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This article presents a process account of some typicality effects and related 

similarity-dependent accuracy and response time phenomena that arise in the 

context of supervised concept acquisition. We describe Symbolic Concept Acquisi- 

tion (SCA), a computational system that acquires and activates category predic- 

tion rules. In contrast to gradient representations, SCA performs by probing for 

prediction rules in a series of discrete steps. For learning new rules, it acquires 

generol rules but then incrementally learns more specific ones. In describing 

SCA, we emphasize its functionality in terms of accuracy and efficiency and moti- 

vate its design within the set of symbolic mechanisms and memory structures 

defined by the Soar architecture (Laird, Newell, 8 Rosenbloom, 1987). For repli- 

cating human behavior, we first show how SCA exhibits some typicality effects in 

the course of learning responding faster and more accurately to more typical test 

examples. Then, using data from human experiments, we evaluate SCA’s quali- 

tative predictions an accuracy and response time on individual dataset instances. 

We show how SCA’s predictions correlate with human data across three ex- 

perimental conditions concerning the effect of instruction on learning strategy. 

1. INTRODUCTION 

Within the last 15 years, research in concept and memory organization has 
moved away from symbolic representations, such as discrimination nets 
(Feigenbaum & Simon, 1984) and logical descriptions (Michalski, 1983), 
and towards gradient, probabilistic representations, such as neural nets 
(Gluck & Bower, 1988; Kruschke, 1992; Rumelhart, Hinton, & Williams, 
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1986) and probabilistic declarative structures (Anderson, 1991; Fisher, 
1988). In part, this is a response to empirical evidence suggesting that cate- 
gory membership lies on a continuum as manifested by such metrics as 
human response times and accuracy rates. Gradient models provide an 
immediate answer to the source of these phenomena-the behavior is a 
direct reflection of internal representations of varying degrees of category 
membership. From a functional viewpoint, these models have also been 
touted for their flexibility in handling noisy, incomplete data-a function- 
ality clearly demanded of humans. In short, gradient models seem to address 
these empirical and functional demands, and have subsequently become the 
leading candidates for modeling human memory. 

Despite the attractiveness of gradient models of human memory, we 
believe the dismissal of discrete, symbolic models would be premature with- 
out a more thorough exploration of their capability. In this article, we 
intend to advance our understanding of their potential capability by pre- 
senting a discrete rule-based model and by demonstrating how it tackles 
some of the empirical and functional demands addressed by gradient models. 

In presenting our approach, we will motivate its underlying process in 
terms of functionality and its grounding within a pre-established architec- 
ture. We will first describe our models’s process as a means of learning and 
activating category prediction rules efficiently and accurately. Then, we 
show how this process follows from a pre-established set of symbolic mech- 
anisms and memory structures, namely those defined by the Soar architec- 
ture (Laird, Newell, & Rosenbloom, 1987; Newell, MO), a candidate Unified 
Theory of Cognition (UTC). 

Following the functional and architectural motivation, we evaluate our 
model by comparing its behavior to that of humans. We focus on pheno- 
mena that are seemingly problematic for discrete rule-based architectures 
and that have thus motivated gradient representations. In particular, we 
address accuracy and response time as a function of typicality, defined, in 
part, by a category member’s similarity to other category members. By 
addressing typicality effects and related similarity-dependent phenomena, 
we intend to show how a discrete rule-based model might account for gra- 
dient category membership. We then investigate behavioral properties that 
may in turn be problematic for architecturally-fixed gradient representa- 
tions. In particular, we address how strategic advice impacts the classifica- 
tion process and the extent to which it alters error rate and response time 
profiles. 

2. THE SUPERVISED LEARNING TASK 

Our model performs a supervised learning task. The system is presented 
with training examples,’ described in terms of attributes and symbolic 

’ The terms example, instance, and objecf are used interchangeably in this article. 



DISCRETE SEARCH FRAMEWORK 501 

values, and a category label. The task is then to predict the category for 
future examples that do not have the label. For example, the following 
series of training examples may be presented to the system: 

{shape:spherical, color:blue, texture:smooth, size:small; category:ball} 
{shape:oblong, color:red, texture:smooth, size:medium; category:ball} 
(shape:spherical, color:blue, texture:smooth, size:large; category:globe) 

As training examples, they include both the object description and the 
category. With these examples, the system learns to predict categories when 
given only an object description, such as 

{shape:spherical, color:green, texture:smooth, size:medium} 

Here the system might respond with the category ‘ball’. 
Supervised learning from examples has been a popular task for many 

machine learning systems; these include systems based on discrimination 
trees (Breiman, Friedman, Olshen, & Stone, 1984; Quinlan, 1986; Schlimmer 
& Fisher, 1986; Utgoff, 1988), logical concept descriptions (Michalski, 
1983), artifical neural nets (Rosenblatt, 1962; Rumelhart et al., 1986), 
genetic classifiers (Holland & Reitman, 1978), and stored instances (Aha, 
Kibler, & Albert, 1991). Likewise, work in psychology has produced models 
based on similar representations including discrimination nets (Feigenbaum 
& Simon, 1984). rules (Anderson, Kline, & Beasley, 1979), neural nets 
(Gluck & Bower, 1988; Kruschke, 1992) and instances (Hintzman, 1986; 
Medin & Schaffer, 1978). 

We constrain the task so that the learning must be incremental. Infor- 
mally, this means that the model can perform (i.e., predict categories for 
unlabeled examples) at intermediate stages of learning. This fulfills a 
psychological behavioral constaint: not only do humans learn incrementally 
on this task, they learn incrementally throughout their lives. 

Technically any learning system can be trivally modified to pass as an 
incremental learner given this informal definition. All that is required is that 
the system save all training examples and then recompile its prediction 
knowledge whenever new training examples are presented. In order to 
exclude approaches that require excessive computational resources every 
time additional training examples are provided, we present a more formd 
definition. 

Definition 1. A learning system is incremental if it can perform at any inter- 
mediate stage of learning and if the processing of a training example has a 
constant time complexity, that is, O(l), with respect to the total number of 
training examples already encountered. 

Loosely stated, an incremental learning system does not require an increas- 
ing amount of computational time as more examples are encountered. This 
definition excludes approaches that must recompile their prediction proce- 
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dure upon the introduction of every new training example. We emphasize 
that the constant time complexity is with respect to the total number of 
training examples already encountered.This does not mean that the process- 
ing of a training example will always take the same time. Some examples 
may require more processing time than others. In these cases, the processing 
time may be a function of some other factor such as typicality or description 
size. The definition only excludes the case where processing time continually 
grows with the amount of experience. 

This is an important functional constraint on behavior since it recognizes 
the need to minimize computational resources as more knowledge is acquired. 
When considering that a human may encounter millions (if not billions) of 
learning examples, we can safely presume that human learning must at least 
approach this constraint. 

The requirement that the model learns incrementally constitutes a real- 
time constraint on processing training examples. Similarly, the task demands 
a real-time constraint on performance. The model must be able to respond 
with a category in a reasonable amount of time. For the psychological 
experiments with which we compare the model’s behavior, subjects typically 
have only a couple of seconds to respond. 

This specific supervised learning task does not include all of the com- 
plexities that a human can face in learning. For example, in most real-world 
learning situations, the object serving as a training example must be separated 
from the background of the total environment. For our model, examples 
and labels come pre-identified and symbolically encoded. Also, the model’s 
examples are represented by flat symbolic structures, whereas many more 
complex tasks require numeric and structured object descriptions. 

Nevertheless, even in the context of these simplifications, comprehen- 
sively modeling the task phenomena remains a difficult endeavor, and, 
clearly, humans can and do perform these tasks. Many psychological exper- 
iments make the same representational assumptions, and many interesting 
robust learning phenomena are still observed. 

Another consideration is that learning with flat, symbolic structures can 
still serve in learning with more complicated representations. Indeed, methods 
exist that convert numeric data to symbolic representations that can then be 
used with purely symbolic learning approaches (Fayyad, 1991) and approaches 
to learning structured objects could rely on learning composites of flat 
representations. 

3. DESCRIPTION OF THE MODEL 

Our learning model has two parts. The first part is the basic mechanism that 
accesses and learns prediction rules. Prediction rules test for specific attri- 
butes and values in examples, and when one rule matches an example, it 
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predicts a category. The second part learns heuristics, which guide the 
selection of attributes and values tested by the prediction rules. A rough 
analogy of this separation can be made with decision trees (Quinlan, 1986) 
where the decision tree representation corresponds to the rule learning and 
retrieval mechanism, and the splitting rule corresponds to feature selection 
learning. This section separately describes both parts of the model. The rule 
learning and retrieval mechanism, called SCA (symbolic concept acquisi- 
tion), is the focus of this work. However, in order to empirically evaluate 
SCA, we also present the second mechanism, which is required to functionally 
complete the model. 

For now, we describe SCA outside the context of Soar (the UTC). Later 
in this section, we discuss how Soar has motivated the design of SCA and 
how the structural design of SCA differs from previous approaches. 

3.1 Rule RetrlevaI and Acquisition 
In general terms, SCA is a symbolic rule-based system that incrementally 
acquires prediction rules as it is trained. By a symbolic rule-based system, 
we mean that rule activation is a discrete “all or none” match. That is, a 
rule matches if and only if the rule’s conditions are fully consistent with the 
internal representation of the object’s description. Furthermore, as with all 
symbol systems, the symbolic matching affords distal access to a rule base 
of arbitrary size (Newell, 1990). 

As SCA starts learning, it first learns very general rules that test only a 
few features of an example, but as learning progresses, more specific rules 
are acquired that test more features. Thus, there may be many rules at 
different levels of specificity (and correctness) that predict the same cate- 
gory. In trying to predict the category of an example, SCA’s search process 
favors specific rules. 

With SCA, a “concept” is ultimately defined by a distributed set of 
rules, for which there may be many per concept. However, because of con- 
flicts in the rule-base, the rule retrieval process also plays a determining role 
in defining an SCA concept. 

3.1.1 Representing Concepts as Rules 
The examples SCA accepts for prediction are described in terms of symbolic 
attributes and values. An example can be described as follows: 

{shape:spherical, color:blue, texture:smooth, size:small} 

To avoid confusion, we distinguish between the given example descrip- 
tion and the internal representation SCA uses for further processing. We 
depict the internal representation in brackets: 

[shape: spherical, color:blue, texture:smooth, size:small] 
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SCA’s rules test for features and predict categories. Some rules are very 
general (as a shorthand convention, the attribute names are omitted): 

[spherical] --> predict category:ball 
[spherical] --> predict category:globe 

Others are more specific: 

[spherical, red] --> predict category:ball 
[spherical, blue] --> predict category:globe 
[spherical, red, smooth] --> predict category:ball 

3.1.2 Predicting with Rules 
As would be expected, the more specific prediction rules are more likely to 
make correct predictions, and thus, the SCA search process favors more 
specific rules for matching the example description. In particular, the pro- 
cess takes the example description and then checks if there are any rules that 
match all of its features. If none exist, it then removes a feature from the 
example description and checks if there are any matches on all of the remain- 
ing features. 

In the example, the description might be modified by removing the texture 
attribute giving: 

[shape:spherical, color:blue, size:small] 

This process of removing a feature and then checking for a match con- 
tinues until either at least one prediction rule matches or until there are no 
features left. If no rules match, then no prediction can be made until more 
prediction rules are learned. If a single rule matches, then its prediction is 
made. Given the previous set of rules and our example, the system would 
predict category: globe, after removing the size attribute. If several com- 
peting rules match at the same time, the system arbitrarily guesses from 
among one of the competing predictions. 

Before we address how SCA acquires rules, let us emphasize its distin- 
guishing properties on how it represents concepts. First, SCA’s search from 
specific to general is controlled by knowledge that determines which feature 
to remove next, which is itself subject to learning. Ideally, irrelevant fea- 
tures would be removed first. Second, even though SCA maintains a large 
set of prediction rules at various levels of specificity, the computational 
resources required to match an example at a given level of specificity against 
all rules is constant. All of the description’s features must match exactly for 
a rule to apply, so that a simple hashing scheme,’ or a parallel associative 

2 Hashing is a common technique for efficiently accessing a data object. On average, 

access time is constant with respect to the number of stored objects (Aho, Hopcroft, & Ullman, 
1974). 
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define Predict(D) 

do 
/* Comment: retrieve category labels (R) associated 

with description D */ 

set R = recall(D) 

if size(R) > 0 then 
/* retrieved at least one label */ 

set Hatch = true 
/* randomly select one label from retrieved set R */ 

set p = choose element from R 

else 
/* no retrieval--continue search with 

modified (one less feature) description */ 

set D = D - Select-Feature(D) 
until Match or size(D) = 0 

return(p) 
end Predict 

figure 1. Performance specification. 

memory, can be used for rule application. Thus, this avoids the rule-utility 
problem (Minton, 1988) where match time grows with the number of rules 
in memory. By avoiding this problem, the model can acquire large numbers 
of diverse concepts (Doorenbos, 1995, reports an implementation of SCA 
learning over 1 ,OOO,OOO rules). The total amount of time taken to perform a 
prediction is only influenced by the number of attributes that need to be 
abstracted in order to find a match, and as we shall see, as more rules are 
learned, the number of abstractions will actually decrease, thus decreasing 
the time required to perform a prediction. 

Figure 1 provides the specification of the performance process written in 
pseudocode. Here the function Predict is passed a set of features serving as 
the example description. The example description D is incrementally stripped 
of its features until a match is found. The function recall returns the predic- 
tions of all rules whose conditions match its argument. 

3.1.3 Rule Acquisition 
When learning rules, SCA accepts an example description that includes the 
correct category label. Its goal is to integrate the knowledge implicit in the 
training example with its existing rule-based knowledge. During learning 
SCA searches not for the first-matched rule, but for a matching prediction 
rule that makes the correct prediction. With a match and a correct predic- 
tion, the system has thus discovered prior experience that supports the 
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current training example. The training example now serves as new knowl- 
edge for adding an additional rule. 

SCA follows a simple strategy for learning a new rule that is a compro- 
mise between previously acquired knowledge and the knowledge implicit in 
the training example. In particular, it acquires a new rule whose conditions 
include all of the features that matched (or no features if no match occurred) 
plus the feature that was last removed before the search stopped. The pre- 
diction of the new rule is the correct category given by the training example, 
which also had been confirmed by the matching rule. 

Initially, SCA will frequently fail to find pre-existing rules that produce 
the correct prediction. For each of these cases, SCA must create a new rule 
at the most general level. This can be accomplished by either creating the 
rule from scratch or, as in our Soar implementation, by deriving it from a 
preexisting set of condition-free default rules that are only accessed once no 
features remain in the object description. In either case, this initial rule’s 
condition consists of the fe-ture that was last removed from the object 
description. 

We will later note that the Soar architecture motivates the design of 
including the last removed feature in the new rule. Nevertheless, the inclu- 
sion of the last feature also has a potential performance benefit. If we assume 
a feature removal strategy that removes irrelevant features first, the inclu- 
sion of the last removed feature is the most relevant feature not already in 
the matching rule’s conditions. 

Let us use the training example ball: (spherical, blue, fuzzy, small) as 
an example of how a new rule is acquired. First, the description [spherical, 
blue, fuzzy, small] is processed in search of a category prediction. Let us 
assume that ‘small’ is removed and then ‘fuzzy’. The description [spherical, 
blue] matches a prediction rule. However, this rule predicts ‘globe’-the 
wrong category. Search continues by removing ‘blue’. Finally, the descrip- 
tion [spherical] matches a correct rule and search stops. A new rule is con- 
structed and added to memory: 

[spherical, blue] --> predict category:ball 

With the acquisition of this new rule, there are now two competing rules 
with these attributes at this level of specificity. Should both of these rules 
match during performance, a guess is required in order to make a prediction. 
The acquisition of this new rule may be merely an intermediate step towards 
the acquisition of still more specific ones. Subsequent training examples will 
result in still more specific rules, thereby reducing the number of conflicts. 

Figure 2 provides the specification of the performance process modified 
for training. We have added the store function, which saves new rules whose 
conditions include the previous example description, D’. 

Learning using this method is incremental. The computational effort to 
process a training example does not increase with the number of previously 
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define Train(D,c) /* Description D, correct label c */ 

/* after first 'do' iteration, D' will be one 

feature more specific than D */ 

set D' = D 
do 

set R = recall(D) 
if c in FL or size(D) = 0 

/* for training, search stops with a correct retrieval 
or when description has no features */ 

set Match = true 

set p = c 
/* store new production associating c to D' */ 

store(D) --> c) 

else 
set D' = D 
set D = D - Select-Feature(D) 

until Match or size(D) = 0 

return(p) 

end Train 

Figure 2. Performance specification modified for training. 

learned rules, but on average, will decrease, as fewer and fewer abstractions 
need to be performed before a correct prediction can be found and a single 
new rule is added to memory. 

The choice of adding a more specific rule with only one more feature in 
the condition represents a compromise between previously obtained knowl- 
edge and the knowledge implicit in the newly presented training example. 
Should the previously obtained knowledge be incomplete, that is, the pre- 
diction conditions do not include all relevant features, the addition of a new 
rule with an extra feature in the condition helps complete the system’s knowl- 
edge. On the other hand, should the knowledge implicit in the training 
example be irrelevant (due to spurious correlations) or incorrect (due to 
noise), the addition of only one more rule with only one additional condi- 
tional feature allows room for error recovery as more examples are experi- 
enced. As long as there are more specific rules to be learned, error recovery 
occurs automatically with the presentation of additional training examples 
that incrementally lead to rules more specific than the incorrect ones. The 
number of correct instances required to successfully ‘mask’ the incorrect 
rule is at least two: one example to acquire a rule with the same conditions 
and an additional example to acquire a rule with an additional feature in the 
conditions. More examples may be required depending on the distribution 
of feature combinations and the consistency of the feature selection heuris- 
tics. By searching through the rule space from the most specific rule to the 
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more general ones, the first matched rule typically produces the most com- 
mon category for examples with the matched attributes. 

The ability to recover from noisy examples by learning yet more specific 
rules assumes that there are more specific rules to be learned. With enough 
examples, the SCA rule base will have a complete set of maximally specific 
rules and will then have no means of recovering. Although the extent to 
which this happens in practice is attenuated by presenting examples with 
many features (including spurious, irrelevant features) and with features 
that change over the course of training, this observation presents a limita- 
tion on the SCA’s ability to recover from noisy examples. Later, we will 
review this question in the context of empirical results. 

3.2 Feature Selection 
As noted earlier, the effectiveness of this approach depends on the order in 
which features are removed from the example description. Ideally, all the 
relevant attributes should be ;n the conditions of the acquired rules. Thus, a 
good heuristic would remove the irrelevant features first so that rules with 
relevant features in their conditions can be successfully matched. If relevant 
attributes are removed from the description before a match occurs, the 
quality of the category prediction will certainly suffer. A second considera- 
tion is that search using one feature selection order will fail to match rules 
acquired under a different order. Thus, a good search heuristic should also 
be relatively consistent across training trials. 

Despite SCA’s dependency on a reasonable selection heuristic, SCA’s 
performance degrades only in terms of learning rate as the choice of attri- 
bute removal suffers. In the case where irrelevant attributes are kept in the 
example description at the expense of having relevant ones removed, SCA 
will still be able to make good predictions once specific enough rules have 
been learned that include both the irrelevant and the relevant attributes. In 
the case where attributes are selected erratically, the progression towards 
learning specific rules will be slower. This is because the rule search may 
overlook a specific rule if the order of feature removal was different than 
when the rule was acquired. However, after enough training examples, 
specific rules are still acquired. 

At this point, we make no specific commitment on SCA’s heuristic for 
selecting features. We suggest that feature selection is a deliberate process, 
that is, potentially any relevant knowledge is brought to bear on selecting 
features. For example, knowledge stemming from advice and causal theories 
may impact the selection as well as any “data-driven” strategy. Despite the 
potential variation in control strategy, we will argue that many key behavioral 
properties of SCA occur independently of any particular feature selection 
strategy. Nevertheless, in order to implement the model for evaluation, we 
now specify a “default” strategy for choosing appropriate features. 
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3.2.1 Default Feature Selection StrPtegy 
Upon finding a match, the system can seize the opportunity to evaluate the 
relevance of the matching features. Since a good set of relevant features 
should minimize the number of conflicting predictions, a simple heuristic 
can evaluate the quality of the match based on this number. For example, 
let us assume an object description activates these two matching rules: 

[spherical, blue, smooth] --> predict category:ball 
[spherical, blue, smooth] --> predict category: globe 

The number of conflicting prediction is two. This “match evaluation” 
serves as a means of quantifying the effectiveness of the match. A lower 
number indicates a better quality match. However, whenever a match occurs, 
it is not clear which of the features contributed towards the evaluation. For 
example, of the features that matched, perhaps the shape is the only diag- 
nostic feature. Perhaps shape is always a diagnostic feature. Or, it may only 
be diagnostic when the shape is spherical, or when the shape is spherical and 
the color is blue. In general, it is difficult to know which attributes under 
what context contributed to the result. Since it is not computationally fea- 
sible to record statistical counts of match evaluations under all contexts (the 
number of contexts grows exponentially with the number of features), we 
resort to a reasonable heuristic. 

We propose two possibilities that approximate an attribute’s relevance, 
but at minimal computational cost. The first averages the match evaluations 
by attribute, independent of context. The second keeps averages by the 
attribute’s values. The first approach captures generalities that exist for an 
attribute, but fails to capture specific cases where the attribute may only be 
relevant when it has a specific value. For example, the “by attribute” approach 
can learn that color as an attribute is often irrelevant, but fail to learn that 
certain particular colors are often relevant. In contrast, the “by value” 
approach can learn that particular colors are relevant but fail to learn that 
color in general is irrelevant. Martin and Billman (1991) argue that people 
generalize across attribute values and that this strategy has functional 
advantages. We follow this functional route of averaging matching evalua- 
tions by attribute. Thus, when SCA must remove an attribute (preferably 
the least relevant) from an example during its search for a matching rule, 
the feature with the highest average of conflicting predictions is removed 
first. Averaging the match evaluation across many different predictions in- 
creases the model’s immunity to spurious inconsistencies while also stabiliz- 
ing the order of feature removal. 

Figure 3 provides the specification of the “by attribute” selection heuristic 
in the context of SCA. This algorithm maintains the average number of 
conflicting predictions for each attribute, and is the strategy that we will use 
for modeling human behavior in Section 4. After recalling a set of predic- 
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define Train(D,c) 
set D’ = D 

do 

set R = recall(D) 
if c in R or size(D) = 0 

set l4atch = true 
set p = c 
store(D' --> c) 

/* update attribute prediction record */ 
Update(D,size(R)) 

else 
set D' = D 
set D = D - Select-Feature(D) 

until hatch or size(D) = 0 

return(p) 
end Train 

define Update(D,s) 
/* maintain record of prediction averages by attribute */ 
for each d in D 

Update_Avg(Attribute(d).s) 
end Update 

define Select-Feature(D) 
/* heuristically choose least relevant attribute in D: 

large number of avg retrievals suggests irrelevant attribute */ 
set d such that Get_Avg(Attribute(d)) = 

Iku(Get_Avg(Attribut.e(D))) 
return(d) 

end Select-Feature 

Figure 3. Feature selection heuristic in the context of SCA. 

tions, Update is called with the current example description and the number 
of predictions. For each feature, the number of predictions is averaged into 
previous updates indexed by the feature’s attribute name. For feature selec- 
tion, the feature with the largest average, again indexed through attribute 
name, is returned. The process of updating evaluation averages is consistent 
with the model’s ability to learn incrementally since the computational cost 
of each update is constant with respect to the number of previous updates. 

The selection heuristic of averaging attribute relevancy across all values 
and categories is not intended as a comprehensive model of how humans 
learn which features are relevant. Rather, we intend it to be an approxima- 
tion of our assumption that feature relevance should shift in accordance to 
how useful certain features are in predicting categories. 
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Figure 4. Graphical depiction of rules. 

3.3 An Extended Example 

511 

texture 

color 

shape 

Let us now go through an extended training trial where the feature selection 
order changes. In doing so, we will consider simple object descriptions of 
three attributes. To start, we will assume that the system guesses that the 
initial ordering of feature removal (from least relevant to most relevant) is 
texture, color, shape. With this order, the following training examples are 
presented to SCA (underlined values represent values matched in a pre- 
viously learned rule): 

1. {oblong, red, smooth; ball} 
2 {spherical, blue, smooth; globe} 
3. {spherical, blue, smooth; ball} 
4. {spherical, blue, smooth; globe} 
5. {spherical, red, fuzzy; ball} 
6. {spherical, blue, smooth; globe} 

Presented one at a time, these training examples incrementally create the 
following rules (the number of the example corresponds to the number of 
the rule it created): 

1. [oblong] --> ball 
2. [spherical] --> globe 
3. [spherical] --> ball 
4. [spherical, blue] --> globe 
5. [spherical, red] --> ball 
6. [spherical, blue, smooth] --> globe 

‘Figure 4 is a graphical depiction of these rules as viewed from the current 
feature removal order (texture, color shape). Each dot represents a predic- 
tion rule where the prediction is the category next to the dot and the rule’s 
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Figure 5. Graphical depiction of rules with alternate feature ordering. 

conditions are all the attribute values connected below the dot. The super- 
scripts on the predictions correspond to the rule and example numbers. 
Within the context of the curent feature removal order, the model’s search 
process accesses the most specific rule that matches the object description. 
For example, with the performance instance of (spherical, red, smooth} 
and a feature removal ordering of texture, color, then shape, rule 5 would 
match, after the texture attribute (smooth) is removed from SCA’s internal 
representation of the object. 

Figure 4 only represents one feature ordering. After the sixth training 
example, the feature selection heuristic may rate shape as more relevant. In 
this case, color and shape are swapped producing a new ordering: texture, 
shape, color. Under this ordering, Figure 5 depicts the usable remainder of 
the same set of rules. An open dot suggests where a rule could exist but has 
yet to be acquired. Rules 1,2, and 3 are not accessible under the new order- 
ing, since SCA’s internal representation would never fully match these rules 
with this order of removal. Should the order revert back to the original, 
rules 1,2, and 3 would again be accessible. Rules 4,5, and 6 are still accessi- 
ble since their conditions contain both attributes whose order has changed. 
Thus, reordering attribute does not necessarily suppress access to all pre- 
viously learned rules. 

With the new ordering, our example continues with two additional train- 
ing instances: 

7. {oblong, red, fuzzy; ball} 
8. {oblong, red, smooth; ball} - 
leading to the acquisition of these two rules: 

7. [red] --> ball 
8. [red, oblong] --> ball 
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Fiaun 6. Final graphical depiction of rules. 

Figure 6 is the graphical depiction of rules learned under the second 
feature ordering. 

3.4 SCA in the Context of Previous Work 
Though SCA shares a few properties with other models, SCA’s design 
primarily derives from the constraints of the Soar architecture. It is pri- 
marily these constraints that distinguish SCA from all other models. In this 
section, we review these constraints and their consequences on SCA’s design. 
We are not offering SCA as the definitive Soar model of category learning. 
Yet, as the constraints of the Soar architecture motivate its design, the 
following analysis illustrates how Soar memory models can address the 
functional and empirical demands of category learning tasks. Furthermore, 
by contrasting SCA’s properties with other models, including those of 
human memory and concept acquisition, we help locate SCA in the larger 
space of learning models. 

The major architectural constraints (and therefore distinguishing char- 
acteristics of SCA) can be summarized as follows: 

1. Knowledge (long-term memory) is encoded as rules. 
2. A task is performed by applying a linear sequence of discrete, deliberate 

operations on a temporary declarative representation (working memory). 
3. A rule in long-term memory is only accessed by its successful match of 

working memory contents (i.e., rules cannot be directly examined). 
4. All learning is the result of performance achieved through the applica- 

tion of prior knowledge (explanation-based learning). 
5. Once a new rule is acquired, it is never lost. 
6. Rule matching occurs over a discrete representation. 

These are the constraints of the Soar architecture, a system of mechanisms 
that applies knowledge, represented as productions,” in creating intelligent 

’ In this article, the terms production and rule are used interchangeably. 
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behavior. The choice of mechanisms has led to some universal constraints 
within which a large, diverse set of human behaviors have been modeled 
(Lewis, 1993; Lewis et al., 1990; Newell, 1990; Weismeyer, 1992). Likewise, 
these constraints aply to SCA and thus intrinsically shape the structure of 
the model. 

As stated earlier, SCA refers to the rule-based component of our imple- 
mentation and not to the feature selection mechanism. For this article, our 
intention is that the implementation of the selection mechanism represents 
an approximation of how people use prediction feedback for evaluating the 
utility of selected features. While feature selection as a function of perfor- 
mance is not necessarily inconsistent with the Soar architecture, our partic- 
ular implementation, since it recalls and updates continuous averages, is 
inconsistent. It remains an open issue if a comparable feature selection 
mechanism can be implemented within Soar’s constraints. 

While Soar is a rule-based architecture (Constraint l), it is the second 
constraint that distinguishes Soar’s (and SCA’s) knowledge representation 
from other schemes, whether they be “rule-based” or something else (e.g., 
cases, frames, or prototypes). For Soar, problem solving does not have 
direct access to its rules, as they are not declarative structures whose con- 
tents can be examined and modified. A production (rule) is only accessed 
when its conditions match the contents of working memory. In effect, in 
order to seek out knowledge in long-term memory, the system must alter its 
working memory contents “in search” of the knowledge represented pro- 
cedurally as productions. This contrasts with other rule-based systems 
whose learning mechanisms access the rule conditions and actions and mod- 
ify them (Anderson, 1983; DeJong & Mooney, 1986; Holland & Reitman, 
1978). Functionally, this constraint may seem unnecessarily restrictive; how- 
ever, our means of accessing rules incorporates efficient match strategies 
whose matching cost does not significantly degrade as more productions are 
acquired (Doorenbos, Tambe, & Newell, 1992; Forgy, 1982). Randomly 
accessing and operating on rules would require additional time and may in- 
crease the time complexity of the learning process. 

This stance along the access/cost tradeoff has several immediate con- 
sequences for our model. It allows for the liberal acquisition of rules since 
each additional rule comes at litle cost. However, the opaqueness of the 
rule-base presents a difficulty for explicitly evaluating the utility of individ- 
ual rules. Rather than creating additional mechanism for indirectly moni- 
toring rule utility, SCA simply continues to learn more specific rules, a 
strategy that contrasts with most other rule-based systems, which only con- 
sider more specific rules if the current rules prove inadequate (e.g., Nosofsky, 
Palmeri, & McKinley, 1994). 

Not only do the above constraints serve in defining SCA’s distinguishing 
characteristics, they also motivate several design decisions. For example, 
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the Soar architecture prohibits the possibility of directly removing incorrect 
rules as a means of error recovery (Constraint 5). As a consequence, obso- 
lete prediction knowledge must somehow be suppressed through the acqui- 
sition of new knowledge. One approach is to acquire new knowledge that 
explicitly rejects structure created by obsolete knowledge (Laird, 1988; 
Rosenbloom & Aasman, 1990). SCA takes an alternate approach that avoids 
the explicit rejection of obsolete structure. Since SCA probes for more spe- 
cific rules first, recovery occurs by eventually learning more specific rules. 
As long as inaccurate rules remain less specific, they will be masked from 
performance. 

This rule-matching strategy delivers frequency effects without explicit 
frequency counts, weights or probabilities (Constraint 6). For example, 
consider the situation where SCA is presented with a ball but is incorrectly 
told it is a ‘globe’. SCA would acquire a general rule classifying the object 
as a ‘globe’. However, upon receiving several correctly classified examples 
of balls, it would eventually acquire more specific rules that override the 
incorrect one. In short, a rule’s specificity is an implicit measure of how 
many examples of one category SCA has encountered. 

This approach distinguishes SCA from other production-based models. 
The ACT model of schema abstraction (Anderson et al., 1979) is similar to 
SCA in that it encodes conceptual knowledge disjunctively distributed in the 
form of productions. However, it first acquires specific productions while 
incrementally generalizing them to create new, less specific ones. Further- 
more, it maintains a weight with each production in order to keep track of 
the production’s utility. The weight serves as a guiding factor in whether the 
production will apply. Like SCA, the specificity of the rule is also important 
in determining whether a production should apply. However, specificity is 
explicitly calculated and directly factored into the production’s probability 
of being applied. In contrast, SCA implicitly factors in specificity during 
performance through a serially-ordered search in long-term memory. 

The classifier model (Holland & Reitman, 1978) is another production- 
based model. This system also uses several parameters in keeping track of a 
production’s utility. The learning of new productions is not directed in a 
certain way as in SCA (general to specific) or ACT (specific to general). 
Instead, the set of productions are incrementally modified by genetic operators 
with the directed goal of optimizing prediction accuracy. In contrast to the 
third architectural constraint, the genetic operators have direct access to the 
rule base, allowing for more flexibility in acquiring and modifying rules. 
For performance, a series of productions may apply as determined by their 
strengths. 

In neither the ACT model nor the classifier model does prediction per- 
formance depend on a series of deliberate choices, where any pertinent 
knowledge within the system is brought to bear. In contrast, SCA requires a 
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series of control decisions that guide which features are relevant to a predic- 
tion (Constraint 2). This arises from how problem solving is approached in 
Soar, where task performance is guided by deliberate decisions. The feature 
selection learning mechanism suggests one type of knowledge useful in guid- 
ing feature selection. That deliberation plays a role in induction is consistent 
with a later observation by Anderson where he suggests, “there is evidence 
that the generalizations people form from experience are subject to strategic 
control” (Anderson, 1987, p. 205). 

In related work, Billman and Heit’s CAR1 (Billman & Heit, 1988) learns 
prediction rules whose construction is guided by a technique they callfocused 
sampling. Focused sampling is similar to the feature selection heuristic 
described here. In their application, however, focused sampling was limited 
to the construction of rules with only one feature in the rule’s condition. 
ALCOVE (Kruschke, 1991) is an example of a connectionist model of 
human categorization that has applied this heuristic. Here the heuristic is 
implemented by weighting the focused features proportionally higher. 

Perhaps EPAM (Feigenbaum & Simon, 1984; Simon 8z Feigenbaum, 
1964) is most similar to SCA in that it conforms to most of Soar’s architec- 
tural constraints. Indeed, a close analogue of EPAM has been implemented 
in Soar (Rosenbloom, Laird, & Newell, 1988). Both EPAM and SCA are 
discrete systems that incrementally learn more specific discriminations. 
EPAM is a discrimination net that discriminates among concepts by focus- 
ing on the minimal number of features needed to distinguish between con- 
cepts whereas SCA always learns a more specific rule with each new training 
example. As a consequence, training frequency affects the specificity of 
SCA’s rule base more than that of EPAM’s. Also, SCA’s specific to general 
rule search differs from EPAM’s serial search that effectively starts with the 
most general and, by incrementally testing more features, moves to the 
more specific. Another critical difference is that EPAM fixes which features 
the model should discriminate on. For SCA, feature selection always remains 
a deliberate choice. Moreover, the knowledge a system brings to bear in 
making a deliberate choice need not be limited to heuristics directly guided 
by empirical success. Other types of knowledge include partial domain 
theories and knowledge arising from verbal instruction. In principle, these 
types of knowledge, also represented as productions, can apply to the deci- 
sion making process. Further research should address the issue of how these 
other types of knowledge arise and how they influence the induction pro- 
cess. Also, it remains an open issue if a comparable feature selection mech- 
anism can be implemented within Soar’s constraints. 

Another way to compare systems is to examine the context in which the 
system learns from a training example. The ACT model and classifer model 
learn by trying to predict the category of a training example. Learning 
occurs by adjusting production parameters depending on whether the pre- 
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diction is correct or not. Similarly, feed-forward connection& networks 
(e.g., backprop nets of Rumelhart et al., 1986, and the configural-cue 
model of Gluck & Bower, 1988) learn by adjusting connection weights after 
making predictions on a training example. SCA also learns by trying to per- 
form on a training example using prior knowledge. However SCA continues 
to make predictions until the correct prediction is made. Learning then 
occurs by summarizing the experience of making the correct prediction. 
This process leads to the acquisition of a new rule whose conditions consist 
of the features that led to the correct prediction, that is, the features that 
matched the predicting rule as well as the feature that was last removed so 
that the match could occur. This inductive variant of explanation-based 
learning (Constraint 4) is supported by Soar’s chunking mechanism, a 
learning process that is similar to the explanation-based learning mecha- 
nisms of other AI systems (DeJong & Mooney, 1986; Mitchell, Keller, & 
Kedar-Cabelli, 1986). One consequence of applying chunking to an inductive 
task is the initial need to generate all possible predictions so that the correct 
prediction is available for acquiring the first, most general rule. 

Exemplar-based models contrast with the above approaches of learning 
through performance. Examples of these models are Medin and Schaffer’s 
Context Model (Medin & Schaffer, 1978), Hintzman’s MINERVA models 
(Hintzman, 1986) and Aha’s instance-based learning model (Aha, 1989). 
These models learn by storing the training examples. For performance, 
classification is determined by the classifications of all stored examples, 
weighted by their similarity to the queried example. Implicit with these 
models is the assumption that humans can internalize an entire example 
representation independent of prior learning. In contrast, SCA acquires 
rules that approach the content of an exemplar only after encountering the 
same example (or similar ones) several times. Ultimately, however, both SCA 
and exemplar-based models represent a concept with multiple combinations 
of features. 

Other models combine several of the above approaches. ALCOVE 
(Kruschke, 1992) employs a feed-forward connectionist network organized 
to represent entire examples. One of its learning mechanisms learns by 
adjusting weights searching to minimize error. A second learns attentional 
weights for focusing on incoming features. COBWEB (Fisher, 1988) also 
represents entire examples. The model provides an efficient indexing strategy 
by organizing examples hierarchically. For both training and performance, 
the hierarchy, composed of abstract descriptions represented by attribute- 
value probabilities, is descended, placing the new description so as to maxi- 
mize feature prediction. For performance, prediction is based on the best 
matching concept in the hierarchy. For training, the new example is incor- 
porated into the hierarchy by either updating a previous concept description 
or by creating a new description. Furthermore, operators may directly 
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modify the hierarchy in order to maximize the ability to make correct fea- 
ture predictions. This differs from SCA, which does not have direct access 
to its long-term representation (Constraint 3). Both ALCOVE and COBWEB 
differ from SCA in that they incorporate a gradient component (i.e., 
weights or probabilities) in the storing and retrieving of examples (cf. Con- 
straint 6). 

In this section, we have claimed that, in addition to functional considera- 
tions, Soar’s architectural principles have placed constraints on SCA’s 
structural design, and it is these constraints and their consequences that 
distinguish SCA’s design from other models. Given this design, we now 
turn to its behavioral consequences. 

4. SIMULATING HUMAN BEHAVIOR 

In this section, we describe some phenomena manifested by humans in learn- 
ing categories and evaluate how well the model exhibits this behavior. Much 
of the model’s behavior can be attributed to SCA, the rule acquisition and 
retrieval component of the model. Indeed, previous work (Miller & Laird, 
1991) reports how SCA with hand-coded feature selection heuristics exhibits 
some typicality effects and a reasonable distribution of extension errors. In 
this article, the results are generated from SCA working with the “by attri- 
bute” selection heuristic described in Section 3.2.1 and cover a broader set 
of phenomena. However, much of the model’s behavior is still explained 
through SCA’s learning properties. 

Category learning is perhaps one of the most studied tasks in cognitive 
psychology, and many effects have been reported and modeled. Among 
these are the behavioral consequences of varying category types, exemplar 
similarity, exemplar ordering, and exemplar frequency, where the behav- 
ioral consequences include measurements of prediction accuracy, response 
time, learning rates, and verbal confidence ratings. Our goal is not a com- 
prehensive model of category learning. Rather, our interest is to explore the 
viability of discrete rule-based models and their ability to account for seem- 
ingly continuous phenomena. As such, we limit ourselves to a set of general 
phenomena that have motivated many gradient models, namely the ability 
to account for variations in both response time and error rates as a contin- 
uous function of an instance’s similarity to other category members. 

For our simulations, we first compare SCA’s response times and error 
rates across three levels of typicality. Through the course of learning, we 
show that SCA classifies instances with higher typicality faster and more 
accurately. The next body of experiments evaluates SCA’s predictions 
on typicality effects in greater detail by comparing response times and 
error rates of individual instances to human data. We also increase SCA’s 
coverage by varying feature selection heuristics that correspond to different 
strategies that subjects were instructed to use. 
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In this article, we limit coverage to qualitative fits. Quantitative fits make 
stronger assumptions about the input to the model (e.g., number of features, 
amount of noise, structure of features) whereas qualitative predictions are 
preserved provided that the qualitative relationships in the model’s input 
are the same received by the actual human process. Previous approaches to 
quantitative fitting may have addressed these problems by adjusting para- 
meters in order to obtain the best fit. Some examples are connectionist 
models, which have parameters specifying learning rate (Kruschke, 1992) 
and exemplar-based models, which often have parameters controlling sim- 
ilarity calculations (Medin dz Schaffer, 1978). However, the use of par- 
ameters can be a difficult enterprise when it comes to showing that fits to 
human data are an intrinsic property of the model and not a product of 
having the right parameters and settings. By presenting SCA as a parameter- 
free model, qualitative behavioral distinctions clearly come from the model. 

4.1 Modeling Response Time 
The amount of time a person takes to predict an instance’s category can 
vary as a function of several factors (e.g., typicality). Many learning theories 
that use explicit gradient representations do not commit to an algorithmic 
procedure describing how the quantitative data is processed. For example, 
the context model (Medin & Schaffer, 1978) mathematically defines the pro- 
bability a stored instance will be retrieved in making a category prediction. 
While the probability calculation is dependent on the similarity of all instances 
in both contrasting categories, the model does not commit to how this infor- 
mation is gathered and processed. COBWEB shows a correlation between 
typicality (as determined by response time) and the degree of match to one 
of the system’s internally represented concepts (Fisher, 1988). COBWEB 
does not address whether there exists a process that would implement the 
model while also producing varied response times in accordance with the 
match metric. Similarly, ALCOVE (Kruschke, 1992) mathematically defines 
probabilistic, causal relationships between connections in its artificial neural 
net, without committing to a process that implements them. For these 
models, response time predictions are obtained by mapping internal metrics 
to response time. 

One exception is the application of a Kohonen net (Schyns, 1991) where 
the response times are strongly modeled in that the system actually requires 
different amounts of time to process instances of different degrees of typicality. 
The varied response time results from a ‘settling’ process, which is a search 
for a stable state influenced by bottom-up constraints of the upsupervised 
Kohonen net and top-down constraints of a supervised learning component, 

To our knowledge, no other rule-based system provides distinct response 
time predictions that are separate from accuracy predictions. For example, 
the RULE-EX model (Nosofsky, Palmer, & McKinley, 1994) successfully 
produces accuracy fits for a wide range of phenomena; however, it is not 
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clear how one would derive response time predictions from its performance 
process. Another rule-based model, a discrimination tree model proposed 
by Ling and Marinov (1994), produces response time fits but only through 
an indirect interpretation of its accuracy predictions. 

SCA’s response time predictions are the consequence of its process, 
defined in terms of which processes occur in parallel (e.g., production 
matching) and which are performed serially (e.g., deliberate search). The 
rule acquisition portion of the model does not use weights, similarity mea- 
sures, frequency counts or probabilities in acquiring and activating its rules. 
Instead it relies on an incremental search that indirectly orders access to pre- 
diction rules of varying degrees of accuracy. As a consequence, the time 
required for performance is not constant. Furthermore, because SCA learns 
by performing on training instances, the time required to process a training 
instance covaries with the time it would take to process it as a test instance. 
Despite the varying response time, SCA lies within the definition of an incre- 
mental learner. This definition requires that the learning system take at 
most a fixed amount of time which does not increase with the number of 
training examples. In conforming to the definition, we see that response 
time for SCA is bounded by a constant proportional to the number of fea- 
tures in an instance description. However, this is only an upper bound and 
is independent of the number of instances encountered. 

We will be measuring response time as the number of feature removal 
iterations. We realize that there are potentially other sources of response 
time variation applicable to our model. For example, removal iterations do 
not account for the extra time that may be required in handling conflicting 
prediction rules that have been simultaneously activated. Also, the measure 
does not account for time variations for feature selection at each decision 
point during search. Accounting for time variations in either of these pro- 
cesses would require additional commitments to their implementation, 
which we are not prepared to do at this time. Despite these limitations, 
measuring time in terms of discrete search iterations still allows our model 
to produce testable predictions for response time variations. 

4.1.1 Typicality Effects 
People have a general understanding that some objects are more typical 
instances of categories than other objects. One example is the comparison 
of a robin and a penguin in the bird category. Generally, the robin is con- 
sidered a more typical bird. While this does not tell us whether a penguin’s 
status as a bird is somehow weaker than a robin, it does appear that typical- 
ity plays a role in how categories are processed. Several behavioral effects 
occur that vary as a function of an instance’s typicality (Rosch, 1978): 

1. typical instances are generally processed faster than less typical ones; 
2. typical instances lead to fewer errors in category prediction; and 
3. typical instances are frequently given as an example of a category. 
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These results have led scientists to believe that categories do not have sharp, 
strongly defined boundaries. Instead, category membership is thought to lie 
on a continuum. 

Several approaches have addressed this apparent ‘fuzziness’ of category 
boundaries such as fuzzy sets (Zadeh, 1965) and frequency distributions 
(Fisher, 1987; Lebowitz, 1987), but, as Bergadano, Matwin, Michalski, and 
Zhang (1992) point out, once a system has explicitly defined a measure for 
category membership, category membership once again has a “fixed, well 
defined meaning.” Rather than speculate on whether SCA’s approach cap- 
tures the spirit of fuzzy category membership, we take a more objective 
position by focusing on how well the external behavior of the model fits the 
external behavior of humans. Our focus is response times and error rates 
that occur over the course of learning. The third effect (giving a typical 
instance as an example) extends beyond the scope of our model’s immediate 
task, that is, the supervised learning task. 

To understand our model’s behavior on instances with different degrees 
of typicality, it is presented with an artificial dataset (i.e., a set of artificial 
stimuli). Typicality can be measured by the instance’s similarity to the other 
instances in the same category. Rosch, Simpson, and Miller (1976) show in 
several experiments how response times and errors vary in accordance to 
this metric. In particular, they report that humans categorize the more 
typical instances with faster response times and fewer errors. Ideally, we 
would use a set of stimuli that directly corresponds to the Rosh et al. stimuli. 
However, their stimuli consists of letter strings, and because representing 
positional information would require additional assumptions which may or 
may not be relevant, we resort to creating our own dataset, which neverthe- 
less uses the same theoretical measure for determining typicality. Later in 
this article, we will use a dataset that directly corresponds to the stimuli pre- 
sented to human subjects. 

Table 1 shows the stimuli used for testing typicality effects. For these 
data, there are two categories: A and B. For each category there are six 
instances, each with five attributes. Each of the attributes can have only two 
values: 0 or 1. These values serve as symbolic representations of features 
(e.g., color, shape, size, etc.) that humans perceive when undergoing a 
categorization experiment. A given instance has a similarity score that is the 
sum of how many features the instance shares with the other instances in the 
same category. This is the same definition of typicality as in the Rosch et al. 
study, Based on this score, the typicality is rated as low, middle, or high. 

In testing the model, we presented the data for ten training cycles, where 
one cycle consists of each instance presented once. The presentation order 
was separately randomized for each cycle. Performance trials (predicting 
the category name) followed each training cycle in order to access perfor- 
mance. As we shall see, ten exposures of each training example was suf- 
ficient to illustrate the entire learning trend. We chose to repeat this process 
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TABLE 1 
Training and Testing Data far Typicality Effects 

Category Dl 

Attributes Similarity Typicality 

D2 03 D4 D5 Score Group 

A 1 0 0 1 1 12 Low 

A 1 1 0 0 0 12 

A 0 1 0 0 1 14 

Low 

Mid 

A 0 0 0 1 0 14 Mid 

A 

A 

0 0 0 0 1 16 High 

0 0 0 0 0 16 High 

B 0 1 1 0 0 12 Low 

0 0 1 1 1 12 Low 

1 0 1 1 0 14 Mid 

1 1 1 0 1 14 Mid 

B 1 1 1 1 0 16 Hiah 

B 1 1 1 1 1 16 High 

1000 times in order to ensure tight confidence intervals for each data point. 
This large number was able to compensate for the two sources of variation 
between individual runs, namely the randomization of the example presen- 
tation order and the model initially guessing which feature to include in the 
first rules. 

Figures 7 and 8 show the results averaged over the 1000 runs. For both 
of these graphs, independent data points are given for each level of typi- 
cality after each training cycle (indicated by the x-axis). Figure 7 shows per- 
formance in terms of accuracy. The y-axis indicates the fraction of correct 
responses, where a response is considered correct if it is consistent with the 
training example’s categorization. With 1000 runs, the largest of the 95% 
confidence intervals was f .015. Figure 8 shows performance in terms of re- 
sponse time. The y-axis indicates the number of feature-removal iterations. 
For response time, the largest of the 95% confidence intervals was f .05. 

For all typicality levels, both performance graphs reveal an incremental 
improvement in performance. This is consistent with human data, as Estes 
(1994) notes that reaction time for categorization steadily decreases over a 
series of trials for all studies of which he is aware. Between typicality levels, 
the instances of higher typicality were generally processed more accurately 
and faster than instances of lesser typicality. However these differences in 
performance steadily decrease, especially after the 5th training cycle, and by 
the 8th cycle are essentially indistinguishable. At this point, almost all 
examples are activating maximally specific rules. As to whether the model 
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uniformly predicts a decrease in performance differences among typicality 
levels warrants further discussion, but first we shall review why the model 
exhibits performance differences before it has obtained maximafly specific 
rules. 

The model’s typicality effects are a result of how SCA incrementally 
acquires new prediction rules. New prediction rules result by first matching 
a training instance with an already existing prediction rule and then adding 
a new feature to the matching rule’s conditions. 

Training instances with a high typicality are more likely to match more 
features, thus creating more specific rules. Instances that share features and 
combinations of features with other instances of the same category will 
access the more specific rules, and since SCA searches for specific rules 
first, these “typical” instances will match rules faster. A prediction from a 
specific rule match is also more likely to be correct because it has a higher 
probability of including more relevant features in its conditions. 

Our simulation results predict an eventual decay of performance dif- 
ferences across different levels of typicality. We should qualify the extent to 
which SCA uniformly predicts this decay. Our dataset examples are described 
by a small, consistent set of features and are perhaps best understood as 
simplified approximations of more realistic stimuli. By including additional 
contextual, redundant, and probabilistic features within the example, per- 
formance differences are prolonged, perhaps beyond the horizon of any 
observed human behavior. Furthermore, gradual incremental change in 
feature encodings could infinitely extend performance differences. Never- 
theless, the possibility of SCA ultimately acquiring maximally specific rules 
suggests a potential qualification for when it exhibits typicality performance 
differences. Similarly, the potential for acquiring maximally specific rules 
presents a limitation on its ability to recover from ill-classified examples. 
Despite the residual effects of noise and context, these limitations imply two 
performance predictions as learning approaches expertise, namely that (1) 
performance differences across different levels of typicality decrease and 
(2) recovery from error becomes increasingly difficult. 

The typicality effects that the model exhibits should be further qualified. 
For the results presented here, typicality is measured as the total similarity 
of an instance with other instances in the same category. In addition to this 
intracategory typicality, Rosch and Mervis (1975) reported intercategory 
typicality where typicality is defined by the degree of contrast of competing 
categories. SCA’s search process from specific to general is perhaps overly 
simple in that it does not predict faster response times for instances with 
high intercategory typicality. Whether an instance is close to a contrasting 
category makes no difference in SCA’s response time, at least when measured 
as the number of feature removal iterations. This is because SCA, in search- 
ing from the most specific to less specific, stops searching as soon as it finds 
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a prediction; having a slightly less specific rule that predicts a contrasting 
category has no bearing on the response time. 

One of us (Miller, 1993, 1994) has described extensions to SCA that 
accounts for intercategory typicality by backtracking whenever conflicting 
predictions match, and, in general, can account for a tradeoff between 
accuracy and response time. Despite the extension possibilities, we use the 
simplified specific to general process in our simulations here in order to 
understand the behavior of the system with minimal mechanism. 

4.2 Detailed Comparison to Human Data 
Medin and Smith (1981) report some experimental results that allow us to 
test SCA’s response time and accuracy predictions in greater detail. In 
particular, the results report the effect of some individual stimuli on response 
time and error, and the effect of instructed strategy on response time and 
error. 

By using the results from this study, we accomplish two goals for further 
evaluating SCA. First, we can test SCA on a set of stimuli actually used in 
human experiments. By comparing relative accuracy and response time pre- 
dictions for individual stimuli, we achieve a finer-grained evaluation of 
SCA. For example, we will test whether SCA’s propensity to favor instances 
that share combinations of features (in contrast to individual features) is 
consistent with human performance. Second, we can illustrate how typicality 
in the context of SCA is not a strict similarity-dependent concept. In partic- 
ular, we show how symbolic knowledge, presented through instruction, can 
penetrate SCA’s classification process and thus alter the relative accuracy 
rates and response times. 

For the Medin and Smith experiments, subjects, divided into three groups, 
were all trained on the stimuli presented in Table 2. They were all told they 
needed to learn how to categorize each stimulus into one of the two cate- 
gories. Subjects in the first group (default group) were not given any parti- 
cular strategy or hint on how to learn the categories. Subjects in the second 
group (rule-plus-exception group) were instructed to pay particular atten- 
tion to one attribute (referred to as D3 in Table 2). They were informed that 
this feature is particularly diagnostic for determining the correct category, 
but that they would also have to learn exceptions. Subjects in the third 
group (prototype group) were instructed to learn the categories by garnering 
a “general impression” of both categories. For all three groups, training 
proceeded by making subjects first guess the category and then by giving 
feedback as to whether the guess was correct. Training continued until 
either a subject successfully completed a pass where all categories were 
correctly named, or the subject completed 32 passes through the stimuli. 

After training, the subjects were required to fulfill several performance 
tasks, of which one task-tested error rates and response times on the original 
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TABLE 2 

Stimuli Learned with Different Strategies 

(adapted from Medin 8 Smith, 1981) 

Coteaorv No. 

Attributes 

Dl D2 D3 D4 

A 4 1 1 1 0 

A 5 0 1 1 1 

A 7 1 0 1 0 

A 13 1 1 0 1 

A 15 1 0 1 1 

B 2 0 1 1 0 

B 10 0 0 0 0 

B 12 I 1 0 0 

B 14 0 0 0 1 

TABLE 3 

Effects of Stimulus Type and Strategies on Human Subjects 

(adapted from Medin 8 Smith, 1981) 

Stimulus 

Number 

Rule-plus 

Default Exception Prototype 

RT ER RT ER RT ER 

4 1.11 85 1.27 .03 1.92 .07 

5 1.34 .14 1.61 .ll 2.13 .18 

7 1.08 83 1.21 .Ol 1.69 84 

13 1.27 89 1.87 .15 2.12 .14 

15 1.07 .02 1.31 .Ol 1.54 84 

2 1.30 .12 1.97 .20 1.91 .12 

10 1.08 83 1.42 .02 1.64 .03 

12 1.37 .19 1.58 .lO 2.29 .16 

14 1.13 86 1.34 84 1.85 86 

M 1.19 .08 1.51 .07 1.90 89 

stimuli (the subjects were told their responses were being timed). Table 3 
presents human response times (in seconds) and error rates for subjects’ 
performance according to learning strategy. For this task, Medin and Smith 
report several interesting, statistically significant results: 

l Overall, stimulus 7 was easier to classify than stimulus 4 in terms of 
error rate and response times. This result is interesting since stimulus 4 
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is closer to the central tendency of category A (all l’s) than stimulus 7, 
that is, stimulus 4 consists of category A’s most common features. On 
the other hand, stimulus 7 shares combinations of three features with 
two stimuli (15 and 4) whereas stimulus 4 only shares one such com- 
bination (that with 7). 
The strategy affected the subjects’ average performance. On average, 
subjects in the prototype group performed the worst in terms of re- 
sponse time and accuracy. Subjects in the default group had the fastest 
response times while subjects in the rule-plus-exception group had the 
fewest errors.’ 
The strategy affected the relative difficulty of some stimuli. Stimuli 13 
and 2 are exceptions to the hint given in the second group. These were 
the hardest to learn for subjects in this group. For subjects in the other 
groups, stimuli 5 and 12 were at least as hard to learn as stimuli 13 and 2. 

These three major results from the timed performance task are also con- 
sistent (in terms of the relative difficulty of the stimuli) with error rates that 
occurred during learning and during an untimed transfer task performed 
immediately after learning. 

Medin and Smith were able to fit the context model (Medin & Schaffer, 
1978) to account for these results. One aspect of this model affords the 
assignment of attentional weights corresponding to each feature. By assign- 
ing a different set of weights for each strategy, the model can account for 
the differences in performance for each strategy. The weights are thus para- 
meters that the researchers select in order to minimize the performance 
difference between the model and human subjects. There is no accompany- 
ing theory as how to assign these weights a priori. 

The human data on timed categorization can also be compared with 
SCA’s behavior. The task is particularly appropriate for several reasons. 
First, it was a timed task where subjects generally responded within l-3 
seconds, a time frame where human behavior is still tightly constrained by 
the architecture’s mechanisms (Newell, 1990). Second, the task was a cate- 
gory naming task, as is SCA’s task, as opposed to a category verification 
task. Furthermore, SCA, as defined within the context of a UTC, is com- 
mitted to how strategies can affect its performance. For the most part, SCA 
is a fixed process that acquires new rules as it guesses what category an 
object belongs to. Variation from this process is only granted to feature 
selection, and thus feature selection is the only process that is penetrable by 
additional knowledge, including strategic advice. The model implies that 
strategic advice can only affect how features are selected. 

We now specify separate feature selection strategies that functionally 
approximate the strategic advice given to the subjects. By motivating the 

’ Medin and Smith do not report whether these pairwise differences were significant. 
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strategies independent of the experimental results, our simulations will pro- 
duce testable predictions, with which we can then compare with the human 
results. When considering SCA within the context of Soar, each advised 
strategy suggests a particular feature selection implementation for SCA: 

l Default strategy. In this case, no strategic advice was given to subjects. 
This suggests the default feature selection strategy (using averaged feed- 
back based on conflicting rules) that is used in all other simulations in 
this section. 

l Rule-plus-exception strategy. Here the subjects were instructed to focus 
on the third feature and then learn exceptions. SCA can follow this 
advice to the extent that it always primarily focuses on the third feature, 
that is, it always removes other features from the internal representa- 
tion first. However, the model does not afford the possibility of delib- 
erately learning exceptions. Rather, it must learn exceptions by learning 
more specific rules. The simplest approach is to focus randomly on 
features in learning more rules. 

l Prototype strategy. For this strategy, subjects were asked to garner a 
general impression of the category. Ideally, this would mean that the 
learner would focus equally on all features at the same time. However, 
this is not possible for SCA; until rules with multiple features are learned, 
it must initially focus on only one feature. In order to comply best with 
the strategic advice, SCA must choose to focus randomly in learning 
rules. 

By directly encoding the biases into our system, we are not committing to 
how these biases arise within the system. To do so would require a language 
understanding component as well as some limited self-awareness of the 
feature selection process. Without a full account of the bias learning and 
selection process, our model does not fully account for the timing of these 
processes. To the extent that human processing time varies across strategies 
when applying feature selection, our model will only be able to account for 
time differences within a strategy. However, we will still look at relative 
accuracy rankings across strategies and some general response time differ- 
ences may be of interest. 

Each of these versions of SCA was trained on the stimuli presented in 
Table 2. After training through five passes of the stimuli set, the model 
completed the performance task. At this point, error rates were roughly the 
same as the human data. Stopping at this point ensures that SCA has yet to 
learn maximally specific rules and thus preserves performance differences. 
In a sense, this arguably constitutes a simulation parameter. However, it is 
determined independent of the model’s predicted performance rankings 
across the stimuli. 
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TABLE 4 

Effects of Stimulus Type and Strategies on SCA 

Stimulus 

Number 

Rule-plus 

Default Exception Prototype 

RT ER RT ER RT ER 

4 0.16 .a4 0.09 .Ol 0.78 .lO 

5 0.61 .ll 0.19 .02 1.14 .15 

7 0.13 .Ol 0.06 .OO 0.77 .OB 

13 0.63 .ll 0.62 .ll 1.11 .14 

15 0.15 .OO 0.09 .OO 0.82 .07 

2 0.73 .21 0.61 .13 1.25 .22 

10 0.18 .OO 0.13 .Ol 0.95 .09 

12 0.73 .21 0.27 .03 1.23 20 

14 0.40 .04 0.18 .Ol 1.20 .14 

M 0.42 .OB 0.25 .04 1.03 .13 

The results in Table 4 are averages of 10,000 runs, sufficient for attaining 
a 95% confidence interval of f 0.01 for both error and response time. The 
error figure is the fraction of times the model guessed wrong in categoriza- 
tion. The response time is the aveage number of iterations of feature abstrac- 
tion before a prediction rule matched. Response times from incorrect pre- 
dictions were filtered out of the data, as was the case for the human data. 

SCA’s behavior is consistent with the statistically significant results 
reported in Medin and Smith. We will discuss these points one by one. But 
first, let us review how accuracy and response time can vary. Accurate per- 
formance is the result of matching rules whose conditions (a) have discrim- 
inating features, and (b) have many features (more specific rules). Feature 
selection strategies that focus on discriminating features produce rules with 
discriminating conditions. Strategies that consistently focus on features in 
the same order (i.e., stable strategies) acquire and access more specific 
rules. Furthermore, stimuli that share combinations of features with stimuli 
in the same category also lead to the acquisition and access of more specific 
rules. Fast response time is the result of matching specific rules. 

With these general performance characteristics, the specific results and 
their reasons are: 

l Overall, stimulus 7 was easier to classify than stimulus 4 in terms of 
error rate and response time. Stimulus 7 shares more combinations of 
features with other stimuli in the same category than 4. Thus, more 
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TABLE 5 

Correlations Between Human Data and Model Predictions 

Model 

Rankings 

Default error 0.941 0.881 0.872 0.941 0.712 0.848 

Rule error 0.825 0.966 0.727 0.825 0.919 0.698 

Proto error 0.941 0.908 0.790 0.941 0.707 0.762 

Default RT 0.879 0.020 0.736 0.079 0.867 0.667 

Rule RT 0.735 0.087 0.651 0.735 0.946 0.561 

Proto RT 0.720 0.644 0.494 0.720 0.667 0.467 

Human Data Rankings 

Ranked bv Error Ranked bv RT 

Default Rule Proto Default Rule Proto 
I 

specific rules match the stimulus, resulting in fewer errors and faster 
response times. 

l The strategy affected the subject’s average performance. The prototype 
strategy (SCA randomly chooses features) is an inconsistent strategy 
that does not always focus on discriminating features. Thus, this strategy 
results in poor performance, in terms of both accuracy and response 
time. The other two strategies are both moderately consistent in select- 
ing features. The rule-plus-exception strategy always keeps the same 
feature in the object description, with the rest chosen randomly. The 
default strategy experiments with feature selection orderings, but then 
somewhat stabilizes as good ones are found. Similarly, both strategies 
generally choose discriminating features. 

l The strategy affected the relative difficulty of some stimuli. The most 
problematic stimuli for the rule-plus-exception strategy are those that 
are exceptions to the rule (numbers 13 and 2), whereas, for the default 
model, these are just as difficult as two other stimuli (numbers 5 and 
12). SCA’s rule-plus-exception strategy has difficulty with the excep- 
tions because it is primarily focusing on the least diagnostic feature 
for these stimuli. 

In further evaluating the models’ fits to human performance, the degree 
of difficulty (according to error rate) was ranked, by strategy, for both the 
human data and the models’ data. For example, stimulus 15 was ranked 
first in the human data (default strategy) because it has the lowest error 
rate. Using a Pearson correlation coefficient, a quantitative measure of cor- 
relation ranging from 1 (perfectly correlated) to - 1 (perfectly inversely 
correlated), the ordinal ranking of the human data was compared to the 
ordinal ranking of SCA’s data. We also compared the response time rank- 
ings of SCA to those of the subjects. 

The corresponding coefficients for the default, rule-plus-exception, and 
prototype strategies were respectively .941, .966, and .790 for the error 
rankings. These figures can be located in Table 5, which shows all pairwise 
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TABLE 6 

Correlations Among Human Data Rankings 

Humon 

Rankings 

Default error 

Rule error 

Proto error 

Default RT 

Rule RT 

Proto RT 

Human Data Rankings 

Ranked by Error Ranked by RT 

Default Rule Proto Defoult Rule Proto 

1 .OOO 

0.836 1 .ooo 

0.912 0.782 1.000 

1 .OOO 0.836 0.912 1 .OOO 

0.703 0.904 0.619 0.703 1 .OOO 

0.912 0.703 0.937 0.912 0.500 1.000 

correlations between the human data rankings and the model’s data rank- 
ings. The correlation figures in boldface indicate the pairings that we moti- 
vated a priori. The remaining figures show the extent to which the alternate 
SCA models fit the different experimental conditions and thus indicate 
whether other variations of SCA might provide a better model of a particu- 
lar condition. That the a priori pairings for default and rule-plus-exception 
error rankings were the best among the other pairings suggest that these 
pairings were appropriate. On the other hand, that the default SCA model 
is a better predictor than random SCA model for the human prototype data 
suggests that a variant of the default model may be a better model for this 
group. 

As an additional point of reference, the coefficient between human data 
with the default strategy and human data with the rule-plus-exception 
strategy was .836 (this figure can be found in Table 6, which shows the pair- 
wise correlations among the human data rankings). Thus, SCA’s rule-plus- 
exception model was a better predictor of human behavior for this strategy 
than was human behavior under the default strategy. On the other hand, the 
coefficient of human data between the default and prototype strategies was 
.912 (compare to .790 for SCA), again suggesting that the pure random 
strategy does not capture the peculiarities of the aggregate human data. 

Response time predictions followed a pattern similar to error rate pre- 
dictions with coefficients of .882, ,946, and .483 (for default, rule-plus- 
exception, and prototype, respectively), which can also be located in Table 
5. For the sake of completeness, this table also provides comparisons across 
the dependent variables of error and response time and thus indicates whether 
the model’s RT’s predict human errors and vice versa. These results seem 
relatively mixed and appear to reflect the extent to which human errors and 
RT’s are correlated. 

One additional point of reference for comparing the ranking correlations 
between SCA and human data is the ranking correlations between the 
human data for performing the timed task and human data for performing 
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an untimed task with the same stimuli. In addition to the timed classifica- 
tion task, Medin and Smith (1981) had subjects perform classification 
where the responses were not timed. The tested stimuli were the same used 
in the timed task, but also included 7 additional stimuli that the subjects did 
not see during training. Taking the 9 that were seen during training, their 
ranks were compared with those for the stimuli’s ranks in the timed task. 
The correlation coefficients (by respective strategy) were .727, .916, and 
.929 (as compared to .941, .966, and .790 for SCA). Thus, for the default 
and rule-plus-exception strategies, SCA served as a better predictor on timed 
classification than human data from the otherwise identical task of untimed 
classification. 

Across all these points of reference, the default and rule-plus-exception 
models seemed particularly useful for explaining the corresponding human 
data whereas the random-selection model was unable to capture peculiari- 
ties of the human prototype data and only seemed to match the human data 
in that its rankings shared some overall similarity with all other rankings. 
Indeed, the default model provided better predictions to the prototype 
human data. From the perspective of our model, these results suggest that 
the subjects in the prototype condition ultimately favored some features 
over others and thus violated the intent of the condition’s instructions. 
Alternatively, it may be the case that SCA cannot provide a context for 
matching the subjects’ classification strategies in the prototype condition. 
The issue could possibly be resolved by an ad hoc fit using alternate selec- 
tion strategies. Inevitably a better fit would be found as evidenced by the 
model’s default predictions. However, to avoid the possibility of overfitting, 
future comparisons will ultimately require the consistent use of selection 
strategies across many datasets. 

We performed one additional simulation for evaluating SCA’s ability to 
account for graded performance. SCA’s behavior was compared with the 
subjects’ performance on the untimed classification task. As previously 
mentioned, the task included stimuli not present during training. The learn- 
ing experiment was repeated for all three strategies. After 4 training cycles,’ 
SCA was tested for its ability to predict the categories of all 16 stimuli (9 
seen during training, plus 7 novel stimuli). Averages of error rates were 
taken from 10,000 runs for each strategy. The resulting ranking correlation 
coefficients were respectively .841, .867, and 644 for the default, rule- 
plus-exception, and prototype strategies. As a benchmark, Medin and 
Smith were able to fit the context model in achieving respective coefficients 
of 90, .98, and .96. 

’ As before, training stopped when error rates approximated those of the human subjects. 
It is not clear why subjects performing the untimed task did worse than when they were 
(knowingly) being timed. 
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The apparent success of the context model relative to SCA is misleading. 
By choosing appropriate feature attention weights, Medin and Smith demon- 
strate how the context model is consistent with human learning for all three 
learning strategies. The use of these parameters played a critical role in the 
context model’s fit. Medin and Smith (1981) report, “The parameter con- 
straints are fairly tight in that values more than a few percentage points 
away yield substantially poorer fits for both [the context and prototype] 
models.” 

SCA takes a further step by having a priori commitments to where and 
how strategic advice should alter the acquisition process. In particular, the 
model, as it is part of a larger comprehensive theory, is more constrained in 
how different strategies could be implemented. It thus makes stronger pre- 
dictions since it does not have as many degrees of freedom afforded by 
parameters. 

Another consideration is that SCA is not as well suited to model untimed 
responses as timed responses. The timed responses took approximately 1 to 
3 seconds. This falls well within what Newell calls the time band of imme- 
diate behavior and where he claims human behavior is most constrained by 
an architecture’s mechanisms (Newell, 1990). Presumably, for the untimed 
task, subjects deliberated longer with their response. The extended delibera- 
tion time allows people more flexibility in the strategies they use, and thus 
allows them to deviate more from the default process shaped by architec- 
tural constraints. 

5. CONCLUSION 

We have described SCA, a discrete rule-based model that yields graded per- 
formance as a function of category similarity. Amidst the implementational 
details, SCA is distinguished by a particular handful of structural proper- 
ties, listed in Figure 9. These are essential properties on which the successful 
evaluation of SCA depends. In a sense, these lay out a class of models, of 
which we have constructed and evaluated one implementation. More sophis- 
ticated models in this class probably exist, possibly including models which 
can represent structured object representations instead of the flat feature 
structures described in this paper. Thus the essential properties depict a set 
of least commitments constraining the construction of future models. 

Foremost is the rule-based representation. Through the use of symbolic 
values and by restricting direct access to the rule-base, our model’s imple- 
mentation is able to efficiently access category names and thus scale up to 
plausibly large numbers of examples and categories. This efficiency brings a 
tradeoff of not directly accounting for flexible, graded performance. Instead, 
the remaining commitments bring us to a model that achieves partial match 
performance and the ability to recover from incorrect associations although 
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l Distributed, rule-based representation. A concept is represented by a distributed 
set of rules (productions). Section 3.1.1. 

l Discrete matching of rules with parallel activation. Rules fully matching the 
internal symbolic object description are activated in parallel, within constant time. 
Section 3.1.2. 

l Serial much. Rules that do not fully match the internal representation are activated 
with a serial search. Section 3.1.2. 

l Search from specific to general. The serial search pattern tries to activate specific 
rules first. Section 3.1.2. 

l Deliberate feature selection controlling search. All relevant knowledge is poten- 
tially brought to bear in guiding the serial search. Sections 3.2, 3.4 and 4.2. 

l Learning specific rules from general rules. New, more specific rules are acquired 
from applying more general rules. Section 3.1.3. 

Figure 9. SCA’s essential structural properties 

we have noted thit this ability, as it stems from continually learning more 
specific rules, is ultimately limited to the extent that more specific rules can 
still be acquired. 

We suspect our rule-based representation also has consequences beyond 
our chosen task of category naming. The opaque rule-base is not immediately 
operational for other category tasks. For example, using the category-naming 
rule-base to specify category examples would require a deliberate search 
strategy of hypothesizing plausible examples and then evaluating the quality 
of their example according to its specificity. Extending the model to other 
tasks within the Soar architecture could make new predictions between the 
relationship of how knowledge structure impacts the task and vice versa. 

Absent from our list is a commitment to our default feature selection 
strategy. We believe that many strategies and knowledge sources play a role 
in selecting features and, with all else being equal, selects features in order 
to improve performance. At this time, we are ambivalent as to whether this 
requires maintaining average performance values as used in our default 
strategy, or whether a simpler strategy that maintains less information con- 
tent would suffice. Our simulations showed graded performance with 
several different strategies with only a few local order differences in the 
rankings, suggesting the extent to which feature selection alters the perfor- 
mance of our model. One item for further investigation are more detailed 
simulations comparing relative performance with other feature selection 
strategies. 

Also missing from our list is a specific granularity at which objects are 
represented. In our simulations, objects are described with four or five 
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symbolic features. Human subjects may actually encode more features, 
which may be irrelevant, noisy, or redundant. For this reason, and because 
of other theoretically-independent implementational details, such as the 
feature selection implementation and the model’s measure of time, we have 
resorted to ordinal comparisons to human data. Presumably, the simplified 
object description leaves intact the relational correspondence between 
individual stimuli and thus allows for reasonable ordinal predictions. 

Finally, we emphasize that our model’s properties are not directly drawn 
from human behavior. Instead, they are a result of applying constraints 
imposed by functionality and architectural demands. As a consequence, we 
have been led to a model that serially searches discrete, symbolic rules, and 
thus contrasts with currently popular “gradient” approaches. We have 
demonstrated how this discrete search process produces flexible behavior 
with varied error rates and response times that conform to human behavior. 
In so doing, the model suggests that typicality, as manifested by accuracy 
and response time, need not be a phenomenon directly supported by archi- 
tecture. Rather, it can be an emergent property of the process that runs on 
top of the architecture and that meets the demands of the task. Our model 
also suggests that typicality is not necessarily a wholly similarity-dependent 
concept, as it can be subject to background knowledge. In particular, we 
have demonstrated how symbolic knowledge originating from instruction 
can penetrate SCA’s classifying process and thus influence accuracy and 
response time. 
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