) show how these tools can be used to estimate the best
achievable predictive performance of a model (for a system given the available data), and
(d) show how model adequacy can be characterized in terms of the magnitude and nature of
its aleatory uncertainty that cannot be diminished (and is resolvable only up to specification

of its density), and its epistemic uncertainty that can, in principle, be suitably resolved by
improving the model. An illustrative modeling example is provided using catchment-scale
data from three river basins, the Leaf and Chunky River basins in the United States and the
Chuzhou basin in China. Our analysis shows that the aleatory uncertainty associated with
making catchment simulations using this data set is significant (~50%). Further, estimated
epistemic uncertainties of the HyMod, SAC-SMA, and Xinanjiang model hypotheses
indicate that considerable room for model structural improvements remain.
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1. Introduction

1.1.

[2] The extant literature discusses three sources of hydro-
logical model uncertainty: data uncertainty, parameter
uncertainty, and model structure uncertainty. With the
advent of physically based distributed models, the problem
of estimating predictive uncertainty soon came to the fore-
front [e.g., Beven, 1989; Beven and Binley, 1992]. Early
research focused primarily on parameter and output data
uncertainties while ignoring other sources [e.g., Sorooshian
and Dracup, 1980; Kuczera, 1982 ; Beven and Binley, 1992
Freer et al., 1996; Gupta et al., 1998; Duan and Schaake,
2002; Vrugt et al., 2003]. With further developments in
modeling, interest in the other sources of uncertainty has
grown [Vrugt et al., 2005; Ewen et al., 2006], leading to
explorations of input uncertainties due to errors in the forc-
ing data [Kavetski et al., 2006a, 2006b; Vrugt et al., 2008;
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Li et al., 2012] and of the inadequacies of model structure
[Butts et al., 2004 ; Clark et al., 2008 ; Fenicia et al., 2008].
Recently, formal Bayesian approaches have been proposed
for the quantification of model uncertainty [Bates and Camp-
bell, 2001 ; Thiemann et al., 2001 ; Kaheil et al., 2006], and,
particularly, for the explicit integration of multiple sources
of uncertainty [Kavetski et al., 2006a, 2006b; Ajami et al.,
2007; Marshall et al., 2007 ; Zhang et al., 2009].

[3] Although data and parameter uncertainties can be
characterized relatively easily in terms of probability distri-
butions, bounds, or limits, the treatment of structure uncer-
tainty requires special attention [Gupta et al., 2012]. The
most popular method to date is probably Bayesian multi-
model averaging (BMA) [Hoeting et al., 1999; Neuman,
2003a, 2003b], which uses multiple structures to character-
ize the uncertainty in our knowledge of the mechanics of
underlying hydrological processes [Butts et al., 2004;
Georgakakos et al., 2004 ; Ajami et al., 2006; Duan et al.,
2007]. Other methods seek not just to characterize model
structure uncertainty but to also improve the structure of
the hydrological model; examples include time-variable
parameter methods such as the state-dependent parameter
(SDP) estimation method [Young et al., 2001; Young and
Ratto, 2009], the recursive prediction error (RPE) approach
[Lin and Beck, 2007], and the time-dependent parameters
approach [Reichert and Mieleitner, 2009]. Recently, a new
method called the Bayesian estimation of structure (BESt)
approach [Bulygina and Gupta, 2009, 2010, 2011] has been
proposed to resolve the underlying structure of the model
via data assimilation conducted on the raw data.
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[4] One major problem faced by all such methods is lack
of knowledge about the best achievable performance
(BAP) of a model for a particular system given the avail-
able data (note that performance can only be meaningfully
and precisely assessed in the context of a specific system
and data set). Previous investigations into model structure
uncertainty have all been based on the adoption of one or
more prior structural hypotheses. However, since the
“true” model structure is unknown (and the concept itself
is arguably suspect—see discussion by Gupta et al.
[2012]), any uncertainty analysis based on prior assump-
tions regarding the model structural hypotheses lacks the
specification of a proper reference frame. To address this
issue, we use Shannon’s definition of information to de-
velop a method that can potentially characterize the inher-
ent degree of explanatory power present in a given data set.
This provides a measure of BAP for a given system and
data set, which provides a meaningful benchmark against
which the power of a model structure hypothesis can be
assessed, even if the structural form of the “best” possible
model remains unknown.

[s] Once the BAP of a model (for a system given the
available data) can be characterized, we can then address
two distinct categories of model uncertainty, (1) aleatory
uncertainties (AU) that are only resolvable up to the speci-
fication of their probability densities and (2) epistemic
uncertainties (EU) that can (in principle) be suitably
resolved by a structurally adequate model (one that prop-
erly expresses the nonaleatory relationships present in the
given data set). As such, characterization of the BAP estab-
lishes the size and nature of aleatory uncertainties associ-
ated with the currently available data set, which cannot be
reduced by any possible model hypothesis regarding rela-
tionships expressed by the existing data (it is of course gen-
erally difficult to know whether new/additional data might
help to reduce these aleatory uncertainties further). Mean-
while the difference between the achieved performance of
a specific model hypothesis and the BAP (by any possible
model hypothesis) establishes the size and nature of episte-
mic uncertainty that can be reduced by improvements to
the existing model structure. Based on these concepts, ran-
dom observational errors associated with the input/output
data can be categorized into AU (along with any inherent
stochasticity in the explanatory relationships connecting
the input and output data), while parameter uncertainty and
model structural inadequacies (including systematic errors
in the observational data) can be categorized into EU.

1.2. Goal, Objectives, and Scope

[6] The goal of this paper is to examine how we can
quantify the extent to which information about the catch-
ment-scale rainfall-runoff process is expressed by a hydro-
logical data set, and to assess how much of that information
is actually expressed by a hydrological model used to simu-
late the behavior of that system. Similar to other methods
of uncertainty analysis, our approach provides estimates of
the distribution of system output simulation errors. How-
ever, it goes further by also quantifying, explicitly, the
amount of information about the system outputs that is
expressed by the available catchment data and by the
model—in other words, how much of the uncertainty in the
system output can be reduced by use of the information

contained in the available catchment data and by the use of
a model structural hypothesis that relates system input to
outputs via a state-space representation.

[7] Our primary objectives, therefore, are to evaluate:
(a) How much information is required to generate “reason-
ably accurate” simulations of the system outputs (e.g., run-
off) (we call this the “information required”); (b) How
much information is contained in the available system
input-state-output data (“information available”); and (c)
To what degree the available information is correctly
expressed by a given model hypothesis (“information
expressed”’). We can then compute two kinds of uncer-
tainty (aleatory and epistemic) from these three kinds of in-
formation as follows:

[8] (1) AU=information required — information
available.
[¢9] (2) EU=information available — information
expressed.

[10] Note that AU expresses the information gap caused
by random errors in the observation data or by inherent ran-
domness in the hydrological processes linking the system
inputs, state variables, and outputs; this uncertainty cannot
be removed by improving the model. Similarly, EU expresses
the information gap caused by model structural inadequacies;
this uncertainty can potentially be reduced by improvements
to the model hypothesis, possibly including adjustment fac-
tors to account for systematic bias in the observational data
(as was done by Kavetski et al. [2006a, 2006b] and Vrugt
et al. [2008]).

[11] Concepts and tools from information theory have
been used in hydrology and water resources for decades
[Singh, 1997, 2000]. Close to the focus of this paper, infor-
mation theory has been applied for model evaluation and
uncertainty analysis as far back as the 1970s [e.g., Amoro-
cho and Espildor, 1973; Chapman, 1986; Weijs et al.,
2010a, 2010b; Weijs and van de Giesen, 2011; Abebe and
Price, 2003 ; Pokhrel and Gupta, 2010]. However, none of
the studies have provided a comprehensive method for
qualifying the overall information content of a data set (the
information available as mentioned earlier). One possible
reason for this lack may be that whereas the data sets of
contemporary interest tend to be of high dimension, con-
ventional methods available for estimating “information
content” are limited to a variable dimension not exceeding
three. To mitigate this problem, we draw upon some very
recent advances in information theory to develop an appro-
priate methodology that is suitable to our goals. With this
method, we are able to meet the primary objectives men-
tioned earlier.

[12] The paper is organized as follows. We first lay out
principles of information theory that are relevant to the
problem of quantifying BAP of a model for a system given
the available data and to the problem of characterizing
model structural uncertainty. Section 3 presents the compu-
tational methods necessary for effective and efficient esti-
mation of the information metrics discussed in section 2. In
section 4, we employ a case study to demonstrate how alea-
tory uncertainty in an available data set and epistemic
uncertainty of a model hypothesis can be quantitatively esti-
mated, providing information useful for establishing limits
to achievable model performance and for assessing model
structural adequacy. Finally (in section 5), we discuss some
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interesting implications of our results and make suggestions
for future work.

2. Concepts of Information Theory and Their
Relevance to Hydrological Modeling

2.1. Principles of Information Entropy and Mutual
Information

[13] Entropy is the basic principle of information theory
proposed by Shannon [1948]. Shannon’s definition of infor-
mation entropy for a variable that takes on a discrete set of
values is

Hdiscrete (X ) -

=Y p(x)logyp(x), (1
xeX

where the negative sign ensures that H(X) is positive (since
log;, p(x) is negative). This is the only possible definition
that ensures that H satisfies three properties:

[14] (1) H is continuous in p(.).

[15] (2) If all elements p(.) are equally probable, then H
is a monotonic increasing function of the number of
elements.

[16] (3) H is additive [Shannon, 1948].

[17] The base used for the logarithm is arbitrary. If
b=2, then H(X) is measured in bits (common in informa-
tion theory), whereas if b =e¢ it is measured in nats (com-
mon in thermodynamics). Any choice is acceptable since
a change of base only changes the result by a constant;
in this paper, we use base e. According to this definition,
Hdiscrete can vary on [03 OO]

[18] Similarly, the definition of information entropy for a
variable whose values are continuous is

Hcontinuous (X -

- /X £ ()logf ()dr, @

where f{x) is the probability density function (pdf) of X,
and the integral over the support set of X is assumed to
exist. However, it is common for measurements of continu-
ous variables to be expressed in discrete fashion due to
quantization during the observational process. When a con-
tinuous variable is discretized using bin width w, the rela-
tion between the resulting discrete entropy and the original
continuous entropy can be expressed via the following
equation, provided that w is not too large:

Hdiscrete (X) + IOg(W) — Icontinuous (X)7 asw — 0. (3)
Note that the difference between the discrete and continu-
ous versions of entropy is expressed by the bin-width factor
log(w). Further, note that since log(w) is negative for
w< 17 Hcontinuous can vary on [iOO]

[19] Generally speaking, information entropy quantifies
the “extension” of a random variable. A variable having a
larger range of extension, corresponding to larger uncer-
tainty, will have larger entropy H, and a greater amount of
information will required to characterize it. So, information
entropy provides an alternative characterization of uncer-
tainty to that provided by the commonly used standard
deviation statistic o, or the (say 95%) confidence interval.

Further, it provides a more accurate characterization than
o, since the latter depends only on the second moment,
whereas information entropy takes into account the effects
of higher order moments. Note that some of the popularity
of the Gaussian distribution may be explained by the fact
that, of all continuous distributions having identical var-
iance, the Gaussian distribution has the largest entropy
(because its higher order moments are all zero), making it a
relatively robust choice when the actual shape of the distri-
bution is unknown; for more about basic concepts of en-
tropy, please refer to “Elements of Information Theory” by
Cover and Thomas [2006].

[20] Whereas information entropy characterizes the
uncertainty in a variable, we are typically interested in
knowing what one (uncertain) variable X can tell us about
another (uncertain) variable Y; in other words, how much
information is shared between the two; or in still other
words, how much of the uncertainty about Y can be reduced
by knowing X. Whereas, in the analysis of data, it is com-
mon to characterize the shared information between the
two variables by means of the linear correlation statistic
Pxy, such a characterization is only accurate when the rela-
tionship is linear. For more general cases, the shared infor-
mation can be characterized using mutual information
(MI), which quantifies the divergence between the joint pdf
p(x,y) and the product p(x).p(y) of the independent pdfs.
For continuous variables, MI is defined as

forl,)
1) = [ [ hoteesge s ot @

where f,(x) and f,(y) are marginals of the joint pdf £, ,(x,y).
Naturally, if the joint density factors exactly into the prod-
uct of its marginals, there is no shared information between
the two variables and hence /(X;Y) = 0. More generally, the
necessary and sufficient condition for independence of X
and Y is that /(X;Y) =0. Note that we can similarly define
“discrete” MI, whose value is equivalent to continuous MI
for sufficiently small bin width w [Cover and Thomas,
2006, equation (8.50)]. According to this definition, MI can
vary on [0, oo].

[21] An intuitive feel for this can be obtained from the

case where X and Y are jointly Gaussian with correlation
coefficient pyy, for which 7(X;Y) = 1log(1 — p%y) [Cover
and Thomas, 2006, equation (8.56), p. 252]. So, as pyy —
+ 1 we have I(X;Y) — *oo, meaning that the relationship
offers infinitely large amounts of information and allows
one to determine the value of one variable from the other
with an infinitely small level of precision. Therefore, the
R-statistic proposed by Granger and Lin [1994]:

= /1 —exp(=2I(X;Y)) (3)

is equivalent to the correlation coefficient pyy when X and
Y are bivariate normal, but is also meaningful in nonlinear
and/or non-Gaussian cases. To obtain an intuitive feel, note
that (for jointly Gaussian data) |pyy| values of [0.5, 0.8,
0.9, 0.95, and 0.99] correspond to /(X;Y) values of [0.14,
0.51, 0.83, 1.16, and 1.96]. So, of practical importance is
the fact that /(X;Y) <2 as long as |pyy| < 0.9907. Note,
also, that in contrast with pyy, the value of /(X;Y) does not
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depend on one-to-one nonlinear transformations of X and Y
[Granger and Lin, 1994].

[22] Conveniently, because of the additive property of
information, the value for MI can be computed from
knowledge of the individual information entropies and the
Jjoint entropies of each variable. Because the log transfor-
mation converts multiplication and division of variables to
addition and subtraction of their logarithms, the MI shared
by two variables X and Y can be expressed as

I(X;Y)=HX)+H(Y)—-HX,Y), (6)

where H(X,Y) is the joint information entropy given by

Hunn:—//xxam%muww@v ™

Further, the extent to which uncertainty in knowledge of Y
is reduced by knowledge of X is characterized by the condi-
tional entropy relationship:

H(Y|X) = H(Y) — I(X; Y), ®)
which expresses the fact that the amount of uncertainty
reduction is precisely the MI /(X;Y) shared by the two
variables.

[23] In general, of course, it is the information shared by
multiple variables that is of interest in hydrology, in which
case we work with the multivariate joint density. In this
case, by extension to equation (6) the multivariate MI
shared by several variables is expressed by the relationship:

](X17X273Xm7Y) :H(X17X277Xm)+H(Y) (9)
- H(XI>X27 ceey Xy Y)7
which denotes the information that the several variables X,
X5, ..., X, contain about variable Y, and where it is not
required that the variables Xj, X5, ..., X,, be mutually in-
dependent. Similar to equation (8) above, we now have
H(Y|X17X27 Xm) = H(Y) - [(X17X27 coey Xmj Y)7 (10)
which expresses how knowledge of the several variables
Xy, X5, ..., X,, helps to reduce uncertainty in knowledge
of Y.

2.2. Characterizing Epistemic and Aleatory
Uncertainty in Hydrological Modeling

[24] These concepts can now be used to express the dif-
ferent kinds of uncertainty in hydrological modeling. For
simplicity, we consider first a simple system in which the
values of system outputs Y are to be explained (estimated,
simulated) via knowledge of available values of system
inputs X.

[25] For any system for which we have input and output
data, the true values of the system inputs X and outputs Y,
the size and type of observation error associated with each,
and the true stochastic nature of the relationships between
X and Y are unknown. While we may have some conceptual
ideas regarding system structure, all that is quantitatively
and explicitly available to us are the observed values X,

and Y,ps. As such, all the information about this system that
is expressed by the available input/output data is contained
in the joint and marginal distributions of X and Y. From the
joint distribution, we can evaluate the information about
output Y contained in the input X. Further, from the mar-
ginal distribution of Y we can evaluate the amount of infor-
mation required to specify Y to within the precision defined
by the measurement error process.

[26] The goal of uncertainty analysis is to establish
uncertainty bounds on an estimate. More generally, we are
interested in the distribution of residual errors between the
model simulated values and the observations. In the frame-
work of information theory, once all of the MI between the
inputs X,,s and outputs Y,,s has been exploited, the uncer-
tainty remaining in knowledge of Y, is quantified by the
conditional information entropy H (Yobs | Xobs), computation
of which requires knowledge of the conditional distribution
Syix(v|x) of the outputs Yo given the value of Xy, Alter-
natively, equation (8) can be used to compute H (¥obs [ Xobs )
from knowledge of the prior (unconditional) information
entropy H(Ysps) and the mutual (shared) information en-
tropy I (Xobs; Yobs). Figure 1 illustrates these relationships in
probability space, showing the dependence between the
prior distribution of Y, the joint distribution of X, and
Yobs, and the posterior distribution of Y, given Xyps. If
only the frequency distribution of the system outputs Y is
available (and hence the relationship between X, and Yops
is unknown), the prior uncertainty in knowledge of Yy,
is characterized by fy(y), and its magnitude can
be quantified in terms of its information entropy H (Yobs) =
— [ fr(»)Infy (y)dx. If the inputs X,y corresponding to the
outputs Y, are also known, and as long as some depend-
ence relationship between X,,s and Y, exists, the condi-
tional uncertainty in knowledge of Y..,s given Xy is
characterized by fyx(v[x) as shown in Figure 1, and the
corresponding (reduced) information entropy is quantified

as H(Yobs [Xovs) = — [ frix (v[x)Infy|x (v[x)dx. As illustrated

>
<Y

X

Figure 1. A simple example showing the uncertainty in
ability to predict the value of variable Y before and after in-
formation regarding inputs X is added. After information
about X is introduced, the uncertainty is significantly
reduced. The unconditional and conditional information
entropies of Y (before and after introducing X) and the MI
shared between and X and Y can be measured by the meth-
ods presented in this paper.
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by Figure 1, the conditional distribution fyy (y|x) expresses
the amount of uncertainty in knowledge of Y, that cannot
be reduced by exploiting the information contained in the
inputs X,s. The magnitude of this uncertainty can be quan-
tified in terms of the information entropy H (Yobs|Xobs),
and, since all available explanatory information in the data
set has been exploited, we define this remaining uncertainty
as the aleatory uncertainty (for this system given this data
set):
AU :H(Yobs|Xobs) :H(Yobs)_[(yobs§Xobs)~ (11)
[27] This relationship is further illustrated in Figure 2,
where the leftmost bar H(Y,,s) indicates, in terms of infor-
mation entropy, the magnitude of the prior uncertainty in
knowledge of Y,,s (When X, is not available), and the
middle bar /(Xyps; Yons) indicates the total amount of ex-
planatory information about Y, contained in the raw data
set {Xobs, Yobs |- Because the explanatory information pro-
vided by X,ps Will, in general, be incomplete, we will have
I(Xops; Yobs) < 00, and it will be impossible to obtain a per-
fect estimate having infinitely small variation in y of the
conditional distribution fyx(y|x). Of course, this incom-
pleteness will be due to missing explanatory variables, data
error, and/or inherent (unresolvable) randomness in the
underlying X — Y relationship. In the case of the former,
this may be a problem either of conceptual inadequacy
(lack of knowledge, or simplifications, regarding variables
involved in the relationship), or simply of unavailability of
(or inability to obtain) such data. In this paper, we define
AU in a practical sense, as being conditional on the infor-
mation available in the given data set, and therefore
expressing the total uncertainty associated with all of these
sources. Of course, it is possible that additional explanatory
variables (new data not yet included in X,,s) may help to
further reduce this uncertainty, but we do not consider that
situation further in this paper.

[28] Knowing the conditional distribution of Y,,s given
Xops, uncertainty bounds on Y for given X can be easily
established. And, for example, in the common situation
where the error distribution is assumed to be homoscedastic
(the error variance does not change with the magnitude of
the variable), or even identical (the type and parameters of
the distribution do not change with the magnitude of the
variable), the confidence interval can readily be computed.
Take the situation where the conditional distribution of Y
given X is assumed to follow an exponential power distri-
bution (as used in Thiemann et al. [2001] and Vrugt et al.
[2003]), namely the generalized Gaussian distribution
[Nadarajah, 2005]. In this case, the conditional information
entropy can be written as

w0 =Ll

(12)
where s is the shape parameter and « is the scale parameter.
If the shape parameter s =2, the generalized Gaussian dis-
tribution simplifies to the standard normal distribution, and
the standard deviation o can be inversely computed as

oo [ﬁeprH(nX))]l,

LRI
o=« {F(l/s)} ~ 0.7071c.

So by assumption of a suitable distributional form for the
conditional uncertainty in Y, the estimated aleatory uncer-
tainty can be converted into a confidence interval as
required by traditional uncertainty analysis.

[20] Now consider that a structural hypothesis Y=fX)
regarding the relationships between system inputs and outputs
is posed. From the data {X} and the assumed model equa-
tions, we can compute the model-based estimate {Y,} of
system output {Yuns}. Further, the mutual information
I(Ysim; Yops) quantifies the total amount of explanatory

(13)

A
____________ P hhdas s s e LT
: Aleatory Uncertainty
e , or
g ] 1 Random Uncertainty
>
s a> e
o [ol4] - - A - -
s 2 ; ; ;
£ T = I Epistemic Uncertainty
© cz cCT w© |
£ o2 S 9% or
£ =i o] - 3
5 T 0 23° — ' Model Structure Uncertainty
‘c E 2 == 2 e >--°c’,'
= =W = Q@ L gt o g
o W o c = = ]
‘€ L ‘E o> ® o E
—_ O _- o O g _; 5
O w >
Y5
L.
Ll
H(chs ) I(Xobs; Yobs) I(Ysim; Yobs)

Figure 2.

[lustration of the concepts discussed in section 3.2. The leftmost bar indicates the amount of

information H(Y,ps) required to provide estimates of the system output. The middle bar indicates the

amount of such information 7(Xops; Yobs) contained

rightmost bar indicates the amount of explanatory information I (Ysim; Yos)

in the available system input variables Xyps. The
contained in the estimates

Ysim obtained by use of the model hypothesis ¥ = f(X). The difference between length of the left and
middle bars represents unresolvable AU. The difference between length of the middle and right bars rep-

resents potentially resolvable EU.
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information about { Y.} contained in the model-based esti-
mate {Yin}, and hence in the set of explanatory quantities
{Xops» f()}. If the model hypothesis f{.) completely captures
the essence of the X — Y relationship, then we will obtain
I(Yim; Yobs) = I(Xops; Yons)- In general, however, we can
expect that I(Ygm;Yops) < I(Xops;Yobs) due to limitations
in the model hypothesis, as shown by the rightmost bar in
Figure 2. The difference:

EU :l(Xobs§Yobs) _[(Xsim§yobs) (14)
expresses the amount of epistemic uncertainty associated
with our system (as specified), that can (in principle) be
suitably resolved by improving the model structural hy-
pothesis. This characterizes what we define here as model
structure inadequacy, which can be resolved by a combina-
tion of improved system conceptualization, and/or improved
model structural equations [Gupta et al., 2012].

2.3. Data Processing Inequality

[30] Before moving on, one important point should be
clearly made, that a model hypothesis in the form of a func-
tional relationship between the available inputs and outputs
cannot add information to the system, it only acts to trans-
form available information from one form to another. This
immutable fact is expressed by a theorem called the data
processing inequality, which demonstrates that no method
of data manipulation, whether a model or other form of
transformation, can improve upon the amount of MI con-
tained between the available system input and output varia-
bles. In other words, this expresses a law of conservation of
information; data processing methods do not generate in-
formation, and the only contributing source of information
is the raw data.

[31] The data processing inequality is defined on an in-
vertible Markov chain. Suppose random variables 4, B, C
form an invertible Markov chain 4+ B« C where C is con-
ditionally dependent on B but conditionally independent of
A (A and C are connected only via B). The data processing
inequality can be written as

1(4; B) > I(4;C). (15)
(For the proof and more details, see section 2.8 in Cover
and Thomas [2006]). In the context of our hydrological
modeling problem, suppose that 4 is the observed output
Yobs, B 1s the observed input X, and C is the simulated
output Y, via a model Y=fX), where f{.) can be either
deterministic or stochastic. In this context, the data process-
ing inequality can be expressed as

I(Xobs§Yobs) ZI(Ysim§Yobs)7 (16)

which means that the information about the output data
expressed by the input data is always larger (or equal) than
the information expressed by the same input data after it
has been processed through a model.

[32] In the case study presented below, we demonstrate
how the quantities H(Yops), {(Xobs; Yobs) and I(Ysim; Yobs)
can be computed in the context of rainfall-runoff modeling
of a catchment, and from which the resolvable epistemic
and unresolvable aleatory uncertainties (as defined above)

can be estimated, thereby providing a quantifiable assess-
ment of model structural inadequacy.

3. Numerical Computation of Information-Based
Indices

3.1. Computation of Multivariate Information
Entropy

[33] To compute accurate estimates of information
offered by observed input and output data, an effective and
efficient estimator of multivariate information entropy
HX,, X5, ...X,) is required. Estimating information en-
tropy for low-dimensional data is quite easy, but for high-
dimensional data is recognized to be a difficult problem
[Hero et al., 2002]. The most widely used methods belong
to a class called “plug-in estimators,” which first compute
(i.e., estimate) the joint pdf of the variables, and then com-
pute information entropy and MI by direct application of
the definition (equations (1), (2), and (4)). Examples of this
approach in hydrological research include the kernel-based
estimator [Sharma, 2000], bin counting method [Ruddell
and Kumar, 2009], and the average-shifted histogram
method [Fernando et al., 2009].

[34] However, because of the curse of dimensionality
[Bellman and Corporation, 1957], estimating the joint pdf
of a high-dimensional data set (m > 4) is particularly diffi-
cult, and hence plug-in methods are only applicable when
there are a small number of variables to be analyzed. A
number of “nonplugin” estimators have been proposed to
try to mitigate the curse of dimensionality; these include
the Rényi entropy estimator [Hero et al., 2002] and the
Shannon entropy estimator [Leonenko et al., 2008]. While
these methods have been shown to work well in many
applications, our preliminary investigations found that they
may not be suitable for the kinds of hydrological modeling
problems of interest here [Gong, 2012]. In particular, both
of the aforementioned approaches were unable to provide
consistent estimates of entropy for the synthetic hydrologic
modeling study reported in section 3.2. The problem of
how to compute multivariate information entropy for data
sets such as ours remains, therefore, an open problem.

[35] In this paper, we use an approach based on inde-
pendent component analysis (ICA) to estimate high-dimen-
sional entropy and demonstrate (section 3.2) that it
provides consistent estimates under increasing levels of
data measurement uncertainty. Leiva-Murillo and Artes-
Rodriguez [2007] used ICA to maximize MI for feature
extraction. In contrast, our approach decomposes the raw
data into independent components, from which high-
dimensional entropy can be estimated without having to
compute the joint pdf. The method has two major steps: (1)
use of ICA to decompose the high-dimensional data into in-
dependent variables [Hyvarinen et al., 2001] and (2) use of
plug-in estimators to compute the Shannon entropy of the
decomposed variables. It takes advantage of the chain rule
of entropy [Cover and Thomas, 2006, Theorem 8.6.2]:

m
H(X), X, X)) = > HX X1, X, X0),

":1,,, (17)
<Y H(X),
i=1
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which states that the multivariate information entropy
H(X1, X5, ...X,) is equal to the sum of 1-D entropies of
the variables under the (if and only if) condition that (X,
X5, ...X,) are independent. So, if the original data matrix
X = [X;, X5, ...X,] can be converted to a matrix of inde-
pendent “signals” S = [S}, S5, ...S,.] then the entropy of
S can be computed as H(S) = ZZI H(S;). Further, if X
can be related to S via a linear transformation X”= AS7,
where A is the transform matrix, the entropy of the original

data matrix H(X) can be recovered using [Cover and
Thomas, 2006, see corollary of Theorem 8.6.3, eq. (8.71)])

H(X) = H(S) + log|det(A)]. (18)

To decompose the original data matrix X into independent
signals S, we can use the Fast ICA (FastICA) method pro-
posed by Hyvarinen and Oja [1997]. In the case that X is
jointly Gaussian, the decomposition into independent 1-D
Gaussian components can be achieved via principle compo-
nent analysis (PCA). However, when X is non-Gaussian,
the PCA method is not adequate and the ICA method can
be used instead. The FastICA method obtains an estimate
of the matrix A by using a modified version of differential
entropy (called negentropy) to measure the degree of non-
Gaussianity of the data. Because only an approximate value
for negentropy is required, the method is efficient at provid-
ing an estimate of A, and hence, the approximate estimate
of negentropy leads to a more accurate estimation of high-
dimensional entropy, provided that the independent signals
are correctly decomposed. For more information about
ICA, please refer to Hyvarinen and Oja [1997, 2000] and
Hyvarinen et al. [2001].

[36] In this paper, we implement the method as follows
(note that steps 1 and 2 are exactly the same as in PCA):

[37] (1) Center X: Transform each column of X into a
zero-mean vector by subtracting its mean.

[38] (2) Whiten X: Whiten each column x of X, to
obtain X such that each x is uncorrelated and has unit var-
iance. Eigen value decomposition (EVD) of the covariance
matrix XX” can be used to do whitening.

[39] (3) Compute non-Gaussianity of X : Compute 1-D
negentropy J(x) of each column of X using

J(x) o< [E{G()} — E{G)}]’, (19)
where E is the expectation operator, G(.) is a nonquadratic
function, and v is a Gaussian variable of zero mean and unit
variance. J(x)is a nonnegative value and equal to zero if
and only if x is Gaussian. If every column of X is Gaussian,
stop here. If not, carry out FastICA as indicated in step 4.

[40] (4) Implement FastICA to find S: FastICA finds
an “optimal” value for A (and hence S) that maximizes
non-Gaussianity, by making use of a fixed-point iteration
scheme to perform this optimization effectively and
efficiently.

[41] (5) Compute H(S): Compute the Shannon entropy
H(S;) of each independent signal using a bin-counting
method and sum them to obtain H(S).

[42] (6) Compute H(X): Compute the Shannon entropy
H(X) by adding log|4| as shown in equation (19).

[43] In this paper we used the default MATLAB imple-
mentation of FastICA (http://research.ics.aalto.fi/ica/fastica/),
where an initial A is chosen randomly and another selection
for A is generated if the fixed-point iteration fails. We found
FastICA to be very efficient, requiring only a few seconds
of CPU time to decompose a 10-D data set having 10*
samples (on a desktop PC). To compute 1-D information
entropy, we used the optimal bin width w = 3.730k"!/3
proposed by Scott [2004], where o is the standard deviation
of each signal s; and k& is the number of samples. A test to
evaluate accuracy and precision of the method under ideal-
ized conditions is shown in the appendices.

[44] Of course, the effectiveness of the approach outlined
above depends on the ability to transform X into S such
that the components of .S are independent. Here we have
assumed that this can be achieved via the linear transforma-
tion X7 = AS”. If nonlinearity in the signal interdepend-
ence is sufficiently strong, it may not be possible to achieve
a sufficient degree of independence in .S and the estimate of
multivariate information entropy will be positively biased.
In the studies reported here, we investigate the degree of in-
dependence using scatterplots. In future we will extend the
method to cases where the interdependence is more
strongly nonlinear—for example, via nonlinear preprocess-
ing transformations of data.

3.2. Synthetic Study to Investigate the Precision

[45] To evaluate the precision of our method for comput-
ing mutual information entropy, we adopted the recommen-
dation of a reviewer and conducted a synthetic hydrological
simulation study in which there is no model structural error
(so that EU = 0) and where the nature and size of the obser-
vational uncertainties contributing to AU can be controlled.
We used a parsimonious five-state-variable implementation
of the HyMod model (Figure 3) [Boyle, 2000], in which
evapotranspiration losses are computed using a nonlinear
soil moisture accounting module [Moore, 1985], and two
series of parallel linear tanks (three quick and one slow)
control the rates of moisture drainage to the catchment out-
let. The model, which has been used in many previous
investigations [Bulygina and Gupta, 2009, 2010, 2011;
Vrugt et al., 2003 ; Wagener et al., 2003; Xu et al., 2010],
requires two input values, computes estimates of five state
variables, and generates two system outputs. System-spe-
cific dynamical behavior of the model is achieved by select-
ing values for the five model parameters.

[46] The data used are from the humid Leaf River basin
(1944 km?) located north of Collins, Mississippi. Forty water
years (October 1948 to September 1988) of daily mean areal
precipitation P (mm/d), potential evapotranspiration PET
(mm/d), and runoff Q (m*/d) data are available from the Hy-
drology Lab of the U.S. National Weather Service. The basin
has been widely used in many previous investigations of
catchment modeling [Bulygina and Gupta, 2009, 2010,
2011; Sorooshian et al., 1993 ; Thiemann et al., 2001 ; Vrugt
et al., 2003 ; Wagener et al., 2001]. To ensure sufficient data
to compute stable entropy estimates (see appendices), we
used the first 30 years (10,950 sample points).

[47] The simulation study was conducted as follows.
First, assuming the available precipitation P and potential
evapotranspiration PET data to be “error-free,” we ran a
simulation of the HyMod model with selected values for
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Figure 3. Conceptual representation of the HyMod model, showing (a) sketch of model structure and (b)
system diagram. Input variables are precipitation P and potential evapotranspiration PET. State variables
are soil moisture content Xloss, quick flow tank content Xquickl, Xquick2, Xquick3, and slow flow tank
content Xslow. Model outputs are actual ET and runoff Qy;, . Parameters are soil moisture capacity Cpax ,
spatial variability index by, , quick tank and slow tank leakage rates K, and K, and quick-to-slow ratio c.

the model parameters (see Table 1) to generate an error-
free sequence of “true” runoff values QO ye.

[48] Next, to simulate the observational process, we cor-
rupted these values of P, PET, and QO . by adding random
measurement errors. For PET, we assumed the errors to be
Gaussian, zero-mean, and homoscedastic with standard
deviation 0. However, because errors in P and Q are typi-
cally heteroscedastic, we first transformed each variable
using a Box-Cox power transformation (Z = (Y A 1) / )\),
then added Gaussian zero-mean homoscedastic random
errors having standard deviation ¢ and finally back-trans-
formed the error-corrupted variables to the original space
using the inverse Box-Cox transformation. To be consistent
with previous research [e.g., Misirli et al., 2003 ; Bulygina
and Gupta, 2010], we use A=0.3 to transform both varia-
bles (although we deviate from Bulygina and Gupta [2010]
who actually use A =0 for precipitation (10% uncertainty),
which stretches out the region of very small precipitation
values < 1.0 mm in an undesirable manner). The result is a
synthetic set of “observed” time series Py, PET ops, and
Oobs having random “observational” errors of size charac-
terized by the magnitude of o.

Table 1. Parameters of the HyMod Model Used for Simulation
Study

Parameters Name

and Unit Cinax (mm) bexp « K, (d) K, (d)

Parameter value 2244 0.261 0.861 0.0033 0.465

[49] To evaluate the performance of our method of esti-
mating multivariate MI, we proceeded as follows. First, we
computed the MI /(Input ;¢ ; Qobs ) actually present in the
“error-corrupted” data (where Inputops = {Pobs s PET gbs })-
Because this is a synthetically generated data set, where the
model is a complete representation of the mapping from
inputs to outputs, if the data were to contain no measure-
ment errors (o = 0), the MI /(Input s ; Qobs ) — 00. How-
ever, because o > 0 the data set is of finite length, and
information about the initial state of the system is not given
by the input-output data, the value of I(Input g ; Qobs)
will, in practice, be finite. As a practical approach we fol-
lowed Hsu et al. [2002], who demonstrated that, for this
catchment, the information contained in three previous
time steps of the input and output data is sufficient to ena-
ble accurate predicts of runoff at the current time step. So
we defined the input data set to be Input},  ~ Pops(f—1),
Pobs (t - 2)7P0bs (t_ 3)7PETobs (f - 1)7PET0bs (t_ 2)7 PETobs
(t—3),00bs (t—1),00bs (t—2),00bs (t—3) where the three
lagged values of Qups function as substitutes for information
regarding the current state of the system (thereby avoiding
need to use an infinitely long time series of P and PET input
data values; see Box and Jenkins [1976]). With this approach,
Input %, has nine columns of values and can be used to com-
pute an estimate of the MI offered by the raw data
I(Input ;. ; Qobs) using the ICA method described earlier.

[s50] Next, we emulate the normal practice of model-
based estimation by forcing HyMod with the error-
corrupted input data P,,s and PET,,s to obtain “simulated
runoff” Qg;,,. From this, we computed the bivariate mutual
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Table 2. The Input-Output Variables Used to Estimate BAP
(Observed Data) and to Evaluate Actual Model Performance
(Model Simulation)

Input Output
Observed data Oops(t—1), Qops(t—2), . . - Oobs(?)
P(t—1), P(t—2), ...
PET(t—1), PET(1—2),...
Model simulation P(t), PET(?), State(r—1) Osim(?)

information 7(Qgim ; Oobs) that quantifies the degree of simi-
larity between O, and Qs and indicates the degree to
which knowledge of Qy;,,, can reduce our uncertainty in the
knowledge of Q.. Because Oy, is obtained by processing
the error-corrupted inputs P,y and PET., through the
catchment model equations, and since the model is a “per-
fect” representation of the catchment system, the value of
1(QOsim ; Oobs) is completely controlled by the “size” of the
random observational errors and by the way in which the Mar-
kovian state transition process modifies these errors. The for-
mer is characterized by the magnitude of o specified earlier,
so that as 0 — C we have I(QOgm;Qobs) — 00, and as
o — 00, we have I(Qsim; Oops) — 0). The nature of the state
transition process is, of course, determined by the model struc-
tural hypothesis. For clarity, the variables used in estimating
I (Input s Qsim)and I(Qsim ; OQobs) are shown in Table 2.

[s1] The results are shown in Figure 4 for different sizes
o of the random observational error. As should be
expected, the estimated values of /(Inputy ; Oops) and
I(Osim ; Oobs) both decrease with increasing o, indicating
that the proposed estimator is behaving correctly. However,
whereas both values should be similar, the value computed
for multivariate mutual information [ (Input s’ Qobs) is
smaller than that for 7(Qgim ; Oobs), indicating that our pro-
cedure underestimates MI when applied to the higher-
dimensional (10-D) data set (accuracy and precision of esti-
mator for the 2-D case is confirmed in the Appendix A).
This implication is that, when applied to the real-world
studies in section 4, our procedure will underestimate the

Estimated Mutual Information — ICA

+ I(Q;im;Qobs)
—a— [(In pUt*obs;QDbs)

Mutual Information / (nat)
M

0 I 1 I 1
0.05 0.1 0.15 0.2 0.25 0.3
Standard Deviation of Artificially Induced Error ©

Figure 4. Synthetic hydrological modeling assessment of
procedure for estimating MI under conditions of progressively
increasing o: The line with stars shows / (Input s Qobs) esti-
mated from the data and the line with circles shows
I(Osim ; Oobs) computed from the model results.

total amount of shared information, so that estimates of AU
will be positively biased (larger than actual) and estimates
of EU will be negatively biased (smaller than actual).

[52] Some of the causes for this bias can be seen by
examining the scatterplots between pairs of “independent”
components of the data set obtained using FastICA decom-
position (Figure 5); the range of each signal has been nor-
malized to the range (0,1). We see that the signals are
nearly one-to-one independent (confirmed in the Appendix
B by computing the MI between each pair of signals).
However, the various (noncircular) patterns indicate that
the joint distribution is highly non-Gaussian. In addition,
the patterns indicate the presence of a significant number of
outliers that can cause instability in the ICA estimator.

4. Case Study

4.1.

[53] Inthe following investigation, we examine the useful-
ness of the concepts and methods developed in this paper for
assessing (a) the simulation ability inherent in a catchment-
scale rainfall runoff data set and (b) how much of that ability
is encapsulated in a given model hypothesis. Our purpose is
both illustrative and exploratory—to illustrate the potential
power of methods based on information theoretic analysis
and to explore the problems that we might encounter. We
therefore compare the performance of three hydrological
models on three catchments. The comparison across catch-
ments shows that the BAP is controlled by the characteristics
of the catchment and the nature of random observational
errors, while the comparison across models indicates the rel-
ative strengths of alternative model structural hypotheses.

4.2. Data, Models Used, and Model Calibration
Procedure Employed

Introduction

[s4] The three catchments used for this case study are
the Leaf and Chunky River basins in the Southern United
States, and the Suichuanjiang River basin in Southern
China (gauged at the Chuzhou hydrologic station); see Ta-
ble 3 for basic catchment information. The Leaf and
Chunky River basins are located next to each other and
have similar landform (relatively flat) and climatic (humid)
characteristics, as well as similar observational standards.
In contrast, the Suichuanjiang River basin is located in a
mountainous region, has a greater degree of spatial vari-
ability and range of elevations, and uses a different obser-
vational standard.

[55] The three spatially lumped catchment-scale hydrolog-
ical models used for this case study are HyMod (used earlier
in the synthetic study), the Sacramento Soil Moisture
Accounting (SAC-SMA) model used by the U.S. National
Weather Service for flood forecasting [Burnash et al., 1973;
Brazil, 1988], and the Xinanjiang model widely used in
southern China [Zhao et al., 1980]. Although HyMod is
structurally very simple, parsimonious, and designed mainly
for preliminary testing of model identification procedures,
the SAC-SMA and Xinanjiang models are structurally more
sophisticated and were specifically designed for operational
hydrological forecasting (for local conditions specific to the
country of origin). In general, we would expect the SAC-
SMA and Xinanjiang model structural hypotheses to be
superior to that provided by HyMod.
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outliers

Figure 5. One-to-one scatter plot between each independent signal component of the hydrological data
set. Figure 5 shows (1) degree of independence between each component, (2) non-Gaussianity due to
various patterns, and (3) outliers causing instability of ICA.

[s6] In this study, we examined six model-catchment
combinations, deemed to be sufficient for the purposes of
this study. The HyMod and SAC-SMA models were both
applied to the Leaf River and Chunky River basins, while
the HyMod and Xinanjiang models were applied to the
Chuzhou basin. In each case, the models were calibrated to
the observed catchment runoff data (see Appendix C) using
the well-established Shuffled Complex Evolution Metropo-
lis algorithm (SCEM-UA) single-criterion maximum likeli-
hood calibration approach proposed by Vrugt et al. [2003].
All of the available data were used for model calibration
(we are not concerned, in this study, with issues of tempo-
ral nonstationarity), and the first 65 days were used as a
warm-up period to minimize uncertainty caused by incor-
rect initialization of the state variables.

4.3. Stabilizing the Estimate of High-Dimensional
Mutual Information

[57] Having calibrated the models, we next proceeded to
estimate the aleatory and epistemic uncertainties for each
model-catchment case. For each catchment, we progres-
sively increased the number of lagged previous time steps
used to compute/ (Inputy,; Oops) until a nonincreasing
estimate of AU was obtained. However, during ICA decom-
position of the data sets, we encountered a stability problem
(see Appendix D) caused by outliers corresponding to time

Table 3. Basic Information About the Chosen Basins

steps when the observed values of P, PET, and QO are small.
Investigation revealed that this problem could be signifi-
cantly reduced by adding small random errors to the raw
data, indicating the likely cause to be quantization of the
data during the observational process (such quantization is
more significant when the observed values are small).
Therefore, to stabilize the computations, we added a very
small random Gaussian error (0 = 10~>) to the data.

4.4. Estimates of BAP for the Basins

[58] The estimated values of BAP for the three basins, as
expressed by /(Input ’;'; Oobs ), are shown in Figure 6. The
x axis corresponds to the number, n, of lagged previous
time steps used to construct /(Input**). For each case, we
obtain 10 independent estimates of / (Input s Qobs), by
randomly varying the initial value of the matrix A in the
ICA analysis, and record the mean and standard deviation of
the 10 estimates; this provides information regarding the sta-
bility and precision of the results. Figure 6a shows the mean
estimated value of BAP as expressed by I(Input i ; Oobs),
and Figure 6b shows the standard deviation of the estimate.

[59] The results shown in Figure 6a indicate that BAP can
be expected to vary with landform type and observational
precision of a catchment. In the case of the relatively similar
Leaf and Chunky River basins, the MI content of their
input-output data sets are remarkable similar (~1.6 nats)

Country Area (km?) Elevation (m) Annual Rainfall (mm) Landform Data Used
Leaf River USA 1924 60-185 1492 Plain 1948-1978
Chunky River USA 956 66-199 1447 Plain 1948-1978
Chuzhou China 289 380-1550 1550 Mountain 1980-2000
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Figure 6. BAP for the different basins. (a) Average MI
from 10 estimates. (b) The standard deviation of the 10
estimates. BAP for the Leaf and Chunky basins is similar

and higher than for the Chuzhou, while standard errors of
the estimates are similar for all three cases.

and quite high (close to the practical achievable limit of
~2.0 nats; see section 2), whereas for the Suichuanjiang
River basin, the MI content is smaller (~1.4 nats). As such,
the BAP by a hydrological model can be expected to be bet-
ter for the U.S. basins, provided that the information in the
data is properly exploited by the model hypothesis. In all
three basins, the estimate of BAP increased quickly with the
number of time lags used, began to stabilize around n =3,
and converged by about » = 6 days; these results are consist-
ent with, and extend upon, the findings of Hsu ef al. [2002],
who modeled the Leaf River basin using an artificial neural
network approach. The results shown in Figure 6b indicate
that the standard error of the estimate is relatively small com-
pared to the mean value (coefficient of variation of around
5%—6%) and that the value is similar for all three basins.

4.5. Evaluation of the Structural Adequacy of
Different Model Hypotheses

[60] The estimated values of model performance for the
six model-catchment cases, as expressed by I(Osim ; Oobs)»

Table 4. Performance of Different Models for Each Basin

are shown in Table 4. Also shown are the values of three
other commonly used metrics, the Nash Sutcliffe efficiency
(NSE), the linear correlation coefficient p between Qg
and Qgps, and the R-statistic. Of course, all of these metrics
are interrelated—the NSE is approximately equal to p” [see
Gupta et al., 2009; Gupta and Kling, 2011], and the MI
I(Osim ; Oobs) can be interpreted as a generalized correlation
coefficient (that provides a more accurate assessment of
relationship strength when the data distribution is non-
Gaussian and the relationship is nonlinear). Further, as
shown in Granger and Lin [1994], the R-statistic is pre-
cisely related to MI and becomes equivalent to p when the
data are jointly bivariate Gaussian (see equation (5) and
discussion in section 2). No matter which statistic is used,
it is clear that the structurally more complex SAC-SMA
and Xinanjiang models are superior to HyMod.

[61] Figure 7 shows scatterplots of the simulated versus
observed runoff for each of the six model-catchment cases.
A consistent general tendency toward underestimation bias
at higher flow levels is shown in Figure 7, which is
expected when calibrating models using squared error type
metrics [see Gupta et al., 2009]. However, the bias is con-
sistently quite severe for HyMod and much less so for
SAC-SMA and Xinanjiang. While this degree of bias could
potentially be corrected by postprocessing [Seo et al.,
2006], the correlation coefficient, R-statistic, and MI met-
rics clearly show how much of the lack of correspondence
(the scatter) between simulated and observed runoff cannot
be easily removed by such methods.

[62] Table 5 and Figure 8 show the results of the infor-
mation analysis. The estimated aleatory uncertainty is quite
high (44%-53%), indicating that the available data do not
contain the information required to achieve streamflow
simulation at the desired level of precision (finer than the
bin width)—bear in mind, however, that the synthetic study
reported in section 3 suggests that these values of AU are
positively biased, and the actual shared information is
likely somewhat higher. Further, AU for the U.S. basins is
smaller than for the Chinese basin, consistent with higher
quality of the former. Meanwhile, the epistemic uncertainty
unresolved by the different model hypotheses varies from
12% (Xiananjiang for Chuzhou) to 45% (HyMod for Leaf),
indicating the extent to which each of the model structural
hypotheses has been able to exploit the potentially usable
information in the data. For the two U.S. basins, the SAC-
SMA model hypothesis has exploited ~57% of the avail-
able information and the epistemic uncertainty remains
around 43%; this provides a quantitative measure of model
structural inadequacy. While the SAC-SMA performance is
from 2% to 10% better than that of HyMod, there appears
to be considerable room for performance enhancements (by
model structural improvements and/or by removal of

NSE Correlation Coefficient p R-Statistic 1 (Osim; Qobs) (nat)
Leaf River HyMod 0.6685 0.8275 0.8837 0.7591
SAC-SMA 0.8436 0.9198 0.9164 0.9158
Chunky River HyMod 0.7290 0.8549 0.9122 0.8921
SAC-SMA 0.8066 0.9031 0.9183 0.9268
Chuzhou HyMod 0.7579 0.8951 0.9378 1.0583
Xinanjiang 0.8528 0.9443 0.9555 1.2212
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Figure 7. Scatterplots of simulated and observed runoff. (a) Leaf River-HyMod, (b) Leaf River-SAC-
SMA, (c¢) Chunky River-HyMod, (d) Chunky River-SAC-SMA, (e) Chuzhou-HyMod, (f) Chuzhou-

Xinanjiang model.
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Table 5. Analysis of Information Expressed by the Observed Data and Exploited by the Models (Unit: nat)®

Epistemic Unc. (EU)
I(Input :;;5 5 Qobs)

Predictive Estimated MI in Aleatory Unc. (4U) = MI Expressed

Uncertainty H(Qops) Data I (Input [ ;s Oobs ) = H(Qops) — 1 (Input i ; Oops)  Model by Model 7(Qgim ; Oobs ) — 1(Qsim s Qobs )

Leaf 2.8870 1.6054 1.2816 (44% of H) HyMod 0.7591 0.8463 (53% of Data MI)
SAC-SMA 0.9158 0.6896 (43%)
Chunky 3.0410 1.6385 1.4025 (46%) HyMod 0.8921 0.7464 (45%)
SAC-SMA 0.9268 0.7117 (43%)
Chuzhou 2.9591 1.4012 1.5579 (53%) HyMod 1.0583 0.3429 (24%)
Xinanjiang 1.2212 0.1800 (12%)

“The value for 7 (Input b Qobs) shown is the average obtained by varying the number of lags, n, from 6 to 10 days (see Figure 6).

systematic biases in the data—see discussion in the next
paragraph). In contrast, the Xinanjiang model has exploited
a relatively large fraction (about 87%) of the information
available for the Chinese basin (and is 12% better than
HyMod), so that the epistemic uncertainty is relatively
small (12%), indicating much less room for performance
improvements in the context of this basin.

[63] Figure 9 shows comparisons of the observed and
simulated time series for selected periods of the data set. The
shaded 95% “confidence intervals” around the observed
data (computed using equation (13)) indicate the region
within which a model simulation must fall (95% of the time)
to have reached the BAP for that catchment (given the avail-
able data set); it is interesting to note that these intervals are
quite narrow. Figures 9a and 9b indicate that the SAC-SMA
and HyMod models have trouble matching both the peak
flows and the behavior of the quick recession (the observed
quick recession is much faster). Similarly, Figure 9¢ shows
that the Xinanjiang and HyMod models are both unable to
match the peaks. While the inability to properly simulate the
quick recession may be caused by a combination of inad-
equate model structure and model calibration, the inability of
all three models to match the peak flows is more likely due
to underestimation biases in the higher intensity precipitation
data—Dbiases that cannot be removed by model structural
improvements alone. In other words, because the catchment
models are constrained to maintain water balance, when
there are biases in the observed precipitation data, such mod-
els are unable to match the performance achievable by purely
data-based modeling (indicated by 7 (Input ;. ; Oobs) )-

5. Conclusions and Discussion

[64] The ability to quantitatively estimate the approxi-
mate magnitude of aleatory and epistemic uncertainties can
add considerable power to a modeling analysis. By estimat-
ing the aleatory uncertainty for a given data set, one has
access to a benchmark that defines the best model perform-
ance that is achievable by fully exploiting the information
available in a particular data set. Given that the model
structural hypothesis cannot add any new information over
and above what is already contained in the data (due to the
data-processing inequality), to do better than this bench-
mark one must provide new information in the form of
additional explanatory variables. However, given data mea-
surement error, and possible inherent stochasticity in the

system (absence of a deterministic relationship between the
system variables), it will generally be impossible to reduce
the aleatory uncertainty to zero.

[65] The data-processing inequality makes it clear that,
to the extent that the model does not bring in new informa-
tion that is not encoded in the input-output data, the model
structural hypothesis (including the conceptual and mathe-
matical structure) does not increase the amount of informa-
tion available for making estimates of the system outputs.
Instead, the role of the model hypothesis is to correctly
describe the sequence of operations by which the informa-
tion moves from the inputs to the outputs. The methods
described in this paper can help to quantify the best model
performance possible. To improve upon that performance,
it will be necessary to acquire observations regarding the
“correct” set of input variables required to explain the dy-
namics of the system outputs, and to do so with sufficient
precision. Note, however, that when using a physically
based representation that is constrained to preserve water
balance, such a model hypothesis will be unable to achieve
the BAP limit when the data contain systematic biases,
unless additional information in the form of how to correct
such biases is provided (either in the form of data or in the
form of a bias-correction model structural hypothesis).

[66] So, given that the data-processing inequality refers
to the properties of transformations expressed in the form
of a Markov chain, one may validly ask how the implica-
tions of this should be understood in the context of hydro-
logical modeling. For example, is it really true that the
physical knowledge embodied via a model structural hy-
pothesis does not provide any additional information? In
this context, it should be noted that the concept of “physi-
cal knowledge” typically used by hydrologists consists of
two kinds—*“relationships™ and “data.” To the extent that
the “physical knowledge” brought to bear is a “relation-
ship,” it is in fact a procedure that processes data, and, as
such (as expressed by the data-processing inequality), does
not provide any new information—the equations process
the information, but are unable to generate any new infor-
mation out of the void (just as they cannot generate energy
or mass unless this is explicitly expressed as data in the for-
mulation). However, if the “physical knowledge” is a kind
of “data,” it will in fact provide additional information,
that is then processed by the “relationship” (the model).
For example, in the modeling of hill-slope hydrological
processes, the values of slope length, slope gradient,
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vegetation coverage, roughness, and other parameters, con-
sist of “data” that do provide additional information, while
the equations that describe the relationships among them
are actually “relationships.” In the case of physically based
models, “prior knowledge” (data) can be provided in the
form of additional information and used to reduce the
requirements for model calibration. It will be interesting, in

future work, to study how much additional information
such physically based data can add to the model hypothesis,
and how this can be used to evaluate achievable model per-
formance in the context of making predictions in ungauged
basins (PUB) [Sivapalan et al., 2003].

[67] In our real-data investigation, we have used an em-
pirical (approximate) approach to estimate the aleatory
uncertainty ; this approach assumes that all of the informa-
tion required to estimate runoff at the next time step can be
expressed by the past 1-10 time steps of the variables O, P,
and PET. In reality, the number of lags expressing the
memory of the system may be much larger (even infinite).
However, our study shows that, for practical purposes and
given the noise in the data, approximately three to six past
lags seems to be sufficient. While more detailed analysis
could be done to establish exactly how many lags should
be applied to each variable—this would not advance the
goals of the present study. Interestingly, we achieve this
conclusion without recourse to any hypothesis regarding
the (linear or nonlinear) form of the model structural hy-
pothesis and obtain an answer consistent with that obtained
by Hsu et al. [2002] using a sophisticated nonlinear (artifi-
cial neural network) modeling approach applied to the
same data.

[68] Further, as shown in Figure 9, clearly there is con-
siderable room to improve the explanatory power of the
model. These results can be compared with those of Vrugt
et al. [2008] and Beven et al. [2011], which indicate signifi-
cant uncertainty in the input-output data over the entire
time range (without data assimilation). Similarly, our
results indicate that the aleatory uncertainty, including that
arising from random input/output observational errors, is
quite significant. Note also that the effects of data errors on
the ability to make one time step ahead estimates via con-
ceptual water-balance modeling can be exacerbated due to
(a) accumulation of errors in the state estimates via error
propagation and (b) the water-balance constraint imposed
by fundamental principles of physically based modeling.
To reduce uncertainties due to systematic biases in the
data, data correction methods must be employed (e.g.,
BATEA) [Kavetski et al., 2006a, 2006b], and to reduce
uncertainties due to accumulation of state estimation error,
data assimilation can be performed [Nearing et al., 2013].
It will be interesting to use the methods discussed in this
paper to evaluate the power of data correction and data
assimilation methods in controlling error accumulation and
reducing estimation uncertainty.

[69] We acknowledge that there are several limitations to
this present study. For example, the stability and bias of the
method developed to estimate MI in high-dimensional data
sets needs to be further assessed, and more work is needed to
ensure that the method is capable of handling the kinds of sit-
uation encountered in hydrological studies. In particular,
there is a pressing need to extend the ICA method to handle
significant nonlinearities that will most surely exist in data
interdependencies. Further, while some recent literature has
explored the partitioning of total uncertainty into its constitu-
ent sources—input, parameter, initial state and structure—we
have shown only how to partition the total uncertainty into
its aleatory and epistemic components. However, quantita-
tive identification of the amount of information loss during
modeling, and detection of where it is lost (input, parameter
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time) to reach the BAP (given the available data).

or structure) can help lead to model structural improvements.
As a generalized correlation coefficient, MI is sensitive to
correlation but blunt to system bias. To give an appropriate
assessment of model performance, it is necessary to use sev-
eral metrics in combination and to examine scatterplots
(Figure 7) and time-series plots (Figure 9) of the simulated
and observed outputs. Finally, in physically based modeling,
other available sources of information may include observa-
tions of basin characteristics such as geomorphology, land
use and land cover, soil texture, and leaf area index. The
problems of how to characterize the information contributed
by basin characteristics, and of how to estimate best achieva-
ble model performance for ungaged basins are interesting
research topics. We leave the issue of how information
theory can be applied to such issues for future work.

[70] In summary, this paper has presented an exploration
of an information theoretic approach to quantifying and
characterizing the information content in hydrological data,
with a view to (a) quantifying the information required to
achieve an estimate with a desired level of precision, (b)
providing a baseline for achievable model performance,
and (c) establishing to what degree the available informa-
tion been correctly expressed by a given model hypothesis.
In ongoing work, we are exploring how these tools can be
used to help in diagnosis and correction of model structural
errors, and will report these results in due course. As
always, we encourage and invite dialog and collaboration
on this and other aspects of model identification. The com-
puter codes used in this work can be obtained from the first
author upon request.
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Appendix A: Accuracy and Precision of the
Proposed Estimator

Al.

[71] We evaluated the precision of the proposed estima-
tor on two high-dimensional data sets for which the distri-
butions are known (jointly Gaussian and jointly uniform),
and so theoretical values can be computed. For a jointly
Gaussian random vector X having covariance matrix Y, the
multivariate entropy is given by

Estimating Multivariate Information Entropy

H(X) =1

= Elog(27re)'”|2|. (A1)

For a jointly uniform random vector X in which each com-
ponent X; is uniform on (a; b;), so that r; = a; — b;, the
multivariate entropy is given by

H(X) = log <ﬂ rl») . (A2)

i=1

For the Gaussian cases, we used a synthetic data set of
dimension m =10 and having diagonal covariance matrix
Y = diag (10,9, 8, ... 1). For the uniform cases, we used a
synthetic data set of dimension m =10 and having compo-
nent ranges [r1,72,73, ... /10] = [10, 9, §,...,1]. Since high-
dimensional entropy does not vary under affine transforma-
tion, we applied randomly selected affine transformations to
each data set. Further, several sample sizes were tested, and
the test was replicated 10 times for each case. The results are
shown below.

[72] (1) Jointly Gaussian distribution: In this case, the
theoretical value of entropy is 19.17. The results clearly
indicate that, as the sample size is increased, (a) the mean
value of the estimate increases, (b) the variance of the esti-
mate decreases, and (c) the absolute value of mean error
decreases. The result indicates that the estimate of multi-
variate entropy is only slightly biased (0.44% for 1000
samples), and that making the sample size large enough
can reduce the bias. Note however that average absolute
bias is, in each case, smaller than two standard deviations
(Table Al).

[73] (2) Jointly uniform distribution: In this case, the
theoretical value of entropy is 15.10. The results are similar

Table Al. Result of Simulation Study—1Joint Gaussian Distribu-
tion (Unit: nat)

Sample Size 1,000 10,000 100,000 1,000,000
Estimated entropy of 1 19.12 19.16 19.17 19.17
10 replicates 2 19.10 19.15 19.16 19.18
3 19.08 19.16 19.17 19.17
4 19.21 19.13 19.16 19.17
5 19.05 19.15 19.17 19.17
6 19.04 19.18 19.17 19.17
7 19.17 19.14 19.16 19.17
8 19.13 19.15 19.17 19.17
9 19.05 19.20 19.17 19.17
10 18.90 19.19 19.17 19.17
Mean 19.09 19.16 19.17 19.17
Mean error —8.5E-02 —8.5E-03 —5.5E-03 —1.2E-03
Standard deviation 8.46E-02 2.2E-02 4.01E-03 2.25E-03
of error

Table A2. Result of Simulation Study—Joint Uniform Distribu-
tion (Unit: nat)

Sample Size 1,000 10,000 100,000 1,000,000
Estimated entropy 1 15.49 15.31 15.20 15.15
of 10 replicates 2 15.56 15.30 15.21 15.15
3 15.54 15.29 15.20 15.15
4 15.54 15.32 15.20 15.15
5 15.45 15.32 15.20 15.15
6 15.46 15.32 15.20 15.15
7 15.57 15.30 15.20 15.15
8 15.55 15.32 15.20 15.15
9 15.54 15.31 15.19 15.15
10 15.49 15.33 15.20 15.15
mean 15.52 15.31 15.20 15.15
mean error 42.0E-02 21.0E-02  10.0E-02 5.0E-02
Standard deviation 3.99E-02 1.15E-02  3.9E-03 8.25E-04
of error

to those for the Gaussian distribution, but the bias tends to
be positive, larger (2.78% for 1000 samples), and more sig-
nificant (larger than two standard deviations) (Table A2).

[74] (3) Estimating 2-D mutual information: We also
evaluated the performance of the estimator for a 2-D joint
normal distribution where random variable X;Y are jointly
L p
p 1]
so that the MI between X and Y is determined by the correla-
tion coefficient p.

distributed as N (0, ) with covariance matrix ¥ =

I(X;Y) = —%1og(1 -p%). (A3)
Figure Al shows the MI given by equation (A3) and esti-
mated by the PCA/ICA based estimator proposed in this
paper, with p on the x axis and MI on the y axis. For each
value of p, 1000 samples were generated. The results show
that the proposed estimator can give an accurate and pre-
cise estimate of 2-D MI.

[75] The proposed estimator can also be applied to non-
Gaussian 2-D distributions, as long as X and Y satisfy the
assumption that they can be decomposed into two
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Table B1. Mutual Information Between Each Independent Components Decomposed by FastICA*
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1 2 3 4 5 6 7 8 9 10
1 00 0.0491 0.0636 0.0338 0.0440 0.0672 0.0351 0.0571 0.0393 0.0436
2 0.0491 0 0.0640 0.0329 0.0385 0.0834 0.0345 0.0578 0.1022 0.1998
3 0.0636 0.0640 00 0.0320 0.0351 0.0683 0.0317 0.2158 0.0504 0.0573
4 0.0338 0.0329 0.0320 0 0.1881 0.0387 0.0660 0.0279 0.0284 0.0260
5 0.0440 0.0385 0.0351 0.1881 00 0.0980 0.1731 0.0751 0.0240 0.0224
6 0.0672 0.0834 0.0683 0.0387 0.0980 00 0.0419 0.0424 0.0431 0.0297
7 0.0351 0.0345 0.0317 0.0660 0.1731 0.0419 00 0.0316 0.0294 0.0242
8 0.0571 0.0578 0.2158 0.0279 0.0751 0.0424 0.0316 0 0.1014 0.1549
9 0.0393 0.1022 0.0504 0.0284 0.0240 0.0431 0.0294 0.1014 00 0.2708
10 0.0436 0.1998 0.0573 0.0260 0.0224 0.0297 0.0242 0.1549 0.2708 00

“Mutual information larger than 0.1 nat are highlighted with bold font. Note that this result is given by ASH method [Fernando et al., 2009].

independent signals via linear transformation. An intercom-
parison of 2-D MI estimators was given by Khan et al.
[2007].

Appendix B: Confirming the Independence
Between “Independent Components”

[76] As indicated in section 3, we compute the one-to-
one MI between each “independent components” decom-
posed by FastICA (see Table B1). Here we use average-
shifted histogram method (ASH method) [see Fernando
et al., 2009] that has been shown to be sensitive to nonlin-
ear correlations. The font of each cell indicates the MI
between each pair of components; bold font means higher
levels of MI (interdependence). Clearly, interdependence
between most of the components is weak, confirming the
independence of independent components decomposed by
FastICA.

[77] However, in a few cases the interdependence is not
negligible (although not very high). For example, the MI
between components 9 and 10 is 0.2708. A scatterplot
between components 9 and 10 (Figure B1) indicates the pres-
ence of a linearly correlated “dense region” that might be the
cause of this. This interdependence will somewhat affect the
accuracy of the proposed MI estimator. Work to further
reduce this small degree of interdependence is ongoing; one
possible approach is to divide the data set into different seg-
ments, separate the dense region from other parts, and apply
the estimator, respectively.

Appendix C: Calibrated Parameters

[78] Table C1-C6 show the calibrated parameters of
HyMod, SAC-SMA, Xinanjiang model given by SCEM-
UA. In each table, the prior range of parameters, posterior
95% confidence interval, best fit parameter, mean and me-

Table C1. Estimated Parameters of the HyMod Model (Leaf River)

Linearly  correlated
“dense region”

Figure B1. Scatterplots between components 9 and 10.

dian of posterior distribution, and the unit of parameters are
presented. Some parameters, such as PCTIM of SAC-
SMA, are not involved in calibration. The values of these
parameters are directly presented in “Prior Range” and
“Best Fit Parameter Set.”

Parameter Prior Range Posterior 95% Confidence Interval Best Fit Parameter Set Mean Median Units
Crnax (1,500) (223.7,225.4) 2244 2245 2247 mm
bexp (0.1,2) (0.2602,0.265) 0.2614 0.2624 0.2623
a (0.1,0.99) (0.8607,0.8627) 0.8614 0.8617 0.8607
K (0,0.1) (0.0032,0.0034) 0.0033 0.0033 0.0034
K, (0.1,0.99) (0.4636,0.4656) 0.4646 0.4645 0.4645
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Table C2. Estimated Parameters of the HyMod Model (Chunky River)
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Parameter Prior Range Posterior 95% Confidence Interval Best Fit Parameter Set Mean Median Units
Cinax (1,500) (267.5,271.5) 269.5 269.6 267.1 mm
bexp (0.1,2) (0.288,0.2985) 0.2936 0.2936 0.3024

e (0.1,0.99) (0.8978,0.9043) 0.902 0.9014 0.9016

K (0,0.1) (0.0104,0.0114) 0.0108 0.0109 0.011

Ky (0.1,0.99) (0.5066,0.5106) 0.5085 0.5087 0.5073

Table C3. Estimated Parameters of the HyMod Model (Chuzhou)

Parameter Prior Range Posterior 95% Confidence Interval Best Fit Parameter Set Mean Median Units
Cinax (1,500) (132.3,152.8) 146.4 143.4 143.2 mm
bexp (0.1,2) (1.6499,1.972) 1.8902 1.8239 1.856

« (0.1,0.99) (0.5156,0.5268) 0.5207 0.5215 0.5196

K (0,0.1) (0.0129,0.0136) 0.0132 0.0132 0.0134

K, (0.1,0.99) (0.6105,0.6181) 0.6155 0.6145 0.6137

Table C4. Estimated Parameters of the SAC-SMA Model (Leaf River)

Parameter Prior Range Posterior 95% Confidence Interval Best Fit Parameter Set Mean Median Units
PCTIM 0.005 0.005

ADIMP 0.4 0.4

SARVA 0 0

UZTWM (10,300) (21.55,56.80) 22.41 26.46 22.69 mm
LZTWM (10,500) (219.8,295.18) 296.7 275.6 283.2 mm
RSERV 0.3 0.3

UzZK (0.1,0.75) (0.3668,0.6401) 0.4126 0.4381 0.3872

UZFWM (5,150) (21.94,44.18) 24.56 25.83 25.49 mm
ZPERC (5,350) (102.9,348.9) 348.1 292.0 341.6

REXP (1,5) (3.4782,4.9519) 4.8689 4.4298 4.5764

PFREE (0,0.8) (0.1037,0.2005) 0.1084 0.1291 0.1177

LZFSM (5,400) (28.57,118.7) 124.7 58.43 52.70 mm
LZSK (0.01,0.35) (0.0262,0.1423) 0.0267 0.047 0.0358

LZFPM (10,1000) (151.9,254.8) 158.8 203.0 204.4 mm
LZPK (0.001,0.05) (0.0061,0.0102) 0.0059 0.0084 0.0085

SIDE 0 0

SSOUT 1 1

NASHN (1,6) (1.044,1.435) 1.072 1.177 1.142

NASHK (0.1,1) (0.2967,0.3535) 0.2986 0.3106 0.3056

Table C5. Estimated Parameters of the SAC-SMA Model (Chunky River)

Parameter Prior Range Posterior 95% Confidence Interval Best Fit Parameter Set Mean Median Units
PCTIM 0.005 0.005

ADIMP 0.4 0.4

SARVA 0 0

UZTWM (10,300) (33.78,53.93) 33.47 46.50 53.41 mm
LZTWM (10,500) (257.1,279.3) 281.1 266.7 259.2 mm
RSERV 0.3 0.3

UZK (0.1,0.75) (0.6942,0.7485) 0.7336 0.7289 0.7366

UZFWM (5,150) (13.93,18.08) 16.73 15.97 1591 mm
ZPERC (5,350) (37.35,59.24) 61.44 46.90 44.17

REXP (1,5) (4.343,4.977) 4910 4.573 4.460

PFREE (0,0.8) (0.0697,0.1066) 0.0968 0.0841 0.0766

LZFSM (5,400) (228.7,270.7) 274.7 246.3 228.4 mm
LZSK (0.01,0.35) (0.0325,0.0391) 0.0343 0.0359 0.0381

LZFPM (10,1000) (49.39,94.14) 50.51 71.72 87.21 mm
LZPK (0.001,0.05) (0.0054,0.0073) 0.006 0.0061 0.0059

SIDE 0 0

SSOUT 1 1

NASHN (1,6) (1.475,1.500) 1.500 1.493 1.495

NASHK (0.1,1) (0.3962,0.4189) 0.4179 0.4081 0.4004
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Table C6. Estimated Parameters of the Xinanjiang Model (Chuzhou)

Parameter Prior Range Posterior 95% Confidence Interval Best Fit Parameter Set Mean Median Units
KC 0.65 0.65

UM (10,20) (18.07,20.00) 19.91 19.70 19.90 mm
LM (60,90) (79.59,89.95) 89.71 88.33 89.45 mm
C (0.15,0.20) (0.1535,0.1978) 0.1756 0.1781 0.1878

WM (120,200) (194.0,200.0) 200.0 198.9 199.9 mm
B 0.3 0.3

M 0.01 0.01

SM (5,50) (49.75,50.00) 49.98 49.95 49.99 mm
EX 1 1

KG (0.1,0.4) (0.1461,0.1605) 0.1514 0.1517 0.1494

KI (0.1,0.4) (0.1081,0.119) 0.1138 0.1134 0.1157

CI (0.5,0.99) (0.8249,0.8434) 0.834 0.835 0.8376

CG (0.95,0.998) (0.9828,0.9838) 0.9834 0.9833 0.9836

UH [0.3,0.6,0.1] [0.3,0.6,0.1]

Figure C1. Scatterplots between independent components of the input data matrix constructed from

the Leaf River data.
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Appendix D: Outliers in the Data Matrix Causing
Instability of the Proposed Estimator

[79] Figure C1 provides an illustration of the one-to-one
scatter plots obtained between each independent signal of
the input data matrix in the real-data study for the Leaf
River. The plots reveal both non-Gaussianity and the exis-
tence of a large number of outliers that cluster far from the
main body of the data, which causes instability in the esti-
mator (negative values are obtained) unless these outliers
are removed.
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